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Abstract—Doppler velocity estimation in pulse-Doppler radar
is done by evaluating the target returns of bursts of pulses. While
this provides convenience and accuracy, it requires multiple
pulses. In adaptive and cognitive radar systems, the ability to
adapt on consecutive pulses, instead of bursts, brings potential
performance benefits. Hence, with radar transceiver arrays
growing increasingly larger in their number of elements over the
years, it may be time to re-evaluate how Doppler velocity can
be estimated when using large planar arrays. In this work, we
present variance bounds on the estimation of velocity using the
Doppler shift as it appears in the array model. We also propose
an efficient method of performing the velocity estimation and we
verify its performance using Monte Carlo simulations.

Index Terms—array signal processing, velocity estimation,
Doppler processing, pulse-Doppler radar, Cramér-Rao bound

I. INTRODUCTION

In pulse-Doppler radar systems, it is typical to estimate
the radial velocity by evaluating multiple compressed pulses
reflected by a target and estimating the linear phase change
over time. It is known that the pulse repetition frequency
(PRF), number of processed pulses, carrier wavelength and
signal-to-noise ratio (SNR) after pulse compression are the
primary contributors to the estimation performance. Cramér-
Rao bounds (CRBs) of velocity estimation on arrays have been
described in [1], [2], but the signal models used typically omit
the Doppler velocity in the array response expression since this
is considered negligible. When considering multiple pulses in
a burst, the fast-time Doppler effect is also commonly omitted.

Numerous methods exist that aim to reach optimal velocity
estimation on arrays [3]. However, such methods do not
exploit the extra information given by using large receiver
arrays, besides being able to scan more angles of arrival
(AoA) and improved SNR. While these methods perform
better than conventional pulse-Doppler processing, there may
be more room for improvement considering a more complete
signal model. Since modern radar systems are realized with
increasingly larger arrays, both in terms of physical size and
number of elements, such as the Sea-based X-Band Radar [4],
it may be time to re-evaluate what this large amount of data
allows us to do in terms of parameter estimation.

If the array response depends on the radial velocity, it might
not be needed to evaluate a pulse train anymore. After all,

The work is part of a project funded by the Netherlands Organisation for
Applied Scientific Research (TNO) and the Netherlands Defence Academy
(NLDA).

the array response can be estimated using pulse compression
of single pulses. Single pulse Doppler estimation is typically
considered challenging or even infeasible since the phase
changes due to Doppler shifts on the reflected waveform are
so small they are negligible. However, the array response is an
extra source of information on the radial velocity of the target
that can be utilized to realize single pulse Doppler estimation.

Single pulse Doppler shift estimation can be useful for
different reasons. First and foremost, it can be used in adaptive
radar systems which rely on frequent and continuous updates
of their surroundings to perform parameter optimization and
resource allocation. The less ‘out of date’ the knowledge of
the surrounding is, the better such a system should be able to
perform [5]. Second, performing Doppler shift estimation on
individual pulses from the array does not exclude one from
performing the estimation on a burst of pulses as well. In this
case, using the additional information granted by the array
response, the performance of the Doppler shift estimation on
the burst of pulses may improve. Third, [6] argues that single
pulse Doppler shift estimation can be used as an alternative to
motion compensation algorithms for fast-moving targets which
move to different range cells within a full processing interval,
or whose motion is not uniform. This particularly also applies
to fast-moving targets at long ranges, where PRFs might be
low and pulse lengths may be large.

In this contribution, we show the variance bounds of esti-
mating the Doppler velocity on single pulses using only the
array response, and using both the array response and the
shifted radar waveform. We further show a comparison of
bounds considering and not considering the array response
as a source of information on the Doppler velocity, effectively
comparing single pulse Doppler estimation to burst processing.
We also introduce a method of estimating the Doppler velocity
from the array response for the single target case, using a fast
rank-1 matrix approximation and the fast Fourier transform
(FFT). While the theoretical bound as well as the practical
performance of the method show a large error, there may be a
use for such approaches in scenarios of high SNR and/or using
receive arrays with large physical aperture. Further, there may
be applications in systems with lower wave travel speeds, such
as sonar.
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Fig. 1: Array configuration. In this example Mx = My = 2
and M =MxMy = 4.

II. SIGNAL MODEL

Let us assume a target unimodulus signal s of length N
samples, arriving on a uniform planar array (UPA) with array
response a, element spacing dλ in wavelengths and M number
of elements, see Fig. 1. The signal is critically sampled with
sampling period Ts. The target is assumed to arrive from zero
elevation and as such, we only describe its angle of arrival
(AoA) with the azimuth angle θ. Let the Doppler shift due to
the target speed be expressed by ∆λ =

(
1 + 2vr

c

)−1
, which

describes the multiplicative change in carrier wavelength λ0,
where vr is the radial component of the target speed and c
the speed of light. Additionally, let fd = 2vr

λ0
be the Doppler

frequency, where λ0 is the carrier wavelength.
We can then let Y be the received array data of a single

reflected pulse, given by

Y = asT + V ∈ CM×N , (1)

where, under the assumption of a 2-dimensional Mx × My

array (thus M =MxMy), we have

a = ax ⊗ ay ∈ CM , (2)

ax =
[
z0x z1x · · · zMx−1

x

]T ∈ CMx ,

ay =
[
z0y z1y · · · z

My−1
y

]T
∈ CMy ,

zx = exp

{
j
2πdλ
∆λ

sin θ

}
, (3)

zy = exp

{
j
2πdλ
∆λ

cos θ

}
, (4)

and s ∈ CN is, as mentioned before, a vector describing the
reflected unimodulus radar waveform as it arrives at the array,
including the fast-time Doppler effect. Its elements are given
by

sn = ej(φn+2πfdTsn) ,

where n and φn are the sample index and the waveform
phase at sample n, respectively. The radar cross section could

be included explicitly, but the constant phase shift within a
pulse is of no concequence to the discussion of this work
and we normalize such that |sn| = 1 for all n. The entries
of V ∈ CM×N are the noise realizations, which are drawn
from a zero-mean Gaussian distribution with variance σ2, and
the noise is spatially and temporally uncorrelated. The pre-
processing SNR is equal to σ−2.

From (3) and (4), it should be clear that, if we can estimate
the array response, the Doppler shift on the array response can
be separated from the angle of arrival.

III. CRAMÉR-RAO BOUND FOR VELOCITY ESTIMATION

Before we discuss our method of estimating the target radial
velocity from the array response, let us first find the CRB
of such an estimator, assuming θ is known. We start with
the log-likelihood function of the observations, which can be
expressed as

L = −MN log
(
πσ2

)
− 1

σ2

N−1∑
n=0

‖yn − asn‖22

= −MN log
(
πσ2

)
− 1

σ2

N−1∑
n=0

‖vn‖22 ,

where yn and vn are the columns of Y and V , respectively.
Given the unknown parameter vector ξ =

[
σ2 vr

]
, the

CRB for velocity estimation is given by the bottom-right entry
of the inverse of the Fisher information matrix (FIM) given
by

Fξ = −E

{[
∂2L
∂(σ2)2

∂2L
∂σ2∂vr

∂2L
∂vr∂σ2

∂2L
∂v2r

]}
. (5)

Since E
{

∂2L
∂σ2∂vr

}
= E

{
∂2L

∂vr∂σ2

}
= 0, we need only concern

ourselves with deriving Fvr = −E
{
∂2L
∂v2r

}
.

We can then derive

∂L

∂vr
=

2

σ2

N−1∑
n=0

Re
{
s∗nȧ

Hvn + ṡ∗na
Hvn

}
,

where ȧ = da
dvr

and ṡn = dsn
dvr

. Next,

−E

{
∂2L

∂v2r

}
=

2

σ2

(
N ȧHȧ+

N−1∑
n=0

M‖ṡn‖22

+ 2Re
{
s∗nȧ

Haṡn
})

,

gives the relevant diagonal entry of Fξ. We can work this out
a little further leading to the expressions

ȧHȧ =
8π2d2λM

c2

(
1

3
(Mx − 1)(2Mx − 1) sin2 θ

+
1

3
(My − 1)(2My − 1) cos2 θ

+
1

2
(Mx − 1)(My − 1) sin 2θ

)
,
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N−1∑
n=0

M‖ṡn‖22 =
8π2MT 2

s

3λ20
N(N − 1)(2N − 1) ,

N−1∑
n=0

2Re
(
s∗nȧ

Haṡn
)
=

8π2dλTsM

cλ0
N(N − 1)

×
(
Mx(Mx − 1) sin θ

+My(My − 1) cos θ
)
.

From these equations we find the CRB to be

CRB(v̂r) =
σ2

16π2MN(α+ β + γ)
, (6)

where

α =
d2λ
c2

(
1

3
(Mx − 1)(2Mx − 1) sin2 θ

+
1

3
(My − 1)(2My − 1) cos2 θ

+
1

2
(Mx − 1)(My − 1) sin 2θ

)
, (7)

β =
T 2
s

3λ20
(N − 1)(2N − 1) , (8)

γ =
dλTs
cλ0

(N − 1)

×
(
Mx(Mx − 1) cos θ −My(My − 1) sin θ

)
.

These three summands each correspond to unique contribu-
tions:

• α describes the contribution of the velocity term in the
array response.

• β describes the contribution of the fast-time Doppler in
the reflected waveform.

• γ is a cross-term due to the two sources of Doppler in
our model.

By comparing (7) and (8), it becomes clear that increasing
the listening time, NTs, is far more beneficial in lowering the
CRB than increasing the number of antennas. This is further
illustrated by Fig. 2a where

Gain =
CRB(v̂r)|α=0,γ=0

CRB(v̂r)
(9)

is plotted, indicating the improvement in CRB when the
Doppler effect on the array is considered instead of neglected.
This confirms that neglecting the Doppler effect on the array
response when multiple pulses are available is valid since
the listening time in that scenario is dictating the estimation
performance bound. As a result, it looks like there are few
scenarios where considering the Doppler effect on the array re-
sponse in the signal model is worth considering. One example
of when it may be beneficial still to consider the Doppler effect
in the array response model is when a waveform with range-
Doppler coupling is used, such as linear frequency modulated
waveforms.

Also, increasing the element spacing dλ beyond 1
2 in-

creases the contribution of the array information for velocity
estimation. While this should result in spatial aliasing, it

can be mitigated by having sub-arrays with smaller element
spacing. This way of distributing multiple antennas over a
large aperture by considering multiple subarrays is similar to
how multiple pulses can be distributed over a larger period
of time. The bound for different amounts of antennas with
different element spacings is shown in Fig. 2b.

IV. FAST SINGLE PULSE VELOCITY ESTIMATION

From Section III, it seems of little use to attempt to estimate
a target velocity from the array response in general. However,
it will not always be possible to perform processing on the
target reflected pulse on all array elements, due to hardware
constraints. If one would still desire to perform single pulse
velocity estimation, there may be no other choice but to
perform the estimation using the array response estimate.

For the single target, single pulse case, we can perform a
rank-1 estimation of the array response matrix A = axa

T
y .

We obtain Â by performing a matched filter operation on
each array element individually. Let â be the estimated array
response given by â = Y hMF, where

hMF =
s∗

‖s‖22
=
s∗

N
. (10)

We can then restructure the obtained estimate â to obtain

Â = âxâ
T
y , (11)

i.e., the resulting matrix resembles the topography of the array.
Once we have estimated this array response matrix, we

perform a compact singular value decomposition (cSVD)1 on
it to obtain the left and right singular vectors associated with
the largest singular value: u1 and v1, respectively. By (11) we
can then say that u1 ∼ ax and v1 ∼ ay up to some scalar
ambiguity. We then need to find the dominant normalized
frequency of these vectors, which should both approximate
dλ
(
1 + 2vr

c

)
.

To find these dominant frequencies, we propose to use an
FFT. It should be noted that to obtain a good estimation
resolution, one would either need to use a very long FFT,
apply methods such as [7] or perform a short local search after
finding a coarse estimate. We will not further describe such,
already well-documented, extensions here and will simply
use long FFT lengths to obtain a sufficiently finely sampled
spectrum.

When the planar array is not uniform, but if the planar array
response vector can be written as the Kronecker product of
two non-uniform linear array response vectors (similar to (2)),
then a type-II nonuniform discrete Fourier transform [8] can
be employed instead of an ordinary FFT.

The frequency estimates can be combined to find the AoA
and velocity. To keep the discussion concise, we assume the
AoA known and the frequency estimate are combined in
a weighted average according to the array dimensions. The
velocity estimation procedure is summarized by Alg. 1.

1A cSVD only calculates an amount of singular values, and left and right
singular vectors up to the given rank of the input matrix.
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(a) Comparison of the CRBs when neglecting and including the velocity in the
array response expression. The gain, given by (9), indicates how much lower
the CRB of including the velocity in the array response is.
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(b) The bound in (6) for different amounts of antennas with different element
spacings. In this figure, N

σ2 = 30dB.

Fig. 2: Cramér-Rao bound analysis.

Require: Y ∈ CM×N ,hMF ∈ CN ,Mx,My, θ
1: â← Y hMF . using (10)
2: Â← reshape(â) . according to (11)
3: u1, σ1,v1 ← cSVD

(
Â
)

4: ψx ← argmax FFT(u1), ψy ← argmax FFT(v1)

5: v̂r ←
c

2

(
Mxψx

(Mx+My)dλ sin θ +
Myψy

(Mx+My)dλ cos θ − 1
)

Alg. 1: Fast single pulse velocity estimation procedure utiliz-
ing the cSVD and FFT.

V. NUMERICAL RESULTS

To verify the proposed method and quantify its performance
we have performed a number of Monte-Carlo simulations. For
the sake of brevity, the following parameters are fixed for all
simulations:

• Number of trials, Ntrials = 100
• Number of pulses, K = 1
• Angle of arrival, θ = π

4
• Radial velocity, vr = 0
• Array element spacing in wavelengths, dλ = 1

2
• Matched filter, hMF = s∗|fd=0

• FFT length, Nfft = 224

For convenience, we set
(
S
N

)
MF = N

σ2 as our sweeping
parameter in the simulations. This quantity can be considered
the SNR after matched filter. In practice, this SNR may
drop when there is a mismatch between target velocity and
the specific matched filter(s) that are used. As discussed in
Section IV, the length of the FFT here is large to obtain
a sufficiently finely sampled spectrum. This number can be
reduced in practice while maintaining resolution, as discussed
earlier.

20 30 40 50 60

Signal to Noise Ratio after Matched Filter (dB)

0

200

400

600

800

1000
3-

si
gm

a
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(m
/
s)

FFT Length: 1.678× 107
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(128, 128)
(128, 64)
(64, 64)

Fig. 3: The variance the velocity estimation and the CRB.
Dotted curves indicate the CRBs, and the •s indicate the
estimator performance of Alg. 1.

Fig. 3 summarizes the results of the Monte-Carlo simula-
tions by showing the 3-sigma values of the simulation outputs
for a few different arrays and

(
S
N

)
MF values. There is a

considerable difference in the performance of the estimator and
the CRB (a factor > 2), likely due to the multi-stage approach
and the considerable sensitivity of the velocity parameter.

VI. CONCLUSIONS

We have presented a method of estimating the Doppler
velocity on uniform planar arrays using the outputs of matched
filters, i.e., the estimated array response. This method reduces
the size of the problem and uses common algorithms that
are efficiently implementable. However, the method does not
achieve the presented variance bound. By inspection of the
variance bound in Figs. 2 and 3, we conclude that such
methods will be primarily useful in (sparse) arrays with large
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apertures and/or for long Doppler-tolerant pulses, with appli-
cations such as early warning systems for very fast targets,
where an order-of-magnitude estimation is sufficient.

We can show through the variance bounds that the gain from
using the array response as an extra source of information on
the velocity is negligible in most other scenarios. In scenarios
where this extra source of information might be helpful, a
method to estimate the velocity from the full data model,
instead of only the array response or only the slow-time pulses,
may be beneficial. This remains as future work.

Our signal model results in a similar data structure as some
models used in MIMO radar estimation methods [9], [10].
They present methods to solve the rootMUSIC algorithm for
two variables. Such estimation methods may be adapted to
the problem presented in this work, though their complexity,
especially for significantly large arrays, may be too high.
Conversely, our method may be applied to find the angle of
departure and AoA in the single target case of [9], as a low
complexity alternative to double rootMUSIC.

Similarly, the rootMUSIC polynomial could be solved
through λ-matrix latent-root-finding [11], [12]. While such
methods were considered, the specific form of our problem
did not allow for low-complexity methods of solving such
polynomials since our λ-matrix is neither regular nor coregu-
lar.
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