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Phase retrieval from overexposed PSF: a projection-based
approach

Oleg Soloviev®”, Jacques Noom?, Nguyen Hieu Thao?, Gleb Vdovin®", and Michel Verhaegen®

*DCSC, TU Delft,Mekelweg 2, 2624 CD Delft, the Netherlands
PFlexible Optical BV, Polakweg 10-11, 2288 GG Rijswijk, the Netherlands

ABSTRACT

We investigate the general adjustment of projection-based phase retrieval algorithms for use with saturated data.
In the phase retrieval problem, model fidelity of experimental data containing a non-zero background level, fixed
pattern noise, or overexposure, often presents a serious obstacle for standard algorithms. Recently, it was shown
that overexposure can help to increase the signal-to-noise ratio in Al applications. We present our first results
in exploring this direction in the phase retrieval problem, using as an example the Gerchberg-Saxton algorithm
with simulated data. The proposed method can find application in microscopy, characterisation of precise optical
instruments, and machine vision applications of Industry4.0.

Keywords: phase retrieval, projection-based methods, overexposure

1. INTRODUCTION

In optical applications, phase retrieval (PR) is a general technique to obtain the pupil phase aberration of a
system from its PSF p:

find ¢ s.t. |]—'aei¢"2 =p, (1)

where a and p denote correspondingly the aperture transmission and the normalised light intensity in the focal
plane, and F denotes the (2-dimensional) Fourier transform. PR finds use in the situations where introducing
of a dedicated wavefront sensor is difficult or unwanted. A well known example is the detection of the mirror
defect of the Hubble space telescope,’ but it can also be applied for instance in characterisation of the objective
aberration in semiconductor image-based quality tools.? Characterisation (and correction) of such aberrations
is necessary to increase the inspection tool throughput required in Industry 4.0.%4

A big class of PR methods is based on the projections.® In this approach, the phase retrieval problem is
considered as a feasibility problem, that is finding a point x in the intersection of two sets A and B if such
intersection is not empty, or point x of A closest to B in some sense, if such intersection does not exist:

r€B, ANB#0,

find x € A,s.t. 2
new i {x:argminzeAd(a:,B), AN B =10, @

for some distance metric d. In optical PR problem, variable  denotes a complex-valued two-dimensional function
z : R? — C, and the sets A and B are defined as

A={lz| = a}, B={|Fa’ =p} = {|Fz| = Vp}, (3)

where F denotes the (two-dimensional) Fourier transform. A projection-based method proceeds by iteratively
updating estimates of z denoted as x* using the projections of the previous estimates on sets A and B (more
sophisticated combinations of the projections can provide better results®). The oldest method in the class—the
Gerchberg-Saxton algorithm”—is just alternative projections on sets defined in (3):

D f;r gl g2l — I]’Br 2 keN. (4)
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In practice, the model defined by Eq. (1) does not hold for actual measurements of p. First of all, z, a, and
p are substituted by sampled functions and are represented as arrays z € CM*N and a,p € RM*N and F
denotes the two-dimensional DFT. Then combination of Equations (2) and (3) is assumed to be equivalent to
(1). Besides the finite sampled representation, the model discrepancy may include quantization noise due to the
final bit resolution of the imager, additive background signal, Gaussian noise of the detector, photon shot noise,
and non-linear distortions of the signal like clipping which occurs as pixel saturation. Different techniques exist
to mitigate the effects caused by the model discrepancy, which make the PR problem infeasible.® In this work,
we focus on the saturation effect.

The saturation, or overexposure, might appear in astronomical applications® or in industrial adaptive optics
application of laser beam quality optimisation.'® In the latter, the aberration is corrected iteratively, the beam
becomes more focused, and thus the peak intensity grows. The problem is usually solved by auto-exposure, that
is adjusting the shutter time iteratively and discarding the saturated frames.

However, a recent work!! has shown that overexposure can help deep-learning based PR methods and thus
can be intentionally introduced as a preconditioner for more accurate phase estimation. This can be explained
that although some information is lost in the overexposured areas, the SNR is improved in low-intensity regions.
In addition, non-linear signal distortion is usually not a problem for the convolutional neural networks.

In this manuscript, we analyse the applicability of the projection-based methods to the single-image overex-
posured input data and show on example of numerical simulations that, with a corresponding redefinition of set
B from Eq. (3), the overexposure can be used as a preconditioner with all projection-based PR methods.

2. DESCRIPTION OF A NUMERICAL SIMULATION

The numerical simulation consists of two parts: realistic simulation of a PSF measured by an optical system
with certain physical parameters (forward model) and solving the inverse problem of finding the phase.

2.1 Forward model

Registered with digital camera PSF represents finite, sampled, clipped quantized noisy measurements of the
intensity of the field in the focal plane. For the numerical simulations of PSF, we have used standard “padded
DFT”'2 method to compute the noiseless field in the focal plane sampled on a large array, with the padding and
sampling parameters defined by the numerical aperture of the lens, the light wavelength, and pixel size of the
camera. We have used one of the two test phases shown in Fig. 1. We normalised this “ideal” sampled PSF by
its maximum to unit value. Using a mixture of mathematical and pseudocode notation, the array p; representing
“ideal” PSF is computed as

pi = rescale(‘]—'aeiqﬁ 2), a, ¢ € RMmaxXNmax (5)

with rescale(A4) = A/maximum(A).

From this array we sequentially:

e cropped a smaller square array representing the region of interest (ROI) of the camera,

multiplicatively scaled to imitate different exposure time,

added Gaussian noise for the camera noise (the Poisson noise was not considered in this work),

clipped to 1 to represent the saturation,

and quantized the values according to the camera bit resolution.

Thus in pseudocode:
ps = quantization(addgauss(crop(p;, M) * lsat, 0), lg), (6)

where quantization(4, ;) returns array A discretized to [, levels between 0 and 1, addgauss(A, o) returns array
A with added Gaussian noise of zero mean and standard deviation o, and crop(A, M) returns central M x M
part of array A.
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Figure 1. Two types of phases used in the simulations and the “ideal” PSFs p; obtained from them: (top) low-order

phase, (bottom) turbulent phase. The phases are shown wrapped, PSFs are shown in logarithmic scale for the values in
the range [272*,1].

Figure 2. Input PSF with noise level o = 2/256, saturation levels lsas = 0.95,4,16 (left to right), registered with 8-bit
quantisation, cropped to 256 pixels, for low-order (top row) and turbulent (bottom row) phases. Saturated PSF looses

information in the centre but reveals more information in the side lobes. The saturated pixels are marked as red. PSF
are shown in logarithmic scale in the range [27%,1].

We have fixed some imaging parameters corresponding to IDS camera UI-1540 (pixels size = 5.2 um, sensor
size 1280 x 1024, 8 bits per pixel) registering PSF formed by 17 lens with focal length 300 mm at 632 nm
wavelength. In addition, we have 4 changing parameters describing the PSF as summarised in Table 1. The
“ideal” PSF's p; were calculated for the whole area of the imaging sensor; they are shown together with the
phases used to produce them in Fig. 1. The saturated noisy PSFs were obtained as described above, several
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examples are shown in Fig. 2.

Table 1. Changing parameters for the PSF simulation

Parameter Values

Phase type “loworder”, “turbulent”, see Fig. 1
Noise level, o 0, 2/256, 4/256

Crop size, M 128, 256, 512
Saturation level, lgat 0.95, 2, 4, 8, 16

We see that the smoothness of the original phase affects the structure of the PSF and the effect of the
overexposure. Thus, in PSF obtained from smooth low-order phase, the saturation results in a larger relative
lost of data.

2.2 Inverse problem

The resulting array ps for ls,e <= 1 (no saturation) for small values of noise is close to the original PSF p defined
by Eq. (1) (up to some scaling factor), with arrays a and ¢ redefined to the crop size M x M, but not equal to
it (due to the nature of DFT, see reference 8 for details). For large enough crops we can however consider them
close and search for the solution of the sampled problem:

find ¢ € RM*M g ¢, |}'aei¢’2 X Ps, (7)

where M is the crop size, and F stands for the two-dimensional DFT. Note that both normalisation scaling
coefficient of the ideal PSF and saturation scaling s, are hidden here by replacing the equality to proportionality.

For lgat > 1, the clipping introduced in the forward model changes the corresponding inverse problem:
12
find ¢ € RM*M st. min{lgu ‘]—'aelﬂ , 1} o< ps for some lgat € R, lgap > 1. (8)
Note that here we cannot discard lg,; due to non-linearity of min{-, 1} function.

2.3 Solving unsaturated inverse problem with projection-based algorithms

To solve the inverse problem defined by Eq. (1), we recalculate the binary array representing the aperture
according to the crop size of the PSF. We define the input arrays a as this aperture and p; as the input PSF.
And we define b = /py, 2% = a. Then, we proceed with the Gerchberg-Saxton (GS) algorithm summarised as
follows:

2 = q - argx® Tl 22 = FUb - arg F(2?)), keN, 9)

where arg and multiplication are taken element-wise and F denotes two-dimensional DFT. The stopping cri-
teria for the algorithm are: exceeding the maximum number of iterations k& > kyax or reaching convergence
Hm2k+2 _ x2kH < €rol.

It is easy to see that the algorithm has the form of combined Egs. (3, 4). We can also see that if the

’ ’ . . ’
2k =1 _ 22kl is also small, the algorithm returns z = 2?*" such

convergence is achieved at some step 2k’ and Hx
that
|z| = a, |‘7::v|2 ~ b% = p,, (10)

that is a solution of Eq. (7).
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Phase rms error is 1.12e-01 Convergence of GS, initialized with zeros
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Figure 3. Example of input PSF (noiseless, quantised, unsaturated, crop size 128 pixels) and results of the GS algorithm
(eto1 = 1073, Emax = 5000 iterations): reconstructed PSF, reconstructed phase error, and the convergence plot for
different crop sizes.

2.4 Establishing baseline: Performance of GS on unsaturated data

To illustrate the GS algorithm performance and establish a baseline for the performance comparison, we have
run the GS algorithm on noiseless unsaturated data (note that cropping and quantisation still make the problem
infeasible). The results are shown in Fig. 3 (PSFs and phase error are shown for crop size of 128 pixles, other
crop values have similar results). We see typical for the alternating projections behaviour: after some initial
search for a point in A close enough to B, the solution converges at linear rate to some fixed point, which results
in an accurate representation of the PSF, but differs in phase slightly from the ground truth phase.

However, presence of even small noise can ruin the convergence (see Fig. 4, top row). The problem is usually
addressed by thresholding of the input PSF (Fig. 4, middle and bottom rows), but even in the best cases the
phase error increases. This can be explained that although higher level of threshold alleviates the noise influence,
it also removes important information contained in the side lobes of the PSF. One can see that the restored PSF
tries to satisfy the imposed constraint to have zero intensity in the thresholded region. On the other hand, lower
levels of threshold lead to noise print trough in the solution, especially visible in the higher frequencies, where
the original SNR is low.

2.5 Performance of GS on saturated PSF

As we have seen in Fig. 2, overexposured PSF increases SNR in high frequencies at expense of loosing information
in the saturated part (often corresponding to the lower frequencies). Direct application of the GS algorithm to
the saturated PSF does not provide a good solution, because the algorithm honestly tries to find the phase which
produces the saturated PSF, and not the actual PSF before clipping. As can be seen in Fig. 5, presence of the
saturated pixels increases the phase error even in the noiseless case, and increasing the saturation level results
in a bigger restoration error.

3. SATURATED PSF SET AND PROJECTION ON IT

For Iz, > 1, the inverse problem is given by Eq. (8), and clearly GS will not find the correct solution. To see
this, it is enough to understand that the ground truth—the point x given by the actual phase ¢—is not the fixed
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Phase rms error is 1.46e+00 Convergence of GS, initialized with zeros
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Figure 4. Example of thresholded noisy input PSF with threshold levels of 0, 0,30 (top to bottom) and results of the GS
algorithm with the same parameters as in Fig. 3. The convergence plots for low threshold levels demonstrate random
nature of the obtained results.

point of the algorithm (9). We need to replace the set B with some other set, for which the ground truth will
be the fixed point.

For this, let us look for a modified GS algorithm in which the iteration still keep the phase, but the amplitude
update rule is changed:
2 = q - arga? Tt g = o1 (h(|}'x2k|) carg Fa?), k€N, (11)
and let us try to define operator h(-) in form of projection on some set H:

h(g) =Pryg (12)

defined for all non-negative (sampled) functions g(z).
Following the forward model (8), consider the class H; of all functions, scaled clipped copy of which can be
represented by a given real non-negative function f(z),0 < f(z) < 1:
My ={h(z)| Is € Ry : min{h(z),s} =s- f(x)} (13)

The idea behind it that the amplitude of the “real PSF”  that is the Fourier transform of the ground truth,
belongs to this set defined by b = ,/p:
| Fac'®| € H, (14)
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Phase type turbulent, [, = 2.0, 0 = 0/256 phase rms error is 1.12e-01 Phase type turbulent, ,, = 16.0, 0 = 0/256 phase rms error is 6.66e-01
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Figure 5. PSFs and corresponding phase errors, restored with the GS algorithm from noiseless (¢ = 0) and noisy
saturated input. The input PSFs were thresholded at 3o.

and thus the projection on this set does not change it: Pryy, |F zg.| = |F 24| . Moreover, when updating the
absolute value of the optical field in the focal plane, we will use the valid data from the unsaturated part “as

7. just as GS does it, but in the saturated part, the projection may update the values or leave them “as is” if
they are larger than the saturation level. The problem is complicated by the fact that the saturation level is not
known, and we need to consider all possible values of it. See also Fig. 6 for an illustration.

Now let g(z) be an arbitrary non-negative real function. We want to find the projection of g on Hy. For
this, let us define by “mask” all points where function f is saturated, that is f = 1. Denote values of functions
f, g inside the mask as fs, gs. Denote by f,, g, the values of the functions in the unsaturated part, and let sg be
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Figure 6. Illustrative example of projection on the “Saturated PSF set”. Here f represents some clipped function (saturated
PSF), and g is projected on the set of all functions, which can be clipped at some level and give a scaled version of f:
3s : min{h(z),s} = s- f(x). In this example A is the closest in the least-squares sense to g of all such functions: if clipped
at § ~ 0.66, it has the same shape as f, and there is no closer to g function with such property.

the best scaling coefficient for these two vectors:

so = argmin||g.(z) — sfu(z)l|*. (15)

Now, the squared distance between g(z) and any function h(z) € Hy is given by sum of the squared norm in
the saturated and unsaturated parts:

d(h) = [lg(x) = h(@)[I* = [lgu(@) = hu(@)|* + llgs (@) — hs(@)]]*.
In the unsaturated part we have (by definition of sg, see Eq. (15))

1gu (@) = hu(@)|* = llgu() = sfu(@)|* = llgu(z) — sofu@)I[* +[I(s = s0) ful)][*. (16)

In the saturated part, function A may take any values greater than s, and thus we can chose such functions
h that h(z) = g(x) if g(z) > s, so the distance from g, to Hy is defined only by the points x where g(z) < s,

that is:
min [lg,(2) — h(@IP = 3 (9uli] - . (1)
i:gs[i]<s

Thus d(h) is calculated as sum of Eq. (16) and Eq. (17) and is completely characterised by value of saturation
parameter s, d(h) = r(s).

Function r(s) is continuous smooth piece-wise quadratic function, and to minimise it, we can analyse its
derivative ' (s) = 2(s — so)|| ful|®> + 23 0. 1i)<s (8 — 9sli]).

Without loss of generality, let gs be monotone, gs[i] < gs[j] & ¢ < j. Then 7/(s) is given a by linear
interpolation between values in g;[é], and

T/(QS[j]) = (gsls] — SO)Hquz + Z(QSU] — gsli])-

1<J

To find the root of such function is equivalent to find in the sorted sequence 7’'(gs[j]) index jo of the last
negative element and solve the linear equation r’(s) = 0 in the interval s € [gs[Jjo], gs[Jo + 1]]-
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L,=16.0,0=4/256,1=3 Phase rms error is 1.49e-01 Convergence of GSSat, initialized with zeros
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Figure 7. Performance of the proposed algorithm on saturated data for loworder (top) and turbulent (bottom) test phases.
Noisy saturated PSFs were thresholded at 30, examples of the input and restored PSFs and the phase error are shown
for saturation level lsas = 16 and noise level o = 4/256. Convergence plots are shown for changing levels of saturation.

The root § of this equation defines projection h = Pry;; as

() = {éf(:v) if f(z) <1, (unsaturated part, valid data), (18)

max{$,g(z)} if f(z) =1, (saturated part, invalid data).

Substituting this projection into Eq. (11), we obtain a modified GS algorithm (named here GSSat), able to
work with the saturated PSF as its input.

4. RESULTS

Providing to the GSSat the same noisy saturated PSFs as in Fig. 5, we were able to restore the phase with an
accuracy comparable with that of the standard GS method on the noiseless input (compare Fig. 7 and Fig. 3).
Note the convergence behaviour is again typical for a stable solution.

Figure 8 gives an overview of the GSSat performance depending on the saturation level. From it it is clear
that higher saturation levels indeed act as preconditioner and improve the accuracy of the retrieved phase.

5. DISCUSSION AND CONCLUSION

We have proposed and demonstrated on example of the Gerchberg-Saxton algorithm a modification of a general
projection-based phase retrieval method which allows to use a saturated PSF as its input. Due to increased
SNR in the side lobes of the overexposured PSF and the ability of the algorithm to reconstruct the lost data
in the saturated area, the algorithm retrieves the phase with the accuracy comparable to that of the standard
algorithm on a noiseless data. The algorithm can be used, for instance, in industrial applications, where it is
either difficult to obtain PSF without overexposure or with a good SNR.
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Figure 8. Overview of the performance of the GSSat on noisy thresholded saturated input for different levels of saturation
for loworder (top) and turbulent phases. All input PSF had noise level of o = 4/256, thresholded at 3¢, crop size M = 128.
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