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BOUNDARY SINGULARITIES AND CHARACTERISTICS
OF HAMILTON–JACOBI EQUATION

A. MELIKYAN and G. J. OLSDER

Abstract. Boundary-value problems for first order PDEs are locally
considered, when the classical sufficient condition for the solution ex-
istence does not hold, but a solution still exists, possibly defined on
one or both sides of the boundary surface. We note three situations
when such a surface (locally) arises: (1) the part of the boundary
surface with the given boundary value; (2) the part of the bound-
ary surface with no value initially specified on it, while such a value
arises during the constructions; (3) a singular surface arising during
the constructions in the internal part of the domain. In the latter
two cases, which are typical for the problems of optimal control and
differential games, the solution value on the surface is specified due
to singular characteristics. Although the character of the singular-
ity of the solution is well known, we show in this paper that it is
completely determined by the signs of two multiple Poisson brackets
naturally arising in the equations of singular characteristics. We re-
call the notion of regular and singular characteristics and formulate
a new sufficiency condition for the existence and uniqueness in the
irregular case. This condition is in invariant form based on Poisson
(Jacobi) bracket, which is convenient in applications. We give several
examples with irregular solutions and boundary characteristics.

1. Introduction

In many problems of optimal control, differential games, and mathemat-
ical physics, the following boundary-value problem arises in terms of the
first-order (Hamilton–Jacobi, Bellman–Isaacs) PDE and the scalar unknown
function u(x) [7, 2, 4, 5]:

F (x, u(x), p(x)) = 0, x ∈ Ω, p(x) =
∂u(x)

∂x
, (1)

u(x) = w(x), x ∈ M ⊂ ∂Ω = M + M0.
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Generally, to obtain a unique solution in the whole Ω, one needs to specify
the boundary conditions only on a part M ⊂ ∂Ω of the boundary ∂Ω (see
Fig. 1). In [7], such a surface M is called the usable part of the boundary.
The part M0 is free of boundary conditions, or the limit of the solution from
Ω to M0 does not coincide with the boundary value specified.

During the constructions (say, by means of characteristics), another new
boundary subproblem may arise in the vicinity of a surface M+

0 ⊂ M0.
Such a subproblem may be regular or irregular and has generic character,
as show the last two examples of this paper.

1.1. Classical characteristics. In the case of smooth functions F and
w(x) and the surface M (at least of the class C2), the construction of the
smooth solution u(x) ∈ C2(Ω) is known to be reduced to the integration of
the classical (regular) characteristic ODE system [4, 5, 10]:

ẋ = Fp, u̇ = 〈p, Fp〉 , ṗ = −Fx − pFu, p =
∂u

∂x
. (2)

Here we differentiate with respect to some independent variable t, ẋ =
dx/dt, not necessarily having the sense of time.

The classical characteristics admit a certain generalization, which is use-
ful for the construction of nonsmooth solutions with possibly nonsmooth
left-hand side F (see Sec. 3).

1.2. Initial strip. To integrate the characteristic system on some interval
[t0, t1], one needs the initial conditions for the variables (x, u, p). One can
set x(t0) = x∗, u(t0) = w(x∗), x∗ ∈ M , and needs to find p(t0). To do this,
one can differentiate the boundary condition u(x) − w(x) = 0, x ∈ M , in
the directions yj(x) tangent to M and combining with the PDE itself come
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to the system of n equations with respect to p = (p1, p2, . . . , pn):

F (x,w(x), p) = 0, q(x) =
∂w(x)

∂x
,

〈p − q(x), yj(x)〉 = 0, j = 1, . . . , n − 1,
(3)

where yj(x) ∈ R
n, j = 1, . . . , n − 1, is a basis of the tangent space TxM at

a point x ∈ M . The manifold Σ defined in the (x, u, p)-space by Eqs. (3) is
called an initial strip (see [4]).

1.3. Regularity condition. We assume that the Jacobian of system (3)
for the vector p is nonzero,

Δ(x∗, p∗) = det |Fp, y1, . . . , yn−1| �= 0,

for some (x∗, p∗) satisfying the system. Then owing to the implicit-function
theorem, there exists a C1-solution p = r(x) of system (3), p∗ = r(x∗).
Parameterizing the surface M by a proper (n−1)-dimensional parameter s,
x = ϕ(s), s ∈ S0 ⊂ R

n−1 (when one can take yj = ∂ϕ/∂sj , j = 1, . . . , n−1),
one can obtain the initial conditions:

x(t0) = ϕ(s), u(t0) = w(ϕ(s)), p(t0) = r(ϕ(s)), s ∈ S0,

and the corresponding solution of system (3) in the form

x = X(s, t), u = U(s, t), p = P (s, t), s ∈ S0, |t − t0| ≤ ε.

The Jacobian of the equation x = X(s, t) at t = t0, s = s∗, where ϕ(s∗) =
x∗, is Δ(x∗, p∗) �= 0. Thus, one can solve it for (s, t) to obtain t = T (x) and
s = S(x) and form the solution:

u(x) = U(S(x), T (x)), p(x) = P (S(x), T (x)) =
∂u

∂x
.

The solution u(x) here is of the class C2 since p(x) is at least C1.
One can see that the (regularity) condition Δ(x, p) �= 0 is important and

guarantees two things: the existence of an initial strip

Σ = {z = (x, u, p) ∈ R
2n+1 : u = w(x), p = r(x), x ∈ M}

and the reverse of the equation x = X(s, t).
Note another form of the regularity condition which will be used in the

sequel. In case where the surface M is given by an equation g(x) = 0 with
a scalar g, while gx �= 0, one has 〈gx(x), yj(x)〉 = 0, j = 1, . . . , n − 1, since
gx is a normal to M , as the vector p− q is, so that gx = λ(p− q) with some
scalar λ. The regularity condition means that the vector Fp is not in the
linear subspace spanned on yj ; thus,

〈Fp, gx(x)〉 �= 0.

This inequality, the regularity condition, guarantees the local existence of a
C2-solution u(x) defined on both sides of the surface M .
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If one prefers the set Ω be given as g(x) ≤ 0, then 〈Fp, gx(x)〉 ≤ 0 for
an initial-value problem and 〈Fp, gx(x)〉 ≥ 0 for a terminal-value problem,
depending the characteristic flow goes inside or outside of Ω (see [12]).

The aim of this paper is to compare irregular problems locally related
to the following surfaces: (1) the part of the boundary surface with the
given boundary value [7, 2, 4, 5]; (2) the part of the boundary surface
with no value initially specified on it, while such a value arises during the
constructions [11]; (3) a singular surface arising during the constructions
in the internal part of the domain [10], and based on it to formulate a
new sufficiency condition for the existence and uniqueness of the irregular
solution. For this purpose, we exploit the two multiple Poisson (Jacobi)
brackets naturally arising in the equations of singular characteristics. The
signs of these brackets determine the character of the singularity. Such
conditions have invariant nature and are convenient in applications.

2. Irregular problem and boundary conditions on M

Assume that the regularity condition is not fulfilled identically:

〈Fp(x,w(x), r(x)), gx(x)〉 = 0

for all x ∈ M . Such a problem will be called an irregular problem. To
analyze an irregular problem, we assume that an initial strip Σ is given in
advance:

Σ = {z = (x, u, p) ∈ R
2n+1 : u = w(x), p = r(x), x ∈ M}, (4)

where the functions w(x) and r(x) satisfy the strip conditions (3) for x ∈
M = {x ∈ R

n : g(x) = 0}.
Although one has the initial conditions for the integration of the char-

acteristic system, the above algorithm for the construction of u(x) fails for
an irregular problem because the equation x = X(s, t), generally, cannot
be solved for (s, t). But irregular problem still may have solutions under
certain assumptions.

To formulate these assumptions, denote z = (x, u, p) and introduce the
vector-field (right-hand side of the characteristic equation):

ξF (z) = (Fp, 〈p, Fp〉 ,−Fx − pFu) ∈ R
2n+1.

We will distinguish between the following two cases.
The irregular characteristic problem. An irregular problem for which the

vector Fp is tangent to M in R
n and the vector ξF is tangent to Σ in R

2n+1:

〈Fp(z), gx(x)〉 = 0, ξF ∈ TzΣ, z ∈ Σ, x ∈ M,

is called an irregular characteristic problem.
The irregular noncharacteristic problem. In the case where only the first

tangency condition holds,

〈Fp(z), gx(x)〉 = 0, ξF /∈ TzΣ, z ∈ Σ, x ∈ M,
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the problem is called said to be noncharacteristic. Figure 2 illustrates the
behavior of characteristics in the x-space.

The irregular characteristic problem has infinitely many C2-solutions
[4, 10]. The noncharacteristic problem may have a unique solution. We
formulate a sufficiency condition for this.

2.1. Initial strip for irregular noncharacteristic problem. One may
think to substitute the first equation F (x,w(x), r(x)) = 0 in the strip system
by the following one:

〈Fp(z), gx(x)〉 = 0,

while a further singularity may exist. To formulate the problem, introduce
the functions

F i =
〈

gx,
∂

∂p

〉i

F, i = 0, 1, 2, . . . , F 0 = F.

Now we consider the system with respect to unknown p:

F k−1(x,w(x), p) = 0,
〈
p − wx(x), yj(x)

〉
= 0,

j = 1, . . . , n − 1, x ∈ M.
(5)

Assume that the system is satisfied for some point z∗ = (x∗, w(x∗), p∗),
while

F k(z∗) �= 0.

This condition is equivalent to the nonvanishing of the Jacobian of the
system. Thus, there exists a unique solution p = r(x), x ∈ M , defining a
manifold Σ. If, in addition, this solution also satisfies the following k − 1
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equations:
F (x,w(x), r(x)) = 0,

F 1(x,w(x), r(x)) = 〈gx, F 〉 = 0,

...

F k−2(x,w(x), r(x)) =
〈
gx, F k−3

〉
= 0,

(6)

where x ∈ M , we will say that an irregular noncharacteristic problem is
given with the order k − 1 of irregularity and with the initial strip Σ. These
k − 1 equations describe the overdetermination of Σ. Thus, one has a generic
position only for regular case of k = 1. The noncharactericity of such a
problem will be shown in the sequel, as well as the inequality, say, F k(z∗) ≥
0, if one wishes to have g(x) ≥ 0 for Ω.

For the investigation of the irregular noncharacteristic problem, the no-
tion of singular characteristics can be useful.

3. Method of singular characteristics

Next, we provide a brief description of the method of singular character-
istics for Eq. (1). If u(x) and F (x, u, p) are smooth, the local construction
of a solution of problem (1) is known to be reduced to integration of system
(2) of classical characteristics. This integration generates an n-dimensional
strip Σn containing the initial strip, Σ ⊂ Σn, while the solution u(x) is
the projection of Σn to the (x, u)-space. If u and/or F are nonsmooth,
system (2) breaks down. Singularities typically lie along smooth manifolds.
Singular characteristics provide a means to describe such manifolds. The
differential-geometric descriptions of the regular and singular characteristics
are similar [1]. In the regular case, the equation F (x, u, p) = 0 defines a 2n-
dimensional surface W1 in the (2n + 1)-dimensional space of (x, u, p). The
classical characteristics (2) define a tangent field on W1, which generates
integral manifolds Σn of the standard 1-form du − 〈p, dx〉 (i.e., preserves
the strip property of Σ ⊂ Σn). For a given manifold W1, a field with these
properties is defined uniquely up to a scaling homogeneity factor.

Similar tangent characteristic fields can be defined on a surface Wk of
odd codimension k = 1, 3, . . . under some general requirements to Wk. The
integral curves of this characteristic field on a surface of codimension 3 or
higher are called singular characteristics. In many cases, by using both reg-
ular and singular characteristics, one can construct the desired solution u(x)
even if it and/or the Hamiltonian is nonsmooth [10]. The corresponding con-
struction technique is called the method of singular characteristics (MSC).
Regular and singular characteristics together are referred to as generalized
characteristics.

The differential-geometric description of the characteristic field on an
even-dimensional manifold is given in [1]. To write down the corresponding



BOUNDARY SINGULARITIES OF HJ EQUATION 83

analytical formulas, assume that the singularities of u lie along a surface
Γ ⊂ Ω, dim Γ = n − 1, which is associated with a surface W3 of codimension
3 in the (x, u, p)-space (see the note after Theorem 1). Generically, W3 is
locally described by three equations:

W3 : F1(x, u, p) = 0, F0(x, u, p) = 0, F−1(x, u, p) = 0. (7)

The choice of Fi is determined by the type of singularity and properties of
the solution, such as viscosity solution inequalities or matching conditions
across singular surfaces Γ. One of the Fi may represent the PDE itself, say
F0 ≡ F . The vector p in (7) is the limiting value of the gradient of the
function u from an appropriate side of the singular hypersurface Γ ⊂ R

n.
The corresponding tangent field (the system of singular characteristics) on
W3 can be written using so-called singular Hamiltonian Hσ:

μHσ = {F1F0}F−1 + {F0F−1}F1 + {F−1F1}F0, (8)

where μ = μ(z) is a nonzero homogeneity factor, a smooth function, and
{ · } is the Jacobi bracket:

{FG} = 〈Fx + pFu, Gp〉 − 〈Gx + pGu, Fp〉 .

This expression becomes the Poisson bracket if there is no dependence on
u: Fu = 0, Gu = 0.

Theorem 1. Let ξHσ (z∗) �= 0 for some z∗ ∈ W3. Then the system (of
the regular characteristics in terms of Hσ)

ż = ξHσ (z), z ∈ W3, ξHσ (z) =
(
Hσ

p ,
〈
p,Hσ

p

〉
,−Hσ

x − pHσ
u

)
(9)

defines locally the unique (singular) characteristic field on W3.

This theorem follows from [10, Theorem 1.3]. Note that for the construc-
tion of the singular manifold Γ, the system (9) is integrated subject to some
initial (n − 2)-dimensional strip Σn−2 to get an (n − 1)-dimensional strip
Σn−1, and the projection of the latter strip to (x, u)-space determines the
manifold Γ and the corresponding value of u.

It is also shown in [10] how the typical types of singular hypersurfaces
arising in differential games (universal, equivocal and focal; see Isaacs [7])
are described by singular characteristics.

3.1. Equivocal singular characteristics in differential games. For
illustration, consider a singular surface of equivocal type (see [7]). Regular
characteristics approach an equivocal surface Γ on one side and depart from
it on the other, while the gradient p(x) is discontinuous across Γ. For
the case of smooth Hamiltonian F ∈ C2, this leads to the following set of
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necessary conditions, defining the manifold W3:

W3 : F0 = F = 0, F1(x, u) = u − v(x) = 0,

F−1 = {F1F} = 〈Fp, p − q〉 = 0, q =
∂v

∂x
.

The last equality is the tangency condition, which follows from viscosity
solution requirements, and v(x) ∈ C2 is the solution of (1) on the “arrival
side” of Γ. The MSC approach leads to the following result.

Theorem 2. Let μ(z) = {{F1F}F1}, and for some z∗ ∈ W3, let μ(z∗) �=
0 and {{FF1}F} �= 0. Then the initial strip (4) is in W3, Σ ⊂ W3, and is
an invariant manifold of the following system of singular characteristics:

ẋ = Fp, u̇ = 〈p, Fp〉, ṗ = −Fx − pFu − {{FF1}F}
{{F1F}F1} (p − q). (10)

The proof of Theorem 2 follows from the proofs of [10, Theorem 1.5,
Lemma 2.3].

System (10) allows one to construct the surface Γ. For the construction of
the solution u(x) from the “departure” side one has an irregular boundary
value problem due to tangency condition.

If F is nonsmooth, the situation is different. A common type of non-
smooth Hamiltonian is the minimum of two (or more) smooth Hi: F (x, u, p) =
min[H0(x, u, p),H1(x, u, p)]. Now the conditions (7) are applied using

W3 : F0 = H0, F−1 = H1, F1(x, u) = u − v(x).

The corresponding system of singular characteristics is as follows:

ẋ = λ0H0p + λ1H1p, u̇ = λ0〈p,H0p〉 + λ1〈p,H1p〉,

ṗ = −λ0(H0x + pH0u) − λ1(H1x + pH1u) − {H1H0}
μ

(p − q(x)),

λ0 + λ1 = 1, λ0 =
{F1H1}

μ
, μ = {F1H1} + {H0F1}.

(11)

In this case, the construction of the solution u(x) on the other side of Γ
one, generally, has a regular boundary value problem.

3.2. Boundary singular characteristics. The notion of boundary sin-
gular characteristics allows one to simplify the analysis of the problem with
irregular boundary conditions, comparing to that of given in [10].

In this section, we consider the part M0 = M+
0 + M−

0 of the boundary
with no solution value specified on it, or, if specified, do not coincide with
the solution limit from inside of Ω. We assume that the characteristic flow
goes outside of Ω through M−

0 , while on M+
0 the characteristics are not

approaching the boundary.
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Assume that in the vicinity of M+
0 the domain Ω locally is given by the

inequality
Ω = {x ∈ R

n | g(x) < 0},
where g(x) is a smooth scalar function, so that the surface M+

0 is described
by g(x) = 0. Thus, the above assumption about M+

0 means that

M+
0 : 〈Fp, gx〉 ≤ 0,

where gx provides an exterior normal vector to ∂Ω. The vector p(x) = ux(x)
at a point x on the boundary g(x) = 0 denotes the continuous exten-
sion of the gradient from the open domain g(x) < 0. Thus, the follow-
ing manifold Σ+ is defined satisfying the strip condition (since one has
F (x, u(x), ux(x)) = 0):

Σ+ = {z = (x, u, p) ∈ R
2n+1 : u = u(x), p = ux(x), x ∈ M+

0 }.
The solution of the original boundary value problem is understood in

the viscosity sense (see, e.g., [5, 10, 6]). As shown in [6], the so-called
supersolution property must be fulfilled up to the surface M0. Based on
this, it is proved in [11] that in the case of smooth Hamiltonian F (x, u, p)
the following conditions are fulfilled on M+

0 :

〈Fp, gx〉 ≥ 0, 〈Fppgx, gx〉 = −{{gF}g} ≥ 0.

Comparing with the previous inequality on M+
0 , this leads to the equality

〈Fp, gx〉 = {gF} = 0.

Now one can observe that the three conditions

W3 : F0 = F = 0, F1(x) = g(x) = 0, F−1 = {gF} = 〈Fp, gx〉 = 0

are fulfilled on the boundary. These conditions generate a system of singular
characteristics similar to the equivocal system (10).

Theorem 3. Let μ(z) = {{gF}g}, and for some z∗ ∈ W3, let μ(z∗) �= 0
and {{Fg}F} �= 0. Then the initial strip Σ+ is in ∈ W3, Σ+ ⊂ W3, and is
an invariant manifold of the following system of singular characteristics:

ẋ = Fp, u̇ = 〈p, Fp〉, ṗ = −Fx − pFu +
{{Fg}F}
〈Fppgx, gx〉gx. (12)

The proof of Theorem 3 is similar to that of Theorem 2 (see also [11]).
In the sequel it will be shown that the numerator here also is nonnegative,

{{Fg}F} ≥ 0.
In the case of a nonsmooth Hamiltonian F = min[H0,H1] one has Fi = 0

on the surface, where

W3 : F0 = H0, F1(x) = g(x), F−1 = H1.
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This leads to the following system of characteristic equations similar to (11):

ẋ = λ0H0p + λ1H1p, u̇ = λ0〈p,H0p〉 + λ1〈p,H1p〉,

ṗ = −λ0(H0x + pH0u) − λ1(H1x + pH1u) − {H1H0}
μ

gx,

λ0 + λ1 = 1, λ0 =
{gH1}

μ
, μ = {gH1} + {H0g}.

(13)

In this case, regular characteristics depart the boundary surface transver-
sally as in a regular problem. Generally, tangential departure also is possible
if the solution locally is determined by one of the branches H0 or H1, in
which case instead of (13) one has a system of singular characteristics similar
to (12) with H0 or H1 as F .

3.3. Higher order singularity. In case of smooth Hamiltonian further
singularity may occur when one has {g{gF}} = 0 and {g{g{gF}}} �= 0 on
Σ+. The next step is also possible. To describe this, we use the functions
F i introduced earlier, writing their other equivalent representation in terms
of the Jacobi bracket:

F i = {gF i−1} =
〈

gx,
∂

∂p

〉i

F, i = 1, 2, . . . , F 0 = F.

Assume that for some k ≥ 1 one has F i = 0, i = 0, 1, . . . , k − 1, and
{F k−1F} �= 0 on Σ+. Consider the manifold

W3 : F0 = F = 0, F1(x) = g(x) = 0, F−1 = F k−1 = 0

with the singular characteristics on it:

ẋ = Fp, u̇ = 〈p, Fp〉, ṗ = −Fx − pFu − {F k−1F}
{gF k−1} gx.

In the sequel, we will see that from the condition {F k−1F} �= 0 it follows
also the inequality F k = {gF k−1} �= 0.

4. Comparison of boundary conditions on M and M+
0

Taking into account the irregularity conditions, like 〈Fp, gx〉 = 0, on the
boundary surface M , one can see many similarities in the conditions on M
and M+

0 . With both surfaces, M and M+
0 , a manifold W3 is associated:

for M : F = 0, u − w(x) = 0, 〈Fp, p − wx〉 = 0,

for M+
0 : F = 0, g(x) = 0, 〈Fp, gx〉 = 0

with the characteristic field ξH on it:

ξH(z) = (Hp, 〈p,Hp〉 ,−Hx − pHu) ∈ R
2n+1,

where H is a singular Hamiltonian. On M+
0 , we need the characteristic

field to construct (to obtain) the boundary value for u(x), and we need the
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x-component Hp of ξH to be nonzero, while on M such a value is given. In
addition, on M the characteristic field generates some new boundary value,
extending it from some (n − 2)-dimensional submanifold Ms ⊂ M to the
whole M . The extended value should be equal to the existing one. And
this is the case indeed, since the function u − w(x) is a first integral of the
field ξH :

d

dt
(u − w(x)) = u̇ − 〈wx, ẋ〉 = 〈Hp, p − wx〉 = 0

since p − wx is a normal vector to M : gx = λ(p − wx).
So, more important the characteristic field is for the surface M+

0 . Ob-
serving the characteristic equations of the form

ẋ = Fp, u̇ = 〈Fp, p〉 , ṗ = −Fx − pFu − A

B
(p − q),

one can guess that sufficient conditions for the system to be effective could
be A �= 0 and B �= 0, which also leads to the right choice of the manifold
W3. In the next section, we show that the condition B �= 0 follows from
A �= 0.

An interesting situation one has in the regular case where the following
manifold can be associated with the boundary conditions

W3 : F (z) = 0, g(x) = 0, u − w(x) = 0

with the corresponding characteristic field ξH(z) on it. One actually does
not need this characteristic field to construct the boundary value, since it is
given. To understand the role of the field ξH(z) let us introduce the notion
of a characteristic point [1]. A point z ∈ W3 for which ξH(z) = 0 is called
a characteristic point of the manifold W3.

Lemma 1. The initial surface Σ for a regular problem consists of the
characteristic points of the manifold W3 defined by the equation and initial
conditions.

Proof. The characteristic field of the above manifold W3 has the form

ξH(z) = (0, 0, 〈Fp, p − wx〉 gx − 〈Fp, gx〉 (p − wx)).

This (2n + 1)-vector has only n last components that are not identically
zero. The charactericity condition of a point z = (x, u, p) ∈ W3 takes now
the form

〈Fp, p − wx〉 gx − 〈Fp, gx〉 (p − wx) = 0.

Let y1(x), . . . , yn−1(x) ∈ R
n be a basis of the tangent space TxM , i.e., in

particular, 〈
gx, yj

〉
= 0.

Multiplying scalarly the n-vector equation above by yj we obtain

〈Fp, gx〉
〈
yj , p − wx

〉
= 0, j = 1, . . . , n − 1.
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Note that similar multiplying by Fp gives identically zero, which means that
among the n nontrivial equations in ξH(z) = 0 only n − 1 are independent.
For the regular case under consideration one has

〈Fp, gx〉 �= 0.

Now the above equations together with Eq. (1) give system (3) for the initial
strip which completes the proof of the lemma.

Thus, the initial strip in a regular problem consists of the stationary
points of the characteristic field ξH(z) on the manifold W3.

5. Sufficient conditions for the existence and uniqueness

In Theorem 4 formulated later in this section, we consider local solutions
possibly defined to one or both sides of the boundary surface. A solution
of the irregular noncharacteristic problem must be searched for in more
wide class of functions. Such a class, specified by a given surface Γ, will
be denoted as K(Γ). Let a neighborhood D of a point x∗ ∈ Γ ⊂ R

n be
given and let a smooth hypersurface Γ divide the domain D into two open
subdomains:

D = D0 + Γ + D1.

The functions of the class K(Γ) are defined either in the whole D or only
in one of the domains D0 + Γ and D1 + Γ. We require the following differ-
entiability properties:

u(x) ∈ C1(D), u(x) ∈ C2(Di), i = 0, 1,

for the functions defined in D, and

u(x) ∈ C1(Di + Γ), u(x) ∈ C2(Di)

for the functions defined in Di. The inclusion u(x) ∈ C1(Di + Γ) means
that the gradient of u(x) has a continuous extension from Di to Γ. This
allows the classical interpretation of the solution of the equation

F

(
x, u(x),

∂u

∂x

)
= 0

in the domain Di + Γ. Thus, we do not expect the continuous second
derivatives for u(x) ∈ K(Γ), although C2(D) ⊂ K(Γ).

The role of the set Ω in (1) may play D0 or D1.

5.1. Formulation of the simple problem. To simplify technically the
proof of Theorem 4, we seek the appropriate change of variables. Since
the important conditions of Theorem 4 are expressed in terms of the Jacobi
brackets, one can try contact transformations of the variables which preserve
the value of the brackets and the form of the characteristic equations.
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Using such transformation, one can reduce the original problem to so-
called simple problem with the following boundary surface, boundary con-
dition and the initial strip (see [10]):

M = {x ∈ R
n : x1 = 0}, u(0, x2, . . . , xn) = 0,

Σ = {(x, u, p) ∈ R
2n+1 : x1 = 0, u = 0, p1 = 1, p2 = 0, . . . , pn = 0}.

The value p1 = 1 satisfies the following equation and inequality:

F k−1(0, x2, . . . , xn, 0, p1, 0, . . . , 0) = 0,
∂F k−1

∂p1
= F k �= 0

while the additional k − 1 equations overdetermining Σ areas follows:

F = F 0(0, x2, . . . , xn, 0, p1, 0, . . . , 0) = 0,

F i(0, x2, . . . , xn, 0, p1, 0, . . . , 0) =
∂F i−1

∂p1
= 0, i = 1, . . . , k − 2.

The function g(x) for the simple problem has the form g(x) = x1.
The simple problem can be considered for n = 2, when x = (x1, x2); the

case n > 2 is considered similarly. The surface M in 2D simple problem is
the coordinate axis x1 = 0 with zero boundary condition on it:

M = {(x1, x2) : x1 = 0, x2 ∈ R
1}, u(0, x2) = 0, x2 ∈ R

1.

Local considerations actually will be restricted to some segment |x2| ≤ δ,
the reference point being the origin: x∗ = (0, 0).

Thus, the initial strip, the surface Σ, is the following one-dimensional
straight line in the 5-dimensional space:

Σ = {(x1, x2, u, p1, p2) : x1 = 0, x2 = s, u = 0, p1 = 1, p2 = 0, s ∈ R
1}

and the following values vanish on Σ: x1 = 0, u = 0, p2 = 0, and Fp1 = 0.
Some additional vanishing values, like Fx2 = 0 and Fp1x2 = 0, can be found
by differentiating the overdetermining equalities with respect to x2.

Corollary 2 of Theorem 4 is related to the simple problem.

5.2. Formulation of the theorem. Different combinations of multiple
brackets will be used in further considerations. Introduce the new notation
F0 = F a F1 = g for the functions F (z) and g(x) and the multiple brackets
of the following structure:

Gms = {. . . {F0F1}Fj3 . . . Fjm+1}, m = 1, 2, . . . , (14)

where jν are equal either 0 or 1; s is the number of 1s in the vector
(j1, j2, j3, . . . , jm+1) with j1 = 0, j2 = 1, and thus s ≤ m. The brack-
ets with the same m will be called the brackets of the level m.
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We need also special notation for the two extremal cases where all jν ,
ν ≥ 2, are the same:

F i+1
0 = {gF i

0} =
〈

gx,
∂

∂p

〉i+1

F,

F 0
0 = F, F i+1

1 = {F i
1F}, F 0

1 = g(x), i = 0, 1, . . . ,

where F i
0 coincides with F i introduced earlier.

The functions F and w and the surface M ⊂ D are assumed to be
sufficiently smooth.

Theorem 4. The irregular noncharacteristic problem with the given ini-
tial surface Σ is solvable in the class of functions K(M) if for some integer
k ≥ 2 the following conditions hold :

F i
0(z) = 0, z ∈ Σ, i = 0, 1, . . . , k − 1,

{F k−1
0 F0} �= 0 for z∗ ∈ Σ.

For odd k, the solution is unique and defined in the whole D; the char-
acteristic flow is in the direction gx (direction −gx) when F k

1 > 0 (when
F k

1 < 0).
For even k, the brackets F k

1 and {F k−1
0 F0} have the same sign, and there

exist two solutions (or one double-valued solution) defined, for the case of
F k

1 > 0, in that half-neighborhood of M to which the vector gx is directed,
and for the case of F k

1 < 0, in the opposite half-neighborhood. The solutions,
both for k even and odd, have unbounded second derivatives at the points
of M .

Corollary 1. All brackets generated by F0 = F and F1 = g of the level
0, 1, . . . , k−1 vanish identically on Σ. All brackets of the level k are nonzero;
those involving an odd number of the functions F1 have for k even the same
sign as {F k−1

0 F0}. This sign is invariant under the substitution F → −F .

Corollary 2. The irregular simple problem has a solution of the class
K(M) if for some k ≥ 2 the following conditions hold :

∂F

∂p1
= 0, . . . ,

∂k−1F

∂pk−1
1

= 0,
∂kF

∂pk
1

�= 0, Fx1 + p1Fu �= 0

at the points (0, x2, 0, 1, 0) ∈ Σ. For even k, two solutions are defined in the

half-plane x1 ≥ 0, if the product (−Fx1 − p1Fu)
∂kF

∂pk
1

is positive, and in the

half-plane x1 ≤ 0, if the product is negative.

Remark 1. In the preliminary considerations, in the formulation of the
sufficiency statement in Theorem 4 and in its proof we follow the scheme of
[10, Theorem 1.6]. The only difference is that instead of the notion of sin-
gular characteristics (10) we use here the notion of boundary characteristics
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(12), which were developed later in [11]. This gives some simplification of
the theorem conditions and its proof.

Remark 2. Theorem 4 allows one to determine the type of the solution of
the irregular noncharacteristic problem by only computing certain Jacobi
brackets at the points of the initial surface Σ. The Jacobi bracket does
not change under the transformation in the x-space. Since arbitrary initial
smooth surface M can be transformed to the plane x1 = 0, the conditions
of Theorem 4 are invariant and do not depend on the particular coordinate
system.

6. Examples

6.1. One-dimensional illustrative example. For the illustrative pur-
poses we consider an example with minimal possible dimension one, which
Theorem 4 embraces as well.

Consider the following Cauchy problem:

F = F (x, p) = pm − x = 0, x ∈ R
1, p =

du

dx
, u(0) = 0,

where x, u, and p are scalars and the initial (zero-dimensional) surface
M is the point x = 0. The initial strip Σ is also zero-dimensional and
the parameter p on it satisfies the condition F (0, p) = pm = 0. Thus,
Σ = {(0, 0, 0)}, i.e., consists of one point.

The problem is irregular noncharacteristic since one has

∂F

∂p
= 0, . . . ,

∂m−1F

∂pm−1
= 0,

∂mF

∂pm
�= 0, Fx + pFu = −1 �= 0.

The characteristic system with corresponding initial conditions on Σ has
the form:

ẋ = Fp = mpm−1,

x(0) = 0,

u̇ = pFp = mpm,

u(0) = 0,

ṗ = −Fx = 1,

p(0) = 0.

The unique tangent vector of Σ and the characteristic vector ξF on Σ have
the form η = (0, 0, 0) and ξF = (0, 0, 1) and are not collinear, which also
means that the considered problem is noncharacteristic.

The solution of the characteristic system is

x(t) = tm, u(t) =
m

m + 1
tm+1, p(t) = t.

For odd m, the first two equations here give

t = x1/m, u(x) =
m

m + 1
x(m+1)/m.

For even m, x(t) is positive and the inverse function for x = tm has two
branches:

t = x1/m, t = −x1/m, x ≥ 0.
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even m

odd m

0

u_

u+

u

x

Fig. 3

Substituting into u = u(t) gives two solutions:

u+(x) =
m

m + 1
x(m+1)/m, u−(x) = − m

m + 1
x(m+1)/m, x ≥ 0,

defined only for x ≥ 0 (see Fig. 3). The function u(x) in all cases possesses
at x = 0 the first derivative; the second is infinite for m > 1 and finite for
m = 1, which corresponds to the regular problem.

6.2. A differential game with state-constraint. Consider a boundary
value problem for u(x, t) with x, t ∈ R:

F (x, t, p, q) = q +
√

a2 + p2 − t
√

b2 + p2 = 0, (x, t) ∈ Ω,

p =
∂u

∂x
, q =

∂u

∂t
,

Ω = {(x, t) : t > 0, −x + αt < 0}, g(x, t) = −x + αt.

We will be interested in the lateral side of the boundary g(x, t) = −x+αt =
0. The boundary condition are given only for the x-semiaxis:

u(x, 0) = kx, a, b, k = const, b > a > 0, k < 0.

Note that we consider this problem as two-dimensional one with x1 = x,
x2 = t, p1 = p, and p2 = q. Actually, the formulated problem is the
HJBI equation in inverse time (according to the technique in [7]) for some
differential game with an integral pay-off and terminal set t = 0, x ≥ 0,
subject to state constraint. We omit the discussions of these details.
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One can integrate the following equations of regular characteristics with
an appropriate initial conditions on that semiaxis:

ẋ = Fp = Hp =
p√

a2 + p2
− tp√

b2 + p2
,

u̇ = pFp + qFq = pHp − H, ṗ = −Fx = 0,

x(0) = s, u(0) = ks, p(0) = k, s ∈ R
+.

The equations for t and q variables are omitted here, since t serves as in-
dependent variable and from F = q + H(t, p) = 0 one has q = −H(t, p).
Here

H(t, p) =
√

a2 + p2 − t
√

b2 + p2.

Projections of characteristics on (x, t)-plane are parabolas

x − C =
kt√

a2 + k2
− kt2

2
√

b2 + k2
, C = const,

defining the following solution in a part of Ω:

u(x, t) = kx +
t2

2

√
b2 + k2 − t

√
a2 + k2.
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There is the last parabola with C = C0 touching the lateral side g(x, t) = 0
at the point t = t0 (see Fig. 4):

t0 =

√
b2 + k2

a2 + k2
− α

√
b2 + k2

k
, C0 =

t0
2

(
α − k√

a2 + k2

)
,

after which the other part of Ω remains empty. To feel that empty part we
first integrate equation of singular characteristics along the lateral boundary.
For this subboundary g(x, t) = −x + αt = 0 the tangency condition is

{gF} = −Hp + α = 0.

Multiple brackets can be easily computed:

{{Fg}F} = − p√
b2 + p2

, {{gF}g} = −Hpp.

Singular characteristics along the boundary take the form

ẋ = Hp = α, ṗ =
p

Hpp

√
b2 + p2

, u̇ = pα − H.

Note that for regular characteristics one has ṗ = 0. Integrating the equa-
tions of singular characteristics, one get the boundary values for all variables
on the free part of the lateral boundary, thus constructing an initial strip for
an irregular noncharacteristic problem. Generally, this allows to integrate
the regular characteristics inside Ω and fill up the whole domain. To be sure
that the characteristics will fill up the expected side, one needs to check the
sign of the bracket in Theorem 4 with even k = 2:

{F 1F} = {{gF}F} = −{{Fg}F} =
p√

b2 + p2
< 0.

Thus, two branches of the solution will fill the side opposite to the direction
of the vector (−1, α) (gx = −1, gt = α), which actually is needed for the
problem. Among these two branches, we definitely choose the one which
corresponds to the direct time t.

Note that singular characteristics extend on some interval t0 ≤ t ≤ t1.
For positive α > 0, one has t1 = ∞, while for α ≤ 0 t1 is finite, i.e., the
singular characteristics end. For negative α < 0 one can show that there re-
mains an empty part of Ω, which means that form that part it is impossible
to bring the state-vector to the terminal set t = 0, x ≥ 0, without violat-
ing the state constraint. Mathematically, one can prescribe (nonuniquely)
certain boundary values on the empty part of the line g(x, t) = 0 to obtain
some solution. Thus in that sense the solution is not unique.

Note also, that for this particular low-dimensional problem one can find
the value of p on the lateral boundary just by solving the tangency condition
−Hp +α = 0 without integrating the system of singular characteristics. For
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example, when α = 0, one gets:

x = 0, p = −a

√
(b/a)2 − t2

t2 − 1
, 1 <

√
b2 + k2

a2 + k2
= t0 ≤ t ≤ t1 =

b

a
.

Formally, the restriction on t comes from the requirement to have a positive
expression under the root. Despite t1 is finite, for the particular case of
α = 0 the domain is filled up, because the last regular characteristic, starting
at t = t1, x = 0, coincides with the t-axis t ≥ t1.

6.3. A 2D problem with boundary characteristics. This example il-
lustrates the boundary characteristics in a problem with nonsmooth Hamil-
tonian, while the value function happens to be smooth. The problem is
known as the dolichobrachistochrone problem; for the detailed formulation
and the solution, see [7, 2, 3]. A modification of the problem is considered
in [8].

The game is considered in the first quadrant of the (x1, x2)-plane with
the dynamics:

ẋ1 =
√

x2 cos u1 +
1
2
w(u2 + 1),

ẋ2 =
√

x2 sin u1 +
1
2
w(u2 − 1),

|u2| ≤ 1;

the terminal surface is x1 = 0, x2 ≥ 0. The pay-off is the time elapsed,
which is minimized by the first player and maximized by the second one.

As proved in [2], the usable part of the boundary is x2 > w2 and starts
at the point

A : x1 = 0, x2 = w2.

There are two more points on the x2-axis,

B : x1 = 0, x2 = b =
2π2w2

(π + 2)2
≈ 0.75w2;

C : x1 = 0, x2 = c =
w2

2
,

characterizing the solution (see Fig. 5). Through the segment AB the char-
acteristic flow in inverse time goes outside of the first quadrant. The game
can also terminate when starting near the segment BC with arbitrary small
positive x1. Motion along the segment BC is due to singular characteristics.
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The HJBI equation of the problem in terms of partials p1 and p2 of the
game value V (x1, x2) has the form

min
u1

max
u2

[
p1

(√
x2 cos u1 +

w(u2 + 1)
2

)

+ p2

(√
x2 sin u1 +

w(u2 − 1)
2

) ]
+ 1

= max
[
R +

w(p1 + p2)
2

, R − w(p1 + p2)
2

]
= 0,

where

R = 1 +
w(p1 − p2)

2
−√

x2

√
p2
1 + p2

2,

with optimal controls:

cos u1 = − p1√
p2
1 + p2

2

, sin u1 = − p2√
p2
1 + p2

2

,

u2 = sign(p1 + p2).

Both smooth branches of the Hamiltonian must vanish on the segment PC

H0 = R +
w(p1 + p2)

2
= 0,

H1 = R − w(p1 + p2)
2

= 0,
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which is equivalent to the u2-switching condition p1 + p2 = 0 together with
R = 0. This gives p1 = −p2. On the segment BC, one clearly has p2 ≤ 0.
Thus,

cos u1 =
p2√
2p2

2

= − 1√
2
, sin u1 = − p2√

2p2
2

=
1√
2
.

From the equality R = 0 one gets

p2 =
1

w −√
2x2

,

which is in consistency with the conjecture p2 ≤ 0 on BC. Generally,
to find the singular controls one needs to write the equations of singular
characteristics, but in the considered low-dimensional problem it is sufficient
to use the condition ẋ1 = 0:

ẋ1 = −
√

x2/2 + w(u2 + 1) = 0, uσ
2 =

√
2x2/w − 1 > 1.

One also can verify that uσ
2 ≤ 1.

Note that in this problem there is a u2-switching line (dashed line in
Fig. 5) coming to the point B from inside of the first quadrant. So the
segment BC can be viewed as a continuation of the switching line, where
p1 + p2 = 0, with a corner point at B.

The above results coincide with the ones described in [2] based on differ-
ent approach.

Singular characteristics in backward time supply the segment BC with
the values p1, p2, and V . For this particular problem, one has actually to
integrate only the scalar equation

∂V (0, x2)
∂x2

=
1

w −√
2x2

,

V (0, b) = V ∗ =
π2w

π + 2
, b =

2π2w2

(π + 2)2
,

to get

V =
√

2b −√
2x2 + w ln

√
2b − w√
2x2 − w

+
π2w

π + 2
,

c < x2 ≤ b, c =
w2

2
,

where V ∗ is the optimal time to go from B to the set M . Note that despite
the value of V (0, x2) is specified as being zero for x2 ≥ 0, the solution
V (x1, x2) is nonzero and finite for c < x2 ≤ b as x1 → +0, and is infinite
for 0 ≤ x2 ≤ c.

Now one can solve a boundary value problem with BC as the initial
surface for the equation H1(x, p) = 0. Unlike the previous example, this is
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a regular boundary value problem since on BC one has

dx1

dτ
= −H1p1 =

√
x2

2
> 0, τ = T − t.

On the same time, both examples demonstrate certain qualitative similar-
ity. In both cases, the surface M is followed by a surface M−

0 , through which
the characteristic flow goes outside, and then comes a surface M+

0 with sin-
gular characteristics on it and with corresponding boundary-value problem.
Such configuration also appear in many other problems (see, e.g., [9]).

7. Conclusions

Irregular boundary-value problems for nonlinear first order PDEs locally
are considered in the vicinity of the following surfaces: (1) the part of
the boundary surface with the given boundary value; (2) the part of the
boundary surface with no value initially specified on it, while such a value
arises during the constructions; (3) a singular surface arising during the
constructions in the internal part of the domain.

Construction of the solution for the latter two cases can be carried out
using the method of singular characteristics which allows to state that these
two cases, unlike the first one, are in generic position.

It is shown that the solution singularity for an irregular problem is com-
pletely determined by the signs of two multiple Poisson (Jacobi) brackets
naturally arising in the equations of singular characteristics. This allows
to formulate a new sufficiency condition for the existence and uniqueness
of the irregular solution. Such conditions have invariant nature and are
convenient in applications.
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