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Abstract
Several factors play a role in the ongoing process of the acceptance and eventual universal
use of LiDAR remote sensing technology in wind site assessment. Especially turbulence pa-
rameter 𝑇𝐼 is still giving food for thought. Three important aspects of LiDAR measured 𝑇𝐼
that are considered key are picked out and feature in this work, which attempts to contribute
to the handling of LiDAR measured turbulence.
Firstly, the accuracy in measuring several wind characteristics compared to met masts,
which have been the standard in wind science and industry for the past centuries, is an
issue. This thesis evaluates a LiDAR met mast comparison for a Dutch onshore wind farm
site to support the handling of the biases between both sources, with a focus on 𝑇𝐼. It finds
LiDAR suitable for basic wind measurements, but it still struggles with measuring turbulence
accurately. Patterns in biases are exposed and explained and propositions of an alteration
of the internal LiDAR correction factor 𝐶, as well as the use of a new turbulence parameter
called transience 𝜏m, are made.
The second factor addressed in this thesis is an indirect one and originates from the fact that
turbulence, and so 𝑇𝐼, plays an important role in the fatigue lifetime damage of a wind tur-
bine. It is tried to answer the question what influence small biases in 𝑇𝐼 have on the fatigue
lifetime damage of the tower and blades of a common wind turbine by means of a simulation
based sensitivity study. Increments with an order of magnitude found in the first part of this
work form an input for this. It is found that the fatigue damage due to stresses from certain
bending moments is higher than others and that the blades and tower are affected differently
by turbulence.
The third factor is related to the inherent flexibility of LiDAR devices. This forms a big advan-
tage over met masts in general and also possibly paves the way for short-term measurement
campaigns by LiDAR. It is proven that 𝑇𝐼 shows intra-annual variability, which would there-
fore require extrapolation techniques. The Measure Correlate Predict (MCP) methodology is
chosen to conduct a case study on the application of several MCP algorithms on 𝑇𝐼 data, con-
taining several experiments. It was found that the linear regression method (LR) is unsuitable
for making long-term turbulence predictions, but that the variance ratio method (VR) shows
promising results on the used performance metrics It seems that it does not matter whether
the short-term data length is 3 or 6 months and that the picked season does not harm the
final result significantly.
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1
Introduction

To get acquainted with the topic of this thesis and to sketch the importance and relevance
of this research, a general context around the topic of measuring wind characteristics by
means of LiDAR is provided in Section 1.1. The knowledge gap and problem statement as
observed by the author are treated in Section 1.2. This resulted in the aim and scope of
this research, which are stated in Section 1.3. The aim of this research was then translated
into three research objectives, which are set out in Section 1.4. The outline of this thesis is
presented in Section 1.5.

1.1. Research context
All around the world, climate agreements are signed and goals are set to mitigate the effects
of the ongoing climate change that is threatening the natural habitat of humanity. With the
preservation of the current state of our planet at risk, all kinds of measures are taken to
slow down global warming [40]. One of the most important pillars of this set of measures is
the change from using polluting fossil fuels (e.g. coal, petroleum and natural gas) to meet
our growing energy and electricity demand, to renewable energy sources like solar, wind and
hydro power. Besides climatological reasons, unwanted dependence on fossil fuel rich coun-
tries, ongoing global electrification of energy demand and the still relentless depletion of raw
materials are playing an important role in this energy transition [116].

Although the phenomenon of wind energy was discovered much earlier by humankind, the
utilization of the wind to generate electricity by means of wind turbines took rise from the
oil crises in the 1970s and triggered research in Denmark and the USA [74]. Nowadays,
wind energy is the second largest renewable energy source after hydro power, accounting for
7% of global energy demand. From the fact that the globally installed wind power capacity
increased by a factor of 50 to more than 600 GW in the last two decades, it can be derived
that wind industry is now mature and a major global player [19]. The proximity of spiritual
father Denmark and front runners Germany and UK, the windy northwest European climate
and the scarce area form the excellent recipe for Dutch on- and offshore wind projects.

Simultaneously with the above developments, a growth in size and lifetime for wind turbines
is clearly visible. New turbines of over 10 MW are no exception anymore and are reaching
towards 200 meters and higher. Higher and longer lasting turbines make the accuracy of the
prediction of lifetime energy yield increasingly important [107]. This prediction starts with
measuring several important wind characteristics, like vertical and horizontal wind speed,
wind direction and turbulence intensity (TI), and was usually solely done by so-called meteo-
rological masts (met masts). A met mast is a free standing tower, which carries meteorological
instruments such as thermometers, wind vanes and anemometers at different heights up to
the turbine hub height, and is considered ‘the standard’ in wind energy industry [20].

1



2 1. Introduction

Figure 1.1: Measuring wind characteristics, met mast versus LiDAR [9]

Together with the increasing height and thereby costs of met masts in the past decade
came the rise of remote sensing based devices like LiDAR (Light Detection and Ranging),
trying to take over the place of conventional anemometry in wind industry [38]. LiDAR de-
vices are relatively small and movable and do not require permits (time) or guy wires and
construction (space), like met masts. Next to that, LiDARs are able to measure all important
wind parameters at different heights from 10 - 200 m [18]. Where prizes of LiDAR devices are
already below €100.000 and declining, the total costs for erecting a 150 to 200 m high met
mast are around double that amount. Besides, LiDAR devices can also be leased for shorter
periods at lower costs. Figure 1.1 visualizes the different configuration and measurement
principle of both techniques.

1.2. Problem statement
Although several studies have shown that these promising devices are able to accurately
measure wind speeds, LiDAR is not yet completely trusted by the leading International Elec-
trotechnical Commission (IEC) to serve as stand-alone measurement unit (so without the
proximity of a met mast) to measure another important wind site characteristic: turbulence
[104]. In wind energy, turbulence is defined as the chaotic, short-term deviation of the wind
speed from its mean value and is usually quantified in the turbulence intensity 𝑇𝐼.

The influence of TI on annual energy production (AEP) and fatigue lifetime of wind turbines
can be significant, which underlines the importance of accurate and reliable TI measure-
ments by LiDAR devices [86]. Since LiDARs devices are still quite expensive, they are not
rarely leased for a few months or years. This creates the urge for as short as possible mea-
surement campaigns, without the loss of accuracy. Measure Correlate Predict is a known
method used to extrapolate short-term wind speed data [115], but experience and best prac-
tices with LiDAR measured TI are lacking. Increasing size of the parts of a wind turbine and
longer lifetime of wind turbines enlarges the importance of accurate fatigue lifetime calcula-
tions [45]. Although under investigation, the quantitative sensitivity of fatigue lifetime for TI
is not yet fully understood and gives room for further research.

1.3. Aim and scope
This research aims to compare the measurements of two LiDARs from a Dutch onshore wind
site with those of accompanying met masts to assess their accuracy, especially for turbu-
lence measurements, and to provide a framework for comparing both in such terrain. This
encompasses also the possible identification of parameters that are influencing this LiDAR
𝑇𝐼 accuracy, like wind direction, height, wind speed or diurnal patterns.
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Since this thesis assesses the accuracy of LiDAR measured TI, it is worth investigating the
effect of an uncertainty interval for TI on the fatigue lifetime of commonly used turbines at
Dutch onshore wind sites. Simulated TI differentiated wind fields are used to generate time
series of loads on a wind turbine. These loads are then used to calculate damage equivalent
loads, time until failure and fatigue lifetime damage.

Because time and use of LiDAR are still quite valuable, attempts will be made to use Measure
Correlate Predict (MCP) methods to use short-term TI LiDAR data and long-term reference
data from a nearby met mast to ‘create’ long-term data. The goal here is to see whether it
is possible to shorten LiDAR measurement campaigns without loss of accuracy and identify
the best MCP method for the average Dutch wind site.

1.4. Research objectives
To summarize and complement the above, the following three research objectives are formu-
lated for this research:

• Assess statistical accuracy and factors influencing this accuracy of ZX300 Con-
tinuous Wave LiDARs at Dutch onshore wind sites by comparing them with proximate
met masts, especially concerning turbulence (TI)

• Assess sensitivity of the fatigue lifetime of a commonly used wind turbine at Dutch
onshore wind sites as a function of TI to quantify the effect of TI on fatigue

• Use MCP to extrapolate short-term LiDAR TI data (in reference to long-termmet mast
data) to investigate possibilities of shortening LiDAR measurement campaigns and
identify most accurate and workable MCP method by comparing mutual results

1.5. Thesis outline and reading guide
After this introductory chapter, theoretical background knowledge about wind characteris-
tics like TI, measuring methods like conventional anemometry and LiDAR, statistics, Mea-
sure Correlate Predict methods and fatigue lifetime for wind turbines is provided in Chapter
2. Having this background information is deemed to be necessary or convenient to properly
interpret the remaining parts of this thesis. In Chapter 3, a literature review attempts to give
an overview of the current state of research on the subjects of LiDAR replacing met masts,
the role of TI in wind industry, MCP methods used for turbulence and the influence of TI on
fatigue lifetime of wind turbines. It is primarily important how this research can be placed
in the existing scientific framework around LiDAR versus met mast, especially regarding TI.
Chapter 4 focuses on the research setup, in which is elucidated on the formulated research
objectives and a detailed description of the measurement sites and used instruments is given.

Chapter 5 addresses the first research objective, assessing the accuracy of CW LiDAR, and
is roughly subdivided in two parts: a preliminary study on several wind characteristics and
the main part which deals with the accuracy of LiDAR measured turbulence intensity and
factors influencing this accuracy. Chapter 6 comprises of the sensitivity analysis from the
second research objective, assessing the influence of turbulence intensity on the fatigue life-
time of a wind turbine. Chapter 7 explores the intra-annual variability of 𝑇𝐼 and serves as an
input for the next Chapter 8 and the third research objective. In this chapter, the Measure
Correlate Predict (MCP) methodology is applied to the 𝑇𝐼 measurement data derived from
the conducted measurement campaign. Several MCP methods are researched and mutually
compared. The overall results are discussed in Chapter 9, where conclusions are drawn and
recommendations are made.





2
Theoretical background

This chapter explains several theoretical notions important for complete understanding of
the matter treated in this thesis. Section 2.1 deals with wind characteristics like the atmo-
spheric boundary layer, wind shear, stability, wind speed and turbulence. Section 2.2 treats
measuring these wind characteristics by means of in met masts incorporated anemometry
and remote sensing based devices like LiDAR. Section 2.3 elaborates on the statistics of
measuring the earlier described wind characteristics. Uncertainty quantification, regression
analysis, accuracy and the Measure Correlate Predict methodology are discussed here. Fi-
nally, 2.4 presents an introduction to loads and stresses on onshore wind turbines. Some
matter will explicitly return in the next chapters, but parts of this chapter serve just as a
solid knowledge basis.

2.1. Wind characteristics
The wind has fascinated humanity for a long time and has been tried to utilize in many
different ways ever since. For the nowadays delicate and important applications in wind
energy, this utilization of the wind inevitably goes hand in glove with the precise qualification
and quantification of the wind and its characteristics. Section 2.1.1 deals with wind in the
atmospheric boundary layer and introduces the concepts of wind shear and stability. In
Section 2.1.2, turbulence and the important turbulence parameter turbulence intensity (TI),
are treated.

2.1.1. Wind in the atmospheric boundary layer
Atmospheric boundary layer - The atmospheric boundary layer (ABL) or planetary boundary
layer (PBL) covers the lowest part of the troposphere. The troposphere is that portion of the
atmosphere where most weather occurs; the lowest 10 to 20 km of the atmosphere. Higher
in the troposphere, above the ABL, the wind is ‘free’ and approximately geostrophic, which
means the wind is parallel to the isobars. Within the ABL, surface drag from the Earth’s
surface directly influences the wind, causing it to turn less parallel to the isobars [112]. The
height of the ABL ranges from a few hundred meters up to 2 kilometres, varying over time
depending on its stability. Physical quantities such as wind speed, temperature andmoisture
display rapid fluctuations in the ABL. As in any flow where a wall or boundary is present,
viscous properties of the medium tend to induce shear forces that slow down the medium.
This effect increases in strength approaching the boundary and has typically a logarithmic-
like shape. The lower tenth of the ABL is defined as the surface layer (SL) and is the region
of the ABL where the above described effect of shear is mostly present [112]. In Figure 2.1,
the most important aspects in the ABL are visualised.
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6 2. Theoretical background

Figure 2.1: Illustration of air flow characteristics and wind profile in the atmospheric boundary layer [10]

Wind shear – The present effect of wind shear in the atmospheric boundary layer is known
to be dependent on several atmospheric and surrounding variables, like surface roughness,
landscape, radiative forcing, obstacles and buildings. Wind shear in the ABL is often ex-
pressed with the help of the shear exponent 𝛼. This factor helps to compute and visualize
different wind profiles and is utilized in the so-called power law. Although being fully empir-
ical and limited in its validity to the surface layer (up to 200 m), it is widely used for wind
turbine design purposes because of its simplicity [87]. The power law is given by Equation
2.1,

𝑢(𝑧) = 𝑢፫፞፟(
𝑧
𝑧፫፞፟

)
ᎎ

(2.1)

Figure 2.2: Extrapolation of a ፮ᑣᑖᑗ = 12 m/s at ፳ᑣᑖᑗ = 80 m using the power law. Varying ᎎ results in different wind profiles.

where 𝛼 is the shear exponent, 𝑢፫፞፟ the reference wind speed, 𝑧፫፞፟ the reference height
and 𝑧 the height of interest. When 𝛼 is known, a measured wind speed at a certain height can
be used to extrapolate this wind speed to other heights, forming a wind profile. A common
value for 𝛼 when considering flat onshore terrain is 1/7, which is used when on-site data is
not available for a sufficient number of heights. The effect of different wind shear exponents
is visualized in Figure 2.2.
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Stability classification ABL - Characteristic for the ABL is its quick response to changes
in surface radiative forcing. Concerning fair weather over land, the ABL has a marked di-
urnal cycle. During daytime, the Sun heats up Earth’s surface, resulting in a positive heat
flux coming from the surface. During night-time, an opposite negative heat flux towards
the Earth’s surface is present. These and other buoyancy forces affect the wind profile in the
ABL significantly and their effects are indicated by the stability of the ABL or the atmospheric
stability. The latter is defined as the tendency to resist vertical motion or to suppress exist-
ing turbulence. This turbulence can be induced thermally, by the Sun, or mechanically, by
friction with the Earth [50].

Atmospheric stability can be classified into three categories: unstable, stable and neutral.
An unstable ABL is characterized by increased turbulence and lots of vertical mixing. These
are caused by heated air, rising from the ground to form large convection cells, resulting in
increasingly homogeneous vertical wind speed profiles. In stable conditions, the opposite
situation is present. Turbulent activity and convective processes are suppressed and wind
shear is enhanced. A neutral atmospheric boundary layer is in thermal equilibrium with
its surroundings and is likely to be found during overcast days with strong winds. The lat-
ter makes turbulence from surface roughness to cause sufficient mixing of the ABL [56]. A
neutral atmosphere is an important situation for wind energy, especially for fatigue loading,
keeping in mind that the strongest winds are blowing at that time.

Monin-Obukhov - Quantification of stability and determination of stability class can be
done in several ways. Commonly, the Monin-Obukhov length or simply Obukhov length 𝐿፦፨
is used. This is a length parameter defined as the height above the ground where mechani-
cally and thermally created turbulence are in balance [83]. Where mechanical turbulence is
the effect of shear, thermal turbulence is caused by heating of the atmosphere by the Sun.
The Monin-Obukhov length 𝐿፦፨ is defined by Equation 2.2,

𝐿፦፨ = −
𝑢ኽ∗𝜃፯

𝜅𝑔(𝑤ᖤ𝜃ᖤ፯)፬
(2.2)

in which 𝑢∗ is the friction velocity, 𝜃፯ is the virtual temperature, 𝜅 is the von Kármán
constant, 𝑔 is the gravitational acceleration and (𝑤ᖤ𝜃ᖤ፯) surface potential temperature flux.
Where L > 0 indicates an stable atmosphere, L < 0 indicates a unstable atmosphere. By
definition, 𝐿፦፨ →∞ under neutral conditions, adapted from [83]. An important application
of the Monin-Obukhov length is another proposition of a relationship between height and
wind speed. According to Monin-Obukhov similarity theory, Equation 2.3 describes this
relationship using 𝐿፦፨ and is valid for all stability classes.

𝑢(𝑧) = 𝑢∗
𝜅 [𝑙𝑛(

𝑧
𝑧ኺ
) − 𝜙፦(

𝑧
𝐿)] (2.3)

Here 𝑧ኺ is the aerodynamic surface roughness length, 𝜙፦ is the correction function and
𝑧/𝐿 is the stability parameter. This so-called logarithmic wind profile is the counterpart of
the earlier discussed power law profile.

Overview stability parameters – It has been shown that the Obukhov length can be used
to classify atmospheric stability and Monin-Obukhov similarity theory dictates the formula
in Equation 2.3 for the relationship between wind speed and height in the surface layer. The
earlier discussed wind shear, which was used in the power law wind profile, can be utilized to
classify atmospheric stability too, just as several other factors. For that reason an overview
of the characteristics of the stability classes, as well as factors that can be used to identify
these classes, are shown in Table 2.1.
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Table 2.1: Properties of ABL stability classes [120]

Stability class Stable Neutral Unstable
Actual lapse rate > (𝑑𝑇/𝑑𝑧)ፚ፝።ፚ፛ፚ፭።፜ (𝑑𝑇/𝑑𝑧)ፚ፝።ፚ፛ፚ፭።፜ < (𝑑𝑇/𝑑𝑧)ፚ፝።ፚ፛ፚ፭።፜
Wind speed Strong Strongest Low
Wind shear Highest Logarithmic Low
Shear exponent 0.2 < 𝛼 0.1 < 𝛼 < 0.2 𝛼 < 0.1
Obukhov length 𝐿፦፨ > 0 𝐿፦፨ →∞ 𝐿፦፨ < 0
Turbulence Weak, mechanical Moderate Vigorous, thermal
TI 𝑇𝐼 < 0.1 0.1 < 𝑇𝐼 < 0.13 𝑇𝐼 > 0.13
Typical weather cloudless nights overcast afternoon sunny cloudless
Layer depth shallow, 20 - 500 m 200 m - 1 km thick, up to 2 km

2.1.2. Turbulence
Definition – Fluid dynamics defines turbulence as fluid motion characterized by chaotic
changes in pressure and flow velocity. Turbulent flow is the counterpart of laminar flow,
which implies a fluid flow in parallel layers, without disruption between those layers. The
presence of excessive kinetic energy in parts of the fluid flow, which are making it possible
to overcome the damping effect of the fluid’s viscosity, are the cause of the phenomenon
of turbulence. Turbulence therefore commonly occurs in low viscosity fluids, like air, and
is characterized by unsteady vortices of different sizes interacting with each other. Conse-
quently, friction effects between these vortices increase drag forces in the fluid [74].

The vortices in turbulent flow are called eddies, which are dissipative in nature. Eddies
of different sizes break down into smaller eddies over time. In this so-called energy cascade,
kinetic energy is transferred to successively smaller length scales. This cascading process of
turbulence continues until the Reynolds number of 4000 is reached, when the length scale
is sufficiently small for the viscous properties of the fluid to dissipate the kinetic energy into
heat [86]. In other words, an air flow becomes more turbulent for higher values of the di-
mensionless Reynolds number and vice versa. It should be noted that the occurrence of
turbulence is far from binary, there actually exists a large transient range of 2500 < 𝑅𝑒 <
10,000. The Reynolds number 𝑅𝑒 is defined as the ratio of kinetic energy to viscous damping
in a fluid flow described by Equation 2.4:

𝑅𝑒 = 𝜌𝑢𝐿
𝜇 (2.4)

where 𝜌 is the density of the fluid, 𝑢 is the characteristic velocity of the fluid, 𝐿 is a char-
acteristic linear dimension and 𝜇 is the dynamic viscosity of the fluid. Although the onset of
turbulence can be predicted by the Reynolds number, turbulence is considered a very com-
plex and not-totally analytically solved physical phenomenon [29]. A rough classification of
turbulence aligns with the classification of atmospheric stability, as can be seen in Table
2.1. Where in a stable atmospheric boundary layer (ABL), turbulence is weak and induced
mechanically, turbulence is vigorous and thermally induced in an unstable ABL. Turbulence
is moderate is a neutral atmosphere.

Turbulence intensity – Turbulence can not be neglected in wind resource assessment. Al-
though its effects are not completely understood, it is known to influence the power genera-
tion and fatigue lifetime of wind turbines [21]. For wind resource assessment applications,
turbulence is usually quantified using the turbulence intensity (TI). The turbulence intensity
is defined as the standard deviation of the wind speed over the mean of the wind speed and
is calculated by convention based on the 10 minute average horizontal wind speed. For ob-
taining the turbulence intensity of a 10 minute interval, the wind speed should be Reynolds
averaged to find two components: the mean and the fluctuating part [86].
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Figure 2.3: Time series of wind speed. The fluctuating part of the wind speed is implicitly visible as the deviation of the blue line
around the mean wind speed in red.

Equation 2.5 shows the Reynolds averaging of the wind speed, where the mean part is
denoted by 𝑈 and the fluctuating part by 𝑢. Both are used to determine the TI, as can
be seen in Equation 2.6, where 𝜎፮ is the standard deviation of the fluctuating part. This
fluctuating part represents the turbulent part of the wind speed and has a mean of 0 by
definition. Figure 2.3 depicts both parts, illustrating the principle of superposition allowing
the summation of both parts.

𝑈 = 1
Δ𝑡 ∫

ጂ፭

ኺ
𝑈(𝑡)𝑑𝑡 𝑈ኽ = (𝑈 + 𝑢)ኽ (2.5)

𝑇𝐼 = 𝜎፮
𝑈

(2.6)

Figure 2.4: IEC turbulence classes for classifying sites [98]
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As found out in Section 2.1.1, the turbulence intensity can be related to the atmospheric
stability regions as summarized in Table 2.1. Where TI values < 0.1 indicate a stable at-
mosphere, the ABL can be classified as unstable for TI > 0.13. For values in between both
values, neutral conditions apply. TI is also dependent on the aerodynamic surface roughness
𝑧፨ of the site, as introduced in Section 2.1.1. A low surface roughness is associated with less
obstacles on site, causing low TI values, and high surface roughness implies a higher turbu-
lence intensity. The International Electrochemical Organization maintains three classes for
TI, illustrated in Figure 2.4. These rather conservative classes, basically serve as a recom-
mended ceiling for TI distributions of onshore wind sites.

2.2. Measuring wind characteristics
Measuring wind characteristics like horizontal wind speed, vertical wind speed, wind direc-
tion and turbulence intensity (TI) as well as other meteorological parameters like tempera-
ture, pressure and humidity in site measurement campaigns was conventionally done by the
use of so-called met masts. These tall construction towers are usually installed close to fu-
ture wind turbine locations, where they perform several kinds of measurements at different
heights with the help of meteorological instruments like anemometers, wind vanes, barom-
eters and thermometers, amongst others. Section 2.2.1 describes the general principle of
meteorological masts and anemometry in particular, highlighting the types, working prin-
ciple and (dis-)advantages of anemometers. Special attention is given to cup anemometry,
since this type of anemometer is used throughout this thesis.

Together with the continuous growth in size of multi-megawatt turbines goes the devel-
opment of remote sensing techniques for measuring the same wind characteristics as by
conventional met masts. LiDAR (Light Detection And Ranging) and SoDAR (Sonic Detection
And Ranging) are surveying methods used in site measurement campaigns, on the roll to
partly of even fully replace conventional anemometry. Section 2.2.2 firstly gives an overview
to the remote sensing devices used in wind industry in general, after which there will be
focused specifically on continuous wave (CW) LiDARs. The latter is the type of LiDAR used
for the measurements in this thesis and there will be touched upon its working principle and
(dis-)advantages.

2.2.1. Conventional anemometry
Met masts – Meteorological masts often appear as steel tubular or lattice masts with mete-
orological instruments mounted on the masts at different heights, usually up to hub height.
These instruments measure wind- and meteorological characteristics at e.g. 10, 40, 60, 80,
100 and 120 m, after which inter- and extrapolation are used to retrieve data for all desired
heights. With the help of a concrete construction base and guy-wires that are attached to
the steel tubes or lattice of the mast and concrete anchors in the field around the met mast,
the usually between 50 and 150 m high masts are held safely in place. As said, met masts
are equipped with various sensors and instruments. These include barometers to measure
pressure, thermometers to measure temperature, wind or weather vanes to determine wind
direction and most important of all, anemometers to measure wind speed. The latter is also
used to calculate the turbulence intensity. Since the anemometer is by far the most impor-
tant instrument on a met mast, this device is, usually in contrast to the other instruments,
mounted at different heights.

Possibilities and limitations - A huge advantage of met masts in general is their relia-
bility and the acquaintance with the construction and utilization of these tall towers. The
large and long-term experience with retrieving accurate and precise data from met masts and
their instruments induces the current condition of met masts and conventional anemometry
as state-of-the-art in industry and science. However, the increasing size of modern wind
turbines enlarges several disadvantages of met masts. Firstly, the amount of time and costs
arising from requesting permits for the commissioning of the whole construction tends to
increase even more. Secondly, the construction time and costs of the mast and extra instru-
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ments mounted on the mast itself will also rise further. The third disadvantage lies in the
ascending inaccuracy of the data retrieved from met masts that is used for modern onshore
multi-megawatt turbines. Since extrapolation of met mast data to desired heights is used
more and more nowadays at sites with turbine rotor area heights between 100 and 200 m,
data from met masts becomes less accurate and precise. This highlights also the fourth, al-
ready present disadvantage of met masts: they only measure wind characteristics at heights
where sensors or instruments are installed. To conclude with the most important disad-
vantage: met masts are always distorting the air flow around it to some extent and thereby
induce a measurement bias in the mounted anemometers.

Figure 2.5: Top of a typical lattice met mast with mounted meteorological instruments and auxiliary devices

Anemometers – Measuring wind speed via an anemometer dates back from the 15th
century, but only in 1926 Canadian meteorologist John Patterson invented the most well-
known, three-cup anemometer that is widely used today in disciplines like meteorology, air-
craft and wind energy. Others supplemented this device with minor improvements and the
possibility to measure wind direction as well [92]. Although the three-cup anemometer is
considered as the standard anemometer in industry, several other types of anemometers
were developed throughout the years. Vane, hot wire and sonic anemometers are other types
in use, but won’t be considered in this research. Following this introductory explanation,
a deeper elaboration on the characteristics and working principle of cup anemometers will
be given. A small notion should be made on the fact that a met mast-mounted anemome-
ter (or other meteorological sensors/instruments) is not the only possible configuration in
wind resource assessment. Several experiments and measurement campaigns with nacelle-
mounted anemometers were conducted. Although they can give a more than reasonable
estimate of wind characteristics, several studies found that the operating state of the wind
turbines (presumably the turbine wake caused by the blade rotation) influenced the readings
received from the nacelle-mounted anemometers to a statistically significant extent [87].

Cup anemometer – The cup anemometer is the oldest andmost commonly used anemome-
ter in wind energy science and industry. It usually consists of three equally spaced hemi-
spherical and light weight cups, although sometimes versions with four cups are used too.
The cups are attached to a centrally rotating vertical axis through spokes. Flowing wind
exerts a drag force on the cups, which is given by Equation 2.7,

𝐹 = 1
2𝑐፝𝐴𝜌𝑈

ኼ (2.7)
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where 𝑐፝ is the drag coefficient, 𝐴 is the cup area exposed to the wind, 𝜌 is the air density
and 𝑈 is the wind velocity. As the drag coefficient of the concave surface is higher than on
the convex surface, cups facing the wind with their concave side experience more drag force,
causing the cups to rotate on its vertical axis. Via the anemometer factor, which is different
for size and design, the rotational speed is directly proportional to the horizontal wind speed
at the site [68]. The current wind speed is directly sensed and recorded, this usually hap-
pens in a data logger. The latter serves as storage space for the measured wind speeds and
all other meteorological characteristics measured by all sensors on the met mast. It can be
accessed via an internet connection or an on-site digital port like USB.

Possibilities and limitations - Cup anemometers are precise and tend to be cost attrac-
tive compared to other types of anemometers. The popularity of this type of anemometer is
also strongly based on the fact that it can sustain a variety of harsh environments and they
can be very robust. Cup anemometers also come with some generic limitations, of which the
following three are the most important ones. Firstly, it experiences a non-ideal sensitivity
to angle of attacks out of the horizontal plane. This makes them less appropriate for slop-
ing terrain and unable to measure the vertical component of wind. The second problematic
aspect of cup anemometers is the dynamic response. They accelerate quickly with the wind
but retard much slower as the wind ceases, causing them to give unreliable measurements
in wind gusts. These inertial effect are also called “overspeeding”. Lastly, non-linearity and
variation in calibration of cup anemometers can be caused by mechanical friction or deviant
shape of the cups [37].

2.2.2. Remote sensing techniques
Overview - There are two types of commercially available remote sensing devices available
on the market for wind resource assessment: SoDAR and LiDAR. Both find their origin in
atmospheric research, but especially LiDAR is nowadays used in a wide variety of disciplines
like agriculture, geology, autonomous vehicles, archaeology, car speed control, military and
space flight. Since around 15 years, both are becoming more and more popular as a supple-
ment to the traditional met mast in wind industry [70]. There are many similarities between
both, but the most important difference is that SoDAR uses sound waves and LiDAR uses
light waves (or particles, see duality of light). Since this research deals with (the comparison
of) cup anemometer and LiDAR data, SoDAR won’t be treated further in this section.

For LiDAR devices, again a dichotomy can be made. There are two types of LiDARs in use
for wind resource assessment: pulsed and continuous wave (CW) LiDAR. They differ in their
emission of light waves; where pulsed LiDARs give short bursts of light, CW LiDARs do emit
continuous beams of light [18]. In the remaining of this section, CW LiDARs will extensively
be discussed. This is dictated by the fact that all for this research available LiDAR data orig-
inates from CW LiDARs, stationed in the Netherlands. It should be noted that throughout
this thesis, the term LiDAR is used interchangeably for the device itself as well as for the
principle behind it.

Doppler effect – As being said, remote sensing based devices like LiDARs utilize the wave
characteristics of light to measure the wind speed and direction. An in-built laser emits
beams of light, which are back-scattered by moving molecules and aerosols in the air above
the device. This back-scattered light is collected by a detector, after which the Doppler shift
of the light frequency is measured. The Doppler shift (or Doppler effect) is defined as the
change in frequency or wavelength of a sound or light wave in relation to an observer who is
moving relative to the source of the wave [87]. In our situation, the LiDAR device can be seen
as the stationary observer. The Doppler shift is therefore simply calculated as the observed
difference in frequency of the reference light beam and the back-scattered light beam, as
shown in Equation 2.8.

Δ𝑓Doppler = 𝑓bs − 𝑓ref (2.8)
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An everyday example of this Doppler effect, is the hearable frequency shift in the sound
waves of the sirens of an ambulance passing by in the streets. An important underlying as-
sumption of this working principle is that the concerning particles in the air are so lightweight
that their velocity is equal to the velocity of the surrounding air, which is agreed upon in sci-
ence via extensive research.

Wind speed from LiDAR – During the scattering by the moving particles, typically dust,
water droplets, pollution etc. in the wind, the frequency of the light waves changes. Ob-
taining the Doppler shift in the frequency of the emitted light beams from moving particles
in the air is the first step in calculating the wind speed and other wind characteristics at
several heights between 10 and 200 m above the LiDAR device. The obtained Doppler shifted
frequency is directly proportional to the so-called Line-of-Sight (LOS) velocity according to
Equation 2.9, in which 𝑣LOS represents the Line-of-Sight velocity, 𝜆ኺ is the wavelength of
the laser signal and Δ𝑓Doppler is the Doppler frequency shift [95]. The LOS velocity or radial
velocity is the speed of the moving particles along the light beam direction.

𝑣LOS(𝜙) =
𝜆ኺΔ𝑓Doppler(𝜙)

2 (2.9)

Since the line-of-sight velocity obtained by a single measurement is not very useful on its
own, LiDAR devices use several beams to determine the LOS velocity in separate points.The
light beams emitted by LiDARs form a conical shaped measurement volume. The cone angle
𝜃, usually 60 degrees, is kept constant, where the azimuthal angle 𝜙 of the beam is varied
to measure multiple LOS velocity vectors to construct the wind speed vectors. Figure 2.6
illustrates the set-up of a ground-based LiDAR, indicating several LOS velocities and the
conical shaped measurement volume with minimum and maximum height.

Figure 2.6: LiDAR measurement set-up, indicating the LOS velocity and the conical shaped measurement volume
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Under the important assumption of uniform flow, these points can be combined to estab-
lish a three-dimensional wind speed vector to estimate the actual wind velocity in the space
between those points. Equation 2.10 dictates the relationship between 𝑣LOS and several other
important variables. Besides the earlier mentioned fixed cone angle 𝜃 and the varied azimuth
angle 𝜙, the three unknown variables of horizontal wind speed 𝑈, vertical wind speed 𝑊 and
wind direction 𝜙፝ in Equation 2.10 can be obtained using a non-linear least squares method
applied to the measured data [89].

𝑣LOS(𝜙) = |𝑈cos(𝜙 − 𝜙፝)sin(𝜃) +𝑊cos(𝜃)| (2.10)

Characteristics CW LiDARs – As mentioned above, so-called continuous wave (CW) Li-
DARs emit continuous beams of light at a fixed elevation focused at a certain height. This
measurement height can be changed by adjusting the focal settings of the telescope in the
LiDAR. The emitted light beams used in LiDARs are from the infrared part of the spectrum,
having a typical wavelength of 1-2 micrometres, and are therefore not dangerous to the hu-
man eye. Highly sensitive receivers are used, whereby only one out of every 1012 emitted
photons is needed to determine the Doppler shift and the LOS velocity [87].

A measurement limit of 200 to 300 m is common for CW LiDARs, due to the fact that the
probe length increases with the square of the height. The probe length of a LiDAR device can
be seen as the resolution of its measurements. For CW LiDARs, the probe length varies with
height, resulting in a vertical resolution ranging from less than 1 m at 10 m height to around
25 m at 250 m height. The horizontal resolution also decreases with height, since the volume
of the measurement disc at higher heights is bigger due to the conical shape of the LiDAR
measurement volume [18]. These two factors expose an important limitation of CW LiDARs:
a decreasing measurement precision with height and highlight the important difference be-
tween volume measurements of LiDARs and point measurements of anemometers.

Advantages - (CW) LiDARs have a wide range of advantages, usually in reference to con-
ventional anemometry like the cup anemometer. One device is able to measure all important
wind characteristics at e.g. 10 different heights between 10 and 220 m, making it an highly
complete device. LiDARs are easy to install, do not require permits or construction and can
be moved when needed due to their lightweight properties. A very important advantages lies
in the fact that LiDARs do not interfere with the air flow to be measured. This implies the ab-
sence of inertial effects on the measurements (overspeeding problem with anemometers) [95].

Limitations LiDAR measured turbulence - Several generic drawbacks exist too. LiDARs
are still quite expensive and ideally have to be installed 2-4 rotor diameters away from wind
turbines. This requirement could induce inconsistencies in the measurements applied to
the nearby turbines. Next to that, LiDAR devices are not yet able to measure stability related
properties in the ABL, since these rely on heat fluxes in the atmosphere. Three other factors
dominate the ongoing discussion regarding LiDAR measured turbulence. Firstly, they can
suffer from instrument noise. This is mainly due to a limited amount of aerosol scatterers
in the probe volume and can cause overestimations of 𝑇𝐼 [80]. However, this happens quite
rarely and most LiDARs are equipped with algorithms to deal with this problem.

Secondly and as mentioned earlier, LiDARs make use of volume measurements. The Li-
DAR receives back-scattered radiation from an air volume and not from a point. Although
averaging over a volume can give several benefits for wind resource assessment, the conver-
sion of these volume measurements to point-based data can lead to inconsistencies, so-called
volume or volumetric averaging. The earlier introduced probe length plays an important role
in this. What the LiDAR measures at 100 m height is actually a weighted average of the
velocities of all aerosols in the volume between 90 and 110 m. Here, the probe volume re-
sembles a low-pass filter [81]. Since this means that particle motion at high frequencies on
a spatial scale smaller than the probe volume cannot be resolved, this is important for the
judgement of LiDAR measured turbulence.
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Thirdly, especially CW LiDARs heavily rely on the assumption of homogeneous flow condi-
tions, which makes them less accurate for rough or sloped terrain. These conditions can also
cause problems involving the interference of non-horizontal components of the wind speed
with the mean horizontal wind speed. [38]. Most importantly, the above assumption causes
a bias known as variance contamination. Most importantly in the light of this research, it
happens that changes in the wind in the probe volume introduce additional variance compo-
nents, causing 𝜎ኼ to be overestimated by LiDAR. The above assumption does not prevail for
turbulent flow, which is by definition small-scale, and therefore especially applies for turbu-
lence measurements as well. The resulting bias that is often found in LiDAR measured 𝑇𝐼 is
known as variance contamination.

2.3. Statistics for wind resource assessment
Analyzing and especially comparing wind resource data from different sources comes in-
evitably with some statistical notions and techniques. Subsection 2.3.1 elaborates on uncer-
tainty and how this is quantified in a normal distribution. This includes standard deviation
𝜎, which is important for calculations regarding TI. Regression, which is used to asses the
mutual relation of two data sets, is then introduced in Subsection 2.3.2. Finally, Subsection
2.3.3 explains the exact difference in definition between accuracy and precision.

2.3.1. Uncertainty

Gaussian distribution – In statistics, uncertainty is often defined as the lack of certainty
about sets of measured physical values or data, e.g. wind speed. The degree of uncertainty
can be dependant on a lot of factors and always adds up whenmultiple sources of uncertainty
are brought together in one variable. Usually, there exists a need to quantify this uncertainty
and it is therefore strongly related to measures to indicate the spread of the measured value
or data. The Gaussian or normal distribution is a very common continuous probability den-
sity distribution, often used in natural and other sciences to represent real-valued random
variables whose real distributions are unknown [101]. A lot of measurements in this research
are assumed to have a Gaussian distribution within the 10-minute interval, which is com-
monly used in wind resource assessment, and can therefore be called normally distributed.
It should be noted that the occurrence of wind speeds 𝑈 naturally follows a Weibull distribu-
tion, which is elaborated on in Section 5.1.

Central Limit Theorem – The normal or Gaussian distribution derives its function from the
Central Limit Theorem. This theorem states that samples of observations of random vari-
ables independently drawn from independent distributions always converge in distribution
to the normal. In other words, these random variables become normally distributed when
the number of observation is sufficiently high. The Central Limit Theorem specifically applies
to physical quantities that are expected to be the sum of many independent processes. Such
quantities, like wind speed or TI, often have distributions very close to a Gaussian distribu-
tion. This allows statistical tests like ordinary least squares (OLS) linear regression, which
will abundantly be used throughout this thesis, to have analytic results in explicit form [101].

Function and parameters – The probability density function of the Gaussian or normal
distribution has a bell shaped curve and two parameters. The first one is the arithmetic
mean or expectation of the distribution. The mean value 𝜇 of a sample 𝑥ኻ, 𝑥ኼ, … , 𝑥ፍ is sim-
ply calculated by taking the sum of the sampled values divided by the number of items in
the sample N. The second parameter is the standard deviation 𝜎, which is a measure used
to quantify the level of variation in a data set. A low standard deviation refers to a situation
where most of the data points tend to be close to the mean value of the data set, while a
high standard deviation refers to a situation where the data points are more spread out in
reference to the arithmetic mean or expectation.
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𝜎 = √ 1𝑁

ፍ

∑
።዆ኻ
(𝑥። − 𝜇)ኼ 𝑉𝑎𝑟 = 𝜎ኼ (2.11)

Figure 2.7: Gaussian or normal distribution for different values of ᎙ and ᎟Ꮄ, indicating population mean and spread [1]

The standard deviation of a data set is calculated by means of Equation 2.11, where 𝑁
is again the number of data points in the sample, 𝜇 is the mean value and 𝑥። is the data
point for that i. Another important statistical parameter is the variance, which is simply the
square of the standard deviation as stated in Equation 2.11. Figure 2.7 illustrates several
Gaussian distribution with different values for 𝜇 and 𝜎. It shows a centre around various
sample means 𝜇 and different levels of variation, indicated by the variance 𝜎ኼ.

2.3.2. Regression analysis
Overview – Regression analysis covers a wide range of statistical methods for estimating
and quantifying the relationships among variables. In its simplest form it focuses on two
variables, but possibilities of including more variables are also present. Regression analysis
implies a relationship between a dependent variable and one (or more) independent variables.
The dependent variable serves as a criterion variable, whereas the independent variable is
seen as a predictor for this dependent variable [106]. More specifically, regression analysis
helps one understand how the dependant variable changes when the independent variable
is varied. Regarding the comparison of LiDAR and met mast data, the latter can be seen
as independent variable. The most logical dichotomy that can be made between all types of
regression analysis is the one between linear and non-linear regression. The difference lies in
the relationship between both above described variables, which can be linear or non-linear.
This thesis focuses on the first type of regression, on which will be elaborated further in this
section.

Linear regression – In general, the model specification in linear regression implies that the
dependent variable is linearly related to the independent variable. This is illustrated by the
formula for linear regression in Equation 2.12, where 𝑦 is the dependent variable, 𝑥 is the
independent variable, 𝛼 is the slope and 𝛽 is the offset [106]. Linear regression has many
practical applications, of which most fall into one of the following two categories. Firstly, the
goal of linear regression can be prediction or forecasting. The models are then used to fit a
predictive function to the observed data set of both dependent and independent variables.
After the development of such functions and when additional values of the predictor variable
are collected without accompanying responses, they can be used to make a prediction of the
response.
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Secondly, the goal can be to explain variation in the dependent variable that can be at-
tributed to variation in the independent variable. Since this is the way linear regression will
be utilized throughout this thesis, the rest of this section will focus on this type of linear
regression.

𝑦(𝑥) = 𝛼𝑥 + 𝛽 (2.12)

Figure 2.8: The principle of linear regression [15]

Ordinary least squares linear regression – Linear regression models can make use of
a whole variety of fits, but they are often fitted using the linear least squares approach. It
occurs that there are again several forms of linear least squares estimation approaches, like
generalized- and weighted least squares, but that the ordinary least squares (OLS) is by far
the most used estimation approach for linear regression, especially in wind resource data
analysis. OLS picks the above mentioned parameters 𝛼 and 𝛽 of a linear function of the de-
pendent variable by the principle of least squares: it aims to minimize the sum of the squares
of the differences between the dependent variable in the given data set and the variable pre-
dicted by the linear function [36]. In geometrical terms, this can be seen as the sum of the
squared distances, parallel to the axis of the dependent variable, between each data point
in the set and the corresponding point on the regression surface. Here applies: the smaller
the differences, the better the model fits the data. Figure 2.8 illustrates the above explained
principle of OLS, where a line is fitted to a certain data set to minimize the sum of the squares
of the differences between the independent variable 𝑥 and dependent variable 𝑦.

Slope and coefficient of determination – In ordinary least squares linear regression, two
parameters are of significant importance to assess the following aspects: accuracy of the
found linear relationship between both variables and the goodness-of-fit of this relationship.
To explain the usefulness of the slope in assessing this accuracy, first another aspect of OLS
linear regression should be elucidated. There are two forms of regression that play a role in
this thesis: unforced and forced regression. Where the first is basically what is discussed
above and follows Equation 2.12, the latter uses the assumption that an offset in the linear
regression is absent. Therefore, only the parameter 𝛼 is to be found. For the purposes in
this thesis, the resulting parameter 𝛼 or the slope of the linear regression approaches the
value of 1 for ascending accuracy, which is therefore the target value for 𝛼. The second im-
portant parameter is the coefficient of determination 𝑅ኼ and expresses the goodness-of-fit
of the found linear relationship between the dependent and independent variable. In other
words, it is the proportion of the variance in the dependent variable that is predictable from
the independent variable [24]. In the context of this thesis, the coefficient of determination
is used to test hypotheses about the goodness-of-fit of LiDAR measured data on met mast
measured data.



18 2. Theoretical background

The coefficient of determination can range from 0 to 1, where 1 serves as the target value.
This value implies the best fit of the linear regression on the data in comparison to the use
of the arithmetic mean value. This concept is visualized in Figure 2.9, where the red and
blue squares represent respectively the denominator and the numerator of the fraction in
Equation 2.13, which shows how the coefficient of determination 𝑅ኼ is calculated.

𝑅ኼ = 𝑆𝑆፫፞፬
𝑆𝑆፭፨፭

(2.13)

Figure 2.9: The principle of ordinary least squares, used in determining the coefficient of determination ፑᎴ [5]

2.3.3. Accuracy and precision
Definition – The concepts of accuracy and precision are often mistakenly confused and used
interchangeably. However, there is a clear and distinct difference in definition between these
two statistical terms. To clarify the use of both in this thesis, both definitions are given as
defined by the International Organization for Standardization (ISO). According to ISO 5725-
1, ‘accuracy’ is a term used to describe the closeness of measurements to their true values.
Applied to the matter in this thesis, this would e.g. mean that certain LiDAR measurement
data has a level of closeness to accompanying anemometer data, which is considered absolute
truth in the context of this research. In contrast to that, the term ‘precision’ can be defined as
the degree of closeness of the measurements itself. It can be said that the terms ‘accuracy’
and ‘precision’ assess the level of external and internal trueness, respectively [43]. Both
concepts are illustrated in Figure 2.10.

Figure 2.10: Four situations describing the definitions of accuracy and precision [77]

Concerning the above discussed ordinary least squares (OLS) linear regression, both con-
cepts of accuracy and precision can be linked to the two most important outcomes of this
statistical test. The slope or parameter 𝛼 of the OLS linear regression analysis serves as an
accuracy indicator, where the 𝑅ኼ serves as an indicator for precision.
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2.3.4. Measure Correlate Predict methodology
Measurement campaigns - To obtain reliable wind data from a certain site, it is usually
required to perform long-term measurement campaigns. Most professional campaigns range
from at least a full year to 3-5 years. This is inevitably takes a lot of valuable time and the
resources needed for measuring itself are also costly, as posed earlier in Section 2.2 on the
rising cost of met masts and the costliness of using LiDARs. As a result of these tempo-
ral and financial characteristics, wind measurements at wind farm sites are not rarely only
available for relatively short periods, ranging from several months to 1 or 2 years. Since these
measurements often serve as an input to estimate the energy production of a wind turbine
over its whole lifetime, several methods or algorithms are developed to correct for the long
term. An overarching term that captures all these methods and algorithms, is the Measure
Correlate Predict methodology.

Measure Correlate Predict methodology - The above introduced so called Measure Cor-
relate Predict (MCP) methods or algorithms are often used to predict important wind charac-
teristics at target sites in the long run, based on short-term data from nearby sources [25].
Firstly, a reference site with high quality data for a longer period of time is needed, as well as
a target site with data for only a shorter period of time. Thereafter, a correlation between the
target site and the reference site should be established. Ultimately, the long-term reference
site data and the established correlation can be used to predict the characteristics of the wind
at the target site [126]. Figure 2.11 visually explains the concept of the MCP methodology.

Figure 2.11: Visual conceptualisation of the general idea of the Measure Correlate Predict methodology [126]

Various MCP methods - Several MCP methods are known to establish the correlation be-
tween the target site and the reference site. [99] and [126] both give overviews of used MCP
methods in literature and together they come to the high number of nine different meth-
ods. This includes linear regression, variance ratio, stability difference, Weibull scale, wind
direction based, Mortimer, wind index, artificial neural networks (ANN) and support vector
regression (SVR). Since the amount of nine techniques is too high to consider all of them, the
most frequently used ones are shortly elaborated on below. These are also the ones assessed
in this research. It should be noted that the below explanation on MCP methods naturally
focuses on wind speed 𝑈, while in this research the methods are used for 𝑇𝐼.

Linear regression method - The linear regression (LR) MCP method is the most used one
throughout other research, mainly because of its simplicity and the general acquaintance
with linear regression. It uses linear regression to characterize the relationship between the
reference and target site measurements, identically to Equation 2.12 in Subsection 2.3.2.
Since linear regression is explained extensively in that section, it won’t be discussed further
here.
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Variance ratio method - The second MCP method that is considered is the variance ratio
method (VR). This method was introduced because simple linear regression can lead to an
underestimation of the long-term variance of the data. It is suspected that the VRmethod will
lead to better final predictions than the LR method in situations where the 𝑅ኼ value for the
linear regression in the LRmethod is low. When both LR and VRmethod are applied to 𝑇𝐼 data
as in Chapter 8, this can certainly be the case and may lead to confusingly disparate obtained
linear models. To clarify the sometimes very different results, an example of applying both
methods to random data is shown in Appendix A. Equation 2.14 explains the relationship
used in this method, in which 𝑦 and 𝑥 are the respective wind speeds at the target site and
the reference site. Furthermore, 𝜇x and 𝜇y are the respective mean wind speeds and 𝜎x and
𝜎y are the respective standard deviations at the target site and the reference site.

𝑦 = 𝜇y −
𝜎y
𝜎x
𝜇x +

𝜎y
𝜎x
𝑥 (2.14)

Mortimer method - Lastly, the Mortimer MCP method is proposed. This is a binning
method in which data from both sites are binned by wind direction sector and wind speed
at the reference site. Within each bin, the ratios of the target site and the reference site
are calculated. This results in a matrix of the average of the calculated ratios and one of the
standard deviations of the ratios in each bin. The established relationship between both sites
is of the form of Equation 2.15, where 𝑟 is the average ratio for a certain wind direction sector
and wind speed bin and 𝑒 represent a triangular distributed variable for standard deviation
𝜎 of the same bin.

𝑦 = (𝑟 + 𝑒)𝑥 (2.15)

2.4. Loads, moments and stresses on a onshore wind turbine
Structure of modern onshore wind turbines - In the nowadays mature wind industry,
most produced and commissioned multi-megawatt onshore wind turbines have a quite sim-
ilar generic design all around the world. Three-bladed, horizontal-axis wind turbines with
conical tubular steel towers and fibre-reinforced plastic blades are considered the standard.
This already names the two most important parts of a wind turbine: the supporting tower
and the three, usually identical blades. The blades are rooted in the hub of the wind turbine,
together forming the so-called rotor of the wind turbine. The hub with its three blade roots
is attached to the nacelle, which houses all important generating components of the turbine,
namely the gearbox, generator, brake assembly and both high- and low speed shafts. The
rotor and nacelle together, also called RNA (Rotor and Nacelle Assembly) are supported by
the tower and a foundation both above and in the ground.

Forces or loads on wind turbine components - The wind naturally exerts forces on all
parts of the turbine, but due to their big size and shape, the blades and the tower are subject
to the most and largest forces. Where the blades are specifically designed to capture as much
as wind as possible to increase the energy yield of the turbine, the opposite applies to the
tower [110]. The blades are rooted in the hub at joints called the blade roots, a location to
which forces on blades naturally converge to. The established wind profile, wind shear and
turbulence play a big role in the determination of the resulting loads exerted on the struc-
ture [46]. For both rotor and tower, physical models are constructed to calculate these loads.

To calculate the forces on the blades, blade roots and hub of a wind turbine, the by far
most used method is the Blade Element Momentum Theory, which is a contraction of the
blade element theory and the momentum theory. Without diving into too much detail, this
theory uses the fundamental physical law of conservation of momentum on a free stream
fluid flow through a actuator disk, representing the rotor plane of a wind turbine, to arrive
at an equation to compute the thrust force on the rotor 𝑇R by means of Equation 2.16 [105].
This equation includes well known variables as rotor area 𝐴, horizontal wind speed 𝑈 and air
density 𝜌, as well as the thrust coefficient 𝑐T. The latter is a turbine- and location specific
dimensionless coefficient, which follows from the blade geometry and airfoil characteristics.
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𝑇R =
1
2𝑐T𝜌𝐴𝑈

ኼ (2.16)

As stated above, another significant part of the aerodynamic loading on a wind turbine
are the forces exerted across the length of the supporting tower. These forces are called
tower drag and depend heavily on wind shear (see Equation 2.1) [105]. The tower drag 𝐹T is
computed via an equation quite similar to the one shown above for the rotor, namely Equation
2.17. The tower diameter is represented by 𝐷T and the tower drag coefficient by 𝑐d, which
has to be determined experimentally.

𝐹T =
1
2𝑐d𝜌𝐷T𝑈

ኼ (2.17)

Loads on a wind turbine can be subdivided in seven different categories: static loads
which are not associated with rotation, steady loads associated with rotation, cyclic loads
due to blade weight or yaw motion, impulsive loads, transient loads due to starting and stop-
ping, resonance induced-loads due to excitations near the structure’s natural frequency and
stochastic loads due to turbulence [113]. This thesis deals with LiDAR measured turbulence
intensity (TI); the focus is therefore on the last type of wind turbine loads: the ones caused by
turbulence. The principle of turbulent loads on a wind turbine caused by fluctuating winds
is depicted in Figure 2.12.

Figure 2.12: Aerodynamic loading on a wind turbine, with
wind speed ፔ visually decomposed in a mean and

fluctuating part [46]

Figure 2.13: Sketch representing a wind turbine tower
idealized as a 2D cantilever beam, with indicated forces

ፅ and moments ፌ [42]

Cantilever beam model wind turbine - Both tower and blades of a wind turbines can be
considered cantilever beams, which are beams that are only clamped on one end [42]. Figure
2.13 contains a schematic representation of such beam for the case of a tower, with height of
the tower ℎ and the above discussed force 𝐹T on the left. The latter is expressed by means of
𝐹x,t in Figure 2.13 as a function of the x coordinate and time. On the right hand side of Figure
2.13, the bending moment 𝑀 is obtained with the help of 𝐹T and height ℎ. This is done by
means of the famous Equation 2.18, where 𝑟 expresses the position vector or lever arm. If the
obtainment of the bending moment at the top of the tower 𝑀towertop is desired, 𝑟 is equal to ℎ.
Several bending moments 𝑀 can be distinguished, of which two types are introduced here:
bending moments (and resulting stresses) over the x-axis and over the y-axis. The x-axis in
this frame is defined as the axis perpendicular to the rotor plane of the turbine, whereas the
y-axis is the axis parallel to the rotor plane. For the turbine tower, the bending moments
over the x-axis and y-axis are called side-to-side and fore-aft bending moment, respectively.
For the blades, the expressions edgewise and flapwise bending moment are used.

𝑀 = 𝑟𝐹 (2.18) 𝜎 = 𝑀𝑦
𝐼x

(2.19)
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To obtain stresses 𝜎 at different nodes along the cantilever beam that can represent the
turbine blades or tower, use is made of structural properties depicted in 2.14. The bending
moment 𝑀 caused by the thrust force 𝐹thrust on (in the case of this schematic representation)
the tower, is obtained with the help of lever arm 𝑟, here expressed by ℎ. Two other geometrical
aspects of the wind turbine structure are needed to determine 𝜎 at the point of the arrow in
2.14: the area moment of inertia 𝐼x and radius of the tower 𝑦. Both depend on the geometry
of the object under attention and both decrease with increasing height for a wind turbine
tower, since the base radius of a tower is greater than its top radius.

Figure 2.14: Wind turbine tower segment to illustrate determination of stresses at the node indicated by the arrow. A certain
bending moment is present caused by an aerodynamic thrust force and a lever arm derived from the cantilever beam model of
the wind turbine tower. Together with radius ፲ and area moment of inertia ፈx, stresses are calculated by means of Equation

2.19 [125].

Fatigue of wind turbine components - Many materials can withstand a load or stress
that is applied once, but they might not survive if that same load or stress is applied nu-
merous times over and over again, forming a cyclic pattern. This inability to withstand loads
or stresses applied in a cyclic pattern is called fatigue damage. All components of a wind
turbine are made of (composite) materials that sooner or later experience this so-called ma-
terial fatigue due to the continuous subjection of wind turbines to varying loads [105]. This
underlines the importance of fatigue analyses, examining the fatigue properties of e.g. blades
and tower, in the design process of wind turbines. Fatigue damage basically starts with the
presence of tiny cracks in the material. These tiny cracks can grow further and further un-
der influence of cyclic loading, until the point where the material fails and breaks. In other
words, turbulence influences the fatigue of blades, nacelle, hub and tower construction and
therefore the lifetime of a turbine. In worst case scenarios, fatigue can even lead to major
negative consequences for wind turbines like falling blades, collapsing RNAs or bended tow-
ers [86]

As Chapter 5 attempts to judge the accuracy of LiDAR TI measurements, this is potentially
a good preliminary research for the influence of turbulence intensity on the fatigue lifetime
of wind turbines because it can identify meaningful values for TI. These values can in turn
serve as input for a sensitivity analysis assessing the influence of TI on fatigue lifetime in
Chapter 6. This research focuses on the fatigue lifetime of a turbine since this factor is of
considerable influence on the prediction of the lifetime energy production. The longer a wind
turbine is allowed to stay in operation, the better the final lifetime energy yield will be [86].
Since the actual determination of fatigue damage and the lifetime of wind turbine compo-
nents is incorporated in the working of the MLife software that is used in Chapter 6, this is
explained extensively in Subsection 6.1.3.
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Literature review

This chapter comprises of a literature review on the subject(s) treated in this thesis. In Section
3.1, the reader is taken through the history and the scientific context around measuring
wind characteristics by means of conventional anemometry and the remote sensing based
technique of LiDAR. Secondly, section 3.2 treats the present situation concerning the status
of LiDAR in wind industry and zooms in on how this applies to the wind characteristic of
special attention: turbulence. Section 3.3 elaborates on the effects of turbulence intensity (TI)
on the fatigue lifetime of wind turbines. Lastly, in Section 3.4, the use of Measure Correlate
Predict (MCP) methods in wind resource assessment is discussed.

3.1. History of wind resource assessment
Historical context cup anemometer - The cup anemometer is without doubt the most com-
mon instrument for measuring wind speed and other wind characteristics. Since its invention
by the Irish astronomer Thomas Robinson in 1846, the cup anemometer gained enormous
trust in science and industry and is, more or less in the same construction and configuration,
still used a lot today at airports, construction sites and wind farms, amongst other applica-
tions [92]. One of only few and the most important, generally adapted change since then is
the number of cups, which was changed from four to three by Canadian meteorologist John
Patterson in 1926. Table 3.1 summarizes the reasons for the everlasting use of this relatively
simple device in wind resource assessment [68].

Advantages
Cheap and easy to install Very robust instrument
High measuring accuracy Very linear calibration
Vertical symmetry axis High temporal resolution

Table 3.1: Overview advantages cup anemometers

Already before 1930, the three cup anemometer was adopted as a standard for meteorology
in the USA and Canada, after which the rest of the world followed not long after that [92]. The
behavior of this type of instrument has been widely studied throughout the last 100 years.
In the beginning, studies focused on the optimal number of cups, the arm length and cup
aerodynamics [75] [102] [49]. Later on, the focus of research shifted more towards the accu-
racy of wind speed measurements. This included aspects like cup anemometer response in
turbulent flow, optimal calibration methods, blockage effects and other kinds of uncertain-
ties [85] [84] [37] [90].

Cup anemometer in wind industry - The above-mentioned shift in focus towards accu-
racy related subjects was prompted by the rise of modern wind turbines. The rise of a new,
nowadays mature industry, led to the inevitable use of cup anemometers for wind resource
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assessment in wind energy industry from the 1970s on. For the reasons listed in Table 3.1,
the three cup anemometer was a logical choice to be mounted on the earlier discussed mete-
orological masts installed in the proximity of wind turbines [59]. As visualized in Figure 3.1,
turbines did not often reach higher than 50 m until the mid 90s. This enabled met masts
with cup anemometers and other instruments mounted on it to easily cover the whole rotor
area of the turbine and supply wind researchers with accurate information about the wind at
a sufficient number of heights up til tip height. Around that time, research on cup anemome-
ters focused even more on accuracy related topics due to the increasing importance of the
preciseness of wind resource assessment. Furthermore, climatic conditions, anemometer
aging, classification of anemometers and the impact to the cup’s shape came under greater
attention [67] [90] [39] [91].

Figure 3.1: The growth of the average size of wind turbines in the period 1980-2015 [14]

The rise of remote sensing techniques in wind industry - Until the early 00s of this cen-
tury, the conventional cup anemometer was considered as the state-of-the-art and de facto
standard in wind industry and science, without serious competitors [38]. Alongside with the
rapid increase in height of wind turbines as depicted in Figure 3.1 and the still ongoing quest
to higher accuracy, the limitations of met masts became more visible. These developments
implied higher costs and increased risk in wind resource assessment due to higher met masts
with more anemometers and other instruments mounted on it. Planning impacts, cost and
the physical limitations of met masts have resulted in a diverging view to more flexible meth-
ods of wind monitoring in stead of blindly continuing to erect masts (far) higher than about
80 to 100 m [38]. The above described developments gave rise to the preliminary research
on the use of remote sensing based devices for wind resource assessment [87].

History of remote sensing - Remote sensing (RS) is defined as ’the acquisition of infor-
mation about an object or phenomenon without making physical contact with the object’
and is therefore the opposite of conventional anemometers, which are intrusive in nature:
the instruments (can) disturb the air flow they are placed in. Remote sensing finds it origin
in the development of flight and comprises of a whole variety of techniques, of which SoDAR
and LiDAR are only two [70]. Nevertheless, there will be focused on these two techniques
since both are under great attention of wind industry since approximately 2000. For more
information, [79] gives a convenient overview of RS techniques and their applications.

The earliest developments of SoDAR and LiDAR were already made between 1950 and 1980,
although not being used in wind resource assessment since the wind industry was still in
its infancy, as well as both RS techniques [70]. Technological advances in the telecommu-
nication sector over the past decades have paved the way for the commercial development
of SoDAR and LiDAR based devices. In the early 00s, they reached a sufficiently high mea-
suring quality to authenticate the growing belief that SoDAR and LiDAR were the way of the
future in wind industry. Mainly fibre connected components made both devices more effi-
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cient, compact and affordable, which could make them practically usable for wind energy
applications [87]. Where SoDAR is considered a more mature and cheaper method, LiDAR
is already more accurate and is still getting significantly cheaper and better in the past few
years [18]. Since this thesis zooms in on LiDAR measured data, the current position of LiDAR
in wind industry and science will be discussed in more detail in the next section.

3.2. Use of LiDAR in wind resource assessment
Entrance of LiDAR in wind energy sector - The discovery of the suitability of the promising
LiDAR technique for wind energy applications and the first installation of a LiDAR based de-
vice in 2003 marked the start of a new era in wind resource assessment. The first decade of
this century can be characterized by a conservative and cautious attitude towards the rise of
LiDAR in wind industry [95]. Logically, trust and firmness on the utilization of LiDAR should
be gained first before the technique could take its place in industry and science. This trust
of the wind industry is mainly dictated by the standards set by the International Electrotech-
nical Commission (IEC).

Increasing scientific research concerning LiDAR - To expand existing knowledge about
LiDAR and gain more support for the use of LiDAR in wind industry, it increasingly became
subject of research in the period 2000-2012. The research in this period mainly focused
on the two most important parameters in wind resource assessment: mean wind speed and
wind direction. Various circumstances and setups have been used to study the accuracy
of LiDAR. The most common way is to study the correlation of LiDAR devices with an IEC
compliant met-mast, placed within 2-4 diameters from each other. Although it is unfeasible
to give a complete overview, some results of such studies are listed below. It should be noted
that there is also an extensive list of other research configurations: studies with SoDAR de-
vices, studies with other than cup anemometers, floating LiDAR devices, nacelle-mounted
LiDARs, comparisons between pulsed wave and continuous wave LiDARs and more. These
are not considered in the list below.

• ”On the study of wind energy at great heights using remote sensing techniques” [55]
reported an 𝑅ኼ of 0.97 and slope parameter 𝛼 of 0.96 for mean wind speed 𝑈 comparison
and finds LiDAR observations of 𝑈 specially accurate.

• ”Offshore wind profiling using LiDAR measurements” [89] finds several slopes 𝛼 close to
unity (>0.99, with small offsets though) and 𝑅ኼ values between 0.97 and 0.98. It states
that continuous wave ZX LiDARs (former ZephIR, the device used in this research) could
be a useful tool for wind resource evaluation once the system reliability is improved.

• ”Analysis of inflow parameters using lidars” [54] determined a high 𝑅ኼ of 0.994. Conclud-
ing, the wind direction and mean wind speed measured by LiDAR at different heights
correlated very well with cup anemometers.

• ”Wind Lidar Evaluation at the Danish Wind Test Site in Høvsøre” [109] demonstrates a
high level of agreement between LiDAR and calibrated cup, with slopes of 1.00 and 𝑅ኼ
values of around 0.98 for mean wind speed. Wind direction detection is excellent.

• ”LiDAR and SoDAR measurements of wind speed and direction in upland terrain for wind
energy purposes” [70] come up with LiDAR-cup regression slopes of approximately 0.97,
which compare well with slopes of better than 0.99 in similar studies carried out in flat
terrain.

Research like the few listed above and the resulting increased familiarity with and ac-
curacy of LiDAR devices finally resulted in an update of the IEC standards in 2017. The
new IEC 61400-12-1:2017 standard delivers the technical basis for the acceptance of LiDAR
measurements for wind resource assessment. It formally allows the use of LiDAR as a sup-
plementary or alternative measurement technique to mast-mounted cup anemometers for
measuring horizontal wind speed and wind direction in flat terrain only.
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Increasing attention for LiDAR measured turbulence intensity - The extensive research
in the first decade of this century resulted in much progress on the topic of LiDAR devices
and measurements. The past 10 years showed a partial shift in attention of LiDAR research
towards another wind parameter: turbulence intensity (TI). Since the standard deviation 𝜎፮
measured by LiDAR resolves only the turbulence structures larger than a length scale which
depends on the circle diameter of the measurement cone and the mean wind speed, the spa-
tial averaging of the volume measurements of CW LiDARs inherently imposes a difference
with cup anemometers, as introduced in Subsection 2.2.2 [122]. This explains in short the
most important reason why LiDARs are not yet fully trusted for measuring TI (also according
the dictating IEC standards) and illustrates why research on LiDAR measured TI increased
in the past 10 years.

Almost all research of the past years concerning CW LiDARs measuring turbulence intensity
has the common goal of in some way increasing the accuracy and precision of the CW LiDAR
devices or investigating the exact progress of this accuracy and precision. The first includes
studies on resolving spatial averaging, post-processing LiDAR measurement data, volumet-
ric filtering, improving inner algorithms of CW LiDAR devices, decreasing probe length and
more. The latter is mostly done by measurements campaign studies, which show increasingly
higher accuracy and precision over the years. Nevertheless, values of slope parameter 𝛼 and
coefficient of determination 𝑅ኼ do not consistently come close to the desired unity (1.000).
Below, a naturally incomplete list presents some studies and their results on comparing Li-
DAR measured TI with conventional anemometry. Figure 3.2 visualizes a typical outcome of
such analysis, comparing LiDAR measured TI with cup anemometer measured TI [81].

• ”Evaluation of turbulence measurement techniques from a single Doppler LiDAR” [26]
finds low values for 𝑅ኼ and 𝛼 of respectively 0.58 and 0.86.

• ”LiDAR turbulence measurements for wind turbine selection studies: design turbulence”
[23] assessed the 𝜎፮, finding an 𝑅ኼ of 0.878 and an 𝛼 of 1.019 and conclude that using
the LiDAR TI measurements will not move turbine selection into another classification
band unless the results are already at the boundary of the class.

• ”Investigation of turbulence measurements with a continuous wave, conically scanning
LiDAR” [122] give an example measurement which results in an acceptable 𝑅ኼ of 0.756
and an 𝛼 of 0.824.

Figure 3.2: Typical example of the results of a forced OLS regression for comparing LiDAR and cup anemometer TI
measurements in the three ABL stability regions, indicating data set size, slope parameter ᎎ and coefficient of determination ፑᎴ

[81]. Note that the TI is given in percentages here, where throughout this thesis TI is given in absolute terms.
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• ”Can LiDARs measure turbulence? Comparison Between ZephIR 300 and an IEC Com-
pliant Anemometer Mast” [22] tries to answer their own question by stating that the
maximum variation between CW LiDAR and met mast mean TI values of less than 15%
are observed. Due to big data sets, they achieved values of 𝛼 ranging from 1.03 - 1.09
and 𝑅ኼ values of around 0.80.

• ”Can wind LiDARs measure turbulence?” [104] arrives on a promising 𝑅ኼ of 0.982 and
an 𝛼 of 0.992. However, they answer their main question negatively since they consider
the measurements not precise enough.

From the above list and other research can be concluded that this exact research direction
has not truly outgrown its infancy. Results are not very consistent, extensive and studies
from the past years are often not addressing all kinds of terrain or detailed fundamental
limitations of LiDAR TI measurements. This allows this thesis to focus on TI measurements
of ZX 300 (formerly ZephIR) continuous wave LiDAR devices at Dutch onshore sites. By
comparing such data with nearby met masts, an attempt is made to identify and quantify
factors that cause deviations in LiDARmeasured TI data compared to neighboring met masts,
which can be useful in wind resource assessment in the Netherlands.

3.3. Effects of turbulence on fatigue lifetime
Wind turbine loading and fatigue - The loads and stresses on wind turbines is a scientific
topic that is extensively researched ever since the rise of modern wind turbines in the 1970s,
it is said to be one of the most important subjects in wind engineering. Without proper un-
derstanding of the effects of loads and stresses on a turbine, parts of it might suffer from
damage of even failure [104]. The thrust forces of the wind, the gravitational forces and the
centrifugal forces acting on several relevant and less relevant parts of a wind turbine are
known to cause fatigue damage over the lifetime of wind turbines, as a consequence of two
characteristics of modern wind turbines. They are exposed to an enormous amount of load
cycles during their lifetime and the variability of these exposures is high due to the stochastic
nature of the wind. However, there are also some regular components in fatigue loading [73].

Research on turbulence induced fatigue damage - Accordingly, the variable nature of the
wind is an important origin of fatigue damage. This variability is also called turbulence, as
extensively elaborated on in Subsection 2.1.2. The qualitative effect of the presence of tur-
bulence in the wind that is loading on wind turbines to cause fatigue lifetime damage is a
generally accepted theory, stated and confirmed by many research like [69], [113] and [46].
This is logical taking the rainflow cycle algorithm by Miner and Palmgren for determining
fatigue lifetime damage into account, where load cycles are binned by size and added up
(See 6.1.3). Since turbulence intensity 𝑇𝐼 is the widespread used quantitative indicator for
turbulence, this factor is often used in research on the quantitative effects of turbulence on
fatigue lifetime of wind turbines. In [60] four far apart values for 𝑇𝐼 are taken in an aeroelastic
simulation study, where obviously severe effects by turbulent loading on fatigue lifetime are
found. These effects are equally present at the blades and at the turbine tower. With turbu-
lence intensity values of 0.01, 0.1, 0.25 and 0.5, this study is limiting itself to non-realistic
differences in turbulence. Another study narrows itself down to a high and low turbulence
level, i.e. 𝑇𝐼 = 0.15 and 0.18. However, a significant higher lifetime for the composite turbine
blades is found for the low turbulence level in this research [72]. The results of a recent study
on the turbulence added by wakes are also affirmative to the above, although wake added
turbulence cannot be compared one to one to regular turbulence [30].

To conclude, the qualitative effect of turbulence on the fatigue lifetime of wind turbines is
evident and is taken as given. This effect can be translated to the quantitative turbulence
indicator 𝑇𝐼 too. This has been done by some others, but never in the way it is proposed here.
This study touches upon possibly relevant and real-life differences in turbulence intensity
and their effects on the fatigue lifetime damage of wind turbine blades and tower.
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3.4. Measure Correlate Predict
Use of Measure Correlate Predict in wind resource assessment - Plenty of examples exist
of studies that assess the different methods of the Measure Correlate Predict methodology
as introduced in Subsection 2.3.4, but they all focus on horizontal wind speed. Throughout
the past 15 years, new and hybrid MCP methods or algorithms for the long-term prospec-
tion of wind resource have been proposed and tested along different statistical metrics [100]
[25] [99] [115] [126]. This thesis aims to apply some of the most common MCP methods on
TI data and assess their accuracy and workability by comparing mutual results. As stated
in Subsection 2.3.4, more than 10 different methods or algorithms are used throughout re-
search, but again this part will focus on the three most known and used methods: the linear
regression method, the variance ratio method and the Mortimer method.

Different methods judged - The linear regression (LR) method is the method most used
throughout research and industry in general, mainly because of its simplicity and the gen-
eral acquaintance with linear regression. At least three possibly important conclusions were
drawn in earlier research on this method [100] [99]. Firstly, 8 months of target site time-series
data are considered the minimum length to minimize uncertainties in the results. Next to
that it is suggested to exclude that part of the data with wind speeds lower than 4 m/s when
determining the correlation. This is mainly because wind vane behavior can be erratic at low
wind speeds and wind turbines do not operate at these wind speeds. However, other sources
say the latter approach resulted in incorrect estimates [115]. Thirdly, the results of the lin-
ear regression method can suffer from some inherent characteristics of linear regression: it
will always give predictions with smaller variance compared to the observations on which
the predictions are based and it goes with a sensitivity towards outliers when estimating the
regression parameters.

The second MCP method that is considered is the variance ratio (VR) method. This method
was introduced because simple linear regression can lead to an underestimation of the long-
term variance of the data, as stated above. This method is considered to better predict stan-
dard deviations 𝜎 than the linear regression method [100]. Furthermore, it is praised for
the facts that it gives such good predictions only having two input parameters and it can be
implemented very easily [99].

Lastly, the Mortimer method is proposed. This is a binning method in which data from
both sites are binned by wind direction sector and wind speed at the reference site. Within
each bin, the ratios of the target site and the reference site are calculated. This results in a
matrix of the average of the calculated ratios and one of the standard deviations of the ratios
in each bin. For the Mortimer method, it was suggested that it predicts extreme wind speeds
better than via the linear regression method and that it gives reliable results compared to
both other methods mentioned above [99]. [25] states that according to his findings, the
Mortimer method gives consequently better results than linear regression does.

Use of MCP methodology on TI data - Hardly any examples of research into the appli-
cability of Measure Correlate Predict methodology on turbulence intensity 𝑇𝐼 nor into the
comparison of results of the several methods can be found in literature. Only one researcher
developed a method based on a multiple correlation analysis, which utilizes a newly devel-
oped joint probability distribution function [32]. This function is derived from wind speed,
wind direction and turbulence intensity data from two sites. By validation using other met
masts, the algorithm showed to estimate the ”per sector” and ”per speed” long-term 𝑇𝐼 distri-
bution quite well. In another paper of the same author, a validation test of this algorithm is
presented. Among other things, it demonstrated that monthly variation in 𝑇𝐼 tend to affect
the accuracy of the MCP outcome than the yearly variations [33]. Nevertheless, the algorithm
performs well in general, with little errors in the results. The approach taken in Chapter 8 is
more simple than the above algorithm, which justifies the application of it in this thesis.
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Research Setup

This chapter gives an overview of the research setup of this thesis, which is divided in two
parts. Section 4.1 elaborates on the research objectives mentioned in Chapter 1 and forms
the framework of this thesis. Since this research is at least partly based on a measurement
campaign, the sites where this campaign is conducted are explained in detail in Section 4.2.
This includes a geographical description of the site and local weather conditions, as well as
an elaboration on both used instruments: the continuous wave (CW) ZX300 LiDAR devices
and cup anemometers.

4.1. Research objectives
Based on the literature review in Chapter 3, three research objectives have been defined.
They were already stated in Chapter 1 and are briefly worked out below, mentioning method-
ological aspects, goals and indicators.

Research objective 1: Assess statistical accuracy and factors influencing this ac-
curacy of ZX 300 Continuous Wave LiDARs at Dutch onshore wind sites by comparing
them with proximate met masts, with a special focus on turbulence (TI).

A measurement campaign commissioned by Vattenfall has been conducted from Septem-
ber 2018 till present. This campaign comprises of the deployment of 2 pairs of instruments,
both pairs consisting of a ZX 300 CW LiDAR and a met mast with accompanying sensors and
anemometers. In the first place, the campaign is performed to assess all wind characteristics
important for the future wind farm ”Windplan Blauw” at this site. Secondly, the accuracy
and precision of LiDAR data compared to the nearby met masts measurements is of interest.

A study into the correlation of the measurements of several wind characteristics of a LiDAR
compared to an IEC compliant met mast is conducted. Amongst others, mean horizontal
wind speed and wind direction will be treated, but the emphasis is on turbulence intensity
(TI). The accuracy and precision are determined by applying ordinary least squares linear re-
gression fits to the scattered measurements of both devices. Ideally, values for the coefficient
of determination 𝑅ኼ close to 1.000 are obtained, as well as a fit as close as possible to 𝑦=𝑥.

Additionally, an attempt will be made in identifying factors or scenarios which are possibly
influencing the accuracy or precision of ZX 300 CW LiDAR TI data. One can think of, among
other factors, height, wind speed, wind direction and internal functioning of the LiDAR device.

Research objective 2: Assess sensitivity of the fatigue lifetime of a commonly used
wind turbine at Dutch onshore wind sites as a function of TI to quantify the effect of
TI on fatigue.
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Chapter 5 assesses the accuracy of LiDAR TI measurements as discussed under Research
objective 1. The outcome of that part of this research is used to serve as an input for a sen-
sitivity analysis of the quantitative effect of turbulence intensity on the fatigue lifetime of a
wind turbine relatively similar to ones that are commonly used at Dutch onshore wind sites.
Deviations around a mean value for TI 𝜇TI of e.g. 𝜇TI+𝜎, 𝜇TI itself and 𝜇TI−𝜎 are adopted and
used to create different wind fields by means of TurbSim software, of which an accountability
and explanation is provided by the National Renewable Energy Laboratory (NREL) [4].

The TI differentiated wind fields that are simulated serve in turn as input for FAST, a soft-
ware package also developed by NREL and of which more information can be found here [3],
which is commonly used for aeroelastic simulations of horizontal axis wind turbines (HAWT).
In FAST, several time series of loads on the wind turbine are generated. This results in forces
𝐹 per 𝜇TI for several relevant parts of the wind turbine, like blade root and tower base.

The ultimate goal is to calculate the damage equivalent loads and time until failure for dif-
ferent mean values of TI to evaluate the sensitivity of the turbine fatigue lifetime for these
different values of 𝜇TI. This is again done with the help of the FAST software package, which
gives the possibility to estimate the fatigue lifetime of wind turbines. The code that is used
for this encompasses the Palmgren-Miner rule and the rain flow counting technique, which
are commonly used to perform such fatigue lifetime calculations.

Research objective 3: Use Measure Correlate Predict (MCP) to extrapolate short-term
LiDAR TI data (in reference to long-term met mast data) to investigate possibilities of
shortening LiDAR measurement campaigns and identify most accurate and workable
MCP method by comparing mutual results.

Data from the earlier introduced measurement campaign can also be used for the attempt to
achieve the third research objective. Since time and money are valuable, as short as possible
measurement campaigns are desired. MCP has proven to be a possibly valuable method to
obtain reliable long-term data for a target site as input for lifetime energy predictions, solely
based on short-term data of the target site. This is done with the help of an established rela-
tionship between available long-term data from a reference site and the short-term data from
the target site. The long-term reference data comprises of TI data over a period of one year,
taken from cup anemometer measurements. The short-term target data originates from a
nearby LiDAR and covers a period of three to six months.

Three MCP methods to find a relationship between both sites were extracted from litera-
ture and proposed in Section 3.4: the linear regression method, the variance ratio method
and the Mortimer method. The three methods will be compared based on three statistical
criteria. These criteria include normalised versions of the mean 𝜇, standard deviation 𝜎 and
chi-squared 𝜒ኼ. For validation purposes, the results for all MCP methods are compared with
the also available long term LiDAR TI data. All the above essentially tries to answer the ques-
tion whether it is possible to gain accurate long-term TI data from a relatively short LiDAR
measurement campaign. Next to that, it will be assessed to what extent the length of such
short LiDAR measurement campaigns influences the aforementioned statistical criteria and
whether the picked season(s) affects these.

4.2. Site description
Wind farm ”Windplan Blauw” - The wind data used in this research are retrieved from two
measurement sites, both located within the same wind farm. This is wind farm ”Windplan
Blauw”, formerly known as ”IJsselmeerdijk”, which is a wind farm planned to be commis-
sioned in 2020 and is spread over the municipalities of Dronten and Lelystad in the north
of the province of Flevoland. In 2020, 61 new 4 MW turbines will be installed at this site,
replacing the current 74 old wind turbines at the same location. Figure 4.1 depicts in blue
the location of wind farm ”Windplan Blauw”. For more info on the wind farm, see [8] and [6].
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Figure 4.1: Windplan Blauw in northern Flevoland [8]
Figure 4.2: Detailed map of the future wind farm, with
LiDARs (orange dots) and met masts (yellow triangles)

LiDAR-metmast pairs - Bothmeasurement sites within the wind farm consist of a LiDAR-
met mast pair, which are in close proximity of each other. The location of both LiDARs and
met masts are shown in Figure 4.2, where the orange dots and yellow triangles indicate the
LiDARs and met masts, respectively. Both LiDARs are identical. Table 4.1 summarizes the
specifications of the LiDAR device used in this research, whereas Table 4.3 gives an overview
of all instruments mounted on the met masts. The LiDAR also has an inbuilt weather station
for ground level measurements, which is not considered in this research.

Name ZX 300 CW LiDAR
Size 0.9 x 0.9 x 1 m
Weight 55 kg
Power 12 V, 69 W
Range 10 - 220 m

Probe length ±7.7 m at 100 m
Sampling rate 50 Hz
Averaging rate 1 sec & 10 min

Table 4.1: ZX 300 CW LiDAR specifications [9] Figure 4.3: ZX 300 CW LiDAR device [9]

ZX 300 LiDARs - The ZX 300 continuous wave (CW) onshore wind LiDAR, shown in Figure
4.3, is a state-of-the-art product of the British company ZX Lidars, which launched the first
commercially available LiDAR for wind resource assessment in 2004 [9]. This type of LiDAR
measures the following quantities at a maximum of 10 heights: packets in average, wind
direction, horizontal wind speed 𝑈hor, maximum 𝑈hor, minimum 𝑈hor, vertical wind speed
𝑈ver and turbulence intensity 𝑇𝐼. Measurement heights of the ZX 300 LiDAR are adjustable,
but both LiDAR devices are set to a fixed number of heights, which are listed in Table 4.2.
The height of the device itself is 1 m, which is included in the measuring heights. The device
averages all the above variables over every 10 minutes, but the 1 second data can also be
retrieved for a limited period of time.

Measurement heights [m]
ZX 300 LiDAR 1 (ZP583) 220, 200, 180, 160, 155, 140, 120, 100, 80, 50, 39
ZX 300 LiDAR 2 (DM509) 250, 220, 200, 180, 160, 140, 120, 110, 100, 80, 39

Table 4.2: Different measurement heights of both LiDAR devices
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Meteorological masts - Both met masts were erected in November 2018 and were put
into use not long after that. Met mast 1 is 160 m high and met mast 2 is 120 m high.
Several instruments are mounted at different heights of the met masts, measuring various
quantities. Table 4.3 gives an overview of these instruments, their mounted heights and the
quantities they measure. It should be noted that all cup anemometers are mounted twice at
the indicated heights, resulting in 10 cup anemometers at met mast 1 and 8 cup anemome-
ters at met mast 2. The measuring frequency 𝑓 is 1 Hz, where after the 600 measures in a
10-minute interval are averaged over every 10 minutes. As can be observed, the turbulence
intensity is not evaluated itself by the instruments, so it should be calculated subsequently
by means of Equation 2.6.

Instrument Heights Mast 1 [m] Heights Mast 2 [m] Measurement variables
Cup anemometer 160, 150, 140, 130, 100 120, 110, 100, 50 𝑈, 𝑈min, 𝑈max, 𝜎u

Wind vane 156, 136, 97 114, 90, 70 𝜙d, 𝜎Ꭻ
Hygrometer 155, 10 115.5, 10 𝑞avg, 𝑞min, 𝑞max, 𝜎q
Thermometer 155, 10 115.5, 10 𝑇avg, 𝑇min, 𝑇max, 𝜎T
Barometer 155, 10 115.5, 10 𝑝avg, 𝑝min, 𝑝max, 𝜎p

Table 4.3: Specifications of the met masts at wind farm ”Windplan Blauw”

Measurement campaign - Both LiDAR met mast pairs have three overlapping measure-
ment heights. Only these heights can be taken into consideration in this research. For LiDAR
1 and met mast 1 these heights are 160, 140 and 100 m and for LiDAR 2 and met mast 2 the
heights 120, 110 and 100 m are considered. The measurements from LiDAR 2 at 110 m are
discarded in this research, since the height interval would be too narrow otherwise. Table
4.4 provides an overview of the measurement campaign that was conducted for this research
at the two sites on the future location of wind farm ”Windplan Blauw”. Note that Table 4.4
applies to Chapter 5 and that the measurement period used in Chapters 7 and 8 is exactly
1 year (2019).

Instrumentation Measurement period
Meteorological mast 1 14-12-2018 to 25-06-2019
Meteorological mast 2 14-12-2018 to 25-06-2019

LiDAR 1 14-12-2018 to 25-06-2019
LiDAR 2 14-12-2018 to 25-06-2019

Table 4.4: Overview of conducted measurement campaigns

Intrinsic precision of LiDARs against met mast - When assessing the accuracy and
precision of LiDAR measurements compared to met masts, the intrinsic precision of this
comparison as described by the manufacturer should be noted upon. ZX LiDARs provides
an extensive document addressing a performance verification against a tall met mast. It
should be noted that this is done at the following heights: 21, 46, 71 and 92 m and with
even more extensive data filtering. The criteria for the linear regression comparison of 𝑈
were as followed: 𝑅ኼ > 0.970 and slope parameter 𝛼 in the range of 1.00 ± 2.0%. The ZX
300 LiDAR met both criteria at all four heights and passed the test. Furthermore, a wind
direction test was set up, albeit only wind speeds of 𝑈 < 5 m/s were considered. The ZX 300
LiDAR also passed this test, since it met the only criterion of a direction error < 0.5°. Unfor-
tunately, no tests were held regarding turbulence intensity or at heights of 100 m and higher.

Obstacles around instrumentation - Obstacles and structures surrounding one or more
of the met masts or LiDARs, e.g. wind turbines, dykes, buildings or high trees, can poten-
tially distort the incoming wind flow and cause variations in the wind shear at the sites, as
explained in Subsection 2.1.1 [87]. An obstacle or structure of 15-20 meters height at a dis-
tance of 200-300 meters can already disturb the cup anemometer or LiDAR measurements
at the lower heights (e.g. at 39 and 50 m).
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Disturbance effects like the above should be taken into account since they can influence
the reliability and therefore usability of wind measurements. For this reason, data exclusion
should be performed to make sure unreliable wind sectors are excluded. A detailed descrip-
tion of the measurement sites is prepared and suitable wind direction sectors are defined.

For both measurement sites in wind farm ”Windplan Blauw”, relevant wind sectors are se-
lected based on a geographical analysis of obstacles surrounding both LiDAR met mast pairs.
For LiDAR 2 and met mast 2, this was rather simple. Within a radius of 1 km, no significant
obstacles are in place, making all wind sectors suitable for analysis. In proximity of LiDAR 1
and met mast 1, more obstacles are observed within a 300 m to 1 km radius. Since the low-
est measurement height of interest for LiDAR met mast pair 1 is 100 m, it is assumed these
obstacles do not significantly disturb the measured air flow. The above results in relevant
wind sectors of 360° for both locations in the wind farm. Figure 4.4 shows how the wind
direction is distributed according to the measurement data of met mast 1 at 160 m height.

Figure 4.4: Wind rose retrieved from measurement data of met mast 1

Wind turbines ”Windplan Blauw” - The current 74 wind turbines at the location of future
wind farm ”Windplan Blauw”, which are all spread and not neatly aligned, will be decommis-
sioned in 2020 and give way to 61 modern wind turbines, of which their location is indicated
by the white and red dots in Figure 4.2. The new wind turbines will be operational and de-
liver energy at the beginning of 2021 and are planned to have a nominal power of 4 MW each.
This will ultimately result in almost 250 MW of installed wind power at ”Windplan Blauw”
and will give an yearly energy yield equal to the needs of 400,000 households. It is not yet
known which exact types of wind turbines will be placed, but a maximum tip height is set
at 213 m for the wind turbines around LiDAR met mast pair 1 and at 248 m for the wind
turbines around LiDAR met mast pair 2. This will mean the hub heights for location 1 and
2 will be around 130 m and 160 m, respectively.





5
Comparison of LiDAR and met mast

As elaborated on extensively in Chapters 2 and 3, LiDARs and cup anemometers and their
measurements are inherently different from each other in measuring principle and therefore
partly in their utilization in today’s wind industry and science. Where the volume measure-
ments of the relative newcomer LiDAR are more and more seen as reliable and therefore
useful, the point measurements of trusted veteran cup anemometer are considered as stan-
dard and serve as a benchmark for other competitors like LiDAR.

In this chapter LiDAR measured data from the site introduced in Chapter 4 is compared
with measurements from nearby met masts. As stated in Section 1.4, the goal of this com-
parison is to assess the accuracy of LiDAR measured data, focusing on turbulence, and to
identify possible factors influencing this accuracy. Section 5.1 gives an overview of the meth-
ods on which this comparison is based, highlighting the metrics of comparison for both data
sets. The results in Section 5.2, are subdivided in a basic part containing comparisons of
horizontal wind speed 𝑈hor and wind direction 𝜙d and a main part containing comparisons of
turbulence intensity 𝑇𝐼 measures originating from both devices. Final Section 5.3 consists
of a discussion of the results with accompanying conclusions.

5.1. Method
Data treatment - The wind data originating from both sources at both sites in the ”Windplan
Blauw” wind farm are compared at different points. Wind direction 𝜙d, horizontal wind speed
𝑈hor, standard deviation 𝜎u and turbulence intensity 𝑇𝐼 measured by both cup anemometers
and ZX 300 LiDAR devices are of main interest in this research. Before analysis, a pre-
treatment of the available data is performed. This is done taking the following requirements
into account, as prescribed by the International Electrotechnical Commission (IEC) and the
producer of the ZX 300 LiDAR devices:

• Relevant wind sectors are chosen. Obstacles and structures surrounding met masts
or LiDAR devices can disturb the air flow in which measurements take place. Only
wind sectors where the wind can flow freely and without distortions are considered, as
explained in Section 4.2.

• A calm filter of 𝑈 < 3 m/s is applied to the data sets derived from both devices. Because
data representing low wind speeds is more prone to errors and offsets and it is of little
consequence for wind industry, it is better to exclude this data from analysis.

• Daily LiDAR and weekly met mast files are concatenated to one long period, so two
equally long and simultaneous arrays are created without time offset.

• The ordinary least-squares linear regression is performed in the unforced variant. In
this way, the fit parameters are subject to a smaller error than when the intercept is
forcibly fixed.
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Metrics of comparison - Several visualisation techniques and performance metrics are
used throughout this chapter. Most of these statistical notions were already deepened to
complete extent in Subsection 2.3 and others are more wind resource assessment specific
and introduced here.

• Time series and bias 𝜖 - Time series are a pure visual manner of presenting data and the
difference between the means of LiDAR and cup anemometer measured data is called
the bias 𝜖.

• Standard deviation 𝜎 - The earlier extensively discussed standard deviation gives an
indication of the spread of the data measured by both devices.

• Histogram - Histograms are used to visualise the distribution of numerical data, which
are binned and put in order of occurrence. This data are then plotted against the prob-
ability or frequency of occurrence. Data on the occurrence of horizontal wind speeds
always approximates a Weibull distribution and lends itself very well to the use of his-
tograms. A Weibull distribution is epitomized by the scale parameter 𝑎 and shape pa-
rameter 𝑘, which are introduced in Equation 5.1.

• Wind rose - A wind rose is a time honored method which graphically presents the wind
direction (and wind speed in more advanced versions) over a period of time at a specific
location. The measured data is typically sorted into twelve equal arc segments of 30° and
then plotted in a polar graph in which the radius of a segment indicates the percentage
of time that the wind blew from that direction.

• Scatter plot - Scatter plots use Cartesian coordinates to depict values of two variables
in a data set, related to each other. Data are visualized as a cloud of points having
values according to both the vertical and horizontal axis.

• Linear regression - Scatter plots are the first step in a linear regression analysis, which
fits a line through this cloud of points. It determines the earlier discussed slope param-
eter 𝛼, offset 𝛽 and coefficient of determination 𝑅ኼ.

5.2. Results
In this Section, the results of the comparison of the LiDAR met mast pairs are presented. It
consists of two parts: a basic and a main part. Subsection 5.2.1 covers the first part and
can be seen as a validation for the obtained LiDAR and met mast measurement data, gives
an overview of the wind climate on site and focuses on wind speed and wind direction. The
latter part in Subsection 5.2.2 includes a detailed analysis of the variable of special attention:
turbulence intensity.

5.2.1. Basic analysis: wind speed and wind direction
Data availability - Regarding the measurement periods of both LiDAR met mast pairs, the
measurement data availability is different for both sources and heights. As long as the mea-
surement masts do not suffer from power outages or device malfunctions, the data availability
is basically 100%. Where power outages are rare, device malfunctions are a bit less uncom-
mon. On the contrary, LiDARs often have a lower data availability, which also decreases with
ascending measurement height.

Height Met mast 1 LiDAR 1 Met mast 2 LiDAR 2
100 m 99.5% 99.2% 91.4% 99.1%
120 m - - 91.4% 99.0%
140 m 99.5% 98.7% - -
160 m 99.5% 98.4% - -

Table 5.1: Data availability of both met masts and ZX 300 LiDARs for different measurement heights
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To meet IEC compliance and provide high quality data, the ZX 300 LiDAR removes data
it does not consider adequate. This happens for two reasons, both with accompanying filter
codes in the data that replace the original value. Firstly, the code ’9999’ implies that a high
quality wind speed measurement is not possible, which is often caused by partial obscuration
of the LiDAR window or due to a very low wind speed. Secondly, the code ’9998’ implies that
atmospheric conditions which adversely affect LiDAR wind speed measurement have been
detected. Thick fog or heavy precipitation can be causes of missing data of this type. Both
filter codes can not be used in data analysis and should be removed from the data sets to
avoid unreliable results. Table 5.1 depicts the data availability of both LiDAR met mast pairs
for several heights regarding the measurement periods mentioned in Table 4.4. Met mast 1
had some problems with malfunctioning sensors and instruments for a short period of time,
resulting in a minor loss of data. Met mast 2 suffered of multiple short-term power outages,
resulting in a significant loss of data of over 8%. Both LiDARs deliver incomplete data sets
at all heights and show a decline in data availability as a function of height. This can be
explained by more severe weather conditions at higher heights, which are known to possibly
generate the earlier explained ’9998’ filter code in the data.

Horizontal wind speed - As elaborated on extensively in Section 3.2, LiDARs are known
to be able to accurately measure horizontal wind speed. This is confirmed by several time
series and their visualisations derived from measurements from both LiDAR met mast pairs.
Figure 5.1 shows an example of such time series for LiDAR met mast pair 1. On the left,
Figure 5.1a depicts the 10 minute data of LiDAR 1 and met mast 1 at 100 m height for a
period of one week. The resulting 1008 data points per week show a very high consistency;
it is hard to spot any deviation between both measurement sources. On the right, Figure
5.1b visualises the 144 data points of the third day of the earlier depicted week. It still shows
a very high consistency, albeit slight deviations are a bit better visible due to the increased
resolution. Similar results were obtained for LiDAR met mast pair 2, but are not shown here.

(a) Week: 31-12-2018 till 06-01-2019 (b) Single day: 02-01-2019

Figure 5.1: Time series average wind speed ፔ at 100 m height for visual comparison of LiDAR 1 and met mast 1

Parameter LiDAR met mast pair 1 LiDAR met mast pair 2
𝑈 LiDAR [m/s] 8.21 7.95
𝑈 met mast [m/s] 8.21 7.97
Bias 𝜖U [m/s] -0.003 -0.02
Bias 𝜖U [%] -0.04 -0.30

𝜎u LiDAR [m/s] 0.70 0.67
𝜎u met mast [m/s] 0.68 0.66
Bias 𝜖᎟ [m/s] 0.02 0.01
Bias 𝜖᎟ [%] 3.7 2.1

Table 5.2: Comparison of ፔ and ᎟u at 100 m of both LiDAR met mast pairs
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Table 5.2 shows the results of the comparison of both LiDAR met mast pairs at the same
height of 100 m by means of some of in Section 5.1 mentioned metrics. The similarity in
mean value of the horizontal wind speed 𝑈 between both LiDARs and cup anemometers
is impressively high, with a negligible bias 𝜖u between both sources for both pairs. Such
bias would not induce any significant alteration in aspects of wind resource assessment like
annual energy production calculation or power curve verification. Another important metric
shows less perfect results: although the standard deviation 𝜎u of both LiDAR measurements
is quite close to the value measured by their accompanying met masts, higher biases 𝜖᎟ are
obtained. A less accurately measured 𝜎u by the LiDARs is an omen of a known drawback
of LiDARs: due to the volumetric averaging in the conical shaped measurement volume it
is less capable of capturing short-term and small-scale variations, i.e. turbulence. This is
clearly visible in Figure 5.2, showing a time series of 𝜎u of one day of LiDAR met mast pair
1. All examined heights together (5 in total for both LiDARs) show a very small range for 𝑈,
namely a consistent overestimation of 0.1 - 0.6%, and a little bit less narrow range for 𝜎u
consisting of a consequent overestimation of 2 - 5%.

Figure 5.2: Time series standard deviations ᎟u፭ at 100 m height for LiDAR met mast pair 1 of one day: 25-03-2019

Weibull distribution of wind speed - Horizontal wind speed naturally follows a Weibull
curve in the long-term. When all wind speeds in a data set are binned in bins of e.g. 1
m/s, a histogram can be composed. In an attempt to capture the wind speed distribution
in a function matching this histogram, the Weibull distribution is very useful. Equation 5.1
shows the probability density function of a Weibull random variable, as which the long-term
wind speed can be seen, with average horizontal wind speed 𝑈, scale parameter 𝑎 and shape
parameter 𝑘. Since 𝑈 is known for both LiDARs and met masts (see Table 5.2), this leaves
us with two unknown variables: 𝑎 and 𝑘. These can be traced with the help of various
algorithms, of which the Wind Atlas method and the least squares fit method are the most
known and used ones. For this analysis, the latter one is used and explained in detail in
Appendix A. The results are shown in Figure 5.3. Firstly, in Figure 5.3a the consistently
accurate results of the least squares fit are shown to determine both Weibull parameters.
These are inserted in Equation 5.1 and lead to the red curve in Figure 5.3b, which fits the
histogram of the wind speeds in the same figure 5.3b very well. The process of determining
the Weibull parameters via the least squares fit algorithm is repeated based on the data of
both LiDARs and met masts. This results in fairly equal Weibull parameters for both pairs,
as shown in Table 5.3.

𝑓(𝑈, 𝑘, 𝑎) = 𝑘
𝑎 (
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(a) Least squares fit (b) Histogram and Weibull curve

Figure 5.3: Determining scale parameter ፚ and shape parameter ፤ of the Weibull distribution. On the left the first step: a least
squares fit to determine both parameters, and on the right the second step: visualizing the wind speed distribution by means of

a histogram and the obtained Weibull curve. The above is based on data of LiDAR 1.

LiDAR 1 Met mast 1 LiDAR 2 Met mast 2
scale parameter 𝑎 9.21 9.22 8.94 8.96
shape parameter 𝑘 2.47 2.40 2.34 2.30

Table 5.3: Obtained Weibull distribution parameters for both LiDAR met mast pairs by applying least squares fit

Linear regression horizontal wind speed - Unforced ordinary least squares (OLS) linear
regression analysis, as introduced in Subsection 2.3.2, is performed on the measurement
data of the 10 minute horizontal wind speed 𝑈 at two different heights for both LiDAR met
mast pairs. It starts with composing a scatter plot, with on the x-axis the independent
variable or predictor and the dependent variable presented on the y-axis. In this comparison,
the met mast measured wind speed is the independent variable and the LiDAR measured
wind speed is the dependent variable. Figure 5.4 and Figure 5.5 show the scatter plots of
𝑈 of LiDAR met mast pair 1 at 100 m and 160 m height, respectively. Where in Figure 5.4
both unfiltered and filtered data and their fitted lines are presented, in Figure 5.5 only the
unfiltered data is visualized.

Figure 5.4: Scatter plot of horizontal wind speeds for LiDAR met mast pair 1 at 100 m height. The data in red is excluded in the
filtering step since the threshold of ፔ > 3 m/s is not met.
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Figure 5.5: Scatter plot of horizontal wind speeds for LiDAR met mast pair 1 at 160 m height

Interestingly, the filtering of wind speeds 𝑈 < 3 m/s hardly improves or even slightly deteri-
orates the values of 𝑅ኼ, 𝛼 and 𝛽. Furthermore, desired values for coefficient of determination
𝑅ኼ in the range of 0.97 - 0.99 are obtained for all heights and both pairs and a small, natu-
rally decline with height can be observed. The obtained values for slope parameter 𝛼 range
from 0.98 to just above unity (1.000) and are therefore inside the desired radius mentioned
as proposed in Section 4.2. Finally, the linear regression analyses result in not too big offsets
𝛽, with a maximum of 0.14 for |𝛽|. Table 5.4 gives an overview of the obtained results by
means of the OLS linear regression.

𝑅ኼ 𝛼 𝛽
LiDAR met mast pair 1 100 m - Unfiltered 0.99 0.98 0.12

100 m - Filtered 0.99 0.98 0.11

160 m - Unfiltered 0.97 1.00 -0.08
160 m - Filtered 0.97 1.01 -0.13

LiDAR met mast pair 2 100 m - Unfiltered 0.99 0.98 0.14
100 m - Filtered 0.99 0.98 0.12

120 m - Unfiltered 0.98 0.99 0.01
120 m - Filtered 0.98 0.99 -0.03

Table 5.4: Precision and accuracy of horizontal wind speed measurements by both LiDAR met mast pairs compared by means
of coefficients of determination ፑᎴ, slope parameter ᎎ and offset ᎏ for different heights

Wind direction - In Figure 5.6, two scatter plots of wind direction measured by LiDARmet
mast pair 1 are presented. The fact that linear regression on this data would be troublesome
can be read from both plots, wind direction is therefore only visually evaluated. The thick
diagonal indicates a fairly good relation between the wind directions at 100 m and 160 m
height measured by LiDAR and bymetmast, respectively. In both upper left- and bottom right
corners, the transition from 360° to 0° or vice versa that makes linear regression meaningless,
is visible. This is inconvenient, but not illogical or very inaccurate and happens when e.g.
the LiDAR measures a wind direction of 359.93° and the met mast measures a wind direction
of 0.04° at the same time. Another remarkable outcome is the apparent 180° shift between
the wind direction between both sources that is sometimes present. Besides the thick middle
diagonal and both point clouds in the upper left- and bottom right corner, two more vague
diagonal point clouds are present, indicating the measurement bias between both devices.
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(a) 100 m (b) 160 m

Figure 5.6: Scatter plots of the wind direction measured by LiDAR met mast pair 1 for two different heights

Similar results were obtained for LiDAR met mast pair 2, but are not shown here. The
measurement data points that are shifted 180° are filtered out. Figure 5.7 depicts four wind
roses, indicating the percentage of occurrence of every wind sector of 15° measured by LiDAR
1 and met mast 1 for heights of 100 m and 160 m. Every wind rose, from Sub-figure 5.7a
to 5.7d, confirms wind sector 225-240° as the median; the most commonly measured wind
direction. There are some inconsistencies in the retrieved wind roses and these originate from
three possible causes: the binning procedure and according bin width of 15°, the in Figure
5.6 observed 180° shift that sometimes occurs between LiDAR and met mast measurements
and the limited number of significant digits in the measurements itself.

(a) LiDAR 1 - 100 m (b) Met mast 1 - 100 m

(c) LiDAR 1 - 160 m (d) Met mast 1 - 160 m

Figure 5.7: Wind roses retrieved from LiDAR met mast pair 1 measurements at two different heights
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5.2.2. Main analysis: turbulence intensity
Obtain turbulence intensity from LiDAR and cup anemometer measurements - Where
the ZX 300 LiDAR directly calculates the turbulence intensity TI for every 10 minute interval
from the 10 minute average horizontal wind speed 𝑈 and the 10 minute standard deviation
𝜎u, the cup anemometers on the met masts do not give separate TI values. Instead, it should
be calculated ’manually’ by means of Equation 2.6, which was introduced in Subsection
2.1.2.

𝑇𝐼 = (𝜎፮
𝑈
) 1𝐶 (5.2)

Despite the fact that the ZX300 LiDAR directly outputs 𝑇𝐼 values, an operation of the
original values has taken place beforehand. The device uses a correction factor 𝐶, under the
assumption that a correction is needed to convert the scan-averaged LiDAR measurements
to measurements comparable with the point-measurements of cup anemometers. Equation
5.2 is an adaptation of the earlier discussed formula for 𝑇𝐼, where 𝐶 is the height-dependent
correction factor used by the ZX300 LiDAR. Below 20 m and above 90 m height, 𝐶 is a
constant. In between, 𝐶 is a function of height 𝐻. Table 5.5 defines the correction factor
exactly. All LiDAR measured 𝑇𝐼 throughout this chapter (and thesis) includes the correction
factor from Equation 5.2.

Measurement height 10 - 20 m 20 - 90 m > 90 m
Correction factor 𝐶 1.037 -0.0017H + 1.071 0.918

Table 5.5: Correction factors used by the ZX300 LiDARs for different ranges of height

General observations in measured TI - Figure 5.8 shows a time series of a week in the
beginning of June 2019 including 1008 data points and contains a few typical aspects of
LiDAR and met mast measured turbulence intensity. The first aspect is the suddenly oc-
curring short and high peaks in TI observed by both devices. These are due to a relatively
intensively varying wind speed during periods of low wind speeds, i.e. 0 < 𝑈 < 4 m/s. Incon-
sistent measurement differences between LiDAR and met mast are a common consequence
during these wind regimes, in which both devices are often not able to present close to similar
measurement results. Sometimes the peak measured by LiDAR is significantly higher than
the one measured by the met mast and at other moments vice versa.

Figure 5.8: Time series of the week of 03-06-2019, showing turbulence intensity TI at 160 m height for LiDAR met mast pair 1.
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Secondly, it can be observed that LiDAR often overestimates the value for TI when com-
pared to the met mast measured value. By far most of the time, the LiDAR measured TI
is above the met mast measured TI. The third aspect lies in the more volatile behavior of
the LiDAR measured TI. It generally shows more intense peaks and troughs throughout the
measurement period. Especially the second and third aspect can be observed in more detail
in Figure 5.9, where the last two days of the above introduced week in June 2019 are depicted.

Table 5.6 summarizes the comparison of LiDAR met mast pair 1 and 2 at 5 heights in to-
tal on several of the earlier introduced metrics of comparison: mean 𝜇TI, bias between the
mean 𝜖TI, standard deviation of TI 𝜎TI and its accompanying bias 𝜖᎟. Consequently higher
𝜇TI and 𝜎TI values derived from LiDAR measurements when compared to met mast measured
values support the above discussed visual observations. Where the higher 𝜇TI values are in
accordance with the second aspect, the higher 𝜎TI values are in accordance with the third
aspect.

Figure 5.9: Time series turbulence intensity TI at 160 m height for visual comparison of LiDAR 1 and met mast 1. This time
series covers two days, 8 and 9 June 2019, and is a zoomed version of the last two days shown in Figure 5.8.

Parameter 1 - 160 m 1 - 140 m 1 - 100 m 2 - 120 m 2 - 100 m
𝜇TI LiDAR [-] 0.086 0.088 0.097 0.092 0.095
𝜇TI met mast [-] 0.074 0.079 0.091 0.082 0.089
Bias 𝜖TI [-] 0.012 0.009 0.006 0.010 0.006
Bias 𝜖TI [%] 13.5 10.3 6.0 10.6 6.5

𝜎TI LiDAR [-] 0.061 0.060 0.059 0.065 0.064
𝜎TI met mast [-] 0.055 0.054 0.051 0.062 0.061
Bias 𝜖᎟ [-] 0.005 0.006 0.008 0.003 0.004
Bias 𝜖᎟ [%] 8.8 10.4 13.4 3.9 5.4

Table 5.6: Comparison of measured turbulence intensity at three heights by pair 1 and two heights by pair 2 by means of the
earlier explained metrics: bias between mean turbulence intensity ᎨTI, standard deviation ᎟TI and its accompanying bias Ꭸᒗ.
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Turbulence intensity as a function of height - Considering turbulence intensity mea-
surements from LiDAR met mast pair 1 at three different heights and from LiDAR met mast
pair 2 at two different heights, several patterns can be observed, mainly based on Table 5.6.
General patterns as a function of height are present, as well as differences between LiDAR
and met mast as a function of height, which are both listed below.

• As explained in Section 2.1, the origin of turbulence lies in dynamical instability caused
by wind shear and in thermal instability induced by warmth of the Sun rising up from
the Earth. Both factors decrease with height, as surface drag and thermal activity
are less present further away from the Earth’s surface. In accordance with this natural
atmospheric boundary layer behavior, the mean turbulence intensity 𝜇TI decreases with
height. This pattern is consequently observed by both LiDAR and met mast.

• LiDAR tends to overestimate 𝜇TI for all heights. This is also clearly visible in Figure 5.10,
which contains two 𝑈 versus TI plots. When the distribution on the left of met mast 1, in
Figure 5.10a, is compared to the one on the right in Figure 5.10b of LiDAR 1, a generic
presence of high outliers of TI by LiDAR can be observed, especially for lower wind
speeds. LiDAR tends to overestimate TI due to variance contamination, which means
that additional variance components contaminate its true value (see Section 2.2.2). It
should be noted that the variance 𝜎ኼu is meant here, which is directly linked to standard
deviation 𝜎u, which is in turn one of the two main building blocks of turbulence intensity
via Equation 5.2.

• The bias 𝜖TI between both measurement devices increases with height, which is sus-
pected to be a result of the variance contamination by LiDAR. As explained in Subsec-
tion 2.2.2, the homogeneous flow assumption inherently cause overestimation in LiDAR
𝑇𝐼 measurements. This bias naturally increases with height, since the scanning disc is
wider at higher heights.

• The spread of TI measurements and accompanying 𝜎TI from both sources increases with
height, albeit to a small extent. It is not known what causes the slight increase with
height of the standard deviation. It is noticeable that for all heights (𝜎TI is almost as big
as 𝜇TI according to Table 5.6 and 𝜎TI approaches 𝜇TI even further at higher heights.

• The higher spread of LiDAR measurements logically aligns with the higher 𝜎TI values
obtained from LiDAR data at each height. This increased spread can again be observed
in the comparison in Figure 5.10 too.

(a) Met mast 1 (b) LiDAR 1

Figure 5.10: Wind speed versus TI at 160 m height from met mast 1 and LiDAR 1. The red dots indicate the excluded wind
speeds ፔ < 3 m/s.
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• Figure 2.4 introduced the classes A, B and C for the turbulence classification of sites
by the IEC. Taking the difference between Figures 5.10a and 5.10b into account, the
overestimation of TI and the increased amount of outliers measured by LiDAR can have
consequences for this IEC classification. Since the existing classes are quite conserva-
tive, the difference between LiDAR and met mast measured TI will not cause a shift in
class. In a possible future with a more meticulous classification, these LiDAR met mast
differences might cause classification inconsistencies.

Results linear regression - Unforced ordinary least squares (OLS) linear regression is
performed on the measurement data of both LiDAR met mast pairs at three heights for pair
1 and 2 heights for pair 2: 100 m, 140 m and 160 m for pair 1 and 100 m and 120 m
for pair 2. A distinction is made between unfiltered and filtered data: the latter implies an
exclusion of TI measurement data corresponding to wind speeds 𝑈 < 3 m/s at such moments
in time. These data points are excluded for two reasons. Firstly, these low wind speed regimes
are not of enormous importance for wind industry since the cut-in wind speed of modern
turbines usually lies between 3 and 4 m/s. Secondly, data representing low wind speeds
is more prone to errors and offsets and can unnecessarily influence regression results to a
significant extent. The results in the form of the earlier introduced and discussed parameters
coefficient of determination 𝑅ኼ, slope parameter 𝛼 and offset 𝛽 are summarized in Table 5.7
and visualized with scatter plots and their accompanying linear regression slopes in Figure
5.11.

𝑅ኼ 𝛼 𝛽
LiDAR met mast pair 1 100 m - Unfiltered 0.475 0.795 0.024

100 m - Filtered 0.601 1.041 0.002

140 m - Unfiltered 0.402 0.732 0.032
140 m - Filtered 0.560 1.043 0.010

160 m - Unfiltered 0.373 0.670 0.036
160 m - Filtered 0.541 1.049 0.009

LiDAR met mast pair 2 100 m - Unfiltered 0.426 0.690 0.034
100 m - Filtered 0.637 1.065 0.002

120 m - Unfiltered 0.616 1.033 0.007
120 m - Filtered 0.669 1.167 -0.003

Table 5.7: Precision and accuracy of TI measurements from both LiDAR met mast pairs compared by means of coefficients of
determination ፑᎴ, slope parameter ᎎ and offset ᎏ for three different heights

In general, it is striking that the above discussed data filtering makes a lot of sense. Filter-
ing of data poses big differences in the resulting coefficients of determination and regression
parameters. The slope parameter 𝛼 approaches 1.000 to a satisfying extent for all heights
after filtering, where certainly less desired values are obtained before filtering. Values around
1.04 for 𝛼 for all heights confirms the earlier observed consequent overestimation of TI by
LiDAR. An offset 𝛽 < 0.01 for all heights obtained after filtering is fairly acceptable. Relatively
low values for 𝑅ኼ are obtained, albeit the results after filtering are certainly sufficient. These
low values might be at least partly due to the high heights under analysis compared to most
earlier studies, as discussed in 3.2.



46 5. Comparison of LiDAR and met mast

(a) 100 m

(b) 140 m

(c) 160 m

Figure 5.11: Scatter plots of turbulence intensity measured by LiDAR met mast pair 1 for three different heights. Unfiltered and
filtered data are shown in red and blue respectively, as well as linear regression fits and their resulting formulas.
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Overestimation of standard deviation - Because of the earlier explained suspicion of
an consequent overestimation of 𝜎u by LiDAR compared to a met mast, which in turn leads
to an overestimation of the turbulence intensity, some further research is conducted on this
issue. Figures 5.12a and 5.12b show the scatter plot of standard deviation 𝜎u as a function
of wind speed 𝑈 retrieved from met mast 1 and LiDAR 1 data, respectively. A clear, positive
deviation for LiDAR measured 𝜎u is visible on the right, when compared to the left data from
the met mast. Out of a total of 27,648 data points, a significant difference in amount of
values satisfying 𝜎u > 1 m/s are discovered between LiDAR and met mast: 4273 or 15.5% for
met mast 1 and 4725 or 17% for LiDAR 1. This considerable surplus of over 2.5% in favour
of the LiDAR measurements confirms the suspicion of 𝜎u overestimation by LiDAR. It can be
deduced visually that this happens mainly at lower wind speeds, i.e. 𝑈 < 7 m/s.

(a) Met mast 1 (b) LiDAR 1

Figure 5.12: Wind speed ፔ versus standard deviation ᎟u at 160 m height from met mast 1 and LiDAR 1.

Influence of wind direction on TI - Since no serious obstacles are found in a radius of
300 m around LiDAR 1 and only minor obstacles like trees and other low growth are present
at 500 m distance or more, an interesting distinction could be made for LiDAR met mast
pair 1. Turbulence intensity 𝑇𝐼 measurements were subdivided in two wind direction sec-
tors. The first sector comprises of all measurements with a wind direction coming from the
nearby IJsselmeer lake (sea breeze) and the second sector includes 𝑇𝐼 measurements that
include measurements which wind flow originates from the land (land breeze). Both sectors
are depicted in Figure 5.13. The lake sector in red and land sector in blue include 𝑇𝐼 mea-
surements with an according wind direction range of 240° - 360° an 90° - 180°, respectively.
By defining the wind direction range of both sectors in this way, it is made sure that both
sectors include an approximate similar number of data points, to know around 25% for both
sectors out of a total of 27,000 data points. Both sectors accurately represent the source of
the wind: the lake and the land, respectively.

140 m 160 m
Wind from land 𝜇ፓፈ from LiDAR 0.089 0.086

𝜇ፓፈ from met mast 0.079 0.075
Bias (%) +10.9 +14.6

Wind from lake 𝜇ፓፈ from LiDAR 0.083 0.081
𝜇ፓፈ from met mast 0.075 0.071
Bias (%) +9.8 +13.3

Table 5.8: Comparison of ᎙ᑋᑀ at two heights and for both direction sectors for LiDAR met mast pair 1
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Table 5.8 depicts the average turbulence intensity 𝜇ፓፈ measured by LiDAR met mast pair 1
at 140 m and 160 m height for both wind sectors defined above. As expected, the turbulence
intensity is slightly higher in the wind coming from land compared to the wind coming from
the nearby lake. On average, the difference in 𝑇𝐼 between both sectors is 8% for at 140 m and
6% at 160 m. This drop originates from the inherent fact that turbulence intensity declines
with increasing height. Next to that, the bias between both measurement sources is almost
the same for both examined heights. The same overestimation of 𝑇𝐼 by LiDAR is observed
at 140 m and 160 m, of approx 10% and 14% respectively. This is in accordance with the
findings presented in Table 5.6. The bias for the land sector is however slightly higher than
the overall average bias in Table 5.6, where the bias found for the lake sector is somewhat
lower than this.

With the nearby presence of a large body of water, an internal boundary layer (IBL) could
be formed around location 1 in wind farm ”Windplan Blauw”. This is a layer that can form
within the ABL due to horizontal winds across discontinuous surfaces. The IBL originates at
the transition of surface and grows thicker downstream. At some point it vanishes again via
ambient mixing within the ABL [51]. A common example thereof is the transition between
water and land, something that is happening at the location of LiDAR 1. It is placed near
the IJsselmeer lake shore and wind coming from the lake arrives above land just before it is
measured by LiDAR 1.

Increased turbulence in the wind coming from land could be an effect of the formation of
an internal boundary layer (IBL) [97]. However, since the average slope of an IBL is found to
be between 1/10 and 1/100, it is not likely that the 𝑇𝐼 measurements at heights of 140 and
160 m are affected by the formed IBL [2]. The distance from LiDAR 1 to the IJsselmeer lake is
around 400 m, which seems to little to find effects of an IBL in the measurements presented
in Tables 5.8 and 5.9.

Figure 5.13: Lake and land wind direction sectors for
LiDAR 1, indicated by the orange dot

𝑅ኼ 𝛼 𝛽
LAND 140 m - Unfiltered 0.42 0.70 0.03

140 m - Filtered 0.62 1.17 0.00

LAKE 140 m - Unfiltered 0.44 0.74 0.03
140 m - Filtered 0.46 0.83 0.01

LAND 160 m - Unfiltered 0.36 0.63 0.04
160 m - Filtered 0.63 1.17 0.00

LAKE 160 m - Unfiltered 0.36 0.72 0.03
160 m - Filtered 0.44 0.90 0.01

Table 5.9: Precision and accuracy of TI measurements
from LiDAR met mast pair 1 compared by means of

coefficients of determination ፑᎴ, slope parameter ᎎ and
offset ᎏ for both defined wind direction sectors

In Table 5.9, the results of the unforced linear regression analysis on the 𝑇𝐼 data of both
wind direction sectors are presented. A remarkable observation is the one that filtering low
speeds improves the results much more for the land sector than for the lake sector. Appar-
ently, there are a lot a 𝑇𝐼 measurements in the wind flow coming from land with a low wind
speed that are not very precise. These are filtered out and give considerably better results for
𝑅ኼ and 𝛼. Next to this, slope parameter 𝛼 values of 1.17 and 1.17 for the land sector versus
values of 0.83 and 0.90 for the lake sector confirms the perception that the overestimation
of 𝑇𝐼 by LiDAR is bigger for the land sector than for the lake sector, which was also found
earlier and is visible in Table 5.8.
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Proposition of the use of transience in favor of TI - Alternatively, a totally different
approach in measuring turbulence can be considered. Where in wind industry and science,
turbulence always has been captured with the help of turbulence intensity 𝑇𝐼 as in Equation
2.6, this is basically an expression based on a one-point statistic (𝜎u) to represent complex
three-dimensional structures in the wind blowing past turbines. Exemplary is that a range of
wind conditions can correspond to the same value of 𝑇𝐼 that is measured. This range encom-
passes uncertainties in all predictions that are based on these 𝑇𝐼 measurements. Since 𝑇𝐼
is comprehensively used for the characterization of wind energy sites to assess its suitability
and IEC classification, it is a quite important factor altogether. Turbulence intensity seems
to be the less favourable option in representing the variability of the wind.

𝜏፦ = √
1
𝑁

ፍ

∑
።዆ኻ
(𝑥። − 𝑥።ዄ፦)ኼ (5.3)

An alternative measure to statistically capture turbulence is proposed here: transience 𝜏m
is a two-point statistic that does not require an extensive memory nor other data processing
steps. Transience shows analogy with the extensively discussed standard deviation 𝜎u, of
which its formula was introduced in Equation 2.11 in Chapter 2 and which is of course also
part of the formula for 𝑇𝐼 in Equation 2.6. Equation 5.3 depicts the formula to calculate the
transience 𝜏m and shows the distinction from the standard deviation. In this equation, 𝑁
equals the total of measurement data points in a 10 minute interval, which is 600. Next to
that, 𝑖 represents the count that runs through this set of measurements and 𝑚 is equal to
1 here, since adjacent data points are paired. Where 𝜎u is based on the mean square differ-
ence between values and the mean, transience is about the mean square difference between
pairs of values. As a result, transience varies for all conditions and allows to differentiate
otherwise similar situations. In other words, 𝜏m varies more with degree of scatter than 𝑇𝐼.
This could mean that 𝜏m is more useful in representing turbulent structures than 𝜎u based 𝑇𝐼.

The most relevant advantage of using transience over standard deviation for this research
is the fact that wind measurements will be better able to represent turbulence, something
at which LiDAR is still struggling. This all could enhance the acceptance and integration of
LiDAR in wind industry and science. Because transience 𝜏m varies with the degree of scatter
in wind measurements, it allows the distinction of different measurement sets. This is in
contrast to 𝜎u, which would give approximately the same values for these indeed distinct
measurement sets. In addition, this way of handling wind measurement data causes one
to be more capable of capturing turbulent length scales and is rather easy to implement to
assess site suitability and classification. Next to that, very important for wind turbine design
and relevant with regard to Chapter 6, transience is known to be a better predictor of me-
chanical fatigue loads for both blades and tower [12]. The relationship between an example
damage equivalent load and transience 𝜏m demonstrates a far higher consistency than the
same relationship with 𝜎u. Being a better predictor of damage equivalent loads with respect
to turbulence intensity and standard deviation, transience statistics could allow valuable
improvement in fatigue load assessment.

An important drawback of the implementation of transience in wind site assessment would
be that fact that all current programs, standards, measuring devices, software packages, de-
sign tools and more are tailored to the use of turbulence intensity 𝑇𝐼 and standard deviation
𝜎u. These turbulence parameters are not only deeply rooted in measuring devices like met
masts and LiDARs, but also in lots of software for aerodynamic and aeroelastic simulations
and calculations like TurbSim and FAST, which are used in Chapter 6. These simulations
and calculations are essential for the design of wind turbines. Changing from one to another
would require an intense paradigm shift in wind industry and science, something which can
plainly be seen as a crucial impediment.
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Questioning the use of 10 minute averaged measurement data - Throughout wind
science and industry, the 10 minute averaging period is used almost without exception for
site assessment. This means that the mean wind speed 𝑈 of this interval and the spread of
600 1 second measurements around this mean in the form of the standard deviation 𝜎u are
the instruments to assign a value to the degree of turbulence in that interval, which is the
turbulence intensity 𝑇𝐼. It has already been researched that the average wind speed 𝑈 is not
very sensitive for the length of the averaging period. In [28], it was found that a 2 minute
versus 10 minute period does not pose significant changes in the values for the obtained
average wind speed. It should be noted that this observation applies to flat open terrain, just
as in this research. This could differ for more complex terrain or other locations. According
to [76], averaging periods shorter than a few minutes will not sufficiently smooth the natural
turbulent structures of the wind to obtain usable average wind speeds.

Since turbulent structures in the wind are often very small scale as explained in Subsec-
tion 2.1.2, e.g. 1 or 2 minutes, the question arises if 10 minute averaging period measured
𝑇𝐼 can interpret this small scale turbulence sufficiently. Being able to account for instanta-
neous gusts and rapidly changing wind speed is very valuable for loads and stresses analyses,
turbine selection and IEC site classification. As touched upon in the paragraph concerning
transience too, many situations can occur within 10 minutes for the same value of 𝑇𝐼. In
fatigue lifetime analysis, this is bypassed with the help of the generation of representative
wind fields, as done in Chapter 6. However, for the determination of the IEC turbulence class
of a site (see Figure 2.4) and other uses of 𝑇𝐼 measurement data, this is not. This reveals a
weakness in the use of 10 minute averaged 𝑇𝐼 as an indicator for turbulence.
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5.3. Discussion and conclusion
Findings and observations based on basic analysis - The findings in Subsection 5.2.1 show
how LiDAR and met mast measurement data can be compared on data availability, horizon-
tal wind speed 𝑈 and related mean 𝑈 and standard deviation 𝜎u, determination of Weibull
parameters 𝑎 and 𝑘, linear regression of 𝑈 and visual comparison of wind direction measure-
ments. The following conclusions can be appended to these comparisons.

Firstly, the data availability of both met masts is intrinsically better than the data avail-
ability of both ZX 300 LiDARs and the data availability of the LiDAR devices is also declining
with height due to the earlier described appearing filter codes ’9998’ and ’9999’. This decline
with height is also found in other studies like [103] and [13]. Conversely, LiDAR devices
are electronically seen more reliable, since met masts tend to suffer more often from device
malfunctions or power outages.

Next to that, values for mean wind speed 𝑈 and standard deviation 𝜎u are in respectively
perfect and good alignment with each other. In line with the studies mentioned in Section
3.2, a negligible difference for the mean wind speed is found. A slightly higher value for the
overall mean standard deviation measured by LiDAR is found for both pairs at all heights
examined. This is found more often in research, e.g. by [124] and [16], and is expected to be
caused by the earlier explained principles of volume averaging and variance contamination.

Thirdly, the determination of both Weibull parameters of the long-term wind speed distri-
bution, scale parameter 𝑎 and shape parameter 𝑘, via the least squares fit method based on
both measurement sources is spot on. The use of the least squares fit as method as well as
the good results are supported by earlier research like [34] and [71]. LiDAR measured wind
speed data are apparently also very useful in accurately determining the Weibull distribution
parameters.

Furthermore, the OLS linear regression performed between the met mast and LiDAR data
of both pairs shows good results. The rounded coefficients of determination 𝑅ኼ range be-
tween 0.98 and 0.99 for all 4 comparisons and the rounded slope parameters 𝛼 are between
0.98 and 1.00, which is both comparable to the research results listed in Section 3.2 and
other studies regarding this comparison, to know studies like [88], [61] and [44]. Remark-
ably, the data filtering does not cause significant improvements in precision and accuracy.

Lastly, the wind direction of LiDAR and met mast was compared visually. Both pairs show a
good agreement in measured wind direction at different heights. The most noticeable finding
is a 180° shift that is observed throughout the data. It occurs not often, but a pattern is
certainly visible. This bias is not discussed extensively in literature, but nevertheless also
found by other research, such as [70] and [61].

Observations and conclusions regarding turbulence intensity - The different findings from
Subsection 5.2.2 concerning LiDAR versus met mast measured 𝑇𝐼 are summarized and elu-
cidated on below, accompanied with a discussion of the obtained results. To start, LiDAR
consequently overestimates the TI mean 𝜇TI compared to its accompanying met mast for both
LiDAR met mast pairs and all heights under investigation. This is a common bias, earlier
experienced in other research like the ones from [103], [23] and [88]. This bias increases with
height for both LiDAR met mast pairs, something which is probably caused by the volumetric
averaging that underlies the working principle of measuring wind characteristics by LiDAR.

Secondly, the natural decline of 𝜇TI with increasing height is clearly present in the observed
LiDAR and met mast data. Since wind shear and thermal instability are higher closer to
the Earth, it can be said that both LiDAR and met mast consequently confirm the expected
atmospheric boundary layer behavior. Thereafter, it has been observed that the spread 𝜎TI
increases very little with height for both LiDAR and met mast. It is not sure why this effect
is present, but it is thought to be related to a declining 𝜇TI with height. As could clearly be
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seen in Figure 5.10 too, the spread of LiDAR TI measurements is higher than the spread in
the TI measured by the met masts, i.e. LiDAR measurements contain more outliers in the
direction of higher TI values.

Subsequently, OLS linear regression was performed between the met mast and LiDAR data
of both pairs for five heights in total. The overall results are fairly satisfying, yet there are
considerable differences in accuracy and precision for the filtered and unfiltered data. Fil-
tering drastically increases the values for 𝑅ኼ and 𝛼 towards unity and decreases the present
offset 𝛽. Since the data points that are filtered out with the threshold of 𝑈 > 3 m/s are of
no importance for wind resource assessment in general, it is recommended to focus on the
results of the filtered data. These give relatively low values for 𝑅ኼ between 0.54 and 0.67. It
should be noted that many other studies, among others the ones mentioned in Section 3.2,
assess the TI at lower heights than in this study. In addition to that, the coefficient of de-
termination seems to decline with height, which is in accordance with the earlier discussed
volume averaging of LiDAR. Obtained slope parameters 𝛼 of around 1.05 confirm the earlier
observed overestimation of TI by LiDAR and can be seen as an acceptable results. The same
applies to the found offsets 𝛽, which are all smaller than 0.01.

Lastly, an approach was taken to study the effects of wind direction on the bias in measured
𝑇𝐼 between LiDAR 1 and met mast 1. A land and lake direction sector were distinguished and
it was found that the 𝜇TI was higher for wind from land. Furthermore, the bias in turbulence
intensity between both sources was also slightly higher in the land direction sector. These
findings were confirmed by the conducted linear regression analysis for both sectors.

Origin of inaccuracy of LiDARmeasured TI - Ultimately, there can be three possible causes
of inaccuracy of 𝑇𝐼 measured by LiDAR, when compared to met masts. Following Equation
5.2, these causes can be the 10 minute average wind speed 𝑈, the 10 minute average stan-
dard deviation of the wind speed 𝜎u and the internal correction factor 𝐶 that is used by ZX300
LiDAR devices. The first factor 𝑈 can be excluded, since for a total of five examined heights
at two different locations the difference between both sources is consequently negligible. The
difference between the average wind speed measured by both LiDARs and met masts ranges
between 0.1% and 0.6%. This exclusion is further supported by the findings of the OLS re-
gression analysis on 𝑈, showing 𝑅ኼ and 𝛼 values in the range of 0.98 to 1.01.

The second factor 𝜎u is of more influence on the found differences in turbulence intensity
between LiDAR and met mast. The hypothesis that LiDAR will consequently overestimate
the 10 minute standard deviation of the horizontal wind speed due to volumetric averaging
and/or variance contamination is confirmed by the analysis of the measurement data at all
heights. This is supported by Figure 5.12. This scatter plot also shows that LiDAR 𝜎u mea-
surement deviate the most in lower wind speed regions. Figure 5.10 confirms that this affects
𝑇𝐼 in the same fashion, i.e. mostly for 𝑈 < 7 m/s. On the contrary of 𝑈, the differences for
𝜎u between both sources are significant and range between 2% and 5% for both examined
LiDAR met mast pairs. An important observation is that this difference remains closer to
constant; it does not increase as much with height as 𝑈. Nevertheless, the overestimation of
𝜎u cannot be fully responsible for the fact that the 𝑇𝐼 values are consequently overestimated,
since the differences in 𝑇𝐼 are all considerably higher than those in 𝜎u.

Alteration of internal correction factor - This leaves the internal LiDAR ZX300 correc-
tion factor 𝐶 as possible cause for the consequent overestimation of 𝑇𝐼. As was touched
upon too at the start of Subsection 5.2.2, all measurement in this research include the inter-
nal correction factor 𝐶. The positive bias found between LiDAR measured TI and met mast
measured TI also increases with height. Figure 5.14 depicts 𝐶 as function of height in red,
showing a rather simple relationship. The heights from 100 m up are of most interest in this
case, since this range of heights covers most of the rotor area of nowadays multi-megawatt
wind turbines. The consequent overestimation of 𝑇𝐼 and the fact that it increases with height,
calls for considering an alteration of the correction factor. Above 90 m, 𝐶 is now a constant
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with a value of 0.918. The reason behind this is that the correction factor is based on a
comparison with a only 90 m high met mast. The value of 0.918 should serve as a correction
mechanism for the consistent underestimation of 𝜎u by LiDAR and it basically works. In fact,
it overdoes the correction and does not take into account that turbulence (and 𝑇𝐼) decreases
with height. Therefore, it would be advised to let 𝐶 a function of height between 90 and 200
m too. This would do justice to the with height increasing bias between LiDAR and met mast
measured 𝑇𝐼, which is consistently found throughout this study. An important advantage of
an refinement of 𝐶 is that it is a rather simple measure, which basically only requires a small
software update of the ZX300 LiDAR.

Figure 5.14: Correction factor ፂ as a function of height ፇ in red, proposition for modification in blue

According to the measurement biases between LiDAR and met mast measured 𝑇𝐼 found
in this research, the altered course of 𝐶 could look like the blue dashed line in Figure 5.14.
The here presented alteration is only a rough estimation based on the results of this Chapter.
They therefore specifically apply to the locations in wind farm ”Windplan Blauw”. Anyhow,
a height dependant internal correction factor 𝐶 for turbulence intensity 𝑇𝐼 should be consid-
ered for heights above 100 m, to properly correct the initial measured values in this important
range of heights too. This also highlights a less favourable aspect of this proposition: it would
require more atmospheric turbulence research to identify different categories of turbulence
shear or 𝑇𝐼 gradient to give all users of the ZX300 LiDAR a choice for a height-variable cor-
rection factor that applies to their location on Earth.

Subsequent to the above conclusions, a proposition for the use of transience in statistically
representing turbulence was made. There are several advantages and drawbacks on imple-
menting transience, but it seems to be a promising research topic. An example follow-up
study on this is introduced in Appendix C. Furthermore, the ability of representing turbulent
structures in the wind of 10-minute intervals was questioned. Research upon the quanti-
tative effects of shorter averaging periods on turbulence intensity has not been conducted
yet and might be interesting matter to study. Next to this, a LiDAR met mast comparison
including many more locations which differ e.g. in wind speed level, turbulence level and
surface roughness (onshore, offshore, rough terrain, hilly landscape) would be an ideal re-
search setup in the light of this chapter. A data study this big could also serve as an input
for possible internal correction algorithms for ZX300 LiDARs, following on the proposition
for the alternation of 𝐶 discussed above.





6
Sensitivity analysis on fatigue lifetime of

wind turbines
This chapter comprises of a sensitivity analysis of the fatigue lifetime of a common Dutch
onshore wind turbine as a function of turbulence intensity 𝑇𝐼, which relates to research
objective 3. The by means of the statistical assessment of LiDAR and met mast in Chapter
5 obtained values for the (in-)accuracy of LiDAR measured TI serve as an input for this.
As elaborated on in Section 4.1, the process to achieve sound results for the last research
objective is subdivided in three parts. The relevant methods are explained in Section 6.1.
Thereafter, the obtained results are presented in Section 6.2 and discussed in Section 6.3.

6.1. Method
In this section the methods used in this part of the research and explained process-wise. It
firstly treats the creation of several turbulent wind fields by means of TurbSim in Subsection
6.1.1. Secondly, performing aeroelastic simulations in FAST to generate time series of loads
on the wind turbine is described in Subsection 6.1.2. Finally, the calculation of damage
equivalent loads and time until failure to evaluate turbine fatigue lifetime as a function of 𝜇TI
with the help of MLife software is elaborated on in Subsection 6.1.3. An overview of the most
essential parts of this method is presented in Subsection 6.1.4.

6.1.1. Generating TI differentiated wind fields in TurbSim
About TurbSim and its general working - TurbSim is an open source stochastic inflow tur-
bulence generator tool that has been developed by the National Renewable Energy Laboratory
(NREL) of the United States of America, with the goal to provide the possibility to perform nu-
merical simulations of full-field flows containing coherent turbulence structures. It is aimed
on that these turbulent structures properly reflect the spatial and temporal turbulent velocity
field relationships seen in instabilities associated with air flow in the atmospheric boundary
layer. The purpose of the TurbSim software package is to give wind turbine designers the
ability to drive design code simulations of advanced turbine designs. This is e.g. possible in
the software package FAST, which is used in the following step of the here described research
method. The mentioned turbine designs include simulated inflow turbulence wind fields that
coalesce many important features of fluid dynamics, especially those aspects known to ad-
versely affect aeroelastic loading of wind turbines, which is of interest here [7].

TurbSim can be seen as an input-output tool that generates wind fields with turbulence
structures. A long, predefined list of parameters involving run-time options, turbine or model
specifications and meteorological boundary conditions all have to be specified to serve as an
input for the tool. In Appendix D, one of the used TurbSim input files can be found. In turn,
TurbSim generates several output files that contain wind fields ready for further analysis or
simulation in e.g. FAST.

55
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TurbSim input parameters - Table 6.1 gives an overview of a large portion of the TurbSim
input parameters, to know the turbine/model specification and all meteorological boundary
conditions. These are indispensable to create wind fields that represent the turbulent struc-
tures present in the ABL around wind farm ”Windplan Blauw” as close as possible to reality.
The run-time options for running TurbSim are not displayed here, since these do not com-
prise of real-world variables but just initialize the pseudo-random number generator behind
the working of TurbSim and define what type of output to generate. The other input parame-
ters are elaborated on below, with the emphasis on the meteorological boundary conditions.

Turbine/model specification Value Meteorological boundary conditions Value
Vertical Grid Points [-] 30 Turbulence Model [-] von Karman

Horizontal Grid Points [-] 30 IEC Standard [-] IEC 61400-1
Time Step [s] 0.05 IEC Turbulence [%] 7, 9, 11

Length of Analysis [s] 6000 IEC Turbulence Model [-] NTM
Turbine Hub Height [m] 90 Type of Wind Profile [-] IEC

Height Grid [m] 160 Reference Height 𝑧ref [m] 100
Width Grid [m] 160 Reference Wind Speed 𝑢ref [m/s] 8.2

Mean Vertical Flow Angle [°] 0 Power law exponent 𝛼 [-] 0.2
Mean Horizontal Flow Angle [°] 0 Surface roughness length 𝑧ኺ [m] 0.03

Table 6.1: Overview of used turbine/model specifications and meteorological boundary conditions in TurbSim, which are
required input parameters to simulate turbulent wind fields

Turbine/model specification - With a grid height and width of 160 m, a wind field with
sufficiently large dimensions is created to fully fit both tower and swept rotor area of a 5 MW
onshore wind turbine with a hub height 𝑈hub of 90 m and blades with radius 𝑟 of 61.5 m.
It is internally advised by TurbSim to leave 10% of the wind field blank at each side of the
swept rotor area. Having 30 vertical and horizontal grid points, this leaves the wind fields
with a resolution of 5.2 m in vertical and horizontal direction. The turbine is assumed to be
yawing perfectly aligned with the wind and since flat terrain is considered, both horizontal
and vertical mean flow angle are equal to 0°. The time step and length of analysis are default
and since it is not advised to change these, these are not changed [63]. The example wind
field in Figure 6.1 visualizes the notion of the above described wind field grid and grid points.

Figure 6.1: Visualization of an example wind field from TurbSim with a low resolution of grid points, wind speed components ፮,
፯ and ፰ and the element of time in the form of the consecutive square grids [41]
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Meteorological boundary conditions - To let TurbSim simulate wind fields as close as
possible to reality around wind farm ”Windplan Blauw”, the predefinedmeteorological bound-
ary conditions should be chosen with caution. To generate time series based on spectral rep-
resentation, TurbSim uses a version of the Sandia method, which is a method for generating
turbulent wind fields. Firstly, time series of wind speeds can be generated at a set of points
on a surface, in this case the wind turbine rotor plane. Then, frequency domain analysis
is performed, a domain where turbulence can be described easier quantitatively than in the
time domain [7]. Finally, inverse fast Fourier transforms are applied to obtain the desired
time series. Several different spectral turbulence models exist, of which the IEC compliant
Kaimal and von Karman models are the most widely known and used ones. In full, the IEC
Von Karman Isotropic Model is the most used model and is therefore chosen here too. The
velocity spectra for the wind components in this model 𝑢, 𝑣 and 𝑤 are given by Equation 6.1
for 𝑢 and by Equation 6.2 for 𝐾 = 𝑣, 𝑤,
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where 𝑓 is the cyclic frequency in rad/s, 𝑈hub is the mean wind speed at hub height and
𝐿 is an integral scale parameter in meters following from the functions in Equation 6.3. In
this set of equations, ΛU is the turbulence scale parameter and 𝑧hub is the hub height [63].

𝐿 = 3.5ΛU ΛU = 0.7min (30, 𝑧hub) (6.3)

The International Electrotechnical Commission has several standards for wind turbine de-
sign and analysis. IEC 61400-1 is intended for modern multi-megawatt wind turbines, IEC
61400-2 for small wind turbines and IEC 61400-3 for offshore wind turbines [48]. Straight-
forwardly, IEC 61400-1 is chosen. The tuning parameter in this part of the research is the
now well-known turbulence intensity 𝑇𝐼, inputted in TurbSim in percentages. Values for 𝑇𝐼
are chosen based on the observed inaccuracies originating from the LiDAR met mast com-
parison in Chapter 5 and the regular range in which the measured 𝜇TI values lie for sites like
”Windplan Blauw”. The above comprises of the interval between 0.07 and 0.11 for the wind
site under attention.

Figure 6.2: Standard IEC turbulence categories and classes and their implications on ፓፈ and ᎟u versus ፔhub distributions [4]
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There are several IEC turbulence classes at disposal in TurbSim, which are all depicted
in the graph on the right hand side of Figure 6.2. The consequence of the 𝑇𝐼 versus wind
speed at hub height 𝑈hub fit for each turbulence class on 𝜎u is shown on the left. Since one
is obliged to use the Normal Turbulence Model (NTM) when having assigned values to the
above-mentioned IEC Turbulence, this model is used. This model would have been chosen
anyway, since NTM Class C approaches the situation at ”Windplan Blauw” the closest, which
can be confirmed by observing Figure 5.10.

The reference height 𝑧ref and reference wind speed 𝑢ref are taken from LiDAR met mast pair 1
measurements in Subsection 5.2.1, 𝑢ref being the average of both devices. Both are input for
the chosen wind profile in TurbSim, which can be a power-law profile as posed in Equation
2.1, a logarithmic profile as posed in Equation 2.3 or a wind profile that TurbSim calls IEC.
The latter is a combination of both wind profiles, where the power law is applied over the
rotor disk and the logarithmic law is applied elsewhere. This is considered the wind profile
most accurately representing reality and is therefore chosen. To use both laws, power law or
shear exponent 𝛼 and surface roughness length 𝑧ኺ have to be chosen in line with the wind
conditions at the site. Using the measurements from LiDAR met mast pair 1, both are deter-
mined via the earlier mentioned equations introduced in Subsection 2.1.1.

TurbSim output - The run-time options and the above explained turbine/model specifi-
cations and meteorological boundary conditions constitute the content of the input file (with
extension .inp) for TurbSim to run and output a file in the form of full-field TurbSim binary
time-series data with the extension .bts. Other forms and accompanying extensions are pos-
sible too, but since FAST requires an input in the form of a binary file, this type is chosen. A
visualization of a typical TurbSim output is depicted in Figure 6.3.

Figure 6.3: Visualization of an example output of full-field binary time-series data derived from TurbSim of the horizontal ፮
component of the wind speed at different heights ፳ [11]
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6.1.2. Performing aeroelastic simulations in FAST
About FAST and its general working - FAST, which is an abbreviation for Fatigue, Aerody-
namics, Structures and Turbulence, is a comprehensive aeroelastic simulator developed by
NREL and is used extensively to predict fatigue loads of three-bladed horizontal-axis wind
turbines, among other options like extreme loads and two-bladed wind turbines. Next to
that, it gives the possibility to extract ADAMS (Automatic Dynamic Analysis of Mechanical
Systems) wind turbine data sets, to use Aerodyn simulation and to connect FAST to the MAT-
LAB and/or Simulink interface. More information on these options and the general working
can be found here [65].

FAST has two different modes of operation: simulation and linearization. The time-marching
of the nonlinear equations of motion, or simulation, determines the aerodynamic and struc-
tural response of a wind turbine in time due to certain wind-inflow conditions. This is the
mode of operations that will be used; the linearization option will be neglected. The output
of the simulation comprises of time series data on the aerodynamic loads and moments on
the relevant parts of the wind turbine, which will be explained in more detail below. These
outputs are used to calculate the fatigue loads of the wind turbine with the help of the MLife
tool, as described in Subsection 6.1.3. Figure 6.4 gives an overview of the possibilities of the
FAST software package and how different parts of the system interact with each other.

Figure 6.4: General working of FAST, with the relevant parts for use in this research in the red box [65]

FAST primary input - FAST uses several input files originating from the system proper-
ties and the user-defined routines, as can also be extracted from Figure 6.4. A primary input
file with .fst extension is required to run FAST. This primary input file consists of six sec-
tions. The first is the simulation control section, where things like total run time, time step
and interpolation order are defined. The second section comprises of the feature switches
and flags, where the input files of the third section can be switched on and off via Boolean
variables. The input files are elaborated on below. In the fourth section, the output file for-
mat and extensions of the FAST simulation is specified. The output comes in the form of
binary time-series data of loads with .outb extension, to be read by MLife in the third step
of this analysis. In the fifth and sixth section, linearization and visualization variables can
be set. These are not used and not further discussed. Appendix E includes one of the FAST
input files that is used in this analysis.
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Other input files - In section two of the primary input file, the feature switches and flags
can be set to include or exclude the other input files. These switches and their accompanying
input files from the third section are listed below, along with a description of what the purpose
is of this file.

Feature switch On/Off Purpose Input file(s)
CompElast On Structural dynamics ElastoDyn.dat
CompInflow On Inflow wind velocities Turbsim.bts
CompAero On Aerodynamic loads AeroDyn.dat
CompServo Off Control and electrical dynamics -
CompHydro Off Hydrodynamic loads -
CompSub Off Sub-structural dynamics -
CompMooring Off Mooring system -
CompIce Off Ice loads -

Table 6.2: Overview input parameters and files for FAST simulation

The inflow wind velocities and conditions are simply the wind fields generated by TurbSim
in the form of the earlier discussed .bts file, explained in Subsection 6.1.1. The AeroDyn.dat
file contains aerodynamic input properties like the inclusion of stall, aerodynamic pitching
moment model, potential wake effects, tip- and hub-loss models and tower shadow, among
some other less important properties.

The ElastDyn.dat file firstly includes an extensive list of degrees of freedom and initial condi-
tions of the chosen turbine. The degrees of freedom comprise of flapwise and edgewise blade
modes and fore-aft and side-to-side tower bending modes. The initial conditions basically
define that the whole turbine is in the default position when the simulation starts. Next to
that, the turbine configuration is specified. The basic dimensions of the blades, like number,
length and cone angle, and the nacelle, hub and tower are specified here. Thereafter, the
mass and inertia section specifies the hub and nacelle mass and inertia. Next to that, the
rotor-teeter, drive train and furling section are not used and therefore not discussed. Two
important sections are left: the tower and blades section. These simply comprise of other
input files defining the pitch twist, mass, stiffness and mode shapes for each of the three
blades and the mass, stiffness and mode shapes of the tower. Finally, a summary of the out-
put parameters of the structural dynamics analysis can be predefined. This firstly includes
out-of-plane deflections, in-plane deflections, edgewise bending moments, flapwise bending
moments and tip twist of the blades. Next to that, axial forces, bending and pitching mo-
ments at the blade roots are outputted. Ultimately, bending, shear, and forces at the tower
are part of the output.

This analysis does not focus on the electrical components in the drive train of the wind
turbine nor on the control elements associated with this part of the turbine. Therefore, this
part is not altered in the FAST simulation and not further touched upon. Since an onshore
wind turbine is considered, hydrodynamic loads nor a mooring system apply to this analysis.
Lastly, icing of the turbine and sub-structural dynamics are out of the scope of this research.

After the input of the primary files containing all the other above described files, time-series
data of loads and moments on blades and tower are obtained via simulation, to be used in
the next step of this analysis in MLife.

NREL baseline turbine - FAST is equipped with several default wind turbines and accom-
panying sets of input files. These range from two-bladed turbines with rated power of 175
kW to three-bladed turbines with a rotor diameter of 70 m to several 5 MW onshore, off-
shore and floating wind turbines [64]. Since the aeroelastic simulations in FAST require
extensive amount of blades, hub, nacelle and tower input specifications, it is a precise and
time-consuming work to gather and order all input parameters for a certain wind turbine.
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Of all possible predefined turbines, the NREL 5 MW baseline onshore wind turbine is
chosen to be used in this simulation. The fact that this turbine is used and not another
e.g. 4 MW wind turbine is done for two reasons. The first reason is that the NREL 5 MW
baseline onshore wind turbine has relatively similar gross specifications compared to the
wind turbines that are planned to be commissioned at wind farm ”Windplan Blauw”. These
latter turbines are planned to have a rated power of 4 MW and a hub height of around 100
m. The second reason is the simple fact that it is yet unknown which exact turbines will
be commissioned at ”Windplan Blauw” and it is therefore impossible to retrieve the required
extensive and exact specifications of all turbine components. The gross specifications of the
chosen turbine are summarized in Table 6.3. The structural and aerodynamic properties of
the blades, the properties of the hub, nacelle, drivetrain, tower and the control system of the
turbine are explained in minor detail in [64].

Rated power 5 MW Cut-out wind speed 25 m/s
Rotor orientation Upwind Cut-in rotor speed 7 rpm

Rotor configuration 3 blades Rated rotor speed 12 rpm
Control Variable speed Rated tip speed 80 m/s

Drive train Multiple-stage gearbox Overhang 5 m
Rotor diameter 126 m Shaft tilt 5°
Hub diameter 3 m Precone 2.5°

Hub height 90 m Rotor mass 111,000 kg
Cut-in wind speed 3 m/s Nacelle mass 240,000 kg
Rated wind speed 11.4 m/s Tower mass 347,500 kg

Table 6.3: General specification of the widely used 5 MW baseline wind turbine developed for research purposes by NREL [64]

Definition of tower and blade gauges - FAST allows users to attach virtual strain gauges
at different nodes on the blades and tower of a wind turbine. The placement of these strain
gauges mark the spots where time series data of forces and moments are collected. Six nodes
with strain gauges were placed along the 87.6 m high turbine tower and five nodes along the
61.5 m long blades. Next to that, strain gauges are present at the tower base and blade root.
Table 6.4 depicts the exact location measured from tower base and blade root.

# 1 2 3 4 5 6
Tower 0 11.5 25.4 39.2 53.0 66.9 80.7
Blades 0 11.5 23.1 34.6 46.1 57.7

Table 6.4: Placement of strain gauges in terms of distance in meters from tower base and blade root

FAST output and processing thereof - Where the desired input for the MLife software
package in step three would consist of stresses on several parts of the wind turbine, FAST
only outputs time series of (bending) moments 𝑀 (and forces 𝐹) at predefined points on the
blades and tower, including blade root and tower base. These bending moments are therefore
first translated to stresses 𝜎 by means of Equation 2.19, which was introduced and elabo-
rated on in combination with the cantilever beam model of a wind turbine in Subsection 2.4.

For the blade root and the turbine tower, the area moment of inertia or second moment
of inertia 𝐼x is determined by considering the shape of the blade root and tubular tower as
one of an annulus. This is a hollow circular and symmetrical object with inner radius 𝑟ኻ
and outer radius 𝑟ኼ, as the composite blade root and steel tower are [123]. An underlying
assumption for this approach is the one that the material of the annulus is uniform. Where
the tower meets this assumption, the blade root violates this assumption since steel joints
are present throughout the composite structure. Nevertheless, this is ignored for the sake of
simplicity. Keeping this annular circular shape in mind, an expression for 𝐼x as depicted in
Equation 6.4 can be formulated.

𝐼x = 𝐼y =
𝜋
4 (𝑟

ኾ
ኼ − 𝑟ኾኻ ) (6.4)
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6.1.3. Fatigue lifetime determination with help of MLife
About MLife and its general working - MLife is a MATLAB based tool developed by NREL to
post-process dynamic aeroelastic simulations of the loads and moments on different parts of
a wind turbine, like the ones performed in FAST in this research. From an input settings file
and one or more files containing time series of loads, MLife computes statistical information
and fatigue estimates. Wind engineers usually have to perform loads analysis to gain type
certification of a wind turbine, which can involve running thousands of simulations modeling
different conditions. Consequently, extreme-event tables and fatigue-life predictions have to
be generated from the simulation output, which comprises of a lot of work. This can also be
done automatically by MLife, which immediately exposes the big advantage of this tool. Before
diving into the more detailed working of the MLife tool, a general outline of the processing
steps within MLife is presented below [57].

1. Compute aggregate statistics across all processed input files

2. Determine the fatigue cycles for each time series by means of rainflow counting

3. Compute the short-term damage-rates and damage-equivalent load (DEL) of each time-
series

4. Sum the damage contribution of each time-series to determine short-term aggregate
damage-rates and DELs

5. Extrapolate the damage contribution of each time-series across the design lifetime to
determine the lifetime damage

6. Determine the lifetime DEL and compute the time until failure

Input parameters MLife - Several inputs are required for the working of MLife. To start, a
wind speed binning procedure based on a Weibull distribution as introduced in Section 5.2 is
included in the tool, fed by provided inputs for mean horizontal wind speed 𝑈, Weibull scale
parameter 𝑎 and Weibull scale parameter 𝑘. These are all based on the LiDAR measurements
from Chapter 5. Secondly, turbine related input parameters are defined: cut-in wind speed
𝑈in, cut-out wind speed 𝑈out, availability factor 𝐴 (The percentage of time a wind turbine is
available. A value of 𝐴 = 1 indicates that the turbine is always in operation and producing
power for all 𝑈in < 𝑈 < 𝑈out.) and the design lifetime of the turbine 𝑇life. Since MLife follows
the techniques outlined in Annex G of IEC 61400-1 edition 3, three different Design Load
Case (DLC) classifications are included:

• Power Production (IEC DLC 1.2): turbine is in normal operation between 𝑈in and 𝑈out
• Parked (IEC DLC 6.4): turbine is idling or parked since 𝑈 is not between 𝑈in and 𝑈out
• Discrete Events (IEC DLCs 2.4, 3.1, and 4.1): events that occur a defined number of
times over the turbine design lifetime

So lastly, for each Design Load Case a representative input file exists, which gives a total
of three input files in the form of time series of loads on several parts of the turbine as gen-
erated in FAST. MLife extrapolates the damage cycle counts in a different way for each DLC
classification of the time series. Encompassing the three above mentioned DLCs ensures
that all DLCs contributing to fatigue damage are included.

Background theory fatigue lifetime calculations - To understand the working of MLife,
one must understand the underlying principles of lifetime damage calculations. MLife ac-
cumulates fatigue damage caused by fluctuating loads over the design lifetime of a wind
turbine. By matching local minimums with local maximums in the time series, the fluctuat-
ing loads are broken down into individual hysteresis cycles. This method is called rainflow
counting and assumes damage accumulates linearly with each of these cycles according to
the Palmgren-Miner Rule [96]. The total lifetime damage 𝐷life of all hysteresis cycles is given
by Equation 6.5,
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𝐷life =∑
።

𝑛፥።፟፞i
𝑁i
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where 𝑛፥።፟፞i is the cycle count and 𝑁i denotes the amount of cycles until failure. In general,
approaching the value of 𝐷 = 1 indicates failure of the material. The relationship between
the amount of cycles until failure 𝑁i and the loads and accompanying stresses on the wind
turbine follows a so-called S-N curve, of which an example is shown in Figure 6.5. It depicts
the relationship between N and S of different commonly used materials like steel and fiber
reinforced plastic on a logarithmic scale.

Figure 6.5: S-N or Wöhler curve for three different materials [52]

The S-N curve, also known as a Wöhler curve, is often used to characterize materials
performance in high-cycle fatigue situations, e.g. wind loads on a rotating wind turbine [96].
These curves are derived from tests on material samples where constant sinusoidal stresses
are applied by testing machines, counting the amount of cycles until failure. The relationship
can be modelled by means of Equation 6.6,

𝑁i = (
𝐿ult − |𝐿MF|

ኻ
ኼ𝐿RFi

)
፦

(6.6)

in which 𝐿ult is the ultimate design load of the component under attention, 𝐿MF is the fixed
mean of the load and𝑚 is a material specific parameter called the Wöhler exponent. Equation
6.6 assumes that the fatigue cycles occur over a constant mean of the load, where in reality
the fatigue cycles will occur over a range of means. To solve this in-exactitude, a correction
named after himself is proposed by Goodman [47]. This is a formula that provides a correction
to analyze the data as if each cycle occurs about that fixed mean load, explains the origin
of 𝐿RFi and is given by Equation 6.7. 𝐿RFi itself represents the cycle’s load range around the
fixed mean of the load and 𝐿Ri is the 𝑖th cycle’s range around the fixed load mean 𝐿Mi . Where
𝐿ult is material dependent, 𝐿MF and 𝐿RFi are a consequence of the loads and moments that are
applied on a certain material.

𝐿RFi = 𝐿Ri (
𝐿ult − |𝐿MF|
𝐿ult − |𝐿Mi |

) (6.7)
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Figure 6.6: Simplified visualization of a load cycle with mean stress and stress range [78]

In Figure 6.6, a simplified load cycle is presented. The mean stress, directly related to
𝐿MF and 𝐿M in Equations 6.6 and 6.7 is indicated, as well as the stress range, which is
in turn related to 𝐿RF and 𝐿R in Equations 6.6 and 6.7. It should be noted that in reality
and from simulation in FAST, several load cycles are retrieved, which in itself do not have
a fixed amplitude over time and therefore also not a constant stress range. To clarify the
interchangeable use of the terms loads and stresses in this section, one is remembered of
the relationship between both. Load 𝐿 is another word for force, measured in Newton and
also often expressed using 𝐹, and stress 𝑆 is simply the load or force per area 𝐴 in 𝑁/𝑚ኼ,
following Equation 6.8.

𝑆 = 𝐿
𝐴 (6.8)

As stated earlier in this section, the time series that are used cover a much shorter time
period than the design lifetime 𝑇life of a turbine. Throughout this analysis, a time period of
600 seconds is used as a basis for further analysis. From a practical point of view, the lifetime
damage 𝐷life is estimated by extrapolation of these time series over the design lifetime. This
will result in a time until failure 𝑇fail, calculated according to Equation 6.9.

𝑇fail =
𝑇life
𝐷life

(6.9)

Last specifications MLife simulations - Certain other input parameters are required for
the fatigue lifetime calculations which take place in the MLife simulations. Firstly, the design
wind turbine lifetime 𝑇life is considered. The lifetime of a modern multi-megawatt turbine is
assumed to be 20-25 years in wind energy industry. Although it is often heard that wind
turbines can stay in operation and stay profitable up until or even over 30 years, this is rela-
tively unsure since the vast majority of the currently installed multi- megawatt turbines have
not reached the age of 30 yet [66]. On the other hand, some research revealed that onshore
wind turbines might only generate electricity effectively for 15 years on average. It is chosen
to reason from a conservative lifetime 𝑇life of 20 years.

As stated above, 𝐿MF and 𝐿RF are a consequence of the loads and moments that are exerted
on different parts of the wind turbine. A certain mean can be found in the cycle of loads and
moments, as well as a certain range around that mean.

Lastly, there are two other variables in the process described in this Subsection that are
indispensable: the Wöhler exponent 𝑚 and ultimate load or moment 𝐿ult. Both are material
dependent and commonly hard to define exactly, which results in the fact that often a range
of Wöhler exponents (and Wöhler curves) and 𝐿ult is used throughout research regarding
fatigue determination. For the Wöhler exponent, in contrast to 𝐿ult, this is adopted in this
research.
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Three different values are used for the steel in the turbine tower, as well as for the glass-
fiber reinforced plastic of which the blades and blade roots consist. Values for 𝑚 of 3,4 and 5
for steel and 8, 9 and 10 for glass-fiber are widely used in this setting and therefore adopted
[45]. The 𝐿ult that are used for steel and fiberglass are derived from the yield strength (or yield
stress) of both materials, which are 250 MPa and 2 GPa respectively [64]. The yield strength
is the point until where the stress-strain relationship of a material shows linear behavior
and up to which deformations of the material are completely recoverable upon removal of the
force induced stress [108]. Finally, Equation 2.19 is used to convert these stress values into
moments.

6.1.4. Method overview
From structural model to fatigue lifetime determination - To conclude this section on the
three-step method used for the sensitivity analysis on the fatigue lifetime of a common Dutch
onshore wind turbine as a function of turbulence intensity, a flowchart is presented in Figure
6.7. The first two elements depict the structural model of the NREL 5 MW baseline wind
turbine and the via aeroelastic simulation obtained time-series data of loads and moments
on the wind turbine in FAST, respectively. The next three elements, elaborated on in the
above subsection, are carried out in MLife and lead to the ultimate goal of determining the
fatigue lifetime for several parts of the wind turbine. They consist of rainflow counting of the
to stresses converted moments, histograms containing stress ranges in ascending order and
the use of Equations 6.5 to 6.7 to arrive at lifetime damage 𝐷life and time until failure 𝑇fail.

Figure 6.7: Overview conceptual working of FAST and MLife

6.2. Results
The results of the in the preceding section explained three-step procedure are presented in
this section. First, a few interim results from the first and second step are shown in Subsec-
tion 6.2.1 to increase the acquaintance with and understanding of these parts. Thereafter,
the final results derived from MLife are presented in Subsection 6.2.2.

6.2.1. Interim results
TurbSim output - TurbSim software normally outputs full-field time-series data of wind
fields in binary form, which can not be read by any program. However, one can also request
an output of wind speed component vectors 𝑢, 𝑣 and 𝑤 as an array in a readable text file.
Figure 6.8 depicts an interval of 600 seconds out of the total simulation time of 6000 seconds
of the horizontal wind speed component 𝑢 with turbulence intensity 𝑇𝐼 values of 0.07 and
0.11 (7% & 11% in TurbSim). TurbSim outputs all three wind speed component vectors at
30 heights and widths according to the wind field grid settings, as discussed in 6.1.1. Wind
speeds between 10 and 170 m height are available with these settings. Figure 6.8 represents
the horizontal wind speed at a height of 90 m at the centre of the rotor plane. A fluctuating
pattern in 𝑢 can be observed for both 𝑇𝐼 values, albeit more explicitly for 𝑇𝐼 = 0.11. The mean
wind speed 𝑈, which is indicated by the dotted line, is the same for each wind field, namely
8.08 m/s at 90 m height, but the spread varies according to the different values for 𝑇𝐼.
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Figure 6.8: Horizontal wind speed component ፮ at the rotor hub of the NREL baseline turbine

FAST output - The aeroelastic simulations performed in FAST result in time-series data
of bending moments for different parts of the NREL 5 MW baseline turbine. Different nodes
at the turbine tower and blades are considered, including tower base and blade root. Not all
results are shown here, but a selection is made. The same time series of 30 seconds between
15 and 45 seconds as for Figure 6.8 is picked from a total simulation time of 600 seconds.

Figure 6.9: Tower bending moments at two different tower nodes for ፓፈ = 0.09

Figure 6.9 shows the side-to-side and fore-aft bending moments of the turbine tower at
two different heights for 𝑇𝐼 = 0.09. Node 1 is located quite close to the ground at 11.5 height,
where node 4 is placed at 53 m height. The fore-aft bending moments are an order of magni-
tude higher than the side-to-side bending moments for both nodes. This is logical behavior,
since the wind exerts by far more force on the turbine perpendicular to the rotor plane, then
it exerts forces on the sides of the turbine. Next to this, it is noteworthy that no clear patterns
can be observed in the tower bending moments. The values tend to fluctuate minorly around
certain values. Furthermore, it can be observed that the fore-aft bending moment at node 1
is considerably higher than the fore-aft bending moment at node 4, higher up the tower. The
lower parts of the turbine tower naturally have higher bending moments compared to higher
up the tower.
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Figure 6.10: Blade root bending moments for ፓፈ = 0.09

Figures 6.10 and 6.11 depict the bending moments on two parts of the blades for 𝑇𝐼 = 0.09.
Figure 6.10 shows themeasuredmoments at the blade root, where 6.11 shows themoments 5
m from the tip of the blade at node 5. It can be noticed that the out-of-plane bending moments
(called flapwise moments for the blade) are higher than the in-plane moments and their cycles
tend to have smaller amplitudes than the in-plane moments. Furthermore, the cycles of the
in-plane moments fluctuate around a zero mean, where the cycles of the out-of-plane moment
do not show this characteristic. The above described behavior aligns with the fact that the
forces that the wind exerts on the rotor plane are mostly coming from a forward direction.
The blue lines, representing the in-plane/edgewise bending moments on the blades, reflect
the forces of gravity on the wind turbine blades, as the blades are alternately located in the
right-hand and left-hand plane. This causes the sign of the in-plane moments to alternate
between plus and minus. Finally, it can be observed that the bending moments at the blade
root are an order of magnitude higher than those close to the blade tip. The blade roots
naturally undergo the highest bending moments since all forces on the blade converge to
this point.

Figure 6.11: Blade bending moments for ፓፈ = 0.09

Visualization of the bending moments or forces on other the nodes on the turbine tower
and blades are not shown here, nor are these shown for other 𝑇𝐼 values. Nevertheless, the
outcome for these variables aligns with the observed behavior that is described above.
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6.2.2. Final results
This subsection presents the results for the fatigue lifetime assessment executed with the
help of MLife on different parts of the NREL 5 MW baseline turbine, to know the entire span
of the blades and the tower from base to top. Simulations and calculations in FAST and
MLife were performed for 𝑇𝐼 = [0.07 0.08 0.09 0.10 0.11], but for reasons of conciseness only
the results for the wind fields with 𝑇𝐼 = [0.07 0.09 0.11] are presented in the tables in this
section. Several graphs visualize the numerical findings for Wöhler exponents 𝑚 = [3 4] for
the steel tubular tower and 𝑚 = [8 9] for the glass fibre blades, since these are the most used
values for 𝑚 in literature for the NREL 5 MW wind turbine [64].

Fatigue lifetime turbine tower - Table 6.5 summarizes the results obtained from MLife for
three 𝑇𝐼 dictated wind fields regarding lifetime fatigue damage of the wind turbine tower cal-
culated according to Equations 6.5, 6.6 and 6.7. This was done for 7 nodes along the tower,
including the tower base. The location of these nodes is discussed in Subsection 6.1.2. For
lay-out purposes, only 5 nodes are depicted in Table 6.5. Fatigue damage due to stresses
from side-to-side bending moments are presented, as well as fatigue damage due to stresses
from fore-aft bending moments. As stated before, a set of three Wöhler exponents 𝑚 is used
for each 𝑇𝐼 dictated wind field. Figures 6.12 and 6.13 visualize the obtained results for 𝑚
= [3 4] for stresses caused by side-to-side bending moments and fore-aft bending moments,
respectively.

Stresses from 𝑚 Base Node 1 Node 3 Node 4 Node 6

Side-to-side 3 3.00 × 10ዅ8 2.83 × 10ዅ8 1.98 × 10ዅ8 1.62 × 10ዅ8 2.20 × 10ዅ9
bending moments 4 1.06 × 10ዅ12 1.02 × 10ዅ12 6.64 × 10ዅ13 4.73 × 10ዅ13 1.94 × 10ዅ14

for 𝑇𝐼 = 0.07 5 4.28 × 10ዅ17 4.27 × 10ዅ17 2.57 × 10ዅ17 1.58 × 10ዅ17 2.43 × 10ዅ19

Fore-aft 3 8.89 × 10ዅ6 8.13 × 10ዅ6 5.82 × 10ዅ6 4.09 × 10ዅ6 7.80 × 10ዅ7
bending moments 4 2.61 × 10ዅ9 2.41 × 10ዅ9 1.59 × 10ዅ9 9.29 × 10ዅ10 3.83 × 10ዅ11

for 𝑇𝐼 = 0.07 5 8.54 × 10ዅ13 7.77 × 10ዅ13 4.66 × 10ዅ13 2.37 × 10ዅ13 2.95 × 10ዅ15

Side-to-side 3 6.02 × 10ዅ8 5.75 × 10ዅ8 4.09 × 10ዅ8 3.26 × 10ዅ8 4.03 × 10ዅ9
bending moments 4 2.69 × 10ዅ12 2.60 × 10ዅ12 1.78 × 10ዅ12 1.20 × 10ዅ12 4.19 × 10ዅ14

for 𝑇𝐼 = 0.09 5 1.39 × 10ዅ16 1.37 × 10ዅ16 8.36 × 10ዅ17 5.02 × 10ዅ17 6.29 × 10ዅ19

Fore-aft 3 9.72 × 10ዅ6 8.64 × 10ዅ6 6.12 × 10ዅ6 4.52 × 10ዅ6 1.24 × 10ዅ6
bending moments 4 2.74 × 10ዅ9 2.51 × 10ዅ9 1.65 × 10ዅ9 9.77 × 10ዅ10 6.15 × 10ዅ11

for 𝑇𝐼 = 0.09 5 8.92 × 10ዅ13 8.07 × 10ዅ13 4.83 × 10ዅ13 2.47 × 10ዅ13 4.62 × 10ዅ15

Side-to-side 3 1.00 × 10ዅ7 9.58 × 10ዅ8 6.74 × 10ዅ8 5.44 × 10ዅ8 6.76 × 10ዅ9
bending moments 4 5.40 × 10ዅ12 5.37 × 10ዅ12 3.47 × 10ዅ12 2.41 × 10ዅ12 8.55 × 10ዅ13

for 𝑇𝐼 = 0.11 5 3.29 × 10ዅ16 3.28 × 10ዅ16 1.92 × 10ዅ16 1.21 × 10ዅ16 1.58 × 10ዅ18

Fore-aft 3 1.08 × 10ዅ5 9.30 × 10ዅ6 6.50 × 10ዅ6 5.08 × 10ዅ6 1.85 × 10ዅ6
bending moments 4 2.93 × 10ዅ9 2.64 × 10ዅ9 1.72 × 10ዅ9 1.04 × 10ዅ9 9.77 × 10ዅ11

for 𝑇𝐼 = 0.11 5 9.44 × 10ዅ13 8.45 × 10ዅ13 5.04 × 10ዅ13 2.60 × 10ዅ13 7.51 × 10ዅ15

Table 6.5: Results obtained for tower lifetime fatigue damage calculations in MLife for three ፓፈ values, three Wöhler exponents
፦ and due to stresses from side-to-side bending moments and fore-aft bending moments
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(a) Fatigue lifetime damage due to stresses caused by side-to-side bending moments for ፦ = 3

(b) Fatigue lifetime damage due to stresses caused by side-to-side bending moments for ፦ = 4

Figure 6.12: Results of MLife calculations for fatigue lifetime damage of the tower for three values of ፓፈ

A number of patterns and certain behavior can be extracted from the results in the table
above and both graphs. Firstly, the fatigue damage at the turbine tower decreases with
increasing height from the tower base towards the top for every 𝑇𝐼 value and 𝑚. This seems
logical for two reasons. In the first place because stresses are mainly caused by the variability
of wind (speed) and this turbulence decreases with height too. Subsequently, the lower parts
of the turbine tower are exposed to more and heavier loads than the upper parts because of
two reasons. On the one hand, these lower parts have to carry more weight of the remainder
of the turbine above them. On the other hand and most important, their lever arm in the
cantilever beam model is longer. Moreover, it seems that this relationship is non-linear. In
other words, the fatigue damage decreases faster per meter height higher up the tower.
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Thirdly, the fatigue damage due to stresses from fore-aft moments is higher than that
due to stresses from side-to-side bending moments. As already mentioned in Subsection
6.2.1, this behavior is expected since aerodynamic loading on a wind turbine caused by the
𝑢 component of the wind speed is the highest, since the purpose of a horizontal axis wind
turbine is to align perfectly with the wind to generate as much thrust as possible via Equation
2.16.

(a) Fatigue lifetime damage due to stresses caused by fore-aft bending moments for ፦ = 3

(b) Fatigue lifetime damage due to stresses caused by fore-aft bending moments for ፦ = 4

Figure 6.13: Results of MLife calculations for fatigue lifetime damage of the tower for three values of ፓፈ

Thereafter, varying the Wöhler exponent poses a considerable difference in fatigue damage
due to stresses caused by both examined bending moments. For instance, choosing 𝑚 = 3
over 𝑚 = 5 changes the fatigue damage with multiple orders of magnitude. Fifthly, for none
of the predefined parameters the total fatigue lifetime damage 𝐷life approaches the value of 1,
which would indicate failure. This is not uncommon, since fatigue damage is not the primary
design driver for wind turbine towers. Additionally, extreme events or gusts are not included
in the aeroelastic simulations in FAST to solely focus on the influence of turbulence.
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Lastly, it can be observed that for every 𝑚 and both side-to-side and fore-aft bending mo-
ments the fatigue damage increases with 𝑇𝐼. This pattern is consequently present throughout
the obtained results, but the increases in fatigue damage are relatively small per higher level
of turbulence. An important difference is observed between the stresses from both origins,
depicted in Figure 6.12 and Figure 6.13. Where latter shows to be not very sensitive to varia-
tion in turbulence, the first seems to vary an order of magnitude for the different levels of 𝑇𝐼.
For the stresses caused by fore-aft bending moments, the fatigue lifetime damage increases
on average with 10% going from 𝑇𝐼 = 0.07 to 0.09 and 0.11. For the stresses caused by
side-to-side bending moments, these upsurges are over 100% for the same steps in 𝑇𝐼.

Fatigue lifetime blades - Table 6.6 summarizes the results obtained from MLife for three
𝑇𝐼 dictated wind fields regarding lifetime fatigue damage of the blade calculated according to
Equations 6.5, 6.6 and 6.7. Also, fatigue damage due to stresses from edgewise (in-plane)
bending moments are presented, as well as fatigue damage due to stresses from flapwise (out-
of-plane) bending moments. As stated before, a set of three Wöhler exponents 𝑚 is used for
each 𝑇𝐼 dictated wind field. Figure 6.14 visualizes the obtained results for 𝑚 = 8 for stresses
caused by out-of-plane bending moments and in-plane bending moments, respectively. The
reason that only one value of 𝑚 is visualized is that this is the most critical Wöhler exponent
for the blades. It should be noted that the difference in 𝑇𝐼 level is not very good visible in
Figure 6.14, although it is tried to improve this by applying a semi-logarithmic scale. One
must not be misled by this representation when interpreting the results from this graph.

Stresses from 𝑚 Blade root Node 1 Node 3 Node 5

Edgewise 8 9.61 × 10ዅ37 1.68 × 10ዅ38 4.93 × 10ዅ44 4.08 × 10ዅ57
bending moments 9 3.68 × 10ዅ42 3.90 × 10ዅ44 2.37 × 10ዅ50 4.61 × 10ዅ65

for 𝑇𝐼 = 0.07 10 1.41 × 10ዅ47 9.07 × 10ዅ50 1.15 × 10ዅ56 5.28 × 10ዅ73

Flapwise 8 3.92 × 10ዅ38 3.58 × 10ዅ39 3.09 × 10ዅ43 2.27 × 10ዅ53
bending moments 9 2.07 × 10ዅ43 1.40 × 10ዅ44 3.75 × 10ዅ49 1.49 × 10ዅ60

for 𝑇𝐼 = 0.07 10 1.09 × 10ዅ48 5.48 × 10ዅ50 4.57 × 10ዅ55 9.81 × 10ዅ68

Edgewise 8 9.87 × 10ዅ37 1.77 × 10ዅ38 5.52 × 10ዅ44 4.95 × 10ዅ57
bending moments 9 3.80 × 10ዅ42 4.15 × 10ዅ44 2.73 × 10ዅ50 5.85 × 10ዅ65

for 𝑇𝐼 = 0.09 10 1.46 × 10ዅ47 9.75 × 10ዅ50 1.37 × 10ዅ56 7.04 × 10ዅ73

Flapwise 8 5.62 × 10ዅ38 5.06 × 10ዅ39 3.87 × 10ዅ43 3.10 × 10ዅ53
bending moments 9 3.10 × 10ዅ43 2.07 × 10ዅ44 4.83 × 10ዅ49 2.11 × 10ዅ60

for 𝑇𝐼 = 0.09 10 1.71 × 10ዅ48 8.44 × 10ዅ50 6.05 × 10ዅ55 1.44 × 10ዅ67

Edgewise 8 1.03 × 10ዅ36 1.91 × 10ዅ38 6.36 × 10ዅ44 6.21 × 10ዅ57
bending moments 9 3.92 × 10ዅ42 4.44 × 10ዅ44 3.13 × 10ዅ50 7.65 × 10ዅ65

for 𝑇𝐼 = 0.11 10 1.50 × 10ዅ47 1.88 × 10ዅ49 1.77 × 10ዅ56 9.74 × 10ዅ73

Flapwise 8 8.04 × 10ዅ38 6.98 × 10ዅ39 4.69 × 10ዅ43 4.18 × 10ዅ53
bending moments 9 4.59 × 10ዅ43 2.99 × 10ዅ44 6.43 × 10ዅ49 2.93 × 10ዅ60

for 𝑇𝐼 = 0.11 10 2.46 × 10ዅ48 1.34 × 10ዅ49 8.67 × 10ዅ55 2.50 × 10ዅ67

Table 6.6: Results obtained for blade lifetime fatigue damage calculations in MLife for three ፓፈ values, three Wöhler exponents
፦ and due to stresses from edgewise bending moments and flapwise bending moments
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Again, it can be observed from Table 6.6 that picking a certain value for 𝑚 influences the
obtained fatigue lifetime damage to a big extent. Next to that, it can be noticed from Figure
6.14 that the fatigue damage of the blades is very small over its lifetime for every 𝑚, 𝑇𝐼 value
and origin of stresses. The cause of this is twofold: extreme events or gusts are not included
in the aeroelastic simulations in FAST to solely focus on the influence of turbulence and
lifetime fatigue damage is not the main design driver for blades of modern multi-megawatt
turbines. The blade (tip) deflection is the most important design driver, to avoid collision
of the blade with the tower at all costs. Furthermore, it is noticeable from Figure 6.14 that
the damage due to stresses from in-plane bending moments is quite similar to that due to
stresses from out-of-plane bending moments.

(a) Fatigue lifetime damage due to stresses caused by in-plane or edgewise bending moments
for፦ = 8

(b) Fatigue lifetime damage due to stresses caused by out-of-plane or flapwise bending moments
for፦ = 8

Figure 6.14: Results of MLife calculations for fatigue lifetime damage of the blades for three values of ፓፈ
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Fourthly, fatigue damage decreases significantly over the length of the blade towards the
tip in all situations. It actually makes a difference of multiple orders of magnitude. Sub-
sequently, the fatigue lifetime damage due to stresses from edgewise bending moments is
higher than that from flapwise bending moments, since the gravitational forces of the blade
itself are a considerable factor in the first and these forces are exerted in-plane. Lastly, the
differences between the results of the several used 𝑇𝐼 values are even smaller than they were
for the turbine tower. As can be seen in 6.14a, especially for in-plane bending moments
the difference seems to be insignificant. This behavior could have been expected, since the
turbulence is by far mostly present in the horizontal component of the wind speed 𝑢. This
component exerts forces on the blades in the out-of-plane direction. Contributing to that,
for the stresses on the blades from edgewise bending moments, the in-plane gravitational
loading of the blades itself is very dominant. Where the difference in fatigue lifetime damage
is only a few percents for stresses caused by edgewise moments, the differences amounts
around 40% for the fatigue lifetime damage from stresses caused by flapwise moments.

6.3. Discussion and conclusion
General remarks - A sequence of three NREL developed software packages was used to ex-
ecute the analysis of this chapter: TurbSim, FAST and MLife. It required quite some time to
get fully acquainted with all three programs and especially with all the involved input and
output files with different settings, lay-outs and extensions. But once it all became clear, the
whole proved to be a possible valuable tool to analyze fatigue lifetime damage for all relevant
parts of a wind turbine. Although sometimes complex, moderately user-friendly and mostly
lacking possibilities to visualize input or output, the three software packages offer a broad
palette of simulation and calculation options. Last section consequently addressed 𝐷life from
Equation 6.5 and not 𝑇fail from Equation 6.9. The overall small values of the fatigue lifetime
damage logically result in very high values for the time until failure.

Observed patterns - Several patterns have been observed throughout the results that were
presented in Section 6.2. To start, the results for all wind turbine parts are hugely influ-
enced by the choice of Wöhler exponent 𝑚. Determining the exact Wöhler exponent 𝑚 for
the different materials in a wind turbine can lead to a considerable higher certainty in the
calculation of fatigue lifetime damages. This is considered a very tough thing to do, hence the
convention of using multiple Wöhler exponents in aeroelastic simulations [45]. Next to that,
fatigue lifetime damage consequently decreases along the blades towards the tip, as well as
it decreases along the wind turbine tower towards the top in all situations. It is known that
the blade root and tower base are the parts of a wind turbine’s blade and tower, respectively,
that undergo the heaviest loading and stresses and therefore it is logical that these parts
suffer most from fatigue damage. Other research confirms this behavior [108] [118].

Thereafter, it is confirmed that for the 5 MW NREL baseline turbine, lifetime fatigue damage
will not be the major design driver. The values are relatively low, although this is partly
caused by the absence of higher wind speeds, that are not included in the aeroelastic simu-
lations in FAST to solely focus on the influence of turbulence level. This especially influences
the (now relatively low) values for fatigue damage of the turbine blades. Often, wind speeds 𝑈
from cut-in to cut-out speed are used to analyse fatigue. In this case there has been chosen to
represent only the mean wind speed 𝑈 found in Chapter 5 and the observed variations around
this value in the analysis. Fourthly, it is observed that the fatigue damage of the tower due
to stresses from fore-aft bending moments is clearly higher than that due to stresses from
side-to-side bending moments. As stated in Subsection 6.2.2, this behavior can be explained
by the natural alignment to the wind of a horizontal axis wind turbine. Finally, this differ-
ence, between damage caused by stresses from flapwise and edgewise bending moments in
this case, is far less present at the blades of the turbine. Here, the fatigue damage due to
stresses from edgewise bending moments is actually a bit higher than that due to stresses
from flapwise bending moments. The in-plane gravitational loading of the blades itself play
an important role in this [125].
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Influence TI on fatigue lifetime damage - A few conclusions can be drawn regarding the
effect on the fatigue lifetime damage of the different 𝑇𝐼 dictated wind fields that were created
with TurbSim. Five different wind fields were created, of which the final results of three were
presented in the previous section. These wind fields have the same mean horizontal wind
speed of 8.2 m/s at 100 m height over the simulation period, but have a different spread of
wind speeds. For the wind turbine tower, it can be said that varying 𝑇𝐼 made a significant
difference in damage caused by stresses from side-to-side bending moments. Stepping from
𝑇𝐼 = 0.07 to 0.09, as well as from 𝑇𝐼 = 0.09 to 0.11, approximately doubled the fatigue lifetime
damage. For damage caused by stresses from fore-aft bending moments, the damage does
not double but increases with about 10% on average. All together, it can be said that the
differences between the results of the 𝑇𝐼 dictated wind fields on the tower fatigue damages
are significant, but not earth-shattering. The tower fatigue damage is not very high overall,
which is in line with the fact that it usually is not a critical design driver in designing a wind
turbine of this proportions. Purely looking at the influence of turbulence parameter 𝑇𝐼, the
fatigue lifetime damage due to stresses from side-to-side bending moments requires special
attention.

For the blades of the wind turbine, all the resulting values for the lifetime fatigue damage are
way smaller than for the tower. This immediately confirms that fatigue lifetime damage of the
blades is not an important design driver in the overall process of designing a multi-megawatt
wind turbine. Blade design often turns out be driven by stiffness; the clearance require-
ment between tower and blade is more important that fatigue damage [82]. For damage due
to stresses from edgewise/in-plane bending moments as well as from flapwise/out-of-plane
moments, a higher 𝑇𝐼 slightly increases the damage. This is about 10% for edgewise mo-
ments and around 50% for flapwise moments. Although this difference is considerable, the
total amount of damage is not.

It is not straightforward to link the results in this Chapter to existing literature, since re-
search that zooms in on the fatigue lifetime damage cause by stresses from different bending
moments in different parts of a wind turbine using simulation, especially using the software
packages TurbSim, FAST and MLife, is rare. Nevertheless, the results show similarities with
results from [60]. In this study, the same sequence of simulation software is used. It confirms
that fatigue lifetime damage from side-to-side bending moments for the tower and flapwise
(out-of-plane) bending moments for the blades are more sensitive to varying 𝑇𝐼 than their
respective counterparts. Here too, this effect is stronger for the tower than for the blades.
In [119], the influence of turbulence level on the fatigue lifetime damage caused by stresses
from in-plane and out-of-plane bending moments of only the blade root and tower base is
investigated. Here is confirmed that both are quite insensitive to variations in turbulence
and that these parameters show very small values, as in this study.

Room for further research - Firstly, the research in this chapter can be seen as an introduc-
tion to the possibilities of using the sequence of the three NREL developed software packages.
Further investigation on fine tuning the settings of the created wind fields, the controls in the
aeroelastic simulation and the parameters in the fatigue lifetime damage calculations can all
possibly contribute to approaching reality even more and draw more conclusions from sim-
ulation. This can e.g. involve the comparison of different turbulence models and the use
of many more wind fields for every wind speed bin between cut-in and cut-out wind speed
(instead of only 1 wind field per 𝑇𝐼 value) in TurbSim. The development of a tool to easily
draw up all the required turbine input parameters for FAST could be valuable, since it would
then be possible to simulate with the exact preferred virtual turbine, tailored to the needs
of a specific wind turbine design and/or location. In this research an available reference 5
MW turbine from NREL was used and not a turbine of 4 MW as will be placed in wind farm
”Windplan Blauw”.
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Next to that, it has been found that knowing the exact material properties of the steel and
fiberglass components of the turbine is essential for interpreting results from software such
as MLife, as results for fatigue lifetime damage can differ significantly for varying Wöhler
coefficients or ultimate design loads. This proposition is shared by [119], which extensively
addresses uncertainty factors around the determination of fatigue damage for wind turbine
materials. He makes a valuable contribution with a plea for synthetic S-N curves.

In this study only relatively low levels of average turbulence are examined; levels of tur-
bulence closely related to measurement inaccuracies from e.g. LiDAR versus met masts. 𝑇𝐼
levels in the range of 0.15 - 0.25 or even higher are less common for Dutch onshore sites, but
assessing these levels of turbulence might reveal a stronger relationship between turbulence
and fatigue lifetime damage of turbines. Next to that, a representative pattern of extreme
winds or gusts could be added to the aeroelastic simulation to approach a more realistic sit-
uation. Why this is not done in this research was stated earlier. Subsequently, this research
uses a model for calculating stresses on both tower and blades as introduced in Section 3.3.
This model is a representation close to reality for the turbine tower, but can be seen as a
simplification for the turbine blades. It would require more complex blade models to assess
the fatigue damage in a more realistic way. There are numerous models there to represent
the stresses on the structure of a wind turbine blade in a closer to realistic way than is done
here, like in [108] or [31] with the help of different damage models or finite element modeling.
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Intra-annual variability of turbulence

As posed in Section 2.1, turbulence at a site originates mainly from two processes: wind shear
due to obstacles and radiation from the Earth’s surface heated by the Sun. Since both loca-
tions under investigation in this research almost completely lack obstacles around them, the
attention goes to the latter. As the radiation of the Sun in this part of the Netherlands (as in
every part) heavily varies per season and month, turbulence and its most important indicator
in wind engineering turbulence intensity 𝑇𝐼 are expected to do so too. This chapter addresses
this intra-annual variability of turbulence in a quantitative way, since this variation can pos-
sibly be an important factor in achieving reliable, shorter measurement campaigns. When
meaningful intra-annual variability is observed, this can mean two things. Firstly, it can
point out which periods of the year in the Netherlands are most useful or reliable for very
short measurement campaigns of 3 to 6 months. Secondly, it can confirm the need for a data
adjustment method when short measurement periods are the only data available or when the
time to conduct a measurement campaign with LiDAR is only very short. As introduced in
Subsection 2.3.4, Measure Correlate Predict is the widely known method to fulfill this need.
The methods to observe the possible intra-annual variability of turbulence in a quantitative
way are presented in Section 7.1. The results are presented in Section 7.2 and discussed
in Section 7.3. Note that the data used in this chapter comprises of the full year 2019; a
different time frame than in Chapter 5.

7.1. Method
The intra-annual variability of the turbulence intensity 𝑇𝐼 is examined at both locations in
wind farm ”Windplan Blauw” for a measurement height of 100 m. There is no distinction
made between wind direction sectors, since hardly any obstacles are present around both
locations, as elaborated on in 4.2. Firstly, monthly average turbulence intensities 𝜇TI, month
are calculated for different heights, showing the variation of turbulence throughout the year
2019 and possibly indicating patterns over the year and between different heights. Secondly,
the turbulence intensity probability distribution 𝑃(𝑇𝐼i) is determined for every month of the
year. Differences between months can be exposed and a comparison of each month with the
entire year is executed. Since no probability density function is known for the distribution of
𝑇𝐼, the yearly and monthly data are binned with the help of histograms, which were already
introduced in 5. A probability is assigned to each bin according to Equation 7.1, where 𝑛። is
the number of elements that fall into bin 𝑖 and 𝑁month is the total number of elements in a
certain month. Analogously, 𝑁year is used for the yearly probability distribution.

𝑃(𝑇𝐼i) =
𝑛i

𝑁month
(7.1)
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7.2. Results
Intra-annual variability of turbulence in Wind farm ”Windplan Blauw” - In this section,
the results on the intra-annual variability of turbulence intensity 𝑇𝐼 are presented for loca-
tion 1 and 2 in wind farm ”Windplan Blauw”. The results for both locations are expected to
be quite similar. Nevertheless, the results from both locations are discussed for the purpose
of completeness and mutual comparison. Although the wind roses of both locations are not
uniform, as posed and visualized in Section 4.2, 𝑇𝐼 is not binned per wind sector for the sake
of simplicity. Location 1 is discussed first, subsequently location 2 will be treated. Although
somewhat more than one year of data was available for both locations, this is reduced to
exactly one year: the year of 2019. In this way, the monthly average turbulence intensity 𝜇TI
and monthly 𝑇𝐼 probability distribution 𝑃(𝑇𝐼i) can be compared with the yearly values and
distributions.

For both locations, the data that is used in this chapter originates from the ZX300 LiDAR
devices installed at these locations, as elaborated on in Section 4.2. This implies the pres-
ence of 52,560 data points of 10 minute averaged turbulence intensity measurements for
both LiDARs. However, this is not entirely true since the data availability at 100 m height
is slightly above 99% for both LiDARs, which was reported in Section 5.2.1. Next to that,
the amount of data points can slightly differ between months for the simple reason that not
every month has the same number of days. Two causes usually dominate turbulence in the
air: obstacles around the measurement station and heat radiation in the air. The first are
basically absent around the locations in ”Windplan Blauw”. The latter is always present and
is logically influenced by the seasons. Therefore, this cause of turbulence is expected to be
the main driver for possible differences in 𝑇𝐼 over the year.

Figure 7.1: Monthly averages ᎙TI for each month of the year 2019, measured by LiDAR 1 at 100 m height. The red dashed line
indicates the yearly average value of the same year.

Wind farm location 1 - Figure 7.1 depicts the monthly averages of the turbulence inten-
sity 𝜇TI measured by LiDAR 1. The data points for every month of 2019 together give a yearly
average 𝑇𝐼 value of 0.098, which is indicated by the horizontal, red dashed line. All monthly
averages fall within the range of 0.08 < 𝜇TI < 0.12. January, February, October, November
and December are characterised by a relatively low 𝜇TI between 0.08 and 0.09. The averages
of March, April, August and September can be categorized as intermediate values, ranging
from 0.10 to 0.11. The higher 𝜇TI close to 0.12 are found in summer, in the months May, June
and July. A clear pattern over the year can be observed. The pattern actually mostly looks
like a sine-wave with an amplitude of 0.02, translated 0.1 upwards. The top seems to lie a
bit shifted to the left; towards May/June. The observed behavior is in line with the expecta-
tions: a higher degree of turbulence during the summer months, induced by radiation rising
up from the Earth and originating from the heating of the Earth’s surface by the Sun. Next



7.2. Results 79

to that, the presence of water closeby can influence the level of turbulence. The difference
between the temperature of the water in the proximate IJsselmeer and the surrounding air
can induce heat transfer and therefore turbulence in the wind. This temperature difference
varies with the seasons and can therefore influence the seasonal pattern of 𝑇𝐼.

Figure 7.2: The turbulence intensity probability distribution ፏ(ፓፈi) for every month of 2019 as measured by LiDAR 1, visualized
by the orange histograms. The blue histogram in the background is the ፏ(ፓፈi) for entire 2019.

To further examine the intra-annual variability of turbulence for location 1 at wind farm
”Windplan Blauw”, there has been looked in the turbulence intensity probability distribution
𝑃(𝑇𝐼i) for every month of 2019. Figure 7.2 shows the distribution of every month by means of
a histogram, accompanied by a blue histogram in the background, which is the probability
distribution for entire 2019. A bin width of 0.01 is used for the values of 𝑇𝐼 on the x-axis,
thereafter the probability of each bin can be read on the y-axis. It can be observed that the
distributions of the months December, January and February form the biggest underesti-
mate of 𝑇𝐼, when compared to the yearly probability distribution. The histograms of October
and November also show monthly distributions that seem to be more shifted towards the
left, whereas the one of March shows to be roughly balanced with the yearly distribution.
The monthly histograms of April up to and including September are shifted towards the right
with respect to the yearly turbulence intensity probability distribution, indicating a higher
degree of turbulence over these months. The latter is expected and confirmed by Figure 7.1.

Wind farm location 2 - Figure 7.3 depicts the monthly averages of the turbulence inten-
sity 𝜇TI measured by LiDAR 2. The data points for every month of 2019 together give a yearly
average 𝑇𝐼 value of 0.094, which is indicated by the horizontal, red dashed line. The monthly
averages show a slightly wider range than for LiDAR 1, they show a range of 0.07 < 𝜇TI <
0.12. It can immediately be observed that the degree of turbulence seems to be a bit less
at location 2 compared to location 1, considering that the yearly average is somewhat lower
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and that there are actually quite some months with an average 𝜇TI below 0.08, namely the
winter months from October to February. Furthermore, the same bell-shaped curve can be
observed in Figure 7.3 too, albeit the monthly averages measured by LiDAR 2 follow this dis-
tribution a bit less meticulous than those from LiDAR 1. Figure 7.4 shows the 𝑇𝐼 probability
distribution of every month by means of the same orange and blue background histograms.

Figure 7.3: Monthly averages ᎙TI for each month of the year 2019, measured by LiDAR 2 at 100 m height. The red dashed line
indicates the yearly average value of the same year.

Figure 7.4: The turbulence intensity probability distribution ፏ(ፓፈi) for every month of 2019 as measured by LiDAR 2, visualized
by the orange histograms. The blue histogram in the background is the ፏ(ፓፈi) for entire 2019.
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This yearly distribution is more shifted to the left relative to the 𝑃(𝑇𝐼i) of LiDAR 1, again
indicating more low 𝑇𝐼 values overall. On the contrary of LiDAR 1, the range of months that
are fairly below the yearly distribution is wider. Not only November, December and January
are, but also February and October are member of this subset. Next to that, the monthly dis-
tribution of August and September are quite in balance with the yearly one. The histograms
of March until July show the same behavior as observed for LiDAR 1; a higher degree of
turbulence rules over these summer months.

Origin of observed seasonal pattern in TI - To find out what drives the found seasonal
pattern in turbulence intensity 𝑇𝐼 in the above part of this section, a closer look is taken to
both factors that lie behind the equation for 𝑇𝐼 via Equation 5.2: wind speed 𝑈 and standard
deviation 𝜎u. For both, the yearly and monthly averages are depicted in Figure 7.5 and an
interesting notion is revealed. The upper half, showing measurements of 𝑈 over 2019 from
both LiDARs, shows a clear seasonal pattern for the horizontal wind speed. Except from
apparent deviant behavior of the weather in March, which is explained below, both LiDAR
measurement data sets form a trough parabola over the year. This is consistent with the fact
that temperature differences between air masses induce pressure differences and produce
wind. Winter in northwestern Europe will bring higher temperature gradients, which causes
wind speeds to be higher than in summer [27]. During summer and winter months, the
average 𝑈 is around 5 and 7 m/s, respectively. This gives annual averages around 6.5 m/s.
To avoid confusion, this is indeed different from Table 5.2. This is caused by the different
time span under attention, which is around 7 months in Chapter 5 and is exactly 1 year in
this chapter (2019).

Figure 7.5: Yearly pattern of horizontal wind speed ፔ and standard deviation ᎟u at 100 m height for both LiDARs
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On the contrary, the measurements of 𝜎u from both LiDARs at the bottom of Figure 7.5
hardly show any distinguishable pattern over 2019. This is counter intuitive, taking Figures
7.1 and 7.3 in mind. Again, it can be seen that March 2019 has been an unusual month
for location ”Windplan Blauw”. This is believed to be caused by storms Freya and Eberhard,
who both ravaged northwestern Europe during that particular month in 2019 [94]. Taking
a look at the data, many very high wind speeds and rapid variations in 𝑈 are observed on
several days in March 2019. Hence the significantly higher monthly average wind speed 𝑈
and standard deviation 𝜎u. This is not regularly observed in spring at this location, but for
2019 it is causing the peaks in Figure 7.5. Furthermore, almost all other monthly averages
lie in the range of 0.53 < 𝜎u < 0.68. The yearly means lie just above 0.6. There is no pattern
discoverable for the standard deviation; it seems to be more or less constant over the year.

7.3. Discussion and conclusion
The degree of turbulence and therefore turbulence intensity 𝑇𝐼 varies within a year for every
site on Earth, also for both locations in wind farm ”Windplan Blauw”. The measurements
of LiDAR 1 and LiDAR 2 show varying averages per month relative to the entire year 2019.
Because of the absence of obstacles around both locations and the measurement height of
100 m, these variations in turbulence over the seasons are believed to be caused by the
differences in radiation level of the Earth’s surface by the Sun from month to month. Next to
that, both locations lie in close proximity of the big IJsselmeer lake (English: Lake IJssel). The
difference between the local water temperature and the air temperature can play a role in the
presence of turbulence too. The bigger the temperature difference, the bigger the temperature
gradient and therefore the heat transfer. The latter can contribute to turbulence in the wind.
Since the mentioned temperature gradient is usually bigger in summer, this is a possible
contributor to the observed pattern in the last Section too.

Figure 7.6: The turbulence intensity probability distribution ፏ(ፓፈi) from both LiDARs for 2019.

The analysis in this chapter confirms the presumption that a lot of subsets of months do
not accurately represent the actual yearly distribution of turbulence intensity. Where the
periods around March and April and August and September could sometimes and in some
way be seen as an appropriate representation of this yearly distribution, most other periods
can surely not. Wintry months ranging from October up to and including February represent
a distribution that underestimates the degree of turbulence compared to the entire year. Vice
versa, measurements fromMay, June and July show a higher level of turbulence with respect
to the yearly distribution. For better visibility and mutual comparison, both yearly distribu-
tions are also depicted separately in Figure 7.6. They show a similar pattern, although the
measurements from LiDAR 2 display a slightly higher share of lower 𝑇𝐼 values, i.e. between
0 and 0.05. This is in line with the findings from Chapter 5, where a lower 𝜇TI was found for
LiDAR 2 in contrast to LiDAR 1. In conclusion regarding short LiDAR measurement cam-
paigns of around 3 to 4 consecutive months at locations of similar fashion, time frames with
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their center around September or March could be able to flatten out seasonal patterns in 𝑇𝐼,
as observed at two locations in ”Windplan Blauw”. Next to that, when a slightly longer mea-
surement campaign of around 6 months would be considered, the 𝑇𝐼 distribution in the time
frames June - November and December - May seem to be in reasonable accordance with the
yearly distribution according to the findings in this chapter. Measurement data from these
time frames should nevertheless handled with care, as generalizing them to yearly data will
always be less precise than obtaining yearly data for a certain location. Another and a con-
sidered better option, is the use of artificially created yearly data.

The observed variations within a year validate the necessity, or at least the exploration, of
extrapolation techniques to account for the intra-annual turbulence variations. The best
known way to perform such data extrapolations is the in Subsection 2.3.4 introduced Mea-
sure Correlate Predict (MCP) methodology. The next chapter will comprise of research into
the use of MCP in short measurement campaigns, which are inherently associated with the
flexible but expensive use of LiDAR devices. It will be examined in what way the length of the
measurement data of the target site, the season that is picked out of the measurement data
of the target site and the chosen MCP method can influence the accuracy of the predicted
data.

The last part of the previous section revealed that the found seasonal 𝑇𝐼 pattern gives mis-
leading thoughts on the variability of the wind speed. The latter is expected to be represented
by the part of 𝜎u in the formula for 𝑇𝐼, but it is actually the average wind speed 𝑈 that is the
cause of the earlier observed seasonal pattern of turbulence intensity. This means that the
variability of the wind speed 𝑈 over the year for this location is only there in absolute terms
and that relatively seen the variation is approximately equal over the seasons. In addition
to Appendix C on the proposition of using transience 𝜏m, introduced in Chapter 5, over 𝜎u,
this gives rise to an increased questioning of the use of 𝑇𝐼 in site assessment to represent
turbulent variability in the wind. It seems somewhat misleading to let the average wind speed
𝑈 in 10 minute intervals have such big influence on the 𝑇𝐼 value, keeping in mind that this
parameter should be a representative indicator of turbulence. The mean influences 𝜎u and
therefore 𝑇𝐼 via Equation 2.11 and 𝑇𝐼 directly via Equation 2.6.
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Application of MCP methodology on

short LiDAR measurement campaigns
In this chapter, the earlier introduced Measure Correlate Predict (MCP) methodology is ap-
plied in a case study involving both locations in wind farm ”Windplan Blauw”. In this case
study the focus lies on LiDAR measured 𝑇𝐼, trying to answer various research questions re-
garding the application of MCP on turbulence measurement data. These questions range
from defining the consequence of the length of the data set from the target site for the level
of representation of turbulence in the predicted data to the determination of how well 𝑇𝐼
data from a certain season can predict the yearly turbulence distribution. Next to that, the
results of several MCP algorithms or methods are compared. Section 8.1 elaborates on the
framework of this part of the research, consisting of the MCP proceedings, the experimental
setup and the performance metrics. The results are presented and explained extensively in
Section 8.2, after which these are discussed in the last Section 8.3. Note that the data used
in this chapter comprises of the full year 2019, just as in the preceding chapter. This time
frame differs from the one used in Chapter 5.

8.1. Method
Measure Correlate Predict is the best known and most used methodology for the extrapola-
tion of short-term wind measurement data to usable long-term data in wind energy science
and site assessment [25]. As touched upon in Section 3.4, MCP is usually used for the
extrapolation of horizontal wind speed 𝑈 measurement data. This comprises of 10 minute
averaged data for a relatively short period, which are then extrapolated to a data set of 10
minute averaged wind speeds representing one to several years. Since turbulence intensity
𝑇𝐼 is indirectly derived from 1 Hz measurements in every 10 minute interval (see Equation
2.6), one would need 1 Hz data for 3 to 6 months to properly extrapolate these to a reliable
set of 𝑇𝐼 values over a range of at least 1 year. Because of the fact that wind farms often lie
at more remote locations without proper internet connection, LiDARs ordinarily save these 1
Hz values on their internal data logger. It is not desirable to let these inner devices use big
parts of their internal memory for saving enormous amounts of 1 Hz signals at the expense of
their computing power. Therefore, these data loggers often save 1 Hz measurements for only
1 or 2 months. This is even too short for the application of MCP on 1 Hz 𝑈 measurement data
and exposes the insistence of applying MCP directly on 10 minute averaged 𝑇𝐼 measurement
data. Next to this, 1 Hz 𝑈 or 𝜎u data can be absent for other reasons.

How this is done exactly will be illustrated in this section, starting with an precise explanation
of the followed MCP procedure in Subsection 8.1.1. Subsection 8.1.2 treats the experimental
setup of this chapter and the motives behind it. Lastly, the performance metrics on which
the results of the MCP will be judged are introduced in Subsection 8.1.3.
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8.1.1. Proceeding of applying Measure Correlate Predict methodology
The Measure Correlate Predict methodology is visualized by means of the flowchart in Figure
8.1. The respectively grey, red and blue area(s) represent the three generic steps in the
methodology. Next to that, two other processes can be distinguished in the flowchart. Firstly,
data selection is executed to arrive at reliable and usable data to establish a correlation
via one of the in Subsection 2.3.4 introduced MCP methods. Next to that, the predicted
long-term data for the target site is compared to the actual data afterwards on the basis of
several performance metrics, which are elaborated on in Subsection 8.1.3. The other four
components of the methodology are shortly discussed below.

Figure 8.1: Flowchart of the Measure Correlate Predict methodology. The grey areas refer to the measured data, the red area
includes the second step wherein a correlation is established and the blue area depicts the last step: the prediction.

Data measurement and selection - The measurement data that is used in this chapter
originates from LiDAR 1 and met mast 2, which were introduced in Section 4.2. The loca-
tion of LiDAR 1 functions as the target site and the location of met mast 2 functions as the
reference site. From both instruments, 10 minute averaged data is available for a period of
more than 1 year. However, to avoid the proven seasonality effects in 𝑇𝐼 from Chapter 7, the
length of the long-term data has been set at one year. The length of the short-term data that
is picked from this set varies in this study; the next subsection addresses the experimental
setup in more detail. In the data selection, 9998 and 9999 values are removed from the time
series from the LiDAR, as well as the their corresponding values in the met mast data.

Both data sets are subdivided into direction sectors of 45∘, resulting in 8 direction sectors.
The first sector ranges from 0∘to 45∘, the second sector from 45∘to 90∘and so forth. Correla-
tions will be established per direction sector, as it is suspected that the correlations between
both sites are wind direction dependant. This implies a possible improvement of the pre-
diction by increasing the number of wind direction bins. However, the amount of direction
sectors considered is a trade-off between the preciseness of a high amount of bins and the
data sampling, which means having enough data to fill each direction bin [115]. This is es-
pecially a concern when short time frames are considered, as is the case here.

Establishing correlations - Several MCP methods were touched upon and explained in
Section 3.4, of which three have been highlighted: the linear regression method (LR), the
variance ratio method (VR) and the Mortimer method (MM). The latter is not used in this
chapter, since the amount of data available is not sufficient to fill the matrix of the average
of the calculated ratios. The variance ratio method is based on Equation 2.14 and uses the
following parameters of target site 𝑦 and reference site 𝑥: mean 𝜇y, standard deviation 𝜎y,
mean 𝜇x and standard deviation 𝜎x. These parameters are calculated with the correspond-
ing MATLAB functions mean and std. The linear regression method uses the most common
type of LR: the in Subsection 2.3.2 introduced least-squares fit, which is incorporated in the
MATLAB function fitlm. Both sites represent arrays of 𝑛 observed values 𝑥 and 𝑦 given by
(𝑥ኻ, 𝑦ኻ), (𝑥ኼ, 𝑦ኼ), ..., (𝑥፧ , 𝑦፧). Using the linear regression relation, the values in these arrays form
a system of linear equations, which can be represented in matrix form as in Equation 8.1.
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Prediction long-term data - The established relationship between the short-term data of
the target site and the reference site is used to convert the long-term data of the reference
site into a prediction for the long-term for the target site. Every data point for a period of one
year is predicted by means of filling in the Equations 2.12 and 2.14, accomplishing the main
goal of applying MCP. This is done eight times for each time frame, in accordance with the
earlier mentioned eight direction sectors. Afterwards, the wind direction differentiated data
is merged again to one prediction to obtain comparable 1-year distributions. The procedure
is based upon the assumption that there exists a linear relationship between the target and
reference site for every direction sector. The quality of the found relationship can be tested
by means of the coefficient of determination 𝑅ኼ, discussed in Section 2.3.

8.1.2. Experimental setup
This chapter includes several research subgoals. It assesses multiple MCP algorithms, it
examines in what way the length of the measurement data of the target site can influence
the accuracy of the predicted data and tries to find out what the effect is of picking different
seasons as short-term target site data. This results in an experimental setup as depicted
in Table 8.1. Considering the length of the short-term measurement time frame, there has
been chosen for 3 and 6 months. These time frames are time-wise practical and identified as
possible lengths for short LiDAR measurement campaigns by others [117] [58]. Considering
the selection of months, it has been chosen to go for a set of months without mutual overlap
and which are a logical choice when looking at our Roman calendar.

Number Length Months
1 3 months January - March
2 3 months April - June
3 3 months July - September
4 3 months October - December
5 6 months January - June
6 6 months July - December

Table 8.1: Experimental setup of MCP study

8.1.3. Performance metrics
As can be seen in the flowchart of Figure 8.1, the last process step in the Measure Correlate
Predict procedure is the comparison of data. This is where the outcome of MCP, the predic-
tion of the long-term data of the target site, is compared with the actual long-term data of the
target site. This step is key in determining the performance of the prediction and attempts
to measure the accuracy of the prediction compared to the actual measurement data. Other
research reveals the use of a diversity of performance metrics to evaluate the accuracy of the
data predicted by means of MCP.

To start, metrics are used that are specifically focused on applying MCP on wind speed 𝑈,
like the Weibull distribution shape parameter 𝑘 and scale parameter 𝑎, the annual energy
production (AEP) and the capacity factor 𝑐 [17]. Naturally, these metrics cannot be used
here. Other, more general statistical metrics can be used. The root-mean-square error and
coefficient of determination are also used in measuring the performance of MCP, but it is
chosen not to use these although 𝑅ኼ is evaluated for each case [115]. Two metrics are used
in almost every study on MCP: mean 𝜇 and standard deviation 𝜎 [25] [99]. Because of their
simplicity and excessive use, both are adopted in this study too. Another often used met-
ric that is adopted is the chi-squared statistic 𝜒ኼ, less known under the actual and correct
name Pearson’s chi-squared test. This test is used to check whether possible statistically
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significant differences exist between the expected and observed frequencies of a certain vari-
able. In line with [99], normalized versions of these three performance metrics are used. This
normalization facilitates the comparison of different data sets, which is desirable. The three
normalized performance metrics are listed below.

Performance metric 1: Normalized mean

𝜇norm =
(𝜇TI)፩፫፞፝።፜፭፞፝
(𝜇TI)፦፞ፚ፬፮፫፞፝

(8.2)

Performance metric 2: Normalized standard deviation

𝜎norm =
(𝜎TI)፩፫፞፝።፜፭፞፝
(𝜎TI)፦፞ፚ፬፮፫፞፝

(8.3)

Performance metric 3: Normalized chi-squared statistic

𝜒ኼnorm =
ፌ

∑
።዆ኻ

(𝑂።/𝑁ፎ − 𝐸።/𝑁ፄ)ኼ

𝐸።/𝑁ፄ
(8.4)

The composition of the first two metrics can be found in Equations 8.2 and 8.3. Both
normalized mean 𝜇norm and normalized standard deviation 𝜎norm are composed as a ratio of
the value representing the predicted data set over the value representing the corresponding
measured data set. The normalized mean and standard deviation indicate how accurate the
mean and standard deviation are predicted by the MCP algorithm concerned. Both param-
eters are extensively discussed in others section of this thesis, so no further explanation is
given here.

𝜒ኼ =
ፌ

∑
።዆ኻ

(𝑂። − 𝐸።)ኼ

𝐸።
(8.5)

The normalized chi-squared statistic 𝜒ኼnorm as shown in Equation 8.4 is derived from the
regular formula for the chi-squared statistic 𝜒ኼ in Equation 8.5. To be more precise, this
chi-squared goodness of fit test is used to compare the predicted 𝑇𝐼 distribution with the
actual 𝑇𝐼 distribution. In Equation 8.4, 𝑀 is the total number of bins, 𝑖 is the bin number,
𝑂። is the number of measurements or observations in bin 𝑖 according to the prediction and
𝐸። is the expected number of measurements in bin 𝑖 according to the real data [99]. The
difference between both formulas is again the use of ratio in the normalized version of the
chi-squared statistic, causing it to be independent of the number of data points in a certain
bin 𝑖 in 𝑂። and 𝐸።. The outcome of 𝜒ኼ is a number between 0 and 1. The closer this value
approaches zero, the greater the agreement between both data sets is. A significance level is
often chosen to imply a threshold for statistical significance, e.g. 0.05 or 0.10 [93]. The bin
width used in the chi-squared analysis equals 0.01, making sure that there are enough bins
but also enough data point per bin. Appendix F elaborates on the matter of the normalized
chi-squared statistic 𝜒ኼnorm with an easy to understand example.

8.2. Results
The results of the analysis in this chapter are presented in this section. For the first and
second step, the intermediate results are presented too. Subsection 8.2.1 shows the data
measurements that serve as input for the MCP algorithms and subsection 8.2.2 elaborates
on the obtained correlations for all 8 direction sectors and for each experiment number from
Table 8.1. Eventually, the results on the performance of the predictions are presented in
subsection 8.2.3.
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8.2.1. First step: Measure
Figure 5.9 shows the input of the first step in the MCP procedure: data measurement and
data selection. The target site is depicted above in red and the reference site is depicted
below in blue. The six experiments introduced in Subsection 8.1.2 all comprise of quarters
of the year 2019. The limits of these four quarters are indicated by the black dotted lines.
It can be observed that the overall level of 𝑇𝐼 is higher at location 1 than at location 2 and
that both locations show the in Chapter 7 discussed intra-annual variability. Note that these
graphs are not yet differentiated by wind direction sector and that data selection took place
by omitting values equal to ’0’, ’9998’ and ’9999’ out of the original data.

Figure 8.2: ፓፈ time series of one year for location 1 by LiDAR (above) and location 2 by met mast (below), with the black dotted
lines indicating the four quarters of 2019 that serve as input for the MCP procedure

8.2.2. Second step: Correlate
The combination of 2 MCP methods, 8 wind direction sectors and 6 experiments results in
a total of 6 ∗ 2 ∗ 8 = 96 obtained linear models. For 2 experiments, these are shown in this
subsection. The others are discussed here too, but their details can be found in Tables G.1,
G.2, G.3 and G.4 in Appendix G. This appendix also provides two graphs in Figures G.1
and G.2 with the point clouds of two wind direction sectors of experiment 2; one where the
linear models obtained from both MCP methods are more alike each other and one where
this is certainly not the case. Ideally, both algorithms would give approximately the same
linear model as result, but experience learns that this is often not the case. Next to that,
different linear models can lead to more closely matching results as one might expect in the
first place. As stated in Section 3.4, the variance ratio method is considered an extension
and an improvement of the linear regression method. It should be noted that the number of
data points per direction sector does not coincide with the wind roses from Chapter 5. This
is because the time frames are not the same, as has been highlighted at the very begin of
this chapter.

The intermediate results for the 96 obtained linear models show a wide variety. Several
patterns can be observed herein. Firstly, the linear models obtained via the linear regression
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method (LR) differ significantly from those obtained via the variance ratio method (VR). The
LR models are consequently characterized by a low slope parameter 𝛼 and a high offset 𝛽.
Values for 𝛼 are mostly in the range of 0.2 - 0.7 and 𝛽 ranges from 0.03 to 0.09. On the
contrary, the VR models often have a slope parameter 𝛼 close to 1, mostly in the range 0.8
- 1.3. The results for the last quarter of 2019 in Figure G.3 are an exception to this, since
higher values for 𝛼 are obtained here. The offsets 𝛽 found via the VR method are almost
always equal to or lower than 0.04 and show negative values sometimes. Summarizing the
above, the obtained LR models show relatively low 𝛼 and high 𝛽 and the obtained VR models
vice versa. It is suspected that the correlations established by the LR method are not that ac-
curate on itself and also less accurate than those established by the VR method. The reason
behind this suspicion is twofold. Firstly, the 𝛼 and 𝛽 values are quite unusual. Secondly,
the values for 𝑅ኼ that accompany the LR models are not in the desired range; towards the
value of 1. They range between 0.35 and 0.6, which is relatively low.

Sector 𝑦 = 𝛼𝑥 + 𝛽 𝑦 = 𝜇y − ᎟y
᎟x 𝜇x +

᎟y
᎟x 𝑥 Data

# Linear regression method Variance ratio method points
1 𝑦 = 0.65𝑥 + 0.06 𝑦 = 1.32𝑥 + 0.00 1558
2 𝑦 = 0.79𝑥 + 0.03 𝑦 = 1.40𝑥 − 0.02 2853
3 𝑦 = 0.70𝑥 + 0.04 𝑦 = 1.13𝑥 + 0.01 1131
4 𝑦 = 0.67𝑥 + 0.04 𝑦 = 1.13𝑥 + 0.00 1033
5 𝑦 = 0.57𝑥 + 0.06 𝑦 = 1.08𝑥 + 0.02 1607
6 𝑦 = 0.28𝑥 + 0.08 𝑦 = 0.89𝑥 + 0.01 1716
7 𝑦 = 0.18𝑥 + 0.09 𝑦 = 0.81𝑥 + 0.03 1185
8 𝑦 = 0.25𝑥 + 0.08 𝑦 = 1.05𝑥 − 0.02 1845

Total 12928

Table 8.2: Intermediate results on correlation for both MCP methods for the second experiment: April - June

Next to that, considerable differences in obtained models can be observed for the eight
wind direction sectors. This applies to both MCP methods. For the LR method, the sectors
6, 7 and 8 usually have the lowest slope parameters 𝛼 of around 0.2 - 0.3. The other five
sectors have higher slope parameters. For the VR method, it is hard to spot a pattern in the
distinctions that can be found over the direction sectors. The subdivision in wind direction
sectors has been done for a reason, namely because of the presumption that different linear
relationships exist and that wind direction has an influence on this. According to the results
in this section and Appendix G, it can be said that this presumption is confirmed. Thirdly,
the obtained models from both methods for certain sectors tend to deviate more from the rest
of the sectors in that experiment when the concerning wind direction sectors contain a low
amount of data points. This is especially the case for the models obtained from data that
cover a quarter of a year, so for experiments 1 to 4. In line with this, it can be observed that
sector 5 is the prevailing wind direction over the year, especially in the second half of the
year. In the first half of 2019, the origin of the wind is more distributed over all sectors.

Sector 𝑦 = 𝛼𝑥 + 𝛽 𝑦 = 𝜇y − ᎟y
᎟x 𝜇x +

᎟y
᎟x 𝑥 Data

# Linear regression method Variance ratio method points
1 𝑦 = 0.39𝑥 + 0.08 𝑦 = 1.00𝑥 + 0.03 1095
2 𝑦 = 0.64𝑥 + 0.04 𝑦 = 1.15𝑥 + 0.00 1821
3 𝑦 = 0.56𝑥 + 0.05 𝑦 = 1.13𝑥 + 0.01 1987
4 𝑦 = 0.51𝑥 + 0.04 𝑦 = 1.00𝑥 + 0.00 3466
5 𝑦 = 0.81𝑥 + 0.04 𝑦 = 1.50𝑥 − 0.02 7733
6 𝑦 = 0.32𝑥 + 0.06 𝑦 = 1.18𝑥 − 0.01 4112
7 𝑦 = 0.22𝑥 + 0.09 𝑦 = 0.91𝑥 + 0.01 2876
8 𝑦 = 0.21𝑥 + 0.08 𝑦 = 0.84𝑥 + 0.00 2264

Total 23354

Table 8.3: Intermediate results on correlation for both MCP methods for the sixth experiment: July - December
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8.2.3. Third step: Predict
In the linear models discussed above, the data of the reference site and the final prediction
for the target site are represented by 𝑥 and 𝑦, respectively. This prediction is subjected to
the earlier introduced performance criteria 𝜇norm, 𝜎norm and 𝜒ኼnorm. For the first two criteria, a
value of 1 is the target value since this indicates perfect alignment of the means or standard
deviations compared in that experiment. For the chi-squared statistic, 0 is the desired value.
Usually, a threshold is chosen to determine whether the difference between the observed data
distribution and expected data distribution is statistically significant or not. Often, 0.05 is
chosen to be this threshold, which is adopted here. Values above the threshold are seen to
indicate that the difference between the predicted and the actual distribution of LiDAR 1 is
too big. In Table 8.4, the results for all six experiments are presented. Next to that, Figures
8.3, 8.4 and 8.5 in this section show the obtained distributions for experiments 1, 4 and 5.
The distributions from the other experiments can be found in Appendix H. It was decided
to merge the separate wind direction sectors again to one distribution for two reasons: to
arrive at representative yearly 𝑇𝐼 distributions again as were used too in Chapter 7 and for
not having too many distributions to show in this chapter.

Figure 8.3: Prediction via both MCP algorithms for experiment 1

Experiment #⟶ 1 2 3 4 5 6

LR method 𝜇norm 0.90 1.03 1.00 0.97 0.98 0.98
𝜎norm 0.40 0.53 0.53 0.57 0.52 0.46
𝜒ኼnorm 0.69 0.77 0.72 0.67 0.62 0.72

VR method 𝜇norm 0.98 1.01 0.99 1.02 0.99 0.98
𝜎norm 1.23 1.27 1.28 1.39 1.33 1.25
𝜒ኼnorm 0.06 0.07 0.08 0.04 0.04 0.08

Table 8.4: Resulting performance metrics of the six experiments for both MCP methods
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Several things could be observed from Table 8.4 and the figures in this section. The
figures show the short-term data distribution of met mast 2 that was used to establish the
linear models in Tables 8.2, 8.3 and the tables in Appendix G in orange. Next to that, two
predictions of the long-term data of LiDAR 1 are plotted as a line, as well as the actual long-
term data in blue. Firstly, both MCP methods seem to be capable of predicting the mean of
the long-term distribution with sufficient accuracy. For both methods and all experiments,
the value of the normalized mean 𝜇norm is close to 1. The results are slightly better for the
variance ratio method (VR), with values for 𝜇norm between 0.98 and 1.02. The values for the
linear regression method (LR) show a bit wider range around 1. At first glance, no differences
in results between the experiments with data lengths of 3 and 6 months can be observed for
this performance metric.

Figure 8.4: Prediction via both MCP algorithms for experiment 4

Next to that, patterns can be observed in the second performance metric too. On one
hand, the LR MCP method consequently underestimates the standard deviation 𝜎, leading
to a 𝜎norm far below the target value of 1. Values in the range of 0.4 < 𝜎norm < 0.6 can be
observed for the six executed experiments. This underestimation is inherent to the linear
regression MCP method according to earlier research like [115]. Here is stated that this
method tends to suffer from so-called mode reinforcement, which means that the prediction
overestimates the distribution at the place of the mode in short-term distribution. This is
exactly what can be observed in e.g. Figures 8.3 and 8.4. The mode is indicated by the
highest orange histogram bin and falls below the top of the yellow graph. It can also be
seen that the LR prediction distribution is much narrower than the actual distribution. The
above described phenomenon was also encountered by other research regarding the same
MCP methods applied to wind speed 𝑈 [121], where mode reinforcement was also perceived.
In this analysis, the mode reinforcement is even bigger than expected, given the high peaks
in Figures H.1, H.2 and H.3. On the other hand, the VR method suffers from a consistent
overestimation of standard deviation 𝜎. This leads to 𝜎፧፨፫፦ values higher than 1. In contrast
to the LR method, the values are not so far from the target value, since the values for all six
experiment fall in the range 1.2 - 1.4. In the figures in this section, it can be seen that the
distribution predicted by the VR method is often close to the actual distribution.
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Figure 8.5: Prediction via both MCP algorithms for experiment 5

Furthermore, both predictions are in each experiment judged by how their artificial distri-
bution matches with the actual long-term distribution via the normalized chi-squared statis-
tic 𝜒ኼnorm. With a significance level of 0.05 or 5%, a threshold is set. This significance level is
the probability of wrongly claiming that there is no difference between the observed (the MCP
prediction) and expected (actual long-term distribution of the target site) values in the data,
when there actually is a difference between both. Significance levels much higher than 0.05
indicate too big differences between both distributions. As already could have been thought
of by observing the graphs in this section, the LR method fails to accurately predict the real
long-term distribution of the target site. To be precise, it is way off. This is also evident
from the results in Table 8.4, where the values for 𝜒ኼnorm from the LR method are very high.
They range from 0.6 to 0.8, which means the predicted distribution is nowhere near like the
actual distribution. There is again no clear distinction visible between the first four and the
last two experiment, which indicates that the accuracy of the prediction does not prove to be
dependant of the time frame length of the short-term data in a certain experiment. The above
was expected since the unusual values for 𝛼 and 𝛽 in the correlations established by the LR
method and the low 𝑅ኼ values, indicating that the found linear relationships are relatively
weak.

For the VR method however, the results are significantly better. Again, it can be observed
in Figures 8.3, 8.4, 8.5, H.1, H.2 and H.3 that the purple graph is often quite close to the
real long-term distribution indicated by the blue histograms. The fourth and fifth experiment
show a value for 𝜒ኼnorm lower than the discussed significance level of 0.05 and the results of
the prediction for these experiment can therefore be considered statistically significant. The
other four experiment show 𝜒ኼnorm values between 0.06 and 0.09. This would strictly mean
that the results of these experiments can not be accepted as statistically significant. It is
however promising that the values approach the significance level of 0.05 to a quite close
extent. It can be observed that the VR method also slightly suffers from the earlier explained
mode reinforcement.
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8.3. Discussion and conclusion
This chapter comprises of an analysis on the application of widely used Measure Correlate
Predict (MCP) algorithms or methods on turbulence intensity time series data. Two operable
and possibly useful methods were chosen: the linear regression (LR) method and the vari-
ance ratio method (VR). The application of MCP is prompted by the observed intra-annual
variability of 𝑇𝐼, which is elaborated on in Chapter 7 and the potential advantages of short
and flexible measurement campaigns by means of LiDAR. A reference and target site were
identified, namely the measurements from the met mast at location 2 and those of the LiDAR
at location 1, respectively. Next to that, six experiments are constructed: four experiments
each including a quarter of the year 2019 as short-term data and two including both halves of
2019 as short-term data. Furthermore, three performance metrics were introduced, namely
the normalized mean 𝜇norm, the normalized standard deviation 𝜎norm and the normalized chi-
squared statistic 𝜒ኼnorm. Next to these, the resulting distributions are visually examined.

Several conclusions can be drawn from results of the analysis in this chapter. Firstly, the
LR MCP method seems not to be suitable for predicting long-term 𝑇𝐼 distributions based
on linear models obtained from correlating short-term data from reference and target site.
After obtaining linear models with often odd values for slope parameter 𝛼 and offset 𝛽 and
coefficient of determination 𝑅ኼ values that can be considered as relatively low, it was already
suspected that the LR method would not be suitable to apply on 𝑇𝐼 data. A graphical repre-
sentation of the correlation step is shown in Figures G.1 and G.2 in Appendix G, in where the
linear models obtained via both MCP methods are presented for two different wind direction
sectors. The suspected unsuitability of the LR method is confirmed by the final results in
the prediction step. The prediction of the mean of the distribution by this method was not
bad, but the resulting values for 𝜇norm were already not precise enough throughout the six
experiments. It could be seen that the second performance metric, 𝜎norm, performed even
worse. The linear regression method heavily underestimates the standard deviation of the
long-term distribution compared to the actual long-term distribution, resulting in unaccept-
able low values for 𝜎norm. It has been observed that for all experiments, this MCP method
suffers from so-called mode reinforcement. This is a known drawback from this method and
applying this method on 𝑇𝐼 data even worsened this phenomenon. It results in extreme peaks
in the predicted distribution above the mode (the highest histogram bin) of the used short-
term distribution. Keeping the above in mind and looking into the figures in Subsection 8.2.3
and Appendix H, it comes as no surprise that the results from the LR method for the last
performance metric are disappointing. The resulting values for 𝜒ኼnorm confirm the failure of
the LR method to predict the long-term 𝑇𝐼 distribution on the basis of the found correlations
between short-term data from reference and target site.

Next to that, the variance ratio method (VR) was included in the analysis. The VR MCP
method is brought by other research as an improvement of the LR method when applied to
average wind speed time series data. Focusing on 𝑇𝐼 data here, the VR shows reasonable
results too, which are much more satisfying than the results obtained with the LR method.
Firstly, it is even better in predicting the mean of the actual long-term 𝑇𝐼 distribution than
the LR method is. It is not more than 2% off for each experiment. Although the VR method is
better in predicting the standard deviation, the resulting values for 𝜎norm are not as close to 1
as desired. On average, a normalized standard deviation of around 1.25 is found throughout
the experiments, which indicates a consistent overestimation over the standard deviation.
It is seen that for the application of MCP on 𝑈, the VR method often fairly well predicts the
standard deviation, but is not as spot on as targeted. This is also the case in this analysis.

To continue to the last and possibly most important performance metric, the normalized
chi-squared statistic 𝜒ኼnorm shows satisfying but not the best results. For experiment 4 and
5, the resulting value is just under the usual significance level of 0.05. However, for the
other experiments the value for the chi-squared statistic exceeds this statistical threshold.
To conclude, the results for prediction via the variance ratio method are not unsatisfactory.
Nevertheless, the overestimation of 𝜎 and the varying results in the examination of the ob-
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tained distributions via the chi-squared goodness of fit test leave room for optimization of the
use of this MCP method on 𝑇𝐼 data.

Thirdly, another interesting notion emerged from this analysis. The experiments are sub-
divided in groups with a short-term data length of 3 (experiments 1, 2, 3 and 4) and 6 (ex-
periments 4 and 5) consecutive months. One might expect better results for all three perfor-
mance metrics in experiments 5 and 6, but this is actually not the case. All experiments have
comparable results; there is no distinction visible between both groups of experiments. It is
suspected that the shape of the short-term distributions is of more influence on the obtained
linear models and therefore final predictions than the time series length of the short-term
data sets.

Lastly, some reflection on the analysis in this chapter is appropriate. It can be noted that
the long-term data for target and reference site has a length of only 1 year, where ideally
longer periods are used in MCP. However, the goal of this analysis was mainly to study the
prediction power of certain MCP methods on 𝑇𝐼 data and not to arrive at the most precise
long-term turbulence intensity distribution at the location concerned. Next to this, some im-
provements on the executed analysis can be identified. More years and seasons of the same
location could be included and other locations could be considered to draw more firm con-
clusions. Furthermore, one could opt for an increase in wind direction sectors. The choice
for eight sectors is a trade-off between precision and enough data per wind direction sector
and can be topic of discussion. Finally, turbulence intensity level differentiated linear models
could be a possible addition. Here, different linear models are obtained not only per wind
direction sector, but also per turbulence level inside a certain wind direction bin. One could
e.g. distinguish low, medium and high turbulence ranges to improve the accuracy of the
MCP prediction. Additionally, the opportunity exists to make subdivisions based on wind
speed 𝑈, the parameter that is coupled to every 𝑇𝐼 value.
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Conclusion and discussion

In this research, attempts were made to address common obstacles that can be in the way
of further implementation and acceptation of LiDAR in wind site assessment, with a focus
on the turbulence parameter turbulence intensity 𝑇𝐼. Firstly, a data analysis approach was
taken to evaluate the measurement differences between met masts and continuous wave
ZX300 LiDARs. Both techniques use different measurement principles, as elaborated on in
Subsection 2.2.2, which can cause biases between both. Two locations in wind farm ”Wind-
plan Blauw” were used for this comparison. Secondly, a sensitivity analysis was performed
on the influences of turbulence intensity on the fatigue lifetime damage of a representative
onshore wind turbine. The order of magnitude of the biases in 𝑇𝐼 found in the LiDAR met
mast comparison were used as an input for the simulations conducted with the help of three
NREL developed tools. Thirdly, the intra-annual variability of 𝑇𝐼 was examined and found
and used as driver for a Measure Correlate Predict study, focusing on 𝑇𝐼 data instead of or-
dinary 𝑈 data. This direction is prompted by the inherent flexibility of LiDAR devices. These
could yield financial benefits by conducting short measurement campaigns by means of Li-
DAR, ultimately totally replacing the current standard of erecting increasingly higher en more
expensive met masts. In relation to this, extrapolation of short-term 𝑇𝐼 data via MCP should
be and was examined.

The LiDAR met mast comparison was subdivided in a basic analysis and main analysis,
the latter specifically addressing 𝑇𝐼. In the first, several parameters regarding measuring
wind characteristics by means of LiDAR were treated. To start, it was found that the data
availability of both LiDARs was good, i.e. around 98-99%. However, the data availability
declines with increasing height, something met masts do not suffer from. Next to this, the
horizontal 10-minute averaged wind speed 𝑈 and standard deviation 𝜎u were assessed, as
building blocks of turbulence intensity. For 𝑈, the deviation in average is negligible for both
LiDAR met mast pairs. Also, OLS linear regression shows close to excellent results with 𝑅ኼ
values between 0.98 and 0.99. Together, this confirms the hypothesis that LiDAR is perfectly
suitable for measuring 10-minute averaged wind speed.

On the flip side, the biases found for standard deviation 𝜎u are higher. Small, but not
insignificant differences were found here, which could cause deviating 𝑇𝐼 values later on.
Thirdly, both Weibull parameters were estimated via a least squares fit for both LiDAR met
mast pairs. It came out that LiDAR measured wind speed data is perfectly suitable for the
determination of the Weibull distribution. Lastly, the wind direction of LiDAR and met mast
was compared visually. Both pairs showed good agreement in this at several heights. The
most noticeable observation was a 180° shift throughout the LiDAR measurements. This
happens more often according to other literature and this data should be and is filtered.

97
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Concerning 𝑇𝐼, several conclusions can be drawn too. LiDAR seems to consistently over-
estimate turbulence intensity; the 𝜇TI is significantly higher for LiDAR measurements from
all height compared to the accompanying met masts. This bias also increases with height.
With the help of OLS linear regression, it was found that filtering data with a threshold 𝑈 >
3 m/s make a considerable difference in results for 𝛼, 𝛽 and 𝑅ኼ. The overall overestimation
of 𝑇𝐼 is confirmed by this analysis and tells us that this mainly happens in the low wind
speed region. Next to this, the bias between both sources was found to be higher for wind
coming from the surrounding land for LiDAR 1 and met mast 1, compared to wind coming
from the nearby lake. The origin of the inaccuracy of LiDAR measured 𝑇𝐼 was found not to be
solely caused by 𝑈 and 𝜎u. Where the first shows almost perfect agreement, the latter factor
shows a consistent overestimation of 2 - 5% for all heights and both pairs. However, since
the differences in 𝑇𝐼 are bigger and cannot entirely be attributed to the 𝜎u biases, the internal
LiDAR correction factor 𝐶 comes into play. Observing the available data, it is concluded that
the definition of this factor is suboptimal. Therefore, it is recommended that this factor will
be a function of height, which it now is not above 90 m. The current course of 𝐶 is depicted
in Figure 5.14, as well a possible alteration. A simple measure on one hand, but one that
needs more verification and adjustment on the other hand.

Furthermore, a proposition was made for the use of transience 𝜏m in measuring turbulence.
Replacing the one-point statistic 𝜎u with a two-point statistic that accounts more for variety
within a 10 minute interval possibly gives a better representative of turbulent structures.
Since LiDAR is struggling with accurately measuring 𝜎u and the use of 𝜏m does not include
difficult calculations, it is worth to further investigate the possibilities of transience, e.g. by
means of a case study such as in Appendix C.

Different levels of 𝑇𝐼 were used as an input for simulation in TurbSim, FAST and MLife to
arrive at fatigue lifetime damage for the representative 5 MW NREL wind turbine, focusing
on tower and blades. Firstly, for the turbine tower the stresses concentrate at the tower
base. It was also found that choosing the right Wöhler coefficient is of much larger influence
than the level of 𝑇𝐼. Most importantly, it was found that the fatigue lifetime damage due to
stresses from side-to-side bending moments is smaller than that due to stresses from fore-aft
bending moments. But the first is much more sensitive for 𝑇𝐼 increments than the latter,
over 80% versus around 10% respectively. Secondly, for the turbine blades the stresses are
even orders of magnitude higher towards the blade root. On the contrary of the tower, the
fatigue damages due to stresses from in-plane and out-of-plane bending moments are of the
same order and also very low. It was found that the fatigue damage due to stresses from in-
plane/edgewise bending moments only increase with a few percents per 𝑇𝐼 increment, where
the fatigue damage due to stresses from out-of-plane/flapwise bending moments is way more
sensitive to turbulence. Here, 40% more damage is observed per 𝑇𝐼 increment.

The suspected intra-annual variability of 𝑇𝐼 at both locations of interest was confirmed by
analyzing year-long LiDAR measured 𝑇𝐼 data. The yearly distribution of 𝜇TI seems to follow
a bell-shaped curve, with the top around June. Next to this, the monthly 𝑇𝐼 distributions
do differ significantly from the yearly ones. During summer months, the monthly 𝑇𝐼 distri-
bution is shifted to the right and in winter months vice versa. Somewhat surprisingly, the
origin of these patterns does not lie in a standard deviation 𝜎u varying over the year, since
this parameter does not really show a seasonal pattern. However, the average wind speed 𝑈
does. This opens the possibility to assess the usability of MCP on 𝑇𝐼 data, what is done after
this.

Six experiments were constructed in this MCP study, each for every quarter and half-year
of 2019, forming the short-term data set of the whole. Each experiment further includes
a subdivision per wind direction sector of 45° each. In addition, the linear regression (LR)
and variance ratio (VR) MCP method were examined. The LiDAR at location 1 in wind farm
”Windplan Blauw” is the target site here, where the met mast at location 2 serves as refer-
ence site. It was found that the LR method is completely unsuitable for the intended purpose.
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The obtained linear models are weak, it performs moderate to poor on the three performance
metrics 𝜇norm, 𝜎norm and 𝜒ኼnorm, indicating the prediction based on this method deviates enor-
mously from the actual long-term data. It is therefore discouraged to apply the LR method
on (short-term) 𝑇𝐼 data.

On the other hand, the VR method performed fair to good on all three performance met-
rics, something which is confirmed by visual examination of the predicted distribution. This
was already suspected after obtaining the linear models for both methods, since the slope
parameters 𝛼 and offsets 𝛽 from the VR method seemed to make more sense than those from
the LR method. Next to this, the LR method suffered from poor 𝑅ኼ values accompanying
the linear regression, something which does not play a role in the VR method. Also for the
VR method, there is still some room for improvement. This analysis could be redone with
longer data sets and at locations with different circumstances. Next to this, more wind di-
rection sectors and introducing several turbulence and/or wind speed 𝑈 levels inside each
wind direction bin could possibly enhance the results of the VR MCP method on 𝑇𝐼 data.





A
Application of LR and VR MCP method

on data sets with low coefficient of
determination

The below example of the application of both LR and VR Measure Correlate Predict methods
on data with different values for coefficient of determination 𝑅ኼ attempts to clarify the some-
times big differences between obtained linear models from both methods. For this example,
two different data sets are randomly generated. In the first data set, a clear relationship is
visible in the point cloud in Figure A.1. This data set would yield a 𝑅ኼ value close to 1. It can
be seen that both MCP methods result in a comparable linear model, since the yellow and
red line are of similar fashion.

Figure A.1: Data set with high ፑᎴ in linear regression
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102 A. Application of LR and VR MCP method on data sets with low coefficient of determination

On the contrary, the point cloud in Figure A.2 shows far less relation between reference
and target site. This implies a relatively low value for 𝑅ኼ. It can be seen that the difference
between both obtained linear models is big. The latter is something that can happen when
both methods are applied to data sets that are somewhat alike to the one in Figure A.2, which
happens in Chapter 8.

Figure A.2: Data set with low ፑᎴ in linear regression



B
Least-squares fit Weibull parameters

The wind speed distribution at a certain location is expected to be Weibull distributed, an
assumption that is widely used in wind energy science and is adopted here too. This gives
the opportunity to determine the distribution of the local wind speed via various algorithms
[111]. Three of the most commonly used algorithms are the European Wind Atlas Method,
the Maximum Likelihood Method and the Least-squares Fit Method [53]. For being easy to
implement and reliable, the latter was adopted in this research and is elaborated on below.

The least-squares fit method to estimate the Weibull parameters works via the principle of
altering the cumulative probability distribution function from an exponential function to a
linear function. Since this is done by taking the logarithmic twice, the method is also known
as the log-log method. The starting point to find the Weibull shape parameter 𝑘 and Weibull
scale parameter 𝑎 is the cumulative probability distribution function in Equation B.1. This
formula is related to the Weibull probability density function in Equation 5.1.

𝐹(𝑈, 𝑘, 𝑎) = 1 − 𝑒ዅ
ᑌ
ᑒ
ᑜ

(B.1)

By isolating the 𝑒 and taking the logarithmic of the whole function twice, one ends up
with a new formula, shown in Equation B.2. This formula has the form of a linear equation
𝑦 = 𝑎𝑥 + 𝑏, as also discussed in Subsection 2.3.2. When the measured wind speeds 𝑈 are
plotted in the obtained form of Equation B.2 and a linear fit is taken as elaborated on in the
same Subsection, one is able to determine both Weibull parameters.

ln(−ln(1 − 𝐹(𝑈, 𝑘, 𝑎))) = −𝑘ln(𝑈) + 𝑘ln(𝑎) (B.2)
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C
An example case study on the versatility

of transience
The findings on the inherent inaccuracy of turbulence intensity 𝑇𝐼 measured by LiDAR com-
pared to met masts in Chapter 5 did not only bring up ideas to handle or mitigate this
inaccuracy of 𝑇𝐼 from LiDAR itself by for instance an alteration of the internal correction
factor 𝐶, but also induced a discussion whether 𝑇𝐼 is the best parameter to represent the
short-term variabilities in the horizontal wind speed 𝑈 after all. A possible layout for a case
study is proposed to give handles for further research to confirm the usability of transience
and emphasize the possible advantages of using transience 𝜏m over 𝜎u. The argumentation
for conducting such case study is given in Section C.1, after which the setup of the case
study is treated in Section C.2.

C.1. Argumentation for and setup of case study
The idea for the proposition of the use of transience 𝜏m over standard deviation 𝜎u originated
from the inherent inability of LiDAR to achieve the same accuracy in measuring 𝜎u than met
masts. This was researched in Chapter 5 and confirmed that the consistent overestimation
of 𝜎u was one of the reasons for the overestimation of common turbulence indicator 𝑇𝐼 by
LiDAR. The combination of the matter in Chapter 5 and the determination of the sensitivity
of fatigue lifetime damage of Dutch modern multi-megawatt turbine for 𝑇𝐼 by means of rain
flow counting in Chapter 6, led to the question whether it is more logical to involve the mean
wind speed 𝜇 in the representation of turbulence in the wind, in favour of neighboring data
points. The hypothesis stated in this chapter that transience might be a better representative
of turbulent variability in the wind than standard deviation leans on a now known set of three
formulas in Equation C.1. The formula for 𝜎u is part of that for 𝑇𝐼. The formula for 𝜏m is
quite similar to that of 𝜎u, but contains an important difference: data points are paired to
their neighboring predecessor and not to the mean 𝜇 of the 10 minute interval.

𝑇𝐼 = 𝜎፮
𝑈

𝜎፮ = √
1
𝑁

ፍ

∑
።዆ኻ
(𝑥። − 𝜇)ኼ 𝜏፦ = √

1
𝑁

ፍ

∑
።዆ኻ
(𝑥። − 𝑥።ዄ፦)ኼ (C.1)
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106 C. An example case study on the versatility of transience

The first reason to favour 𝜏m over 𝜎u as a representative for turbulence or variability in
the wind speed is that it is believed that transience can distinguish various situations of
turbulence from each other, where standard deviation is not able to do this. In other words,
10 minute intervals with the same value of 𝜎u are suspected to have different values of 𝜏m.
This would make transience a better indicator for variability in the horizontal wind speed 𝑈
than the standard deviation and therefore seriously question the use of 𝑇𝐼. One could think
of multiple sets of 10 minute intervals with 600 1 Hz wind speed 𝑈 data points that have
the same mean 𝑈 and standard deviation 𝜎u, but are otherwise very different. These sets
would for that reason end up with the same 𝑇𝐼 value, which should be a good indicator for
the variability of the wind speed. But in reality it might not be the best option, since these
sets can differ significantly in variability and thereby turbulence.

Figure C.1: The principle of rainflow-counting used on stress cycles for fatigue determination [35]

The second reason favour 𝜏m over 𝜎u as a turbulence indicator is related to the concept
of rainflow-counting. This algorithm is used in fatigue damage determination and reduces
spectra of stress cycles into equivalent sets of stress reversals. It is mentioned in Chapter 6
too and can extract smaller interruption cycles from a sequence to model the material mem-
ory effect [114]. It is based on a simplification of reality, but since is allows the calculation of
the fatigue lifetime damage for each rainflow cycle by means of the widely accepted Palmgren-
Miner’s rule of Equation 6.5, it is the most used approach for the determination of material
fatigue from stress cycles [96]. This rule is elaborated on in Section 6.1.3. Figure C.1 visu-
alises the concept of rainflow-counting. A spectrum of stresses over time is seen at the top
of the figure. Below, the stresses are subdivided into equivalent sets of stress reversals.
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The rainflow-counting algorithm is based on adjacent stress values and influenced by
variation of these stresses. These stresses vary with changing loads, which in their turn
vary with wind speed 𝑈 via the formula for thrust 𝑇R from Equation 2.16. This highlights
the relationship between the determination of fatigue via rain-flow counting and variations
in the wind speed, also called turbulence. Because of the use of adjacent data points for 𝜏m,
this parameter is suspected to be more suitable for establishing clear relationships between
variability of the wind and fatigue damage or damage equivalent loads of wind turbine parts
than 𝜎u.

An additional reason for this case study relates to the following. 𝑇𝐼 values between 0.1 and
0.13 refer to a neutral atmosphere, lower values to a stable atmosphere and higher values
to an unstable atmosphere, according to Table 2.1. These stability classes therefore also
correlate to lower, average and higher variability of the wind. This cannot be translated di-
rectly to similar sets of values for 𝜎u, since 𝑈 is also involved in the formula for 𝑇𝐼. However,
low variability in the wind is considered to be represented by 𝜎u values ranging from 0.1 to
0.5 m/s. Average variability ranges from approximately 0.5 to 1 m/s and higher values of
𝜎u indicate high variability [62]. Although it is sure that transience 𝜏m will increase as a
function of neighboring (turbulent) variability, it is not known how the spectrum of values
should be interpreted. The proposed case study can help to establish an interpretation of a
new spectrum of turbulent variability based on transience.

C.2. Setup case study
An example case study on transience is given here, in which several 10 minute intervals are
examined. Normally, the precise content thereof is not given that much attention, that often
goes out to the 10 minute averaged statistics of the measurement data. However, in this
case study a closer look can be taken at the 1 Hz measurements of which the 10 minute
averaged statistics are built from. The suspicion exists of transience 𝜏m being a more precise
and better representative of turbulent structures in the wind than 𝜎u. This hypothesis can be
tested with this case study. For this purpose, several 10 minute intervals with the same value
for 𝜎u have to be chosen to evaluate these intervals for transience 𝜏m. 10 minute intervals
with varying levels of 10 minute averaged standard deviation 𝜎u should be included too in
the case study, as well as intervals with different levels of horizontal wind speed 𝑈. These
distinctions should be made to assess the usability of transience for different levels of 𝜎u
and 𝑈 and thereby provide a complete picture of the use of transience in the usual practices
of wind site assessment. Table C.1 gives an overview of an example selection of 10 minute
intervals and their corresponding values of 𝜎u and 𝑈.

# Timestamp interval Standard deviation 𝜎u Mean wind speed 𝑈
1 e.g. 11.30 - 11.40 @ 10-11-2019 0.60 7.0
2 - 0.60 7.0
3 - 0.60 12.0
4 - 0.60 12.0
5 - 1.00 9.0
6 - 1.00 9.0
7 - 1.00 14.0
8 - 1.00 14.0
9 - 1.80 8.0
10 - 1.80 8.0
11 - 1.80 16.0
12 - 1.80 16.0

Table C.1: Overview of an example selection of 10 minute intervals with their corresponding values for standard deviation and
mean horizontal wind speed over that interval





D
TurbSim input file

Figure D.1: Graphic of one of the used TurbSim input files
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E
FAST input file

Figure E.1: Graphic of one of the used FAST input files

111





F
Chi-squared test example

An example on the normalized chi-squared statistic is given here. Note that random numbers
are used. The data contains expected and observed values. In relation to the content of
this thesis, the expected data represents the data from the met masts and the observed data
represents the data of the LiDARs. The data is subdivided in five bins, which have nomeaning
here. In this thesis, these bins represent the groups of values for 𝑇𝐼 with a bin width of 0.01.
A histogram of the counted data is depicted in Figure F.1, showing that bin values between
160 and 240 for both expected and observed values. The total number of data points for
the expected data 𝑁ፄ and the observed data 𝑁ፎ is 970 and 934, respectively. A different
number of total data points in two time series spanning the same time period can in real life
be caused by missing data. This can happen with met masts or LiDARs for various causes,
as discussed in Chapter 5.

Figure F.1: Bin counts of expected and observed data points
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114 F. Chi-squared test example

Figure F.2: Probability of expected and observed data points

When the bin counts from Figure F.1 are converted to probabilities, the results is as in
Figure F.2. For both expected and observed values, this is simply done by dividing the bin
count of all five bins by 𝑁ፄ and 𝑁ፎ, respectively. One now has both fractions that appear in
Equation 8.4 and can determine the value of 𝜒ኼnorm for each bin. The last step to arrive at the
final normalized chi-squared statistic is the addition of the 𝜒ኼnorm value for each bin 𝑀, in this
case 𝑀 = 5. This is shown in Equation F.1 and adds up to a safe and desired value of 0.01,
meeting the commonly used threshold of 0.05.

𝜒ኼnorm =
ፌ

∑
።዆ኻ

(𝑂።/𝑁ፎ − 𝐸።/𝑁ፄ)ኼ

𝐸።/𝑁ፄ
= 0.0017 + 0.0005 + 0.0012 + 0.0006 + 0.0024 = 0.01 (F.1)



G
Overview intermediate results for

correlation step in MCP

Sector 𝑦 = 𝛼𝑥 + 𝛽 𝑦 = 𝜇y − ᎟y
᎟x 𝜇x +

᎟y
᎟x 𝑥 Data

# Linear regression method Variance ratio method points
1 𝑦 = 0.14𝑥 + 0.10 𝑦 = 0.55𝑥 + 0.07 534
2 𝑦 = 0.30𝑥 + 0.08 𝑦 = 1.05𝑥 + 0.02 466
3 𝑦 = 0.37𝑥 + 0.06 𝑦 = 1.06𝑥 + 0.02 684
4 𝑦 = 0.33𝑥 + 0.06 𝑦 = 0.94𝑥 + 0.01 1072
5 𝑦 = 0.40𝑥 + 0.07 𝑦 = 0.92𝑥 + 0.04 2250
6 𝑦 = 0.29𝑥 + 0.06 𝑦 = 0.91𝑥 + 0.01 2069
7 𝑦 = 0.23𝑥 + 0.05 𝑦 = 0.98𝑥 − 0.01 1721
8 𝑦 = 0.10𝑥 + 0.06 𝑦 = 0.53𝑥 + 0.01 1305

Total 10101

Table G.1: Intermediate results on correlation for both MCP methods for the first experiment: January - March

Sector 𝑦 = 𝛼𝑥 + 𝛽 𝑦 = 𝜇y − ᎟y
᎟x 𝜇x +

᎟y
᎟x 𝑥 Data

# Linear regression method Variance ratio method points
1 𝑦 = 0.36𝑥 + 0.08 𝑦 = 0.82𝑥 + 0.04 656
2 𝑦 = 0.58𝑥 + 0.04 𝑦 = 1.01𝑥 + 0.01 708
3 𝑦 = 0.71𝑥 + 0.03 𝑦 = 1.19𝑥 + 0.00 763
4 𝑦 = 0.47𝑥 + 0.05 𝑦 = 0.89𝑥 + 0.01 1030
5 𝑦 = 0.79𝑥 + 0.04 𝑦 = 1.50𝑥 − 0.01 3384
6 𝑦 = 0.28𝑥 + 0.08 𝑦 = 1.12𝑥 + 0.00 2581
7 𝑦 = 0.26𝑥 + 0.08 𝑦 = 0.87𝑥 + 0.02 1799
8 𝑦 = 0.20𝑥 + 0.09 𝑦 = 0.86𝑥 + 0.00 1707

Total 12628

Table G.2: Intermediate results on correlation for both MCP methods for the third experiment: July - September
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116 G. Overview intermediate results for correlation step in MCP

Sector 𝑦 = 𝛼𝑥 + 𝛽 𝑦 = 𝜇y − ᎟y
᎟x 𝜇x +

᎟y
᎟x 𝑥 Data

# Linear regression method Variance ratio method points
1 𝑦 = 0.64𝑥 + 0.07 𝑦 = 1.85𝑥 − 0.03 439
2 𝑦 = 0.79𝑥 + 0.03 𝑦 = 1.45𝑥 − 0.02 1113
3 𝑦 = 0.38𝑥 + 0.06 𝑦 = 1.08𝑥 + 0.02 1224
4 𝑦 = 0.56𝑥 + 0.04 𝑦 = 1.23𝑥 − 0.01 2436
5 𝑦 = 0.84𝑥 + 0.04 𝑦 = 1.50𝑥 − 0.01 4349
6 𝑦 = 0.28𝑥 + 0.06 𝑦 = 1.55𝑥 − 0.04 1531
7 𝑦 = 0.26𝑥 + 0.08 𝑦 = 1.37𝑥 − 0.05 1077
8 𝑦 = 0.17𝑥 + 0.07 𝑦 = 0.81𝑥 + 0.00 557

Total 12726

Table G.3: Intermediate results on correlation for both MCP methods for the fourth experiment: October - December

Sector 𝑦 = 𝛼𝑥 + 𝛽 𝑦 = 𝜇y − ᎟y
᎟x 𝜇x +

᎟y
᎟x 𝑥 Data

# Linear regression method Variance ratio method points
1 𝑦 = 0.31𝑥 + 0.09 𝑦 = 0.89𝑥 + 0.04 2101
2 𝑦 = 0.60𝑥 + 0.05 𝑦 = 1.27𝑥 − 0.01 3319
3 𝑦 = 0.53𝑥 + 0.05 𝑦 = 1.09𝑥 + 0.01 1815
4 𝑦 = 0.52𝑥 + 0.05 𝑦 = 1.04𝑥 + 0.00 2105
5 𝑦 = 0.48𝑥 + 0.07 𝑦 = 1.00𝑥 + 0.03 3857
6 𝑦 = 0.33𝑥 + 0.06 𝑦 = 0.91𝑥 + 0.01 3785
7 𝑦 = 0.24𝑥 + 0.07 𝑦 = 0.91𝑥 + 0.00 2906
8 𝑦 = 0.20𝑥 + 0.07 𝑦 = 0.84𝑥 − 0.01 3150

Total 23038

Table G.4: Intermediate results on correlation for both MCP methods for the fifth experiment: January - July

Figure G.1: Correlation via both MCP algorithms for experiment 2 - wind direction sector 3
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Figure G.2: Correlation via both MCP algorithms for experiment 2 - wind direction sector 6





H
Overview final results for prediction step

in MCP

Figure H.1: Prediction via both MCP algorithms for experiment 2
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120 H. Overview final results for prediction step in MCP

Figure H.2: Prediction via both MCP algorithms for experiment 3

Figure H.3: Prediction via both MCP algorithms for experiment 6
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