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Fast 2.5-D Loss Calculation for Round Litz Wires
Tianming Luo 1, Mohamad Ghaffarian Niasar 1, and Peter Vaessen1,2

1Department of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands
2KEMA Laboratories, 6812 DE Arnhem, The Netherlands

Litz wire, which is used to suppress eddy current, always have complex structure. Solving its 3-D finite element model (FEM)
requires high computational resources. This article presents a 2.5-D loss calculation method for round Litz wires, which do not
need mesh. One pitch of Litz wire is set as an object. The exact structure is constructed by a recursive method and then is sliced
into several sections per pitch. Each section is represented by a cross section area. Two-dimensional problems are solved based on
an analytical method, which is based on magnetic vector potentials in quasi magneto-statics situation. One pitch of the Litz wire
is approximately represented by the summation of 2-D problems. The proposed method is compared with 3-D FEM results, which
shows the proposed method has good accuracy and fast computational speed.

Index Terms— Copper losses, eddy current, proximity effect, skin effect.

I. INTRODUCTION

W INDING losses are essential parts of the losses in mag-
netic components. In medium-frequency applications,

eddy current cannot be neglected as low frequency. To achieve
high efficiencies, Litz wires are widely used to suppress the
eddy current. It comprises dozens or hundreds strands, which
are twisted together through complex construction. Through
twisting, Litz wires can dramatically reduce the proximity
effect losses caused by the external magnetic field and average
the current allocation in strands.

In order to select suitable Litz wires, accurate loss esti-
mation is necessary. Most models [1], [2], [3], [4] assume
the twist is perfect and each strand has the same proximity
losses and current. However, Sullivan and Zhang [5] indicated
the twist cannot achieve perfect performance, and proposed
an analytical method to consider the twist effect. Three-
dimensional finite element model (FEM) generally can provide
accurate results [6], but it requires high computation resources
and long computational time. In order to accelerate the compu-
tational speed, methods like partial element equivalent circuit
(PEEC) [7], [8], [9], homogenization [3], 2.5-D approximation
[10] and thin wire approximation [11] are employed. In meth-
ods [9], formulas from [1] are used to reduce discretization
effort, which at the same time ignores the interaction between
eddy currents.

This article presents a 2.5-D loss calculation method for
round Litz wires, which shares the same idea with [10].
The advantage is that the proposed method is based on an
analytical solution and does not need discretization procedures.
Therefore, the proposed method can provide faster calculation
time and similar accuracy compared to [10], which uses 2-D
FEM. The 2.5-D method assumes the twisting far from the
targeted section does not cause much deviation from the 2-D
situation, and the longitudinal current plays a dominant role.
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Fig. 1. Illustration of the relation between two level’s tracks.

Litz wire’s strands mainly extend in the longitudinal direction,
which complies with this assumption.

The article is structured as follows. Section II introduces the
building of the 3-D construction of Litz wire, 2-D analytical
model, and loss calculation procedure. Section III gives two
case studies, and compares the results from the proposed
method, 3-D FEM, and two other methods.

II. CALCULATION PROCEDURE

A. Litz Wire Construction and Slicing
The first step is constructing the structure. A recursive

multilevel bundle structure [12] is adopted. The method is
briefly introduced in this section. In general, each level’s
trajectories are decided by the previous level’s trajectory and
the radius of this level bundle’s position, as shown by Fig. 1.
This relation can be described by the following equation:

tn(x, y, z) = tn−1(x, y, z) + Rn,pos cos(λnϕ) ·
−−→nn−1

+ Rn,pos sin(λnϕ) ·
−−→
bn−1 (1)

where tn(x, y, z) is the trajectory of nth level bundle, ϕ

is the global curve parameter in the range of 0–2π , Rn,pos
is the bundle’s position, λn is the ratio of the nth level
bundle’s pitch to the global wire pitch, and −−→nn−1 and

−−→
bn−1

are two normalized vectors in Frenet–Serret frame, which is
perpendicular to the n − 1th level bundle’s curve. Several con-
ditions from [6] and [7] are used to avoid the overlapping of
trajectories.

After constructing one pitch of Litz wire, the construc-
tion is sliced into several sections, and each section is
represented by a cross section of Litz wire, as shown

0018-9464 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 2. Illustration of slicing the Litz wire into sections.

in Fig. 2. Then, the 3-D Litz wire model becomes sev-
eral 2-D models. In the shown cases, one pitch is sliced
into ten sections, which is generally enough according to
our experience.

B. Two-Dimensional Multi-Conductor Model
To solve 2-D questions, the following partial differential

equation (PDE) is used based on magnetic vector potential A
in quasi magneto-statics. ω, σ and µ are angular frequency,
conductivity and permeability, respectively

∇
2 A − jωσµA = µσ∇φ. (2)

For cylinder coordinates, consider a round conductor with a
radius a along the z-direction, surrounded by air. Their general
solutions for magnetic vector potential in conductor and air are
as follows:

Ac = A0 +

+∞∑
n=0

Jn(k2r)
(

A′

1n cos(nϕ) + B ′

1n sin(nϕ)
)

(3)

Aair = C0 + D0 ln(r/r0)

+

+∞∑
n=1

rn
(

A′

2n cos(nϕ) + B ′

2n sin(nϕ)
)

+r−n
(

A′′

2n cos(nϕ) + B ′′

2n sin(nϕ)
) (4)

where A0 is the particular solution for excitation current, and
k2 = k∗

1 = (1− j)/δ, ∗ represents conjugate, δ = (2/ωσcµc)
1/2

is the skin depth, Jn represents the n order first kind of
Bessel function. Based on the boundary conditions, Ampere’s
law, and the idea of emission and reception [13], multi-
conductor matrix equations are built. The coefficient D0 is
equal to −µ0 I/2π , where I is the current the conductor
carries. Coefficients C , A′

n , and B ′
n are unknown. The detail

of the matrix is introduced in AppendixI2N+1 · · · α1M
...

. . .
...

α1M · · · I2N+1


 γ1

...

γM

 =


∑

j ̸=1 β j + βext
...∑

j ̸=M β j + βext

.

(5)

Matrix αi j represents the contribution from j conductor
to i conductor and i ̸= j . N is truncated order of infinite
series in (4). Each submatrix’s size is (2N + 1) × (2N + 1),
and all the diagonal sub-matrixes are identity matrixes. Vector
γ j is a vector composed of unknown coefficients C , A′

n
and B ′

n . Vector β j is the contribution from coefficients D j .
Vector βext is the contribution from the external magnetic
field (Hx , Hy).

All coefficients in (3) and (4) can be determined by solving
(5). The voltage drop on unit length can be obtained through
(6), where S is the cross section area of the conductor. Then,
the impedance is obtained

−∇φ = Rdc I +

‚
jωA d S

S
. (6)

Besides, because external magnetic field performance is
more like a controlled voltage source, the impedance of the
strands does not include this part of the losses. Therefore, the
Poynting vector N based on (7) is used to calculate the losses

P =
¸

∇ · Nds =
I 2

σ S + jωµI 2

2π

J2(k2a)

ak2 J2(k2a)

+
jπω

µ

∑
n

na2n(1 +
Jn+1(k2a)

Jn−1(k2a)
)(1 −

Jn+1(k1a)

Jn−1(k1a)
)

×(A′

2n A′∗

2n + B ′

2n B ′∗

2n)


(7)

C. Loss Calculation

In order to calculate the losses in the Litz wire, strand
current allocation and external magnetic field are needed.
For the external magnetic field, the static magnetic field is
considered. In other words, the change of the field due to
eddy current is neglected, which is acceptable when Litz wire
is chosen properly, i.e., strand radius is small enough compared
to skin depth. The field strength can be calculated with FEM
or the method of images, and it depends on which method
suit the application more. There field results differ from case
to case.

Strand current allocation is an important question in the Litz
wire. The uneven current distribution can cause much larger
eddy current loss than the results from the ideal assumption.
The allocation of strand currents is solved by computing the
impedance matrix between the strands [10]. The impedance
matrix is obtained from the impedance matrix and the length
of each cross section area, like (8), where c represents the dif-
ference cross section area. The impedance matrix of each cross
section is obtained by (6) through setting one strand’s current
as 1 A and others as 0 A one by one. The induced voltage
due to the external magnetic field can also be calculated in the
same way. The induced voltage of one cross section area is
solved by setting all strand current as 0 A. During calculating
the induced voltage, the proximity effect loss in strands is also
obtained by (7). Then, the current allocation can be obtained
by equating the voltage drop on each strands. Finally, the
loss can be calculated by current, impedance matrix and the
proximity effect loss in strands. The whole process is shown
in Fig. 3

Zpitch =

∑
c

Zac(c) × l(c). (8)

III. CASE STUDY

There are two cases. One is a two-level twisted wire, which
is twisted in both radial and azimuthal directions. It has
3 × 3 strands, strand radius is 0.1 mm, the insulation layer
is 10 µm, and the pitch is 10 mm. Another is a one-level
twisted wire, which only be twisted in the radial direction.
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Fig. 3. Flowchart for proposed method.

Fig. 4. Structure (a) case 1 and (b) case 2.

Fig. 5. Case1: (a) loss per meter and (b) relative error due to excitation
current.

It has 11 strands. The radius, insulation thickness, and pitch are
the same as in the first case. The structures are shown in Fig. 4.

Results from 3-D FEM are set as a reference, and 3-D FEM
is established and solved by COMSOL software. Loss due to
excitation current is calculated by assigning 1 A to litz wire.
Loss due to external magnetic field is calculated based on
1 A/m external field. Besides the results from 3-D FEM, a clas-
sic method [1] and a PEEC method [7] are compared. Detail
of 3-D FEMs are shown in Table I, and the proposed method
has much faster computational time than 3-D FEM and PEEC.

The results for Case 1 are shown in Figs. 5 and 6. Fig. 5
shows the loss due to excitation current. All three methods
have good accuracy compared to 3-D FEM, when penetration
ratio a/δ < 2. Case 1 is twisted in both radial and azimuthal
directions, which leads to roughly average current distribution
in each strand. Therefore, there is no current distribution
problem. Fig. 6 shows the loss due to external magnetic field.

Fig. 6. Case1: (a) loss per meter and (b) relative error due to external
magnetic field.

TABLE I
DETAILS OF DIFFERENT METHODS

Fig. 7. Case2: (a) loss per meter and (b) relative error due to excitation
current.

Fig. 8. Case2: (a) loss per meter and (b) relative error due to external
magnetic field.

Compared to the proposed and classic methods, the PEEC
method underestimate the loss around 14%, when a/δ is 1.
It may be because the fineness of filament discretization, which
leads to errors in current distribution calculation.

For case 2, the results from different methods are shown in
Figs. 7 and 8. In Fig. 7, the loss due to excitation current is
calculated with different methods. The classic method shows
worse performance in Case 2. Because the wire is only twisted
in the azimuthal direction, the strand current in the inner
strands and outer strands is not the same, which makes the
assumption in the classic method does not valid. Fig. 8 shows
the loss due to external magnetic field. Methods considering
current distribution show a similar performance as the classic
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method, because there is an integer pitch and the induced
voltage does not have much difference between strands.

In general, the proposed method provides good accuracy
in a wider frequency range. PEEC provides accurate results
when penetration ratio a/δ < 1. Besides, the classic method
also has good results in Case 1 because it complies with equal
current distribution assumption.

IV. CONCLUSION

This article proposed a loss calculation method for round
Litz wires. The method converts 3-D Litz wire into several 2-D
cross section. Then 2-D quasi-magnetic field problem is solved
in an analytical way based on the magnetic vector potential.
The used analytical way does not need discretization procedure
and leads to fast computational time. The impedance matrix
of litz wire is solved and used to calculate strand current
allocation. Two case studies are done, the proposed method
has good accuracy and fast computational speed in both cases
compared to 3-D FEM. The classic method can be applied to
cases like case 1, which twisted in both radial and azimuthal
directions.

APPENDIX
DETAIL OF MATRIX

In this appendix, the sub-matrices αi j , βi j , and γi used in the
model construction are given. In each matrix, symbols n and
m change from 1 to N . 1X i j = X j − X i and 1Yi j = Y j − Yi ,
which represents the difference in coordinates

αi j

=



0
0
...

0
...

N︷ ︸︸ ︷
λ jnℜi jn0 · · ·

λ jn Pnmℜi jnm · · ·

...
. . .

−1Nr λ jn Pnmℑi jnm · · ·

...
. . .

N︷ ︸︸ ︷
λ jnℑi j10 · · ·

λ jn Pnmℑi jnm · · ·

...
. . .

−1Nr λ jn Pnmℜi jnm · · ·

...
. . .


(9)

βi j

=



D j/2 ln
1X2

i j + 1Y 2
i j

r2
0

−
D j

m
Re((1X i j − j1Yi j )

−m)

... m = 1, 2, . . . , N

−
D j

m
Im((1X i j − j1Yi j )

−m)

... m = 1, 2, . . . , N


(10)

βext

=



−µ0(Hx x − Hy y)

−µ0 Hy

0
...

µ0 Hx

0
...


(11)

γi

=



Ci

N

{
A′

i1
...

N

{
B ′

i1
...

 (12)

λ jn

=
a2n

j Jn+1(k2a j )

Jn−1(k2a j )
, Pnm =

(n + m − 1)!

(n − 1)!m!

ℜi jnm

= Re
(

−1n

(1X i j − j1Yi j )n+m

)
ℑi jnm

= Im
(

−1n

(1X i j − j1Yi j )n+m

)
. (13)
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