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Multiple Strategies Differential Privacy on
Sparse Tensor Factorization for Network
Traffic Analysis in 5G

Jin Wang
Sharma

Abstract—Due to high capacity and fast transmission
speed, 5G plays a key role in modern electronic infrastruc-
ture. Meanwhile, sparse tensor factorization (STF) is a use-
ful tool for dimension reduction to analyze high-order, high-
dimension, and sparse tensor (HOHDST) data, which is
transmitted on 5G Internet-of-things (loT). Hence, HOHDST
data relies on STF to obtain complete data and discover
rules for real time and accurate analysis. From another view
of computation and data security, the current STF solution
seeks to improve the computational efficiency but neglects
privacy security of the loT data, e.g., data analysis for net-
work traffic monitor system. To overcome these problems,
this article proposes a multiple-strategies differential pri-
vacy framework on STF (MDPSTF) for HOHDST network
traffic data analysis. MDPSTF comprises three differential
privacy (DP) mechanisms, i.e., e— DP, concentrated DP,
and local DP. Furthermore, the theoretical proof of privacy
bound is presented. Hence, MDPSTF can provide general
data protection for HOHDST network traffic data with high-
security promise. We conduct experiments on two real net-
work traffic datasets (Abilene and GEANT). The exper-
imental results show that MDPSTF has high universality
on the various degrees of privacy protection demands and
high recovery accuracy for the HOHDST network traffic
data.

Index Terms—Differential privacy framework, multiple-
strategies privacy protection, network traffic analysis,
sparse tensor factorization.
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[. INTRODUCTION

ITH the advent of 5G technology, high speed and low
W latency 5G networks bring in huger transmission ca-
pacity than 4G, which can support the emerging application
technologies relying on Internet-of-Things (IoT), e.g., virtual
reality, augmented reality, and wearable devices linked with
mobile phones. Meanwhile, thousands of connected devices
on the 5G IoT network will generate a tremendous amount
of data, and the network traffic data, which can capture the
moving data across a network, usually be used to prevent the
network jam and paralysis [1]. Hence, 5G IoT relies heavily
on accurate and real-time network traffic analysis to maintain a
steady, fluent, and high-speed network environment [2]. Due
to distributed deployment of sensor devices, network traffic
data has the form of temporal-spatial characteristic, and, own
to downtime and some other crash problems for some devices
linked by 5G IoT, the network traffic data presents the form of
high-order, high-dimension, and sparse tensor (HOHDST) [3].
For HOHDST data, sparse tensor factorization (STF) can draw
the low-rank feature of each order from HOHDST data simul-
taneously. Thus, STF plays a key role in the analysis of network
traffic data [4], which can obtain complete data to measure more
valuable information. Practitioners focus on mining the STF
algorithm to conduct an accurate recovery for HOHDST network
traffic data, while neglecting the data privacy in the transmission
and analysis process.

Network traffic data involves the information about the lo-
cation coordinate and network flow, and attackers can infer
the individual private information. Meanwhile, there are three
layers that consider how to address the network security prob-
lems, i.e., physical network security, technical network security,
and administrative network security. It is designed to prevent
unauthorized personnel from obtaining physical access to the
network, viruses and other malicious software to manipulate the
network, and protect the data.

But none of them can deal with the hidden danger that keeps
high-security promise for the traffic data on data-level. Differen-
tial privacy (DP) is a strong privacy protection mechanism in data
level, which can guarantee that anyone cannot make inference
about the individual’s private information by adding a kind of
noise; Meanwhile, DP can ensure the availability of data [5].
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DP can also provide mathematical provable privacy protection
against common privacy attacks, i.e., linkage and reconstruction
attacks [6].

More recently, due to the appetency to provide a privacy
guarantee [7], DP naturally becomes a preferred tool for data
privacy protection in the training process of machine learning
(ML) models [8]-[10]. DP can provide privacy protection for
the classic dimension reduction model, i.e., matrix factorization
(MF) [11], [12] and the application fields have been extended to
recommender systems and social networks [13], [14]. However,
the DP for MF model (DPMF) can only handle the privacy
protection for two-order matrix data and the DPMF cannot
provide the same privacy security promise for third or higher
order tensor data; Meanwhile, the current DPMF models can
apply e— DP and local DP (LDP) individually, but do not have
a general privacy protection framework.

There are several works that explore the DP mechanism for
tensor factorization (TF). Wang and Anandkumar [15] proposed
a DP framework for the tensor level method and the tensor
data are symmetric and dense one. However, this method only
considers the e— DP mechanism, and the memory overhead is
not scalable. For distributed, large-scale, symmetric and dense
tensor data, Imtiaz and Sarwate presented a distributed DP
framework for orthogonal TF and the factorization process for
the low-rank matrix of each order involves the singular value
decomposition (SVD) for a huge symmetric matrix. Because
the privacy proof on dense data does not apply to the asym-
metric and HOHDST data generated in real-world applications,
the abovementioned DP framework cannot provide a security
promise, e.g., network traffic data and medical health data [16].

For HOHDST data, researchers focus on how to improve the
computational efficiency and prediction accuracy for missing
values, especially in traffic network data. Li et al. [17] proposed
a high performance computation framework on GPU for sparse
MF (SMF). Li et al. [17] presented stochastic gradient descent
(SGD) based algorithm for STF to reduce the computational
complexity [18] and in the face of accurate HOHDST network
traffic data recovery, there have been many accurate process-
ing technologies. Xie et al. [19] widely explored the low-rank
structure of two-order matrix and high-order tensor generated
from network traffic data and proposed an accurate sparse ma-
trix and tensor recovery framework based on SMF and STF,
respectively. The abovementioned methods do not solve the
problem of privacy protection for HOHDST data, just improve
the computational efficiency and recovery accuracy.

Recently, in order to overcome the abovementioned limi-
tations and meet the requirements of real-time and accurate
recovery of HOHDST network traffic data, Ma et al. [20]
proposed a framework of canonical polyadic (CP) factorization
under concentrated DP (CDP) protection for electronic health
records. This method can compute the distributed STF, which
can impute local missing diagnosis information and avoid direct
data sharing, meanwhile, this model does not leak the local
patient diagnosis information. Nie et al. [21] presented an STF
analysis framework for IoT data generated from cloud and edge
under e— DP protection. However, those methods do not solve

the general privacy protection problem for HOHDST network
traffic data, which means that those methods cannot ensemble
various DP, i.e., e— DP, CDP, and LDP, and provide a general
privacy protection framework for HOHDST network traffic
data. To overcome the abovementioned limitations and meet
the requirements of accurate recovery of HOHDST network
traffic data under restrict and mathematically provable privacy
protection, the following challenges should be solved.

1) Different DP has different system framework require-
ments on the STE.

2) LDP applications that do not apply to third-order tensors.

3) Achieve an optimal tradeoff between the degree of privacy
protection and the precision of data recovery.

To handle these problems, A HOHDST network traffic data
recovery framework under multiple-strategies differential pri-
vacy protection on STF (MDPSTF) is proposed. The HOHDST
network traffic data recovery relies on the CP factorization, the
factorization process of CP meets the requirements of real-time
analysis in the recovery process of HOHDST network traffic
data and only involves the low-rank matrix of each order. The
main contributions of this article are summarized as follows.

1) This is the first work to realize an ensemble MDPSTF
framework. The framework MDPSTF combines three
DP mechanisms, i.e., e— DP, CDP, and LDP, which can
recover the HOHDST network traffic data and provide
privacy protection.

2) Laplace mechanism and Gaussian mechanism add corre-
sponding noise to the third-party trusted server, respec-
tively, and realize the privacy protection following DP and
zero-concentrated differential privacy (zCDP) definition.

3) The LDP protects the data collection source, i.e., adding
noise to the whole tensor data on the user’s device, which
can protect the data from the attack of the untrusted third-
party server.

4) The theoretical proof of privacy under various mecha-
nisms is given. Combined with the experimental results,
the data recovery accuracy of each mechanism under
different privacy degrees is analyzed.

The rest of this article is organized as follows. The problem
formulation and preliminaries are presented in Section II. Sec-
tion III introduces the framework of MDPSTF for the recovery
problem of HOHDST network traffic data under general privacy
protection. The experimental results are given in Section IV.
Finally, Section V concludes this article.

Il. PROBLEM FORMULATION AND PRELIMINARIES
A. Sparse Tensor Factorization

The main notation, including scalars, vectors, matrices, and
tensors, as well as the slice format of tensors are listed in Table 1.
In the following sections, for simplicity, the STF refers to the
CP factorization.

Definition 1 (Tensor approximation): Given a N-order tensor
X € RIvexInxxIN the low-rank tensor approximation prob-
lem can be formalized as X = X + (, where X is the low-rank
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TABLE |
DEFINITION OF SYMBOLS

Symbol Definition
In The size of row in the nth factor matrix;
R The rank of CP factorization;
X N-order tensor € RI1 XX InX--xXIN.
A The n-th factor matrix € Rin*<E;
T(iy e yin,oyin)  The (i1, in, -+ ,in)-th entry of X
aEZ?: in-th row vector € RE of A(");
&:(’".ZL Jn-th column vector € RIn of A(">;
aEZ?j" The (in, jn)-th element of A,
[| o2 L2 norm;
Index (i1, ,in, - ,in) of a tensor;
X in, The 4,,-th lateral slice matrix
€ RItx X In—1XInp1 X XIN of tensor X';
o Outer production of vectors;

tensor and ¢ is noise data. The optimization problem can be
formalized as arg min 3 || X — X||3.

In this article, we only consider the accurate recovery and
privacy protection problem of HOHDST network traffic data.
Hence, besides tensor approximation, the definition of sparse
tensor factorization should be presented.

Definition 2 (Sparse tensor factorization): The approxima-
tion tensor can be obtained by sum of outer product rank-
1 tensors X = Zf’:l )LTEZ(}T) 0---0 a:(fﬁ) -0 a( ) The con-
stant A, r € {1,..., R} can be omitted. Factor matrices A,
n € {1,..., N} are obtained by following the sparsity pattern
of the sparse tensor X.

Definition 3 (u strongly-convex): Forany x|, x, € R",if there
is a constant p >0, f(z1) > f(22) + Vf(z2)(z1 — 22)T +
s#llzy — 2|3, then the continuously differentiable function
f(z) satisfies the p strongly convexity.

Definition 4 (L-Lipschitz continuity): Suppose there is a con-
tinuously differentiable and L-smooth function f(x), z € R".
Take any two gradient values V f(z), V f(x2) € R” of the two
variables x|, x; € R", and if these two gradient values satisfy
| Vf(xz1) — Vf(x2) |2 < L || z1 — x2 |2, then the gradient
V f(z) is L-Lipschitz continuous for any = € R".

Definition 5 (Stochastic gradient descent): The optimization
loss function f(w) is u strongly-convex and L-Lipschitz conti-
nuity as:

argmin f(w) = L<w Yis T, w) + ApR(w)
weRE ——
N———~——" Regularization

Loss Function

(D

where y; € R!, z; € RE, ie{l,....N}, weRE,
and  L(w|ys, x5, w) + Ay R(w) Zfil Li(w|yi, zi,w) +
AwRi(w). The original optimization model needs gradient,
which should select all the samples {z;|i € {1,...,N}} from

the dataset 2 and the gradient descent is presented as w <+

w—y22) yhore 0alw) _ LN Oiw)thuRe(w) pp

M entries set ¥ is randomly selected from the set Q, and the
SGD [22] is presented as w +— w — vaf‘l“("’) Oy (w) _

where =5 = =
D iew M and v is the learning rate.

In our work, the HOHDST network traffic data can be for-
malized as a third-order tensor X € R7*7*X [23], [24]. Thus,
the value NNV in this article is set as three and we substitute A",
n € {1,2,3} as {A, B, C}, respectively. The objective function
f(A,B, C) is represented as

R 2
1
f(A,B,C) = 5 Z <xijk — Zairbjrckr>
r=1

(4,5,k)€Q

Loss Function )

1 1 1
+3MIALR + 322 BIB + 33 ]CIE.

Regularization

B. Differential Privacy

Some preliminary knowledge about DP mechanism, i.e., e—
DP, CDP, and LDP [7]-[14], [20], [21], are presented.

Definition 6 (Neighbor datasets): Supposed that for any two
datasets on the database D, deemed as D and D, and the two
datasets have the same structure. Entry record difference is
denoted as D A D, and |D A D| means the number of entries
record. If [D A D| = 1, the two datasets D and D are called
neighbor datasets.

Definition 7 (e— differential privacy (e— DP)): Suppose any
two neighbor datasets D, D € D, and the output set is S C R.
If a random mechanism f : D — R satisfies Pr[f(D) € 5] <
e“Pr[f(D) € S] + 6. Then, f satisfies (¢ — §)— DP. The ¢ here
is called the privacy. d can relax and guarantee on a very small
probability. The larger the privacy, the higher privacy protection,
but the worse the data availability [8]—[13].

Definition 8 (Global sensitivity): Suppose there is a query
function f: D — R?. If any pair of neighbor datasets D and
D, their global sensitivity is given by GS¢py = maz| f(D D) —
f(ﬁ) |1, where || f(D) — f(ﬁ) |l is the Manhattan distance be-
tween f(D) and f (13) Ly norm is available. Global sensitivity
has nothing to do with datasets, only with query results [8], [13].

Definition 9 (Laplace mechanism): The Laplace mechanism
derives € — D P is often used in numerical output functions. It
is basically to add a noise tensor of the same size as the original
tensor data, where the noise element conforms to the Laplace
distribution. Defined a function f : D — R%. The probability
density function of tensor Laplace distribution : f(z;, 4,,....in) =

1231 i, iy )

exp(~ - , when A is the noise parameter [21].

Definition 10 (zero-concentrated differential privacy): Sup-
posed that there is a random mechanism M, If any two neighbor
databases D and D, and D differs from D by at most one entry.
If the a—Rényi divergence between the distributions of M (D)
and M (D) of these two databases with respect to the distri-
bution satisfies Do (M (D)||M (D)) £ —Lilog(E[e(*D?]) <
§ + pa, where Z is the privacy loss random variable denoted as
Privloss(M(D)||M(D)). Then, the random mechanism M is
p-zCDP in « € (1, 00). Define the privacy loss random variable
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Z between D and D. Z is distributed according to f (D), where

the function f : D — R by f(d) = log% [20].

Definition 11 (Local differential privacy): Given a privacy
mechanism M and its domain and range are defined as
Dom(M) and Ran(M), respectively. If the mechanism M
satisfied the following inequality on any two records x and
x' (z,2' C Dom(M)) that obtained the same output z*(z* C
Ran(M), then M satisfies the ¢ — LDP as Pr[M(x) = 2*] <
e“Pr[M («’) = x*]. The randomized response is the primary dis-
turbance mechanism of LDP. This mechanism mainly consists
of two steps: perturbation statistics and correction [7], [14].

Current DP mechanisms have been applied successfully in
dense TF communities. However, due to the lack of data recovery
and general privacy protection strategies, those solutions cannot
make privacy protection for HOHDST network traffic data. In
Section III, the general privacy protection framework MDPSTF
for HOHDST network traffic data is presented.

Both DP and CDP work in a supposedly trusted third-party
server. The difference lies in that DP accepts the entire tensor
dataset transmitted by the user, while CDP accepts matrix data
from each user and aggregates it into the tensor dataset. The next
step: decomposing the tensor dataset through CP factorization,
and three factor matrices can be obtained. As for the factor matrix
A, it contains a large amount of user information. So Laplace
mechanism and Gaussian mechanism are, respectively, used to
add noise in this article. LDP is based on the assumption that the
third-party server is not trusted. In order to protect the data at
the source, the randomized response mechanism is used to add
noise on each user before the server aggregates the data.

IIl. MULTIPLE STRATEGIES DIFFERENTIAL PRIVACY FOR
SPARSE TENSOR FACTORIZATION

The research background of this article is the data recovery of
HOHDST network traffic data generated from 5G network. Due
to equipment failure, signal missing, and other crash problems,
the network traffic data are commonly sparse and the trans-
mission process of the HOHDST network traffic data cannot
leak privacy information. Therefore, in this article, we conduct
the MDPSTF framework to make data recovery under privacy
protection for HOHDST network traffic data.

As Fig. 1 shows that MDPSTF can protect the HOHDST
network traffic data from two views: 1) the obtained factor
matrices and 2) the original HOHDST data. DP is used to
ensure the privacy security of users and to achieve a balance
between recovery accuracy and privacy protection. To consider
the accuracy of the data recovery, the HOHDST network traffic
data are first modeled as a tensor, i.e., a third-order tensor X’ €
R7*/*K Thetensor X is generated from a dynamic 5G network,
which comprises user and location coordinate. By combining the
low-rank representation of CP factorization and its factor matrix
with various DP strategies, a general framework MDPSTF is
proposed, which can recover the HOHDST network traffic data
under privacy protection.

“Network

traffic data Users _Server Noise tensor Cp decomposition

) )| (@)
| /Add noise ~ |l

iy ll Untrust

[
&Pz P3
generated by i
the Internet of . ﬁ Places
Things l'p lpj
through 5G
base stations

Mising value ) (Fip)
[ Otmersed vaue
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N)ﬂ

)

ey .
@ xeroxk Time
2

W[ Hnoise
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B e
soniy

Recovery

Unchanged
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Fig. 1. Framework of MDPSTF.
( N 4 B
] data
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I
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Noise data ) Server
Statistical dataquery Statisticalldata query
G Average H Count ‘ ----- |Top—k ‘Averagel ICount‘——-- ‘ TOp_kD
- J G J
(@) (b)
Fig. 2. Data processing framework for CDP and LDP.

TABLE Il
DEFINITION OF SYMBOLS

Symbol  Definition

The recovered tensor by CP factorization;
The recovered tensor after e—DP;

The recovered tensor after CDP;

The recovered tensor after LDP;

The learning rate of SGD;

Privacy budget;

The noise matrix € R %%,

The mean of a Gaussian distribution;

The variance of a Gaussian distribution;
The Lipschitz Constant;

A Bernoulli random variable;

Rank of CP factorization (CP-ranks);
Each of these elements represents information about a user.

TmemaT I e ik

The privacy strategies can be divided into two categories: 1)
after CP factorization, the servers will aggregate information
and add noise processing for e—DP and CDP; 2) In LDP, the
server will aggregate the information and CP factorization after
users add noise information. In Fig. 1, u; denotes the information
matrix of the ¢th user, and ; represents the noise information
matrix of the ith user. Table II records the variables which are
used in MDPSTF.
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A. e— DP Mechanism

A is the noise factor matrix which means adding the noise
A = A+, and then the disturbed objective function is
f(A,B,C)=f(A+17,B,C).

Theorem 1: Let X be the range of user network traffic data
values. If each noise value 7 is independent and randomly
selected from the density function of Laplace distribution, where
A = Xnazr — Xmin, the derived factor matrix A is deduced to
satisfy the e—DP.

Proof: We assume that there is only one record difference

between the two HOHDST tensor {f ={T01,1) o T(i g k)

)7 R i(;jj;)a R i‘(I,J,K)}}v

(i,j,k) and (i,j,k) € Q. N and N are, respectively,
expressed as the noise matrix of X and X. We observe

that f (A,B, C) are differentiable anywhere. After obtaining
9f(AB,C) _9f(AB,C)
8(11'_’7- 8(17, r ’

{a;r, a;,} are (i,7)-element of the factor matrix {A, A},
respectively. The abovementioned equation is expanded as: 7);
~ R ~
= i imea (Tagr — 2rm i rcr ) (=bjrchr) =i —
R .
2 (.4.kyee (Z(ig0) = 2ormt @irbjrcrr) (b rcr,r). I (i, 4, k)
7& (7' .] k) 7]11 an = 0. Else (Z'mja k) = (imjvk)’ MNiyr —
i = (Z " Qi ]T ci ) (Z(ijk) — 2@i4k))- Then, the
global sen51t1V1ty is defined as GS(ap q) = (dex — Xmm)
I -1
( (,9,k || Zl:p—i—l Zf:l Zr q+1 Zr lalT ]rck rHF)
Because the factor matrices {A,B,C} are randomly
sampled from the uniform distribution [0,1], so (gl

o T(LLIK) J X = {&a1,

the gradient, we set the equality

I p—1
Zl:p—i—l Zf:l Zr q+1 Zq 1 @i, T ci,rHF < L. HCHCC,
we can infer GS(q;,) < A then, ||n;, — 7 llFr <
GS(a;,) <A. The density function defined as:
el = _ :
p(m,T) o e,ZT Finally, prix] _ Ilicq,..., I}P(m,r):

pri®] ~ Ilicp,....npp(0ir)

75(2116{1 ,,,,, 1} Hn”’”“zz‘e{] ,,,,, 1} 171D eling Il .

(]

& 24 = e 248
< e"E. O

B. CDP Mechanism

The privacy degree of CDP is tighter than that of e-DP,
which provides a more explicit analysis for many calculations
that retain privacy. Dwork and Rothblum came up with this
CDP [25], Bun and Steinke propose an alternative formula-
tion of CDP called “zero-CDP (zCDP)” [26]. The realization
mechanism of zCDP is the same as the Gaussian mechanism

of (¢ — ¢)-DP. The general Gaussian distribution as follows
p(x|p, 0?) = \/Z:TTexp(f (m2:7’§)2 ), where j represents the mean

and o represents the variance.

Theorem 2 (Gaussian mechanism): Supposed that there is a
random algorithm M. Let e € (0, 1) be a arbitrary variable. For
A >2I 71(1625 ), the Gaussian mechanism with the parameter
o > c/\y (M)/e, and adding noise scaled to NV'(0, o%) to each
component of algorithm M output, is (¢ — §)-DP.

The following propositions will be used together in the proof
of zCDP [25].

Proposition 1: The relation between Gaussian mechanism
and zCDP. If for all z, 2’ € X™ differing in a single entry, and
define a function ¢ : X™ — R be a sensitivity—/A\. We have
lg(x) — q(2')| < A.Suppose there have a Gaussian mechanism
M : X™ — R releases a sample from N (¢(z), o*) on the input

x, then M satisfies (202)
A

2zCDP. (2:2 ) can also be written as
p, namely o =

Proposition 2 ( ) The transformation between DP and zCDP.
A randomized mechanism M is a p — zCDP. If any § with

e =p+2y/pln(§), then M is a (¢/ — 6)-DP. On the contrary,

the mechanism M satisfies (¢ — 6)-DP. If p ~

to satisfy p — zCDP.

The theory of zCDP can be proved by the combination of the
abovementioned two key propositions [20], [25], [26].

Proposition 3 (Serial composition): Let M : D™ — ) and
M': D" — Z are any two random algorithms. If M is p —
2CDP and M’ is p' — zC D P. In addition to define a new ran-
dom algorithm M" : D™ — Y x Z by M" = (M, M"). Then,
M"is (p+p') — 2CDP.

Proposition 4 (Parallel
that a mechanism A consist of a sequence of T
adaptive mechanisms, {A;,..., Ar}, where each A;:
H;ter IO X Dy — Oyer and Ay satisfies p; — 2CDP.

W’ it suffices

composition): Supposed

Let {Dy,...,Dr} be a randomized partition of the input
D. The mechanism A(D) = (Ai(D)y,...,Ap(D)r) satisfies
- Zthl pr —2CDP.

Theorem 3: Set a random mechanism as M, and we assume
that the added Gaussian noise parameter setting conforms to
Theorem 2, then, the random mechanism satisfies (¢ — §)-DP.
Let’s assume that the total pgivacy budget each iteration input of
a factor matrix is p, = 47,;17(%), where T is the total number of
achieve converges.

Proof: First, Theorem 2 shows that the random mechanism
M satisfies (¢ — §)-DP

1 _ PM
FAl) = 5 3 (m(i,j,k) I(i,j,k)) + 7||AMH§ €)

(i,5,k)€Q

where Z(; j ) = Zle a;irbj rcr -, and the Lr—sensitivity of
this problem is A = [|27°'LA,|| (L is the Lipschitz constant),
Dy =2TLhy = 2T Y, i) Soret (B2,62,) 221 The base
zCDP parameter is p,. According to the Proposition 3, A

costs T'p, in total. According to the Proposition 4, then

the total privacy budget cost of all N users is Zooy Ton _
N

w = T'p,. Finally, according to Proposition 1

and 2, the random mechanism M satisfies (¢ — §)-DP that
can be converted to zCDP by setting as p =Tp,, where
Pa = 4Tl’€rl( Ly- U

Algorlthm 1 consists of three modules. The module (1) is
the original network traffic data tensor A decomposed by CP

factorization to obtain three factor matrices, namely A, B, and C.
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Algorithm 1: DPSTF(X R.e,\,p).
Input: A third-order tensor X', CP-ranks R, privacy ¢
and parameters A, p.

Output: @ Factor matrices A € RT*E B € R7*E and
C € RE*E ® Noise factor matrix A € RIXR
and recovered tensor X , ® Noise factor matrix
A € RIXE and recovered tensor X,

1 @Initialize A € RIXE B € R7*%, C € REXT,

2 While convergence threshold is not reached or ¢ <
itermae do;

3 t=t+1;

4 Randomly sample element x;;;, from X’;

5 x;.*jk =a,ob.o0c,;

6

7

for (i,7,k) € Q do

ient 2f 90f Of .
Compute the gradle}r;t Bai Db, 5 Der
8 Update Z; j i < Y _,_q @i,rDjrCrrs
9 end;

10 If the convergence condition meets or reaches the maxi-
mum number of iterative steps, then outputs the factor
matrices A, B, C.;

11
2®@fori=1,....I;r=1,...R do
13 Generate noise that corresponds to the Laplace dis-

_laip]
tribution f(a;-) = %;

14 | Update d; + air + f(air);

15 end;

16 X = Zf:l a.p0b.p o,
17 Return X and A;

18
v @fori={1,---,I}, r={1,---,R} do

20 t Update A < A+Gaussian noise matrix A0, %ﬁ);

21 end;

. R
2 X=3" a0b.oc;
23 Return X and A;

Then, the corresponding noise is added by module (2) or module
(3. Module (2) is to add noise matrix with the same size as factor
matrix A under DP strategy based on Laplace mechanism. After
updating the elements in factor matrix A, Algorithm 1 returns a
recovery tensor X. Module (3) add a noise matrix of the same
size as factor matrix A based on Gaussian mechanism under
zCDP strategy, and Algorithm 1 returns a recovery tensor X
after updating the elements in factor matrix A.

C. LDP Mechanism

Because the HOHDST network traffic data presents the tensor
form, the DP communities try to extend the DP mechanism from
MEF to STF. So far, only DP and zCDP have been applied to TF
just for the privacy protection on dense and symmetric tensor.
Thus, the application domain is limited. The theoretic base of
both approaches is the assumption that the third-party servers

are trustworthy and cannot provide LDP protection mechanism,
LDP can address this assumption well. We want to combine
the STF for HOHDST network traffic data recovery and privacy
protection with LDP. Fig. 2 illustrates that LDP is used to collect
the individual user information and used for data publishing or
querying.

LDP inherits the combined characteristics of the zCDP and
can extend it furthermore. LDP mainly uses the randomized
response mechanism to the input noise disturbance. Thus, LDP
can resist the privacy attack from the source from the third-party
data collector, which is assumed to be untrusted. CDP has
serial and parallel propositions (Propositions 3 and 4). The
serial combination can allocate privacy budget under different
iteration times of the algorithm. The parallel combination en-
sures that private datasets on disjoint confidential subsets satisfy
differential privacy respectively. From the definition, the DP is
defined on the neighboring datasets, while the LDP is specified
on the two records. However, the form of a privacy guarantee
does not change. Therefore, the LDP also continues the serial
composition of DP.

Theorem 4 (Serial composition on the LDP): Supposed that
a method consists of m independent random functions M =
{My,..., M, ..., My}, and each function M,, satisfies
em-LDP. Then, the method M satisfies Z%zl em-LDP [27].

Lemma 1: Let u; and v} be any two nonprivate information
matrix as inputs. u and v’ is the Bernoulli variable generated
by the given input u; and ], respectively. «; is the output of
the algorithm. Then, each submission of the user’s information
matrix satisfies ¢/I—LDP. So the noisy information matrix
submitted by all the users satisfies the e-LDP.

Proof: Sample a Bernoulli variable u such that Prju =

Prla;|u;] Priu=1]u;]

_ ujp(ef—1)4ec+1 o
1] = iz - Assume that prmh = pnpy <
max,,, Prlu=1|u;] _maxui((ui)jyk(65/1—1)-{-65/1-&-1) _ 2es/1 <

min,; Priu/=1|u}] T ming ((u))jk(es/T=1)+es/T+1) T es/T41
i i

e/T Tt can prove that the noise matrix of each user to submit
satisfies £/ —LDP. By Theorem 4, the total noise matrix meets
e—LDP. O
Algorithm 2 adds noise to the user information matrix w;, i =
1,..., I through the Laplace mechanism or Gaussian mecha-
nism. This disturbs the user’s network traffic data at the source
and avoids the attack of untrusted third-party servers. The server
receives the disturbing user information matrix a;,¢ =1, ..., 1,
aggregates them into a third-order noise tensor X, and decom-
poses it through CP factorization and recovers it into X'*.

[V. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments are carried on the public traffic trace data
Abilene [23] and the pan-European research backbone net-
work GEANT [24] to evaluate the performance of MDPSTF
framework. Abilene network consists of 12 nodes; Thus, it will
generate 144 original-source pairs. Thus, Abilene network con-
tained 144 users, 288 locations, and 168 time points. So Abilene
contains a network traffic tensor data with a size of R 144>288x 168
and the GEANT is a large-scale, symmetric, and dense tensor.
It records monitoring data vary in 112 days and containing a
network traffic tensor data with a size of R?72*%><112_ Mean
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Algorithm 2: LDPSTF(X ,R.e,\,p).
Input: A third-order tensor X', CP-ranks R, privacy ¢
and parameters A, p.

Output: Factor matrices A S RIXIR
B € R/*E and C e REXE  poise
user information matrix #; € R7*K i =
1,..,] and recovered tensor  X*.

1fori=1,...,1 do

2 | Initialize (i) € {0375

3 Randomly generate a probability rnd;;

4 | P= e

5 if rnd; < p: The user transmits w; directly;

6 then

7 Generate noise by the Laplace or Gaussian distribu-
tion:

for j={1,---,J}eQk={1,--- ,K} €Q do

(1]
s Flge) = A or plusrle) =
1 _Yik

e~ T2
27e ’

9 | Update s < ujx + f(ujx) or plujile);

10 end;

11 Aggregate all user information matrix into a third-order
noise tensor X € RI*J*K

12 Initialize A € R7*%, B € R/*f, C € REXE;

13 While convergence threshold is not reached or ¢t <
itermas do;

14 t=t+1;

15 Randomly sample element %;;;, from X:

16 for (i,7,k) € 2 do

17 Compute the gradient ag—f,a?—f,ag—kf;
i,r RS ke,

. R . .

18 | Update &;j, < > Qi pbjrCrprs

19 end;

20 If the convergence condition meets or reaches the maxi-
mum number of iterative steps, then outputs the factor
matrices A, B, C;

u X+ =" 4. 0b.0¢ for A,B,C;

22 Return X'*.

squared error (MSE), root-mean-squared error (RMSE), and
fitness error are defined as a follows.
Definition 12 (Mean squared error): The formula for

Tijk—T(i,5 2 ~
MSE is MSE(X) = Z“"f”“)“(‘ff @t where T(ijk) =

S @i by e, and T s the test set.
Definition 13 (Root-mean-squared error): The formula

for RMSE is RMSE(X) =/ Zsnalor fuan)

TG = Zle a; bjrcr» and T is the test set.

Definition 14 (Fitness error): Fitness error can measuring the
recovery error of entries in the tensor [28]. The formula is defined
as \/Z(i,];k)esz("’”(i,j,’c)*ff(i-,.ﬂk))2 .

2
E(i.j,k)EQ Tli,4,k)

where

TABLE IlI
DESCRIBE OF MODELS

Model Describe
CP-SGD CP factorization recovery based on SGD algorithm;
CP-DP Laplace mechanism of DP based on CP factorization
with SGD algorithm;
CP-zCDP Gaussian mechanism of zCDP based on CP factorization
with SGD algorithm;
DPFacT[20] DPFacT is a distributed tensor factorization method, which
enhances differential privacy;
CP-ALS[29] CP factorization recovery based on Alternating Least

Squares optimization algorithm;

First, the performance of CP factorization is tested on the
two datasets, i.e., Abilene, and GEANT. To investigate the
impact of the privacy, this value is set to between O and 2,
while the other parameters are set to default values(we choose
§ = 107*, sampling ratio=50%, CP-ranks=10, regularization
coefficient=0.1 and number of iterations=200).

We compare the difference between our methods and other
methods in Table III.

We study the effects of sampling ratio, CP-ranks, regular-
ization coefficient, and the number of iterations under five
different privacy degree schemes. First, with the increase
of sampling ratio, regularization coefficient, and the num-
ber of iterations in Fig. 3(a)—(c), the RMSE of the five pri-
vacy schemes also decreases. And basically keep the or-
der RMSE(e = 0.5) < RMSE(e = 1.0) < RMSE(e = 1.5) <
RMSE(e = 2.0). In Fig. 3(d), the RMSE of the five privacy
schemes increases with the increase of the CP-ranks.

Fig. 4 shows the performance in terms of fitness error and
comparison with others algorithms. With the increase of the
sampling ratio, thus, sample data, the fitness error decrease and,
thus, better recovery performance is obtained; Meanwhile, with
the gradual increase of privacy and the reduction of noise value,
the fitness error decreases gradually.

In Fig. 5, RMSE grows as the number of algorithm it-
erations increases. By Theorem 3, the total privacy bud-
get is (3.035,107%), (2.575,10~*) under the (¢ — §) — DP for
Abilene and GEANT dataset, respectively, when DP-zCDP
converges. As can be seen from Fig. 6(a), we used mean es-
timates to observe the impact of privacy. When the privacy
is small, the statistical result of the estimated mean value has
greatly deviated from the true value. According to Figs. 6(b)
and (c), when the privacy is large, the statistical result of the
estimated mean value is very close to the true value. Because
the privacy ¢ directly affects the probability of getting a true
answer under the randomized response mechanism. As shown
in Fig. 7, the larger ¢ is, the higher the probability p of a true
answer. As the privacy increases, the noise generated by the
Laplace mechanism increases first and then decreases gradually
in Fig. 7(a). In Fig. 7(b), the noise generated by the Gaussian
mechanism gradually increases. In addition, it can be seen that
when the given privacy is larger, the probability of a true answer
is greater in Fig. 7(c). And also shows that how various privacy
can affect the tradeoff between data availability and privacy
protection. We need to set the privacy parameters appropriately
according to the actual different applications.
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V. CONCLUSION

Secure use of network traffic data in the future of 5G networks
to provide user privacy is a new concern. Many effective tensor
factorization method was proposed, but previous efforts to re-
cover the network traffic data tensor have focused on increasing
the computational rate issue. However, there is no privacy pro-
tection method for the disclosure of user information in the data
center. So the framework for network traffic tensor data privacy
protection (MDPSTF) was proposed. The multiple-strategies
differential privacy was used for network traffic tensor data, and
the experiment was carried out on two real datasets (Abilene
and GEANT). The experimental results showed that various
privacy budgets have different effects on RMSE and other eval-
uation indexes. In general, the framework can achieve privacy
protection according to different privacy budgets and maintain
data availability to a certain extent.

REFERENCES

[1] J. Liu, F. Liu, and N. Ansari, “Monitoring and analyzing big traffic data
of a large-scale cellular network with hadoop,” IEEE Netw., vol. 28, no. 4,
pp. 32-39, Jul./Aug. 2014.

J. M. Batalla et al., “Security risk assessment for 5G networks: Na-
tional perspective,” IEEE Wireless Commun., vol. 27, no. 4, pp. 16-22,
Aug. 2020.

H. Zhou, D. Zhang, K. Xie, and Y. Chen, “Spatio-temporal tensor com-
pletion for imputing missing internet traffic data,” in Proc. IEEE 34th Int.
Perform. Comput. Commun. Conf., 2015, pp. 1-7.

H. Xiao,J. Gao,D. S. Turaga, L. H. Vu, and A. Biem, “Temporal multi-view
inconsistency detection for network traffic analysis,” in Proc. 24th Int.
Conf. World Wide Web, 2015, pp. 455-465.

J. Xiong et al., “Enhancing privacy and availability for data clustering in
intelligent electrical service of [oT,” IEEE Internet Things J., vol. 6, no. 2,
pp- 1530-1540, Apr. 2019.

[2]

[3]

[4

=

[5

—

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:58:49 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: MULTIPLE STRATEGIES DIFFERENTIAL PRIVACY ON SPARSE TENSOR FACTORIZATION 1947

[6]

[7]

[8]
[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

C. Dwork et al., “The algorithmic foundations of differential pri-
vacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3/4, pp. 211-407,
2014.

M. Gong, Y. Xie, K. Pan, K. Feng, and A. K. Qin, “A survey on differen-
tially private machine learning,” IEEE Comput. Intell. Mag., vol. 15, no. 2,
pp. 49-64, May 2020.

Y. Wang, Y.-X. Wang, and A. Singh, “Differentially private subspace
clustering,” in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 1000-1008.
D. Su,J. Cao, N. Li, E. Bertino, and H. Jin, “Differentially private k-means
clustering,” in Proc. 6th ACM Conf. Data Appl. Secur. Privacy, 2016,
pp. 26-37.

M. Abadi et al., “Deep learning with differential privacy,” in Proc. 2016
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308-318.

J. Hua, C. Xia, and S. Zhong, “Differentially private matrix factorization,”
in Proc. 24th Int. Conf. Artif. Intell., 2015, pp. 1763-1770.

J. Upadhyay, “The price of privacy for low-rank factorization,” in Proc.
32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 4180-4191.

H. Shin, S. Kim, J. Shin, and X. Xiao, “Privacy enhanced ma-
trix factorization for recommendation with local differential privacy,”
IEEE Trans. Knowl. Data Eng., vol. 30, no. 9, pp.1770-1782,
Sep. 2018.

B. Ermis and A. T. Cemgil, “Data sharing via differentially private coupled
matrix factorization,” ACM Trans. Knowl. Discov. Data, vol. 14, no. 3,
pp. 1-27, 2020.

Y. Wang and A. Anandkumar, “Online and differentially-private tensor
decomposition,” in Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016,
pp- 3539-3547.

H. Imtiaz and A. D. Sarwate, “Distributed differentially private algorithms
for matrix and tensor factorization,” IEEE J. Sel. Top. Signal Process.,
vol. 12, no. 6, pp. 1449-1464, Dec. 2018.

H. Li, K. G. Li, J. An, and K. G. Li, “An online and scalable model
for generalized sparse non-negative matrix factorization in industrial ap-
plications on multi-GPU,” IEEE Trans. Ind. Informat., to be published,
doi: 10.1109/T11.2019.2896634.

H.Li,Z.Li, K. Li, J. S. Rellermeyer, L. Y. Chen, and K. Li, “SGD_tucker:
A bovel stochastic optimization strategy for scalable parallel sparse
tucker decomposition,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7,
pp. 1828-1841, Jul. 2021.

K. Xie, L. Wang, X. Wang, G. Xie, and J. Wen, “Low cost
and high accuracy data gathering in wsns with matrix comple-
tion,” IEEE Trans. Mobile Comput., vol. 17, no. 7, pp. 1595-1608,
Jul. 2018.

J. Ma, Q. Zhang, J. Lou, J. C. Ho, L. Xiong, and X. Jiang, “Privacy-
preserving tensor factorization for collaborative health data analy-
sis,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., 2019,
pp. 1291-1300.

X. Nie, L. T. Yang, J. Feng, and S. Zhang, “Differentially private ten-
sor train decomposition in edge-cloud computing for SDN-based Inter-
net of Things,” IEEE Internet Things J., vol. 7, no. 7, pp. 5695-5705,
Jul. 2020.

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. New York, NY, USA: Springer Sci. Bus Media., 2013.

“The abilene observatory data collections,” Accessed: Jul. 20, 2004.
[Online]. Available: http://abilene.internet2.edu/observatory/data- collec-
tions.html

S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
Comput. Commun. Rev., vol. 36, no. 1, pp. 83-86, 2006.

C. Dwork and G. N. Rothblum, “Concentrated differential privacy,” 2016,
arXiv:1605.02065.

M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications,
extensions, and lower bounds,” in Proc. Theory Cryptography Conf.,2016,
pp. 635-658.

D. Kortenkamp, T. Milam, R. Simmons, and J. L. Fernandez, “Collecting
and analyzing data from distributed control programs,” Electron. Notes
Theor. Comput. Sci., vol. 55, no. 2, pp. 236-254, 2001.

K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, and G. Zhang, “Accurate
recovery of Internet traffic data: A tensor completion approach,” in Proc.
1EEE 35th Annu. Int. Conf. Comput. Commun., 2016, pp. 1-9.

C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized
CP tensor decomposition,” SIAM J. Matrix Anal. Appl., vol. 39, no. 2,
pp. 876-901, 2018.

Jin Wang (Senior Member, IEEE) received the
B.S. and M.S. degrees in electronic engineering
from the Nanjing University of Posts Telecom-
munications, Nanjing, China, in 2002 and 2005,
respectively, and the Ph.D. degree in computer
engineering from Kyung Hee University, Seoul,
South Korea, in 2010.

He is currently a Professor with the Changsha
University of Science and Technology, Chang-
sha, China. He has authored or coauthored
more than 400 international journal and confer-
ence papers. His research interests mainly include wireless ad hoc and
sensor network, and network performance analysis and optimization.

Prof. Wang is a Fellow of IET.

Hui Han received the B.S. degree in mathe-
matics and applied mathematics from Chang-
sha University, Changsha, China, in 2019. She
is currently working toward the M.S. degree in
soft engineering with the Changsha University
of Science and Technology, Changsha.

Her research interests include tensor decom-
position and differential privacy.

Hao Li is currently working toward the Ph.D.
degree in computer science and technology with
Hunan University, Changsha, China.

From 2019 to 2021, he is a Visiting Ph.D.
Student with TU Delft, Delft, The Netherlands.
He has authored or coauthored several jour-
nal and conference papers in IEEE TRANSAC-
TIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
InforSci, IEEE-TII, ACM-TDS, ACM CIKM, and
IEEE ISPA. His research interests mainly in-
clude large-scale sparse matrix and tensor fac-
torization, recommender systems, machine learning, and parallel and
distributed computing.

Dr. Li is a Reviewer of the top-tier conferences and journals, such
as HPCC, IJCAI, WWW, Neurocomputing, |IEEE Access, JPDC, In-
forSCI, IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,
loT, ACM TKDD, and IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING.

Shiming He received the B.S. degree in infor-
mation security and the Ph.D. degree in com-
puter science and technology from Hunan Uni-
versity, Changsha, China, in 2006 and 2013,
respectively.

She is currently an Associated Professor with
the School of Computer and Communication
Engineering, Changsha University of Science
and Technology, Changsha. Her research inter-
ests include machine learning, data analysis,
and anomaly detection.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:58:49 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1109/TII.2019.2896634
http://abilene.internet2.edu/observatory/data

1948

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 3, MARCH 2022

Pradip Kumar Sharma (Senior Member, IEEE)
received the Ph.D. degree in CSE from the
Seoul National University of Science and Tech-
nology, Daejeon, South Korea, in 2019.

He is currently an Assistant Professor of cy-
bersecurity with the Department of Comput-
ing Science, University of Aberdeen, Aberdeen,
U.K. He was a Postdoctoral Research Fellow
with the Department of Multimedia Engineering,
Dongguk University, Seoul, South Korea. He
was a Software Engineer with MAQ Software,
Mumbai, India, and involved on variety of projects, proficient in build-
ing largescale complex data warehouses, OLAP models, and reporting
solutions that meet business objectives and align IT with business. He
has authored or coauthored many technical research papers in leading
journals from IEEE, Elsevier, Springer, and MDPI. Some of his research
findings are published in the most cited journals. His current research
interests are focused on the areas of cybersecurity, blockchain, edge
computing, SDN, and loT security.

Dr. Sharma has been an Expert Reviewer for IEEE transactions,
Elsevier, Springer, and MDPI journals and magazines. He is listed in
the world’s Top 2 Scientists for citation impact during the calendar
year 2019 by Stanford University. He was the recipient of the Top 1
Reviewer in computer science by Publons Peer Review Awards 2018
and 2019, Clarivate Analytics. He has also been invited as the Technical
Programme Committee Member and Chair in several reputed interna-
tional conferences, such as the IEEE DASC 2021, IEEE CNCC 2021,
CSA 20202, IEEE 1CC2019, IEEE MENACOMM’19, and 3ICT 2019.
He is currently an Associate Editor for the Peer-to-Peer Networking
and Applications, Human-centric Computing and Information Sciences,
Electronics , and Journal of Information Processing Systems. He has
been the Guest Editor of international journals of certain publishers,
such as IEEE, Elsevier, Springer, MDPI, and JIPS.

Lydia Chen (Senior Member, |IEEE) received
the B.A. degree from National Taiwan University,
Taipei, Taiwan, in 2002, and the Ph.D. degree
from Pennsylvania State University, State Col-
lege, PA, USA, in 2006.

She is currently an Associate Professor with
the Department of Computer Science, Delft Uni-
versity of Technology, Delft, The Netherlands.
She has authored or coauthored more than 80
papers in journals, such as the IEEE TRANS-
ACTIONS ON DISTRIBUTED SYSTEMS and IEEE
TRANSACTIONS ON SERVICE COMPUTING, and conference proceedings,
such as INFOCOM, Sigmetrics, DSN, and Eurosys. Her research in-
terests include dependability management, resource allocation, privacy
enhancement for large scale data processing systems and services,
developing stochastic and machine learning models, and applying these
techniques to application domains, such as datacenters and Al systems.

Dr. Chen was the corecipient of the Best Paper Awards at CCgrid’'15
and eEnergy’15. She was the recipient of the TU Delft Professor Fel-
lowship in 2018. She was the Program Co-Chair of Middleware Industry
Track 2017 and IEEE ICAC 2019, and the Track Vice-Chair of ICDCS
2018. She was on the Editorial Boards of the IEEE TRANSACTIONS ON
NETWORK AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON SERVICE
COMPUTING, |IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COM-
PUTIN, and IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:58:49 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


