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ABSTRACT

Aliaga, Davy and Schaff have proposed a prediction model (PREFFAS)'for fatigue
crack growth under stationary variable-amplitude load histories withva short
recurrence period, e.g. flight-simulation loading. This cycle-by-cycle predic-
tion model is based on crack closure. It is described and analysed in the
present paper. Consequences, limitations and possible extensions are discussed.

The model is applied to a series of simplified flight-simulation tests.
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1. INTRODUCTION

The prediction of fatigue crack growth under variable-amplitude loading'is still
a difficult problem. The prediction problem is highly relevant to aircraft
structures in view of the so-called damage tolerance requirements. Several
prediction models have been proposed in the literature. Recently the PREFFAS
model was proposed by Aliaga, Davy and Schaff [1-3] (PREFFAS 2 PREvision de la
Figuration en Fatigue Aéro§patialé). The model is proposed for flight simulation

load histories, where a load spectrum is repeated periodically.

The PREFFAS model is essentially based on the Elber crack closure concept. The
crack opening stress level and the crack growth increments have to be calculated
cycle-by-cycle. The opening level depends on the previous load history. From a
computational point of view the model is rather simple. The authors of the model
have claimed good predictions for a variety of flight-simulation test results.
It was thought to be worthwhile to analyse the characteristic features of the
PREFFAS model and to explore computational aspects. The result is presented in
this report. Aspects discussed are:

- the cycle-by-cyle variation of Kop under variable-amplitude loading;

rain-flow effect;

calculation procedures;

material and thickness effects;

- negative loads.

The model is applied to a series of highly simplified flight-simulation tests

[4] and a preliminary evaluation of PREFFAS prediction model is made.

Acknowledgement: Correspondence with D. Aliaga (Aérospatiale), including

reference [3] was instructive for the preparation of the manuscript.




2. K IN THE PREFFAS MODEL

In the PREFFAS model it is assumed that crack growth occurs cycle-by-cycle. Each
cycle, with cycle number (i), is defined by a minimum and a maximum stress

intensity factor: K and Km .. The crack growth increment Gai directly

min,i ax,1i
depends on the crack opening stress level in that cycle. The Elber concept is

adopted (fig. 1):

o o B _ B o
Gai = a'(Kmax,i Kop,i) Q'Axeff,i (1)

An essential paft of the PREFFAS model .is the question how ch i depends on the

’

previous K-history. To determine Kop‘i in cycle (i) all previous cycles have to '

be considered to find the maximum retardation effect. For each of those cycles

(cyle number (j), j < i, see fig. 1) its maximum K-value (Kmax J.) has to be

combined with the lowest K_. -value occurring between K . and K .. That
min max, j max,i

Kmin-Value occurring in cycle (k) (Kﬁinik' j ¢k <i, fig. 1) will determine the
" reduction of the retardation induced by K x5 The two values, Kmax ] and

Kml |+ are adopted to calculate the K-opening value (KOp i ) in cycle (i), as

it is affected by cycle (j). The calculation again follows the Elber conception:

Roax,j ~ Fop,i.j = U ®nax,j ™ Fain,i/ | (2)

where the crack closure factor U is supposed to be linearly dependent on the

stress ratio R.
U=A+B.R _ (3)
A and B are material constants, ‘and here

R = Kmin,k/Kmax.j ’ ()

Rewriting of eq. (2) gives:

= K , - U.(K =K . ) ’ (5)

K . .
op,i,J max, J max, j min,k

Different cycles (j) will lead to different Kop i .-values. The maximum of these

values will give the maximum re;ardation effect, and, according to the PREFFAS
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model, that maximum is chosen to be the applicable Kop in cycle (i). Thus, the

opening level in cycle (i) is defined by:

op.i = maximum of Kop'i.j for j = 1‘to j=1i-1 (6)
This equation is a key feature of the PREFFAS model. Another essential assump-
tion of PREFFAS should help to understand the physical meaning of Kop.i in eq.
(6). It is assumed that the load spectrum has a relatively short 'recurrence'’
period (in terms of ref. 1: short spectra).‘after which it is repeated again and
agéin. The assumption is used to justify the following step. Any effect of crack
extension in cycles between cycle (j) and cycle (i) on Kop.i is ignored. In
other words, the effect of cycle (j) on Sop.i is not affected by intermediate
crack growths. Obviously this should not be correct, if the recurrence period is
long. In such a case the retardation effect (i.e. the Kop-increasing effect) of
K . could have vanished if the crack growth increment between cycle (j) and

max, j

cycle (i) has exceeded the plastic zone size associated with Kmax i

It is noteworthy that equations for the plastic zone size (rp) do not occur in
the PREFFAS model. Crack tip plasticity is accounted for by effects of Kmax j
and K_. on K . (fig. 1). Because K . is the largest K-value occurring

min,k op,1i max, J .
before cycle (i), it is supposed here that cycle (j) introduces the largest

plastic zone, which is still the dominant monotonic plastic zone for cycle (i).
However, its retardation can be reduced by reversed plasticity. The maximum
'reduction is caused by the lowest Kmin between cycle (j) and cycle (i), which is
K (fig. 1). Those two K-values may be expected to determine Kop in cycle

min,k
(i), and thus justify the basic assumptions for eq. (6). Obviously, this can

" only be correct if intermediate crack growths increments are small as compared
to the plastic zone sizes. Hence it requires variable-amplitude load spectfa

with a short recurrence period.

According to the definition of Kop i in eq. (6) all previous cycles have to be

*

considered. However, in reality the number of cycles, which will affect Kop i

is not large. First, it should be understood that a Kmax-value, which is larger
than all previous Kmax-values. erases all history effects of those previous

cycles. In figure 2 Kmax 5 is larger than K is higher than

vd max, min, k2

Kmin.kl‘ The calculation of Kop,i,j requires that Kmax,jl is combined with

Kmin.kl"and Kmax.jZ is coupled to Kmin,kZ' The last combination will obviously

lead to a higher KO i3 because both the maximum and the minimum K are higher.

j1° and K
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Of course a Kmin.k2 lower than Kmin.kl may also occur. However, then both

K ., and K __ have to be combined with that lower K . -value. Again
max, jl max, j2 min

.. will be a non-relevant K for K }. It implies that the largest K -
max, j1 op,1i max

value of the K -history erases the effects of all previous cycles. Only lower
Kmax-values coming later should be con51dered

If K .. is lower than K .. it does not eliminate the possible significance
max, j2 max, jl

of that previous value. However, for the same arguments used above, all K nax_

values occurring between cycle (jl) and cycle (j2), which are lower than Kmax.j2

need not be considered any longer. In other words, the relevant Kmax-values for

calculating Kop i should be a series of decreasing values (fig. 3).

By definition the calculation of K i,4 requires the selection of the lowest

Kmin between cycles (j) and (i). It is easy to understand that the lowest K nin
of the K-history makes it unnecessary to consider Kmin-values of previous
cycles. Consequently, the relevant Kminvalues form a series of increasing
values. As a result the K-values to be considered for calculating Kop in cycle
(i) will be an alternating series of K-values, with decreasing K ax-values and
increasing K i values Such K-values were labelled by the authors of PREFFAS as

history values KHmax and KHm'n' see the illustration in figure 3.

The retardation effect of a KHmax-value on a later Kop'i is dependent on the

’

reduction of that effect by the subsequent Kﬂmin-value. It implies that .a KHméx
is always related with a later KH min® As a result KH nax and KH in-values do
occur in pairs. Each palr determines a ’hlstorlcal K p-level (KH ). which
should be calculated according to egs. (3) to (5). If the history levels have

the rank number p the result is:

KH = KH =~ = U.(KH - KH . ) (7)
op,p max,p max,p min,p

Each pair KH , KH . will cause_its own opening level KH - . If a new
max,p min,p op.,p

pair of a potential KH and KH . value does not increase K ., their effect
max min op,1i

will be overruled by a previous pair. It then will not beceme a new pair of
history levels. In figure 3 new KH-levels might be expected between KHmln 3 and
the current cycle (i), because the peak values fit into a decreasing series of
K and an 1ncrea51ng series of K nin® However, there is another requirement,

max
which is an increased Kop' and that has to be checked for each cycle.
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The conditions for the history levels can now be summarized as:

-

KH < KH _ ' (8a)

max,p max,p-1
min,p > KHmin,p-l (8b)
KH > KH v : » (8c)

op,p op,p-1

In view of these three requirements and the 'relatively' short load spectrum
period the number of history levels is significantly restrained. According to
Aliaga et. al [1] the rank number of the KH-levels to be recalled for the
calculation of KOp i will not exceed 10 in practical cases of crack growth

’

predictions under flight-simulation loading.

3. THE RAIN-FLOW EFFECT

The authors of PREFFAS realized that small intermediate load variations can lead

to unconservative predictions. A simple case is shown in figure 4. The history

levels KH and KH . determine the opening level K . For the
max,r-1 min,r-1 op,r-1
small intermediate load cycle between the levels KH and KH . , the
. max,r min,r
opening level KHOp r is larger than KHop -1 Consequently, these levels are

history levels indeed. According to the model in the previous section the sum of
the two crack growth increments is:
Sa = a (&K )B + a (K )B (9)
eff,r-1 eff,r
If the small intermediate load variation does not occur, only one'AKeff has to
be considered, which is AKeff of in figure 4. The crack extension then is:

sa = a (K )R (10)

eff,rf
Because of the exponential AK effect (B in the order of 3) the last Sa will be
considerably larger than Sa in eq. (9). PREFFAS might give an unconservative
prediction. Therefore the authors of the model have extended PREFFAS to account
for this aspect by the well known rain-flow approach. Figure 5 illustrates how
the two original AKeff variations (black bars) are replaced by two other

effective variations (open bars). The rain-flow approach in fig. 5 will count
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one large load variation AE and one small load cycle BCD. Similarly to this
approach the PREFFAS model recognizes one large AKeff related to the.large load
variation and a small damage contribution from the small intermediate cycle. It
only occurs if Kmax exceeds a previous KH max level. Figure 6 illustrates the
rain-flow procedure if Kmax exceeds two previous KH —1evels As illustrated by
figures 5 and 6, if Kmax exceeds a previous KHmax-value. the exceeding part is
supposed to be an extension of AKeff associated with that previous KHmax' It

extends the damage done in that previous cycle.

If only one previous KH nax is exceeded (fig. 5) the PREFFAS model including the

rain-flow effect calculates the crack extension in that cycle to be:

B o . .-k P

da, = a (K
i max,i-1 op,1i

. - K .
max,i op,i-1

L - (11)

- a (Kpag,i-1 ~ Kop,i-t
The first term accounts for the rain-flow effect, the second one is the
contribution of the small intermediate cycle and the last minus term must be
added because otherwise that part of the damage would be added twice. If more
previous KHmax-values are exceeded (fig. 6), say from j = p + 1 until j = ¢ (the

last one), eq. (11) must be generalized to:

6ai = a (Kmax i- Ko p)ﬁ + a p (KHmax ; - KHop J.)B
1] p' j=p+1 ’ ’
. B
-a 2 (KHmax . - KHO ._1) » (12)
j=p+1 QJ pvJ

It should be noted that not all cycles counted by the rain-flow count method
will be similarly treated by the PREFFAS model., As an example, the three smaller
cycles in figure 7 will all give K —values lower than. KHop,p' Only the middle
one will give a damage contrlbutlon However, in none of these cycles the last
.KHmax,p is gxceeded, and according to the‘PREFFAS model there is no rain-flow
effect, although all these cycles would be counted by the rain-flow counting
method. There are more differences. The rain-flow counting method has been
justified in the literature by considering closed hysteresis loops during cyclic
plastic deformation and the material memory for previous loops. Also these
arguments cannot be reconciled with the rain-flow effect of the PREFFAS model.

The introduction of the. latter effect is based on a 'reasonable' and more
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conservative handling of small intermediate load variations when large

variations do occur.

4. CALCULATION OF THE PREDICTED CRACK GROWTH

The crack growth prediction according to the PREFFAS model is a relatively
simple procedure based on the variation of KHop. It is simple because the crack
length (a) for the calculation of the K-history is assumed to have the same
constant value during a period of the load spectrum. As a consequence, during
one period, the K-values and the S-values (S = stress) are linearly proportion-
al. Hence, all previous considerations on KH-values can be simply translated to
SH-values (history stress levels to be considered for the calculation of the
crack opening stress level Sop)' This allows an easy calculation of the average

crack growth rate during one period and subsequent periods as shown below.

If the crack growth increment in one period is indicated by Aa, this increment

can be written as:

n

n _ 8
ba = I Sa; = a I Axeff,i (13)
=1 ‘ i=1

where n is the number of load cycles in one load spectrum period.

Kopp 5 = £(a) . 8S_pp 5 [na - (14)

where f(a) is the wellknown geometry factor.
Because it was assumed that the crack length 'a' has a constant value during one

period, eq. (13) can be written as:

n

pa = a [f(a) f;E]B T Assz i (15)
i=1 '

In ref. (3) Aliaga has defined the sequence efficiency (symbol EF) as:

™MD

EF =

B
8Sepp,i | (16)

i=1

and thus:
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ra = a [f(a) JnaIB.EF ' (17)
The average crack growth rate per cycle (n cycles in one period) is:

. Aa _ B EE
(), = 2 = a [f(a) [na] | B (18)
The sequence efficiency EF has to be calculated only once for one load spectrum

period.

(Note: during the first period the SH development canhot yet be affected by
load cycles of a prev1ous perlod As a consequence, there are transient
initializing effects. The stationary EF value is constant for the second
and subsequent period of the load spectrum. That EF-value should be used

in crack growth predictions.)

Equation (18) explicitely gives the average crack growth rate as a function of
the crack length because of the term f(a) JFE The effects of crack length and
geometry are fully separated from the effect of the stress history. Such a
separation of variables was previously adopted by Gunther and Goranson [5]. The
effect of the stress history is characterized by EF. The separation of variables
is possible in the PREFFAS model because the variations of KH-levels (and SH-
levels) are assumed to be independent of intermediate crack growth during one
period of the load spectrum. It‘implies that the crack length is supposed to
remain stationary for some time, while éa values are calculated, but not yet
added to the crack length a. This empha51zes that (da/dN) in eq. (18) is an

average crack growth rate aSSOC1ated with the crack length to be substituted in

f(a) JF;.

The computer program to calculate EF is described in some more details in the

appendix. The calculation of EF requires a cycle-by-cycle calculation of ASeff i

max min
similar set of conditions as given in eq. (8) for the KH-levels.

based on history levels SH , SH . and SHop' These levels have to satisfy a

SHoax.p ¢ SHpax,p-1 : (19a)
SHmin.p > SHmin.p-l . ' (19b)

SH o 0 SH ) b1 | (19¢)



" with K = f(a) S

-11-
where p is again the rank number of the SH-levels.

Equation (18) allows another interesting evaluation. For this purpose all stress
levels of a load history (or a lnad spectrum) are compared to a characteristic
reference stress of the load spectrum: Schar' Each stress level Si can be

written as:

Si =9 - Schar ’ (20)

with qQ = Si/schar (21)
If all stress levels are proportionally increased (or decreased), the
characteristic stress level will vary in the same proportion. As a consequence
the qy values will remain constant. The shape of the load spectrum does not

change. Only the scale of the stress levels is changed. Similarly to eq. (20)

AS ., can be written as:
eff,i
AS :
_ Teff,i _

ASef‘f,i - S ) Schar ® Qfr,i ¢ schar (22)

char
It is easy to understand that rescaling of the stress level will affect Schar'
S. and AS . in the same proportion. As a consequence, a variation of S .
i eff,i ; char

which does not affect 9 in eq. (21), will also not affect dorr 1 in eq. (22).
It implies that EF in eq. (16) can be written as:

n

Senar)” = Sone b @)

EF = [qeff.i * “char? Schar : .2 err, i

||'M:J

i=1 i=1

Since qeff,i is independent of SChar the zqeff,i will be constant also. It

depends on the shape of the load history, but not on the stress scale.

- g X .
EF = Q. Shhae With Q= Zagep o (24)

Substitution in eq: (18) gives:

[ma]P = (a/n) Q kP (25)

char

(da/aN) o = (a/n) Q [f(a) S ..

I (26

char char
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For one particular shape of the load spectrum (including one particular load
sequence) some interesting conclusions can now be based on eq. (26): >-

1. The relation between da/dN and Kch if plotted on a double log scale should
be linear with the same slope B appllcable to the constant- amplltude data (Paris
relation). | ;

2. Tests with different characterlstlc stress levels (but the same load spectrum
shape and load history) should comply with the same relation between da/dN and
Kchar (eq. (26)). This- allows a simple extrapolation to other nominal stress
levels.

3. A third conclusion applies to the cfack growth life between a specified
initial crack length and a specified final crack length Because the average
growth rate at any crack length is inversely propgrtlonal to SB aé. the crack

growth life will also be inversely proportional to Schar or:

g -
_N'Schar e eonstant = } (27)

Such an S-N relation (Basquin relation) is log-linear with a slope -1/B.

5. MATERIAL AND THICKNESS EFFECTS

In the prediction equation (18) there are two material constants, a and B, which

are the two constants of the Paris relation.

da/dN = a.AKsz g - (1)

However, there are two more material-dependent constants in the crack closure

functien:

U=A+B.R ' - (3)
Accerding to Aliaga et al [1,2] it is.generally found that

A+B=1 ‘ | , - (28)
leads to good results for aluminium alloys and steels used in aircraft.

structures. Another relation between A and B is obtained experimentally from

constant-amplltude tests (R = 0.1) with periodic overloads every 1000 cycles.
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while K __ /K = 1.7 (fig. 8). The overload factor 1.7 was selected
overload’' max

because it was supposed to be 'representative' for civil aircraft wing spectra.

Results from Aliaga et al are shown in figure 8. In agreement with the

prediction by the model (see previous discussion) two parallel scatterbands were

obtained, i.e. the same B is applicable to the constant-amplitude (CA) test

results and the tests with periodic overloads (OL). As a consequence, the

retardation ratio, defined as:

(da/dN) .,

retardation ratio = w5
- (da/dN)el0r

(at same AKCA)

must have a constant value, which can easily be predicted by the model, because
in the tests with periodic overloads (SHop) is constant and equal to Sop of the

OL-cycles. The prediction result is (with A = 1 - B, eq. 28):

1001 {{t - 0.9 B) 0.9)P

retardation ratio =

({1 - %% B) 1.6)P + 1000 ((1 - %% B) 1.6 - 0.7)P
(29)

From the experimental ratio and the B value, the value of B can now be obtained
from eq. (29). In figure 8 the ratio = 10 and B = 3.2 which leads to B = 0.42
and A = 0.58. Estimated B-values based on test results presented in [21 for

different thicknesses are:

B-values (A + B = 1)
Material
1 om --=-==--- > 8 mp ------- > 15 mm
2024-T3 (and T351) | ~0.45 ~0.4 ~0.35
7075/7010/7050 (T6... and T7...) ~0.35 ~0.3
steel (Su = 1000 MPa) ~0.25

The results illustrate that A and B depend on the material and its thickness.
For B = 3 the retardation ratio according to eq. (29) is shown in figure 9. A

larger B-value implies more crack closure and more retardation. Larger B-values
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apply to ‘more ductile materials and lower sheet thicknesses. It corresponds to

larger plastic zones at the crack tip.

6. APPLICATION OF PREFFAS TO SIMPLIFIED FLIGHT-SIMULATION TESTS

Results of highly simplified flight-simulation tests on 2024-T3 sheet specimens
(t = 2 mm) are presented in [4]. The load sequences adopted I to III are shown
in figure 10. All flights in one test are equal. The tests can also be labelled
as constant-amplitude tests with periodic overloads and underloads. Crack
opening stress levels according to the PREFFAS model (SHop) are shown in figure
11. For comparison the opening stress level in a pure constant-amplitude test
(S ) is also shown. The latter values were used for non- 1nteract10n (Miner
type) predictions. Whenever SH > S op retardation does occur, whereas

op
. . <
accelerathns apply if SHop Sop

Crack growth life (N) predictions were obtained by integration of eq. (18) from

=4 mom to a =30 mn (W= 100 om). The integration leads to:

Int 1
v - —Integre (30)
n=W EF
n
oS %é b/ na
with: Integral = J el d == (31)
W

and EF according to eq. (16). For constaht-amplitude loading, n = 1 and EF =
Assz. Eq. (30) with eq. (3) reduces to:

Integral v (32)

N = -
' na w‘?’/z-1 [(A + BR) AS]B

The material constants are a and B of the Paris relations, and A and B of the
crack closure relation (eq. 3). Values for A, B and B were borrowed from the
results of Aliaga et al [2] for 2024-T3, which implies U = 0.58 + 0.42 R and B =
3.2. The other constant a was fitted to the constant-amplitude data of the
material for which the PREFFAS predictions have to be made [4]. The result is
@ = 1.56 * 1019 (da/dN in m/c and AK in MPa /@m. In [1]a=2.1*10 10 Gas

found) .
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The PREFFAS predictions are compared to the test results in table 1 and figure
10. Results for tests with tensile stresses were considered only, because the
application of PREFFAS is limited to this condition. Six constant-amplitude
tests, calculated with eq. (32) are also presented in figure 10. For these
results the agreement betweén prediction and test is very good, as might be
expected in view of the data fitting procedure to obtain a. For 10 different
flight-simulation tests, the predictions do not always agree with the test
results (each test result is the average result of two tests). Quantitatively,
the predictions do not deviate more than a factor of 2 from the test results,
and in most cases it is significantly better. Qualitatively some more comments
can be made, also in chparison to the non-interaction prediction presented in
table 1. |

Large retardations apparently occurred in the tests of type II and type III with
overload cycles and 100 cycles per flight, if compared to the tests of type I
(no overload cycles). PREFFAS does indeed predict a large retardation, although
the quantitative agreement is not always as good as desirable. The non-
interaction predictions do not indicate any retardation, on the contrary a small
reduction on life (as should be expected for occasional large cycles and a non-

interaction concept).

A remarkable.result of reference [4] was the small and‘non-systematic difference
between results for tests of type II and type III. In this case PREFFAS predicts
a systematically higher crack growth life for type II. For 100 cycles per flight
it is almost twice as high. which is not borne out by the test results. The
predicted difference is due to a higher crack opening stress level and thus a
lower AKeff for tests of type 11, see the comparison of ASeff in figure 11. The
non-interaction prediction indicate negligible differences between II and III,
but as said before the quantitative non-interaction predictions are poor anyhow

for tests with large retardations.

7. DISCUSSION

The PREFFAS model was introduced by Aliaga et al as an intermediate approach
between a rather simple model of the present author (6] and more complex models,
which can also handle non-stationary load histories. In my own simple model it

was proposed that a constant Sop could apply to a stationary flight-simulation
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load history. The Sop-level should be a function of the maximum stress and the
minimum stress of the load spectrum, and later []] it was proposed to adopt the
minimum stress of the ground-to-air cycle as that minimum stresé level. It is
correct to consider the PREFFAS model as a kind of an intermediate approach,
because it includes variations of Sop as a function of the 1oad history. More-
over, some rain-flow type influences are also accounted for, and finally the
computational effort is very limited by the separation of the effects of crack
lengths (a) and geometry on one hand, and the effect of the load history on the
other hand. ‘

There are aAfew apparent limitaﬁions in the PREFFAS model.

(1) Negative loads are ignored, which implies that the compressive part of
cycles is truncated at S = 0. This should be done because the Elber type
equation U = A + BR cannot be reconciled with compressive stresses as shown
elsewhere [8]. However, if another U(R) relation is adopted it should not be
difficult to extend the PREFFAS model and include negatlve loads as well.
Actually the ground-to-air cycle in the compressive range has a systematic
effect on crack growth (reviewed in [9]).

(2) Another limitation is the assumed crack growth relatlon. da/dN = a AKsz
(Paris relation). As a result of this assumption, ‘the separation of variables
(crack length and load history) was possible. However, any other non-linear
relation could also be adopted as an extension of the PRESSAS model The model
is then essentially reduced to the assumptions made to calculate Kop.i (eq. (6))
and the procedure to account for some rain-flow effect. For other crack growth
relations separation of the variables will become impossible (unless the Paris
relation is replaced by a higher order polynomial equation). More computational
effort will be required, but that can not really be considered to be a serious
disadvantage if an improved prediction reliability can be.obtained.

.(3) As pointed out by Aliaga et al the model cannot be applicable when crack
growth rates are high due to ductile tearing at high K values. Crack growth
rates should not be too high anyway, because as 1nd1cated by Aliaga [3], 4a in
one load spectrum period must be significantly smaller than the plastic zone
size associated with the maximum load of the spectrum. Otherwise, the ignorance
of crack growth to calculate KH values can no longer be.acceptable.

(4) Another question is, whether the model can still be applicable to very small
cracks (threshold regime), .where a unique correlation between AKeff and da/dN

may become questionable for several reasons.



;17_

(5) In various prediction models plastic zone size calculations are an essential
part of the model. In the CORPUS model [10] and the ONERA model [11] the
transition from plane strain to plane stress is also incorporated. These aspects
are not explicitely addressed the the PREFFAS model. However, plastic zone size
considerations are essential to justify the history effects included into the
model. It may be stated that the determination of the A and B value by a test
with periodic overloads implies a kind of a calibration for both plasticity and

the transition from the state of stress at the crack tip.

Two types of criteria for prediction models were indicated in [12]:

(i) Empirical trends in variable-amplitude tests must be gquantitatively
predicted with a sufficient quantitative accuracy.

(ii) A prediction model involves a mechanistic conception. It should be a
physically sound conception, in agreement with visual and microscopic
observations on fatigue crack growth, including striation measurements.

Several important empirical trends of variable-amplitude tests are summarized in
[12]. It is not the purpose of this paper to analyse the prediction potential of
the PREFFAS model for all these trends. However, an exception is made for the
so-called delayed retardation phenomenon, see figure 12. The PREFFAS model does
" not predict delayed retardation, and the same is true for the CORPUS model [10]
and the ONERA model [11]. An interesting aspect now is that delayed retardation
most probably occurred in the constant-amplitude tests with periodic overloads,
used for the 'calibration' of the A and B value. With this observation in mind
it is a valid question whether another type of a variable-amplitude testing
might be adopted to assess unknown constants of the prediction model. An obvious
choice would be a judiciously selected flight-simulation test. Experimentally,
such a test can hardly be considered to be more complex than any other type of
variable-amplitude tests. The proposal to use a flight-simulation test as a -
calibration test, implies that the PREFFAS model then is used to extrapolate
from that test result to other flight-simulation conditions. According to Aliaga
et al [1,2] the PREFFAS model predicts load spectrum variations with a reason-
able accuracy. Further checks and analysis should be recommended. It is
interesting to note that Habibie's prediction model [13] also started from

available results of one flight-simulation test.

Another empirical trend mentioned in [12] is the occurrence of a transient
initial crack growth retardation occurring during several periods of the load

spectrun. The observation was especially made when fatigue cracks started from
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artificial notches, such as a saw cut. The three models mentioned cannot predict
this trend, but it was argued .in [12] that this need not be necessary for a
practically useful model. However, a model then should not be checked with test
results which are still affected with the transient behaviour. Such a transient
behaviour can only be revealed when érack growth fates are considered, rather

than crack growth lives.

8. CONCLUSIONS

The basic assumptions and consequences of the PREFFAS fatigue crack growth
prediction model are discussed in the‘present paper. The model was developed by
Aliaga, Davy and Schaff for stationary variable-amplitude load histories with a
short recurrence period. The model is essentially based on crack closure to
account for load interaction effects. The following comments and conclusions can
be given. ' ’

1. The PREFFAS model predicts a cycle-by-cycle variation of the crack openlng
stress level in a relatively simple way. The computational efforts . involved in
predictions for flight-simulation tests are very limited, which is'é result of
separating in the calculations the variables of the load history on one side and
the crack length and geometry effects on the other side. The model accounts for
the rain-flow effect of small load variations, which interrupt 1arge load
variations. _

2. The applicability of Kcﬁar to stationary flight-simulation tests at different
stress level (same shape of load spectrum and load history) is a natural
consequence of the PREFFAS model.

3. Retardation trends observed in 51mp11f1ed flight-simulation tests, were
predicted by the PREFFAS model, whereas the non-interaction approach predicts
small accelerations. v _ '

4. The PREFFAS model ignores compressive loads, and it is restricted to a log-
linear crack growth behaviour. It is suggested that the model can easily be
extended beyond those llmltatlons. ‘

5. The model does not include plastlc zone size calculations. However, mater1al
thickness and ductily do affect a fitting factor to be obtained from a constant—
amplitude test with periodic overloads on ﬁhe relevant material.

6. The constant-amplitude test with periodic overloads can be considered as a

kind of a calibration test to adjust the single free constant of the model. It
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is suggested that a flight-simulation test may be more apprdpriate for this

purpose.

7. The model and possible extensions, should be further verified against

experimentally obtained crack growth rates, rather than by comparison crack

~ growth liveé.
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type SOL cycles life in kilbcycles
of g
(MPa) per predictions _ prediction
loading ' test test result
(fig.10) 1 flight | result
PREFFAS non-int. PREFFAS non-int.
I - 5 47.9 58.4 58.4 1.22. 1.22
100 60.6 67.5 67.5 1.11 1.11
II 160 5 4s.1 56.0 39.6 1.24 0.88
100 194.8 165.4 65.7 0.85 0.34
200 5 21.3 35.0 25.4 1.64 1.19
100 270.1 391.7 62.8 1.45 0.23
I1I 160 5 uy 2 by, 6 42.8 1.01 0.97
100 | 175.6 85.6 66.2 0.49 0.38
200 5 21.1 33.1 28.6 1.57 1.36
- 100 321.3 216.9 63.7 0.68 0.20

Table 1: Test results and predictions for the simplified flight-simulation tests
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Figure 2: A K .. larger than maximum values of previous cycles erases all

history effects of those previous cycles.
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Figure 6: Damaging parts of KHmax-cycles without rain-flow effect (J) and

with rain-flow effect (/7).
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KHmax,p

KH .
min,p

Figure 7: Three smaller cycles counted by the rain-flow counting method,

but without rain-flow effect in the PREFFAS model.
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Figure 11: Comparison between the opening stress according to PREFFAS (SHOP)

and non-interaction (So ).
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Figure 12: Delayed retardation after an overload (OL).
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APPENDIX

CALCULATION OF THE SEQUENCE EFFICIENCY EF -

According to eq. (16) the definition of EF is:

. B
EF = £ AS
. eff
i=1
with n = total number of cycles in one load spectrum period.

The load history is repeated periodically. It is supposed to start with a
minimum and to end with the‘§§gg minimum (as required by ‘the transition to the
next period). -

Including those 2 minima the totél number of peak values is (2n + 1), which
impliesvthat'the first minimum is followed by n cycles consisting of a maximum,
Smax(i)' followed by minimum Smin(i) (i =1 ton). It should be noted that the
cycle definition differs from the definition in the paper, where a cycle was
suppoéed to consist of a minimum followed by a maximum. However, the opposite
sequence is more ;ogical here in view of new Sopflevels and the possible re-
assessment of history levels. The first minimum is Smin(o) and the last one

S . (n) =S in(0).

min m
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The computation of EF occurs in the following steps:

[ Input data |

[ Initialization |

o i =i+ 1 |

Read Smax(i). Smin(i)

Calculation of AS

(1)
and EF (i) eff

Resetting of history values
SH_ (3 SH ;. (3). SHOp(J)

no

[ EF = EF(n) |

A more detailed flow diagram is presented in figure Al.
The input data consist of files with all Smax(i) and Smin(i)-values, and B.

The initialization process includes:

Calculation of S_ (1)
op

SHmax(l) = Smax(l)
' Sﬁmin(l)'= Smax(l)
SHop (1) = Sop(l)
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(NH = number of each of the 3 history levels SH , SH . and SH_ ).
‘max min op

After reading S (i) and S_. (i) and the calculation of S _(i+l), AS (i) can
max min op eff

be calculated, but first it has to be checked whether the current cycle (i) may

lead to new history stress levels. In agreement with equations (19) the condi-

tions to be checked are (see fig. A2).
Smax(l) > SHmax(NH) (case I)
Smin(i) < SHmin(NH) (case II)

Sop(o) > SHOp(NH) (case III)
If none of these three cases does apply the situation is referred to as case IV.
Now ASeff(i) can be calculated, keeping in mind that the rain-flow effect should

be taken into account in agreement with eq. (12), which leads to:

8 g MHEL 5
(85 _pp(1)]P = [Sya (1) - SH, (NH-NHEL)]® + j§1 [su__(3*) - SH_ (3]
NHE1 - 3
- [su__ (%) - SH (5* - 1)] (A1)
with j* = NH - NHE1‘+ i,

where NHE1l is the number of SH valuesbexceeded by S (i); see figure Al.
max max

i

For the other 3 cases (recall that NH is also the rank number of the last SH-

levels):
ASeff(i) = Smax(i) - SHob(NH) (A2)

unless it would be negative. In that case it is equal to zero.

After the calculation of ASeff(i) resetting of the SH-levels is necessary for
cases I, II and III.

For case I (see fig. A2): NHEl sets of SH-levels are overruled and one new set

is added. As a result:

NH = NH - NHEL + 1
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SHmax(NH) = Smax(i)
SHmin(NH) N Smin(i)
SHop(NH) = Sop(i+1)

For case 1I (see fig. A2): NHE2 values of SHmin and NHE2-1 values of SHmax are

overruled, and:

NH

2
=
¥

SHmax(NH) = Smax(NH)

SH_. (NH) ;
min min

1}
wn
[

SH (NH) to be calculated from SH (NH) and SH_. (NH)
op max min

- For case III (see fig. A2): one set of SH-levels is added.

NH = NH + 1

SHmax(NH) = Smax(i)
SHm;n(NH) = Smin(i)
SH_ (NH) = Sop(i+1)

i ,
After resetting Z Assz is calculated. The loop is restarted with a new cycle
(i =i + 1) until all cycles of one period (number n).has passed.

Then EF = EF(i) = EF(n).
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Figure Al: Three cases which modify history stress levels.
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initializing

|

Figure A2: Flow diagram.
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