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Preface

This thesis marks the fulfilment of the required number of credits to be obtained for the Masters
in Mechanical Engineering program under the track ‘Energy and Process Technology’ at the Delft
University of Technology. The research was carried out in the Laboratory of Aero- and Hydrody-
namics, Department of Process and Energy under the supervision of Dr.ir. Wim-Paul Breugem and
co-supervision of Prof.Dr.ir.Christian Poelma. The present work deals with the design of an experi-
mental setup and the development of image processing tools to study the path instabilities involved
in a single sphere freely falling/rising in a quiescent fluid.

The image in the cover page used in this report is taken from the dye visualization study of Horowitz
and Williamson [1]. This report aims to provide a detailed documentation of the entire experimen-
tal campaign and discusses the results obtained thereof. The reader interested in the physics of
path instabilities is directed to the introduction section (chapter 1) and directly to the results and
discussion section (chapter 3). The reader interested in performing similar experiments/repeating
experiments is directed to Appendix I and Appendix J, where the experimental procedure and the
intricacies involved are presented, as this can save much time for one wanting to perform similar
experiments (say for disks/spheroids etc).

Constructive criticisms on the structure presentation of the report are welcome and I take respon-
sibility for any flaw or loss of clarity in the report. Criticisms on any conceptual/logical flaw in the
report is also welcome as I am ready to unlearn and relearn. The idea is to make the experimental
data available for any form of reference or validation of numerical models. The data corresponding
to the plots in the report can be obtained upon request. An experimental investigation of the wake
structure by using dye visualizations and investigation to characterize the moment of inertia of the
spheres is currently in progress.

Shravan Raaghav K R
Delft, November 2019
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Abstract

Multi-phase flows are ubiquitous in nature and in everyday life surrounding us, impacting us in
almost all possible ways. The presence of particles in a flow can change the flow behaviour in an
unpredictable manner. The simplest example of a particle-laden flow, that one can think of, is the
settling of a single sphere under gravity in a quiescent fluid. This seemingly simple problem has
very high relevance in various practical applications ranging from sedimentation of particles for
water treatment, process industries, transport of a dense suspension(slurry) through a pipe and
even in land reclamation. The settling/ascension of a single sphere, even after having been subject
to extensive study for more than a century, remains far from being understood completely.

The path and the wake of a falling/rising sphere in a quiescent fluid may be subject to various in-
stabilities depending upon two dimensionless quantities which are sufficient to characterize the
motion. One being the Galileo number (Ga), which is the ratio of the net gravity force to the vis-
cous force and the second one being the mass density ratio (p), which is the ratio of the density
of the solid to the density of the fluid. Depending upon Ga and p, the sphere can take up various
regimes of motion such as vertical, oblique, zigzagging, helical to name a few. This is mainly due to
wake instabilities that trigger such path instabilities. Based on Ga and p, various regime maps have
been proposed in literature. There have been several disagreements regarding the characterization
of such paths taken by the sphere. This is due to the strong solid-fluid coupling and the inherent
complexity due to triggering of the instabilities in such cases, which is far from being trivial to model
numerically and also to test experimentally. The disagreements between different numerical works
and different experimental works make the problem hard pressing and tempting to study. More-
over, the settling behaviour of a single sphere can also aid in understanding the collective effects
displayed in the settling of dilute suspensions.

The goal of the present study is to shed light on the confusion/disagreements in literature until
now and characterize various path instabilities. A detailed experimental investigation is conducted
to cover the parameter space (regime map) by employment of over 250 different combinations of
Ga and p to cover as many regimes of motions as possible within the given time framework. The
motion of a sphere is tracked in time using high-speed cameras and corresponding path/regime of
motion, higher-order statistics like velocity and physical characteristics such as the Strouhal num-
ber/drag coefficient has been computed. The results validate well for some simple regimes of mo-
tion for which results from the previous studies perfectly agree with each other. With the confidence
obtained after the validation, the current work attempts to draw points of consensus and disagree-
ments with these earlier works for other more controversial regimes. Some regimes, which had only
been observed using numerical simulations, have been observed experimentally for the first time.
Also, intriguing bi-stable regimes (coexistence of two regimes) have been observed. Moreover, at-
tempt is also made to characterize the suppression of the high-frequency oscillations with increase
in the sphere inertia. An update of the regime maps is proposed with the results obtained from
the experiments conducted. The results obtained will also serve as an excellent tool for validation
of new numerical models, using which the Ga-p parameter space can be covered in great detail.
Recommendations for future work are given.
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Nomenclature

Afs - Planform area of sphere (m?)

C, - Drag coefficient (-)

¢; - Camera (index denotes camera number)
dj, - Sphere diameter (m)

F; - Fluctuating lift force on the sphere (V)
f - Frequency (Hz)

f¢ - Gravitational frequency scale (Hz)

f - Dimensionless frequency (-)
g - Gravitational acceleration (m/s?)
Ga - Galileo Number (-)

I - Pixel Intensity (-)

my, - Mass of sphere (kg)

M; j - Added mass tensor (kg)

pi - plane (index denotes plane number)
Re - Reynolds Number (-)

St - Strouhal Number (-)

St - Stokes Number (-)

t, - Particle response time scale (s)

tr - Flow response time scale (s)

tg - Gravitational time scale (s)

u,- Sphere velocity vector (m/s)

v; - Velocity of sphere (index corresponds to the direction -x,y and z) (m/s)
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X 0. Nomenclature

vy, - Horizontal sphere velocity (m/s)

v’h - Horizontal sphere velocity fluctuation (m/s)
vy - Mean fall (y) velocity of the sphere (m/s)

V), - Volume of sphere (m?)

X - x coordinate in physical space (mm)

Y - y coordinate in physical space (mm)

Z - y coordinate in physical space (mm)

pp - Sphere density (kg/m?)

p - Fluid density (kg/m®)

p - Density ratio (-)

V- Kinematic viscosity (m?/s)
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Introduction

Studying the transport phenomena in sedimentation and ascension of spheres in a quiescent fluid
plays a crucial role in understanding the theory and physics behind dispersed multiphase flows.
Having ubiquitous influence in many natural processes like geophysical/atmospheric flows and
settling of micro-organisms (planktons), the understanding of the same is crucial and can never be
neglected. It has a direct impact on many widespread industrial applications including spray dry-
ing, cyclone separators, fluidized bed reactors, paper manufacturing and also in water treatment
plants [9][10][2]. Some figures are depicted below.
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Figure 1.1: a) Cyclone Separator, b) Fluidized Bed, c) Spray dryer (Images adapted from Crowe et al.[2])

Although sedimentation of a suspension can be considered as the simplest example of a suspen-
sion flow, the settling process is extremely complex with non-linear hydrodynamic interactions and
collisions [11]. Although the research conducted in this field spans more than half a century, the
present understanding is far from complete and a lot of work still has to be done. These were the
important conclusions of the reviews by Guazzelli [11] and Ern et. al.[12]. Only recently, with the
increase of the computational capabilities, Jenny et al.[3] were the first to investigate a wide range
of physical parameter space for the settling/ascension of a single sphere. Surprisingly, great rich-
ness in physics, with path and wake instabilities were observed for a very simple scenario of a single
sphere settling/rising in a still fluid. The entire dynamics of the path instabilities can be summed
up by characterizing them using two dimensionless quantities (density ratio and Galileo number),
given by the expressions,
o

0=— (1.1)
p o
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lp—1]|gd?
a= # (1.2)
vV
f

where p,, and p are the sphere and fluid densities respectively, g corresponds to the gravita-
tional acceleration, d, is the sphere diameter, v ris the kinematic viscosity of the fluid.

For a single sphere settling/rising in a still fluid, despite many works done in the past, there are
several disagreements between various works in the regimes of motion, thresholds of instabilities
predicted and even in drag coefficients. A numerical approach towards exploring various regimes
of motion may seem best suited as it allows to cover the entire parameter space in a detailed and
a systematic manner. But, owing to the complex particle fluid interactions and the accuracy of the
numerical method used, including mesh resolution and domain size, different numerical works
([7]113114][6]) disagree with each other. Even different experimental works([1], [13], [14]) disagree
with each other, owing to the high sensitivity of the particle/wake structure to Ga and p and the
uncertainty in determining these numbers accurately and also to the residual disturbances present
in the fluid. Even slight inhomogeneities like air voids in the sphere or improper methodology of
releasing the sphere can destroy the regime of motion the sphere was to take otherwise.

1.1. Theory

1.1.1. Morison’s Heuristic Equation

The simple force balance on a falling/rising particle under gravity in a quiescent fluid can be ap-
proximated by the heuristic summation of the forces that act on the particle proposed by Morison
by the following equation (adapted from Brennen|[15]):

v du’”~( W, 2; M i) (Lo Lty | Uy ; (1.3)
Pr¥p =g B WPp=PpIVp8i =\ Mij = | 7|3 AP T Up T Up,j :

where, u), is the particle velocity (we shall denote it in 3-directions as vy,v, and v;), pp and pr
is the particle and fluid density respectively, V), is the volume of the particle, M;; is the added mass
tensor (which for the simple case of a sphere will reduce to %p £Vp), A is the planform area and
C;;j being the lift/drag coefficient tensor.

The coefficients, M;; and C; j, are not only functions of Re but also functions of the reduced time or
frequency scales of the unsteady motion. The effect of Basset History force can be neglected for the
Stokes regime, as the effect from the added mass term will dominate for short times directly after
the release of the sphere, while at large times, it can be neglected with respect to the steady drag
force. Moreover the motion of the particle will usually involve oscillations or acceleration from rest
and the effect of history forces is neglected here. This expression(Eq.1.3) will aid in gaining an over-
all understanding of the force balance involved. This expression will also be used later in chapter 3,
where a simple hypothesis is presented and verified experimentally. A simple schematic of the force
balance of a sphere settling with terminal velocity is depicted in Fig.1.2.
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Figure 1.2: Force balance on a sphere falling with terminal settling velocity, all transient terms in Eq.1.3 is dropped. The
orientation of axis is defined and g is the acceleration due to gravity. Here j corresponds to y direction

1.1.2. Relevant Scales of Motion and Related Dimensionless Quantities

Already, the two important dimensionless quantities, namely the Ga and p has been established
in equations 1.1 and 1.2. Other scales are important to be defined as they will later be used for
non-dimensionalizing the quantities in the plots/results. Other relevant scales include the inertial
velocity scale(Eq.1.4) and the inertial/gravitational time scale (Eq.1.5).

vg=1\/ID-1lgd, (1.4)

dp
ty= 1| =2 (1.5)
p-1lg

The gravitational frequency scale can be defined from the time scale as

1 lp-1lg
fo=—=4/——2% (1.6)
1 dp

The dimensionless frequency (f), is then given by the following expression,

F=1 (1.7)

where f is the frequency obtained from the spectrum of the horizontal velocity of falling/rising
sphere. In the case where f is the dominant frequency in the spectrum, f = St, where St is the
Strouhal number.

Itis important to establish the relation for the drag coefficient of the sphere, which will later be used
in chapter 3, where the results of drag coefficients for various cases will be reported. Here, we will
make some assumptions. First being that the sphere has reached terminal settling velocity before it
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reaches the field of view of our experimental setup. This means that all the transient terms in Eq.1.3
can be dropped (depicted in Fig.1.2). The second one being that the mean vertical velocity is much
larger than the horizontal velocities, hence, | up, |= /v% + v3 + vZ = v,. Now, on equating the forces,
we have, o

1
(pp—pf)vpgzgpfchfsuj (1.8)
Substituting expressions for v, and Af; and diving LHS and RHS by vfc

1

dy\3 1
) V';;E

2
1 4 (dp P2
2 r=engnly ) = G gercan gy
Upon further simplification, we are left with,
- 43 1 55 4.2 o2
V_fc(p_l)ggdPNEdpvyCd e §Gd = Re Cd

Hence, we obtain an expression for Cy as,

P Ll (1.9)
4~ 3Re? '
On rewriting, Eq.1.9, we can relate Re and Ga,
R 21 G (1.10)
exy/=-—Ga .
3C4

1.2. Review of Previous Literature

Investigation of flow regimes and wake dynamics of a fixed sphere has been dealt for a long time
using experiments as well as DNS ([16-20]. Different flow regimes based on Reynolds number have
been identified. The Reynolds number thresholds for wake bifurcations have been dealt in detail
and even recently studied for a fixed sphere by Fabre et al.[21] and the understanding is quite clear.
The various thresholds for wake bifurcations are concisely explained in the review by Ern et al. [12].

The scenario of a freely moving sphere, has received less attention when compared to the fixed
sphere counterpart. The fact that there is no constraint on the sphere motion, leads to different path
and wake instabilities resulting in a variety of path characteristics similar to bubbles. This has in-
trigued researchers over time. The additional degree of freedom in the freely moving sphere clearly
distinguishes it from the classical behaviour of a fixed sphere. Some of the very earlier works in-
clude that of Preukschat [22], who observed the vibrating and rectilinear regime in rising and falling
spheres. Later Karamanev et al. ([23, 24]) observed spiralling motion of rising spheres and made
measurements of the drag coefficient which are discussed later in this chapter. The first extensive
study on the dynamics of rising and falling spheres and their associated instabilities were by Jenny
et al. [3] (hereafter denoted as JDB) using high accuracy spectral-element simulations. The study
neatly fits the entire dynamics of a single sphere into a map (Fig. 1.3) based on Ga (Eq.1.2) and
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p (Eq.1.1). Regimes such as the steady vertical, steady oblique, periodic oblique, zigzagging and
chaotic regime were observed for the first time. Moreover a bi-stable region where a vertically peri-
odic regime and chaotic regime coexisted were also observed. They report the results for Ga up to
350. The work of JDB was repeated for different regimes by Uhlmann and Dusek [4], but by employ-
ing an immersed boundary method for the simulations. The wakes of various regimes are shown in
Fig.1.4. It is important to establish the results of JDB in detail since all the other studies that follow
will be using JDB work as the reference for comparison and even as motivation for their work.
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Figure 1.3: Regime map by Jenny et al.[3] representing various trajectories of ascending/falling free sphere (here f is the
dimensionless frequency - the dominant frequency of oscillation of sphere scaled with the gravitational frequency (fg
from Eq.1.6)). The symbols denote the simulations: +, steady oblique regime; , oblique and oscillating regime with low
frequency (0.045 < f < 0.068); %, oblique and oscillating regime with high frequency (f = 0.180); o, zigzagging periodic

regime (0.023 < f < 0.035); O, three-dimensional chaotic regime. The domain of coexistence of a chaotic and a periodic

state (f =0.14) is approximately delimited by the dotted line.
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Figure 1.4: Wake patterns of settling of a single sphere ([4]) of p = 1.5 and for Ga = 155, 178, 190 and 250, adapted from [5]

Some important observations made by JDB are presented below. The sphere which initially rises
in a steady vertical manner for low Ga exhibited different regimes as Ga was increased due to vari-
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ous bifurcations which trigger instabilities. The steady vertical regime which was observed to have
an axisymmetric wake similar to the fixed sphere, undergoes a primary bifurcation and becomes a
planar symmetric wake leading to a steady oblique motion (Fig. 1.5). This bifurcation is expected
around a Ga of 155 for infinitely light spheres (p = 0) whereas Ga being 160 for the case where the
p was infinite (similar to a fixed sphere) implying that the critical Ga for the primary bifurcation
is almost independent of p. This planar wake later undergoes a secondary (Hopf-type) bifurcation
leading to an oblique oscillating regime with periodic oscillations. The critical Ga for this bifurca-
tion was observed to be function of p (Fig. 1.6).
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Figure 1.6: Critical values of Ga at the onset of
the Hopf secondary bifurcation vs. p [3]

Figure 1.5: Sphere Trajectory for p = 0.5 and Ga =170 [3]
Moreover for p < 2.5, low-frequency oscillations were observed, whereas for p > 2.5, high fre-
quency oscillations were observed. Finally, on increasing the Ga further, they report a tertiary bifur-
cation, which corresponds to the onset of chaos. For light spheres (p < 1) a zigzagging regime was
also observed and it undergoes a sub-harmonic transition (asymptotic states) with a period dou-
bling and even period tripling. At even higher Ga, as mentioned earlier a vertically periodic regime
was found to coexist with the chaotic regime. The Ga and p corresponding to all the above regimes
can be found in the appendix A.

A series of experimental works followed the work of JDB. The work of Veldhuis et al.[13, 25]
([13] will hereafter denoted as VB) primarily focused on verifying the interesting results obtained
by JDB. Particle trajectory was obtained from high-speed cameras and flow field was visualized us-
ing Schlieren optics technique. Five different test cases were chosen, namely one from each regime
obtained by JDB. The vertical, oblique and the oblique oscillating regime agreed quite well with the
results of JDB. Although they were not able to observe a perfect zigzagging, an occasional zigzagging
was observed which was attributed to possible sphericity and inhomogeneity in mass distribution
in the spheres. Another work by the same group also studied the drag characteristics of light sphere
[14] (hereafter denoted as VBL) which will be discussed briefly later in this chapter.

The major experimental work in this field was by Horowitz and Williamson [1] (here after de-
noted as HW). Effect of Re is studied in detail (100 < Re < 15000) or (90 < Ga < 10,000) and a regime
map (Fig. 1.7) was created similar to JDB. The majority of the results were in contrast with the results
of the above mentioned works. Zigzagging was not observed for all spheres with p < 1, rather new
limits for zigzagging were proposed (shown below).

* 450 < Re < 1550, critical p below which zigzag occurs is 0.36.
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Figure 1.7: Regime map by Horowitz and Williamson [1] representing various trajectories of ascending/falling free
sphere (here Re is the Reynolds number, the relation between Re and Ga is given in Eq.1.10)

Figure 1.8: 4R wake structure for zigzagging regime [1]

* Re> 1550, critical p below which zigzag occurs is 0.6.

Also, an interesting 4R wake structure, where four time shedding (including primary and secondary
vortices) in one period of oscillation (Fig. 1.8) was observed for the zigzagging mode from dye visu-
alizations. The existence of the 4R wake structure was later numerically substantiated by Auguste
and Magnaudet [7]. At higher Re vortex shedding was observed with a 2R wake structure. Also, no
chaotic regime was observed even for excessively large Ga of 10000. They only observed irregu-
lar motion if the fluid was subject to initial disturbances/noise. Also, a new 'intermediate oblique’
regime was identified where the path switches between an oblique and a rectilinear path and no
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periodicity was detected. Moreover, no regions for the chaotic domain were proposed. Rather, the
falling spheres exhibited a rectilinear/vertical path even for large values of Ga. Different wake struc-
tures were associated with each regime (depicted in the Fig. 1.7).

Due to much disagreement with the experiments of HW and numerical work of JDB, the same
research group of JDB very recently performed numerical simulations and presented new results
(Zhou and Dusek [6], here after denoted as ZD). They performed simulations for a larger Ga range
and by allowing the sphere to travel for sufficiently long distances to check the veracity of the earlier
published results by JDB. Although some results did agree with their earlier work, ZD pointed out
some corrections to the map that was proposed by JDB and updated the map (Fig.1.9). The differ-
ences in the two maps can be seen by comparing Fig.1.3 and Fig.1.9. Some new and different types
of motion were identified in the regime which was earlier characterized as zigzagging, the different
types of zigzagging are shown in Table 2.1. But these special cases were not reported for a cloud of
data but only for particular values of p and Ga.

Table 1.1: Various types of Zigzagging reported by ZD [6]

) Ga Type of zig-zagging

0 176 Planar imperfect zigzagging
(0,0.2) | (210,230) | Fast ZZ oblique

0.2 190 Non-planar imperfect zigzagging
0.2 200 Planar periodic zigzagging

0.5 180 Perfect planar zigzagging

0.5 190 Periodic oblique zigzagging

0.65 195 Oblique imperfect zigzagging

The bi-stable region reported by JDB was tested for longer distances and it was found to become
chaotic. Hence, the limits for bi-stability was reduced and new limits characterizing the vertically
periodic regime were reported (Fig. 1.9). Also at high p and a narrow range of Ga a 'neatrly heli-
cal’ path was observed (also observed by JDB and VB). This regime was characterized in a detailed
manner in this work and was found to be bi-stable with chaotic motion. For very large Ga (; 375)
and infinitely light spheres(p = 0), perfect helical trajectories (Fig. 1.10) were reported (similar to the
one reported by Karamanev et al. [24] and VBL [14]). A new, corrected version of JDB’s map was
presented with the new results (depicted in Fig. 1.9). It is important to note that, although revised,
the new results of ZD did not match well with the experimental work of HW.

The final and most recent work by Auguste and Magnaudet [7] (here after denoted as AM) sys-
tematically explored the parameter space for light spheres for Ga up to 700. The major motivation
of this work was that there was much discrepancy among the earlier results and only a single code
had been employed for this study up till now. Many new regimes were reported in the intermediate
Ga range of 200 to 300. Also the helical regime observed by ZD was also observed and a full domain
of existence of this regime was reported. As mentioned earlier the 4R wake structure confirmed
the experimentally observed one by HW. All the thresholds of the regimes have been discussed in
appendix A. Similar to the earlier works a map of Ga and p was created (depicted in Fig. 1.11) The
trajectories and the properties of such new regimes are explained below.

* Intermittent regime (IT) - the sphere hesitates to perform periodic planar zigzag — onset of



1.2. Review of Previous Literature 9

-+ vertical regime

10_v +.|D ..... wab 3. OWXX) 0 0 e <> o <> o 0 Saaaade M
§ E, : [> steady oblique
: g ..;’..‘?' v low. frequet}cy '
T .. oblique oscillating
L E’ &00 o : low f‘requf:nc‘y
P : quasi-periodic
2 -+ IBEIE R B O oblique oscillating
- S0 O
3 00 high frequency
5 { et A DO 6000000 oblique oscillating
= :
%E : per.fect or slightly
0.5+ 4B b 0000 OO el oblique zig-zag
P % intermittent zig—zag
: ©
g [®) vertical oscillating
0.2 + 4 ' 00000 0% 0000 o o O Q0 O planar
1 ' vertical quasi-periodic
| * Vv
: : ] > periodic planar
150160170180 200 225 250 275 300 325350375400 450 500 @ helical
Ga <> chaotic

Figure 1.9: Regime map by Zhou and Dusek [6] representing various trajectories of ascending/falling free sphere (over
lapping areas correspond to bi-stability), x and y axis are same as Fig.1.3

Figure 1.10: Trajectory and vortical structure of the helical regime at p = 0.1 and Ga = 500 [6]

chaos can be inferred. The amplitude of the zigzag is in the order of sphere diameter (dp).
The intermittency sets in at a higher Ga for increasing p.

* The oblique zigzag (ZO) - sphere follows a periodic planar path with non-zero mean drift
and combines the characteristics of oblique periodic oscillating regime and regular zigzag-
ging regime.

* The low amplitude/high-frequency zigzag (ZZ,), emerges only after a long travel, the sphere
consistently drifts while ascending and the path is non-planar. Amplitude is one order of
magnitude smaller than the regular zigzagging regime.

» The spiral or helical (SP) regime - observed for very larger Ga, and very light spheres. The
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Figure 1.11: Regime map by Auguste and Magnaudet [7] presenting various trajectories of freely ascending sphere with
annotations SV - steady vertical, SO - steady oblique, PO - periodic oscillating, ZZ - zigzagging, ZZ, - zigzag-2, IT -
intermittent, ZO - oblique zigzagging, SP - spiralling, 3DC - chaotic

pitch of the spiral decreases as Ga increases. But there is not much variation in the diameter
of the helix. For a given Ga, pitch decreases as p decreases.

Other very recent works include the study of effect of moment of inertia of the sphere on the path
oscillation and characterizing the flutter to tumble transition behaviour by Mathai et al. [26]. The
previous numerical work by Uhlmann and Du3ek [4] has been extended to study of the secondary
ice formation in clouds[27] by additionally accounting for the heat and mass transfer phenomena.

Drag characteristics

In general the C  for freely falling spheres doesn’'t vary much with that of the fixed sphere scenario.
The relation for variation of C; with Re is given by Abraham (Eq.1.11) [8]. The main deviation in
the C, is observed for light spheres with high Ga or Re. Karamanev et al. [23, 24] for light rising
spheres, reported sudden jump of C; to 0.95 (constant thereafter) in the value beyond a critical Re.
JDB also observed enhanced values of C,; for Ga > 225 and it more or less varied around 0.64 for Ga
=350. HW reported increased C, values for Ga > 874 or Re >1550 for spheres with (p = 0 to 0.6) with
C4 to be in the range of 0.75. VBLs experimental work aimed at suggesting new models for C; by
modelling an additional induced drag for rising spheres, and the results also decently agreed with
the values reported by AM.

2
24
Cy= ( Re +0.5407) ,  0=Re=6000 (1.11)
e



1.3. Motivation 11

1.3. Motivation

As it is seen from the review of previous literature, dynamics of path instabilities and wake instabil-
ities of a freely falling/rising sphere haven't been completely understood. All the disagreement be-
tween the previous works and with different results reported by every newly published work, show
that the problem is still far from being explored fully. The crux of the entire literature review is
summarized in Appendix A and is presented in such a way to highlight the disagreements and the
differences in the regime threshold limits predicted earlier. The very recent study by Mathai et al.
[26] where it was reported that, the path oscillations can be controlled by altering the moment of
inertia, neatly finds direct application and high relevance in mixing/process-intensification phe-
nomena which can be of great importance to process industries. Moreover, Chouippe et al. [27]
have taken the study to the next level, which finds application in the meteorological research.

1.4. Research Questions
1. For the regimes where previous numerical works disagree with each other, which regimes are
we able to reproduce experimentally?

2. Are there new regimes that haven’'t been observed earlier? If so, are the new results repeatable?

3. How do physical parameters like Strouhal number and drag coefficient differ in the present
case from the results reported earlier?

4. Is it possible to draw consensus and disagreements of the present work with various older
works to know where each one stands?

1.5. Research Goals and Approach to Studying the Regime Map

1.5.1. Research Goals
1. To design an experimental setup and image processing tools for studying the sphere motion
in time.

2. To study the Ga vs p map thoroughly within the given time and available resources.
3. Validate the results for basic regimes where there is no disagreement between earlier works.

4. To perform a systematic set of experiments in order to populate the Ga vs p map and update
it and present a new map.

5. Provide guidelines on the possible errors/uncertainties in the present results so that the present
data is reliable for validation of new numerical models

1.5.2. Approach to Studying the Regime Map

The aim is to cover most path instabilities/regimes reported earlier in literature, test the validity
and explore the characteristics of each regime systematically. Since the Ga — p parameter space is
huge, it is of primacy to narrow down the region of interest from the existing maps from an exper-
imental viewpoint. The older map by JDB, updated map from the same research group by ZD and
the latest map by AM served as basis for identifying the regions of interest in the parameter space
for the present investigation. Detailed regions chosen for investigation of the parameter space are
given in chapter 3. Regions chosen for investigation can be broadly categorized into two types. First
one being the regions in the parameter space where there is no disagreement in previous numeri-
cal works. These regimes have also been observed in experimental works and physical parameters
also match well between authors. This region will serve as an excellent verification for the present
experimental methodology and reliability of the new results. Second one is to cover the regions that
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have been in continuous debate over the years and the present work will aim to investigate those
regimes in detail by increasing the number of measurement points in those regions (by populating
the map more in those regions). Since the Ga —p map is to be created by varying the parameters in
Eq.1.1 and Eq.1.2, to vary the p, spheres of different materials were purchased and to vary the Ga,
the diameter of the sphere and the viscosity of the fluid were varied.

1.6. Structure of the Report

Following the introduction chapter, in the second chapter, the details of the experimental method-
ology are presented with the reader being directed to the supplementary information in the ap-
pendix for more details. Following it, is the results and discussion chapter, where the results for the
falling cases are presented and followed by the results for the rising cases. A summary of the results
and discussion is provided, where various works are compared to the present work and points of
consensus and disagreement are presented. Finally, the conclusions of the entire work along with
the recommendations for extension of the present work are given.



Experimental methodology

The goal of the present work is to track the 3D motion of a single settling/ascending sphere and
capture various path instabilities accurately. The motion of a sphere is studied in a large tank and
3D particle tracking velocimetry is used to study the motion of the sphere in time. The current
chapter aims at elucidating the various components of the experimental setup, the methodology
employed in the systematic determination of dimensionless quantities, camera calibration, particle
tracking algorithm and lastly post processing.

2.1. Experimental Setup

The design of the experiment should be cut out for tracking the 3D position of a sphere falling/rising
in a tank containing still fluid. This underlines the need for high-speed imaging with cameras. The
tank is illuminated using LED panels which facilitate the tracking of the sphere in time. In order to
accurately capture the path instabilities, the spheres used should be perfectly round and devoid of
any form of air bubbles inside. It is crucial to monitor the temperature in the tank since the Ga is a
strong function of the viscosity. Ideally, one would want to release the sphere from rest and hence
a very careful release mechanism is designed. Fig. 2.1 shows the overall view of the experimental
setup. The individual components have been annotated for the purpose of clarity. In the following
sub-sections, each component of the setup will be explained in detail.

2.1.1. The Tank
The experiments were performed in a glass tank of rectangular cross-section of dimensions (0.30 x
0.32 x 1.5 m) shown in Fig. 2.2. Size of the tank was chosen on the basis of the following conditions:

¢ The sphere is able to travel several hundred sphere diameters [3] before it reaches the field of
view of the cameras.

* Itis possible to track the sphere for sufficiently large distance (70d), for the largest sphere in
the current study and 375d), for the smallest one).

* There is no effect of side walls in the dynamics of the sphere motion [28].

Owing to the large volume (144 litres) of the tank, filtered tap water was used for all experiments and
the viscosity was varied by controlling the ambient temperature in the room with air conditioning.
In the present work, the water temperature was varied from 16 to 30 °C. Careful temperature control
of the room was crucial as Ga can vary significantly even with 1 degree increase in temperature. At

13
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Figure 2.1: Experimental setup with the components annotated as, 1 & 2) Cameras, 3) Acquisition PC, 4) Components of
the sphere release mechanism, 5 & 6) LEDs, 7) Water bath for pre-wetting the sphere before release, 8) Tank

the same time, it is important to check the presence of any temperature gradients along the height
of the tank. A PT-100 sensor (Fig. 2.3) was used to measure the temperature of water. The accuracy
of the PT-100 probe was tested and found to be + 0.2-0.3°C. Water temperature was measured at the
top and bottom of the tank before and after experiments to check the absence of any gradients in
temperature. Typical temperature difference in the top and bottom of the tank was 0.1-0.2°C. The
tank was drained and refilled once in 3 to 4 days owing to the increase in the level of contamination
over time for still water.

2.1.2. Precision Spheres
As mentioned in section 1.5.2 the sphere material and diameter were varied in order to cover a broad
range in the Ga - p map. A very vital part of the whole experimental procedure was the quality of the
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Figure 2.3: PT 100 temperature sensor, 1)
Multi-meter, 2) PT-100 probe

Figure 2.2: Tank
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spheres used. The quality of the spheres used can have a significant impact on the regime of mo-
tion of the sphere. Precision spheres (with sphericity £ 0.99 and < 1) of a wide range of diameters
with densities ranging from 870 kg/m?® to 6000 kg/m? were purchased from DIT Holland BV. Within
these densities, a major portion of the regime map could be covered. Although a clear disagreement
between various literature can be seen for lower p in the maps by ZD and AM, such low p weren't
considered for the present study. Densities lower than 500 kg/m3 couldn’t be covered simply due
to the unavailability of spheres in such density ranges. Also based on the fact that, earlier experi-
ments used hollow spheres to cover these p ([13],[1]), where VB reports several improper trajectories
obtained due to usage of hollow spheres which they attribute to the inhomogeneity in mass distri-
bution in such hollow spheres. The recent paper by Mathai et al.([26]) shows that the use of such
hollow spheres can significantly impact the type of motion taken by the sphere due to the change
in moment of inertia. The properties of the spheres used in the present study are listed in Table 2.1.
Despite careful selection of the spheres, for plastic spheres, namely Polypropylene and Nylon, the
presence of small air voids was inevitable from the supplier end since injection moulding was used
to manufacture the spheres. This is evident from the histogram of density of the spheres where, we
can see a deviation from the value specified by the supplier (Appendix E - Fig.E.1 and Fig.E.2).

Table 2.1: Sphere specifications

Material Type Density (kg/ms) Diameter (mm)
Polypropylene Plastic 870 2,3.5,4

Nylon Plastic 1120 2,3,4,4.5,5.556, 6.35
Silicon Nitride Ceramic | 3190 1.2,2.381
Aluminium Oxide | Ceramic | 3900 1.2, 2,2.381
Zirconium Oxide | Ceramic | 6000 1.5875

2.1.3. Estimation of the Galileo number

The Ga estimation was the most important and critical part of the experimental campaign. From
Eq.1.2, it can be seen that Ga is a function of diameter, viscosity, fluid density and solid density.
Estimation of these quantities are not as simple as they seem. Even a slight misprediction can land
us in another regime, which we may wrongly characterize. The density and kinematic viscosity of
water are determined from the temperature using an online tool-engineering toolbox [29]. The den-
sity and diameter of the spheres have a tolerance which are specified by the supplier. For example,
in the case of Nylon, the tolerance in diameter is 25 um to 50 um. This tolerance is much lower for
ceramics owing to the high quality of manufacturing. This tolerance gives Ga a mismatch from the
predicted value, making it very difficult if the values given by the supplier are used at face value.
Hence the mass and diameter of the individual spheres were measured to accurately determine the
Ga. Each sphere was stored in separate Eppendorf tubes (shown in Appendix H Fig.H.2) and given
an identification number. The mass of individual spheres was measured using weighing scale with
a least count of 0.01 mg (shown in Appendix H Fig.H.1). The diameter was measured using a mi-
croscope, where the images of each sphere for several planes were recorded and the diameter was
computed from the images using a Circular Hough transform method (Appendix B). From the mass
and diameter, the Ga and p could be computed with good accuracy. Moreover, plastic spheres like
Nylon absorb water and hence, it was dried in an oven at 40°C and the measurements of mass and
diameter were repeatedly performed. The variation of mass with water absorption for different ma-
terials is given in Appendix C.

It is important to note that, there are uncertainties involved in the measurement of mass, diameter
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and water temperature. Hence a careful uncertainty analysis was performed (Appendix D) and the
uncertainty in Ga, p, Re and C; are quantified systematically for every case investigated.

2.1.4. Releasing the Spheres

As mentioned in the beginning of this chapter, the release mechanism is a very important part of
the experiment as one would ideally want the sphere to be released from rest with the initial pertur-
bations being as low as possible. However, no method of releasing can guarantee zero initial pertur-
bations. Also, there is a good chance that the initial perturbation may affect the final path taken by
the sphere. The effect of different release mechanisms have not been reported in literature. In order
to be confident of the results, in the present work we intend to choose different mechanisms, and
study the effect of each on the path taken by the sphere. The results show that there is no effect of
the methodology adopted to release on the final path taken by the sphere. The results of the release
mechanism are presented in chapter 3.

When releasing, the fluid in the tank is expected to be at rest with disturbances being as low as
possible. Once the sphere is released and the motion is recorded, the next experiment is performed
after 15 minutes to allow the disturbances to die down [30]. The sphere which settles down in the
tank is removed using suction, where a long rod is inserted into the tank with a tubing network
connected to the vacuum pump. This would create large amount of disturbances in the fluid due
to motion of the long rod inside the tank. In this case, the next experiment is to be performed with
a minimum gap of 2 hours [1]. Typically, four experiments are performed with gap between each
being 15 minutes. Then, the spheres are collected from the bottom and the next experiment is
conducted after 2 hours.

2.1.4.1. Release Mechanism - Falling sphere

To release the sphere from the top of the tank, three different mechanisms were tested. The three
mechanisms were chosen such that, each varies in the degree of initial perturbation that each can
create.

Tweezer

Usage of the tweezer (shown in Fig. 2.4) is the most simplest of the tested release mechanisms. Us-
ing a tweezer as a release tool was recently reported by Toupoint et al. [30]. The sphere is pre-wetted
(to avoid possibility of air bubbles being created when released) and is held by the tweezer. It is gen-
tly taken below the free surface of the tank and released manually. This method can create a large
initial perturbation on the sphere due to manual release. But this method, practically takes very less
time and is simple to carry out.

i

Figure 2.4: Tweezer



2.1. Experimental Setup 17

Vacuum Suction

The sphere is held by vacuum suction using a vacuum pump. A schematic is shown in Fig. 2.5 a. The
tubing line to the sphere from the vacuum pump is laid out on a cross member or a bar which rests
on the surface of the tank. The connection between the sphere and the vacuum pump is through
this tube network. A leur valve was used to cut off the vacuum pump from the sphere. This would
cause the sphere to be released eventually. An important point to note here is that, there is always a
mild up/down flow of water through the interface where the sphere is held (marked as 3 in Fig. 2.5
b). Due to this there is a constant flow of water through the tubing and hence a drain chamber was
used to collect the water. This has an advantage as well as a disadvantage. The advantage being
that, due to constant water flow through the tubing, there is no presence of any air bubbles in the
tubes and closing of the valve would mean that the sphere has water on either side (side exposed
to the tubing line and the side exposed to the tank). This will cause a smooth release without any
initial impulse being generated onto the sphere due to the built up pressure by the vacuum pump.
The drawback is that, due to this mild down flow, the fluid close to the sphere is always disturbed
and in motion.

5-4

a) b)

Figure 2.5: a) Schematic of vacuum suction release mechanism with annotations 1) Cross bar, 2) Tubing line, 3) Valve, 4)
Drain chamber, 5) Vacuum pump, b) Cross bar with annotations 1) Tubing, 2) Cross bar, 3) Interface where sphere is held

Robotic Gripper Arm

Due to the disadvantages of the above mechanisms, as a final test, a robotic gripper arm (Fig. 2.6)
was also tested. Similar to the vacuum suction setup, the gripper is mounted on a bar which is
allowed to rest on the tank. The sphere is held by the arms of the robotic gripper. The gripper
is employed with a servo motor, which is connected to an Arduino. The speed of the motor was
controlled using a simple program (Appendix F), which causes a gentle release of the sphere.

2.1.4.2. Release Mechanism - Rising sphere

Releasing a sphere from the bottom of the tank is much more tricky and not straightforward as the
falling counterparts. It was achieved through the use of vacuum suction. The schematic of the set
up is shown in Fig. 2.7. The full scale set up has many intricacies and is hence depicted in detail
in Appendix G. The vacuum suction tubing network is taken to the bottom of the tank by guiding
the tubes through a long rod. At the bottom end of the rod, a provision is made for four spheres to
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Figure 2.6: Robotic gripper arm with annotations, 1) Arduino and 2) Servo Motor

be held under suction. The rod is left immersed in the tank for two hours with the vacuum pump
switched on, thereby holding the spheres at the bottom of the tank till all the disturbances created
die down. Then, each of the spheres are released one after the other with the 15 minutes gap, similar
to the procedure mentioned for falling spheres. The releasing of the spheres is achieved by using a
4-valve connection, with each valve being connected to one sphere, each sphere can be cut off from
the vacuum pump by closing the valves independently.

/

Figure 2.7: Schematic of release mechanism for rising sphere with annotations 1) Spheres held under suction, 2) Tubing
lines, 3) Valves, 4) Drain chambers, 5) Pressure relief valve and 6) Vacuum pumps

2.1.5. High speed cameras and LED

A pair of synchronized high speed cameras was used to image the motion of the sphere and track
it. Based on the availability, either a pair of Imager sCMOS or a pair of Imager Pro HS cameras were
used (shown in Fig. 2.8). The f-number (ratio of the diameter to aperture) of the lens was set to
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16 in order to have a greater depth of field in the tank. The frame rate of the cameras was chosen
(based on Nyquist sampling theorem) to be greater than at least twice the frequency based on the
gravitational time scale (Eq.1.6) of the sphere. It ranged from 50 to 500 Hz depending upon the case
investigated. Both the cameras had a field of view of 45cm in the vertical direction, which provides
adequate distance to track the sphere in time. Depending upon the camera used, the resolution
was 0.208 mm/pixel for Imager sCMOS and 0.223 mm/pixel for Imager Pro HS. Two LED panels was
used for backlighting on which the moving sphere would present itself as a dark circle on the bright
illuminated background. The schematic of the camera and LED setup is depicted in Fig. 2.9

LAVISION

a)

Figure 2.8: a) Imager sCMOS camera and b) Imager pro HS camera

[ 4 g

Figure 2.9: Schematic of camera and LED setup, with annotations 1&2) LEDs, 3&4)Cameras

2.1.6. Camera calibration

A proper calibration of the camera is essential to account for various refractive indices (air, glass and
water) and correct for various other distortions. An in-situ calibration procedure following the work
of Soloff et al. [31] was used to relate the coordinates in the object space ([x,y,z]” € R®) and the
image space ([X, Y]” € R?). This is obtained though a mapping function(f). The mapping function
in this case is a 3rd order polynomial. Here, two polynomials are fit for x and y directions. They are
given by equations 2.1 and 2.2 for X and Y coordinates respectively.

X=c(2)+c1(2)x+c2(2)y+ cs(z)xy+04(z)x2+05(z)y2+06(z)x2y+07(z)xy2+03(z)x3+09(z)y3 2.1)
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Y = ¢p(2)+c1(2)x+ C2(2) y+ c3(2) xy + c4(2) X%+ ¢5(2) P + ¢ (2) ¥° y + 7 (2) x Y + cg (D) x5+ ¢o (2)y® (2.2)

This method is the most preferred as it accounts for all the aforementioned issues. The calibration
procedure involved in the present study is briefly described as follows:

* A grid (with crosses) is placed within the field of view inside the tank filled with water. The
distance between the crosses is constant and is known apriori (20.2 mm in this case). This is
depicted in Fig. 2.10. The grid is mounted on a mechanical traverse (shown in Fig. 2.10) which
allows an out of plane motion of the grid within the tank.

* The cameras are made to focus the crosses and corresponding images are recorded. From the
recorded images in each camera, the marker positions are found out (depicted in Fig. 2.11 a).

e With the known positions of the markers, a 3rd order polynomial is fit through the located
markers with the distance between the adjacent markers known in the object space. This 3rd
order polynomial maps the physical object plane onto the camera plane (Fig. 2.11 b). The
3rd order polynomial is fit in x and y directions. At this point four different polynomials are
obtained for the two cameras.

Figure 2.10: Calibration setup with annotations, 1&2) Calibration grid, 3&4) Mechanical traverse

* The grid is them moved inside the domain to a known distance, which in this case is 40 mm
(this is sufficient to cover the total extent of the out of plane motion of the sphere in the
present study). With the moved grid, in the new plane, four new polynomials are fit there
by obtaining eight different polynomials which are then used to compute the 3D coordinate
of the sphere.
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Figure 2.11: a) Grid with marker locations detected b) Back projected Image

Errors in calibration are unavoidable but systematic. Hence, we expect a systematic uncertainty.
The calibration error is caused due to least squares fitting of the mapping function and due to the
error made in the estimation of marker positions. In the present study, from the data considering all

the calibration performed, RMS error of the calibration ranges from 0.09 mm to 0.2 mm which are
approximately 0.4 to 0.89 pixels.

2.2. 3D Particle Tracking Algorithm

The particle tracking algorithm was implemented in MATLAB following the works of Mass et al.[32]
and Nicholas et al.[33]. The methodology adopted is summarized in the flow chart below. (Fig.2.12)

Import the pair of images each
corresponding to one camera

l

Perform background
subtraction and apply
filtering (preprocessing
the image)

|

Locate the centre of the
particle in both the images No

l

Map the coordinates to the
camera coordinates using the
polynomials obtained from
calibration

l

Perform triangulation to
estimate the 3D coordinate

‘Above steps
performed for all
the image pairs
recorded

l Yes

Figure 2.12: Flow chart describing steps involved in the Particle tracking algorithm
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Each step is elaborated as follows:

1.

a) | « b)

Two images corresponding to the each of the cameras are imported. These are the raw images
and are depicted in Fig.2.13 a.

. Each of these raw images is subtracted with the background image, which in this case is the

image taken before the particle being released. On subtraction, any form of unwanted spuri-
ous information in the image will be removed, thereby leaving us with a bright circle (particle)
on a dark background. Following this, a band pass filtering is done using a MATLAB routine
bandpass.m (from the work of Daniel et al. [[34]]) to further smoothen out the bright spot
(Fig.2.13 b).

. To estimate the centre of the bright circle, firstly, the pixel position corresponding to the high-

est intensity is found out. Then a search window is defined around this high intensity pixel.
Using the (x, y) values and the intensity values(I(x, y)) of the pixels within this search win-
dow, a weighted centroid averaging method ([33]) is implemented to compute the centre of
the particle (Fig.2.13 c). The corresponding equation is as follows

ZI,:[:I XnI(Xn, Yn) ZnNzl Ynl(Xn, Yn)

, (2.3)
YN I yn) XN Ixn, ya)

(X, Ye) =

Here (x., y.) is the centre coordinates of the particle, n stands for the index of the pixel within
the search window considered and N is total number of cells within the window. (x,, y,) are
the coordinates of each pixel with intensity (I(x,, ¥»)) Thus, at the end of this step, we obtain
two coordinates, (X, ¥)camera, and (X, ¥) camera, -

With the particle centres computed from both the images, the centre coordinate in each im-
age is mapped onto the two calibration planes using the polynomials obtained from calibra-
tion. Thus, we will have four (X, Y) coordinates, namely, (X,Y)¢, »,, (X, Y)¢, p,» (X, Y)¢, p, and
(X, Y),,p, where subscripts ¢ and p corresponds to camera and plane respectively.

Triangulation is performed with the four coordinates to reconstruct the 3D coordinate [35].
The 3D coordinate will be the spatial intersection of the lines connecting the coordinates in
plane 1 and plane 2 in both the cameras(depicted in Fig.2.14). The 3" estimated coordinate

will be the midpoint of the shortest line joining the two lines (corresponding to two cameras).

The above steps are repeated for all image pairs acquired from the experimental run.

c).

Figure 2.13: a) Raw Image, b) Image after preprocessing, c) Centre position estimated
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Figure 2.14: Estimation of 3D coordinate from the 2D coordinates from four different planes

2.3. Post Processing
2.3.1. Signal Filtering

The position coordinates obtained from the particle tracking routine often have noise associated
to them due to the finite pixel size. Although, the position signal wouldn’t look much noisy, upon
taking derivatives to compute velocity or acceleration, the noise will be amplified. It is often not
possible to get rid of the noise unless some kind of filtering is employed. In the present work, Sav-
itzky Golay filter[36] is employed, which is a moving polynomial filter. For a given frame length (set
of points), a polynomial of order 3 is fit through the points. This polynomial can then be analytically
differentiated to compute higher order statistics like velocity and acceleration.
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Figure 2.15: Variation of standard deviation of x-velocity with frame length employed. Red arrow depicts the chosen
filter length
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Itis crucial to decide the frame length within which the polynomials are to be fit. It should be done in
such a way that, only the noise is filtered without affecting the physical scales in the signal. In order
to decide the frame length, many different frame lengths were tested and the standard deviation in
the velocity signal was plotted with respect to the frame length. With increase in frame length, in the
plot, there will be a region where the standard deviation will drop immediately (noise being filtered
out), then we will observe a region where with increase in frame length the standard deviation will
almost remain same (zone where noise is still filtered). This region is critical as beyond this region
the curve will again drop down thereby filtering the physical scales in the signal. This is depicted
for one such case in Fig.2.15. In the shown example, a frame length of 99 was chosen. Deciding
the right frame length for a signal will depend on the frame rate and gravitational frequency of the
sphere. Since the gravitational frequency is majorly a function of density of the sphere, the frame
length used to filter the signal will vary for different materials of the spheres used. Similar analysis
for deciding the frame length had been done for other cases as well and are shown in Table 2.2

Table 2.2: Frame length employed in Savitzky Golay Filter

Material Density (kg/ m3) | Frame Rate (Hz) | Frame Length
Nylon 1120 100 39
Nylon 1120 500 99
Polypropylene 870 50 19
Silicon Nitride 3190 500 49
Aluminium Oxide | 3900 500 49
Zirconium Oxide | 6000 500 29

2.3.2. Correcting Spectral Leakage

Computing the spectrum (Eq.2.4) is very important in the present work, since we want to quantify
the dominant frequencies in the signal. The spectrum will be used extensively in chapter 3. In or-
der to compute the FFT, it is implicitly implied that the signal is periodic and the Fourier series are
representative of the periodic extension of the signal (using different amplitudes and frequencies of
sines and cosines).

F(f) =f w(t) f(e 2™y (2.4)

where F is the output frequency spectrum, f is the input time series signal and w is the window
function which is a rectangular window (simply '1’ inside the window and ’0’ outside the window).
Since the default window used is a rectangular window, if the series is not periodic we can see a
sudden blip (similar to an impulse). It might be the case that, any additional frequencies or possibly
all frequencies may be required to represent the blip. This causes spectral leakage, where, due to the
presence of the additional frequencies that are needed to represent the blip, the energy in one bin
spreads to multiple bins creating what is called spectral leakage. In the present work, since we do
not have a large time series of the signal, it is necessary to smoothen the edges of our signal to avoid
spectral leakage. This is done by employing a Hanning window which is represented by Eq.2.5 (in
the discrete form).

2nn
w(n) = 0.5(1 - cos(T)) 2.5)

Moreover owing to the drifting motion of the sphere, a correction for a linear trend in the signal
is also required. So the following steps were carried out

1. The horizontal velocity signal (vh =\/V2+ v%) is chosen to compute the FFT.
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2. Aline is regressed through the points of the signal and the signal is subtracted with the re-
gressed line. This would leave us with a signal corrected for any kind of drifting motion.
Moreover, we will be left with the horizontal velocity fluctuations in the signal (v;l) (depicted
in Fig.2.16).

3. A Hanning window is used to correct for the spectral leakage by suppressing the end effects in
the signal and shifting the focus to the centre portion of the signal. (depicted in Fig.2.17)

Velocity signal Line Regressed‘
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Figure 2.16: Plot of the velocity signal and line regressed through the signal to correct for drift

Velocity Fluctuatation signal Signal after windowing‘

%1072
5 T T T T T T

I
0 0.5 1 1.5 2 2.5 3 3.5

time (s)

Figure 2.17: Plot of velocity signal corrected for drift and plot of velocity signal after applying the Hanning window



Results and Discussion

3.1. Test for repeatability and effect of release mechanisms

For one particular type of regime of motion - 'oblique oscillating regime’ (which will be established
later in this chapter), the effect of the different release mechanisms were tested and the same regime
was repeatable in all the cases. This shows that the initial perturbations (if any), die down as the
sphere has a long distance of travel before it reaches the field of view. This also proves repeatability
of the results. The results for the three release mechanisms are shown in Table 3.1. Since the re-
lease mechanism has no effect on the repeatability or the path of motion taken up by the sphere,
the tweezer was used for all other cases to release the freely falling spheres owing to its simplicity
and a vacuum suction was used to release the spheres from the bottom of the tank.

Table 3.1: Results of different release for a sphere with Ga=178 and p =1.12

Physical Parameter Tweezer | Vacuum Pump | Robotic Arm
Mean fall velocity (mm/s) 87.95 87.93 87.73

Angle of fall with vertical(®) | 6.11 4.27 7.93

Strouhal Number (-) 0.058 0.0601 0.046

3.2. Establishment of regions of interest and jargon used

Although the abbreviations for the most relevant literature were established in chapter 1, for the
sake of clarity, the abbreviations used are tabulated below. This is mainly because, in the present
chapter and the chapters to follow, we will refer to the earlier works extensively.

Table 3.2: Abbreviations for relevant literature

Abbreviation | Author(s) and Research Article | Type of work (Experimental/Numerical)
JDB Jenny et al. [3] Numerical

VB Veldhuis and Biesheuvel [13] Experimental

HW Howrowitz and Williamson [1] Experimental

7D Zhou and Dusek [6] Numerical

AM Auguste and Magnaudet [7] Numerical

For the freely falling cases, the map of ZD (depicted in Fig.3.1) is taken as the reference (note that
this is the updated map from the older map of JDB by the same research group). We don’t consider

26
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Figure 3.1: Regime map by Zhou and Dusek [6] representing various trajectories of ascending/falling free sphere and
horizontal red lines represent the region investigated in the present study, x and y axis are same as Fig.1.3

the map of HW here because the results completely vary from other works. Few of the regimes re-
ported in the map of JDB were experimentally verified by VB. But the results of HW don’t agree with
either JDB or VB or ZD. So, in order to choose the regions of present study, we shall rely on the results
of JDB and ZD as some of their results have also been substantiated experimentally. It is important
to realize that this approach is only used here to choose the regions of interest in the map. The re-
sults obtained, however will be compared with all the above works. Similarly, for rising cases the
map of ZD (depicted in Fig.3.1) and the map of AM (depicted in Fig.3.2) are collectively taken as the
reference as both are very recent and also disagree with each other in some cases, hence it will be
worthwhile to choose both together.

For the falling cases, a wide range of Ga and three different p (namely 1.12,3.19 and 3.9) are inves-
tigated (depicted in Fig.3.1 by horizontal red lines). It is clear from the map that, the transition to
different regimes upon increasing Ga is different for p<2.5 and p >2.5. Hence, we would like to cover
p in both the cases for a range of Ga, thereby covering as many regimes as possible. In this chapter,
the cases of p < 2.5 will be called ‘low density’ cases, whereas, the cases with p > 2.5 will be the ‘high
density’ or ‘dense cases’. For rising cases, a single p (namely 0.87) is considered in the present work
(depicted by the horizontal red line in Fig.3.1 and Fig.3.2).

So, for the falling cases, we narrow down our regions of investigation from the map of ZD. The lines
FL, FH1 and FH2 shown in Fig.3.1 are the lines that are considered for investigation. Here, FL stands
for falling cases (F) and low density (L) and hence denoted FL. By low density, it shouldn’t be thought
of as arising sphere with p < 1, rather, it is a falling case (with p = 1.12). For p > 2.5, we see lines FH1
and FH2, where F stands for ‘falling’ and H stands for ‘high density’. Lines FH1 and FH2 correspond
toap = 3.19 and 3.9 respectively. The above method of identification was chosen in such a way that,
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Figure 3.2: Regime map by Auguste and Magnaudet [7] presenting various trajectories of freely ascending sphere (here
Ar stands for the Archimedes number, which by definition of AM is same Ga),and horizontal red line represents the
region investigated in the present study. The annotations are as follows: SV - steady vertical, SO - steady oblique, PO -
periodic oscillating, ZZ - zigzagging, Z7Z, - zigzag-2, IT - intermittent, ZO - oblique zigzagging, SP - spiralling, 3DC -
chaotic

we are able to make a distinction between p < 2.5 and p > 2.5. This is because the route to transition
to chaos is different for p < 2.5 and p > 2.5. Although the route to transition to chaos is almost the
same when moving along lines FH1 and FH2, it will be seen that the results obtained in both the
cases will complement each other, thereby giving more confidence in our results. Apart from the
three p probed for the falling cases a fourth p = 6 was also studied. But for p = 6, the transition
to different regimes was not studied and rather only 2 different cases were studied to test a simple
hypothesis (further elaborated in section 3.4). For rising cases(p < 1), line R is shown in Fig.3.1 and
Fig.3.2, here R denotes rising and corresponds to p = 0.87. In this chapter, first, the results for FL
will be discussed, then the results for FH1 and FH2 will be discussed together and finally the results
for the rising cases (R) will be discussed.

It is important to note that, whenever it is mentioned ‘moving along line FL, it means that, for
a fixed p, the Ga is increased. All the plots presented in this chapter are non-dimensionalized and
the relevant normalization parameters are listed below.

1. Position is normalized with the sphere diameter (d).
2. Velocity of the sphere (vy, v, and v,) is normalized with the gravitational velocity (vg - Eq.1.4).

3. The magnitude of horizontal velocity fluctuations (v}) is normalized with the gravitational
velocity (vg - Eq.1.4).

4. The frequency is normalized by the gravitational frequency (fg - Eq.1.6)
3.3. Focus of the present work

The falling and rising spheres, irrespective of p, for a Ga < 155, will have an axisymmetric wake and
will fall/rise in a steady vertical or rectilinear path. The older map by JDB and the updated version
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by ZD report the above threshold without any disagreement. Moreover, experimentally, this was
observed by HW. The focus of the current work, will be on the non-vertical regimes for Ga > 155.
It is important to note that a perfect vertical path is not possible to capture experimentally. The
sphere will always have a drift that makes the path deviate from the strict vertical ones reported in
literature. This drift is random and not reproducible. The drift is due to the presence of residual dis-
turbances in the fluid which are practically not possible to get rid off. Moreover, the sphere is never
a perfect/ideal sphere like the ones employed in numerical simulations. As mentioned in section
2.1.2, the sphericity is never equal to 1 and also the density values have a deviation from the values
specified by the supplier owing to possible voids in the sphere (Appendix E). A similar argument is
also reported by other works of Ellingsen et al.[37], Fernandes et al.[38] and Toupoint et al.[30] for
bubbles and disks. Typical trajectories of steady vertical regime with a drift observed in the present
study is shown in Fig.3.3. We see a drift and it is only 2.2% of the total distance travelled by the
sphere. However, there are possible ways to correct for the drift, which is beyond the scope of the
present work as we only aim at characterising various path instabilities involved and their associ-
ated disagreements in literature. Hence the numerical works are the best suited to characterizing
such strictly vertical regimes. The focus of the present work will be to characterize and discuss the
dynamics of non-vertical regimes.

2/dy ()
1|

E g 0 | 2
z/d, (-)

Figure 3.3: Drifting Steady vertical trajectory for p = 1.156 and Ga = 110.14 falling with a mean vertical velocity of 0.056
m/s

3.4. Falling Sphere
3.4.1. Results low density cases (p =~ 1.12)
The Steady Oblique Regime

Moving along Line FL in Fig.3.1, for Ga > 155, JDB report the breaking of the axisymmet-
ric wake to a planar symmetric wake. The orientation of the symmetry plane is random in
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Figure 3.4: a) Steady oblique trajectory for p = 1.121 and Ga = 166.56 falling at an angle of 6.27° with respect to the
vertical with a mean vertical velocity of 0.0869 m/s and mean horizontal velocity of 0.0096 m/s,
b) Steady oblique curved trajectory for p = 1.128 and Ga = 169.57 falling at an angle of 5.23° with respect to the vertical
with a mean vertical velocity of 0.0837 m/s and mean horizontal velocity of 0.0081 m/s.

the azimuthal direction and results in what is referred here as a ‘Steady oblique’ regime. A
typical oblique motion of a sphere, from the present experiments is depicted in Fig.3.4 a.
This regime was also observed experimentally by VB, HW and by some preliminary experi-
ments of JDB. Not many data points or test cases were considered within this regime in the
present work owing to the fact that, this regime has already been established in great detail.
The primary goal here was to verify this regime and check if the regime is reproducible. For
the cases investigated, the angle with respect to the vertical agreed with the earlier works.
The angle with respect to vertical is computed from the dot product of a vector along the
vertical line and a vector along the falling path of the sphere. For the steady oblique regime,
the vector of the falling path is obtained by taking the first and last position. In the case
when the sphere oscillates, the vector of the falling path varies at every instant and hence
the angle with vertical also varies with time and hence the mean value is computed.

Table 3.3 shows the comparison of the angles obtained in other works and are compared
to the present work. The table collectively represents the ranges of angle for the steady
oblique regime and oblique oscillating regime (explained below).

It is also important to note that, few of the results in the present work also show an
oblique curved path (Fig.3.4 b). Some low angle predictions in the present work (Table 3.3)
are due to the curvature of the path. Similar curved trajectories were also observed by VB in
their experiments. VB attributes it to the possibility of inhomogeneities in the sphere and
its associated improper mass distribution for the reason for such curved paths.
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Table 3.3: Angle with respect to vertical for oblique regime (for steady oblique and oblique oscillating)

Research Article | Angle (°)
Present work 2.79t07.4
HW =~3.5t075
ZD 4t06

AM 2.6t07.3
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Figure 3.5: a) Oblique Oscillating trajectory for p = 1.121 and Ga = 184.4 falling at an angle of 4.57° with respect to the
vertical with a mean vertical velocity of 0.086 m/s and mean horizontal velocity of 0.0072 m/s,
b) Temporal variation of vertical velocity (amplitude of oscillation ~ 0.015vg),
¢) Temporal variation of horizontal velocity (amplitude of oscillation = 0.075 vg),
d) Spectrum of the fluctuation of horizontal velocity (with the red dot indicating the dominant peak at 0.059)

The Oblique Oscillating Regime

Moving along Line FL in Fig.3.1, above a critical Ga, which according to ZD = 180 when (in
this case where p = 1.12), the planar wake undergoes a Hopf bifurcation and the oblique
trajectory of the sphere begins to oscillate, leading to a new regime known as the ‘Oblique
Oscillating’ regime. The trajectory of such regime is depicted in Fig.3.5 a and the time evo-
lution of the vertical and horizontal velocity are shown in Fig.3.5 b,c with the amplitude
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of the velocity oscillation being ~ 0.015v¢ and 0.075v, respectively. Similar to the steady
oblique cases, a curved oscillating regime was also observed in a few cases.

The critical Ga for the onset of this regime corresponds to a Re = 240, which is well be-
low the critical Re for the onset of shedding in the fixed sphere, which is = 275([16]). This
clearly indicates that the effect of additional degree of freedom of the sphere is evident in
the quicker transition behaviour. The above explanation is adapted from the discussion of
AM for a similar transition behaviour. The frequency of shedding is computed from the
dominant peak in the frequency spectrum (Fig.3.5 d). We can clearly see a peak at f or St =
0.059. It is important to be noted that, this St is much smaller than that observed for a fixed
sphere which has also undergone a Hopf-bifurcation. This is the reason why this regime
is also called ‘low frequency oblique oscillating’ regime by ZD. For the oblique oscillating
regime, in the present work, the observed St is in the range of 0.046 to 0.059 which agrees
very well with the range of 0.045 to 0.068 reported by JDB. So, at this, point, the present
methodology agrees well with older works, where there is no disagreement between differ-
ent earlier works. This serves as a good verification for the present results.

Chaotic Regime and the Hidden Bi-stable Zone

Moving along Line FL in Fig.3.1, for a Ga = 200, ZD predicts the transition to chaos. From
the present results, we agree with ZD as a ’chaotic regime’ is also observed for various Ga
considered from 205 to 243 (depicted in Fig.3.10). In the present work, the chaotic regime
was observed up to the highest Ga employed, which can also be seen in the updated Ga
- p map of the present study (depicted in Fig.3.10). One such case of a chaotic regime is
depicted in Fig.3.6. The path taken in the chaotic regime is not repeatable, but contains
intermittent imprints of the stable regimes that are in the Ga limits close to itin the Ga - p
parameter space. This is clear in the spectrum of the chaotic regime (Fig.3.6 c), where we
see a dominant peak at 7 = 0.169 and and also a few low frequency peaks close to it. This
was also unequivocally observed from numerical simulations of JDB, ZD and from the ex-
periments of VB. This is also observed in the spectrum for fixed spheres where St of 0.045
and 0.167 was observed at a Re of 500([20]). At this point this also provides a hint that, in
the close Ga limits, there is a possibility for a high-frequency oscillating regime (of St = 0.1-
0.16). This brings us to the discussion of the next regime that is present within the chaotic
domain.

Moving along Line FL in Fig.3.1, from Ga = 250 to 300, ZD reports a regime strictly verti-
cal (2D) with high frequency oscillations (St = 0.1 - 0.15), called the ‘Vertical Oscillating
regime’. For p slightly greater than 1, ZD has probed 4 points and in that 2 are charac-
terized as bi-stable and 2 as stable vertical oscillating cases. By the term ‘Bi-stable’, it is
meant that the sphere keeps intermittently switching between the chaotic regime and the
vertical oscillating regime. It is important to note that this regime hasn’t been observed ex-
perimentally up till now. This is also not found in the older work by JDB, where a similar
bi-stabe regime was characterized for rising cases (p < 1). However in their updated map
(Fig.3.1), this zone is very clearly presented and the distinction between the bi-stable and
fully stable paths are made. Owing to this disagreement and also owing to the fact that this
regime wasn't studied experimentally earlier, it was decided to probe this regime in great
detail. Almost 50 different Ga were investigated along line FL from 240 to 300 and a clear
cloud of the above vertical oscillating type regimes were observed in the present work. This
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is evident from our updated map in Fig.3.10.

As mentioned earlier, pure vertical trajectories are not possible to obtain experimen-
tally, a slight drift was present making it deviate from the strict vertical nature mentioned by
ZD. Due to the drift, the above regime will be referred to (in this work as), ‘high-frequency
oscillating’ regime although all the characteristics are the same as the vertical oscillating
regime mentioned by ZD. The typical trajectory of the high frequency oscillating regime is
in Fig.3.7 a along with the temporal evolution of horizontal velocities and the spectra in
Fig.3.7 b,c. A clear peak is seen at St = 0.154. It is interesting to note that, almost same St is
observed post the Hopf bifurcation for a fixed sphere. But this regime was not observed to
be consistent, but coexisting with the chaotic domain. Out of the 50 different measurement
points in the Ga - p map, close to 30 were observed to be in the chaotic regime and 20 were
observed to be perfectly high-frequency oscillating (depicted in Fig.3.10). In some cases, a
smooth transition from chaos to the high frequency oscillating regime was seen (Fig.3.8 a)

20 4
O E
e
~
60 4
30 4
2 ) 0 2
0 9 4 -2
_ . ld (-
x/d)/() ~/dp ( )
2 T T T
—
T
& ) %
~
N
74 I 1
3 2 -1 0 1 2
z/d, (-)
a)
03 0.016
0.014}
025}
ooz}
0.2 N
_ ~ oot
N
S 0.5} T2 o0008f
= £
S 0.006
5 £ oo
4 0.004
0.05 T
0.002}
10 20 30 140 50 60 70 0 005 01 015 02 025 03 035 04 045 05
b) tt, () 0 Fe)

Figure 3.6: a) Oblique Oscillating trajectory for p = 1.121 and Ga = 283.81, b) Temporal variation of horizontal velocity, c)

Spectrum of the fluctuation of horizontal velocity (with the red dot indicating the dominant peak at 0.161)
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and also in some cases a clear irregular unstable high frequency oscillations were observed
(Fig.3.8 b). This is an indication of the bi-stable nature.

At this point we would like to establish the following comments:

1. There is a possibility that after a much longer distance of travel by the sphere, only
one regime may exist making it purely chaotic or purely high-frequency oscillating.

2. As we can see from the transition between both the regimes in Fig.3.8 a and Fig.3.8
b, it may very well be the case reported by ZD and JDB where the sphere intermit-
tently switches between high-frequency oscillating and a chaotic regime. Hence, in
this case, the connotation ‘bi-stable’ will make complete sense.

3. To draw a conclusion from the extensive set of 50 data points, since we see that the
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Figure 3.7: a) High frequency Oscillating trajectory for p = 1.13 and Ga = 259.92, b) Temporal variation of z-velocity, c)
Spectrum of the fluctuation of z-velocity (with the red dot indicating the dominant peak at 0.154)
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Figure 3.8: a) Transition from a chaotic drifting trajectory to high frequency oscillating trajectory for p = 1.11 and Ga =
278.95 b) Irregular high frequency oscillating trajectory for p = 1.11 and Ga = 277.49

high frequency oscillating regime is spread out in the entire range of Ga from 240 to
300 along with the chaotic regime, we choose to pursue the fact that this regime is
bi-stable.

ZD reports that for Ga = 262 and greater, the regime is fully stable vertical oscillating
regime. We tend to disagree at this point, since, from the present results, we see a clear co-
existence of both the regimes from Fig.3.10. For Ga > 300, in the present work the chaotic
regime was observed consistently and we agree with ZD. So, the results of ZD are consistent
with the present results except when characterizing the bi-stability for the high frequency
oscillating or vertical oscillating regime from 250 < Ga < 300.

The three components of velocity (vy, v, and v;) are plotted in form of a velocity diagram
in Fig.3.9 for all the regimes observed when moving along line FL1. This will aid in bet-
ter understanding of the transition to chaos. It is clear from the plot that with increase
in Ga, the area occupied in the 3D space increases. With the steady vertical regime ap-
pearing almost as a dot (owing to negligible horizontal excursions) and the chaotic regime
occupying the largest area with greater excursions. From the steady vertical regime to the
chaotic regime, the magnitude of excursions increase, depicting that the solid-fluid cou-
pling becoming more intense and the transition to chaos is through increase in investment
of energy in the lateral direction in the form of horizontal excursions.

The updated Ga - p map from the present study along line FL1 is presented in Fig.3.10. The
points represent the results of the present measurement campaign and the vertical lines are
adapted from ZD using which the demarcation of thresholds of different regimes is shown.
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Figure 3.9: 3D velocity plot for all the regimes along line FL1, with reach regime corresponding to a Ga and p as follows:
Steady Vertical - Ga = 110.14 and p = 1.156, Steady Oblique - Ga = 166.56 and p = 1.121, Oblique Oscillating - Ga = 184.4
and p = 1.121, High frequency oscillating - Ga =259.92 and p = 1.13, Chaotic - Ga =283.81 and p = 1.121.

The map serves as a direct comparison between the regimes observed in the present study
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against the regimes reported by ZD. The map with the uncertainties included for every case
is provided in Appendix D (Fig.D.2).
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3.4.2. Results high density cases (p = 3.19 and 3.9)

The Steady Oblique Regime

Even for the dense cases, the steady oblique regime has no disagreement between different
works. Maps of JDB and ZD have no difference in this regime and also experiments of VB
and HW agree well. Hence, in the present work, it was decided not to probe this regime in
great detail. However, for the two measurement points on the updated map (shown as pink
squares in Fig.3.13), a neat steady oblique regime was observed.
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Figure 3.11: a) Helical/rotating trajectory for p = 3.19 and Ga = 208.4 with half pitch and diameter of the helix is = 214d),
and 12d), respectively, b) Temporal variation of horizontal velocity, ¢) Spectrum of the fluctuation of horizontal velocity
(dominant peaks indicated by red dots)

The Helical/Rotating Regime
On moving alongline FH1 and FH2, from the works of ZD, we would expect a high-frequency
oblique oscillating regime for Ga > 195. This was, however, not the case in the present work.
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We observe a ‘helical/rotating’ regime which is oblique with low-frequency oscillations su-
perimposed on the rotation of the sphere in 3D space. A typical trajectory of the regime is
depicted in Fig.3.11 a where the half pitch and diameter of the helix is = 214d,, and 12d,

respectively. In the spectrum depicted in Fig.3.11 ¢ a dominant peak can be seen at f =
0.0097, which corresponds to slow rotation of the sphere and the second peak can be seen
at f = 0.053, which corresponds to the low-frequency oscillations that are superimposed
on the rotation. Since it is not a perfect helix and hence is given the name "helical/rotating’

This regime was also reported by ZD for Ga Z 212 and they characterized it as bi-stable
regime. In the present work, the measurements were repeated and Ga — p map (shown in
Fig.3.13) was thoroughly tested in the region for many cases and we always observe a fully
stable rotating/helical regime for the cases considered (from Ga = 205 to Ga = 231). For
many measurement points in the range of Ga = 205 to 212, we never observed any signs of
high-frequency oscillations and hence we disagree with the works of ZD and JDB. Even the
experimental work of VB, never reported the high frequency oblique oscillating regime. VB
reported a steady oblique regime and directly a helical/rotating regime, thereby agreeing
with the present work. However, the helical/rotating regime was not pursued in great de-
tail in the work of VB, but in the present work, it is the main focus and many measurement
points are probed in the Ga — p map (Fig.3.13) to check bi-stability and characteristics of
the regime with increase in Ga. The results from lines FH1 and FH2 agree well, thereby,
increasing the confidence of the results reported in the present work. Moreover, this also
proves that dense spheres (p > 2.5 in general), take a route to transition that is different
from the lower density counterparts (p < 2.5), thereby substantiating the transition charac-
teristics reported by ZD.

On increasing Ga, within the rotating/helical regime, some new characteristics that haven’t
been reported earlier were observed in the present study. For Ga g, 222 up till 231, the pitch
of the helix decreased (= 240d,), to almost half of that observed for Ga between 205 and
215 (an example of such phenomenon is shown in Fig.3.12 a. The oscillations also become
much more pronounced (depicted in Fig.3.12 b), and in some cases the path also shows
slight deviations from the helical trend indicating the onset of chaos. For Ga = 231, for one
case we observe a helical/rotating regime (Fig.3.12 c) and in another case it is chaotic, indi-
cating that somewhere around this Ga the regime transits to fully chaotic (Fig.3.12 d). This
is in excellent agreement with ZD, where they reported critical Ga = 230. For Ga > 240, for
all the cases investigated, a chaotic regime was observed (depicted in Fig.3.13).

The updated Ga - p map along lines FH1 and FH2 is presented in Fig.3.13. The points rep-
resent the results of the present measurement campaign and the vertical lines are adapted
from ZD using which the demarcation of thresholds of different regimes is shown. The map
serves as a direct comparison between the regimes observed in the present study against
the regimes reported by ZD. We clearly do not see any high-frequency oscillating regime in
the region where it was observed by ZD. Also, P/R (planar or rotating) observed by ZD was
a bi-stable regime, but with the points shown in the map, we observe a fully stable heli-
cal/rotating regime. The map with the uncertainties included for every case is provided in
Appendix D (Fig.D.3).
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3.4.3. Drag Curve - Falling sphere
The variation of C; with Re is shown in Fig.3.14. Although the trend follows that of a fixed
sphere, the values are mostly lower, deviating from that of a fixed sphere. However, af-
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ter performing a careful uncertainty analysis, the corresponding values of uncertainties
explain the reason for the deviation observed. The main reason for the deviation is the
uncertainty in diameter measurement followed by the uncertainty in mass. For a falling
sphere, JDB observed the drag does not change much from fixed sphere, thereby having a
good match. This trend is also supported by the results from HW. Inclusion of the uncer-
tainty bars also gives us the same trend, thereby agreeing with the previous works. The plot
with the uncertainties included for every case is provided in Appendix D (Fig.D.5).

3.4.4. Suppression of high frequency oscillations with sphere inertia

For the falling regime, a simple hypothesis was derived from the Morison’s Equation (Eq.1.3).
The aim was to test the validity of the result using experiments. The derivation is presented
as follows:

Let us consider a scenario of a falling sphere in a still fluid (similar to one depicted in
Fig.1.2). But here, we assume that the transience is still present and the sphere makes
low amplitude oscillations as it falls. This would lead to retaining all the terms, includ-
ing the added mass term from Eq.1.3. Substituting the expression for the added mass of a
sphere(% pVp) and taking the transient terms to one side, Eq.1.3 reduces to,

1 dup,i 1
Ppt5Pr Ve = W0p=ppVp8i— |5 CijArspy ), L up,j 3.1

The above equation along x direction will give us,

1 dvy 1
Pp+5Pr|Vp— == 5CaArspy 1y, | s

In the above equation, Fy is fluctuating lift force exerted by the fluid due to the shedding
of the wake. Making an assumption that | u p |~ vy (vertical velocity larger than the smaller
horizontal velocity fluctuations), the above equation becomes,

1 1 dv 1
E(pp+§pf)ﬂd2 dtx z—(—CdTL’d’%prxl)y +Fp 3.2)

8

In order to obtain an expression for v,, we can use the vertical force balance (along y). The
oscillations are dominant in the horizontal directions and hence we can assume that the
sphere has reached the terminal settling velocity. Hence in Eq.3.1 the transient terms can
be neglected and the resulting equation is

1
(op—ppVpg = ECdAfSpfv)Z/



3.4. Falling Sphere 43

Simplifying the above equation and taking vy, to one side and all other terms on the other
side, yields the following expression for v,

4(p-1)gd,

vy = 3.3
y 3C, (3.3)

Substituting the expression for v, from the above equation (Eq.3.3) into Eq.3.2, we get,

dv, 3 6
(P )dp dr ~ \/( Calp— l)gdp)vx+ dzpfFL

3
—
dvy (4 aip & 6
— ~ — Ux+ FL (34)

dt _
pe3)ay (oo dos)na

It is clear from the above equation (Eq.3.4), that the coefficient of v, is the inverse of the
particle response time (dimensionally it is also a time scale). And hence we can define the
particle response time(7 ) by the following equation,

ﬁ+%)\/$
T, <
' (\/%Cdtﬁ—l)g)

(3.5)

We can assume the flow response time (7 ¢), by the following expression,
d 3Cqdp
T Ay (3.6)
vy 4(p-1)g

Now Stokes Number (St), which is the ratio of 7 p and 7 is obtain by diving Eq.3.5 and
Eq.3.6 and is given by,

7_2~£%—1)
ERT (3.7)

In the above equation, if C; is kept constant and p is increased, we see that St increases,
which is intuitive because with greater inertia we expect the sphere to oscillate less or in
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other words, the oscillations of the sphere should be suppressed as sphere’s inertia is in-
creased. In order to experimentally verify this C; should be kept constant and one way of
maintaining the Cy is by fixing Ga. This is clear from Eq.1.9. Hence the Ga was maintained
almost constant (+ 10) and was varied and 4 different cases were studied. The cases are
depicted in Table 3.4

Table 3.4: Various p chosen for testing suppression of high frequency oscillations

Case No. | Material 1) Ga

1 Nylon 1.12 | 559.5
2 Silicon Nitride 3.19 | 558.05
3 Aluminium Oxide | 3.9 | 555.3
4 Zirconium Oxide | 6 544.12

Case 1 Case 2 Case 3 Case 4

0.025 —

0.02 —

0.005

Figure 3.15: Spectrum of fluctuation of horizontal velocity for different density ratios in Table 3.4 (p increases in the
direction of the arrow)

In Fig.3.15 the spectrum of the fluctuation of the horizontal velocity of the sphere nor-
malized with gravitational velocity is plotted. From the figure, we can clearly see a reduc-
tion in the amplitude of fluctuations for higher frequency ranges. Hence, we do see a sup-
pression of amplitudes for high-frequency as p is increased.
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3.5. Rising Sphere

As mentioned in the beginning of this chapter, there are two reference maps for compari-
son for the rising sphere scenario. Various experimental data sets are covered along line R
in Fig.3.1 and Fig.3.2.

Steady Oblique and Oblique Oscillating regime

These regimes were already established in the previous section. Previous works, even for
the rising cases show no disagreement with each other in these regimes and hence this
makes these two regimes a perfect validation test for the present work. Since, releasing
the sphere from the bottom of the tank is much more sensitive to any form of disturbance
that we may create in the fluid, this validation test is crucial to rule out the possible effect
of the perturbations created due to the release mechanism. In the present study, both the
regimes were tested thoroughly (shown in Fig.3.23) for rising cases and the results were
consistent with the works for JDB, ZD and AM. For the steady oblique regime, for the cases
investigated, the angle with respect to the vertical varied between 2.87° and 6.1°. A typ-
ical trajectory for a sphere rising for this regime is depicted in Fig.3.16. Similarly, for the
oblique oscillating regime (Fig.3.17), the angle with respect to vertical varied between 2.75°
and 6.17°. St ranges from 0.0496 to 0.0676, which again agrees with the previous works.
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Figure 3.16: Trajectory of Steady oblique regime for p = 0.892 and Ga = 159.36 falling at an angle of 3.47° with a mean
vertical and horizontal velocity of 0.0775 and 0.004 m/s respectively

Zigzag Regime
Beyond the oblique oscillating regime, in the present work we observe a ‘zigzag’ regime
which is a characteristic of rising bubbles. From literature, the zigzag regime, is known to
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Figure 3.17: a) Oblique Oscillating trajectory for p = 0.867 and Ga = 179.54 falling at an angle of 4.32° with respect to the
vertical with a mean vertical velocity of 0.089 m/s and mean horizontal velocity of 0.0065 m/s,
b) Temporal variation of vertical velocity (amplitude of oscillation ~ 0.011vg),
¢) Temporal variation of horizontal velocity (amplitude of oscillation = 0.05 vg),
d) Spectrum of the fluctuation of horizontal velocity (with the red dot indicating the dominant peak at 0.063)

be strictly vertical, but owing to the reasons mentioned earlier in this chapter, a drift is also
seen in this regime, thereby deviating it from the vertical nature. Fig.3.18 a shows trajectory
of a sphere rising in a zigzag pattern.

Beyond the oblique oscillating regime, different works disagree greatly with each other. JDB
observed a zigzag regime upto Ga = 215. ZD reports a chaotic regime for Ga upto 250 and
AM reports zigzag regime for Ga upto 250. Experimentally, HW, only observed zigzag mo-
tion for spheres with p < 0.36 and VB never observed a proper zigzag regime. However, at
this point we are in complete agreement with AM. Also, some outliers of chaotic motion
are seen in this regime (depicted in the updated Ga - p map in Fig.3.23), which may be
due to the presence of air voids in the sphere (can be seen from the histogram of density
for the polypropylene spheres in Appendix E in Fig.E.1 b). The spread of the density val-
ues in Fig.E.1 b from the mean density is larger than the uncertainties determined for in p
thereby bolstering the fact that air voids are present. The zigzag regime is very sensitive to
the sphere homogeneity and this is evident from the fact that VB in their experiments only
saw intersperses of zigzag motion and not a full-fledged zigzag as seen in the present re-
sults or from numerical simulations. Even in the present work, we observe a few improper
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Figure 3.18: a) Zigzagging trajectory for p = 0.874 and Ga = 265.7, b) Temporal variation of z-velocity, c¢) Spectrum of the
fluctuation of z-velocity (with the red dot indicating the dominant peak at 0.043)

zigzags for a few cases investigated (shown in Fig.3.19 a,b). Also, JDB, numerically tested
sphere with slight eccentricity in the centre of mass for the zigzag regime and ended up
seeing the sphere take up a chaotic motion.

From the spectrum, depicted in Fig.3.18c the St is seen to be 0.043. The ranges of St ob-
served in the present work is compared with the works of ZD and AM in Table 3.5. We see
that the range slightly deviates in our case in the upper limit from ZD and JDB.

Chaotic Regime and Hidden bi-stable Regime

For 250 < Ga < 300, we observe a ’high-frequency oscillating’ regime similar to the ones
observed for the low density falling sphere cases. Out of the 30 different experiments done
in this region, 20 were chaotic and 10 were high frequency oscillating. By high-frequency,
the St is estimated to be around 0.14-0.15. There were cases, where the St (= 0.08 ) was



48 3. Results and Discussion

100
100 4
&0
804 3
—~ 60
1 Y
" 60 z
= >
<
N
0 20
20 4 0
2
05 ) 0
- 0 0 2
2 2 4 2
e
aj/d;l’ (') Z/dp (') ARy m,/’dp (')
9
P o . . .
—~ —~
N | NN
\‘ 2 j\j g 2
) w4
-4 6 L .

-2 B 0 1 2 3 "3 2 4 0 1 2 3
/ Id |(

a) L dp (-) b) I/dp (_)

Figure 3.19: a) Trajectory of improper zigzagging for p = 0.864 and Ga = 202.42 b) Trajectory of improper zigzagging for p

=0.882 and Ga = 198.98

Table 3.5: St for Zigzag regime and comparison with previous works

Research Article | St

Present work 0.0228 to 0.044
ZD, JDB 0.023 to 0.035
AM 0.016 to 0.036

lower than the expected St for high-frequency oscillating, but higher than that of oblique
oscillating regime. It can be assumed that these cases are under transition and haven't
reached the final regime yet, and may reach if tracked for a larger distance (this assumption
will be substantiated in the following paragraph). This regime seems to coexist with the
chaotic regime and hence is deemed bi-stable in the present work. A typical trajectory
along with the velocity evolution and spectra given are depicted in Fig.3.20.

ZD characterized this regime as fully stable and strictly vertical(2D) and called it ‘verti-
cal oscillating’ and AM characterized this regime as a fully stable high-frequency drifting
regime (3D) and is called “ZZ2’. AM reports the emergence of this regime after the sphere
has travelled approximately 330d,, but in the present work, the sphere enters our field of
view after approximately 187.5d),. This argument by AM seems convincing in the present
case, as we also see a few stable regimes but with frequency of oscillation lower and we as-
sume that it is still in the transition stage and may end up in the high frequency oscillating
stage. In some cases we see a transition from chaos to high-frequency oscillating stage to
chaos (Fig.3.21 a) and in some cases, we observe the chaotic regime having strong imprints
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Figure 3.20: a) High frequency Oscillating trajectory for p = 0.879 and Ga = 279.11, b) Temporal variation of z-velocity, c)
Spectrum of the fluctuation of z-velocity (with the red dot indicating the dominant peak at 0.154)

of the high frequency oscillations (Fig.3.21 b), showing the bi-stability nature.

Also, in the experiments, since we are not able to attribute the drift to a physical effect or
due to the large scale residual motions in the tank, we are not sure if we are to agree fully
with ZD or AM. However, qualitatively, the regime is similar, except the fact that, we see
a coexistence with chaos. Finally, moving along line R, for Ga > 300, mostly we observe
a chaotic regime thereby agreeing with ZD and AM. This is shown in the updated Ga - p
map in Fig.3.23. This map directly compares the present results with the results of AM
and ZD, which are depicted as vertical lines indicating the thresholds demarcating different
regimes. The map with the uncertainties included for every case is provided in Appendix D
(Fig.D.4).

The three components of velocity (vy, v, and v;) are plotted in form of a velocity diagram
in Fig.3.22 for all the regimes observed when moving along line R. This plot correlates the
area occupied in the 3D space due to lateral excursions of the sphere and the transition
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behaviour seen. The discussion is similar to the one presented earlier in this chapter for
Fig.3.9.
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Figure 3.22: 3D velocity plot for all the regimes along line R, with reach regime corresponding to a Ga and p as follows:
Steady Vertical - Ga = 98.53 and p = 0.878, Steady Oblique - Ga = 159.36 and p = 0.892, Oblique Oscillating - Ga = 179.54
and p = 0.867, Zigzag - Ga = 265.7 and p = 0.874, High frequency oscillating - Ga = 279.1 and p = 0.879, Chaotic - Ga =
307.32 and p = 0.872
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3.5.1. Drag Curve - Rising sphere

The variation of C; with Re is shown in Fig.3.24, following the trend of a fixed sphere case.
In this case we see a spread of data, at few places being higher and in most places being
lower. However, JDB and AM, report higher values of C; when compared to the fixed sphere
for very light rising cases. For the density ratio considered in the present work, JDB and
AM report that the C; will not change much from that of the standard drag curve. The
experimental work of Veldhuis et al.[14] also report a spread in the data even after inclusion
of uncertainties. However, in the present work, after including the uncertainty, the results
agree with the previous works where the trend follows the fixed sphere trend. The plot with
the uncertainties included for every case is provided in Appendix D (Fig.D.6). Similar to the
discussion for our falling sphere C; values, after quantifying the uncertainties the values
C,4 adhere to that of the standard drag curve for fixed spheres.



4.1.
1.

Summary and Conclusions

Summary
An experimental set-up was designed and built from scratch to track the motion of a
sphere settling/ascending in a quiescent fluid.

. High-speed cameras were used to track the motion of the sphere and Particle Tracking

Velocimetry was used to reconstruct the position of the sphere and track it in time
from the images recorded.

. A careful design of the release mechanism was made and the effect of the method of

releasing on the final trajectory of the sphere was studied. The release mechanism
didn’t have any noticeable effect of the final type motion taken by the sphere.

. Uncertainty analysis was performed and uncertainties in Ga, p,Re,C; and calibration

uncertainties were quantified.

. A wide range of Ga was studied for four different p thereby covering most regimes

reported in literature. This was done by populating the Ga - p map with over 250
different experimental data sets.

. For the falling cases, three different p were studied. Out of the three, one corresponds

to the low density case (p = 1.12) and two correspond to high density case (p = 3.19
and 3.9). The distinction was mainly made because, the transition to chaos is dif-
ferent for the low and high density cases. For rising cases, the transition and path
instabilities were studied for one p = 0.87.

4.2, Conclusions

1.

For the low density falling case (p = 1.12), the steady oblique and oblique oscillating
were observed consistently for a range of Ga, thereby agreeing with the results of ZD
and JDB. These two regimes were also observed experimentally by VB and the steady
oblique regime was observed by HW.

. On increasing the Ga for the low density falling cases (p = 1.12), for 250 < Ga < 300,

a high-frequency oscillating regime was observed in the present work. This regime,
was not reported by JDB, but reported in their updated work (ZD) and they report
this regime for the similar Ga range. However, this is the first time such regime is
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4. Summary and Conclusions

observed experimentally. In the present study close to 50 different experiments were
conducted in this Ga range and out of the 50, 20 were stable high-frequency oscillat-
ing trajectories, whereas 30 were chaotic trajectories. Hence, in the present work, this
region of 250 < Ga < 300 region was deemed as bi-stable, where one can find coexis-
tence of a high-frequency oscillating regime as well as a chaotic regime. Hence, the
present work doesn’t agree with JDB for 250 < Ga < 300, but we agree with the map
of ZD, except for the fact that the high frequency oscillating regime is characterized
as bi-stable in the present work. Although VB didn'’t cover a wide range of Ga range
as done in the present experimental campaign, for all the ranges covered by VB the
present work is in excellent agreement.

. For the dense cases considered (p = 3.19 and 3.9), from the range of Ga consid-

ered, we initially observe a steady oblique regime and on increasing Ga further, we
see a helical/rotating regime. This disagrees with the findings of ZD and JDB as a
high frequency oblique oscillating regime is reported by them in these Ga ranges.
However, repeated measurements were made and we never did we observe such a
regime. The helical/rotating regime was reported by ZD but it occurred after tran-
siting from the high frequency oblique oscillating. Moreover, they characterize the
helical/rotating regime as a bi-stable one. An extensive measurement campaign was
conducted for the helical/rotating regime and we saw no signs of bi-stability, rather
the helical/rotating regime was well repeatable and also stable. Hence for the dense
cases, we are in complete agreement with VB, who also reported a steady oblique
regime and directly a helical/rotating regime without reporting presence of any kind
of high frequency oblique oscillations. The same transition behaviour on increasing
Ga is seen in the present work for both the p (= 3.19 and 3.9) considered, thereby
increasing the confidence in the present results.

. Moreover, on pursuing the helical/rotating regime further, for Ga > 225, we observe

that the pitch of the helix reduces to almost half of that observed for Ga < 225 and
oscillations become more pronounced. On increasing it further, close to Ga = 230,
we observe transition to chaotic regime. This Ga of transition matches very well with
the critical Ga mentioned by ZD.

. For rising cases, a single p (= 0.87) was investigated for a wide range of Ga. Here, we

have three maps for comparison. We have a better basis for comparison as out of the
three maps one corresponds to a completely different research group with a different
numerical code employed for the study. The steady oblique and oblique oscillating
regimes agree well with all the three works and also with the experimental work of VB.

. After the oblique oscillating regime, a zigzag regime was observed in the present work.

The transition from oblique oscillating to zigzag is reported by JDB and AM. However
the limits of the zigzag regime observed by JDB was over a narrow band. We almost
see the zigzag regime immediately after the oblique oscillating regime upto Ga = 250,
thereby completely agreeing with AM.

. For Ga > 250, we observe a high-frequency oscillating regime similar to the one ob-

served for the low density falling sphere cases. This regime is also observed experi-
mentally for the first time. This regime also coexists with the chaotic regime thereby
making it bi-stable. In some cases, the sphere was in transition to the high-frequency
state, where a state of intermediate oscillations was seen. ZD characterizes this regime
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as fully stable and strictly vertical(2D) and AM characterizes this as a fully stable high-
frequency drifting regime(3D). Although it is tempting to make a small disagreement
here, the argument by AM seems convincing, that this regime emerges after a longer
distance and is essentially 3D, which may actually be the case if the sphere is tracked
after much larger distance of travel, employing a larger tank than the one used in the
present work. However, with the results in hand, we quantify this regime as a bi-stable
high frequency oscillating regime.



Recommendations for future work

There is great scope for extending the present work and the recommendations are pre-
sented below:

1. The effect of moment of inertia on the outliers reported in the updated maps can be
studied by characterizing the moment of inertia.

2. Signal processing techniques to correct the drift of the sphere for regimes like the
vertical or zigzag regime can be employed [37][30][38]. By doing so, we remove the
effect of residual fluid disturbances in the tank and also the effect of inhomogeneities
in the sphere, thereby making it readily comparable to numerical results.

3. Dye visualizations can be carried out to obtain qualitative information about the wake
structure corresponding to the path instabilities. This is of great importance because,
the cause for path instabilities are wake instabilities. Moreover, from a very recent
work by Esteban et al. [39], where the entire 3D wake structure of freely falling planar
polygons was studied using PIV, it opens doors to exploring the same to characterise
the 3D wake structure for falling/rising spheres, which hasn'’t yet been done experi-
mentally. This will also provide information about the complete flow field, which may
help us in understanding the path and wake instabilities better.

4. Only four different p were considered in this work, a much extensive investigation
might prove useful in creating a complete regime map as presented by numerical
works. Moreover, for low p in rising cases, the map of AM and ZD shows much more
interesting regimes like spiralling and oblique zigzagging. It is very important to cover
these regimes experimentally as for p < 0.5, there is severe disagreement between
the maps of AM and ZD. This can be done by using glycerol/water solutions or other
heavy oils, from which the lower p can be studied.

5. Alarger tank can be employed with moving cameras since it is important for two main
reasons. One being that, by following a sphere from the moment of release, we can
get information about the initial path of instability development which finally leads
to various regimes of motion. Second one being, it will help to characterize the bi-
stable regions better. There is a possibility that the sphere, after a longer distance
of travel may become either fully stable or fully chaotic. This was however, tested
numerically by ZD for long simulation times and found out that the regime remains
bi-stable showing coexistence of both behaviour for long distances too. But it will be
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worthwhile to test this fact via experiments and increase the confidence level of the
reported results.

. The present experimental setup and postprocessing tools can also be extended to
characterize path instabilities in bubbles, disks, cylinders and spheroids or even to
non-Newtonian fluids.



Literature Summary Table

The table summarizes all the literature available for the settling/rising of a single sphere
in a fluid at rest. The table has been constructed to provide an overview on the various
disagreements in the Ga — p map. The guidelines to interpret the table is presented below.

1.

The first row corresponds to research articles by different groups with the abbrevia-
tions being expanded in the key at the left top of the table. Each box in the first row
has been coloured green or blue based on the methodology of study (experimental or
numerical).

. Under each column, Ga and p have been provided to indicate the ranges predicted

by the authors for different regimes.

. The first column corresponds to the various regimes that have been reported in liter-

ature and the last box in the first column is the drag coefficient reported.

. An empty box will indicate that the regime has not been reported by a particular pa-

per. A box may be empty for two reasons. One being that, the Ga-p in the regime has
been investigated, but the corresponding regime has not been observed (coloured in
violet). Or, the Ga-p range has not been not been investigated and hence the regime
is not observed (coloured in red).

. Also, there is a possibility that the regime is observed, but not for a range of Ga-p but

only at few discrete points due to experimental limitations (coloured in grey).

. The bistable regions, where coexistence of two regimes is reported has been coloured

in orange.

. Finally, the boxes that are coloured white signify that the regime is observed for a

range of Ga-p and the regimes are in agreement between various works here.
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Measurement of Sphere diameter

The sphere is kept under a microscope (Fig.B.1 a) and the images in different planes are
recorded. The scale factor required to convert from pixel coordinates to real coordinates
(mm) is done by imaging a grid of known size under a microscope (depicted in Fig.B.1 b).
A circle is fit by Circular Hough Transform method in Matlab. The procedure is carried out
individually for all Nylon and Polypropylene spheres.

b) seeun GRID

Figure B.1: a)Microscope b) Grid used for calibration (distance between two points is 500 pm)
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Circle fit
Sphere

Figure B.2: Nylon Sphere of diameter 3.5 mm viewed under microscope and circle fit (blue line)



Water absorption by the spheres

Mass of the spheres were measured before immersion, after 2 hours and 5 hours of im-
mersion in water. Polypropylene spheres and the ceramic spheres (silicon nitride and alu-
minium oxide) show no signs of significant water absorption. This is evident from the
change in mass with time, which is insignificant. Whereas, for nylon spheres, the absorp-
tion is significant, which can cause large deviations in the Ga, hence they were dried in an

oven at 40°C and the properties were remeasured.
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Figure C.2: a) Silicon Nitride sphere, b) Aluminium Oxide sphere
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Uncertainty Analysis

The uncertainty in p, Ga, Re and C,; is computed systematically for all the 250 cases in the
present study. The expressions for p, Ga and C is given by equations 1.1, 1.2 and 1.9 re-
spectively. It is clear that Ga is a function of (m,p r,d, and v). Similarly p is a function of
(mp, dp and pf). Reis a function of (v, dp and v¢) and Cy is a function of (Re and Ga).

Expression for Ga from Eq.1.2 can be simplified and written as,

1 3
myg—cnprgd
Ga= | P8 _s"PI8% (D.1)
§TOFVY
The estimate of uncertainty in Ga is given by the following expressions:
0Ga 2 (0Ga 2 (0Ga 2 (0Ga 2
The partial derivatives in the above equation are expressed as follows,
0Ga 3g
om, np fvﬁcGa
0Ga 3d,298
od,  2viGa
0Ga _ Ga
ovy oy

0Ga 3mpg

opr nv;p?Ga
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D. Uncertainty Analysis

Expression for p from Eq.1.1 can be simplified and written as,

_ 6my,
D= - (D.3)
mprd,
The estimate of uncertainty in p is given by the following expressions:
— op 2 (dp op
N R AR ) 4
The partial derivatives in the above equation are expressed as follows,
dp 6
om, mppds
od, — mpydy
dp _ —6myp
ap f 7'[ P fd3
The estimate of uncertainty in Re is given by the following expressions:
ORe _ \2 (ORe 2 (ORe 2
ome= [ (Gecomn )+ (Gao) s (Guom) 3)
The partial derivatives in the above equation are expressed as follows,
ORe dp
av, y  Vf
ORe _ iy
ORe Vydp
vy vi
The estimate of uncertainty in C; is given by the following expressions:
_ 0Cy 2 0Cy
5Cy = \/(6—53 ) + (aG—aaG ) (D.6)

The partial derivatives in the above equation are expressed as follows,

0Cq
0Ga

8Ga
3Re?
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0Cq  8Ga®

ORe  3Re3
The individual uncertainties are computed. The uncertainty in m,, is the value of the read-
ing in the weighing scale with the final weight fluctuating between an interval of + 0.07
mg. The uncertainty in diameter is the largest contribution to the overall uncertainty es-
pecially for the considered spheres of smaller diameter. The uncertainty comes from the
the the accuracy of circle fitting over the images taken from the microscope also the pixel
level errors associated with proper edge detection. The uncertainty is around + 20 pm.
The uncertainty in v, is taken from the systematic uncertainty from the calibration which
is < 0.2 mm/s, here we take it as + 0.2 mm/s. The uncertainty in vy and p; comes from
the uncertainty in temperature which is + 0.2-0.3 °C. In the present work, the experiments
are conducted between the temperature ranges of 16-30°C. Hence it was decided to plot
the variation of v and p ¢ within this temperature interval and fit a line through the points
(Fig.D.1).
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Figure D.1: a) Plot of kinematic viscosity with temperature (red dashed line is the linear fit), b) Plot of density with
temperature (red dashed line is the linear fit)

Now the uncertainty in v and p r can be obtained from the slope by % x0T and % X
0T (where 6T is the uncertainty in temperature). Hence the uncertainties in v rand pg
are computed to be +5.6e-09 m?/s and + 0.0464kg/m3 respectively. From the individual
uncertainties, the net uncertainty in Ga, p, Re and C,; is computed for every case and the
results are plotted below.
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Figure D.2: Ga— p map updated along line FL with the results of the present study including uncertainties
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Figure D.3: Ga— p map updated along line FH1 and FH2 with the results of the present study including uncertainties
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Figure D.4: Ga —p map updated along line R with the results of the present study including uncertainties
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Figure D.5: C,; plotted for various Re for falling cases including uncertainties (the fixed sphere curve is obtained from the
relation proposed by Abraham (Eq1.11)(8])
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relation proposed by Abraham (Eq1.11)[8])
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Density variation of Precision Spheres
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Figure E.1: a) Nylon spheres (total number - 87, density specified by supplier = 1120 kg/m3). Mean density = 1123.7
kg/m3, standard deviation = 9.98 kg/m3
b) Polypropylene spheres (total number - 90, density specified by supplier = 870kg/m3. Mean density = 878.02 kg/m3,
standard deviation = 10.65 kg/m3
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Figure E.2: a) Silicon Nitride spheres (total number - 28, density specified by supplier = 3190 kg/m3). Mean density =
3194.4 kg/m3, standard deviation = 26.04 kg/m3,
b) Aluminium Oxide spheres (total number - 15, density specified by supplier = 3900 kg/m3). Mean density = 3949.4
kg/m?, standard deviation = 54.9 kg/m3
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Pseudo Arduino Program

#include <Serwvo.h>
Servo myservo; // create servo object to control a servo
int pos = 0; // variable to store the servo postition
void setup() {
myservo.attach(9); // attaches the servo on pin 9 to the servo object

}
void loop()
{
Servo servoleft; // Declare left servo signal
Servo servoRight; // Declare right servo stgnal
//servoleft.writeMicroseconds (0.0017); // 1.7 ms -> counterclockwise
//delay(2000) ;
for (pos = 90; pos < 180; pos = pos + 1)
{
myservo.write(pos); // tell servo to go to position in wariable 'pos'
delay (150 ); // waits 15ms for the servo to reach the position
+
for (pos ; pos >=90; pos = pos - 1)
{
myservo.write(pos); // tell servo to go to position in wariable 'pos'’
delay(150); // waits 15ms for the servo to reach the postition
X
delay(1000);
while(1)
{
myservo.write(pos); // tell servo to go to position in wariable 'pos'
}
I A
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Release Mechanism - Rising Case

Drain Chambers

Tubing lines

Spheres held
under suction

Figure G.1: Release mechanism setup -releasing a sphere from the bottom of a tank
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Other Images

Figure H.1: Weighing Scale

Lo |
«

-

Figure H.2: Individual spheres stored in separate Eppendorf tubes
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Experimental Procedure

. Decide on the desired range of Ga and p required to perform the experiments. Based
on the specifications provided by the supplier, narrow down the sphere material and
diameter.

. This diameter and the mass will have a tolerance and hence the Ga can be potentially
off by even 40-50 in number. This is usually not the case for ceramic spheres owing
to the high quality (the values specified by the supplier will have very low tolerance).
Hence take at least a sample of 10-15 spheres and weigh the mass upto 0.01mg accu-
racy and measure the diameter using a microscope. With the measured values, the
Ga can be predicted.

. Number each sphere and store them separately as each will have a different Ga and
p. Later, when performing the experiments, the required spheres can be chosen as
different test cases.

. The desired Ga can be further tweaked by modifying the temperature of the room.
Set the temperature so that the regime can be further narrowed down.

. Perform calibration of the cameras and leave the cameras untouched post calibration.
Provide at least a gap of 2 hours between the calibration and the experiment so that
the residual disturbances caused due to the immersion of the grid into the tank in the
fluid die down.

. Synchronize the cameras and set the required frame rate.

. Release the sphere and record the motion. Provide adequate gap between the experi-
mental runs.

. With the acquired images, compute the trajectories and other higher-order statistics
of motion with the particle tracking code.

73



Take-aways from doing experiments the
wrong way (Experimental Intricacies)

. Prewetting the sphere - Always pre-wet the sphere before release. This can rule out
the possibility of formation of bubbles on the sphere surface which will otherwise
be inevitable due to surface chemistry of the sphere. Even the presence of a single
micro-bubble will be detrimental to the regime of motion observed.

. Usage of a screw-micrometer - It is advised not to use a screw-micrometer to measure
the diameter of the sphere, especially for plastic spheres like Nylon and polypropylene
as it can easily deform the sphere thereby changing it from being perfectly round.

. Purchasing low spheres of diameter Imm or lower - Since the present work deals
with systematic measurement of mass and diameter for each sphere seperately, for
spheres with diameter <=1mm, the weighing scale used, reads erroneous values. This
is mainly due to the extremely low weight and hence, a better-quality weighing scale
should be used or spheres of greater mass should be used.

. Cleaning the tank - It is advisable to clean the tank once in 3-4 days. This is due to the
increase in contamination with time in still water. The fastest and wise way to remove
the water from the tank is to use a water vacuum pump. Once the water is removed,
the dust/dirt in the bottom of the tank can be removed using a vacuum cleaner (after
water dries out completely). Possibility of using a siphon is not recommended, owing
to the long time taken to drain and also due to the decrease in the rate of draining
with decrease in head. Possibility of using a hole at the bottom of the tank is ruled
out since the tank is made of glass and drilling isn’'t an option. However, employing a
plexiglass tank can overcome this difficulty.

. Usage of multiple vacuum pumps - For releasing the sphere from the bottom of the
tank, since the vacuum pump should be switched on for 2 hours or more, using re-
serve vacuum pumps is recommended owing to overheating of the vacuum pump
with time. Usage of a pressure relief valve in the tubing line to the vacuum pump is
also an option to consider.

. Length of tubing line for releasing spheres from the bottom of the tank - In the present
work 4 spheres are held in suction at the bottom and hence 4 different tubing lines are
required to independently control the release of each sphere one by one. If the length
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of each tubes vary, the distribution pressure distribution along the tubing will also
vary there by creating excess pressure in some tube lines where the sphere will not
release on closing the valve (it will be held in position owing to the excess suction
pressure along the tubing line).

. Camera synchronization - Using ‘Davis’ software for recording operation will ensure
that the cameras are synchronized automatically. This is because a programmable
timing unit (PTU) will be used. But this is not the case when using other software
like ‘Photron’ and ‘PCO Camware’ where it mandatory to manually synchronize the
cameras (by switching on the ‘Master’ and ‘Slave’ option). In order to be sure that the
cameras are in sync, it is recommended to focus both the cameras simultaneously on
a timer and check if the time lapse in the images from both the cameras match up to
milli-second level.

. Obtaining the desired water temperature - Due to the large volume of the tank reach-
ing the desired water temperature will roughly take close to 12 hours. So, it is rec-
ommended leaving the air conditioner switch on overnight, to perform experiments
the following day morning. Also, set the air conditioner 1 or 2 degrees higher than
the desired temperature, to reach the desired temperature the next day morning This
is also applicable to lowering the temperature (set the air conditioner 1 or 2 degrees
lower than the desired temperature). Moreover, in the multi-meter, set the mode of
operation to ‘3926’, the default ‘385’ isn’t applicable to the PT-100 sensor that is used
in the present work.
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