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Abstract: Climate change raises serious concerns for policymakers that want to ensure the success
of long-term policies. To guarantee satisfactory decisions in the face of deep uncertainties, adaptive
policy pathways might be used. Adaptive policy pathways are designed to take actions according to
how the future will actually unfold. In adaptive pathways, a monitoring system collects the evidence
required for activating the next adaptive action. This monitoring system is made of signposts and
triggers. Signposts are indicators that track the performance of the pathway. When signposts reach
pre-specified trigger values, the next action on the pathway is implemented. The effectiveness of the
monitoring system is pivotal to the success of adaptive policy pathways, therefore the decision-makers
would like to have sufficient confidence about the future capacity to adapt on time. “On time” means
activating the next action on a pathway neither so early that it incurs unnecessary costs, nor so late
that it incurs avoidable damages. In this paper, we show how mapping the relations between triggers
and the probability of misclassification errors inform the level of confidence that a monitoring system
for adaptive policy pathways can provide. Specifically, we present the “trigger-probability” mapping
and the “trigger-consequences” mappings. The former mapping displays the interplay between
trigger values for a given signpost and the level of confidence regarding whether change occurs and
adaptation is needed. The latter mapping displays the interplay between trigger values for a given
signpost and the consequences of misclassification errors for both adapting the policy or not. In a
case study, we illustrate how these mappings can be used to test the effectiveness of a monitoring
system, and how they can be integrated into the process of designing an adaptive policy.

Keywords: climate change; adaptation; monitoring; flood protection; Afsluitdijk; extremes; changing
extremes; adaptive policies; resilience; risk management

1. Introduction

Despite all research efforts, climate change remains unpredictable in the long term, raising
serious concerns for policymakers that want to ensure the success of long-term policies [1]. Adaptive
policy pathways [2] have recently emerged as a way to increase the effectiveness of long-term
policies in the face of the unavoidable “deep uncertainties” [3]. Adaptive policy pathways is one
method for developing adaptive policies; other methods include Assumption-Based Planning [4],
Dynamic Adaptive Policies [5], Real Options [6–9], Adaptive Policy-Making [10–12], Adaptation
Options [13], Adaptation Tipping Points [14], and Adaptation Pathways [15–17].

In designing adaptative pathways, the analyst explores the consequences of multiple scenarios,
often by use of a system model [18,19]: these scenarios represent the multiple possible future evolutions
of the system. Then, the analyst can assemble a long-term plan of action that can respond to a large
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set of possible future scenarios. This plan of action is made of multiple sequences of concatenated
actions: a new action is activated if its predecessor action is no longer able to guarantee policy success.
Advantages of adaptive policies are their capacity to value correctable (or scalable) decisions, modulate
response to evidence of change, coordinate short- and long-term actions, and delay decisions to keep
future options open [20–22].

The effective implementation of an adaptive pathway over time depends critically on a monitoring
system. This monitoring system tracks the information required for the timely activation of the next
action on the pathway. The ability of the monitoring system to effectively detect change is pivotal
to the success of the whole pathway. The information required to establish the need for adaptation,
however, can be noisy and ambiguous [23], inhibiting the capacity to activate the next action on
time [22]. For example, distinguishing change in flood risk from the natural variability is hampered
by the scarcity of valuable data-points. A well-designed monitoring system should gather enough
evidence for confident adaptation on time. “On time” means adapting the policy neither so early
that it incurs unnecessary costs, nor so late that it incurs avoidable damages. Despite its importance,
the effectiveness of this monitoring system is rarely tested before the policy is implemented.

The literature suggests basing the monitoring system of adaptive policies on “signposts” [4]
and “triggers” [12]. Signposts are indicators that identify the information that should be tracked to
determine whether the policy is meeting the conditions for its success, and triggers are specific values
of signposts that identify critical values beyond which additional pre-specified actions should be
implemented [2,5,12]. An example of a signpost, later used in the test case, is the average sea level
rise rate at a certain location over a window of 10 years. An example of trigger for this signpost
is 10 mm/year.

Refs. [23,24] identify some criteria to assess the quality of a monitoring system and how to employ
a system model in their evaluation, and [25] tested the detectability over time of a change in the
100-year flood. Despite these initial research efforts, the literature on monitoring systems for adaptive
policies is still under-developed. In particular, we see a lack of methods and instruments to evaluate
whether a monitoring system is sufficiently effective in collecting the evidence of change “on time”,
such that the appropriate adaptive action can be taken with a sufficient level of confidence.

In this paper, we show how mapping trigger values against their outcomes is a way to assess
the expected confidence about the capacity to adapt the policy on time, and its consequences.
We introduce two mappings, (i) the trigger-probability mapping and (ii) the trigger-consequences mapping.
The trigger-probability mapping displays the interplay between trigger values for a given signpost
and the level of confidence regarding both that critical conditions have changed, and that adaptation is
needed. The trigger-consequences mapping displays the interplay between trigger values for a given
signpost and the consequences of misclassification for both adapting or non-adapting the policy. We
illustrate how these mappings can be used to test the effectiveness of a monitoring system, and how
they can be integrated into the process of designing an adaptive policy.

The paper is structured accordingly: in the Methodology we first describe the problem of
monitoring in adaptive policies then we explain how to identify and how to interpret the proposed
mappings; in the Application we demonstrate the use of the instruments on a test case of an adaptive
policy for costal flood protection in the Netherlands; we then present our summary and discussion in
the Conclusions.

2. Methodology

The monitoring system of adaptive policies generally consists of signposts and triggers. Signposts
are indicators designed to track the exogenous developments that affect the performance of a plan.
When a signpost exceeds its trigger value, it activates an adaptation signal. Adapting on time requires
activating the adaptation signal when the system approaches an adaptation tipping point, but not
too early. An adaptation tipping point represents the conditions under which a policy no longer
meets its specified objectives, hence additional or distinct actions are needed [14]. An example of
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adaptation tipping point, later used in the application, is when the flood risk exceeds a pre-specified
acceptable value. A good monitoring system should be able to provide a timely adaptation signal, i.e.,
to be activated in proximity of an adaptation tipping point. Testing the capacity provides a timely
adaptation signal requires estimating the level of confidence in the adaptation signal at the adaptation
tipping point.

Signpost estimates are observations intended to detect the real state of the system. Signpost
estimates, however, can be noisy, and so will be the adaptation signal, resulting in possible
misclassification errors. Table 1 presents all possible consequences for the combination of the real
states of the system (columns) and the adaptation signal (rows).

Table 1. Table of Consequences (Probability).

Consequence
(Probability)

Adaptation Required

Yes No

Adaptation Signal
Yes

Timely Adaptation
(Power)

Regretful Action
(Significance)

No
Missed Adaptation

(1-Power)
No Adaptation
(1-Significance)

Adaptation is required when the state of the system is at the adaptation tipping point.
The adaptation signal is activated when the signpost exceeds the trigger value. “Timely Adaptation”
and “No Adaptation” are the correct decisions. “Missed Adaptation” and “Regretful Action” are
misclassification errors stemming from the uncertainty of the signpost estimate. Missed adaptation
and regretful action correspond to Type I and Type II errors in hypothesis testing [26].

Type I and Type II errors are related to “significance” and “power” of a statistical test. Significance
is the probability of Type I error. In the context of climate adaptation, significance is the probability
of erroneously activating the adaptation signal when the critical uncertainties did not change.
Critical uncertainties are conditions that are presently uncertain or subject to change in the future,
which strongly affect the success of the policy. An example of critical uncertainty, later used in the
application, is the future sea level rise rate. Power is the complementary of the probability of Type II
error. Power is the probability of correctly detecting the need for adaptation when this is required,
i.e., the critical uncertainties are at an adaptation tipping point. In climate change adaptation, both
types of errors may have severe consequences, therefore both power and significance are to be kept
under control, i.e., as close as possible to one and to zero.

Equation (1) shows how to estimate significance and power for a signpost at a specific
adaptation point.

Significance = P(S ≥ ST |λCC) (1a)

Power = P(S ≥ ST |λATP) (1b)

In Equation (1), S is the signpost estimate, ST is the trigger value, λCC the critical uncertainties at
the current conditions, and λATP the same critical uncertainties at the considered adaptation tipping
point. Significance is the probability that the signpost estimate extracted from P(S|λCC) exceeds a
given trigger value. Power is the probability that the signpost estimate extracted from P(S|λATP)

exceeds a given trigger value.
P(S|λCC) is the observational uncertainty of the signpost at current conditions, and and P(S|λATP)

is the observational uncertainty of the signpost at the adaptation tipping point. The signpost
observational uncertainty at current conditions can be estimated from observed data by identifying a
stochastic model. In the simplest case, the stochastic model is a probability distribution. Estimating the
signpost observational uncertainty at the adaptation tipping point, instead, requires the combined use
of exploratory and stochastic modeling approaches: exploratory modeling [27,28] is used to represent
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the system behavior at the adaptation tipping point of interest, while stochastic modeling [29,30] is
used to represent the uncertainty at that point.

In monitoring of adaptive policies, significance and power depend both on the quality of a
signpost and on the selected trigger value. A good signpost improves both significance and power.
Trigger value selection, instead, is a trade-off between the risks of regretful adaptation and missed
adaptation. Selection of signposts is closer to a purely technical choice, being about maximizing the
extraction of information from data [23]. Selection of trigger values is partially a political issue, for the
presence of multiple actors implies a redistribution of benefits and costs related to the adaptation
decision, hence conflicting interests about the level of confidence required for implementing the
adaptive actions. Having identified Equation (1) opens the possibility of exploring the interplay
between trigger values and their outcomes.

The trigger-probability mapping explores how trigger value maps to significance and to the
complement of power. The trigger-probability mapping is identified by estimating significance and
power, as in Equation (1), for all possible values of the trigger. Figure 1 visually displays an example of
trigger-probability mapping based on an idealized case. In Figure 1 it is highlighted how significance
corresponds to the probability of Type I error and power corresponds to the complement of probability
of Type II error. Figure 1 shows how significance decreases, and the inverse of power increases with
increasing trigger value.

2.0 2.2 2.4 2.6 2.8 3.0 3.2
Trigger value [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Significance =
P(Type-I error)

Power

P(Type-II error)

trigger-probability mapping, example

Regretful Adapt.
Missed Adaptation

Figure 1. Visual representation of trigger-probability mapping, example.

The trigger-probability mapping offers the relevant information to evaluate the current monitoring
system and its capacity to offer a timely adaptation, giving indication about (i) the signpost quality,
and (ii) the trigger values candidate to the final selection. The trigger-probability mapping shows how,
when the trigger value increases, the probability of Type I error (i.e., significance) decreases, and the
probability of Type II error (i.e., the complement of power) increases. If this occurs simultaneously,
i.e., for the same value of the trigger, it is not possible to keep both classification errors low,
for lowering significance happens at the cost of lower power. In this case, the signpost has low
quality, i.e., the signpost does not provide the information required with sufficient confidence. If, as in
Figure 1, there is a space of trigger vales in which both probability of Type I and Type II errors are
considered sufficiently small, then the signpost is capable of detecting the required adaptation at the
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considered adaptation tipping point with sufficient confidence, and an appropriate trigger value will
likely be in this space.

When the consequences of adaptation decisions are available, as in Table 1, the trigger-consequences
mapping can be built. The trigger-consequence mapping explores how trigger value maps to the
expected consequences of misclassification errors. The consequences of misclassification errors
are (i) the consequences for regretful adaptation weighted by the probability of Type I error, and
(ii) the consequences for missed adaptation weighted by the probability of Type II error. As for the
trigger-probability mapping, the trigger-consequences mapping is specific to a signpost and a selected
tipping point. The trigger-consequence mapping offers information about the expected consequences
of adapting or not, and it can be used to estimate the potential value of adaptive policies. Different
groups of stakeholders may be interested in different types of consequence; therefore, mapping trigger
values to consequences for each group of stakeholders, and all possible trade-offs, can support the
process of selecting the final trigger value.

Figure 2 visually displays an example of trigger-consequence mapping, where the cost of the
adaptation action is 1 M$, and the consequence of non-adaptation is 2 M$. The lowest value of
trigger corresponds to a case when the adaptation action is always taken. In this case, there is no risk
of missed adaptation, but high possible regret, equivalent to the full cost of the adaptation action,
if the action turns out to be non-necessary. This situation can be considered as equivalent to using static
robust decision-making policies [31]. The highest trigger value corresponds to a case where the action
for adaptation is never taken. In this case, costs are related to consequences of missed adaptation.
If a space of trigger values exists for which one can limit both consequences of regretful action and
missed adaptation, then adaptive policies can offer a potential benefit.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
Trigger value [-]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Potential value 
 of adaptation

trigger-consequences mapping, example
Missed Adaptation
Regretful Adaptation
Total

Figure 2. Visual representation of trigger-consequences mapping, example.

Figure 2 presents a case where the consequences of regretful action (red line) and missed
adaptation (blue line) can be aggregated in total costs (green line); for example, because both are
expressed in monetary terms under the assumption of no risk aversion. In this case, the difference
between the consequences for regretful action and the lowest point in the total costs can be considered to
be the expected potential value of adaptation (see Figure 2). If there is no space in which both expected
consequences of regretful and missed adaptation can be kept low, then the present monitoring system
does not offer sufficient evidence to detect the adaptation tipping point on time. In this situation,
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the risks of adaptation outweigh the benefit of uncertainty reduction through an adaptive policy,
and it may be preferable to resort to static robust decision-making.

The trigger-probability and the trigger-consequences mapping can be used to assess whether
an adaptive policy and its monitoring system offer sufficient confidence about the future capacity
to adapt on time for all considered future scenarios. If this is not the case, the adaptive policy must
be reconsidered, possibly by improving the monitoring system, or by redefining the plan of actions.
Improving the monitoring system requires the identification of more informative or robust signposts.
This may be not always feasible; for example, all available information may already have been
exploited, or the costs of gathering additional information may outweigh its benefits [32]. In this case,
effective adaptation cannot be guaranteed, and it may be necessary to redesign the plan of action such
that static robust actions are included.

3. Application

The use of the proposed methodology is demonstrated on an application of adaptive policy for
costal flood protection in the Netherlands. In the following, we present the policy problem, the critical
uncertainties, the adaptive policy with its related monitoring system, and its evaluation by use of the
proposed instruments. The model and the details of calculation to derive the trigger-probability and
trigger-consequences mappings are presented in the Appendix A–C, including the reference to the
code (Appendix D), which is available and reusable.

3.1. Policy Problem

In the Netherlands, the most inhabited and economically valuable areas are also the most
vulnerable to flood risk. A complex system of dikes protects the Randstad, the economic core of
the country, which lays below sea level. In this application we focus on Afsluitdijk, a 32 km dam
that functions as storm surge barrier, separating the Wadden Sea from Lake Ijssel. The national flood
safety standards for Afsluitdijk require a level of protection of 1 in 10,000 years, Recently, a national
assessment program concluded that Afsluitdijk does not offer the required level of protection, therefore
Afsluitdijk will be renovated in the near future.

3.2. Critical Uncertainties

In this application we focus on critical uncertainties related to climatic conditions. The climatic
uncertainties that are critical for Afsluitdijk are related to the hydraulic boundary conditions that may
change because of climate non-stationarity, and on which the level of protection of the dike depends.
Specifically, we consider the following critical uncertainties:

• Rate of sea level rise
• Storm surge intensity

The presence of a clear trend in sea level rise is well documented [33]. The rate at which the
sea level rise will take place, however, is deeply uncertain [34]. In the next century the rate of the
sea level rise can increase or, if global policies to reduce the effect of climate change are effective,
remain stable [33].

Frequency and intensity of extreme storm surge events influence the level of protection offered
by Afsluitdijk. The literature on climatic change detection indicates that storm surge intensity may
change as a consequence of climate change, as well as wave height characteristics and spectral wave
period, and that change is particularly marked for extremes events [35–37]. The literature, however,
analyzes the climatic change at the global level, or relative to other regions [38–44], whereas we are
interested in the change in storm surge intensity around Afsluitdijk.

Climate change predictions show no clear trend in increase storm surge intensity [45] in the region
of interest. Such “top-down” analysis, however, derives its results from climate change projections
by use of a chain of models, whose skills in correctly representing extreme events are questionable,



Sustainability 2019, 11, 1716 7 of 16

therefore results from this type of analysis cannot be used to exclude storm surge intensity from the set
of critical uncertainties regarding the future performance of Afsluitdijk.

3.3. Adaptive Policy

We consider an adaptive dike design created from features of both the “2010 Robust Alternative”,
and the “Wadden Werken” alternative [46]. Figure 3 shows the pathways map of the adaptive policy
and a schematic section of the dike and the alternative action for each pathway.

Figure 3. (Left) Adaptive pathways map for the renovated Afsluitdijk, including Protection Pathway
(red), Zero Pathway (black), and Nature Pathway (green). (Right) schema of dike section showing
alternative pathways.

We consider three possible adaptation pathways. In “Zero Pathway”, Afsluitdijk retains its
renovated form. In “Protection Pathway”, a dike reinforcement is implemented by heightening the
dike crown. In “Nature Pathway”, the mass of the dike is reduced by removing part of the outer
dike core, adding a berm on the external side, and implementing building-with-nature solutions
that increase the natural and recreational value of the dike [47]. The Protection or Nature Pathways
are followed when the risk of dike failure turns out to be larger or smaller than initially expected.
The adaptation decision is expected to be taken around 2050. This is in line with the current policy
recommendation [48]. The adaptation tipping point related to risk of dike failure are set to 1 in 5000
years for the Protection Pathway, and 1 in 12,000 years for the Nature Pathway.

Figure 4a presents the “stress test” [49] for the renovated Afsluitdijk for a range of possible
values of critical uncertainties, evaluated in 2050. This figure shows the area of success for the
renovated Afsluitdijk, delimited by the boundaries in which the expected frequency of failure is at the
adaptation tipping points. Results of Figure 3 are obtained from the van-der-Meer model [50] used in
an exploratory analysis, i.e., tested on a large set of possible critical uncertainties. The van-der-Meer
model and the parameters for Afsluitdijk are fully described in the Appendix A.

3.4. Design of the Monitoring System

Table 2 describes the candidate signposts and the parameters that each signpost is intended to
track. Data will be obtained from the station at den Oever, which is the sea level gauging station closest
toAfsluitdijk.

Table 2. Initial candidate signposts.

Signpost Definition Parameter

SA
Sea level rise rate at den Oever,
on a 10-year moving window average Average sea level rise rate

SE
Yearly maximum water level at den Oever,
on a 20-year moving window average Yearly maximum water level

The identification of the trigger-probability and the trigger-consequences mapping requires
selection of the adaptation tipping points and identifying the signpost uncertainty at both the
adaptation tipping points and at current conditions. The following four adaptation tipping points
are selected.

λSLR+ Increase in average sea level rise rate, constant storm intensity.
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λSS+ Increase in storm surge intensity, constant average sea level rise rate.
λSLR− Reduction in average sea level rise rate, constant storm.

λSS− Reduction in storm surge intensity, constant average sea level rise rate.

All adaptation tipping points are on the boundary of the policy success region, as represented in
the stress test on Figure 4a. Tipping points λSLR+ and λSS+ represent an increased flood risk. Reaching
any linear combination of these tipping points activates the Protection Pathway. Tipping points λSLR−
and λSS− represent a reduced flood risk. Reaching any linear combination of these tipping points
activates the Nature Pathway. Estimation of P(S|λ) at these tipping points and at current conditions is
described in the Appendix A.

The selected tipping points explore the change of one critical uncertainty at a time. Change,
however, is likely to occur simultaneously on both critical uncertainties. We consider these two couples
of points as extreme cases of the tipping point surface: if the monitoring system can detect change for
these two limit conditions, it is likely that it can detect change also for a combination of them.
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Figure 4. (a): Stress-test of the renovated Afsluitdijk in 2050. Plots (b) and (c): trigger-probability
mapping for signposts SA and SE evaluated at the “Protection Pathway” adaptation tipping points.
Plot (d): trigger-consequences mapping for signpost SE evaluated at the “Protection Pathway”
adaptation tipping points. Plot (e,f): trigger-probability mapping for signposts SE and SRE evaluated
at the “Nature Pathway” adaptation tipping points.
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4. Results

Figure 4b shows the trigger-probability mapping for signpost SA, evaluated at λSLR+ and λSS+.
Figure 4b presents a large plateau between the risk of regretful adaptation and that of missed adaptation
for λSS+ (blue dashed line), and a complementary trend for λSLR+ (blue continuous line). Figure 4b
suggests that the signpost SA can detect λSLR+ with very little uncertainty, but it is not able to detect if
the system reaches λSS+: the adaptation tipping point is almost indistinguishable from the current
conditions. The interpretation of Figure 4b implies that SA is an informative signpost, under the
assumption that the rate of sea level rise is the only critical uncertainty that may change. SA, however,
is not a robust signpost, because if storm intensity changes, this signpost does not longer offer
satisfactory results.

Figure 4c shows the trigger-probability mapping for signpost SE, evaluated at λSLR+ and λSS+.
Figure 4c presents a range of trigger values for which the probability of both misclassification errors
is low, which we consider sufficient. This is valid for both the considered adaptation tipping points.
Figure 4c suggests that SE is informative in detecting the need for adaptation and robust to change of
both critical uncertainties.

Figure 4d shows the trigger-consequence mapping for signpost SE, evaluated at λSLR+ and λSS+.
The estimation of consequences for missed adaptation and regretful action are described in additional
online material, and it is limited to the economic costs for which we have data [51]. Figure 4d indicates
the presence of a space of trigger values in which both the cost of regretful adaptation (red line) and the
cost of missed adaptation (blue lines) can be kept low. This space is larger for the adaptation tipping
point related to the change in sea level rise rate, λSLR+ (continuous lines), because this change is easier
to detect. Figure 4d shows the total costs (green lines), assuming that costs for regretful action and
costs for missed adaptation can be summed up. In this case, a valley and a minimum value can be
detected for both adaptation tipping points. The minimum total cost occurs for trigger values ranging
between 2.3 and 2.6 m, depending on which adaptation tipping point we are referring to. This range
indicates the space of appropriate trigger values.

Figure 4e shows the trigger-probability mapping for signpost SE, evaluated at λSLR− and λSS−, i.e.,
the adaptation tipping points corresponding to the Nature Pathway. Tipping points λSLR− and λSS−
are relative to a level of protection of 1 in 12,000-year. In Plot 4e, the line representing the probability
of missed adaptation is on the left of the line representing significance because the adaptation signal
is activated when the signpost estimate is smaller than the trigger. Figure 4e shows that power and
significance change almost simultaneously: there are no values of trigger that can keep both error
types low, hence a smaller significance can be obtained only at the cost of smaller power.

The analysis indicates that signpost SE is effective in detecting the tipping points relative to the
level of protection of 1 in 5000 years required to adapt to an increased flood risk, but it is not able to
detect the tipping points relative to the level of protection of 1 in 12,000 years with a level of confidence
that we consider sufficient. In this case, either the monitoring system or the plan of actions should
be redesigned. Following up on this conclusion, we attempt to improve the monitoring system by
including an additional signpost.

The additional signpost SRE, defined as the “Corrected yearly maximum water level at den Oever
and 4 neighboring stations, on a 20-year moving window average”, is similar to SE, but it is based on a
regional analysis [52]. In the signpost definition, “corrected” refers to the fact that data are transformed
to fit to the local conditions at Afsluitdijk (i.e., the closest gauging station, at den Oever). We do not
consider the possible correlation among stations: the presence of correlation would reduce the level of
confidence that can be obtained from the same data, requiring more stations to reach the same level of
observability as compared to the case without correlation.

Figure 4f shows the trigger-probability mapping for signpost SRE, evaluated at λSLR− and λSS−.
Figure 4f indicates the presence of a range of trigger values for which significance can be kept small and
power can be kept large. This is valid for both adaptation tipping points. Nonetheless, a non-negligible
risk of misclassification error is still present, even when the trigger values are properly selected.
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The added value of signpost SRE, however, can be better appreciated when Plot Figure 4f is compared
to the trigger-probability mapping of signpost SE at the same adaptation tipping points, displayed in
Figure 4e. In Figure 4f the curves of missed adaptation and regretful adaptation are steeper, resulting
in a higher capacity for this signpost to detect the need for adaptation.

5. Discussion and Conclusions

In this paper, we presented how mapping trigger values to their outcomes is a way to assess the
effectiveness of a monitoring system for adaptive policy pathways. Specifically, we introduced the
trigger-probability mapping and the trigger-consequences mappings. The trigger-probability mapping
displays the interplay between trigger values for a given signpost and the level of confidence regarding
both (i) that critical conditions have changed (i.e., the trigger-significance mapping) and (ii) that
adaptation is needed (i.e., the trigger-power mapping). The trigger-consequences mapping displays
the interplay between trigger values for a given signpost and the consequences of misclassification for
both (i) adapting the policy (i.e., the trigger-regretful adaptation mapping) or (ii) non-adapting the
policy (i.e., the trigger-missed adaptation mapping). These mappings can be used to analyze the level
of confidence that a monitoring system, made of signposts and triggers, can offer about the need for
adaptation. Given this information, the decision maker can decide whether such level of confidence is
acceptable or not.

We demonstrated the use of both mappings for the ex-ante evaluation of a monitoring system of an
adaptive policy pathway for the renovated Afsluitdijk, a storm surge barrier in the Netherlands. In this
application, different signposts are tested on their capacity to detect whether critical uncertainties
reached an adaptation tipping point. This analysis provides information on signpost effectiveness. The
mappings also indicate candidate trigger values valid for the final selection.

The current literature on climate change adaptation overlooks how limitations of the monitoring
system reduce the effectiveness of adaptive pathways. The proposed mappings can be used to test
whether a candidate monitoring system effectively tracks the required information with sufficient
confidence for timely adaptation. We show how to derivate the trigger-outcome mappings from a
system model and a given adaptation tipping point, and how to integrate the mappings in the general
design procedure of adaptive pathways. The proposed mappings are intended to be applied at the
design phase of an adaptive pathway, to offer sufficient guarantees about the future capacity of the
pathway to be adapted on time.

The trigger-outcome mapping is obtained from the estimation of significance and power,
i.e., the probability of misclassification error of Type I and the complementary of probability of
misclassification error of Type II. Studies on climate change detection often use significance as key
parameter to investigate and communicate the level of confidence about the modification of climatic
conditions that emerges from data. The use of significance is justified by considering that the burden
of proof of a specific statement lies upon who makes that statement (in this case, the modification of
existing climatic condition). In climate change adaptation policies, however, the costs of non-action are
generally as large as the costs of regretful actions. In this case, the use of power, as in the proposed
method, can offer relevant information for decision-making. The consideration of both significance and
power, and their consequences, enhances the possibility of finding an appropriate trade-off between
costs related to misclassification errors. Estimating power, however, requires a system model able to
represent the uncertainty about the signpost estimate, to be used in an exploratory mode.

In coastal flood risk, most of the concerns for climatic change are related to sea level rise, and the
possible change in its rate. Despite the relevance of sea level rise rate, other relevant parameters may
be affected by climate change, and particularly under extreme conditions, such as the change in storm
surge intensity level. Change of extreme conditions, however, is more difficult to detect, constituting
a limitation for timely adaptation. In the application of the proposed methodology to the renovated
Afsluitdijk we include the possible change in storm surge intensity, and we show how the selection of
appropriate signposts could enhance the capacity to detect this change.
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In the application of the mappings, a reduced number of critical uncertainties are considered.
Despite this simplification, the test case is non-trivial. The mappings perform satisfactorily, but their
effectiveness in more complex cases is still to be tested. In this application, the mappings seem to
maintain their effectiveness when complexity increases. Future research will aim at offering more
insight on the validity of the proposed mappings when applied to more complex cases.

The mappings are specific to a signpost and an adaptation tipping point. When the success of
an adaptive policy hinges on multiple critical uncertainties, there will be multiple adaptation tipping
points, hence the boundary between policy success and policy failure is a surface, rather than a
single point. The selection of the appropriate adaptation tipping points from this surface becomes a
subjective choice. This limitation originates, however, from the limits of adaptation tipping points in
meaningfully representing the real boundaries of the policy success. Nonetheless, the exploration of
the adaptation tipping surface can be made by testing multiple points, which can be represented in the
plots by multiple lines. In this case, the value of power (i.e., the curve of missed adaptation) is to be
identified for multiple adaptation tipping points.

The mappings are built up from the elicitation of a system model, which itself is defined by a
set of assumptions, therefore the estimation of the mappings depends on all the model assumptions.
In the exploratory modeling approach, assumptions in which we have little confidence of their capacity
to hold in the future are treated as critical uncertainties. Nonetheless, the occurrence of a surprising
unexpected future, i.e., beyond the space of critical uncertainties, is always possible. The model used
in the test case, for example, considers the possible shift in extreme storm surge, i.e., a possible change
in the location parameter of the extreme value distribution, but not the possible change in scale and
shape parameters.

The analysis should quantify and represent any uncertainty in the mapping estimation. In the
application, for example, we represent the multiple possible adaptation tipping point, represented as
multiple “missed adaptation” curves. Any additional uncertainty reduces the capacity in detecting
the need for adaptation, which results in a reduced potential value of adaptation. Despite any
effort to include all uncertainty in the mapping estimation, however, it will be never satisfactory.
Even the best-conceived monitoring system is jeopardized by the so-called unknown unknown, i.e.,
future scenarios for which we are presently not aware of. In this case, a redesign of adaptive policy
and the monitoring system itself may be required.
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Variables

SLR Sea level rise rate [m/year]
SS Storm surge intensity [m]
SWLy Yearly average sea water level (above NAP) in year y [m]
MWL Maximum sea water level (above NAP) [m]
hs Wave height characteristics [m]
Tm Spectral wave period [s]
qocc Occurring overtopping discharge [m3/m /s ]
qcrit Critical overtopping discharge [0.1 m3/m /s]
s0 Wave steepness [-]
RC Crest free board [m]
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CH Dike crown height [m]
ξ Relative wave run-up [m]
g Acceleration constant [9.8 m2/s]
b Berm coefficient [1]
C1 Hydraulic conditions coefficient [2.7 m]
C2 Hydraulic conditions coefficient [1.7 m]
C3 Hydraulic conditions Coefficient [0.1 s2/m]
C4 Hydraulic conditions coefficient [N (µ = 4.7, σ = 0.55)]
C5 Hydraulic conditions coefficient [N (µ = 2.3, σ = 0.35)]
mo Occurring discharge uncertainty coefficient [1]
mc Critical discharge uncertainty coefficient [1]
CH Dike crown height (above NAP) [7.85 m]
µSS Storm surge location parameter [m]
σSS Storm surge scale parameter [0.394 m]
β Angle of wave attack coefficient [1]
f Roughness coefficient [0.9]
qcrit Dike overtopping critical discharge [0.1 m3/m/s]
σSLR Standard deviation of yearly average sea water level observations [6 mm]

Appendix A. System Model

In the considered adaptive policy for Afsluitdijk, adaptation is required if the probability
of dike failure is larger than 1/5000 years or lower than 1/12,000 years. The deeply uncertain
boundary conditions are (i) the future average sea level rise and (ii) the storm surge intensity.
The probability of dike failure conditional to the deeply uncertain boundary conditions is calculated
using a semi-probabilistic approach to dike failure mechanism, by use of the van-der-Meer model [50],
where the hydraulic boundary conditions at extremes are identified using the “de Haan” method [53].

We consider failure of dike body only. The dike body is modeled as a single dike section.
Of the different mechanisms of dike body failure, we consider wave run-up overtopping only.
This process is the dominant mechanism of body dike failure for Afsluitdijk [54]. Dike failure
occurs when the occurring overtopping discharge is larger than the critical overtopping discharge.
Equation (A1) defines the probability of dike failure due to overtopping.

P(F) = P(mo · qocc > mc · qcrit) (A1)

In Equation (A1), F is the event “failure of the dike”, qocc is the occurring overtopping discharge,
qcrit is the critical overtopping discharge, and mo and mc are stochastic variables that represent the
uncertainty in the process.

The critical overtopping discharge is a given project parameter [54]. The occurring overtopping
discharge is calculated as in Equation (A2).

qocc = min(qb, qn) ·
√

g · hs
3 (A2)

In Equation (A2) qb is discharge due to breaking waves, qn is the discharge due to non-breaking
waves, and hs is the characteristic wave height.

Discharge of breaking and non-breaking waves is calculated as in Equation (A3).

qb = 0.067/

√
tan(α) · b · ξ · exp

(
C4 · RC

hs · ξ · b · f · β

)
(A3a)

qn = 0.2 · exp
(

C5 · RC
hs · f · β

)
(A3b)
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In Equation (A3), hs are hydraulic boundary conditions, RC and ξ are model parameters, α, β and f
are constants, and C4 and C5 are stochastic variables that represent the uncertainty in the process.

Model parameters of Equation (A3) are calculated as in Equation (A4).

RC = CH − (SWL2050 + SS) (A4a)

ξ = tan(α)/
√

s0 (A4b)

s0 =
2 · π · hs

g · Ts · 2
(A4c)

In Equation (A4), RC is the crest free board, ξ is the relative wave run-up, s0 is the wave
steepness. Inputs of Equation (A4) are defined in Equation (A5). Equation (A5) define the hydraulic
boundary conditions.

SS ∼ GEV(µSS, σSS) (A5a)

SWL2050 = SWL2017 + SLR · (2050− 2017) (A5b)

hs = C1 · log(SS) + C2 (A5c)

Tm =
√

hs/C3 (A5d)

In Equation (A5), SS is the storm surge intensity, sampled from a GEV Type I (i.e., Gumbel)
distribution with location and scale parameters µSS σSS. The location parameter is considered deeply
uncertain, hence different values are tested. The scale parameter is estimated from historical data.
SWL2017 is the present average sea water level (2017), and SLR is the average sea level rise rate.
The SLR parameter is considered deeply uncertain, hence different values are tested. hs and Tm are the
height of wave characteristic and the spectral wave period. Parameters C1, C2 and C3 are identified
at local conditions according to the “de Haan” method, considering the asymptotic dependency
at extremes [53].

The model is simulated using an “importance sampling” Monte Carlo method. In the importance
sampling approach, we simulate the system for storm surge events, SSIS, with a return period larger
than the base year, set to 2000 year, such that SSIS = SS > ŜS, where ŜS = GEV−1(1− 1/base year).
The actual frequency of failure (in yrs−1) is estimated from the frequency of failure calculated in the
space of importance sampling (unitless) by dividing the latter by the base year. The sample size for
each simulation run is 10,000.

Appendix B. Signposts Observational Uncertainty

All signposts are defined as average over a moving window, therefore they converge to normal
distribution. We assume a quasi-stationary condition, i.e., the rate of change is negligible, therefore
signposts can be considered as unbiased estimator of the parameters that they track.

The distribution of signpost SA is identified in Equation (A6).

SA ∼ N
(

SLR,
σ2

SWL
VAR([1..10])

)
(A6)

where SLR is the sea level rise rate, σSLR is the observational uncertainty of the yearly value, estimated
at den Oever station, and [1..10] the integer interval between 1 and the length of the average
moving window.

The distribution of Signposts SE and SRE are identified from their empirical distribution.
The empirical distributions are identified from the definition of these signposts, sampling from SS.
Equations (A7) and (A8) are the definitions of SE and SRE.
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SE =
1
w

w

∑
y

MWLy (A7)

SRE =
1

w · n
n

∑
i

w

∑
y

MWLy,i (A8)

In Equations (A7) and (A8), MWLy is the maximum water level at year y , w is the length of
the moving window (i.e., 20 years), n is the number of stations (i.e., 5), MWLy,i is the corrected
maximum yearly water level, and y and i are the index of past year and station. MWLy is estimated as
in Equation (A9).

MWLy(SLR, SS) = SWL2050(SLR) + SSy (A9)

In Equation (A9), the yearly max water level is the consequence of the superposition of the average
sea water level at that year and the storm surge process, considered independent. The average sea water
level is estimated as in Equation (A5b), hence it grows with the sea level rise rate. The observational
uncertainty of average sea level is considered to be negligible with respect to the variance of the
maximum yearly storm surge, hence the variance of SE and SE depends only on the latter and on the
number of yearly data-points.

Appendix C. Estimation of Consequences

With respect to the adaptation required for the Path Protection, the consequence of regretful
adaptation is the cost of enriching the dike, estimated in [51] at 380 million euro. The consequence of
missed adaptation is the total additional risk of being at the adaptation tipping point. Risk is defined
as the probability of dike failure multiplied by its consequences; additional is defined with respect to
the situation at the current conditions. [51] estimates the total risk at current condition due to failure of
Afsluitdijk at 320 million euro. For Afsluitdijk, the probability of failure at the adaptation tipping point
is twice the probability of failure at current conditions, therefore the risk is double. Consequently, the
total additional risk of being at the adaptation tipping point is the same amount of the total risk at
current condition.

Appendix D. Software and Data Availability

The code used in the experiment can be freely downloaded at GitHub page of the corresponding
author, i.e., https://github.com/luciofaso/Monitoring_DAP, released under the MIT license.
The data used in the experiment can be freely downloaded at the data portal of Rijkswaterstaat,
i.e., https://waterinfo.rws.nl.
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