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ABSTRACT: Transition-metal complexes serve as highly enan-
tioselective homogeneous catalysts for various transformations,
making them valuable in the pharmaceutical industry. Data-driven
prediction models can accelerate high-throughput catalyst design
but require computer-readable representations that account for
conformational flexibility. This is typically achieved through high-
level conformer searches, followed by DFT optimization of the
transition-metal complexes. However, conformer selection remains
reliant on human assumptions, with no cost-efficient and
generalizable workflow available. To address this, we introduce
an automated approach to correlate CREST(GFN2-xTB//GFN-
FF)-generated conformer ensembles with their DFT-optimized
counterparts for systematic conformer selection. We analyzed 24
precatalyst structures, performing CREST conformer searches, followed by full DFT optimization. Three filtering methods were
evaluated: (i) geometric ligand descriptors, (ii) PCA-based selection, and (iii) DBSCAN clustering using RMSD and energy. The
proposed methods were validated on Rh-based catalysts featuring bisphosphine ligands, which are widely employed in
hydrogenation reactions. To assess general applicability, both the precatalyst and its corresponding acrylate-bound complex were
analyzed. Our results confirm that CREST overestimates ligand flexibility, and energy-based filtering is ineffective. PCA-based
selection failed to distinguish conformers by DFT energy, while RMSD-based filtering improved selection but lacked tunability.
DBSCAN clustering provided the most effective approach, eliminating redundancies while preserving key configurations. This
method remained robust across data sets and is computationally efficient without requiring molecular descriptor calculations. These
findings highlight the limitations of energy-based filtering and the advantages of structure-based approaches for conformer selection.
While DBSCAN clustering is a practical solution, its parameters remain system-dependent. For high-accuracy applications, refined
energy calculations may be necessary; however, DBSCAN-based clustering offers a computationally accessible strategy for rapid
catalyst representations involving conformational flexibility.

1. INTRODUCTION
Data-driven approaches are reshaping many domains of
chemical research, offering unprecedented opportunities for
deeper analysis and accelerating chemical discoveries.1−4 In
particular, data-driven models hold great promise in developing
predictive strategies for rational catalyst design. These
approaches can facilitate and accelerate the implementation of
greener, selective, and scalable sustainable chemical trans-
formations using tailor-made homogeneous catalysts for the fine
chemical and pharmaceutical industries.5−8 The vast chemical
space established by the transition metal complexes with their
versatile and highly tunable ligands has been navigated by the
homogeneous catalysis community over the last century in the
search for precise control over catalytic chemistry and catalyst
behavior.9,10 The extensive diversity of the ligands and their
diverging behavior depending on the conditions and the metal
type present a formidable combinatorial challenge, complicating
the rational exploration of the transition-metal (TM) chemical

space in the search for the optimal catalyst. The traditional
largely heuristic and serendipity-driven catalyst development
methods are increasingly complemented by high-throughput
techniques, which generate systematic broader data sets, thus
expanding the scope and capabilities of the analysis.9,11−13 Such
data sets can be analyzed using advanced computational
methodologies including QSAR/QSPR, machine learning, and
statistical tools, to facilitate the identification of correlations
between the molecular characteristics and the catalytic behavior,
accelerating and guiding the search for the optimal catalyst.14−17
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One of the major challenges in applying data-driven
algorithms to catalysis lies in creating accurate, computer-
readable representations of molecules.18−20 The universality of
the resulting models and their predictive capabilities heavily
depend on how well the specific features included in the
molecular representation capture the fundamental character-
istics and behavior of the catalytic species that ultimately
determine the reactivity.14−17,19,20 Although most models focus
on features associated with static molecular representations,
incorporating properties calculated on a conformer ensemble
into the featurization step has gained traction as a means to
better capture the fluxionality of molecular systems under
reaction conditions and improve predictive accuracy.21,22 Both
experimental and computational studies underscore the
importance of catalyst conformations for catalytic activity and
enantioselectivity,23−25 as different conformers may exhibit
unique steric effects and energy profiles.21,26 Given the
sensitivity of physical-chemical properties to structural
variations, including conformational effects is essential for
accurate feature acquisition.7,27,28

However, identifying suitable conformer searching algorithms
for TM complexes remains challenging due to the complexity of
these systems.29,30 TM complexes are large and feature a wide
variety of bond types, and there is a lack of fast, efficient methods
that can effectively handle such systems, particularly in the
context of high-throughput exploration of highly fluxional
chemical environments. Broadly exploring possible conforma-
tions for large complexes comes with significant computational
costs.31,32 On the other hand, relying on chemical intuition to
select conformers can introduce human bias, often leading to
inaccurate representations and neglect of critical conformational
effects.31,33

To achieve descriptors of conformers that accurately capture
their physical-chemical properties, DFT-level calculations are

typically utilized.34 Quantum chemistry-based conformer
searching methods, such as AARON,35 use DFT calculations
to produce precise conformer results, though they come at a
high computational cost. As a result, many workflows begin with
a less costly conformer exploration using force field or
semiempirical methods.22,36 Common force field-based algo-
rithms include RDKit,37 OpenBabel,38 and MOLASSEM-
BLER,39 while CREST (Conformer−Rotamer Sampling Tool)
is a widely used tool applying GFNn-xTB tight-binding
semiempirical methods.40 Examples of methods for nonbiased
exploration of stereochemistry that utilize RDKit or Openbabel
in the back-end are Architector41 and MACE.42 In most
workflows, the ensembles generated in these initial steps are
then refined with DFT to enhance accuracy.43,44

Selecting which conformers to refine is not straightforward.
Ideally, the goal is to identify conformers that correspond to
local minima on the DFT potential energy surface. A logical
approach might involve selecting conformers with low relative
energy within the ensemble based on energies calculated by a
semiempirical method. However, a significant challenge with
current conformer searching methods is the unreliable energy
ranking within the ensembles. Previous studies have highlighted
the limitations of classical force fields (FF) and semiempirical
methods in accurately predicting energy ordering and global
minima compared to DFT-level calculations.11,29,30,45 Con-
sequently, relying solely on energy values for filtering could risk
excluding important low-energy conformers that would
otherwise be identified on the DFT potential energy surface.
In CREST, an alternative option is based on principal
component analysis (PCA) clustering, which performs PCA
and then clusters conformers based on dihedral angles.
However, as reported in the CREST documentation, the
algorithm cannot accommodate noncovalent bonds, which
often occur in transition metal complexes. Furthermore, the

Figure 1.Overview of the applied workflow with a representative illustration of the Rh-based catalyst structures. (a) Creation of conformer ensembles
via CREST and subsequent DFT refinement. (b) Various methods were tested to relate a representation of the CREST-based conformer ensemble to
the DFT-based refined ensemble.
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algorithm applies k-means clustering, where the number of
clusters is a predetermined variable. Another commonly used
filtering approach is the CENSO workflow.34,46 This screening
approach uses the obtained CREST ensemble as input and
performs prefiltering based on the energies obtained from DFT
single-point calculations. The remaining conformers undergo
DFT geometry optimization, during which several filtering steps
are included based on energy thresholds. The final ensemble is
obtained through a pruning step based on the Gibbs free energy.
Although effective, this approach is based on constant re-
evaluation of the energy of each conformer, increasing the
computational cost with increasing flexibility of the molecule.
In our work, we aimed to investigate a practical and generic

approach for streamlining the generation of a DFT-based
conformer ensemble from lower-level ensembles in the context
of high-throughput computational catalyst screening. Hence, we
sought to answer the following question: what filtering method
or combination of methods allows for a conformer selection
workflow in which computational cost is kept low while a high
accuracy is maintained? Several high-throughput and automated
filtering approaches for conformer ensembles were investigated.
Conformer ensembles were generated for 24 Rh-based catalysts
originating from our previous work, utilizing bisphosphine
ligands.47 Parameters from the CREST-based ensemble were
used to filter and the DFT refined ensemble was used as a
ground truth, which enabled the quantification of the
effectiveness of a filtering method. More specifically, by
establishing a set of molecular descriptors we aimed to enable
a data-driven filtering approach. Two data-driven filtering
approaches were tested, the first one was a principal component
analysis based on a set of steric, geometric and electronic
descriptors calculated on the conformer ensemble. The second
data-driven filtering approach was a heuristic approach based on
the relative values of selected geometric and steric descriptors.
Finally, a density-based clustering of relative energy and root-
mean square deviation (RMSD) values was performed,
constituting the simplest filtering approach investigated in this
work.

2. COMPUTATIONAL METHODS
2.1. Conformer Generation and Filtering Workflow.

This study is based on a data set from our previous research on
Rh-based catalyst employing primarily bidentate ligands.47

From that study, 24 catalyst structures were randomly selected
as the starting point for the current research. Each structure
featured a Rh metal center with a bisphosphine ligand attached
to it. A norbornadiene (NBD) moiety was coordinated trans to
the bisphosphine ligand to reflect the precatalyst state.47 These
structures are referred to as L1 to L24, where the number
corresponds to the ligand identity. Visualizations of the ligands
are available in the Data Availability section. In this study, the
digital representation of the catalyst structures, i.e., in XYZ and
MDL Molfile format, was utilized for further investigation via
conformer searching and filtering methods.
An overview of the workflow for this study is presented in

Figure 1, in which two stages can be identified: the first stage
involves the generation of CREST conformer sets and the
subsequent optimization based onDFT. This data set served as a
platform to test our conformer ensemble filtering approaches.
The second stage explores various methods aimed at accurately
modeling the contents of the refined DFT-based ensembles
using features and parameters derived from the CREST
ensembles.

2.2. Quantum Chemical Methods. For stage one of the
workflow, conformer generation and exploration were con-
ducted using the Conformer-Rotamer Ensemble Sampling Tool
(CREST) version 2.1240,48 and xTB version 6.4.0.49 CREST
calculations were performed on all 24 Rh-based structures using
Cartesian coordinates (*.xyz file) as input geometries for
conformer ensemble creation. The GFN2-xTB//GFN-FF
hybrid potential was chosen for its accurate performance at
reasonable computational costs and universal applicability.11

For readability purposes, the CREST(GFN2-xTB//GFN-FF)-
generated conformer ensembles are referred to as ‘CREST-
based conformer ensembles’. Conformers generated by CREST
were subsequently preprocessed using the MORFEUS Python
package (version 0.7.1). The python package readily takes
obtained CREST output folders as an input, which accom-
modates further filtering and analysis. To enable this, an
explicitly added connectivity matrix was extracted from anMDL
Molfile. Afterward, structures that exhibited changes in chirality
relative to the original input structure were removed from the
ensemble.
The resulting CREST-based conformer ensembles were

refined via DFT geometry optimization, performed using
Gaussian 16 C.02.50 The PBE0-D3(BJ)/def2-SVPP level of
theory51−53 was applied, known for its reliable accuracy and
efficiency for the description of TM complexes.11,54,55 The
nature of each stationary point was confirmed via frequency
analysis. Thermochemical parameters (e.g., ZPE, finite temper-
ature corrections and entropy contributions to Gibbs free
energies) were computed from analytical frequencies (Hessian)
at 298.15 K and 1 atm. For conformers displaying imaginary
frequencies, the pyQRC Python script (version 1.0.3)56,57 was
employed to generate revised input geometries, which were then
reoptimized with the same DFT settings. Conformers that
retained imaginary frequencies after two attempts at reoptimiza-
tion were excluded from further evaluation.
2.3. Data Analysis. The core objective of this study is to

identify a subset of conformers from the CREST ensemble that
best represent the DFT ensemble, using DFT-derived energy
values from stage I (Figure 1a) as the reference. Themain part of
the workflow (stage II, Figure 1b) involves the evaluation of
various algorithms selection methods to determine their
effectiveness in capturing the most relevant conformers. In
this context, assuming chemical accuracy of ca. 5 kJ/mol,
conformers within this energy range were considered indis-
tinguishable in the DFT ensemble.58 An automated script was
developed to perform this task, followed by additional manual
adjustments. The finalized DFT ensembles are available in the
Data Availability section.
Molecular descriptors of the CREST-based conformers were

calculated using the OBeLiX (Open Bidentate Ligand eXplorer)
open-source computational package.7 With the MORFEUS
conformer ensemble object as input, a total of 37 descriptor
values for each individual conformer including steric, geometric
and electronic properties were calculated. A comprehensive list
of these descriptors is provided in the Data Availability section.
Additionally, structural differences between conformers were
incorporated into the analysis using the heavy-atom root-mean-
square deviation (RMSD) relative to the first (lowest CREST
energy) conformer in the ensemble. The RMSD calculations
were performed with the MORFEUS package using its default
settings.
As shown in Figure 1b, three approaches were used to identify

a subset of conformers from the CREST ensembles that
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accurately represent the DFT ensemble: a principal component
analysis (PCA), a molecular descriptor-based selection and a
DBSCAN clustering of relative energy and RMSD values. For
the PCA, the data set of selected molecular descriptors
supplemented by the RMSD values of the conformers was
utilized. To standardize the data set, a standard scaling
procedure was applied to the descriptors, ensuring uniform
data ranges with a mean of zero and a standard deviation of one.
This analysis focused on the first two principal components only.
In the second approach, molecular descriptor-based selection
methods, certain steric and geometric properties, such as the
cone angle and buried volume, were used for conformer
selection. This approach ensures that the selected conformer set
includes conformers with varied steric and geometric profiles,
including the extremes that define distinct accessible value
ranges for these properties.59 Based on this, it was chosen to
select CREST-based conformers with the minimum and
maximum values for both buried volume (calculated at the
metal center with radius 4 Å) and cone angle. The third
approach appliedDBSCAN clustering on the relative energy and
RMSD values of conformers within the ensemble, with the
minimum cluster size parameter set to 2, while the distance-to-
centroid parameter was further optimized based on model
performance.
The investigated methods were primarily evaluated by a

confusion matrix. The following approach was used to
determine the parameters of the confusion matrix:

• True negative (TN): The number of conformers that are
correctly eliminated by the algorithm: their DFT minima
are already represented by other conformers in the
predicted subset, making them redundant to cover the
DFT ensemble.

• False negative (FN): The number of conformers that are
incorrectly eliminated by the algorithm: their DFT
minima are not represented by other conformers in the
predicted subset, making them necessary to cover the
DFT ensemble.

• False positive (FP): The number of conformers that are
incorrectly included in the predicted subset by the

algorithm: their DFT minima are already represented by
other conformers, making them redundant to cover the
DFT ensemble.

• True positive (TP): The number of conformers that are
correctly included in the predicted subset by the
algorithm: their DFT minima are not represented by
other conformers, making them necessary to cover the
DFT ensemble.

The chosen evaluation parameters were true negative (TN) and
false negative (FN) values. In a well-performing model, TN is
maximized to ensure that all redundant conformers are removed,
while FN is minimized to ensure that no DFT minimum is
overlooked.
2.4. Validation. A data set from our previous study, in which

both CREST-based conformer ensembles and their DFT-
optimized structures were available, was used for further
validation purposes. This data set also consisted of Rh-based
catalysts with bisphosphine ligands, but instead of using the
precatalyst form with NBD coordinated to the metal center, a
methyl 2-acetamidoacrylate substrate was coordinated to Rh.
Based on the ligand-substrate configurations, four different
coordinationmodes are possible of which two aremore sterically
restricted, and two are less sterically restricted.11 Our workflow
was tested on the 44 CREST ensembles from 11 different
ligands. Generally, the substrate coordination gives the
structures more flexibility compared the precatalyst form with
NBD. This makes the conformer ensembles extend beyond the
possibilities of manual analysis within the restrictions of
reasonable labor costs and thus serves as a representative case
study where high-throughput conformer analysis would be
useful.

3. RESULTS AND DISCUSSION
3.1. Conformer Search and DFT Geometry Optimiza-

tion. The refinement of all conformers at a high level of theory
after low-level conformational searches can significantly increase
computational cost without justified gains. This can be
demonstrated by comparing the conformer ensembles gen-
erated by CREST and refined at the DFT level of theory.

Figure 2.Comparison of the number of conformers obtained from both CREST andDFT calculations. The number of conformers in each ensemble is
indicated in blue for the CREST ensembles and in green for the DFT ensembles. The ensembles were named according to ligand numbering, which can
be found in the list of ligands in the Data Availability section.
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CREST, employing xTB, generally predicts much greater
conformational freedom, characterized by a broader range and
higher number of individual conformers than those retained
after DFT optimization (Figure 2). Specifically, while CREST
generated a total of 678 conformers across the 24 input
structures, the DFT ensembles retained a considerably smaller
subset of these conformers. Among the 24 ensembles analyzed,
the average number of conformers per ensemble at the xTB level
was 23, which was reduced to an average of only 2 conformers
per ensemble after DFT refinement. The CREST ensembles
exhibited considerable variation in the number of conformers
obtained; for example, the ensembles for L7 and L23 comprised
only eight conformers, while the largest ensemble, L18,
contained 78 conformers. Following DFT refinement, both
L23 and L18 yielded a single conformer in the DFT ensemble,
whereas the ensemble for L7 contained two conformers. The
large reduction observed in ensemble size after DFT refinement
is in line with our previous observations,11 which indicate that
the size of conformer ensembles decreases greatly after the DFT
refinement.
To investigate this in more detail, four representative

ensembles are examined: L3, L8, L17, and L24. Figure 3
compares the relative stabilities of the conformers from CREST
at the xTB level (ΔExTB) and after DFT refinement (ΔEDFT).
The broad conformer space predicted by CREST collapses to
only a few distinct conformers after DFT optimization (Figure
3). Furthermore, the relative stabilities predicted at the xTB level
do not correlate with those computed at the DFT level. For
example, in ensemble L17, the conformer ranked as lowest-
energy by CREST is 21 kJ/mol higher than the lowest DFT
energy conformer. Similarly, in ensemble L8, the CREST

lowest-energy conformer has a higher energy by 19 kJ/mol
compared to the lowest DFT conformer.
These examples highlight a key point: the apparent differences

in flexibility predicted by the two methods stem from the fact
that many of the CREST conformers, even those with large
energy differences, converge to the same DFT conformer after
optimization. This comparison reveals that the flexibility of the
complexes obtained by xTB is overestimated, resulting in amuch
smaller conformer space at the higher level of theory.
The discrepancy between the conformer spaces predicted by

xTB andDFT highlights a significant challenge when lower-level
methods are utilized for conformer selection prior to further
refinement: if one selects only the global minimum or a limited
number of low-lying CREST conformers for subsequent
refinement and physical-chemical descriptor calculation, there
is a high probability of misrepresenting the actual higher-level
ensemble. In the absence of more sophisticated conformer
selection strategies, this approach risks overlooking relevant
structural diversity and introducing bias into the results as
highlighted by Laplaza et al.33 Consequently, computational
resources may be wasted, and a comprehensive understanding of
the system’s true conformational space may not be achieved.
3.2. Methods Based on Descriptors. We introduce a

systematic analysis framework to establish a more robust
connection between the xTB and DFT conformer ensembles,
with the objective of automating conformer selection while
ensuring the retention of all unique configurations. To evaluate
the correlation between the CREST-based ensemble and its
DFT-optimized counterpart, we calculated a set of descriptors
on the CREST conformer ensemble. These descriptors,
including relative energy, RMSD, cone angle, and buried

Figure 3. DFT and xTB energies relative to the conformer with the lowest xTB energy of ensemble L3 (a), ensemble L8 (b), ensemble L17 (c), and
ensemble L24 (d).
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volume, were used to assess the effectiveness of filteringmethods
in generating a subset of conformers that closely mirror the DFT
ensemble. The RMSD and ΔExTB values of the conformers were
employed to eliminate redundant conformers through geometry
and energy pruning methods as implemented in the MORFEUS
Python package. Similar approaches are implemented in the
AQME package.60 The RMSD pruning method targets
structural redundancy, based on the hypothesis that conformers
with similar geometries, indicated by an RMSD within 0.35 Å of
the lowest-energy conformer, are likely to converge to the same
DFT minimum upon refinement. In contrast, the energy
pruning method eliminates conformers with relative xTB-
based energies exceeding a threshold of 12.55 kJ/mol (3.0 kcal/
mol), suggesting that conformers with close relative energies
may exhibit similar stabilities and thus contribute similarly to the
conformational space. To further refine the conformer selection,
we also considered geometric descriptors such as cone angle and
buried volume, which are widely used to characterize the steric
and geometric properties of catalysts. These parameters were
selected based on the hypothesis that they would capture
conformational variability in steric profiles that is not necessarily
reflected in electronic properties.59,61 The cone angle and buried
volume are particularly sensitive to steric variations, which are

crucial for understanding structural differences in catalytic
environments. Therefore, we hypothesized that CREST-based
conformers with extreme cone angles and buried volumes are
more likely to converge to distinct DFT minima, reflecting
significant conformational differences.
To validate the use of cone angle and buried volume as key

descriptors for distinguishing unique DFT minima, an initial
analysis was conducted across the 24 conformer ensembles. Out
of the 24 ensembles analyzed, 13 showed more than one DFT
minimum. In 11 of these cases, the conformers with the highest
and lowest buried volumes converged to distinct DFT minima,
while in 2 cases (ensembles L3 and L17), they converged to the
same minimum. For the cone angle descriptor, the conformers
with the highest and lowest values converged to the same DFT
minimum in 3 instances (ensembles L3, L8, and L12). This
suggests that the combination of these two descriptors
successfully differentiated at least two DFT minima in 12 of
the 13 cases, providing a basis to utilize them in descriptor-based
filtering methods. Three different pruning methods were used
prior to the selection process, as shown in Figure 4. These
methods vary by pruning approach: RMSD pruning (method 1),
energy pruning (method 2), and a combined approach using
both RMSD and energy pruning (method 3). In each method,

Figure 4. (a) Scheme and results of three descriptor-based filtering approaches. In method 1 (left), RMSD pruning is applied; in method 2 (center),
energy pruning is applied; and in method 3 (right), both RMSD and energy pruning are combined. Confusion matrices for each method are shown,
highlighting the primary assessment parameters: false negatives (FN) and true negatives (TN). Additionally, each ensemble where a DFTminimum is
missed (FN) is indicated. (b) CREST-DFT relative energy plots are provided for three ensembles, where DFT minima are potentially missed, with
conformers associated with a missed DFT minimum marked in red.
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the selected conformers retained were those with the highest
and lowest cone angle and buried volume within the CREST
ensemble.
In an ideal case, as many redundant conformers as possible are

eliminated (true negatives) while minimizing the number of
unique DFT minima missed (false negatives). Since the same
descriptors were applied in for all selection methods, but the
pruning methods differed, evaluating these parameters high-
lights the relative effectiveness of each pruning approach in
balancing computational efficiency with accuracy.
Across the 24 CREST ensembles analyzed, a total of 644

redundant and 50 significant conformers were identified. The
RMSD pruning method removed 364 (56%) of the redundant
conformers, while the energy pruning eliminated only 240
(37%). A notable distinction between the two approaches is that
RMSD pruning missed only one DFT minimum (in ensemble
L16), while energy pruning failed to capture two DFT minima
(one each in ensembles L8 and L15). Figure 4 shows that for
ensembles L15 and L16, the missed DFT minima are not the
lowest energy conformers, whereas in ensemble L8, the global
DFTminimum is missed. Therefore, applying RMSD pruning is
more effective in both reducing redundant conformers and
capturing all minima of the DFT ensemble. This indicates that
conformers that show strong structural similarities in the
CREST space are more likely to converge into the minimum
upon further geometry refinement than conformers that show
similar energy values. In method 3, which combines both RMSD
and energy pruning, all three of the previously mentioned DFT
minima were missed (one each from ensembles L8, L15, and
L16). However, this combined approach successfully removed
448 redundant conformers, representing 70% of the total
redundancies. This indicates that the combined pruning method
offers an effective option for applications where maximizing
redundancy reduction takes precedence over capturing every
DFT minimum.
3.3. Principal Component Analysis. Although the

descriptor-based filtering approach showed promising results
in distinguishing unique DFT minima, its main limitation lies in
the lack of flexibility to customize the balance between accuracy
and computational cost, i.e., various pruning methods were
utilized, but further downstream selection is based on two
descriptors selected by chemical intuition. To address this
limitation, a new method was developed, leveraging all
descriptors calculated during the low-level CREST exploration.
Since conformers often converge to the same DFT minimum
after optimization, it can be hypothesized that such conformers
share underlying similarities detectable from the CREST-

derived descriptors. Energy alone did not prove sufficient as a
distinguishing feature; therefore, we employed a more advanced
data-driven method to identify potential similarities among
conformers.
This data-driven approach combined dimensionality reduc-

tion techniques with clustering methods to identify patterns
among the CREST-derived conformers. Dimensionality reduc-
tion techniques, such as PCA, are commonly employed on
molecular descriptors to facilitate the exploration of chemical
space.9,59,62 It was hypothesized that the variation in
physicochemical properties captured by the descriptors contains
information about the behavior of the refined DFT ensemble. As
a result, the PCA space was expected to provide a more intuitive
way to cluster conformers that are refined to similar DFT
geometries. PCA was performed on the complete set of
descriptors derived from the CREST-based structures, which
included the full set of descriptors (see Data Availability section
for the descriptor data set) and the RMSD values of the
conformers. Figure 5 presents the chemical space derived from
xTB-calculated features following PCA dimensionality reduc-
tion, with the coloring indicating the corresponding DFT
minima of the conformers. In an ideal scenario, the PCA-
reduced space would effectively capture the underlying DFT-
defined energy minima, resulting in conformers with identical
colors forming distinct clusters. However, the results reveal that
this is not the case: the red-colored conformers fail to cluster
cohesively, and similarly, the blue-colored conformers in Figure
5b are dispersed across two separate regions. These findings
indicate that clustering within the PCA space does not yield an
optimal selection of conformers. Furthermore, this observation
underscores that the variability in the xTB-derived descriptors
does not align well with the stability of conformers as
determined by DFT calculations.
3.4. Clustering. The PCA analysis did not provide a feasible

alternative to the previously discussed descriptor-based
methods, indicating that incorporating chemical heuristics,
such as filtering based on chemically intuitive descriptors,
remains preferable. While the descriptor-based methods
demonstrated efficiency, they suffer from a lack of flexibility in
tuning the size of the ensemble for specific requirements.
Additionally, these methods rely on molecular descriptors
derived from CREST ensembles, which consequently adds an
additional step to the workflow.
Building on the limitations of descriptor-based methods and

PCA-based analysis, we explored an alternative filtering
approach using unsupervised clustering techniques. Unlike
previous methods that relied on a set of descriptors, this new

Figure 5. PCA plots of 2 ensembles: ensemble L3 (a) and L20 (b), conformers that converge into the same DFTminimum are marked with the same
color.
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approach focuses solely on the relative energy and RMSD values
of the CREST-based conformers. By doing so, it captures both
geometric and energetic features without the need for additional
descriptor calculations, based on the assumption that con-
formers with similar geometries and energy values are likely to
converge to the same DFT local minimum. An initial
comparison of three clustering algorithms, K-means, K-medoids,
and DBSCAN, revealed that DBSCAN is best suited for our data
set and objectives. Unlike K-means and K-medoids, which
allocate all conformers to a cluster and thereby risk excluding key
conformers, DBSCAN is designed to manage data with higher
noise levels. Conformers are grouped only if they are sufficiently
close in RMSD and energy, minimizing the likelihood of
overlooking essential conformers in the ensemble. In particular,
the cluster size parameter (ϵ) in DBSCAN provides a powerful
mechanism to control the definition of “closeness”, enabling the
method to be fine-tuned for various objectives. This flexibility
allows DBSCAN to strike a balance between precision and
computational efficiency in conformer selection.
The results of the DBSCAN clustering (Figure 6a) show that

the choice of the ϵ parameter and therefore the size of the
clusters significantly influences the performance of the clustering
model. The clustering results can be categorized into three parts

based on the value of false negatives. In the initial range of ϵ, all
DFT minima are successfully captured. As the cluster size
increases, the number of redundant conformers eliminated also
increases proportionally. At ϵ = 0.19, 369 redundant conformers
are filtered out, slightly surpassing the previously reported
RMSD pruning method (364) and significantly exceeding the
energy pruning method (240). However, as the cluster size is
further increased, at ϵ = 0.20, one DFT minimum remains
uncaptured, specifically the global DFT minimum of ensemble
L8 (see Figure 6b). Increasing the parameter further to ϵ = 0.23
results in an additional missed DFT minimum, which
corresponds to the highest energy minimum of ensemble 14.
Despite its simplicity, this method outperformed all previously
tested approaches while allowing for more precise performance
tuning through the parameter ϵ. When capturing all DFT
minima is critical, a lower ϵ value can be selected, with the
filtering objective gradually shifting from accuracy toward cost-
efficiency as ϵ increases.
3.5. Validation. Although the clustering approach demon-

strated promising results on the data set, its applicability to a set
of systems with higher conformational flexibility remains
uncertain. To assess its generalizability, we validated the method
using a data set featuring methyl 2-acetamidoacrylate as the

Figure 6. Results on DBSCAN clustering. (a) Results of DBSCAN clustering on the data set of 24 ensembles are presented. The x-axis represents the
distance to centroid (ϵ) parameter, while the y-axis displays the true negative values. Data points are colored according to their false negative values:
purple points indicate FN = 0, orange points represent FN = 1, and blue points correspond to FN = 2. (b) CREST-DFT relative energy plots are
provided for three ensembles, where DFT minima are potentially missed, with conformers associated with a missed DFT minimum marked in red.
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substrate. Switching from the precatalyst to the actual substrate
increases the ligand’s flexibility, resulting in a more complex and
diverse conformational space.11 This increased complexity
provides a robust test for evaluating the transferability of our
filtering approach and examining the sensitivity of the ϵ
parameter across different structural types.
The 11 input structures, reflecting various ligand config-

urations, yielded 44 CREST ensembles, resulting in a total of
1271 conformers. Following DFT geometry optimization, the
refined ensembles contained 154 conformers, indicating that
1117 of the CREST conformers were redundant. Given that
DBSCAN clustering within the range of ϵ = 0.10 to 0.19
successfully captured all DFT conformers from the original data
set, this algorithm was applied again with the same parameters.
The outcome of this clustering approach is illustrated in Figure
7, which plots the ϵ parameter against the number of successfully
eliminated redundant conformers. The color of the data points
denotes the number of missed DFT minima. These results
indicate that even in the best-case scenario with an epsilon value
of 0.12, at least one DFT minimum remains uncaptured.
However, given the larger number of DFTminima, this shortfall
is proportionally less significant. When comparing the number
of redundant conformers eliminated across both data sets using
the same DBSCAN filtering approach (ϵ = 0.19), it becomes
evident that although more redundant conformers are
eliminated in absolute terms from the acrylate substrate data
set than from the original NBD substrate data set, the relative
reduction is lower. Specifically, 462 out of 1117 redundant
conformers (41%) were removed from the acrylate substrate
data set, compared to 369 out of redundant 644 conformers
(57%) in the NBD data set. These findings suggest that although
the acrylate substrate data set exhibits more variations in the
space of RMSD versus energy at the xTB level of theory,
resulting in less straightforward clusters, our approach remains
effective. A majority of DFTminima are captured via this simple
clustering approach solely based on RMSD and relative energy
as metrics.

4. CONCLUSIONS
Computer-readable representations of catalysts enable ML-
based screening of widely utilized TM catalysts. The inclusion of
conformational flexibility within these representations remains
largely dependent on human decisions and assumptions for the

filtering of ‘relevant’ conformers. Additionally, less accurate
semiempirical or force-field based approaches are preferred over
DFT-based methods for the generation of these conformer
ensembles due to lower computational cost. This study explored
data-driven approaches to correlate conformer ensembles of a
lower level of theory to their DFT optimized counterparts,
enabling automated filtering of conformers. A data set of 24
precatalyst structures based on our previous research was
established for which conformer searching via CREST and
subsequent DFT optimization of every resulting conformer was
performed. The investigation was performed in three parts. First,
a combination of pruning and conformer selection based on
geometric ligand descriptors was tested. Afterward, a fully data-
driven approach via PCA was tested for the mapping of the
CREST-based conformers to their DFT optimized equivalents.
Finally, RMSD- and energy-based clustering using DBSCAN
was tested and then evaluated on a second data set containing
the same ligands, but the precatalyst structure was changed for
one containing an acrylate substrate, inducing higher ligand
flexibility.
Our research showed that the CREST-generated conformers,

when compared to the DFT ensemble, do not reflect the
flexibility of the structure. It proved difficult to identify the
lowest energy conformer within a DFT optimized conformer
ensemble directly based on the energy as calculated in CREST
with the GFN2-xTB method. Additionally, CREST produced
significantly more conformers compared to the DFT-based
ensemble, thus overestimating the flexibility of ligands. Pruning
methods demonstrated that pruning based on geometry, rather
than energy, resulted in a more accurate mapping to the DFT-
based ensemble. This highlighted issues with CREST’s energy
calculations and the limitations of energy-based filtering. A fully
geometry-based filtering method, using RMSD pruning and
selection based on geometric descriptors, outperformed energy-
based approaches. However, limitations remained such as
limited tunability of this method and one of the DFT minima
remaining uncaptured. Unfortunately, a second filtering
approach using PCA on descriptors from the CREST ensembles
failed to differentiate conformers based on their DFT energy.
Remarkably, the simplest algorithm, clustering based on RMSD
and energy values, performed exceptionally well. DBSCAN
clustering with these features showed the best filtering, with the
lowest false negative rate and the highest elimination of

Figure 7. Results of DBSCAN clustering on the validation data set of 44 ensembles are presented. The x-axis represents the distance to centroid (ϵ)
parameter, while the y-axis displays the true negative values. Data points are colored according to their false negative values: purple indicates FN = 1,
orange represents FN = 2, blue corresponds to FN = 3, green denotes FN = 5, brown indicates FN = 7, and pink represents FN = 8.
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redundant conformers. This method can be fine-tuned using the
cluster centroid distance parameter, balancing accuracy and
computational cost for different applications. It also does not
require the calculation of molecular descriptors for the CREST
ensemble. When tested on a validation data set containing an
acrylate substrate with increased ligand flexibility compared to
that of a precatalyst structure, the method remained effective,
suggesting its general applicability across various catalyst
structures employing bisphosphine ligands.
Overall, our findings bear significance for the dynamic

representations involving conformational flexibility of catalyst
structures in high-throughput virtual screening workflows. A
shortcoming of this approach is that the relationship between
the distance to centroid parameter and the resulting accuracy-
cost trade-off is highly dependent on the chemical structures
themselves, making it challenging to tune. Additionally, when a
very high accuracy is required, e.g., for the approximation of
enantioselectivity, filtering based on constant energy refinement
and reweighting conformers would be more advisable. Develop-
ments in conformer filtering approaches as researched in this
study go hand-in-hand with developments in the field of
conformer searching methods,22,63−65 ML-based energy calcu-
lations,66 and more efficient exchange-correlation function-
als67,68 where constant improvements are being made in the
chemical space of transition-metal complexes. Nevertheless, a
DBSCAN-based clustering approach utilizing the xTB-based
energy and RMSD remains the most simple and computation-
ally feasible option for now. This approach is being utilized in
our current and future research on dynamic representations of
homogeneous catalysts for ML-based virtual screening.

■ ASSOCIATED CONTENT

Data Availability Statement
The Python package for the featurization of catalyst structures,
OBeLiX, is available through the GitHub organization page of
the ISE group at TU Delft: EPiCs-group OBeLiX (https://
github.com/EPiCs-group/obelix), with the specific version to
calculate descriptors for individual conformers from a CREST
ensemble contained on a separate branch (https://github.com/
EPiCs-group/obelix/tree/confomer_searching_dev_final). All
data sets used in this study are provided with an extensive
README via 4TU. ResearchData at https://doi.org/10.4121/
45bb4e4b-272b-41ce-a090-2b6e4b1708fd. The following re-
sources are included: A list and visualization of ligands
(‘ligand_description.docx’). An Excel file categorizing and
describing all descriptors (‘descriptors_description.xlsx’). Script
for conformer filtering and creating figures used for analysis
(‘data_analysis.py’). Pickled ConformerEnsemble objects cre-
ated with the Morfeus package containing conformers, xTB
energies and RMSD values (‘conformer_ensemble_files.zip’).
Input and output of conformer searching with CREST
(‘CREST_structures.zip’). CSV files with descriptors for each
conformer calculated at the xTB level of theory (‘descriptors.-
zip’). Input and output of DFT optimized files with Gaussian 16
(‘DFT_structures.zip’). MDL Molfiles to extract the con-
nectivity matrix per metal−ligand complex for conformer
searching and analysis (‘mol_files.zip’). Files with energy values
and tracking which conformers are pruned in a conformer
ensemble (‘pruning_files.zip’). Data from the case study on a
validation set from our previous research (‘validation.zip’).
Figures for PCA-, clustering- and energy-based conformer
selection approaches (‘visualization.zip’).
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