
Delft University of Technology

Master Thesis

GPU acceleration of FEM solver with

applications to Geotechnical Engineering

Author:

Jorn Hoofwijk

Student nr:

4396499

Thesis committee:

Prof. dr. ir. C. Vuik (TU Delft)
Dr. ir. S. Brasile (Bentley)
Dr. ir. H.X. Lin (TU Delft)

Additional supervisor:

Dr. ir. M. Parchei-Esfahani (Bentley)

Submitted in partial ful�llment of the requirements for the degree of

Master of Science

in

Applied Mathematics at Delft University of Technology

January 28, 2022

Abstract

In �nite element software one has to solve a system of non-linear equa-

tions, which is commonly simpli�ed to a sequence of linear system. We

research the possibility to solve these systems on a GPU to improve the

solve time. We are particularly interested in systems arising from geotech-

nical models. We compare several combinations of Krylov methods, par-

allel preconditioners and de�ation methods and present a suitable com-

bination. This solver is then compared with existing CPU based solvers

in PLAXIS 3D. We show that compared to the current iterative solver,

the iteration time can be reduced by 50% up to 85% depending on the

problem. While compared to the current direct solver, the memory con-

sumption and initialization time can be reduced signi�cantly.

i

Contents

1 Introduction 1

2 Discretization methods 2
2.1 Finite Di�erence for Heat equation 3
2.2 Finite Element for heat equation 4
2.3 Finite Element for solids . 6

3 Iterative solvers 9
3.1 Basic iterative methods / Fixed-Point iteration 10
3.2 Krylov Methods . 12
3.3 Preconditioning . 14
3.4 General Krylov methods . 15

4 Current solvers in PLAXIS 18
4.1 PICOS . 18

5 Parallel preconditioners 19
5.1 Jacobi / diagonal scaling . 19
5.2 Block Jacobi . 19
5.3 Incomplete LU (ILU) . 20
5.4 Sparse Approximate Inverse Preconditioners (SPAI) 25

6 De�ation methods 28
6.1 How de�ation works . 28
6.2 Choice of de�ation space . 29

7 Preliminary experimentation 34
7.1 Test problems . 34
7.2 ParILU . 34
7.3 ParILUT . 35
7.4 SPAI . 36
7.5 ISAI . 36
7.6 Approximate eigenvector de�ation 40
7.7 Levelset de�ation . 40

8 Test problems 43
8.1 Hardware . 43

9 Implementation and analysis 45
9.1 Algorithm veri�cation . 45
9.2 Memory transfer speeds . 46
9.3 Multi-threaded performance . 47
9.4 GPU performance . 48
9.5 Geotechnical system from PLAXIS 3D 50

ii

9.6 De�ation . 55
9.7 Tunnel problem . 61

10 Results 63
10.1 Systems . 63
10.2 Iteration time . 63
10.3 Setup costs . 69
10.4 Memory costs . 69
10.5 Comparison . 70

11 Conclusion 72
11.1 Comparison to existing solvers 72
11.2 Future research . 72

Nomenclature 75

iii

1 Introduction

Computers and �nite element software have helped engineers to more accurately
and quickly investigate structural properties of their designs. To date, a lot of
computational power is required to run these simulations quickly. With the
advancement of GPU based computing in the past decade, additional compu-
tational power has become accessible to the public. However, classical iterative
solvers may not always be able to make use of this resource. So, in order to
harness the power of the GPU, newer algorithms have been developed and eval-
uated. It has to be noted that there are FEM/CFD software packages that
already support GPU computations (such as Ansys Fluent [33]) and several re-
search teams have shown the capabilities of using GPU's for certain applications
[14]. However, the e�ectiveness of an iterative method greatly depends on the
problem, preconditioner and de�ation methods used. Thus, the goal of this re-
search is to �nd a combination of preconditioner, de�ation vectors and Krylov
method which is most suitable for the type of problems for which PLAXIS 3D is
generally used. This algorithm will be compared, in terms of speed and memory
usage with the existing solvers in PLAXIS 3D.

Chapter 2 will explain the principles behind a typical �nite element discreti-
sation. Chapter 3 will give an overview of what iterative methods are and how
one can apply them to e�ciently approximate the solution of a matrix problem.
Chapter 4 will give a short overview of the current iterative linear solver used
in PLAXIS 3D. In Chapter 5 an overview of several parallel preconditioning
methods will be given, followed by an overview of some de�ation methods in
Chapter 6. Some preliminary experimentation of these methods will be shown
in Chapter 7. In Chapter 8 we discuss the test problems used to compare the
di�erent solvers. In Chapter 9 we provide details on the implementation and
look at the in�uence of di�erent preconditioners and de�ation methods on the
convergence. Then we show the run time for all combinations of test problem,
preconditioner, de�ation method and Krylov method in Chapter 10. Finally, in
Chapter 11 we present the �nal conclusions and suggest some future research
directions.

1

2 Discretization methods

The behaviour of physical systems, such as heat conduction in solids, is modeled
using partial di�erential equations combined with boundary and initial condi-
tions. Usually, it is impossible to analytically �nd a solution to such problems.
So, numerical methods are used to approximate the solution. There are a few
options to do this. One of the easiest methods is by using the Finite Di�erence
Method. In this method, we take a regular grid (as illustrated in Figure 1a) and
approximate the solution on the grid points. This method is generally very easy
to apply on a structured grid (e.g. rectangular), but can become very di�cult
for more complex shapes. For more general shapes, usually the Finite Element
Method is used. Using the Finite Element Method, we split the domain into
many small elements, such as triangles (see Figure 1b) and try to to come up
with a solution such that the PDE is valid on each element. This method is
more versatile and can be used to model irregularities in the domain shape.
It also allows local re�ning or coarsening of the grid according to the required
accuracy.

Both methods construct a set of equations that approximately model the
physical behaviour of the system. These equations are linearized if needed and
assembled into a system of equations, usually written in matrix form:

Ax = b.

This system of equations is then solved for the unknown vector x. The solution
is then converted into something an engineer can interpret, for example to �nd
the bearing capacity of a bridge.

(a) Finite Di�erence Grid (b) Finite Element Mesh

Figure 1: Discretization options

2

2.1 Finite Di�erence for Heat equation

First, we will look at the �nite di�erence method applied to the steady state
heat di�usion equation. The heat di�usion equation, for a material with unit
heat conductivity, is given by:

∂2u

∂x2
+
∂2u

∂y2
= f for interior points (2.1)

u(x, y) = g(x, y) on the boundary (2.2)

where u is the temperature and f is the heat source term. Generally f and g
can be any function, but for simplicity, we take f(x, y) = 1 and g(x, y) = 0. It
means we assume the temperature at the boundary is 0 units (can be degrees
Celsius). While, throughout the plate, heat is being generated at a rate of 1
units/second. The �rst step is to discretize the domain, we de�ne the solution

(a) Grid numbering (b) Grid renumbering

Figure 2: Discretization options

on a regular grid by ui,j , where i is the column index and j is the row index
(see Figure 2a). Then, using a Taylor expansion we can approximate the second
derivative of the solution u (with respect to x) at each interior point using:

∂2ui,j
∂x2

≈ ui−1,j − 2ui,j + ui+1,j

∆x2
. (2.3)

We may do the same for the y-direction, to get:

∂2ui,j
∂y2

≈ ui,j−1 − 2ui,j + ui,j+1

∆y2
. (2.4)

This system has two indices for the grid points, one in the x and one in the y
direction. To prepare for putting it in matrix form, we will renumber the nodes,

3

starting from the top-left and line by line work to the bottom-right to number
all nodes (see Figure 2b). As an example, the �nite di�erence equation for node
33 then becomes (assuming ∆x = ∆y) :

1

∆x2
[u23 + u32 − 4u33 + u34 + u43] = f33 (2.5)

The resulting equations are written in matrix form. We also need to take the
boundary conditions into account, which are usually removed from the coef-
�cient matrix (A) and their in�uence on surrounding elements is taken into
account in the right-hand side vector (b). The resulting coe�cient matrix has a
structure as illustrated in Figure 3, the non-zero elements being colored black.
We can see that most of the matrix elements are zero (white). Such a matrix is
called a sparse matrix. A lot of memory and computational cost can be saved by
only storing non-zero values and remembering that all values that are not stored
are zero and therefore can be ignored. We also see that we get a banded struc-
ture, meaning that all non-zero values lie within a certain sized band around
the diagonal.

Figure 3: Structure of A

2.2 Finite Element for heat equation

For the �nite element method the approach is a little di�erent. We again start
from the di�erential equation. This time we will use a mathematical notation
using the di�erential operator (∇):

−∇2u = ∇ · ∇u =
∂2u

∂x2
+
∂2u

∂y2
= f. (2.6)

Which can be rewritten into:

∇2u+ f = 0 (2.7)

4

Interestingly, as ∇2u+ f is zero in the interior, we can multiply it with another
function (φ), which is zero on the boundary, integrate it and the product will
still be zero, i.e.¨

Ω

(
∇2u+ f(x, y)

)
φ(x, y) dx dy =

¨
Ω

0·φ(x, y)dx dy = 0 for any function φ : (φ|Γ = 0).

(2.8)
We can then split this into¨

Ω

φ∇2udx dy +

¨
Ω

fφdx dy = 0

−
¨

Ω

φ∇2udx dy =

¨
Ω

fφdx dy (2.9)

and using Gauss' divergence theorem, combined with φ|Γ = 0, we can rewrite
this into: ¨

Ω

φf dx dy = −
˛
∂Ω

φ
∂u

∂n
dΓ +

¨
Ω

∇φ · ∇udx dy (2.10)

=

¨
Ω

∇φ · ∇u dx dy (2.11)

This is called the �weak formulation� of the problem, and it holds for any ad-
missible function φ. We can even chose multiple functions φi and the equality
will hold for all of them. These φi are called �test functions�. In the Galerkin
approach, these test functions also form the basis functions for constructing the
solution, u, and they determine how we will solve the problem. The simplest
example would be to use linear triangular elements. Linear is referring to the
idea that the basis function will be linear within each triangle. The exact basis
functions for a single triangle are illustrated in Figure 4. The function is 1 at
one node and 0 at all other nodes. Within each element, we have three non-zero
basis functions. In general form, these equations are given by Equation 2.12.

Figure 4: Basis function for linear triangular element, as taken from [6]

φ1(x, y) = a1 + b1x+ c1y

φ2(x, y) = a2 + b2x+ c2y (2.12)

φ3(x, y) = a3 + b3x+ c3y

5

As these functions are linear, the �rst derivatives are constants:

∂φ1

∂x
= b1

∂φ1

∂y
= c1, (2.13)

and as such, integrating the left-hand side of Equation 2.10 for the three basis
functions inside this element becomes very easy. We usually write it in matrix
form, this matrix is called the �element conductivity matrix� (note this system
is di�erent for every element): S11 S12 S13

S21 S22 S23

S31 S32 S33

 u1

u2

u3

 =

 f1

f2

f3

 , (2.14)

where Sij is given by

Sij =

¨
Ω

∇φi · ∇φj dΩ

=

¨
Ω

[
bi
ci

]
·
[
bj
cj

]
dΩ (2.15)

= (bibj + cicj)

¨
Ω

1dΩ,

where
˜

Ω
1 dΩ is the area of the triangular element. The right-hand side of

Equation 2.10 is more di�cult to integrate analytically. We can use numerical
integration, such as Newton-Cotes, to approximate the right-hand side to use
in Equation 2.14. With linear elements this would yield:

fi =

¨
Ω

φif dx dy

Newton-Cotes

≈
˜

Ω
1 dΩ

3

3∑
j=1

φi (xj) f (xj)

=

˜
Ω

1dΩ

3

3∑
j=1

δijf (xj)

=

˜
Ω

1dΩ

3
f (xi) , (2.16)

where δij is the Kronecker delta function. When we compute all element matri-
ces and right-hand sides, we can assemble them into one big system of equations,
which we write in a familiar form, Ax = b.

2.3 Finite Element for solids

In geotechnical applications one of the main interests is the structural integrity
of civil structures and the underlying soil. The steps that have to be taken to

6

construct the system of equations are very similar to the heat equation, but the
di�erential equations are di�erent, leading to some extra considerations. For
solids, we have displacements in the x and y-direction, leading to strains, given
by:

εx =
∂u

∂x
(2.17)

εy =
∂v

∂y
(2.18)

γxy =
∂v

∂x
+
∂u

∂y
(2.19)

where u, v are the displacement in the x and y-direction, respectively. εx, εy are
the normal strains, and γxy is the (engineering) shear strain. The normal strain
is a measure of how much the material gets compressed in a direction, whereas
the shear strain indicates how much it is sheared (see Figure 5). Given these

(a) Normal strain (b) Shear strain

Figure 5: Strains

strains, and the material properties, we can derive the stresses. If we assume a
linear relation, we can write in matrix notation: σx

σy
τxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1

2 (1− ν)

 εx
εy
γxy

 , (2.20)

where E is the Young's modulus (indicating the sti�ness of a material), ν is
the Poisson's ration (indicating the orthogonal expansion of a material upon
compression in one direction). σx, σy are the normal stresses and τxy is the
shear stress. These stresses indicate a (directional) force per unit area, which
has to be balanced in all points in order to �nd an equilibrium solution.

In the end, the equations in structural analysis are a bit more complicated
than the di�usion equation, yet can be approached similarly using the �nite
element method. There are a few mayor di�erences one has to take into account:

7

1. There are multiple unknowns per node, so that on top of choosing in what
order to number the nodes. One also can choose whether to start number-
ing the unknowns �rst by element, then by dimension (e.g. [u1, v1, u2, v2, ...])
or �rst by dimension, then by element (e.g. [u1, u2, ..., uN , v1, v2, ...])

2. Equation 2.20 is a bit over-simpli�ed. It is presented as if the material
properties are determined by a few linear parameters. Whereas in reality
these relations are non-linear, meaning that we �rst have to linearize,
and then solve the system, linearize again, etc... In PLAXIS this non-
linear iteration is done using a Quasi-Newton method for fast convergence.
As a result, the system to be solved does not contain the displacements
themselves, but a derivative thereof.

3. For the structural engineering we get some extra compatibility equations
that have to be satis�ed [35].

4. For the most part, PLAXIS 3D uses quadratic tetrahedral elements. But
there are also, plate elements, beam elements, interface elements, etc...

5. It is possible to state the system of equations as function of strains, or
stresses rather than displacements. These three methods yield di�erent
systems. In PLAXIS 3D the systems are displacement based.

6. The boundary conditions become somewhat di�erent. E.g. on some
boundaries we may have constraints on the normal displacement, but not
on the orthogonal displacement.

These topics are interesting on their own, yet mostly out of scope for this the-
sis. These factors do, however, impact the resulting system of equations to be
solved. Therefore, they are relevant, especially for choosing the preconditioner.
Furthermore, as the linear systems are part of a non-linear iteration, they form
a collection of related linear systems. This relation can potentially be exploited
to improve performance.

8

3 Iterative solvers

This chapter is mostly based on information provided in the books of Vuik [43]
and Saad [36].

Consider the system of equations Ax = b. This system can be solved directly
by inverting A explicitly, i.e. x = A−1b. For big matrices however, doing this in
practice is very slow and memory consuming. A slightly more e�cient approach
may be to decompose A into a lower and upper triangular matrix (A = LU)
and solve the systems LUx = b. This system can be solved in two steps by
a forward and backward substitution. However, this decomposition is usually
quite computationally expensive.

Another issue that arises with this method is that using the Finite Element
Methods, one usually generates very sparse matrices, where every row of A has
only a few non-zero entries. Sparse matrices like these can be very e�ciently
stored in memory by only considering the non-zero elements. However, when
inverting the matrix explicitly, or by LU -decomposition, this sparsity is lost (see
Figure 6). This means there are many more non-zero entries in the decompo-
sition, which in turn requires a lot of memory and is undesirable. There are
methods that somewhat address this issue, for example by reordering [11] or
using special direct solvers like Intel MKL PARDISO [21] but generally direct
methods cost a lot of memory. To counter the memory limitations and speed
up the process, iterative methods have been developed. These methods do not
solve the system of equations exactly, but instead start with a guess for the
solution and iteratively improve the solution (hence their name). Generally,
these methods use less memory than direct methods [36], making them a popu-
lar choice for solving large sparse systems. Depending on the type of problem,
iterative methods may be faster than direct solvers. To measure the accuracy

(a) Structure of A (b) Full LU decomposition, structure of L

Figure 6: Sparsity pattern of LU decomposition

9

of an iterative method, one is interested in the error

ek = x− xk (3.1)

We desire that this error goes to zero. However, as the exact solution, x, is
not known, the error can not be computed exactly. A more popular measure of
accuracy is the residual, which is de�ned by:

rk := b−Axk
= Ax−Axk = Aek. (3.2)

It has the property that, when the error goes to zero, so does the residual. And
the residual is much easier to compute than the error itself.

3.1 Basic iterative methods / Fixed-Point iteration

The Basic Iterative Method (BIM) is one of the simplest iterative methods.
Generally, these methods are not very e�cient, but they are quite easily under-
stood. First we will look at the method, then we will give a numerical example.
BIMs are based on a splitting of the matrix A into two components

A = M −N. (3.3)

One can now rewrite

Ax = b ⇐⇒ (M −N)x = b ⇐⇒ Mx = Nx+ b (3.4)

Which can then be converted into an iterative scheme:

xk+1 = M−1 (Nxk + b)

= M−1 ((M −A)xk + b)

= M−1 (Mxk + b−Axk) (3.5)

= xk +M−1 (b−Axk)

= xk +M−1rk.

Depending on our choice of M and N , we will get di�erent methods. Note that
in this iterative scheme the computation Axk is used, which is relatively cheap
when A is sparse. Furthermore, M−1rk has to be solved, and in order to get
an e�cient method, this should be an �easy� operation. This is the case when
M is diagonal or triangular. Furthermore, the error at every iteration can be
stated in recurring form:

ek+1 =
(
I −M−1A

)
ek. (3.6)

From this recurring relation we can derive that the error ek will go to zero if and
only if the absolute value of the eigenvalues of the iteration matrix I−M−1A are
strictly less than 1. In other words: the spectral radius of I −M−1A should be

10

strictly less than 1 in order for xk to converge to x. Furthermore, the smaller the
spectral radius, the fewer iterations are needed to obtain a su�ciently accurate
solution. Depending on the choice of M , the method may or may not converge,
and if it does, the speed of convergence is heavily in�uenced by the choice ofM .
The method is very simple and memory e�cient, yet generally converges quite
slowly which makes it not a popular choice of iterative method in practice.

Example 1 One of the simplest BIMs is constructed by the splitting

M = diag(A) (3.7)

N = diag(A)−A. (3.8)

The resulting BIM is called Jacobi iteration. Let us look at the example with

A =

[
5 −4
−1 2

]
, b =

[
0.5
1

]
, soM =

[
5 0
0 2

]
, N =

[
0 4
1 0

]
. (3.9)

It has x =
(

5
6 ,

11
12

)T
as the exact solution. The eigenvalues of I −M−1A are

±
√

0.4 = ±0.6324. This means that this BIM should converge and the error is
reduced about 37% each iteration. Figure 7 shows the �rst 10 Jacobi iterations
for the starting vectors [

0
0

]
,

[
2
1

]
,

[
2
2

]
.

We can see that for all starting vectors this method converges to the exact
solution. Furthermore, Table 1 shows the values of the �rst 10 iterations along

Figure 7: Jacobi iteration with di�erent initial guesses for the system de�ned
by (3.9)

with the norm of the error. We can see that for this problem the error is reduced
about a hundred times after 10 iterations.

11

Table 1: First 10 Jacobi iterations for the system de�ned by (3.9) with starting
vector x0 = (0, 0)

T

Iteration x0 x1 Error

0 0.000 0.000 1.239
1 0.100 0.500 0.843
2 0.500 0.550 0.496
3 0.540 0.750 0.337
4 0.700 0.770 0.198
5 0.716 0.850 0.135
6 0.780 0.858 0.079
7 0.786 0.890 0.054
8 0.812 0.893 0.032
9 0.815 0.906 0.022
10 0.825 0.907 0.013

3.2 Krylov Methods

A more popular class of iterative methods are the Krylov based methods. The
general idea of Krylov methods is to iteratively construct a search space, which
is a subspace RN , and �nd the best solution within this search space. Then,
as the search space gets bigger, the approximated solution will approximate the
exact solution. The name of these methods stems from the search space that is
used, which is the Krylov subspace, de�ned as:

Kk (A, r) = span
{
r,Ar,A2r, . . . , Ak−1r

}
(3.10)

with r the initial residual. This way we can de�ne a growing sequence of sub-
spaces.

3.2.1 Conjugate Gradient

For the conjugate gradient method we will need a matrix A that is symmetric
and positive de�nite (SPD), i.e. A = AT and xTAx > 0 ∀x ∈ RN \{0}. Then
‖x‖A :=

√
xTAx is a well-de�ned norm. The conjugate gradient method itera-

tively searches along a direction and minimizes the error (in the A-norm) along
that direction. This is similar to gradient descent method in that by searching
along a given direction the problem is only one-dimensional and thereby easier
to solve. One problem with gradient descent, however, is that it may repeat
a search direction. So, if we make sure that all search directions (pi) are or-
thogonal to one another (with respect to the inner product induced by A, i.e.
pTi Apj = 0 i 6= j, this is called conjugate) we will never need to search in
the same direction twice. In fact, if we minimize the error along a sequence of
conjugate search directions, we will actually get the approximate solution that
minimizes the error over the entire search space. This is the key of the conjugate
gradient method.

12

The reason this is called a Krylov method, is that the �rst search direction
is chosen to be the initial residual r0, and every subsequent search direction is
chosen such that the search directions are conjugate and form a basis for the
Krylov space Kk (A, r0).

The full conjugate gradient method is given by Algorithm 1. Note that the
residual can also be computed as rj = b−Axj but the formulation in the given
algorithm is equivalent up to rounding errors and saves a matrix vector product
(as Apj can be reused). The pj represents the search direction and α is the
contribution of that search direction. β is used to keep the search directions
conjugated. In exact arithmetic, CG will converge to the exact solution in

Initial guess: x0

r0 = b−Ax0

p0 = r0

For j = 0, 1, ... (until convergence)

αj =
rTj rj

pT
j Apj

xj+1 = xj + αjpj
rj+1 = rj − αjApj

βj =
rTj+1rj+1

rTj rj

pj+1 = rj+1 + βjpj

End

Algorithm 1: Conjugate Gradient Method as taken from Saad 2003[36]

N iterations. However, due to round-o� errors this does not happen exactly.
Furthermore, for large systems this property is not useful for it takes too many
iterations. Usually, the iteration is stopped when the residual is su�ciently
small.

3.2.2 Convergence rate

To compare the computational work to be done with the achieved accuracy,
usually one looks at the convergence rate of the iterative methods. This is
the amount that the error (or residual) decreases in each iteration. A better
convergence rate results in fewer iterations and therefore a lower solve time.
Figure 8 shows the norm of the residual for the Conjugate Gradient method
and the Jacobi method for a 2D Poisson problem on a 30 × 30 regular grid.
It is immediately clear that the CG method has much faster convergence than
the Jacobi method, which is to be expected. Another interesting property we
can see is that the CG method initially converges only slightly faster than the
Jacobi method, but after about 40 iterations, the convergence becomes much
faster. This property is called �super linear convergence� and it occurs when
the error corresponding to the lowest eigenvalue is eliminated. It can be shown

13

Figure 8: Convergence rate of Conjugate Gradient versus Jacobi method for a
2D Poisson problem on a 30× 30 grid.

that the convergence rate of the CG method depends on the condition number
of the matrix. This condition number in turn depends on the eigenvalues of the
matrix A. Speci�cally, when the eigenvalues are sorted from smallest (λ1) to
largest (λN), the condition number is given by:

κ2 (A) =
λN
λ1

. (3.11)

The convergence rate can be written as√
κ2 (A) + 1√
κ2 (A)− 1

. (3.12)

This is more or less the convergence rate as seen between iteration 10 to 40.
After that, the error corresponding to the smallest eigenvalue is eliminated and
the convergence now depends on the e�ective condition number, which, at this
stage, is determined by the second smallest eigenvalue, i.e.

κe�(A) =
λN
λ2

. (3.13)

This super-linear convergence is a nice property that Krylov methods exhibit.

3.3 Preconditioning

As said before, the convergence rate of the CG method depends on the condition
number. So, to speed up the convergence, we can transform an ill-conditioned
system Ax = b into another system, with the same solution, but with a lower
condition number, such that we get faster convergence. This idea is called �pre-
conditioning�. Preconditioning is an essential step in getting a well performing

14

CG method. Mathematically, the transformation can be written as:

MAx = Mb (3.14)

where M is the (left) preconditioner. The solution x is still the same, but the
convergence rate now depends on κ2 (MA), which is ideally much smaller than
κ2(A). We want M to be a good approximation of A−1, as this generally yields
fewer iterations. Unfortunately, when M approximates A−1 well, it will usually
also be expensive to compute and thereby resulting in very few, but slow itera-
tions. Thus, one has to �nd an optimum between having a fast preconditioner,
and having a preconditioner that approximates A−1 well. There are many dif-
ferent types of preconditioners. Among the best known preconditioners, we �nd
the Incomplete LU decomposition, which will be further discussed in Section
5.3.

3.3.1 Incomplete Cholesky decomposition

The Incomplete Cholesky is very comparable to a full Cholesky decomposition.
It splits the matrix A into a lower and an upper triangular part C such that:

A ≈ CCT . (3.15)

In this form it can easily be inverted. But, as said before, such a splitting
may yield a lot of �ll-in. However, usually the magnitude of the �ll-in values
quickly decreases the farther away the �ll-in is from the sparsity pattern of A.
Therefore small �ll-in values can be omitted while still keeping a fairly good
approximation: One can specify the amount of �ll-in that may occur, zero �ll-in
meaning that C has the same sparsity pattern as the lower triangular part of A.
Then the amount of �ll-in can be speci�ed as the amount of non-zero elements
the method can add to every row. This leads to a class of methods indicated by
the amount of �ll-in, i.e. ICCG(k) for Incomplete Cholesky Conjugate Gradient
with k �ll-in elements per row. Usually, more �ll-in leads to longer setup times,
more memory usage and slower iterations, but the total number of iterations
is decreased, as illustrated in Figure 9. The �gure shows the convergence for
ICCG(k) for a 2D Poisson problem on a 30× 30 grid. For this case, the IC(0)
preconditioner reduces the number of iterations to 39 (compared to 96 without
preconditioning). Allowing one �ll-in element per row, hardly increasing the
computational load, still reduces the number of iterations further to just 25.

3.4 General Krylov methods

So far we have only looked at CG, which requires the matrix to be SPD. There
are alternative methods that can deal with general matrices A which have sim-
ilar convergence properties as CG. Unfortunately, as the matrix is no longer
SPD, it does no longer de�ne a norm and therefore we cannot simply minimize
‖x− xk‖A, which means that some nice properties of CG are lost. As it turns
out, there is no optimal Krylov method for non-symmetric matrices, but there

15

Figure 9: Convergence plot for ICCG(k) with di�erent amounts of �ll-in for a
2D Poisson problem on a 30× 30 grid.

are several methods that try to mimic CG and keep some of its nice properties.
We will look at three methods, Bi-CGSTAB, GMRES and IDR(s) which each
have their advantages and disadvantages. They also need to be combined with
a preconditioner in order to get good convergence. Since they can solve general
systems, the preconditioner no longer needs to be SPD and so more choices
of preconditioners become available. We will look at speci�c preconditioners
relevant to this research in Section 5.

3.4.1 Generalized minimal residual method (GMRES)

GMRES minimizes the norm of residual in the search space. In every GMRES
iteration, the new search direction will be orthogonalized to all previous search
directions. As a result, we can prove that GMRES �nds the optimal solution
in the Krylov subspace. The big disadvantage is that this requires us to store
all previous search directions costing a lot of memory and orthogonalization
will cost a lot of computing power. Every iteration, GMRES will slow down
a bit. If the preconditioner is very good, very few iterations are needed and
this method is feasible. If many iterations are needed, one may throw away all
previous search directions and start over, which is called restarted GMRES. A
major downside is that any super-linear convergence property is also thrown
away, although there are ways to still keep (part of) this charasteristic [32].

3.4.2 Biconjugate gradient stabilized method (Bi-CGSTAB)

Bi-CGSTAB takes a di�erent approach than GMRES. It has short recurrence,
meaning that only the last two search directions need to be stored. Therefore the
iteration is faster and will not slow down. The trade-o� here is that there is no

16

proof of optimality nor a proof of convergence. Yet, for a large class of problems,
convergence behaviour looks similar to the CG method [43]. However, numerical
errors are more signi�cant and may lead to instabilities. Also one should check
for (�near�) breakdown of the iterations.

3.4.3 Induced Dimension Reduction (IDR(s))

IDR(s) [38] is based on a di�erent idea compared to the previous methods. Ac-
cording to Gijzen and Sonneveld [40]: �IDR(s) is based on the induced dimension
reduction theorem, that provides a way to construct subsequent residuals that
lie in a sequence of shrinking subspaces.� . This method has a parameter (s)
that determines the dimension of its subspace. Larger s requires more memory
and more work per iteration, but also generally leads to convergence in fewer
iterations. Unlike GMRES, this method requires a constant amount of memory
(depending on s). Similar to BiCGSTAB there is no proof of optimality, but
usually IDR(s) converges in fewer iterations than BiCGSTAB when s > 1 [38].

17

4 Current solvers in PLAXIS

At the moment, PLAXIS 3D provides the user the choice between three linear
solvers:

1. PARDISO, this is a parallel direct solver library developed by Intel

2. Classic solver, this is a single core iterative solver that uses an incomplete
decomposition as preconditioner

3. PICOS, this is a multi-core iterative solver which is the successor of the
classic iterative solver.

As PARDISO is a third party direct solver, we will not go into the details about
it. The classic solver is quite straightforward, so we do not need to go into more
detail. But the last solver, PICOS, is a bit more complex. We shall give a short
overview of the methods it uses.

4.1 PICOS

PICOS achieves parallelism through domain decomposition [27]. It splits the
domain into a number of subdomains equal to the number of computer cores.
On each subdomain, it uses an incomplete decomposition as preconditioner. The
values of the boundary of each subdomain are communicated to the neighboring
subdomains in order to eventually reach a global solution. There are several
ways to do this, in PICOS this is done via the restricted additive Schwarz
method. The details of this method are not too important for this thesis, but
the e�ect is that it takes more iterations to solve the problem when it is split
into subdomains, but as you can solve it on multiple computer cores in parallel,
the total time for �nding the solution is reduced.

PICOS uses a second preconditioner, on the global level. This coarse grid
preconditioner is mathematically equivalent to de�ation. In particular, PICOS
uses rigid body modes (see Section 6.2.6) where the considered rigid bodies
correspond to the subdomains. This aims at reducing the cost of splitting the
domain into subdomains. It has to be noted that the subdomains are chosen
in a particular way, such that the subdomains correspond as much as possible
with regions of similar material. This is especially e�ective when the model has
a layered soil with vastly di�erent sti�ness (such as Figure 10).

Figure 10: Tunnel through layered soil[27]

18

5 Parallel preconditioners

As said before, preconditioners are essential to get good convergence rates for
Krylov methods. They aim to transform an ill-conditioned system into a new
system with a lower condition number, thereby improving the convergence rate.
Generally, we want a preconditioner to approximate the inverse of A. A better
approximation leads to fewer iterations, but this comes at the cost of more
work per iteration. So there is a trade-o� to be made. Furthermore, as we are
interested in GPU computing, we will speci�cally look into highly parallelizable
preconditioners.

5.1 Jacobi / diagonal scaling

One of the simplest preconditioners is the Jacobi preconditioner, also called
diagonal scaling. As the latter name suggests, it scales the system by the value
on the main diagonal, thereby scaling the diagonal back to 1. It is mostly
bene�cial when the diagonal values vary signi�cantly. This means that it is
interesting for applications in which material properties may vary signi�cantly.

The Jacobi preconditioner is memory e�cient, as it only needs to store one
diagonal vector and it is easily parallelizable, as each row can be considered
independent of every other row, which makes it a suitable preconditioner for
usage on a GPU. Every individual iteration is very fast, but many iterations
will be needed, as it is a very simple preconditioner. In some cases, these fast
iterations may outweigh the cost of doing many iterations [17].

5.2 Block Jacobi

The block Jacobi preconditioner is a generalization of the Jacobi preconditioner.
Instead of a preconditioner that takes the inverse of only the diagonal elements,
we take the inverse of sub-matrices on the diagonal of A, as illustrated in Figure
11. Formally, we can denote a matrix A by its blocks:

A =


D1 B12 B13

B21 D2 B23

B31 B32
. . .

. . .
. . . Dn


and by only considering the diagonal blocks, we construct the block Jacobi
preconditioner M as [19]:

M =


D−1

1 0 · · · 0
0 D−1

2 0
...

. . .
...

0 0 · · · D−1
n

 .

19

The size of these blocks can be varied to create di�erent variants. Also note
that generally taking the inverse of these blocks leads to �ll-in, as can be seen in
Figure 11(c). Thus, to reduce memory usage and evaluation time it is important
that the block size is not too large. As the preconditioner is an explicit matrix,
it can be evaluated e�ciently in parallel on a GPU.

(a) Structure of A (b) Structure of diagonal
blocks of A

(c) Structure of block Jacobi
preconditioner

Figure 11: Sparsity pattern of block Jacobi precondition using 4 blocks.

5.3 Incomplete LU (ILU)

A more advanced preconditioner is the Incomplete LU decomposition, or ILU
for short. It is comparable to the Incomplete Cholesky Decomposition except
that it works for non-symmetric matrices as well. It is based on the idea that,
if we allow pivoting, every non-singular matrix has an LU decomposition [37].
Generally this decomposition is expensive to compute and requires a lot of mem-
ory due to �ll-in, which is illustrated in Figure 12. The idea for the Incomplete
LU decomposition is to approximate this LU decomposition by dropping small
values in every row to limit the amount of �ll-in. There is a choice to be made
as to how many and which values should be kept. The more values are keeps,
the better the approximation becomes, at the expense of more memory and
computational load. This method is very popular in CPU based solvers, yet
due to the forward and backward substitution steps it is not easy to parallelize.

5.3.1 ILU(n) and ILUT

For ILU there are two main ways to select which values are allowed to �ll-in.
ILU(n) is based solely on the sparsity pattern of the matrix, and allows �ll-in
of the locations corresponding to the second (or third, etc) level neighbors, as is
illustrated in Figure 13. This has the advantage that the sparsity pattern can
be known in advance, especially when the grid is very regular.

The second method is Thresholded ILU (ILUT), where the �ll-in values are
kept if they are greater than a speci�c threshold. Generally this leads to better

20

(a) Structure of A (b) Full LU decomposition, structure of L

Figure 12: Sparsity pattern of LU decomposition

preconditioners for the same amount of �ll-in, as the most signi�cant values are
kept. On the downside, it is more di�cult to compute and choosing the right
threshold is also di�cult. It is also possible to specify the amount of �ll-in and
keep the largest n values in magnitude per row, leading to a more predictable
memory usage at the expense of some extra computational e�ort when building
the preconditioner.

(a) ILU(0) decomposition (b) ILU(1) decomposition

Figure 13: Sparsity pattern of L in a ILU decomposition of A

21

5.3.2 Block-ILU

Block ILU works by splitting the domain into separate smaller regions and ap-
ply ILU to every subdomain discarding any non-zeros outside of the main block
diagonal [44]. This is illustrated in Figure 14. One ends up with a block struc-
ture in the preconditioner where every block can be considered independently
by a thread, without any information about other blocks and as such can be
considered in parallel leading to fast iterations. Generally, however, when the
number of blocks increases, so does the number of iterations required [26, 44].

(a) Structure of A (b) Block ILU(0) decomposition, structure
of L

Figure 14: Sparsity of Block ILU with a splitting of A into 4 domains

5.3.3 Fine-grained parallel ILU

Normally we get parallelism by assigning di�erent rows of the matrix to di�erent
threads/cores. But if we have a lot of non-zeros per row, we can process a single
row in parallel by assigning a GPU thread to every non-zero in the row [3].
This is only possible when communication costs between threads are extremely
low, such as on a GPU. A big advantage of this method is that it has the same
convergence properties as the original ILU decomposition. On the downside,
it is very di�cult to implement e�ciently, and more importantly, it is only
bene�cial when every row of the preconditioner has a lot of non-zero elements,
otherwise, only a small fraction of the available computation power will actually
be used.

5.3.4 Iterative ILUT

The iterative ILU method is designed speci�cally for highly parallel hardware.
Instead of applying the preconditioner via forward and backward substitution,

22

the preconditioner can be solved using Jacobi iteration [10, 9]. For many prob-
lems just a few Jacobi iterations are needed to get an e�ective preconditioner,
although the optimal number of iterations is hard to determine beforehand.

Chow 2018 [10] also proposes a method for iteratively approximating the
ILU decomposition in parallel for a given sparsity pattern. Later, Anzt (2018)
[4] proposes a method called ParILUT for iteratively updating the sparsity pat-
tern to further improve the preconditioner while keeping the same number of
nonzero elements. Both methods were shown to yield good preconditioners in
few iterations.

ILU Construction We will �rst look at the parallel construction of an ILU
decomposition for a given sparsity pattern [10]. The method is based on the
property in the conventional ILU, that for the sparsity pattern S of L and U
we have:

(LU)ij = aij (i, j) ∈ S.

The elements of L and U can thus be written out explicitly as

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)

uij = aij −
i−1∑
k=1

likukj .

This is also what is used to construct the conventional ILU decomposition.
Although these equations are non-linear, Chow proposes to use a �xed-point
iteration using this property. To improve the convergence properties, �rst the
matrix is scaled by symmetric diagonal scaling Â = DAD, where D is the
diagonal matrix such that the scaled matrix has unit diagonal. We start from
some initial guess with the desired sparsity pattern and then update this via
the procedure described in Algorithm 2. Although this name is not proposed by
Chow, we shall refer to it as ParILU. For starting the iterations, Chow proposes
two initial guesses. The �standard initial guess�, takes the lower and upper
triangular parts of Â. Whereas the �modi�ed initial guess� scales the rows of
L and the columns of U such that the product LU has a unit diagonal. If we
are solving a sequence of linear problems where the sparsity pattern does not
change, we can take the LU decomposition of the previous linear problem as
initial guess, which can signi�cantly increase performance.

The number of sweeps needed to get a good preconditioner is relatively low,
in most cases somewhere between 1 to 5, even though it is not yet converged.
If the matrix is not too ill conditioned, the number of iterations needed in the
Krylov method is close to the number that the sequential ILU preconditioner
would need.

Preconditioner application To apply this preconditioner in parallel, we will
need to replace the forward-/backward substitution steps by a parallel triangular

23

Initial guess: L,U
For sweep = 0, 1, ... (until convergence)

Parallel For (i, j) ∈ S
If i > j

lij = 1
ujj

(
aij −

∑j−1
k=1 likukj

)
Else

uij = 1
lii

(
aij −

∑i−1
k=1 likukj

)
End

End

End

Algorithm 2: Parallel ILU Factorization [10]

solving algorithms. One method is to use Jacobi iteration (see Section 3.1) on
the triangular matrices [10]. Let DL and DU be the diagonal of L and U
respectively, then the Jacobi iteration is given by:

yk+1 =
(
I −D−1

U U
)
yk +D−1

U b

and when we are satis�ed with the upper triangular solution we will use

xk+1 =
(
I −D−1

L L
)
xk +D−1

L y

to complete the preconditioning step. As the iteration matrix (I −D−1
U U) has

zero diagonal, convergence is guaranteed. Unfortunately, the solution may di-
verge before converging. If the factors are (close to being) diagonally dominant,
only few iterations (order of 1 to 6) are needed to improve the method over
forward/backward substitution. Note that although the number of Krylov it-
erations is usually increased, the total time is reduced due to the improved
parallelism.

ParILUT construction ParILUT is an extension of ParILU where the pat-
tern is dynamically updated [4]. The method tries to �nd a lower and upper
triangular sparse matrix that approximates A. Formally this method aims to
minimize

‖LU −A‖F
using a predetermined number of non-zero elements in each of the factors. The
idea is to alternate one sweep of ParILU with an update of the sparsity pattern.
The exact procedure is given in Algorithm 3. The candidate locations are the
points that are a non-zero of the residual matrix R = LU − A [4]. For the
restriction step, the smallest elements of L and U are removed until the desired
number of non-zeros is left (always keeping the diagonal). This is hard to

24

Initial guess: L,U
For sweep = 0, 1, ... (until convergence)

Add mL and mU candidate locations to SL and SU respectively

Do one ParILU sweeps

Remove mL and mU elements of smallest magnitude from SL and SU

Do one ParILU sweep

End

Algorithm 3: ParILUT algorithm [4]

perform in parallel, thus, Anzt suggests to divide the matrix in blocks of rows
and for each block compute a local threshold which would remove the desired
number of non-zeros from that block of rows. Then, compute a global threshold
as the median of all local thresholds. This results in the total number of non-
zeros to �uctuate a bit, but overall it should not diverge.

Once the preconditioner is constructed, Jacobi iteration is again used to
apply the preconditioner in the Krylov method.

SPD variants There are also two variants for SPD matrices, we shall call
them ParIC [10] for the static sparsity pattern and ParICT [4] for the method
with updates of the pattern. These methods are very similar to ParILU and
ParILUT respectively, except that it only needs to compute one Cholesky factor,
saving half the time and memory.

5.4 Sparse Approximate Inverse Preconditioners (SPAI)

Instead of decomposing the matrix into a lower and upper part, one may also
approximate the inverse of the matrix explicitly with another sparse matrix
[8, 14]. This method is known as Sparse Approximate Inverse Preconditioning
(SAIP or SPAI). Usually, the idea is to construct a preconditioner M with a
predetermined sparsity pattern that minimizes the error

‖I −AM‖F .

This preconditioner can be constructed and applied in parallel. Due to its par-
allel performance, the preconditioner can have very fast iterations, but generally
the convergence rate is quite slow [5]. Furthermore, the choice of sparsity pat-
tern in�uences the performance of the preconditioner. Nonetheless, in some
cases it can outperform ILU based methods just because of its fast iterations
[5, 14].

25

5.4.1 Construction

The way that the SPAI preconditioner is constructed is by considering every
column of M independently via the relation [29]:

‖I −AM‖2F =

N∑
k=1

∥∥(I −AM) eTk
∥∥2

2
=

N∑
k=1

‖Amk − ek‖22 ,

where the mk form the columns of M and ek are the columns of I. We can
choose each mk independently of the others, making this a parallel method.
Furthermore, to save computational costs, we can use the predetermined sparsity
pattern of mk to reduce a big minimization problem into a much smaller one.
We denote the prescribed sparsity pattern of mk by Jk, the set of the non-zero
indices. Then we only need to consider the columns of A corresponding to Jk.
Furthermore, as A is also sparse, there are only a few rows that have a non-zero
element in the considered rows. We denote these rows with index Ik, formally:

Ik =

i ∈ {1, . . . , N} :
∑
j∈Jk

|aij | 6= 0


Now we can drop all rows and columns that would be guaranteed to lead to a
zero element in the product Amk (due to the sparsity of mk and A):

Âk = A (Ik,Jk)

m̂k = mk (Jk)

êk = ek (Ik)

‖Amk − ek‖22 =
∥∥∥Âkm̂k − êk

∥∥∥2

2
.

Restricting the system this way does not change the result, but the new least
squares problem is much smaller than the original problem and can be solved
easily using QR decomposition for example. After solving the least squares
problem, we can use mk to assemble the matrix M explicitly. The construction
here leads to a right preconditioner, but in a similar way we could also have
constructed a left preconditioner. It must be noted that generally M will not
be symmetric, even when A is SPD, thus conjugate gradient can not be used
with this preconditioner.

5.4.2 Sparsity pattern

The choice of the sparsity pattern greatly in�uences the performance of SPAI.
According to Lukash 2012 common choices are the main diagonal, similar to
Jacobi preconditioning, the sparsity pattern of A, and A2, A3, etc. [29]. Gener-
ally, more elements leads to better approximations, at the cost of computation
power and memory. It is also possible to update the sparsity pattern of the ap-
proximate inverse dynamically, adding candidate non-zeroes and dropping small

26

elements. However, they also found that as the construction of the precondi-
tioner is very expensive, the reduced number of iterations does not outweigh the
cost of iteratively updating the sparsity pattern, unless the original SPAI did
not lead to convergence.

5.4.3 Incomplete Sparse Approximate Inverse (ISAI)

Anzt 2018 [5] proposes ISAI, which is a new method comparable to SPAI that
approximates an inverse of A on a given sparsity pattern for M . The main
di�erence, however, is that instead of solving the least squares problem

min
mk

‖A (Ik,Jk)mk (Jk)− ek (Ik)‖22

it tries to minimize the least squares problem restricted to Jk, where Jk ⊂ Ik:

min
mk

‖A (Jk,Jk)mk (Jk)− ek (Jk)‖22 .

As the sub-matrix Ãk = A (Jk,Jk) is square, this can be solved exactly if Ãk

is non-singular. This ISAI preconditioner is cheaper to compute, and according
to [5] it also leads to better convergence.

5.4.4 Factored Sparse Approximate Inverse (FSAI)

The idea of FSAI [20, 29] is to �nd an approximate inverse of a factorization of A.
so we can use the conjugate gradient method. Say that we have a factorization
A ≈ LU . Then we can use the SPAI or ISAI method to �nd an approximate
inverse , i.e. ML ≈ L−1,MU ≈ U−1, where ML has the same sparsity pattern
as L (or optionally L2, L3, ...). Then, these approximate inverses may be used
as preconditioners directly. No sequential forward and backward substitution
is needed. Even though the quality of the preconditioner is then decreased
compared to standard ILU, it is now fully parallelized, so that there could still
be a signi�cant speed-up [5]. Furthermore, if A is SPD, we can construct a
SPD preconditioner M = CCT so that we can use the CG method. This is an
advantage over plain approximate inverse preconditioners.

27

6 De�ation methods

De�ation is related to preconditioning in the sense that we try to transform a
linear system Ax = b into another system that is easier to solve. But in contrast
to conventional preconditioning, the system is now split into two independent
systems using projections onto a subspace and its complement. The idea is then
to solve the two sub-systems independently. In Section 6.1 we look at how this
works conceptually and mathematically. Then, in Section 6.2, we will discuss
some di�erent choices for projections and their properties. Note also that the
de�ation method can easily be combined with preconditioning.

6.1 How de�ation works

In this thesis we assume A to be SPD for simplicity, following the proof by Jön-
sthövel 2012 [23]. For general matrices there are more di�cult proofs available[15,
45]. In de�ation we chose some subspace S ⊂ Rn to de�ate and let the columns
of V ∈ Rn×k be a basis of S. We will split the solution x into two parts, one
part in the subspace S and one part in its complement Sc:

x =
(
I − PT

)
x+ PTx

where P is a projection matrix, de�ned by

P = I −AV
(
V TAV

)−1
V T .

When V has rank k, the product E = V TAV is SPD and thus invertible.
Usually we take k to be small, so that E and E−1 can be computed explicitly
or via QR-decomposition. Using this, we can compute one part of the solution
explicitly: (

I − PT
)
x = V E−1V TAx = V E−1V T b.

The other part of the solution PTx still needs to be computed. Note that

PA = APT

We solve the projected problem using our preferred Krylov method (CG)

PAx̂ = Pb. (6.1)

We do have to note that PA is singular and thus the solution is not unique.
However, the projected solution PT x̂ is unique and equal to PTx. Therefore
the total solution becomes:

x = V E−1V T b+ PT x̂, (6.2)

where V E−1V T b is calculated explicitly, while PT x̂ is found by solving PAx̂ =
Pb using a Krylov method. Note that the big advantage comes from the fact
that the subspace S is no longer part of the problem PAx̂ = Pb, thus e�ectively

28

the subspace S is �hidden� from the Krylov method [23]. As we saw earlier, the
convergence depends on the condition number, and thus on the eigenvalues of
the matrix A:

κ(A) =
λN
λ1

When the eigenvectors corresponding to the lowest few eigenvalues are used as
de�ation vectors, the e�ective condition number then becomes

κe�(A) =
λN
λk

,

which usually provides a big improvement.
The full DPCG is given in Algorithm 4. It is also possible to apply classical

PCG to System (6.1) and use Equation (6.2) to �nd the full solution.

Initial guess: x0

r0 = b−Ax0

r̂0 = Pr0

y0 = M−1r̂0

p0 = y0

For j = 0, 1, ... (until convergence)

ŵj = PApj

αj =
r̂Tj yj

ŵT
j pj

x̂j+1 = x̂j + αjpj
r̂j+1 = r̂j − αjŵj

yj+1 = M−1r̂j+1

βj =
r̂Tj+1yj+1

r̂Tj yj

pj+1 = yj+1 + βjpj

End

x = ZE−1ZT b+ PT ûj+1

Algorithm 4: De�ated Preconditioned Conjugate Gradient Method as
taken from [23]

6.2 Choice of de�ation space

The de�ation method allows a lot of freedom in the choice of the de�ation
subspace. We usually look at this subspace by de�ning its basis, that is the
columns of V .

6.2.1 Using exact eigenvectors

From a theoretical point of view it would be ideal to de�ate the eigenvectors
corresponding to �bad� eigenvalues, which are almost always the lowest eigen-
values. In practice however it is di�cult to compute this. If one can determine

29

the eigenvalues exactly, there is no need for solving the system numerically.
However, it can be used to formally prove statements about the convergence
rate from a theoretical standpoint. But more importantly, the other methods
can be seen as perturbations of using the exact eigenvalues.

6.2.2 Using approximate eigenvalues

This method comes closest to the theoretically ideal de�ation. The eigenvectors
of the system are approximated via some iterative method, such as the Lanczos
algorithm. It turns out that the approximation does not have to be very precise
to be e�ective [24]. Unfortunately, �nding approximate eigenvectors is very
expensive, so it is often faster to not de�ate the eigenvectors this way. However,
when one needs to solve the same system many times, it may be bene�cial
to approximate these eigenvectors once and use them many times to speed up
convergence.

6.2.3 Reusing eigenvectors from repeated/restarted GMRES

Instead of approximating the eigenvectors beforehand, we can save some com-
putation power by approximating the eigenvectors based on information found
by the GMRES algorithm. This is still expensive in practice [39], but a part
of the calculation has to be done anyway in order to solve the linear system,
therefore it is cheaper than approximating eigenvectors beforehand. After the
linear solve is completed, some of the information that is stored during the GM-
RES iterations can be condensed into an approximate eigenvector. Reusing this
eigenvector for the next system to be solved to speed up any subsequent solves.
To a lesser extend, this method can also be applied to the restarted GMRES
method [28, 7, 31].

6.2.4 Subdomain de�ation

When the domain is split into subdomains, we can use the indicator function
on each domain, i.e.:

IDi
(v) =

{
1 v ∈ Di

0 otherwise
.

We can turn this into a vector which has elements 1 if the element on that
position is in that domain. Then all these vectors together can form the basis
for the de�ation space. The advantage of this is that it is very easy to construct
these de�ation vectors and all vectors are sparse. It can be made even more
e�ective if the subdomains are chosen based on physical characteristics of the
problem, by for example aligning the subdomains with di�erent materials of the
problem [25, 27].

30

6.2.5 Levelset de�ation

This de�ation method is based on the underlying physics. It is very similar to
subdomain de�ation in that we use a indicator function to construct the vectors,
but we do not need to split the domain into actual subdomains. Instead, we
group connected vertices together based on physical properties, such as sti�ness,
or permeability. We may even split these regions further using classical domain
splitting techniques. Then we de�ne the de�ation vectors as the indicator vec-
tors on these groups of vertices. Note again that these vectors are sparse. This
de�ation method is computationally quite e�cient and can sometimes be very
e�ective [39].

6.2.6 Rigid body modes

Rigid body de�ation is similar to, and slightly more advanced than levelset
de�ation but applied to mechanical problems speci�cally. Again, we split the
domain into levelsets based on sti�ness. We will then proceed pretending that
each group is a rigid body, i.e. the group as a whole can move and rotate in all
directions, but it cannot bend or stretch. Rotation along arbitrary angles is a
non-linear operation. But for small angles we can use the following (linearized)
de�ation vectors (which depend on the positions of the nodes) [27]:

translation along x-axis[1, 0, 0, 0, 0, 0]

translation along y-axis[0, 1, 0, 0, 0, 0]

translation along z-axis[0, 0, 1, 0, 0, 0]

rotation about x-axis[0,−z, y, 1, 0, 0]

rotation about y-axis[z, 0,−x, 0, 1, 0]

rotation about z-axis[−y, x, 0, 0, 0, 1]

For mechanical problems, these de�ation vectors generally lead to better de�a-
tion than levelset de�ation. As they only depend on the position of the nodes,
they can be computed beforehand. These vectors are an extension of levelset de-
�ation, as levelset de�ation corresponds to the translation terms in this method.
The strength of rigid body de�ation comes from the idea that the smallest eigen-
vectors of a system can be approximated by a linear combination of these rigid
body modes. Even though its not perfect, it can perform very well in practice
[27].

6.2.7 First-order de�ation

In rigid body de�ation we used linearized rotational modes to construct the
de�ation vectors. We �nd that these rotations consist of two linear modes
added together. So we may take these two linear parts independently from each
other. For instance, instead of having a de�ation vector

rotation about x-axis [0,−z, y, 1, 0, 0]

31

as we have in rigid body de�ation, we take three independent de�ation vectors:

[0, z, 0, 0, 0, 0]

[0, 0, y, 0, 0, 0]

if there are rotational DOFs[0, 0, 0, 1, 0, 0].

The space spanned by these vectors contains the rigid body de�ation vectors,
therefore we expect the performance of this de�ation space to be at least as good
as rigid body de�ation. From a physical point of view, these vectors correspond
to shear modes in two directions. Therefore the set of de�ation vectors now
becomes:

translation


[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

shear & rotation



[y, 0, 0]

[z, 0, 0]

[0, x, 0]

[0, z, 0]

[0, 0, x]

[0, 0, y]

These vectors are very straightforward to construct, and they are all only de-
pendent on one positional coordinate. There are three extra vectors that seem
natural to add to this set of de�ation vectors:

compression


[x, 0, 0]

[0, y, 0]

[0, 0, z]

From a physical viewpoint, these three vectors correspond to compression/extension
along three directions. Together it forms a space that we shall call the ��rst-
order del�ation� space, as all vectors depend on the coordinates of the nodes
linearly. We do not have any quadratic forms (x2) or cross-terms (xy).
In total we have 12 de�ation vectors for every volume that we de�ate. If the
model contains plate elements, their nodes will have three extra explicit degrees
of freedom for rotation. In such a case, we add three extra de�ation vectors
corresponding to these DOFs:

rotational DOFs


[0, 0, 0, 1, 0, 0]

[0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 1]

32

6.2.8 Sparsity of de�ation vectors

The de�ation methods that are based on approximations of eigenvectors (Sec-
tions 6.2.1-6.2.3) yield dense de�ation vectors. As a result, the amount of mem-
ory required and the amount of FLOPS required for de�ation depends linearly
on the number of de�ation vectors. In particular, when we use k de�ation
vectors on a problem of size n, we need O(nk) memory and FLOPS for the
de�ation vectors themselves. Additionally we need O(k2) to store and evaluate
the coarse-grid inverse E−1. Since n� k the term O(nk) is dominant.
For the sparse methods (Sections 6.2.4-6.2.7) we have a di�erent picture. If
we use non-overlapping subdomains the vectors are very sparse and since the
vectors do not overlap, the storage required for the de�ation vectors does not
depend on the number of de�ation vectors. We only need O(n) memory and
FLOPS for the de�ation vectors. In the case of levelset de�ation we only need
1 �oat/DOF. Whereas for �rst-order de�ation we need 4 �oats/DOF. On top of
this we still need O(k2) to store and evaluate the coarse-grid inverse E−1. For
a total of O(n + k2) memory and FLOPS to store and evaluate the de�ation
projection.
If, on the other hand, we have overlapping domains, the storage and computa-
tional costs will increase. As long as the amount of overlap is su�ciently small,
these costs will still be roughly O(n+ k2).

33

7 Preliminary experimentation

7.1 Test problems

We show the performance of di�erent preconditioners on a test problem, based
on the 2D �nite di�erence heat problem with Dirichlet boundary conditions.

1. Matrix 1 is a simple 2D Poisson matrix using a 5-point stencil.

2. Matrix 2 is a �nite di�erence heat problem using a 5-point stencil. For
this matrix, the problem has 3 regions where the conductivity is 100 times
higher than in other areas, as illustrated in Figure 15. This is noticeable
in the convergence plots by the three bends in the lines.

Figure 15: Regions of high conductivity for matrix 2, yellow corresponds to the
area with 100× the conductivity of the purple area

Both test problems are SPD, yet, as not all preconditioners are symmetric,
we will use full GMRES in all cases for easy comparison of the e�ect of the
di�erent preconditioners. We consider the method converged when the norm of
the residual is less than 10−8.

7.2 ParILU

ParILU has been tested with two di�erent sparsity patterns: A (corresponding
to ILU(0)) and A2 (corresponding to ILU(1)). The test problem is a 30×30 heat
equation with high contrast (test problem 2), with symmetric diagonal scaling
(as suggested in Section 5.3.4). The convergence using GMRES is shown in
Figure 16 for di�erent number of construction sweeps and Jacobi iterations.
We can see that as we increase the amount of sweeps/Jacobi iterations the
convergence of ParILU approximates that of ILU. However, possibly the best

34

performances are achieved with a relatively inaccurate approximation, due to
faster iterations, which needs to be researched. The reference ILU decomposition
is implemented using the ilupp Python package, which is turn is based on ilu++

[30].

Figure 16: Convergence test for ParILU. The dashed lines represent conventional
ILU. The blue lines correspond to ILU(0) and its parallel approximation. The
green lines correspond to ILU(1) and its corresponding approximation. The
paramaters in ParILU correspond to the sparsity pattern, construction sweeps,
Jacobi iterations respectively.

7.3 ParILUT

Using the same test problem we can test ParILUT. Our implementation was
built such that the desired number of non-zeros per factor can be chosen. As we

35

are using a 5-point stencil, the matrix has (for most rows) 5 non-zeros per row.
The ILU(0) decomposition then has 3 non-zeros per row for both factors, as the
diagonal is both in the lower and upper factor. The convergence for ParILUT
is shown in Figure 17 and a a summary is given in Table 2. We can see that the
scipy.sparse.linalg.spilu has the most non-zeros while having the worst
convergence, which is quite unexpected. Furthermore, we see that for almost
same number of non-zeros, ParILUT(3600 nz) has slightly better convergence
than ILU(1) and ParILU(A2), due to the (few) extra non-zeros or better sparsity
pattern, as explained by Anzt [4].

Method nnz nnz/row GMRES iterations

ILU(0) 2640 2.93 52
ParILU(A, 3, 3) 2640 2.93 63
ParILU(A, 5, 5) 2640 2.93 53
ILU(1) 3566 3.96 31
ParILU(A2, 5, 5) 3481 3.87 38
ParILU(A2, 10, 10) 3481 3.87 32
ParILUT(10, 15, 3600nz) 3600 4.00 28
ParILUT(10, 15, 4500nz) 4500 5.00 22
scipy.sparse.linalg.spilu 5014 5.57 64

Table 2: Overview of convergence and number of non-zeros for di�erent ILU
implementations.

7.4 SPAI

We test the same problem on a 30× 30 grid with SPAI, using di�erent sparsity
patterns. The convergence is shown in Figure 18. The SPAI preconditioner
yields a worse convergence rate than IC for the same number of non-zeros, but
again, due to its fast iteration, it may still be a good choice. SPAI(IC) stands
for SPAI applied to the IC(0) decomposition. As this is the only symmetric
SPAI preconditioner in this test, we could thus have been using CG.

7.5 ISAI

Figure 19 shows the convergence for the ISAI preconditioner using several spar-
sity patterns. Again ISAI(IC) stands for ISAI applied to the IC(0) decompo-
sition. Table 3 shows the number of iterations needed for both SPAI and ISAI
preconditioners. It has to be noted that SPAI(A) is better than ISAI(A). For
the other sparsity patterns and approximate inverses of IC(0), both methods
perform comparably in terms of convergence. It also has to be noted that the
ISAI preconditioner is faster to construct than the SPAI preconditioner for the
same sparsity pattern.

36

Figure 17: Convergence test for ParILUT. The dashed lines represent conven-
tional ILU. The blue lines correspond to ILU(0) and its parallel approximation.
The green lines correspond to ILU(1) and its corresponding approximation.
For the parameters in ParILU stand for ParILU(sparsity pattern, construction
sweeps, Jacobi iterations) and for ParILUT(construction sweeps, Jacobi itera-
tions, allowed number of non-zeros)

37

Figure 18: Convergence test for SPAI

Method GMRES iterations

Jacobi 157
IC(0) 50
SPAI(A) 88
SPAI(A2) 65
SPAI(IC) 90
ISAI(A) 121
ISAI(A2) 63
ISAI(IC) 86

Table 3: Overview of convergence for SPAI and ISAI preconditioners.

38

Figure 19: Convergence test for ISAI

39

7.6 Approximate eigenvector de�ation

It has been noted above that for problem 2 there is a high contrast in conductiv-
ity, leading to slow convergence. In particular, in every convergence plot we see
three bumps, corresponding to the 3 slowly converging eigenvalues. On a small
grid (30×30) the matrix is relatively small (900×900) and we can compute the
eigenvalues numerically. Figure 20 shows the 4 eigenvectors corresponding to

(a) (b) (c) (d)

Figure 20: De�ation vectors corresponding to the lowest 4 eigenvectors.

the 4 smallest eigenvalues. The high conductivity regions are easily visible in the
eigenvectors with some extra smoothing going on in the neighborhood. Figure
21 shows the convergence plot with varying number of eigenvalues de�ated, for
both the Jacobi preconditioner and the IC(0) preconditioner. We can see from
the convergence that as the number of de�ation vectors increases, the bumps
in the convergence disappear one by one. Furthermore, we see that the �rst 4
eigenvectors have a signi�cant impact on the convergence, whereas the next few
eigenvectors barely improve convergence. All in all, using 4 eigenvectors reduces
the amount of iterations by over 40%.

7.7 Levelset de�ation

Instead of using eigenvectors, we can opt for the levelset vectors. These vectors
are based on the physical properties of the problem. In the case of our test
problem, we could split it into 4 vectors based on conductivity, as illustrated
in Figure 22. They do not represent the eigenvectors, but a linear combination
of these may approximate an eigenvector good enough. The convergence using
these de�ation vectors is shown in Figure 23. Interestingly, the convergence for
4 levelset vectors is almost equal to the convergence of the 4 lowest eigenvalues,
meaning that with 4 very cheap de�ation vectors, we can improve convergence
signi�cantly.

40

(a) Using Jacobi preconditioning (b) Using IC(0) preconditioning

Figure 21: Convergence for eigenvector de�ation for di�erent amount of de�ated
eigenvectors.

(a) Background (b) Region 1 (c) Region 2 (d) Region 3

Figure 22: De�ation vectors corresponding to the levelsets.

41

Figure 23: Convergence using levelset de�ation versus eigenvalue de�ation (both
with 4 vectors).

42

8 Test problems

In this thesis we investigate several combinations of preconditioners, Krylov
methods and de�ation vectors. As the performance of each combination depends
on the problem it is applied to, we will apply it to a set of test problems that
are representative for cases that PLAXIS users will encounter in practice. The
performance, in terms of time and memory, of the di�erent components of the
solver is analyzed, for di�erent preconditioners and sets of de�ation vectors.
The outcome is compared against the PICOS solver as well as the PARDISO
solver, currently available in PLAXIS 3D. The test models we use comprises of
a sti� structure embedded in softer soil, as this leads to a high contrast in terms
of sti�ness, and thus ill-conditioned matrices. In particular, we will analyze:

1. A uniform soil cube under gravity loading, to verify that the GPU algo-
rithm performs well for very simple test cases.

2. A layered soil with di�erent sti�ness per layer, similar to Lingen 2014
[27], model 1. The sti�ness of the soil layers di�ers by several orders of
magnitude.

3. Tunnel through a layered soil, as taken from a PLAXIS 3D tutorial [1].
Conceptually similar to Lingen 2014 [27], model 2. The soil layers have an
order of magnitude di�erent sti�ness, whereas the concrete lining inside
the tunnel has a sti�ness several orders of magnitude larger than the soil.

4. Loading of suction pile in clay, as taken from a PLAXIS 3D tutorial [2].
The suction pile is a steel cylinder closed at the top and is used to anchor
large structures to the sea�oor. The cylinder is very sti� compared to
the surrounding soil, leading to a highly ill-conditioned problem. In fact,
the tutorial suggests to use PARDISO as it solves the problem faster than
PICOS.

8.1 Hardware

The hardware speci�cations of the GPU and CPU are given in Table 4.

43

(a) Uniform soil (b) Layered soil

(c) Tunnel (d) Suction pile

Figure 24: Test problems

Desktop

CPU Intel(R) Core(TM) i7-10700

RAM 16 GB DDR4

CPU cores 8 physical / 16 threads

GPU NVIDIA GeForce GTX 1660 SUPER

GPU RAM 6 GB DDR6

GPU cores 1408

GPU link PCIe 3.0 x16

Table 4: Hardware speci�cation

44

9 Implementation and analysis

In this chapter we will discuss some of the implementation details and interme-
diate results of the project. The chapter provides insight about the process of
developing the code, as well as an understanding of the GPU computing through
various examples, especially relevant for anyone aiming to replicate this project
or build further on it.

In total three implementations of the same algorithms are made. First in
Python, for its ease of use, allowing us to quickly prototype di�erent meth-
ods. Using the NumPy library[18] yields reasonable performance, although it is
not suitable for actual performance comparisons. Next, a C++ implementation
is developed, which improves the performance of the algorithms on the CPU.
Lastly, an implementation in CUDA is made for the GPU, to achieve the maxi-
mal performance. In all cases we do not implement the linear algebra ourselves.
Instead, we rely on libraries (NumPy, SciPy, Eigen, cuSPARSE, cuBLAS) to
provide matrix operations for us. Some libraries (Scipy speci�cally) are also
used for their Krylov methods, yet unless explicitly stated, the Krylov methods
are custom implementations.

Furthermore, for the GPU algorithms, we run the Krylov method, de�ation
operations and preconditioner application on the the GPU, while all the setup
is performed on the CPU, including reading/writing of data, construction of the
preconditioner, generation of de�ation vectors and operators. These costs will
be reported separately, as they are only needed once per matrix.

Lastly, usually the CPU is referred to as the �host�, whereas the GPU is
referred to as the �device�.

9.1 Algorithm veri�cation

In order to properly compare di�erent implementations (e.g. host vs device) it
is important to check whether the results are the same. That is, the number
of required iterations is (almost) equal, and the solution vector is equal up to
numerical precision. To our initial surprise, the BiCGSTAB implementation in
Python and C++ yields di�erent results, even when the matrix and precondi-
tioner are exactly the same, even for cases where double precision could exactly
represent the numbers (numbers such as 4 and 1/4 have exact �oating point
representations). Using a 2D Poisson problem on a 100× 100 grid with Jacobi
preconditioning, the convergence is plotted in Figure 25(a). The di�erence in
the number of iterations is surprising given that exactly the same preconditioner
is used and the algorithm follows the exact same steps. As it turns out, this
di�erence is caused by the instability of BiCGSTAB. In Figure 25(b) the results
are plotted for the CG algorithm as well, where we see the convergence follows
the same line and the results are equal up to numerical error. To prove that a
small rounding error can lead to di�erent convergence, we also tested the same
Python implementation with two slightly di�erent starting vectors: for test 1:
x0 = [0, 0, 0, ..., 0] and in test 2: x0 = [10−14, 0, 0, ..., 0]. Even for such a tiny

45

di�erence in starting vector, the convergence of BiCGSTAB is signi�cantly dif-
ferent, whereas for CG this di�erence is not visible. All in all, these di�erences
can be attributed to rounding errors and should be taken into account in any
�nal comparisons, for example by averaging the runtime with several slightly
di�erent starting vectors.

(a) (b)

Figure 25: Convergence plot of Python and C++ implementation. Note that
the three CG versions coincide and run on the exact same line.

9.2 Memory transfer speeds

As the host and device have physically separate RAM, any data that is to be
used by the device �rst has to be transferred from the host. Usually, the FEM
matrix is constructed on the host, which means that the entire matrix has to be
transferred. If this transfer takes too long, any performance bene�ts of using a
GPU are immediately mitigated. Therefore the memory transfer speed from the
host to the device is measured by transferring 1 Gigabyte of data, see Table 5.
This tests only the bandwidth and not the latency. Note that the units (GB/s)
denote gigabytes and not gigabits.

Pagelocked memory: Note that behind the scenes, copying memory from
the host to the device will �rst copy it from the host to pagelocked memory and
then transfer it to the device. Pagelocked memory is some �special memory�
that still resides in the host RAM, the only di�erence from normal memory
being that it cannot be swapped out by the operating system. This two step
copy cannot be avoided, but it can be done explicitly if desired, i.e. one could
construct the matrix in page-locked memory, but the advantage is minimal and
construction of the matrix is out of scope for this research. For completeness,
memory copy from host to host, and device to device is also included. This two-
step copy also happens when copying back from the device to the host. The

46

CUDA runtime automatically handles this for us and hides this complication,
but for bandwidth tests it is relevant.

From To Bandwidth (GB/s)

Host Host (1st time) 3.41

Host Host (2nd time) 13.20

Host Device 9.96

Device Host 9.58

Device Device 142.44

Host Pagelocked 13.55

Pagelocked Device 12.60

Table 5: Memory bandwidth when copying 1 gigabyte of data.

The results from Table 5 need some explanations. First of all, it turns out that
copying data from host to host depends on whether it is the �rst time this data
is copied or the second time (by a factor 3.8). This indicates that possibly some
kind of caching is happening. However, this does still not explain the di�erence
as the transfer of 1 gigabyte is orders of magnitude larger than the cache size.
It should also be noted that swapping any memory to disk was disabled for the
entire OS and therefore this also cannot be the cause of the di�erence.

Next, we can see that transfers from pagelocked memory to the device are
slightly faster than from standard memory. However, the di�erence is minor
and in real world use cases the matrix is constructed out of our control. Thus
directly copying to the device and letting CUDA handle the pagelocked memory
behind the scenes is the fastest and easiest approach. The theoretical maximum
bandwidth is 16 GB/s (for PCIe 3.0 x16).

Furthermore, we see that the bandwidth from host to device is close to the
bandwidth from host to host. Therefore we should not need to worry too much
about the cost of transferring the data. All timing results presented in this
chapter shall include the time to transfer the data to the device.

Lastly, we see that device to device copies are about 10 times faster than
host to host copies. This indicates that accessing memory on the device is much
faster and can provide a performance gain.

9.3 Multi-threaded performance

The Eigen library allows us to easily perform our iterative methods in parallel
on the host. We tested the runtime of the algorithm using di�erent number
of cores on the desktop. The tests are performed on a 2D Poisson problem
with grid size 1024 × 1024 using a CG algorithm and a Jacobi preconditioner.
The total runtime (i.e. wall-clock time) is shown in Figure 26. We see that,

47

initially, more cores means better performance, although when we add more
than 4 threads the total runtime remains relatively constant up to 8 threads,
indicating that probably at this point the calculations are no longer bound by
computational power, but rather by memory bandwidth. When using more than
8 threads, the performance drops again signi�cantly, which can be explained by
cache pollution [13]. Coming down to the fact that two hyper-threads run on a
single physical core, competing for the same cache space. This in turn leads to
more cache misses and thus longer execution times.

From this result we see that using 4 threads provides the best performance
and for this reason for future tests we report the runtime using 4 threads.

Figure 26: Wall-clock time for solving a 2D Poisson problem using di�erent
numbers of threads. Note that the vertical axis does not start at 0.

9.4 GPU performance

The �rst step for comparing host vs device performance is using the same algo-
rithms on both host and device and comparing the performance and accuracy.
We use the same initial conditions, preconditioner and algorithm and all com-
putations are performed in double precision.

9.4.1 Implementation details for CG

For all linear algebra operations we use libraries provided by Nvidia, speci�cally
cuSPARSE and cuBLAS [34] as these libraries are optimized and easy to use.
The Krylov method itself, however, is a custom implementation. Another im-
portant point is that all sparse matrices are stored in Compressed Row Storage
format (CSR) matrix. In the initial implementation, the preconditioner is built
on the host (as constructing the preconditioner on the host is easier) and then
transferred to the device where it is then used.

In the initial implementation, the results of all vector dot products are re-
turned to the host to compute the α and β variables in the CG algorithm. This
is easier to implement but leads to many points where the device is waiting on

48

the communication, and hence suboptimal. In the �nal implementation, these
dot products are stored in the device and α and β are computed on the de-
vice, thus saving a lot of communication overhead. Additionally, in the �nal
implementation, the residual has to be sent back to the host in every iteration,
since the cuSPARSE function cannot be called from the device and, hence, the
host has to determine and communicate to the device when to stop iterations.
To improve the performance of this communication, this result is sent back
asynchronously, so that while the host determines whether to quit or not, the
device continues executing operations. The overhead of the communication of
the residual contributes less than 1% of the total runtime for larger matrices,
so no further optimization to this aspect seems necessary.

9.4.2 GPU performance

We veri�ed that both implementations require the same number of iterations
and give the same result up to numerical error. In all reported times the com-
munication time between the host and device (over PCIe) is included, but the
initialization time (loading of libraries) is not. Furthermore, before the tests
are executed, we run a small warm-up problem, consisting of solving a (small)
50× 50 2D Poisson problem, to ensure that all libraries are fully initialized and
neither the host nor the device are in a power saving mode. We compare the
performance of di�erent implementations. We also compare the implementation
to a Scipy version (scipy.sparse.linalg.cg) to verify our host implementa-
tion is performant. We use the CG algorithm with Jacobi preconditioning on
2D Poisson problems of di�erent grid sizes, with x0 = 0 as initial condition.
The results are shown in Figure 27. We can see that for small matrices, the cus-

Figure 27: Time to convergence using CG on a 2D Poisson problem of di�erent
sizes. Note the log-log scale.

49

tom host implementation is the fastest. For matrices larger than about 20 000
unknowns, the device shows better performance. Solving even larger problems
on the device is about 10 times faster than using the same algorithm on the
host. For small systems the communication overhead with the device is large
compared to the performance gain. For su�ciently large systems this overhead
is negligible.

9.5 Geotechnical system from PLAXIS 3D

Next, we use the same algorithm to solve a �nite element system from a geotech-
nical problem, using a custom version of PLAXIS 3D to export the matrices.
Then, we use this exported matrix with our own solvers to compare convergence.
We start with the �rst problem described in Section 8. It is a simple cube of
uniform soil under gravity loading. A mesh is generated using the �very �ne�
setting in PLAXIS 3D, shown in Figure 28(a) and the sparsity structure of the
matrix is shown in Figure 28(b). Furthermore, the matrix is SPD and some of
its properties are listed in Table 6.

Property Value

Width, height 232 071

Number of non-zeros 18 401 645

Bandwidth 23941

nnz/row (average) 79.3

nnz/row (max) 308

κ2(A) (condition number) ≈ 1.1 · 104

Table 6: Properties of the �nite element matrix of the uniform cube soil.

9.5.1 Solving the system

The next step is to solve the system using CG and compare the performance of
di�erent preconditioners on a real-world problem. For this matrix, we will look
at the following preconditioners:

1. Jacobi preconditioner (Section 5.1)

2. IC(0) preconditioner

3. The FSAI preconditioner (see Section 5.4.4). Speci�cally, we will use the
ISAI preconditioner applied to the IC(0) decomposition.

4. For the general Krylov solvers (BiCGSTAB, IDR(s)) we will also look into
the ISAI preconditioner.

50

(a) Finely meshed uniform cube (b) Sparsity structure of corresponding ma-
trix

Figure 28: Cube of uniform soil

The convergence for the three di�erent methods is shown in Figure 29(a - c).
From this, we see that the ISAI preconditioner has a convergence in between
the Jacobi and IC(0) preconditioners for all solvers. The big advantage of direct
preconditioners over IC(0) is that it can be evaluated in parallel making it
suitable for GPU computations. On the downside, it is much more expensive
to construct than the Jacobi preconditioner. On the horizontal axis the number
of matrix-vector products is shown instead of the number of iterations, to more
easily compare the computational cost of di�erent solvers.

(a) using CG (b) using BiCGSTAB (c) using IDR(4)

Figure 29: Convergence for the uniform soil cube system using di�erent Krylov
Solvers and preconditioners

9.5.2 ParIC

In the previous section we have seen that the IC(0) preconditioner has the best
convergence rate among the methods tried so far. We will try to achieve a

51

similar convergence rate using the Parallel IC preconditioner as described in
Section 5.3.4. We will try a di�erent number of inner iterations and we will not
be using the parallel construction method for the preconditioner, but, instead
we will use a normal sequential IC algorithm. This way we have one parameter
less we need to vary.

Figure 30 shows the convergence of the CG method using ParIC precondi-
tioner with varying number of inner iterations. From this �gure we see that as
we increase the number of inner iterations, the convergence improves. This is
expected as the ParIC preconditioner should approach the sequential IC precon-
dition when the number of inner iterations is su�ciently large. The improve-
ment becomes less signi�cant every time, until about 10 inner iterations. When
we further increase the inner iterations, there is no signi�cant improvement in
convergence. For 1 inner iteration, the convergence is similar to Jacobi precon-
ditioning. But as the ParIC preconditioner is much more expensive to evaluate,
the time to reach convergence is longer compared to using Jacobi preconditioner.

From a theoretical point we can say the same for any number of iterations.
We know that one inner iteration of the ParIC preconditioner is about as ex-
pensive as a matrix-vector product with the original matrix. Therefore we can
estimate the amount of work required to reach convergence for each of the meth-
ods. This estimation is shown in Table 8. From this table we can quickly see
that the Jacobi preconditioner requires the least amount of work. From this we
conclude that the ParIC preconditioner is not bene�cial for this problem.

Figure 30: Convergence with ParIC preconditioner with zero �ll-in applied to
the uniform soil system on a �ne grid for a varying number of inner iterations.

52

Preconditioner Inner iters CG iters Total work (mat-vec equiv)

Jacobi / 550 550

ParIC(1) 1 595 1190

ParIC(2) 2 310 930

ParIC(3) 3 199 796

ParIC(4) 4 147 735

ParIC(5) 5 121 726

ParIC(10) 10 84 924

ParIC(20) 20 75 1575

Table 8: Estimated work for varying number of inner iteration in ParIC. Note
that for every CG iteration, there is 1 mat-vec for CG itself, plus n mat-vec
equivalent for the inner iterations of the preconditioner.

Fill-in We are also interested in the results if we do have some amount of �ll-in
in the ParIC preconditioner. Figure 31 shows the convergence of CG with ParIC
preconditioning for a varying number of inner iterations and a varying amount
of �ll-in. We see that for small numbers of inner iterations, it does not matter
how much �ll-in is used. The e�ect of the �ll-in only becomes noticeable for
high numbers of inner iterations. From this we conclude that the zero-�ll ParIC
preconditioner is preferable over the the ParIC preconditioners with �ll-in.

We can conclude that the ParIC preconditioner requires more work than the
Jacobi preconditioner and therefore we shall not investigate this preconditioner
any further.

9.5.3 Changing sparsity pattern of ISAI

In Section 7.5 we have seen that we can improve the convergence rate of the
ISAI preconditioner by choosing a di�erent sparsity pattern for constructing
the preconditioner. In particular, in that section we used the sparsity pattern
of A2. E�ectively, this allows the preconditioner to have some amount of �ll-in.
We would like to try to get similar improvements for this matrix. However,
if we use the same strategy, we run into an issue: the amount of �ll-in in the
sparsity pattern of A2 is too large to construct the preconditioner. We can
however, use a little trick to reduce this problem. By looking at the histogram
of the magnitude of the elements in the matrix, relative to the main diagonal
(see Figure 32). We see that most matrix elements are very small compared
to the diagonal elements. So we can expect that a small fraction of the matrix
elements has a large contribution to the result, whereas the majority only has a
small in�uence. We can use this to our advantage. The idea is somewhat similar

53

Figure 31: Convergence with ParIC preconditioner with varying �ll-in applied
to the uniform soil system on a �ne grid for a varying number of inner iterations.
Note that on average the original matrix has almost 80 elements per row. Thus
a zero �ll-in incomplete Cholesky decomposition has about 40 elements per row,
while a decomposition with �ll-in of 80 has on average about 120 non-zeros per
row.

54

to thresholded ILU, stripping away the smallest elements, reducing the memory
usage and amount of operations required per application of the preconditioner.
At the same time we hope that by stripping away these small elements we do not
negatively a�ect the performance of the preconditioner too much. Speci�cally,

Figure 32: Histogram of relative magnitude of matrix elements, relative to the
main diagonal.

we keep the m largest elements per row of A. Let us denote this reduced matrix
as Bm. The sparsity pattern of Bm then corresponds to the most signi�cant
elements of matrix A. The next step would be to have some �ll-in, by taking the
sparsity pattern of B2

m. Then we apply the ISAI precondition on the original
matrix, with the sparsity pattern of B2

m. This is denoted by ISAI(A, B2
m). The

parameter m still has to be determined and we can try with a few small values,
such as 5, 11 and 21. The results are shown in Figure 33. We can see that
the number of iterations is reduced when we keep more of the sparsity pattern,
as this yields a more accurate preconditioner. At the same time, it requires
more memory. Furthermore, the setup cost as well as the evaluation cost of
the preconditioner will increase. So, in total, there is some optimum, which
may be problem dependent and di�cult to predict. However, for this particular
problem, in terms of runtime, the ISAI(A, B2

11) proved the fastest. More details
are shown in Table 9. From this table we also see that the sparsity pattern
B2

11 contains just slightly fewer non-zero elements as the original matrix A, yet
the convergence is signi�cantly improved. We also note that the convergence
using ISAI(A, B2

5) is very similar to the convergence using ISAI(A, A), yet the
memory requirements and evaluation time is much lower.

9.6 De�ation

The next step is to include de�ation into the solver. The e�ect of de�ation is
best illustrated on a layered soil system (see Figure 24). The �nite element
matrix corresponding to this problem will have a higher condition number as
the sti�ness ratio between the two soil types increases, thereby the number of
iteration required to reach convergence will increase, as is illustrated in Figure
34.

55

Figure 33: Convergence of ISAI preconditioner with some varied sparsity pat-
terns, using IDR(4).

Preconditioner non-zeros # iterations Iteration time

ISAI(A, A) 18 401 645 421 1.68 s

ISAI(A, B2
5) 3 931 611 408 1.11 s

ISAI(A, B2
11) 16 508 226 265 1.01 s

ISAI(A, B2
21) 36 709 047 207 1.14 s

Table 9: Some properties of the ISAI preconditioners with di�erent sparsity
patterns. As well as some properties of the convergence when using IDR(4) with
this preconditioner. The iteration time is measured when running on the GPU
and it excludes any setup costs. Iteration is stopped at an absolute tolerance of
10−8.

56

From this �gure we can see that the convergence degrades as the sti�ness
ratio increases, especially in the initial phase. The number of iterations required
to reach convergence is listed in Table 11. We see that for a relative tolerance
of 10−4 (which is commonly used by the PICOS solver in PLAXIS 3D) the
number of iteration required to reach convergence is increased almost by an
order of magnitude when going from no contrast in sti�ness to a ratio of 106.

For this �gure and table we use the exact same mesh for each run, which
was generated using the �very �ne� setting in PLAXIS 3D. This resulted in a
system with 224 040 degrees of freedom. Note that we did not limit ourselves to
sti�ness ratios we would �nd in nature, but the values are chosen to illustrate the
ill-conditioning of the matrix and the e�ectiveness of de�ation. For the solving
phase we used Conjugate Gradient with Jacobi preconditioning. A similar e�ect
can be observed when using an IC or ISAI preconditioner, except of course an
overall decrease in number of iterations.

Figure 34: Convergence plot for layered soil system with varying sti�ness ra-
tio between the soil types. The horizontal lines indicate two possible relative
tolerances at 10−4 and 10−8.

9.6.1 Solving

In the previous section we saw how an increased sti�ness ratio leads to worse
convergence, whereas this section we shall use de�ation to reduce this e�ect.

57

Sti�ness ratio Iteration required to convergence

rel. tol = 10−4 rel. tol = 10−8

100 312 519

101 462 721

102 1006 1649

103 1918 2364

104 2292 2538

105 2456 2647

106 2564 2931

Table 11: Number of iterations required to reach a given relative tolerance for
varying sti�ness ratios.

We investigate four de�ation methods described in Chapter 6:

1. Eigenvector de�ation: for small problems, very expensive, only for refer-
ence

2. Levelset de�ation

3. Rigid body de�ation

4. First order de�ation

For eigenvector de�ation, we compute a given number of eigenvectors and use
these as de�ation vectors. For the physics based de�ation methods, the soil
layers will guide the de�ation vectors. We achieve this physics based de�ation
via a few mappings provided by the PLAXIS software. First of all, we have a
mapping of which elements are contained in each soil layer. We know which
nodes are contained in each of these elements. Lastly, we know the degrees of
freedom corresponding to each node. In total we can map which row in the
matrix corresponds to every node and to each of the soil layers.

9.6.2 Interface nodes

The nodes which are on the boundary between two soil layers are included in
the de�ation vectors of both the layer above and below it. Thus, we end up
with de�ation vectors that slightly overlap on the boundary between two soil
layers. It turns out that this is not optimal. By adding these nodes only to
the sti�est of the two layers but not to the softer layer, we can get signi�cantly
better convergence. Unfortunately, assigning the nodes to the optimal layer
requires explicit assigning of these nodes. Vermolen et al. propose a method to

58

automatically set the values of the de�ation vectors on the interface nodes based
on material properties, such as permeability[41]. We use the Young's modulus
to determine the ratio:

wi =
Ei

E1 + E2
i = 1, 2

In principle we can have access to this information, yet in this project it is not
used. Instead we determine the ratio based on the values in the matrix (as the
matrix values are correlated to the sti�ness). We take the sum of the matrix
elements corresponding to the interaction with the nodes in the di�erent soil
layers.

ci =
∑
j∈Vi

aij .

ci is the contribution of a soil layer. Vi represent the degrees of freedom inside
a particular layer (excluding any shared nodes). aij is the value of the matrix
element, representing the interaction between the interface node and the nodes
inside a particular volume, as illustrated in Figure 35. Then we take the ratio

V1

V2

aij

aijaij

aij

aij
aij

aij Σaij=c1

Σaij=c2

Figure 35: Illustration of method to determine weighting of a node on the
interface between two volumes. The values in the matrix represent interactions
with other nodes. We take the sum of all interactions with each of the volumes,
ignoring the other interface nodes.

of these contributions as the weighting in the de�ation vector.

wi =
ci∑
k ck

.

To apply this weighting to the vector, we simply multiply the value of the
de�ation vector in a boundary node with its weight. In total we have 4 methods
to determine the de�ation vectors for levelset and rigid body de�ation:

59

1. Overlapping de�ation vectors

2. Only add node to sti�est volume (non-overlapping)

3. Weighted de�ation based on material properties [41]

4. Weighted de�ation based on matrix elements

The e�ect on convergence for the di�erent methods is shown in Figure 36. It can
be seen that the overlapping de�ation vectors perform the worst, while the other
three methods have very similar convergence. We continue with the weighted
de�ation based on matrix elements as it is easiest to extend to problems with
general shapes, without needing sti�ness information. This will be encountered
in Section 9.7. Now we are ready to compare the di�erent de�ation methods

Figure 36: Comparison of the four ways to deal with overlapping de�ation
vectors on the boundaries between two soil types. Using levelset de�ation.

for the layered soil problem, see Figure 37. We see that de�ation has a big im-
pact on convergence. Furthermore we see that initially, physics based de�ation
methods have faster convergence than eigenvector de�ation. However, eigenvec-
tor de�ation has better de�ation if we had set the tolerance lower. But it is
also the most expensive de�ation method and not feasible in practice. Then, we
also note that, as expected, rigid body de�ation performs better than levelset
de�ation. However, �rst order de�ation performs the best, as it includes vectors

60

relating to the compression/extension of the soil layers, which is the dominant
deformation mode in this case.

Figure 37: Comparison of eigenvector de�ation, levelset de�ation, rigid body
de�ation and linear de�ation for the layered soil problem on the coarsest grid
with a sti�ness ratio of 1000.

9.7 Tunnel problem

We have shown that de�ation works very well for a synthetic problem with a
high contrast in sti�ness. The next step would be to apply the method to a
new problem that we could encounter in practice. The model for this tunnel
is taken from the PLAXIS 3D tutorials [1] and is illustrated in Figure 24(c).
The wall of the tunnel is very sti� and the surrounding soil is softer. The ratio
of the sti�ness between the soil and the concrete is 3.1 · 103. In addition to
this, the model also contains plate elements, which have three extra degrees
of freedom corresponding to its rotation. In Figure 38 we see the convergence
for this problem. We can see that rigid body de�ation reduces the amount of
iterations by a factor two. The fastest method is again the �rst order de�ation,
reducing the amount of iterations by 83% compared to no de�ation at all. More
details are shown in Table 12. This experiment shows that �rst order de�ation
yields good results for real-world problems as well.

61

Figure 38: Comparison of de�ation methods for the tunnel model, using the CG
algorithm with Jacobi preconditioning. The number in the brackets represents
the number of de�ation vectors per domain. The algorithm uses a relative
tolerance of 10−3.

De�ation method #iterations CG duration

No de�ation 2754 3.09 s

Levelset de�ation 1586 1.98 s

Rigid body de�ation 1244 1.67 s

First order de�ation 463 0.73 s

PICOS 67 1.64 s

Table 12: Number of iteration and run times for CG with Jacobi preconditioning
for solving the tunnel problem, comparing di�erent de�ation methods.

62

10 Results

10.1 Systems

We use four test problems to compare the solvers. These test problems are
shown in Chapter 8. We use the �very �ne� grid setting in PLAXIS 3D to
generate the matrices. For the layered soil problem the sti�ness ratio between
the layers is set to 103. Furthermore, the suction pile is modeled as a rigid body
in the soil. As a result, the entire suction pile has only 6 degrees of freedom
interacting with all adjacent soil element, producing a system matrix having 6
rows with exceptionally many non-zero elements. Hence the large bandwidth
and maximum nnz/row.

To solve a model, PLAXIS 3D runs many linear solves using the same matrix
with di�erent right-hand sides. However, we only use the last system exported
by PLAXIS 3D. Furthermore, the two models from the tutorials (the tunnel and
suction pile) have multiple phases. In the tunnel model we use the system from
phase 1, while in the suction pile we use the system from phase 4.

Property Uniform cube Layered cube Tunnel Suction pile

Width, height 232 071 224 039 178 239 334 701

nnz 18 401 645 17 723 971 13 994 057 25 981 930

Bandwidth 23 941 22 020 23 118 285 009

nnz/row (avg) 79.3 79.1 78.5 77.6

nnz/row (max) 308 360 405 11 510

Condition number ≈ 1.1 · 104 ≈ 8.5 · 106 ≈ 3.1 · 108 not found

Table 13: Properties of the �nite element matrix of the tunnel model matrix.

10.2 Iteration time

In this Section we look at the run times and number of iterations for various
solvers, preconditioners and de�ation methods. It is important to note that
the presented run time is the time from the start of the �rst iteration until
the end of the last iteration. Any setup times are not included. We test the
run time by running each solver three times and taking its average run time.
The number of iterations is the same as the algorithms are deterministic. We
run the algorithms until we reach a relative tolerance of 10−3 or we did not
converge after 5000 matrix-vector products. The relative tolerance is the same
as in PICOS (by default).

For some preconditioners we do not have a device implementation, therefore
we run it on the host, reporting the number of iterations and denoting that we
have no time measurement with �-�. For these preconditioners we can already

63

conclude that the number of iterations is so high that they are not competitive,
except for the IC(0) preconditioner, which can not e�ciently run on the device
as it is a highly sequential algorithm. Furthermore, because the ISAI-type
preconditioners are not symmetric, they can not be combined with the CG
method. Note that we only tried the FSAI and ParIC preconditioners on the
tunnel system (Table 16).

The results for di�erent systems are presented in Table 14 (uniform cube
system), Table 15 (layered soil system), Table 16 (tunnel system) and Table 17
(suction pile). For each Krylov method, the strategy that yields the fastest run
time is given in bold font.

10.2.1 De�ation method

One of the �rst observations we can make is that, for the �rst two systems and for
any combination of preconditioner and Krylov method, the �rst order de�ation
method outperforms the other de�ation methods consistently. Furthermore,
we note that, for this type of systems, the FSAI and ParIC preconditioners
(Table 16) perform worse than Jacobi preconditioning. This is likely due to
the high condition number of the matrices. For ParIC a possible solution could
be to replace the Jacobi inner iteration with Block Jacobi iteration [10]. For
the suction pile problem, we de�ated only a single volume, such that de�ation
has a much smaller e�ect. There we �nd that the di�erence between di�erent
de�ation methods is quite small and sometimes rigid body de�ation yields the
fastest convergence, sometimes �rst order de�ation.

10.2.2 Block Jacobi preconditioners

Another interesting observation is that in all cases a Block Jacobi preconditioner
yields faster convergence than normal Jacobi iteration. It also appears that the
blocksize has only a minor in�uence on the performance (only a few percent).
This is a relevant observation, as it means we do not need to optimize this
parameter of the Block Jacobi preconditioner. We can pick a value (say, block
size = 20) and expect it to work well for di�erent systems. Furthermore, it
seems that when using Block Jacobi preconditioning, the CG method is the
fastest, which is to be expected. Moreover, for the general solvers we �nd that
IDR performs better than BiCGSTAB with the (Block) Jacobi preconditioner.
However, in some cases, the IDR(4) method is faster, while in some cases the
IDR(8) method is faster.

64

Preconditioner De�ation CG BiCGSTAB IDR(4) IDR(8)

Jacobi
None 0.45s [221] 0.48s [231] 0.57s [259] 0.60s [239]

Rigid body 0.48s [210] 0.53s [235] 0.49s [202] 0.49s [181]

First order 0.33s [134] 0.34s [141] 0.41s [158] 0.36s [125]

Block Jacobi; size 10
None 0.43s [209] 0.47s [226] 0.56s [249] 0.57s [225]

Rigid body 0.38s [164] 0.54s [233] 0.43s [174] 0.51s [185]

First order 0.32s [130] 0.34s [139] 0.35s [132] 0.35s [119]

Block Jacobi; size 20
None 0.42s [206] 0.46s [222] 0.53s [235] 0.58s [230]

Rigid body 0.37s [160] 0.52s [224] 0.45s [181] 0.50s [182]

First order 0.33s [131] 0.34s [138] 0.33s [124] 0.35s [120]

Block Jacobi; size 30
None 0.42s [203] 0.50s [240] 0.53s [235] 0.54s [213]

Rigid body 0.37s [160] 0.53s [227] 0.45s [178] 0.49s [176]

First order 0.33s [131] 0.35s [138] 0.40s [149] 0.40s [137]

ISAI(A, A)
None 0.72s [190] 0.65s [165] 0.74s [176]

Rigid body 0.55s [136] 0.57s [136] 0.61s [137]

First order 0.47s [112] 0.50s [116] 0.45s [98]

ISAI(A, B2
5)

None 0.28s [116] 0.32s [123] 0.31s [110]

Rigid body 0.24s [92] 0.27s [97] 0.29s [94]

First order 0.20s [70] 0.19s [65] 0.20s [62]

ISAI(A, B2
11)

None 0.27s [74] 0.31s [80] 0.37s [92]

Rigid body 0.26s [66] 0.27s [67] 0.25s [58]

First order 0.18s [45] 0.22s [53] 0.25s [57]

ISAI(A, B2
21)

None 0.32s [59] 0.36s [64] 0.33s [57]

Rigid body 0.25s [45] 0.27s [47] 0.32s [53]

First order 0.24s [38] 0.25s [40] 0.23s [36]

IC(0)
None - [62] - [69] - [72] - [81]

Rigid body - [61] - [67] - [70] - [62]

First order - [38] - [46] - [42] - [43]

Table 14: Time till convergence (on the GPU) and number of matrix vector
products (in brackets) required for the uniform soil cube model. Tested
with di�erent preconditioners and de�ation methods. Calculations run until
the relative residual is less than 10−3. The run time includes only iteration
times, not any setup costs.

65

Preconditioner De�ation CG BiCGSTAB IDR(4) IDR(8)

Jacobi
None 3.34s [1685] 5.36s [2712] 8.30s [3856] 6.32s [2616]

Rigid body 0.35s [155] 0.36s [156] 0.48s [195] 0.50s [185]

First order 0.19s [76] 0.19s [77] 0.15s [56] 0.17s [59]

Block Jacobi; size 10
None 3.21s [1593] 4.35s [2160] 6.20s [2806] 6.57s [2662]

Rigid body 0.33s [142] 0.33s [142] 0.47s [185] 0.51s [183]

First order 0.13s [50] 0.19s [76] 0.13s [49] 0.16s [55]

Block Jacobi; size 20
None 2.96s [1466] 4.43s [2192] 6.94s [3126] 6.88s [2777]

Rigid body 0.34s [148] 0.32s [140] 0.44s [173] 0.47s [168]

First order 0.13s [50] 0.20s [76] 0.13s [49] 0.15s [50]

Block Jacobi; size 30
None 2.97s [1469] 4.52s [2228] 8.81s [3946] 5.12s [2060]

Rigid body 0.35s [150] 0.35s [153] 0.48s [190] 0.46s [164]

First order 0.13s [51] 0.22s [85] 0.14s [51] 0.16s [55]

ISAI(A, A)
None 7.33s [1972] 7.11s [1827] 4.79s [1154]

Rigid body 0.76s [190] 0.77s [184] 0.77s [174]

First order 0.18s [41] 0.37s [79] 0.35s [72]

ISAI(A, B2
5)

None 2.86s [1205] 3.67s [1430] 3.28s [1167]

Rigid body 0.19s [72] 0.25s [89] 0.31s [96]

First order 0.10s [34] 0.15s [48] 0.09s [28]

ISAI(A, B2
11)

None 3.08s [857] 3.03s [804] 2.59s [644]

Rigid body 0.22s [58] 0.30s [75] 0.35s [82]

First order 0.12s [28] 0.11s [26] 0.13s [28]

ISAI(A, B2
21)

None 3.47s [645] 3.44s [619] 3.06s [527]

Rigid body 0.32s [58] 0.45s [77] 0.40s [66]

First order 0.13s [20] 0.14s [21] 0.13s [19]

IC(0)
None - [393] - [496] - [451] - [424]

Rigid body - [83] - [65] - [78] - [91]

First order - [21] - [23] - [27] - [29]

Table 15: Time till convergence (on the GPU) and number of matrix vector
products (in brackets) required for the layered soil model. Tested with di�er-
ent preconditioners and de�ation methods. Calculations run until the relative
residual is less than 10−3. The run time includes only iteration times, not any
setup costs.

66

Preconditioner De�ation CG BiCGSTAB IDR(4) IDR(8)

Jacobi
None 4.26s [2733] 3.18s [2020] - [>5000] 9.55s [4939]

Rigid body 2.41s [1293] 2.50s [1371] 4.03s [1960] 5.51s [2446]

First order 0.91s [432] 1.23s [598] 1.11s [476] 1.24s [494]

Block Jacobi; size 10
None 3.33s [2074] 3.53s [2236] 5.65s [3119] 4.76s [2383]

Rigid body 1.89s [934] 2.09s [1112] 3.00s [1422] 3.10s [1334]

First order 0.69s [315] 0.62s [286] 0.88s [374] 0.83s [324]

Block Jacobi; size 20
None 3.27s [1989] 2.97s [1858] 5.57s [3066] 6.84s [3386]

Rigid body 1.75s [906] 2.35s [1218] 3.10s [1463] 2.19s [940]

First order 0.67s [307] 0.82s [384] 0.72s [303] 0.80s [312]

Block Jacobi; size 30
None 3.16s [1924] 3.14s [1950] 5.38s [2945] 5.40s [2644]

Rigid body 1.73s [882] 2.05s [1050] 2.06s [961] 2.47s [1044]

First order 0.65s [297] 0.80s [370] 0.72s [302] 0.76s [293]

ISAI(A, A)
None breakdown 9.56s [3081] 6.87s [2044]

Rigid body breakdown 3.14s [921] 2.94s [798]

First order breakdown 1.47s [401] 1.69s [433]

ISAI(A, B2
5)

None 3.84s [2058] 2.83s [1392] 3.13s [1376]

Rigid body 1.64s [764] 2.04s [869] 1.74s [673]

First order 0.85s [352] 0.66s [256] 0.81s [289]

ISAI(A, B2
11)

None 2.99s [1104] 2.75s [971] 2.36s [767]

Rigid body 1.32s [441] 1.33s [422] 1.40s [415]

First order 0.65s [204] 0.67s [197] 0.64s [178]

ISAI(A, B2
21)

None 2.88s [754] 3.83s [947] 2.50s [584]

Rigid body 1.20s [292] 1.34s [310] 1.26s [276]

First order 0.74s [168] 0.50s [110] 0.65s [137]

FSAI (=ISAI(IC, A))
None - [4590] - [>5000] - [>5000] - [>5000]

Rigid body - [3745] - [2040] - [>5000] - [>5000]

First order - [3693] - [1762] - [>5000] - [4890]

IC(0)
None - [470] - [405] - [344] - [341]

Rigid body - [281] - [312] - [229] - [206]

First order - [100] - [192] - [107] - [99]

ParIC; 3 iter
None - [3889] - [3624] - [>5000] - [>5000]

Rigid body - [2690] - [2376] - [>5000] - [>5000]

First order - [2647] - [3107] - [>5000] - [>5000]

Table 16: Time till convergence (on the GPU) and number of matrix vector
products (in brackets) required for the tunnel model. Tested with di�erent
preconditioners and de�ation methods. Calculations run until the relative resid-
ual is less than 10−3. The run time includes only iteration times, not any setup
costs. 67

Preconditioner De�ation CG BiCGSTAB IDR(4) IDR(8)

Jacobi
None 3.38s [1199] 8.18s [2912] 8.40s [2719] 6.54s [1909]

Rigid body 3.09s [979] 5.73s [1803] 4.20s [1220] 4.53s [1202]

First order 2.75s [801] 7.14s [2062] 5.00s [1344] 3.91s [963]

Block Jacobi; size 10
None 3.11s [1081] 11.25s [3851] 7.17s [2259] 5.68s [1622]

Rigid body 2.83s [874] 6.96s [2104] 3.78s [1073] 3.06s [792]

First order 2.52s [720] 6.86s [1905] 5.22s [1368] 3.30s [798]

Block Jacobi; size 20
None 3.11s [1069] 12.35s [4118] 7.21s [2250] 5.68s [1608]

Rigid body 2.83s [866] 11.06s [3296] 4.23s [1190] 3.60s [924]

First order 2.50s [707] 8.53s [2350] 4.56s [1192] 3.15s [754]

Block Jacobi; size 30
None 3.10s [1062] 10.58s [3521] 7.03s [2179] 5.06s [1418]

Rigid body 2.80s [856] 8.09s [2407] 4.50s [1243] 3.52s [897]

First order 2.51s [708] 6.65s [1831] 4.21s [1079] 3.42s [816]

ISAI(A, A)
None - [>5000] - [>5000] - [>5000]

Rigid body - [>5000] - [>5000] - [>5000]

First order - [>5000] - [>5000] - [>5000]

ISAI(A, B2
5)

None - [>5000] 5.42s [1439] 4.27s [1046]

Rigid body 8.94s [2332] 3.76s [913] 4.10s [923]

First order - [>5000] 4.17s [952] 3.39s [721]

ISAI(A, B2
11)

None - [>5000] - [>5000] - [>5000]

Rigid body - [>5000] - [>5000] - [>5000]

First order - [>5000] - [>5000] - [>5000]

ISAI(A, B2
21)

None - [>5000] - [>5000] - [>5000]

Rigid body - [>5000] - [>5000] - [>5000]

First order - [>5000] - [>5000] - [>5000]

IC(0)
None - [385] - [636] - [450] - [420]

Rigid body - [329] - [598] - [383] - [269]

First order - [274] - [575] - [281] - [265]

Table 17: Time till convergence (on the GPU) and number of matrix vector
products (in brackets) required for the suction pile model. Tested with dif-
ferent preconditioners and de�ation methods. Calculations run until the relative
residual is less than 10−3. The run time includes only iteration times, not any
setup costs.

68

10.2.3 ISAI methods

For the tunnel system and layered soil system we �nd the best performing
preconditioner to be an ISAI preconditioner. A minor downside is that it is not
straightforward to predict exactly which sparsity pattern will yield the fastest
convergence.

Furthermore, a much more critical downside is that for the suction pile
model we get no convergence for many of the ISAI based methods (see Table
17). Only the combination ISAI(A, B2

5) + IDR yields acceptable results. Given
that the other ISAI-based preconditioners yield no convergence, we fear that
this is a coincidence rather than a general rule and that for general systems this
preconditioner is too unreliable to use in practice, especially as there is a good
alternative.

10.3 Setup costs

The setup costs were not included in the results as this part of the implemen-
tation was not optimized. Mainly because part of the setup code is written in
Python. There is a lot of optimization that can be done to make these parts
faster, and some parts can even run on the GPU. However, considering these
parts are not optimized, the setup times are quite acceptable for large systems
(about 200 000 DOFs), i.e.

1. Building the preconditioner: 100 ms up to 5 seconds depending on the
preconditioner (C++/Python implementation).

2. Reading the mesh from �les and using this to set up de�ation vectors and
matrices: 1 to 10 seconds depending on the problem (Python implemen-
tation)

3. Communication between CPU and GPU: about 50 ms. There is a commu-
nication latency of less than 1 ms while the rest comes from data transfer
at a rate of about 10 GB/s

In practice we �nd that the same system is solved many times with a di�erent
right-hand side. Therefore, the setup time can be amortized among all solves.
We also �nd that the preconditioners that have fast setup times (such as Jacobi
and Block Jacobi) actually perform quite well in the iteration phase, whereas
the ISAI preconditioners, which have high setup times, perform less reliably. In
setting up the de�ation vectors, a major contribution comes from the weighting
of nodes on the boundary between two layers, by implementing this part of the
code in C++ rather than Python, we expect a large speedup.

10.4 Memory costs

When measuring the memory usage, we are interested in how much each of the
components of the solver takes up. Such a breakdown for the tunnel problem
is shown in Table 18. We see that a large portion of the total memory usage is

69

consumed by GPU kernels and CUDA libraries, this part is constant and does
not depend on the problem size. The next largest component is the system
itself. Whereas the other components (CG solver, preconditioner and de�ation
operators) add an additional 50% of the system size, this part scales linearly
with the size of the problem. Based on this, the part that scales with the
problem size is about 1.5× the size of the system matrix.

We notice the block Jacobi preconditioner is sparser than we expected. We
would expect a block Jacobi precondition with a block size of 20, to have 20
non-zeros per row. In practice we get an average of 4.5 nnz/row for this problem.
Apparently the diagonal blocks themselves, as well as their inverses are quite
sparse. The memory usage of the preconditioner will change if the equations
are to be reordered.

Component Memory usage

GPU kernels and libraries 361 MB

System matrix 168 MB

Block Jacobi 20 preconditioner 11 MB

First order de�ation operators 65 MB

CG Method 12 MB

Total 617 MB

Table 18: Breakdown of memory costs for tunnel problem.

10.5 Comparison

Finally we compare the new solver with the existing solvers, see Table 19. From
previous experiments we �nd that a Block Jacobi preconditioner combined with
�rst order de�ation yields good results. Usually, this combination is the best,
and when this is not the case, it is only slightly slower than the fastest com-
bination. We also �nd that varying the block size has a minor impact, so we
stick to a block size of 20. As the analyzed models lead to symmetric systems,
we use the CG method. We also report the times using IDR(8), to emulate an
asymmetric solve. We �nd that running our parallel solver on the GPU rather
than on the CPU yields a speedup of about 7 times.

Compared to the existing solvers, our solver outperforms PICOS in the it-
eration phase for all problems. Furthermore, we expect that if optimizations
are applied to the setup of our solver, the setup can be done in less time than
both PICOS and PARDISO. Furthermore we �nd that in the iteration phase
sometimes PARDISO is fastest, sometimes our solver is fastest. Still, due to the
high setup costs of PARDISO, our solver may still be faster in cases where the
system is only solved a few times.

70

Solver Uniform cube Layered cube Tunnel Suction pile

Setup (*) 3.63s 8.2s 6.8s 6.4s

CG (GPU) 0.33s [131] 0.13s [50] 0.67s [307] 2.50s [707]

IDR(8) (GPU) 0.35s [120] 0.15s [50] 0.80s [312] 3.15s [754]

CG (CPU) 2.50s [131] 0.90s [50] 4.69s [307] 20.5s [707]

IDR(8) (CPU) 2.95s [134] 0.93s [50] 6.28s [316] 28.5s [791]

PICOS Setup 2.99s 5.18s 2.30s 7.40s

PICOS Solve 0.68s [15] 1.18s [27] 4.58s [97] 6.66s [100]

PARDISO Setup 16.5s 13.5s 3.25s 12.5s

PARDISO Solve 0.92s 0.81s 0.39s 1.02s

Table 19: Run time and number of matrix-vector products (in brackets) for
various solvers. The CG and IDR(8) solver use a Block Jacobi (block size = 20)
preconditioner and �rst order de�ation. All solve times are for solving single
linear system. (*) Note the setup of our own method is not optimized and partly
in Python.

We also compare the memory usage of the di�erent solvers, see Table 20.
Note that the reported memory for our solvers is the total, including the memory
for GPU kernels and CUDA libraries. We �nd that for all problems both PICOS
and our solver use signi�cantly less memory than PARDISO.

Solver Uniform cube Layered cube Tunnel Suction pile

CG 657 MB 659 MB 617 MB 783 MB

IDR(8) 703 MB 705 MB 667 MB 875 MB

PICOS 590 MB 565 MB 829 MB 1 225 MB

PARDISO 2 781 MB 2 541 MB 1 276 MB 3 244 MB

Table 20: Memory usage for various solvers. The CG and IDR(8) solver use a
Block Jacobi (block size = 20) preconditioner and �rst order de�ation.

71

11 Conclusion

In total we have implemented several Krylov methods on the GPU and combined
them with various parallel preconditioners and de�ation methods. We tested
the performance of these methods using 4 test problems. For the GPU solvers
we tested, we can draw a few conclusions:

1. De�ation method. The most signi�cant result is that the �rst order de�a-
tion method (described in Section 6.2.7) leads to the fastest convergence
for all problems. The impact of this de�ation method is much larger than
any of the preconditioners we tested. It is important that the de�ation
vectors correspond to the di�erent volumes in the model. Furthermore,
we suggest that the de�ation vectors have a weighted overlap on the inter-
face between two volumes, where the weighting depends on the material
properties (see Section 9.6.2).

2. Preconditioner. Of the tested preconditioners we �nd that it is best to use
the block Jacobi preconditioner. The block size does not seem to matter
much, so we suggest to use a block size of 20. The ISAI type precondition-
ers are competitive in terms of speed for 3 of our test problems. However,
for the suction pile model the ISAI type preconditioners lead to a method
that does not converge within 5000 iteration. For this reason we suggest
not to use ISAI preconditioners.

3. Krylov method. All our test problems lead to symmetric system matrices.
As expected, for these matrices we �nd it is always bene�cial to use the
Conjugate Gradient method. The results also indicate that the IDR(8)
method is the preferred method out of the general Krylov solvers.

11.1 Comparison to existing solvers

We �nd that for the problems we tested the proposed GPU solver consistently
outperforms the PICOS in terms of runtime. From the results we can conclude
that the iteration phase of the new solver is about 2 to 3 times faster than
PICOS. Furthermore, in cases where the same system only needs to be solved a
few times (e.g. �ve times), the new method can outperform PARDISO in terms
of total run time, due to the lower setup costs.

Furthermore, as both the new method and PICOS use signi�cantly less mem-
ory than PARDISO, they can both be used in large problems where PARDISO
runs out of memory.

11.2 Future research

This research proposes an iterative method for solving geotechnical systems on
a GPU. We show that we can outperform the current iterative solver in PLAXIS
3D. There are still some topics where we recommend further research:

72

1. Our system matrices are all symmetric, whereas in practice one may en-
counter non-symmetric systems too. We found that the IDR(8) method
with block Jacobi preconditioning and �rst order de�ation yields good
results for symmetric systems. We expect that the same method will pro-
vide an e�cient algorithm for solving non-symmetric systems too, but we
suggest to verify this experimentally.

2. Our research indicates that �rst order de�ation leads to signi�cantly faster
convergence compared to rigid body de�ation. As the PICOS solver uses
rigid body de�ation, we suggest to experiment with using �rst order de-
�ation in PICOS as well to potentially improve the rate of convergence.

3. We have seen that for the suction pile model de�ation had a smaller e�ect
compared to the other test problems. We suggest two research directions
that could improve the convergence in this model:

(a) The reason could be that the suction pile model has only a single large
volume that is used for de�ation. The PICOS solver uses a domain
decomposition technique where large volumes of a single material
are split into smaller chunks. A similar approach can be combined
with our solver. By splitting large volumes into smaller parts, more
de�ation vectors can be generated, which could potentially lead to
faster convergence.

(b) When the same system is solved multiple times, de�ation vectors
can be automatically generated based on information from previous
solves [12, 28, 7]. This could make de�ation more e�ective in some
problems.

4. When using the ParIC preconditioner we found that the convergence rate
was worse than with a Jacobi preconditioner. The authors of the ParIC
method also noticed similar results when matrices are very ill-conditioned
and they suggest to use a block Jacobi method for the triangular solve
step in such cases [9]. It could be interesting to try this approach and
compare the results.

5. It can be interesting to combine the proposed method with matrix re-
ordering schemes [11]. This can potentially improve the convergence rate
at the expense of more setup costs.

6. A more advanced method using multiple coupled GPUs can be developed
to solve the systems even faster, or allow for more memory usage and thus
larger problems to be solved. Also mixed GPU & CPU solvers could be
developed.

73

List of software

Other than these libraries that are used in the code, I of course used build
tools, plotting tools and tools to organize the code, such as: gcc, nvcc, CMake,
make, Python, Jupyter notebooks, matplotlib, git.

Package name Platform Description

cuBLAS [34] GPU Dense linear algebra library

cuSPARSE [34] GPU Dense linear algebra library

PyBind11 [22] C++/PythonLibrary allowing to import C++ functions into
python

Eigen (3.4) [16] C++ Linear algebra library for C++

SciPy [42] Python Sparse linear algebra for Python, also includes
Krylov methods

Numpy [18] Python Dense linear algebra library for Python

74

Nomenclature

List of abbreviations

Abbreviation Long version

SPD Symmetric Positive De�nite (matrix)

SPSD Symmetric Positive Semi-De�nite (matrix)

FEM Finite Element Method

PARDISO PARallel Direct Solver

PICOS PLAXIS Iterative COncurrent Solver

BIM Basic Iterative Method

QR-
decomposition

Decompose A = QR where Q is orthogonal and R upper
triangular

nz / nnz non-zeros / number of non-zeros

Preconditioners

LU Lower - Upper triangular decomposition. A = LU

ILU(k) Incomplete LU decomposition, k is denotes allowed �ll-in,
A ≈ LU

IC(k) Incomplete Cholesky decomposition, A ≈ CCT

SPAI SParse Approximate Inverse

ISAI Incomplete Sparse Approximate Inverse

FSAI Factored Sparse Approximate Inverse

ILUT(k, τ) Thresholded ILU, k is level of �ll-in, τ is the cuto� threshold

ParILU Parallel ILU

ParILUT Parallel Thresholded ILU

ICCG(k) Incomplete Cholesky (k) Conjugate Gradient, k is the level of
�ll-in

AMG Algebraic Multi-Grid

Krylov
method

collection term for CG, BiCGSTAB, GMRES, IDR etc

CG Conjugate Gradient

GMRES Generalized Minimal RESidual

BiCGSTAB Bi-Conjugate Gradient STABelized

75

Abbreviation Long version

IDR(s) Induced Dimension Reduction (s being the dimension of the
subspace)

FGMRES Flexible GMRES

PCG Preconditioned CG

DPCG De�ated Preconditioned CG

Computer
related terms

GPU Graphics Processing Unit

CPU Central Processing Unit

RAM Random Access Memory

GB (or GB/s) GigaByte (or GigaByte per second). In this thesis we
consistently report bytes to measure memory capacities and
bandwidth speeds, never bits.

Gbit (or
Gbit/s)

Gigabit, we do not report bit counts in this thesis, only bytes.

Wall Time /
Wall clock time

Time that elapses in the real world, from start to �nish.
Name comes from the time that a clock on the wall would
measure. All reported times are wall-clock times.

CPU Time Amount of CPU time is used, when using 8 threads this
would mean that 8 CPU seconds are used in every real world
second. On the other hand, if a thread is idle, no CPU time
is used while real-world time passes. This time is not used
throughout this thesis.

PCIe Peripheral Component Interconnect Express, is a
communication bus in computers, usually used to link
between the CPU and GPU.

Common symbols

Some symbols remain the same throughout the thesis. Here is a list of some
mathematical symbols with a well de�ned meaning, as well as uno�cial conven-
tions that this thesis adheres to.

Symbol Meaning

R Real numbers, i.e. decimal numbers 5.53, − 1
12

N Integers, whole numbers, 7, −3

i, j, k iteration index or coordinates in a matrix

76

Symbol Meaning

S a set, in Algorithm 2 on page 24 it denotes the set of non-zero
coordinates

p ∈ S �in�, to denote that p is an element of a set S.

S1 ⊂ S2 subset, all elements of S1are also in S2, S2 may have more
elements

A system matrix

M a preconditioner

P a (de�ation) projection

V Matrix whose columns span the de�ation subspace, generally
not square

I Identity matrix, size is implied by the context

U upper triangular matrix

L lower triangular matrix

λ1...λN eigenvalues of a matrix, sorted such that λ1 is the smallest and
λN the largest

ε / eps /
epsilon

tolerance, usually we declare convergence when the norm of
the residual is smaller than ε.

τ threshold / drop tolerance for elements in a preconditioner

δij Kronecker delta: δij =

{
1 i = j

0 i 6= j

Ω domain, usually domain of integration in FEM

Γ / ∂Ω boundary of a domain (Ω)

α, β, . . . Other Greek letters usually refer to a real number

n,m, . . . Latin letters usually refer to an integer, m,n usually refer to
the size of a matrix

x solution of a system Ax = b

b right-hand side of a system Ax = b

ek elements in the �standard basis� of a space. ek has all zeros
except the k-th element which is 1. e.g. e2 = [0, 1, 0, ...]. The
length of the vector is implied by the context.

κ2(A) Condition number of a matrix, κ2(A) = λN/λ1

κe�(A) E�ective condition number of a matrix, which actually
determines the convergence rate

77

Symbol Meaning

AT Transpose of A

A−1 Matrix inverse of A

I or J a set of indices

A (I,J) the matrix A restricted to keep only the rows I and columns J
x (I) the vector x restricted to keep only the elements with index in

I
ai,j or (A) i,j the element on row i and column j of matrix A.

xk approximate solution in an iterative method after k iterations

xi i'th element of a vector x. A bit con�icting with previous
de�nition, but usually clear from context.

rk residual after k steps: rk = b−Axk
pk (in Krylov methods) search direction in k-th iteration

‖x‖2 2-norm of a vector, de�ned as: ‖x‖2 =
√∑N

i=0 x
2
i

‖A‖2 2-norm of a matrix, which turns out to be the maximum row
sum. Not similar to the 2-norm of a vector.

‖A‖F Frobenius norm of a matrix: ‖A‖F =
√∑N

i=0

∑N
j=0 a

2
i,j .

Similar to a 2-norm of a vector.

∇ Nabla, N -dimensional analog of the di�erential operator,

de�ned as ∇ =
(

∂
∂x ,

∂
∂y

)T
(its dimension is implied by the

context)

∆ Laplace operator, N -dimensional analog of the second

derivative, de�ned as ∆ = ∇ · ∇ =
(

∂2

∂x2 ,
∂2

∂y2

)T

78

References

[1] PLAXIS 3D - Tutorial 06: Phased excavation of a shield
tunnel. https://communities.bentley.com/products/

geotech-analysis/w/plaxis-soilvision-wiki/45577/

plaxis-3d-tutorial-06-phased-excavation-of-a-shield-tunnel.
[accessed 29-11-2021].

[2] PLAXIS 3D - Tutorial 03: Loading of a suction
pile. https://communities.bentley.com/products/

geotech-analysis/w/plaxis-soilvision-wiki/45575/

plaxis-3d-tutorial-03-loading-of-a-suction-pile, 2018. [ac-
cessed 24-06-2021].

[3] José I Aliaga, Ernesto Dufrechou, Pablo Ezzatti, and Enrique S Quintana-
Ortí. An e�cient gpu version of the preconditioned GMRES method. The
Journal of Supercomputing, 75(3):1455�1469, 2019.

[4] Hartwig Anzt, Edmond Chow, and Jack Dongarra. ParILUT - a new par-
allel threshold ILU factorization. SIAM Journal on Scienti�c Computing,
40(4):C503�C519, 2018.

[5] Hartwig Anzt, Thomas K Huckle, Jürgen Bräckle, and Jack Dongarra. In-
complete sparse approximate inverses for parallel preconditioning. Parallel
Computing, 71:1�22, 2018.

[6] Douglas Arnold, Richard Falk, and Ragnar Winther. Finite element ex-
terior calculus: From hodge theory to numerical stability. Bulletin of the
American Mathematical Society, 47, 06 2009.

[7] Kevin Burrage and Jocelyne Erhel. On the performance of various adaptive
preconditioned gmres strategies. Numerical linear algebra with applications,
5(2):101�121, 1998.

[8] Edmond Chow. A priori sparsity patterns for parallel sparse approx-
imate inverse preconditioners. SIAM Journal on Scienti�c Computing,
21(5):1804�1822, 2000.

[9] Edmond Chow, Hartwig Anzt, Jennifer Scott, and Jack Dongarra. Using
jacobi iterations and blocking for solving sparse triangular systems in in-
complete factorization preconditioning. Journal of Parallel and Distributed
Computing, 119:219�230, 2018.

[10] Edmond Chow and Aftab Patel. Fine-grained parallel incomplete lu factor-
ization. SIAM journal on Scienti�c Computing, 37(2):C169�C193, 2015.

[11] Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse
symmetric matrices. In Proceedings of the 1969 24th national conference,
pages 157�172, 1969.

79

https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45577/plaxis-3d-tutorial-06-phased-excavation-of-a-shield-tunnel
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45577/plaxis-3d-tutorial-06-phased-excavation-of-a-shield-tunnel
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45577/plaxis-3d-tutorial-06-phased-excavation-of-a-shield-tunnel
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45575/plaxis-3d-tutorial-03-loading-of-a-suction-pile
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45575/plaxis-3d-tutorial-03-loading-of-a-suction-pile
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45575/plaxis-3d-tutorial-03-loading-of-a-suction-pile

[12] G Diaz Cortes. POD-based de�ation method for reservoir simulation. PhD
thesis, Delft University of Technology, 2019. https://doi.org/10.4233/
uuid:0458fd29-920b-43cb-8c2b-e04be8db0dc7.

[13] Eigen. Eigen and multi-threading. https://eigen.tuxfamily.org/dox/

TopicMultiThreading.html. [accessed 29-09-2021].

[14] Jiaquan Gao, Kesong Wu, Yushun Wang, Panpan Qi, and Guixia He. Gpu-
accelerated preconditioned GMRES method for two-dimensional maxwell's
equations. International Journal of Computer Mathematics, 94(10):2122�
2144, 2017.

[15] André Gaul, Martin H Gutknecht, Jorg Liesen, and Reinhard Nabben. A
framework for de�ated and augmented krylov subspace methods. SIAM
Journal on Matrix Analysis and Applications, 34(2):495�518, 2013.

[16] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.

tuxfamily.org, 2010.

[17] Rohit Gupta, Dimitar Lukarski, Martin B van Gijzen, and Cornelis Vuik.
Evaluation of the de�ated preconditioned CG method to solve bubbly and
porous media �ow problems on gpu and cpu. International Journal for
Numerical Methods in Fluids, 80(11):666�683, 2016.

[18] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357�362, September 2020.

[19] Markus Hegland and Paul E Saylor. Block jacobi preconditioning of the
conjugate gradient method on a vector processor. International journal of
computer mathematics, 44(1-4):71�89, 1992.

[20] Thomas Huckle. Factorized sparse approximate inverses for precondition-
ing. The Journal of Supercomputing, 25(2):109�117, 2003.

[21] Intel. oneMKL PARDISO - Parallel Direct Sparse Solver Inter-
face. https://software.intel.com/content/www/us/en/develop/

documentation/onemkl-developer-reference-fortran/top/

sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.

html, 2021. [Accessed 24-06-2021].

[22] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 � seam-
less operability between c++11 and python, 2017. https://github.com/
pybind/pybind11.

80

https://doi.org/10.4233/uuid:0458fd29-920b-43cb-8c2b-e04be8db0dc7
https://doi.org/10.4233/uuid:0458fd29-920b-43cb-8c2b-e04be8db0dc7
https://eigen.tuxfamily.org/dox/TopicMultiThreading.html
https://eigen.tuxfamily.org/dox/TopicMultiThreading.html
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

[23] TB Jönsthövel, MB Van Gijzen, S MacLachlan, C Vuik, and A Scarpas.
Comparison of the de�ated preconditioned conjugate gradient method and
algebraic multigrid for composite materials. Computational Mechanics,
50(3):321�333, 2012.

[24] Karsten Kahl and Hannah Rittich. The de�ated conjugate gradient
method: Convergence, perturbation and accuracy. Linear Algebra and its
Applications, 515:111�129, 2017.

[25] K. B. Kaliszka, C. Vuik, and M. B. van Gijzen. Developing a
parallel solver mechanical problems. Master's thesis, Delft Uni-
versity of Technology, 2010. http://resolver.tudelft.nl/uuid:

cea77d32-d6df-443c-9cee-ca89e21733ac.

[26] Ruipeng Li and Yousef Saad. Gpu-accelerated preconditioned iterative
linear solvers. The Journal of Supercomputing, 63(2):443�466, 2013.

[27] FJ Lingen, PG Bonnier, RBJ Brinkgreve, MB Van Gijzen, and C Vuik. A
parallel linear solver exploiting the physical properties of the underlying
mechanical problem. Computational Geosciences, 18(6):913�926, 2014.

[28] D Loghin, D Ruiz, and A Touhami. Adaptive preconditioners for nonlinear
systems of equations. Journal of Computational and Applied Mathematics,
189(1-2):362�374, 2006.

[29] Mykola Lukash, Karl Rupp, and Siegfried Selberherr. Sparse approximate
inverse preconditioners for iterative solvers on gpus. In Proceedings of the
2012 Symposium on High Performance Computing, page 13. Society for
Computer Simulation San Diego, CA, USA, 2012.

[30] Jan Mayer. ILU++: A new software package for solving sparse linear
systems with iterative methods. In PAMM: Proceedings in Applied Math-
ematics and Mechanics, volume 7, pages 2020123�2020124. Wiley Online
Library, 2007.

[31] Ronald B Morgan. A restarted GMRES method augmented with eigenvec-
tors. SIAM Journal on Matrix Analysis and Applications, 16(4):1154�1171,
1995.

[32] Kentaro Moriya and Takashi Nodera. The de�ated-gmres (m, k) method
with switching the restart frequency dynamically. Numerical linear algebra
with applications, 7(7-8):569�584, 2000.

[33] NVidia. Gpu-accelerated ansys �uent. https://www.nvidia.com/en-us/
data-center/gpu-accelerated-applications/ansys-fluent/. [ac-
cessed 17-08-2021].

[34] NVIDIA. CUDA, release: 11.4, 2021.

81

http://resolver.tudelft.nl/uuid:cea77d32-d6df-443c-9cee-ca89e21733ac
http://resolver.tudelft.nl/uuid:cea77d32-d6df-443c-9cee-ca89e21733ac
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/ansys-fluent/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/ansys-fluent/

[35] J. N. Reddy. Introduction to the Finite Element Method, Third Edition.
McGraw-Hill Education, New York, 3rd edition. edition, 2006.

[36] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial
and Applied Mathematics, 2 edition, 2003.

[37] Blume L. Simon C. Mathematics for Economists. Norton, 1994.

[38] Peter Sonneveld and Martin B Van Gijzen. IDR(s): A family of simple and
fast algorithms for solving large nonsymmetric systems of linear equations.
SIAM Journal on Scienti�c Computing, 31(2):1035�1062, 2009.

[39] Joost H van der Linden, Tom B Jönsthövel, Alexander A Lukyanov, and
Cornelis Vuik. The parallel subdomain-levelset de�ation method in reser-
voir simulation. Journal of Computational Physics, 304:340�358, 2016.

[40] Martin B Van Gijzen and Peter Sonneveld. Algorithm 913: An elegant
idr (s) variant that e�ciently exploits biorthogonality properties. ACM
Transactions on Mathematical Software (TOMS), 38(1):1�19, 2011.

[41] Fred Vermolen, Kees Vuik, and Guus Segal. De�ation in preconditioned
conjugate gradient methods for �nite element problems. In Conjugate Gra-
dient Algorithms and Finite Element Methods, pages 103�129. Springer,
2004.

[42] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, �lhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scienti�c
Computing in Python. Nature Methods, 17:261�272, 2020.

[43] C. Vuik and D.J.P. Lahaye. Scienti�c Computing. Delft University of
Technology, 2019.

[44] Mingliang Wang, Hector Klie, Manish Parashar, and Hari Sudan. Solving
sparse linear systems on nvidia tesla gpus. In International Conference on
Computational Science, pages 864�873. Springer, 2009.

[45] M.C. Yeung, J.M. Tang, and C. Vuik. On the convergence of GMRES
with invariant-subspace de�ation. http://resolver.tudelft.nl/uuid:

f21da1b4-d4ed-4e46-a604-e1a9bdef70de, 2010.

82

http://resolver.tudelft.nl/uuid:f21da1b4-d4ed-4e46-a604-e1a9bdef70de
http://resolver.tudelft.nl/uuid:f21da1b4-d4ed-4e46-a604-e1a9bdef70de

	Introduction
	Discretization methods
	Finite Difference for Heat equation
	Finite Element for heat equation
	Finite Element for solids

	Iterative solvers
	Basic iterative methods / Fixed-Point iteration
	Krylov Methods
	Preconditioning
	General Krylov methods

	Current solvers in PLAXIS
	PICOS

	Parallel preconditioners
	Jacobi / diagonal scaling
	Block Jacobi
	Incomplete LU (ILU)
	Sparse Approximate Inverse Preconditioners (SPAI)

	Deflation methods
	How deflation works
	Choice of deflation space

	Preliminary experimentation
	Test problems
	ParILU
	ParILUT
	SPAI
	ISAI
	Approximate eigenvector deflation
	Levelset deflation

	Test problems
	Hardware

	Implementation and analysis
	Algorithm verification
	Memory transfer speeds
	Multi-threaded performance
	GPU performance
	Geotechnical system from PLAXIS 3D
	Deflation
	Tunnel problem

	Results
	Systems
	Iteration time
	Setup costs
	Memory costs
	Comparison

	Conclusion
	Comparison to existing solvers
	Future research

	Nomenclature

