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ABSTRACT

Drag reduction caused by ejecting additive solutions from
& slot into a pure-water boundary layer on a flat plate has
been systematically studied. Results include drag measurements
for a plane boundary, smooth and rough, with various openings
of the slot and with various concentrations and discharges of
the ejected additive solution, Conclusions have been drawn on
the additive requirement in external flows and on the ejection

technique for an optimum drag reduction.
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INTRODUCTION

Many experiments show the capability of addltives of high
molecular weilght to reduce turbulent friction. Most measurements
refer to the pressure drop in turbulent pipe flows with additives
homogeneously mixed in water. These are the internal flow cases,
where the homogeneous additive solution flows constrained 1n a
fully developed boundary layer. However, this does not resemble
the case for external flows, where the additive solution has to
be ejJected into a developing boundary layer of pure water. There
exists uncertainty about techniques for the most efflcient ejec-
tion into external flows. It may not be required in external
flow cases that the entire boundary layer should be filled with
polymer solution, because the major effects due to the presence
of additive solutions occur very close to the wall and certainly
within the inner boundary layer (Reference 1). For very dilute
solutions this 1s especially true, as shear-stiffening occurs in
the turbulent region closest to the wall and, it is believed,
accounts for the reduction of turbulent skin friction due to
its action there. It is not advised that a highly concentrated
additive solution be eJected at the wall and then to let turbu-
lent mixing inside the boundary-layer dilute the ejected solu-
tion. Since turbulent mixing between the eJected solution and
the pure-water surrounding may be highly suppressed (Reference 2),
the ejected solution may remain too concentrated and may there-

fore lose its effectiveness.
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In a previous study (Reference 3), the turbulent friction
of a plane boundary 1n flows of homogeneous solutions of high-
molecular-welght additlives was measured and compared wlith that
produced by ejectlng additive solutions into the pure water
boundary layer of a flat plate (Reference 4). The results in-
dicate that the eJected solutlon is 'mixed but very poorly with
its pure water surroundings. Visual studies concerning diffusion
and entralnment of jets with additive solutions flowing into a
turbulent stream of pure water confirm that additives suppress
turbulent diffusion. Based on these results, it was suggested
(Reference 4) that for drag reduction in external flows the
solution ejected into the boundary layer should be dilute, that
the rate of ejection should be comparable to the discharge within
the inner boundary layer (the wall controlled region), and that
the normal component of the ejection velocity as well as the

difference between the eJectlon velocity and the stream velocity

should be minimized.

In the present study, the frictlon of a plane boundary,
smooth and rough, has been systematically measured wilith additive
solutions (Polyex WSR-301) of various concentrations and dis-
charges, ejected from a slot of adjustable width. The results
not only confirm the previous suggestions but further indicate
in a quantltatlive fashion optimum techniques of additive ejection
rate. It 1s shown that under the circumstances of the present

tests, a very small amount of additive 1s actually needed for
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the most effective application to achieve drag reduction in
external flows: concentratlions of between 100 and 1000 ppmw
at the viscous-sublayer discharge for a smooth surface, and
at the mixing-layer discharge for a -rough) surface., It remains
to be seen whether these condltions are also optimum in the
case of larger plates and higher Reynolds numbers than were so

far considered.

EXPERIMENTAL TECHNIQUE

Measurements of Turbulent Frictilon

The experlments have been performed ln a clrculatlng
water channel with a closed test section 44 in. long, 15 in.
wide, and 7.5 in. deep. A part of the cover plate at the test
section, 10 inches wide and 21 inches long, 1s cut from the
rest with a clearance of 1/100 in. along four sides; see Fig-
ure 1. This part of the cover plate 1s held by a straln-gage
support whose output 1s indicated on a digital readout device.
A strip of No. 32 sand blast, 1 inch in width, was placed 3/8
in. upstream from the leading edge of the ejector. Therefore,
the sand serves for turbulence stimulation, but its resistance

is excluded in the drag measurements.

The drag-measuring plate was also roughened by glulng to
its surface spherical particles having a diameter of 0.108 in.
and arranged 1ln a random and in the most compact form, or hard-
rubber mats with pyramidal roughness, having a height of 0,062
in. and at a spacing of 0.169 1in.
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Ejection of Additive Solutlons

The test fluid consists of aqueous solutions of variously
concentrated polyethylene oxide (Polyex WSR-301) additive. The
additive sclution is ejected from a slot-ejector, shown in Fig-
ure 1. The ejector ig installed transversely upstream from the
plane boundary, having the slot at 1-3/16 in. from the leading
edge of the plane boundary. Near tangential ejection 1s
achieved as the plane containing the slot is at an inclination
of 7O from the plane boundary. The width of the slot opening is
adjustable; this adjustment and the use of additive solutlons of
various concentrations and of various discharges erable us to
obtaln different initial velocity and concentration distributions
of the ejected additive solution.

RESULTS

A series of measurements of the turbulent friction on the
plane boundary, smooth and rough, using homogeneous solutions of
polyox additives were conducted earlier. The results, portions
from Reference 4, are shown in Figure 2. The drag reduction -ob-
tained from the rough surface with glass beads is seen to be
similar to that from the smooth surface. A continuous curve,
drawn through the data points, will be used to compare with the
drag reduction obtalned in ejection studies.
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The ejection studles were conducted at a constant channel
velocity of 8 ft/sec. The Reynolds number defined with the
length of the plane boundary is 1.3 x 10°. For each slot opening
of these studies, a serles of experiments, ejecting additive
solutlions of varlous concentrations, were systematlcally con-
ducted, Different discharges of additive solutions were ejected
for each additive concentration'to cover the most interesting
range, showlng a rapid varlation of drag reduction with discharge.
During the experiment, the turbulent friction of the plane bound-
ary was measured on two occasions, one before and the other
during ejection. The drag reduction obtailned by taking the dif-
ference of two readings was further corrected to eliminate the
reduction due to ejectlion 1tself and to retaln only the influence
of additlive solutions. Thls correction was based on a pre-test
calibration obtained by eJectling pure water at various discharges
under the same experimental condition. Because the ejectlon
discharge is very little in comparison with the boundary-layer
discharge, thls correction 1is generally small, and does not
exceed about 5 percent of the total turbulent friction of the

smooth surface and is negligible for the rough surface.

A set of sample results for the smooth surface for one
slot opening, is shown in the upper half of Figure 3. For each
concentration, the drag reduction was plotted versus the dis-
charge of additive solution. A contlnuous curve was then fitted

to smooth the data and to relate the drag reduction with the
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ejection discharge. From the faired data, the drag reduction
obtained with different additive concentrations at any given
ejection discharge can be determined; see the lower half of
Figure 3, where QS, as shown later, is the viscous sublayer
discharge. This procedure 1s necessary because it is imprac-
tical to introduce the additive solutions of various concentra-

tion at any desired discharge.

Following the same procedure outlined in the foregoing
paragraph, drag-reduction results with other slot openings and
from different surfaces can be obtained; see Figures 4, 5, 6
and 7. Tt is noted in the last figure that additive solutions
of higher concentrations were ejected. The results over a
smooth surface with various openings of the ejector and with
the ejectlion discharge at various multiples of the viscous sub-
layer discharge are compared in Figure 8. The results from

smooth and from rough surfaces are compared in Figure 10.

DISCUSSION

Additive Requirements and Ejection Techniques for Smooth Boundary

The nominal thickness pf a wviscous sublayer; 5, is

generally considered to be (Reference 5)

g = TLB (1]
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where u, is the shear velocity, To/p (To is the wall stress
and p is the density of the fluid); and v is the kinematic
viscosity of the fluid. A virtually linear velocity gradient,
To/pv, persists within the sublayer, of which the discharge per

unit width, QS, can be found as

e

g T, 2
1 0 a
Q =5 b (5. } =5 v= 67.3 v [2]

It is seen that the normal viscous sublayer discharge is inde-
pendent not only of the boundary shear but also, more interesting,
of the distance from the leading edge of the solid boundary. This
implies that the viscous sublayer is enclosed by a streamline,

or the viscous sublayer flows inside a stream tube. Corisequently,
the mass transfer between the viscous sublayer and its surround-

ings involves diffusive rather than convective processes.

The discharge of the viscous sublayer is seen in Equation
[2] to vary with the square of the dimensionless viscous-sub-
layer thickness and with the kinematic viscosity of the fluid.
With additive solution, drag reduction is generally accompanied
by an increase of this dimensionless thickness (Reference 6).
In addition, the viscosity of dilute additive solutions increase
with the additive concentration. <Consequently, the discharge

of the viscous sublayer with ejection of additive solutions is
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certainly greater than that indicated by Equation [2]. However,
our method here is to correlate the ejection discharge with the

sublayer discharge for a pure water boundary layer.

This study was planned specifically to investigate require-
ments and techniques for ejecting additive solutions into a pure-
water boundary layer for the most efficient drag reduction.

Relevant questions and answers are:

(1) For an ideal ejection, what is the most econowic
way of using additive for drag reduction in ex-

ternal flows?

The drag reduction with various slot openings,
concentrations, and ejection discharges shown in
the lower halves of Figures 3, 4 and 5 clearly

demonstrate the following trends:

(a) For a given slot and with additive solutions
of @ glven concentration, the drag reduction
generally increases with the discharge when
the ejection rate 1s small or comparable with
the sublayer discharge; the rate of increase
slows down when the ejection rate is greater
than twice the sublayer discharge; the drag
reduction no longer increases, or even de-
creases when the ejection rate is greater

than about five times the sublayer discharge.
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(b} The drag reduction at various concentrations
with the additive solution ejected at 1, 2,
and 4 times the viscous sublayer discharges
are shown in the lower halves of Figures 3,
4 and 5. It 1s seen that a significant drag
reductlon is provided by ejection at the
viscous-sublayer discharge. The gain of
drag reduction with higher ejectlon rate 1is

not overwhelming.

These trends 1lndlcate that the ejection rate
at the viscous sublayer discharge is probably close
to the most effective (economic) way to use addi-
tive for drag reduction 1n external flows. This is
substantiated by the results showing that relative-
ly 1little gain is obtalned when the éjectlon dis-
charge 1s increased by two or four times the
viscous sublayer discharge. Sometimes even less
drag reduction was obtalned at higher ejection
rates, especlally with high additive concentrations,
probably because the ejected solutions failed to
mix with the surrounding pure water and resulted

In less drag reduction, see also Figure 2.
What slot confilguration should be adopted?

The slot confilguration 1s defined by two
parameters, namely, the angle of inclination and
the opening of the slot. It 1s obvilious that the
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angle of inclination of the slot should be small
so that the ejected additive solution will be kept
near the wall. The effect of ejection angle on
drag reduction was not investilgated here. The
eJectlion angle was limited by the convenience of

constructing the ejector,

The width of the slot opening should be
comparable wlith the thickness of the sublayer.
However, the velocity of the ejection sheet is
also related to the slot opening. The comparison
of this veloclty with boundary-layer velocities
governs the mixing between the ejected additive
solution and the surrounding pure water. The
results obtalned from a glven ejection angle but
with different slot openings are compared in Fig-
ure 8. The veloclty of the ejection sheet in the
present experiment 1s generally less than the
average -viscous-sublayer velocity. Consequently
the narrowest slot provlides the best matching of
the ejectlon veloclity with the boundary-layer flow.
In addition, the thickness of the viscous sublayer
1s about 0.005 in. The slot opening should not be
too much greater than this thickness (within an
order of magnitude) in order to avoid the diffusion
of additive solutlon away from the wall. The re-
sults shown in Figure 8 are very much in line with

our discussions presented here.
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What should the concentration be of the ejected

additive solution?

Typical results obtained from the present
(ejection) study are compared in Figure 9 with
earllier results with uniform solutions over the
same plane boundary. These curves are different
in shape: the drag reduction curve with uniform
additive solutions is seen to be rather peaked,
while the curve with ejection features a plateau.
The former indicates that highly concentrated
additive solutions are relatively ineffective for
drag reduction. The latter reveals that the
ejected additive solution is diluted by the boundary-
layer flow. It is expected that with further in-
crease of ejected additive concentration, or of
ejectlion discharge, the boundary layer flow near
the wall will fail to dilute sufflciently the
additive solution, and a drop of drag reduction
will result.

The dilution of the ejected additive solution
is indicated by the shift toward higher concentra-
tions of the ejection curve relative to the curve
wlth uniform solution. The dilution in the present
case is deduced to be about one to ten. As the
length of the boundary increases, increasing

dilution along the length of the plate should
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cause the drag reduction curve to shift further
toward the high concentration end. More studies
are needed in order to investigate in detall the
dilution process which is of much importance for
the practical application of additives for drag

reduction.

(4) In which portion of the boundary layer do

additives act to cause drag reduction?

This question can only be answered adequately
by a detalled survey of additive concentration
within the boundary layer and a systematic com-
parison of the measured profiles with the drag
reduction results. However, it is clear from
Figures 3, 4 and 5 that an increase in ejection
discharge falled to cause significant increase
in drag reduction. This indicates that additive
solution need only to fill the viscous sublayer
and the innermost region of the turbulent bound-
ary layer in order effectively to cause drag

reduction.

Additive Requlrement and Ejection Techniques for Rough Boundariles

A detalled boundary-layer measurement over the same rough
surface with glass beads was conducted by Wu (Reference 7). ﬁk
was shown that a constant velocity persists in a region within a
quarter of the particle size from the top of the bead. A very
strong turbulent mixing undoubtedly exists in this region, which
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presumably erases the usual strong velocity gradient near the
wall., Therefore, the roughness not only disrupts the viscous
sublayer but also introduces a very strong mixing layer near the
wall. The discharge of the mixing layer is about ten times that
of the viscous sublayer (Reference 7)., The additive solution
ejected at the wall 1s then diffused very rapidly in this mixing
layer. Consequently, more additive is required; higher ejection
rates or additive solutlons of higher concentrations should be
ejected to be strongly diluted by the mixing due to roughnes;.
No detalled boundary layer survey was performed over the rough
surface on the rubber mats. The roughness elements in this case
were somewhat smaller in height, but the elements somewhat more
widely spaced. Moderate spacing 1s known (Reference 8) to make
the surface relatively rougher in comparison with the same rough-
ness elements placed in the most compact arrangement. In other
words, the flow condition over these two rough surfaces may not

be appreciably different.

The results obtained with the rough boundaries are shown in
Figures 6 and 7. Compared to the data over the smooth boundary,
these results show a large effect of ejection discharge over the
range tested. The results obtalned from the rough surface are
compared with those from the smooth surface in Figure 10, It is
interesting to see that the data from the rough surface is gen-
erally shifted with respect to the data from the smooth surface,

toward the high concentration end. The ratio, seen in Figure 10,
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of the additive concentrations required for the most efficient
drag reduction seems to be about one to five or ten, the same
order as the ratio between the viscous-sublayer discharge and

that of the roughness mixing layer

CONCLUSIONS

A systematic drag reduction study was conducted by ejecting
Polyox (WSR 301) additive solutions into a pure water boundary
layer over both smooth and rough surfaces. The results were
compared with an earlier study involving uniform additive solu-
tions. It is recommended that for the most effective drag
reductlon with additive in external flows, the slot ejection
angle should be small with respect to the flow direction and
the slot opening should be comparable with the thickness of the
viscous sublayer. It wags shown that a large drag reduction was
obtained by ejecting the additive solution at a rate comparable
to the normal viscous-sublayer discharge. This range of dis-
charges is recommended to be the most economic. The choice of
additive concentration of the ejected solution is governed by
the length of the boundary and its roughness. In the present
case (short plate), optimum additive concentrations were found
to be 10° = 10°® ppm for the smooth plate and an order of magni-
tude larger for rough surfaces where a wall mixing due to rough-

ness causes increased dilution of the ejection solution.
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