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A B S T R A C T   

An increasing interest for Structural Health Monitoring has emerged in the last decades. Acoustic emission (AE) is 
one of the most popular and widely studied methodologies employed for monitoring, due to its capabilities of 
detecting, locating and capturing the evolution of damage. Most literature so far, has employed AE for char-
acterizing damage mechanisms and monitoring propagation, while only a few employ it for real time monitoring 
and even fewer for Remaining Useful Life (RUL) prognosis. In the present work, we demonstrate a methodology 
for leveraging AE recordings for prognostics of composite aerospace structures. Single stiffened CFRP panels are 
subjected to a variety of compressive fatigue loadings, while AE sensors monitor the panels’ degradation in real 
time. Several AE features, both from the time and frequency domains, are utilized to identify features capable of 
capturing the degradation and used as Health Indicators for RUL prognosis. The choice of Health Indicators is 
predominantly made based on three prognostic attributes, i.e. monotonicity, trend and prognosability, which can 
overall affect the prognostic performance. RUL prediction of the panels is performed by employing two prom-
inent machine learning algorithms, i.e. Gaussian Process Regression and Artificial Neural Networks. It is evi-
denced that the proposed AE-based methodology is highly capable to be utilized for RUL prediction of composite 
structures under variable loading conditions.   

1. Introduction 

With composite materials being used in increasingly more industries 
such as aeronautics and aerospace, it is important that their structural 
integrity is ensured. Though these materials display high strength to 
weight ratios, as well as improved fatigue and corrosion resistance 
compared to traditional metallic structures [1–3], their complex me-
chanical behavior, due to their anisotropic and inhomogeneous nature, 
make them more difficult to comprehend and predict their performance 
[4,5]. During fatigue, the gradual degradation of the composites is 
largely caused by the stiffness change and redistributions of stresses and 
strains [6] and if combined with pre-existing or new damage, e.g. in the 
form of an impact, it further affects and complicates the materials’ 
degradation. 

To tackle such issues, Structural Health Monitoring (SHM) has been 
introduced as an extension of non-destructive testing [7]. SHM can be 

defined as an automated method for determining adverse changes in the 
integrity of mechanical systems utilizing permanently installed sensors. 
Methodologically, the main tasks of SHM come from the Prognostics and 
Health Management discipline and consist of data acquisition, data 
processing, identification of degradation features/ health indicator 
construction, fault detection diagnostics and on the final level end-of-life 
(EoL) prognostics and decision making [8,9]. Real-time SHM technolo-
gies are essential in assessing the integrity of composites structures [10] 
providing the ability to detect, locate, identify the type of damage and 
sometimes even quantify its extent. 

Various SHM technologies for non-destructive evaluations are being 
studied, with Acoustic Emission (AE) being among the most popular, 
due to its capability to detect the progression of damage during the 
composite’s lifetime [11]. Generated signals from the various damage 
mechanisms can be captured by strategically placed AE sensors, 
providing information on the degradation. An inherent advantage of AE 
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over other non-destructive methods, is the ability to distinguish the 
various damage mechanisms by studying the different AE features [12]. 
However, AE is prone to external noise requiring carefully tuned 
acquisition parameters as well as efficient post-processing to distinguish 
useful degradation information from the external noise [13]. 

AE has been widely employed to monitor composite specimens [14], 
though most researches have been focused on diagnostics. De Groot 
et al. [15] used peak frequency to identify different damage mechanisms 
in composite laminates. Four main mechanisms were identified 
including matrix cracking, fiber/ matrix debonding, fiber pullout and 
fiber cracking. Gutkin et al. [16], also used frequency to distinguish the 
different damage mechanisms in various different loadings, like tension, 
compression and other. In [17] AE was used to monitor the compressive 
behavior of composite coupons. Amplitude, duration and energy were 
used to identify the propagation of different damage mechanisms. De 
Oliveira et al. [11] performed SHM on GFRP laminates using AE. Arti-
ficial Neural Networks (ANN) were used to identify and classify the 
different damage mechanisms. Liu et al. [18], used AE on composite 
coupons with centrally located open-hole to monitor damage evolution 
and identify the failure mechanisms. Saeedifar et al. [19] studied the 
effect of Barely Visible Impact Damage (BVID) in composite laminates 
using AE. The evolution of the BVID was investigated by analyzing the 
AE signals from the different damage mechanisms using wavelet packet 
transform. Broer et al. [20], used AE sensors to identify, locate and 
assess the severity of damage in single stiffened panels. The AE data 
were also fused with strain data to provide improved diagnostics for the 
assessment of damage. 

Though there is extensive literature on diagnostics on composites 
utilizing AE, very few studies have focused on prognostics. Rajen-
draboopathy et al. [21], performed tensile tests on GFRP specimens 
aiming to eventually predict their maximum strength. A portion of the 
specimens was used to train an ANN from AE data at various stages 
during the test, while the remaining specimens were left to test the ca-
pabilities of the ANN in predicting the failure load. In [22] impacted 
composite laminates were subjected to tensile tests. An ANN was trained 
using AE data collected from different failure load percentages in order 
to predict the failure load of new specimens. The previous studies 

focused only on predicting failure loads. Only few researches have 
tackled the task of predicting the RUL. Liu et al. [23], subjected com-
posite beams to fatigue loading and used AE to monitor the degradation. 
A normalized damage index is proposed as a feature to capture the 
degradation. A Gaussian process (GP) model was then used to predict 
the RUL of these composite beams. Eleftheroglou and Loutas [24] 
employed AE to monitor open-hole CFRP coupon subjected to tensile 
fatigue. The rise-time to amplitude ratio (RA) was proposed as a Health 
Indicator to train a nonhomogeneous hidden semi Markov model 
(NHHSMM) to predict the RUL of the specimens. In [25] the NHHSMM 
was compared with a Bayesian NN for the prediction of the RUL of open- 
hole composite coupons. The NHHSMM displayed better performance 
compared to the Bayesian NN, with was further solidified by the exis-
tence of prediction intervals. Eleftheroglou et al. in [26] fused AE data 
with strain data from Digital image correlation (DIC) to monitor com-
posite coupons. The fused feature displayed higher monotonicity than 
each separate monitoring technique and provided improved RUL pre-
dictions. A modified Markov model was used for RUL predictions of 
composite coupons which had been subjected to tension fatigue. 
Recently in [27] an adaptive NHHSMM was developed for RUL predic-
tion of composite coupons. The adaptive model’s parameters are esti-
mated from diagnostic features derived from both the training and 
testing data, and the model is able to adapt to the new training data. The 
model was trained with AE data collected from open-hole composite 
coupons tested under tension fatigue, while for evaluating the meth-
odology, AE data collected from composite coupons subjected to fatigue 
loading with in-situ impacts; which are considered unseen events; were 
used. The model displayed high performance and was proven capable to 
adapt to the unexpected events. 

The rather limited literature on prognostics of composite structures 
using acoustic emission is mostly focused on coupon-level specimens 
under constant loading and to the best of our knowledge no research is 
available for more complex structures such as stiffened panels subjected 
to variable amplitude fatigue loading, as this involves more complex test 
campaigns. In this paper, we use AE sensors to monitor the compression 
fatigue behavior of representative aeronautical panels, i.e., a composite 
single-stiffened panel, and propose a methodology to estimate the RUL 

Fig. 1. Graphical representation of the proposed methodology.  
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of these panels under different loading conditions. An initial damage is 
first introduced to the panels in the form of barely visible impact or 
artificial disbond, and AE is employed to monitor the panel under cyclic 
loading of different amplitudes. The experiments are also performed in 
different locations and under different conditions further increasing the 
complexity of the prognostic task. Health Indicators are proposed by 
exploring AE features in both time and frequency domains, which are 
able to capture the degradation and enable a more accurate RUL prog-
nosis. The concept of the paper is graphically presented in Fig. 1. 

The remainder of the paper is organized as follows. Section 2 pre-
sents the case study, comprising of the experimental campaign and the 
AE Health Indicator development, while Section 3 describes in short the 

ML algorithms utilized for the prognostic task. Section 4 shows the main 
results and discusses them and finally, the paper is concluded in Section 
5. 

2. Case study 

Single-stiffened composite panels (SSPs) were manufactured from 
IM7/8552 unidirectional pre-preg. The skin’s layup is [45/− 45/0/45/ 
90/− 45/0]S and the single T-shaped stiffener’s layup is [45/− 45/0/45/ 
− 45]S. The total length of the panels is 300 mm while the free length is 
240 mm, since 30 mm resin cast tabs are placed on the edges of the panel 
to ensure proper and uniform load introduction. Quasi-static 

Table 1 
Table of SSPs loadings and fatigue life.  

Specimen # Impact/disbond disbond/impact location [x, y] [mm] Loading type Max Load range [kN] # of cycles to failure 

SSP 01 Impact (10 J) [140, 80] Constant ¡65.0 280,000 
SSP 02 Impact (10 J) [50,160] Constant ¡65.0 145,000 
SSP 03 Impact (7.37 J) [60, 75] Variable [-40.0, ¡60.0] 202,300 
SSP 04 Impact (10 J) [82.5, 140] Constant ¡65.0 133,300 
SSP 05 Impact (10 J) [105, 60] Variable [-40.0, ¡65.0] 243,000 
SSP 06 Disbond (30 × 20 mm2) [82.5, 45] Variable [-35.0, ¡60.0] 345,000 
SSP 07 Impact (7.37 J) [115, 165] Variable [-40.0, ¡60.0] 242,000 
SSP 08 Disbond and Impact(20 × 20 mm2, 10 J) [82.5, 45] and[115, 160] Constant ¡65.0 65,500 
SSP 09 Impact (10 J) [115, 160] Constant ¡65.0 368,600 
SSP 10 Impact (10 J) [115, 160] Constant ¡65.0 511,000 
SSP 11 Impact (10 J) [50, 80] Constant ¡65.0 226,400 
SSP 12 Impact (10 J) [115, 160] Constant ¡65.0 756,200 
SSP 13 Impact (10 J) [115, 160] Constant ¡65.0 110,100  

Fig. 2. (a) Schematic representation of the SSP and (b) SSP on the hydraulic test machine fully sensorized.  
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compression tests were first performed to determine the collapse load, 
with a rate of 0.5 mm/min. The collapse load, as averaged from 3 panels, 
was determined at − 100kN and was used to guide the fatigue load 
selection. 

2.1. Experimental campaign 

Two fatigue test campaigns were performed, one in the Delft Uni-
versity of Technology (faculty of Aerospace engineering) (TUD) and the 
other at the University of Patras (Department of Mechanical and Aero-
nautical engineering) (UPAT) consisting of constant amplitude 
compression fatigue and variable amplitude compression fatigue 
respectively. The fatigue parameters remained constant in both cam-
paigns with a load ratio of 10 and a frequency of 2 Hz. To allow for some 
additional measurements, like strain measurements (DIC, FBG strain 
sensing) every 500 cycles quasi-static loadings were performed. These 
additional data are not considered in the present research. 

For the constant amplitude fatigue, the maximum fatigue load was 
set at 65% of the collapse load, namely 65kN (absolute value), while the 
variable amplitude fatigue load started from 35% up to 65% of the 
collapse load. The variable loading was applied in constant blocks and 
was increased arbitrarily (usually by 5kN) after inspecting the extent of 
the damage using a portable phased array camera [28]. 

An initial damage is introduced before subjecting the stiffened panels 
to fatigue, either via a low-energy impact (to create BVID) or by a 
manufacturing defect; in the form of an artificial disbond via a Teflon 
insert; at the interface between the skin and the stiffener’s foot. The 
impact damage is induced by drop-tower with an approximate energy of 
10 J and the goal was to create a damage at the skin/ stiffener interface 
(usually near the ¾ or ¼ of the panel length), similar to the disbond. 
However, due to the nature of the composite materials, the response to 
the impact damage is not always the same, creating a wide range of 
different damages, increasing the complexity of our task. More infor-
mation on the panels is provided in Table 1. 

Among the other SHM systems, strategically placed AE sensors, are 
employed to monitor the fatigue life of the SSPs. An AMSY-6 Vallen 
acquisition system is paired with four (4) Vallen VS900-M 100 − 900kHz 
broadband sensors and an external pre-amplification of 34 dB was 
employed to monitor the constant amplitude fatigue, while in the other 
campaign; the variable amplitude in UPAT; two (2) Micro200HF 

500 − 4500kHz wideband sensors, with a Micro-II acquisition system, 
from Mistras Group, and an external pre-amplification with a gain of 40 
dB were used. The different number of sensors is due to hardware lim-
itations. For consistency purposes, only the AE recordings from two out 
of the four sensors are considered in the upcoming study (constant 
amplitude campaign only). The channels that were ignored were chosen 
depending on the damage location, and channels located closer to the 
damage were selected (vertical direction only). This was also the case for 
positioning the two AE sensors in the UPAT campaign (at the side of the 
damage). The sensor positioning, with respect to the damage is shown in 
Fig. 2. The sensors were clamped to the back side of the skin; where the 
stiffener is located; and a coupling agent was applied between the sensor 
and the skin. It should also be noted that sensor locations are side 
dependent, i.e., the y location is dependent on whether the sensors are 
on the left or right side. Were the damage on the left side, the sensors to 
the right are disregarded and the sensors and positions on the left side 
are used. 

2.2. Acoustic emission based health indicators 

Features capable of capturing the degradation of the structure are 
essential in data-driven prognostics. In the present research, we refer to 
such features as Health indicators (HIs). The HI’s quality plays a crucial 
role, affecting the performance and accuracy of the prognostic algo-
rithms [29]. Some of the most sought attributes for an HI, in order to 
have enhanced prognostic potential, are monotonicity and prognos-
ability [30,31]. Monotonicity refers to the HI having an increasing or 
decreasing behavior with damage/ time evolution. The most common 
mathematical expression for monotonicity is: 

Monotonicity =
No.dFdt < 0 − No.dFdt ≥ 0

n − 1
(1) 

where n the length of the HI time series and F an AE feature. 
Prognosability is a measure of variance in the EoL values of a pop-

ulation of similar specimens. It is expressed by Eq. (2). Ffail and Fstart the 
values of feature F at the failure and starting time respectively. 

Prognosability = exp

(

−
std
(
Ffail
)

mean
( ⃒
⃒Fstart − Ffail

⃒
⃒
)

)

(2) 

Fig. 3. Ranked sum of monotonicity, prognosability and trend for the 82 features extracted from time and frequency domain.  

G. Galanopoulos et al.                                                                                                                                                                                                                         



Engineering Structures 290 (2023) 116391

5

Finally, a third metric proposed in [32] is trend, which measures the 
temporal correlation between each feature and time. Trend is described 
in Eq. (3). Fispecj is the ith feature of specimen j and tspecj is the operational 
time of specimen j. 

Trend(Fi) =

⃒
⃒
⃒
⃒
⃒

1
N

∑N

i=1
corr

(
Fispecj , tspecj

)
⃒
⃒
⃒
⃒
⃒

(3) 

AE provides an abundance of features as possible HI, such as the 
number of hits, hit amplitude, energy etc. The rise time to amplitude 
ratio (RA) has also been employed as a prognostic feature [24]. Time 
domain and frequency domain analysis can also provide new features for 
the purpose of degradation monitoring. Some common features defined 
in the time and frequency domains can be found in Appendix A. In this 

paper we utilized 8 common AE features, namely amplitude, rise time, 
duration, counts to peak, RMS, energy, hits and RA as these are 
commonly associated with degradation. Peak frequency, which is also 
commonly associated with damage, were not recorded due to the limi-
tations of the acquisition systems (recording waveforms in real-time 
fatigue requires a lot of processing power). Inspired by [24], these fea-
tures are windowed so as to reveal a possibly hidden degradation trend. 
After some experimentation, a 500-cycle window was proven appro-
priate. Though windowing, especially for this many features and data, 
can be a bit intensive, for the training data it can be done offline and 
hence not affect the applicability of the methodology in real-time. On 
the other hand, new data can be processed as soon as each time window 
become available and only the required features can be calculated. 

By discarding features whose change in consecutive time windows is 

Fig. 4. (a) Original feature (left), (b) Smoothed Feature (right), (c) Improvement of monotonicity, prognosability and trend (bottom).  
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less than 10− 2, we were left with 81 features as possible His (Appendix 
B). The sum of average monotonicity, prognosability and trend was 
measured as a quantitative metric to evaluate possible prognostic fea-
tures. The selected features and the value of the summed attributes are 
shown in Fig. 3. Visual inspection of these features was also performed 
to validate the results of the feature selection. The three top-ranked 
features not selected through visual inspection, i.e. amplitude median, 
amplitude mean and amplitude RMS, had high monotonicity (due to 
many constant values), though trend and prognosability were lacking, 
and hence were not considered further. For this reason, the automatic 
selection procedure should be carefully set up, to avoid such setbacks. 

As can be seen in Fig. 4a (also see Appendix B), the developed HIs are 
rather noisy throughout the test. To smoothen them and enhance the 
underline trend as well as reduce the training time of the prognostic 
algorithms in the next step, a 5000 cycle sliding moving average window 
with no overlap data reduction is applied. The values of the features are 
averaged in these 5000 cycles windows and they are assigned time 
values of x*5000 cycles, where x is the increasing window number. 
Fig. 4b depicts the smoothed windowed feature. It is evident that the 
overall trend of the HI remains similar and at the same time, the noise 
and volatile trend are reduced, providing a more monotonic HI, while 
the overall attributes have also been improved (Fig. 4c). 

Data collected from multiple sensors have different range of values. 
To address the heterogeneity of the input data, it is important to 
normalize them to a similar range. A normalization to the range [0,1] is 
performed using Eq. (4) before employing them to train the ML algo-
rithms. No prior failure threshold is needed to be set with the regression 
approach that we follow and the normalization parameters of the 
training set are used to normalize the test set as well. 

F =
Fi − min(Fi)

max(Fi) − min(Fi)
(4)  

3. Machine learning algorithms for prognostics 

Several machine learning algorithms may be utilized for addressing 
the challenging task of RUL prognosis. In this study two commonly used 
regression algorithms from the literature are employed to take on this 
challenge. Gaussian process regression is selected for its ability to model 
complex trends with the use of the kernel function while also providing a 
distribution for the RUL, while Artificial Neural Networks were 
preferred because they can easily model non-linear behaviors. 

3.1. Gaussian processes for regression (GPR) 

Gaussian processes have been widely employed for RUL prognosis of 
a variety of systems [33–36] and structures [23,37,38]. A GPs is a 
collection of random variables with a joint Gaussian distribution, and 
are a function of f(x) at x = [x1, x2, …, xn]T. GP can be completely 
specified [39] by its mean function: 

m(x) = E[f (x) ] (5) 

And its covariance function: 

k(x, x′

) = E[(f (x) − m(x))(f (x′

) − m(x′

))] (6) 

Then the GP can be written as: 

f (x) ∼ GP(m(x), k(x, x’)) (7) 

The mean function m(x) is usually set to be zero. In our case though 
we selected a linear function to characterize the mean (see Section 4). As 
it is noted in [39] different covariance functions yield different regres-
sion results, so this function should be considered carefully depending 
on the data. 

Assuming a degradation history H =
[
xi, yi

]N
i=1, where xi the input 

variables and yi = f(xi)+εi the noisy target variables, with εi is an i.i. 
d with 0 mean and σ2

n(εi ∼ i.i.d N(0, σ2
n)) the joint distribution of 

observed target values y =
[
yi
]N

i=1 and unobserved target values f* at 
new input locations x* can be denoted as: 

[ y
f *

]

∼ N

⎛

⎝0,

⎡

⎣K(x, x) + σ2
nI K(x, x*)

K(x*, x) K(x*, x*)

⎤

⎦

⎞

⎠ (8)  

where I the identity matrix and K a matrix of all the covariance pairs 
k
(
xi, xj

)
.

The predictive (posterior) distribution for GPR, given the new inputs 
x*, the historic input data x and targets y is defined by: 

p(f *|x, y,x*) ∼ N(f *, cov(f *) ) (9)  

f *
= E[f *|x, y,x*] = K(x*, x)

[
K(x, x) + σ2

nI
]− 1y, (10)  

cov(f *) = K(x*, x*) − K(x*, x)
[
K(x, x) + σ2

nI
]− 1K(x, x*) (11)  

3.2. Bootstrapped Neural Networks (BNN) 

ANNs are a popular machine learning model that has found uses in 

Fig. 5. Bootstrapp methodology using ANN.  
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Fig. 6. A representative Acoustic Emission amplitude vs fatigue life after pre-processing.  

Fig. 7. RUL prediction using multivariate models (dashed lines represent the load changes).  
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Fig. 8. RUL predictions using single-Feature models (dashed lines represent load changes).  

Table 2 
Prognostic performance metrics for the different methodologies and specimens calculated at 100% and 50% of lifetime (lower is better, bold denotes the best metric 
value).  

Specimen Name SSP 01 SSP 06 SSP 07 Average 

Metric Algorithm Method 100% 50% 100% 50% 100% 50% 100% 50% 

MAE (kcycles) GPR Single  69.86  118.88  70.96  78.94  81.28  127.56  74.03  108.46 
Multi  106.50  66.12  133.01  72.67  103.43  76.40  114.31  71.73 

BNN Single  131.09  157.49  89.19  94.13  121.75  161.21  114.01  137.61 
Multi  100.34  79.74  86.54  58.50  119.93  75.12  102.27  71.12 

MAPE (%) GPR Single  264.10  511.12  96.80  170.12  272.80  514.03  211.23  398.42 
Multi  183.60  294.28  90.10  101.96  136.40  185.10  136.70  193.78 

BNN Single  323.70  590.10  102.60  173.05  282.20  504.74  236.17  422.63 
Multi  191.80  322.71  61.70  78.64  134.90  161.09  129.47  187.48 

RMSE (kcycles) GPR Single  96.49  132.44  86.82  96.24  104.15  139.27  95.82  122.65 
Multi  140.91  84.55  169.65  101.57  150.29  101.90  153.62  96.01 

BNN Single  145.62  165.37  102.99  104.67  142.95  169.47  130.52  146.50 
Multi  116.05  89.20  109.38  75.35  148.00  98.03  124.48  87.52 

wMAE (kcycles) GPR Single  121.36  156.33  88.85  73.54  127.50  152.02  112.57  127.30 
Multi  92.82  90.07  79.47  48.40  77.80  53.66  83.36  64.04 

BNN Single  157.94  174.70  88.12  89.39  140.50  158.82  128.85  140.97 
Multi  101.32  94.91  56.23  37.42  85.32  60.56  80.96  64.30  

G. Galanopoulos et al.                                                                                                                                                                                                                         
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both regression and classification tasks. They are capable of modeling 
non-linearities in addition to linear correlations between the input and 
target data. The general equation governing these types of models at an 
ith time point is: 

ti = y(xi)+ εi = f (xi,w)+ εi (12)  

where y(xi) is the real regression mean and εi a noise term modeled as an 
i.i.d. with zero mean. The function f(xi,w) is used to correlate the input 
xi with the regression output y(xi) given a set of parameters w. 

The main disadvantage of ANNs is their inability to incorporate 
uncertainty in their predictions. To this end, bootstrapping is applied to 
tackle this shortcoming. Bootstrapping is an algorithmic method for 
constructing confidence and prediction intervals using the outputs of 
multiple Neural Networks. This technique is used to approximate a 
statistical distribution of the error term [40]. The idea behind boot-
strapping is that given a dataset D, K ANNs are randomly initialized and 
dataset D is split into K training sets by resampling with replacement. If a 
sufficiently large enough K is selected (K > 100) then it can be assumed 
that the predictions follow a normal distribution [41–43]. The mean and 
variance of the predictions can be calculated as: 

ypmean(xi) =
1
K
∑K

k=1
ykp(xi) (13)  

σ2
yp (xi) =

1
K − 1

∑K

k=1

(
ypmean (xi) − ykp(xi)

)2
(14)  

where yk
p(xi) is the estimate of the kth NN for the true value y(xi) as 

estimated by f(xi, w). A schematic representation of the bootstrap 

methodology for ANN can be seen in Fig. 5. 
Once the mean and the variance of the ANN are calculated, the 

confidence interval at every point xi can be constructed for the (1 − a)% 
confidence level as: 

CI(xi) = ypmean (xi) ± t1− a
2

̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2
yp (xi)

√
(15)  

4. Results and discussion 

Due to the complexity of the loading conditions as well as the noise 
from the hydraulic machine, AE produces millions of hits with no 
evident degradation information at a first glance. Significant data pre- 
processing steps are required in order to separate the useful degrada-
tion information from the external and internal noise. The first step is to 
filter the constant noise produced by the hydraulic machine. An 
amplitude threshold is set at a high 65 db in order to exclude AE hits 
related to noise from the machine which can contaminate and mask 
degradation information. At the second stage, hits recorded during low 
load (due to some extra SHM measurements made) are discarded. Some 
extra post-processing is applied (study RA, energy, duration) to try and 
separate degradation hits from other events captured during the cyclic 
loading, such as sensor cables touching the panels. Fig. 6 shows the 
retained hits for a representative panel. 

Out of the 13 SSPs tested in this research, 3 are randomly chosen as 
the test set for evaluating the proposed methodology. The rest of the 
SSPs (10 SSPs) are used to learn the machine learning model parameters. 

The two main tunable parameters of the GPR are the mean and 
covariance functions. Due to the nature of the output, a linear mean 
function is used as shown in Eq. (16). For the covariance function, a 
Matern class kernel (Matern 5/2) is selected since it was found to fit the 
data better (Eq. (17)). r is the Euclidean distance between two points xi,

xj. The hyperparameters to be optimized during the training procedure 
are [a,b,σf ,σl]. 

m(X) = aX + b (16)  

k(r) = σ2
f

(

1+
̅̅̅
5

√
r2

σ2
l

+
5r2

3σ2
l

)

exp
(

−

̅̅̅
5

√
r

σl

)

(17) 

For the BNN a simple feedforward ANN is employed with 2 hidden 
layers consisting of 25 and 12 Neurons respectively. This layer combi-
nation is chosen by trial and error and no extensive investigation of 
optimal configuration is performed. The activation function in the two 
hidden layers is a sigmoid function while in the output layer a linear 
activation function is applied. The Levenberg-Marquardt algorithm is 
used to train the networks and each network uses 80% of the available 
data for the training process to prevent overfitting. For the bootstrap, K 
is set to 200 ANNs. The training time for all 200 Networks was 320 s, 
while for the GPR model only 6 s. 

Fig. 7 depicts the RUL prediction results accompanied by their 95% 
Confidence intervals. We can qualitatively say that for SSP 01 the pre-
dictions using GPR are always close to the true RUL, though at the EoL it 
does not manage to converge satisfactorily to the ground truth. Unlike 
SSP 01, the GPR model for SSP 06 shows overall better RUL estimations. 
Though at the beginning the predictions are not closing into the true 
RUL, after 50% of the lifetime they start converging to the truth. For 
specimen SSP 07, up until approximately 75% of the lifetime, the pre-
dicted RUL is rather volatile, and does not have a clear trend. At the 75% 
mark, the predictions start to converge to the true RUL, though at the 
final prediction points the predicted RUL increases, diverging from the 
truth 

For SSP 01 the BNN predicted RUL at the early stages is close to the 
truth, though at the middle stages it starts to diverge, until near the EoL, 
when it rapidly converges to the true RUL. BNN prediction for SSP 06 
shows a similar trend with the GPR, where after 50% of the lifetime the 
predictions start to converge to the true RUL. Something similar is 

Table A1 
Time domain statistical features.  

Feature Name Equation 

Mean Value Xm =
1
N
∑N

t=1
x(t)

Standard Deviation 
Xsd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N − 1
∑N

t=1
(x(t) − Xm )

2
√

Skewness 
Xsk =

∑N
t=1(x(t) − Xm )

3

(N − 1)X3
sd 

Kurtosis 
Xkur =

∑N
t=1(x(t) − Xm )

4

(N − 1)X4
sd 

Root Mean Square (RMS) 
Xrms =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

t=1
(X(t) )2

√

Median Xmed =
1
N
∑N

t=1
x(t)

x(n) denotes the nth window where n = 1,⋯,N. 
N number of windows. 
x(t) denotes the momens of occurance of x(t).  

Table A2 
Frequency domain features.  

Feature Name Equation 

Mean Frequency Xmf =
1
N
∑N

k=1
s(k)

Spectral Standard deviation 
Xfsd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N − 1
∑N

k=1

(
s(k) − Xmf

)2
√

Spectral Skewness 
Xfsk =

∑N
k=1
(
s(k) − Xmf

)3

(N − 1)Xf3
sd 

Spectral Kurtosis 
Xfkur =

∑N
k=1
(
s(k) − Xmf

)4

(N − 1)Xf4
sd  

s(k) denotes spectrum the kth window where k = 1,⋯., N . 
K denotes the number of windows .  
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observed for SSP 07. Unlike the GPR after 75% of the lifetime, the BNN’s 
predictions approach the true RUL with a very good approximation, 
especially near the EoL. What is worth highlighting is that the points of 
load changes the trend of the predicted RUL tends to change. This is 
mostly visible in SSP 06 at the early stages and at SSP 07 at both the early 
and the middle stages. 

To demonstrate the need for the multivariate approach, i.e. using 10 
features instead of 1 to estimate the RUL, we compare the RUL estima-
tions of the multivariate approach with the predictions of the best 
feature in terms of prognostic attributes, i.e. spectral skewness of hits. It 
can be observed (Fig. 8) that the single feature-based predictions display 
a more smooth and less volatile (fewer spikes) behavior compared to the 
multivariate one, which is a result of the higher overall monotonicity of 
this particular feature. However, it is evident that the EoL of two out of 
the three panels is not predicted accurately, which can be attributed to 
overall lower prognosability. Only for SSP 06 we observed very good 
RUL estimations, though the multivariate approach’s estimations are 
still superior. 

To quantify the prediction performance, some common prognostic 
metrics are employed such as the MAE (Mean Absolute Error), MAPE 
(Mean Absolute Prediction Error) and RMSE (Root Mean Squared Error) 
[44]. Their formulations are presented in eq. (18)-(20) respectively: 

MAE =
1
N
∑N

i=1

⃒
⃒RULi − RUL*

i

⃒
⃒ (18)  

MAPE =
1
N
∑N

i− 1

|RULi − RUL*
i |

RULi
× 100 (19)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
RULi − RUL*

i

)2

N

√
√
√
√
√

(20) 

RULi is the actual RUL and RUL*
i is the predicted RUL at time t = i. 

Table 2 summarizes the aforementioned metrics for the different RUL 
estimation methodologies The metrics are calculated at both 50% and 
100% of the lifetime. When the metrics are calculated at 100% of the 
lifetime, we can observe that though visually the multivariate 

predictions appear superior, metrics like MAE and RMSE do not verify 
this observation. This can be explained by looking at the overall trend of 
the predicted RULs. The single feature observations demonstrate more 
smooth and steady behaviors, while the multivariate RULs show a more 
erratic trend. Since the metrics measure the average error, it is reason-
able that the single feature estimations display better results since at the 
beginning of the panels’ lifetimes, they remain close to the true RUL. 
However, near the EoL they are not able to converge as effectively and 
this can be validated by the metrics calculated at 50% of the lifetime. 
When we observe the error metrics for 50% of the lifetime it can be seen 
that the multivariate approach greatly outperforms the single feature 
approach by up to 55% (see MAPE). For this reason, we also propose a 
prognostic performance metric that gives more significance to pre-
dictions closer to the EoL. We denote this metric as weighted MAE 
(wMAE) and it is expressed by eq. (21). wi is a weight vector which gives 
higher weight (and hence a larger penalty) to the error near the EoL. 

wMAE =
1
N
∑N

i=1
|
(
RULi − RULip

)
wi|

where 0 ≤ wi ≤ 1 and
∑

wi = 1
(21) 

For the metrics at 100% of the lifetime, unlike the MAE and the 
RMSE, MAPE for the single feature-based predictions is significantly 
higher, which occurs since the metric measures the relative error to the 
true RUL. This can be also seen in the wMAE where the increased pen-
alty at the later stages of prediction has a significant negative effect on 
the single feature estimations. In the case where the calculations are 
made only for 50% of the lifetime, the multivariate approach out-
performs almost every time, with an improvement of up to 55%. Though 
training the single feature BNN is much more efficient (170 s training 
time) it is believed that the benefits to the performance of the multi-
variate approach are significant. However, the single feature GPR re-
quires 5 s to train which is only a 1s improvement over the multivariate 
model. When comparing the performance of the two algorithms, we can 
see that it is comparable with no algorithm significantly outperforming 
the other, except for the training time. 

Table B1 
Extracted Feature Names. Bold defines the selected 10 features.  

Feature No. Feature Name Feature No. Feature Name Feature No. Feature Name 

1 RMS Kurtosis 28 Spectral RA std 55 Spectral Rise Time skewness 
2 RA Kurtosis 29 Spectral Duration Mean 56 Spectral RMS std 
3 Rise Time Kurtosis 30 Duration RMS 57 Duration Mean 
4 RMS skewness 31 Energy skewness 58 Counts 
5 Counts Kurtosis 32 Energy Mean 59 Spectral RA skewness 
6 Spectral Energy Kurtosis 33 Counts std 60 RMS 
7 Duration Kurtosis 34 Energy 61 RMS Median 
8 Rise Time Skewness 35 Rise Time Mean 62 Spectral RMS Mean 
9 Rise Time std 36 Spectral Counts Mean 63 Spectral Duration Skewness 
10 RA Skewness 37 RA Mean 64 RMS Mean 
11 Spectral Energy Skewness 38 Duration Median 65 RMS RMS 
12 Counts Skewness 39 Counts RMS 66 Duration 
13 Rise Time RMS 40 Rise Time Median 67 Spectral RMS Kurtosis 
14 Duration Skewness 41 Amplitude Kurtosis 68 Amplitude std 
15 RA std 42 RA Median 69 Spectral RMS Skewness 
16 Spectral Rise Time Mean 43 Rise Time 70 Spectral Amplitude Mean 
17 Energy Median 44 Spectral Duration std 71 Amplitude 
18 RA RMS 45 Counts Mean 72 Hits 
19 Spectral RA Mean 46 Spectral Counts Kurtosis 73 Spectral Hits Kurtosis 
20 Energy Kurtosis 47 Spectral Rise Time Kurtosis 74 Amplitude Median 
21 Spectral Rise Time std 48 RMS std 75 Spectral Amplitude Kurtosis 
22 Energy std 49 Amplitude Skewness 76 Amplitude RMS 
23 Energy RMS 50 RA 77 Amplitude Mean 
24 Spectral Energy Mean 51 Spectral Counts std 78 Spectral Amplitude std 
25 Counts Median 52 Spectral Counts Skewness 79 Spectral Hits std 
26 Spectral Energy std 53 Spectral RA Kurtosis 80 Spectral Amplitude Skewness 
27 Duration std 54 Spectral Duration Kurtosis 81 Spectral Hits Skewness  
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5. Conclusions 

We present a methodology for RUL prediction of composite single- 
stiffened panels subjected to fatigue compression loading based on AE 
data. Two different fatigue loadings were applied, namely, constant 
amplitude and variable amplitude. Acoustic emission sensors were 
employed to monitor the panels’ degradation aiming towards an SHM 
framework for RUL prediction. To this end, several acoustic emission 
features from the time and frequency domains were extracted and 
evaluated for their suitability to perform the RUL estimation task. The 
discovered features were visually inspected to select the 10 most 
promising to perform this task. Three common attributes were utilized 
to validate the selected features, i.e. monotonicity, prognosability and 
trend. The selected features are normalized and smoothed to create 
suitable Health Indicators to perform the RUL prognosis. 

For the challenging task of RUL prognosis, two well established 
machine learning algorithms were employed, Gaussian process regres-
sion and Artificial Neural Networks. Out of the 13 available degradation 
histories 3 are selected at random to be used as a test set, while the 
remaining 10 are used to train the ML models and tune their parameters. 
The RUL estimations of both models show good results managing to 
estimate the true RUL with great accuracy. However, though the pre-
diction performance is comparable, training time for the GPR is signif-
icantly lower. The multivariate RUL estimations are then compared with 
the prediction of the best feature (in terms of prognostic attributes), 
which showed good estimations, though at the EoL it failed to capture 
the true RUL. The predictions were then evaluated with some common 

prognostic performance metrics from the literature. It was observed that 
though visual inspection displayed the superior performance of the 
multivariate method, some metrics did not depict that when calculated 
for the entire lifetime, due to the smoother behavior the single feature 
predictions displayed. However, when looking only at prediction from 
the middle up until the EoL, the multivariate approach significantly 
outperforms the single feature one with an improvement in metrics of up 
to 55%. This is happening because the multivariate approach is able to 
estimate the RUL close to the EoL much better. A new metric was also 
proposed, which gives more weight to the predictions closer to the EoL. 
This weighted prognostic metric (weighted MAE) along with the metrics 
calculated at 50% of the lifetime demonstrated the superiority of the 
multivariate methodology which significantly outperformed the single- 
feature methodology. 

Though, the challenges of employing AE in more complex structures 
are not addressed, we demonstrate the feasibility of using a data-driven 
methodology for this prognostic task. This methodology is not proposed 
as an in-situ framework for RUL estimation, however, due to the rela-
tively fast feature extraction (especially since only the discovered fea-
tures can be calculated) and algorithm training process (which can also 
be done offline a priori) it can serve as a first step towards real-time 
monitoring of composite structures. 
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Appendix A 

Tables A1 and A2 present some frequently used features extracted 
from AE signals in the time and frequency domain respectively [45]. 

Appendix B 

In this appendix we present the feature names and curves (only 
selected) of the different features. Table B1 displays the feature names. 
Fig. B1 displays the selected windowed features, while Fig. B2 shows the 
selected smoothed features for all 13 panels studied in this paper. 

References 

[1] Mouritz AP, Townsend C, Shah Khan MZ. Non-destructive detection of fatigue 
damage in thick composites by pulse-echo ultrasonics. Compos. Sci. Technol., Jan. 
2000;60(1):23–32. https://doi.org/10.1016/S0266-3538(99)00094-9. 

[2] Wei B-S, Johnson S, Haj-Ali R. A stochastic fatigue damage method for composite 
materials based on Markov chains and infrared thermography. Int J Fatigue 2010; 
32(2):350–60. 

[3] Saxena A, Goebel K, Larrosa CC, Janapati V, Roy S, Chang F-K. Accelerated aging 
experiments for prognostics of damage growth in composite materials. National 
Aeronautics and Space Administration Moffett Field CA Ames Research …, 2011. 

[4] Philippidis TP, Vassilopoulos AP. Fatigue strength prediction under multiaxial 
stress. J Compos Mater 1999;33(17):1578–99. 

[5] Roundi W, El Mahi A, El Gharad A, Rebiere JL. Acoustic emission monitoring of 
damage progression in Glass/Epoxy composites during static and fatigue tensile 
tests. Appl Acoust Mar. 2018;132:124–34. https://doi.org/10.1016/J. 
APACOUST.2017.11.017. 

Fig. B2. Selected AE features after applying the 5000 cycle window.  

G. Galanopoulos et al.                                                                                                                                                                                                                         

https://doi.org/10.1016/S0266-3538(99)00094-9
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0010
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0010
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0010
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0020
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0020
https://doi.org/10.1016/J.APACOUST.2017.11.017
https://doi.org/10.1016/J.APACOUST.2017.11.017


Engineering Structures 290 (2023) 116391

13

[6] Degrieck J, Van Paepegem W. Fatigue damage modeling of fibre-reinforced 
composite materials: review. Appl Mech Rev Jul. 2001;54(4):279–300. https://doi. 
org/10.1115/1.1381395. 

[7] Kralovec C, Schagerl M. Review of structural health monitoring methods regarding 
a multi-sensor approach for damage assessment of metal and composite structures. 
doi: 10.3390/s20030826. 

[8] Gouriveau R, Medjaher K, Zerhouni N. From prognostics and health systems 
management to predictive maintenance 1: Monitoring and prognostics 2016; 4: 
1–163. 10.1002/9781119371052. 

[9] Nguyen KTP, Medjaher K, Tran DT. A review of artificial intelligence methods for 
engineering prognostics and health management with implementation guidelines. 
Artif Intell Rev 2022. https://doi.org/10.1007/s10462-022-10260-y. 

[10] Aggelis DG, Barkoula NM, Matikas TE, Paipetis AS. Acoustic structural health 
monitoring of composite materials : damage identification and evaluation in cross 
ply laminates using acoustic emission and ultrasonics. Compos Sci Technol Jun. 
2012;72(10):1127–33. https://doi.org/10.1016/J.COMPSCITECH.2011.10.011. 

[11] de Oliveira R, Marques AT. Health monitoring of FRP using acoustic emission and 
artificial neural networks. Comput Struct 2008;86(3–5):367–73. https://doi.org/ 
10.1016/J.COMPSTRUC.2007.02.015. 

[12] Loutas TH, Kostopoulos V, Ramirez-Jimenez C, Pharaoh M. Damage evolution in 
center-holed glass/polyester composites under quasi-static loading using time/ 
frequency analysis of acoustic emission monitored waveforms. Compos Sci Technol 
2006;66(10):1366–75. https://doi.org/10.1016/J.COMPSCITECH.2005.09.011. 

[13] Lima RAA, Drobiazko M, Bernasconi A, Carboni M. On crack tip localisation in 
quasi-statically loaded, adhesively bonded double cantilever beam specimens by 
acoustic emission. Theor Appl Fract Mech 2022;118:103286. https://doi.org/ 
10.1016/J.TAFMEC.2022.103286. 

[14] Saeedifar M, Zarouchas D. Damage characterization of laminated composites using 
acoustic emission: a review. Compos Part B Eng 2020;195:108039. https://doi. 
org/10.1016/J.COMPOSITESB.2020.108039. 

[15] de Groot PJ, Wijnen PAM, Janssen RBF. Real-time frequency determination of 
acoustic emission for different fracture mechanisms in carbon/epoxy composites. 
Compos Sci Technol 1995;55(4):405–12. https://doi.org/10.1016/0266-3538(95) 
00121-2. 

[16] Gutkin R, Green CJ, Vangrattanachai S, Pinho ST, Robinson P, Curtis PT. On 
acoustic emission for failure investigation in CFRP: Pattern recognition and peak 
frequency analyses. Mech Syst Signal Process 2011;25(4):1393–407. 

[17] Zhou W, Lv ZH, Li ZY, Song X. Acoustic emission response and micro-deformation 
behavior for compressive buckling failure of multi-delaminated composites 2016; 
51(6): 397–407. doi: 10.1177/0309324716645244. 

[18] Liu PF, Chu JK, Liu YL, Zheng JY. A study on the failure mechanisms of carbon 
fiber/epoxy composite laminates using acoustic emission. Mater Des 2012;37: 
228–35. https://doi.org/10.1016/j.matdes.2011.12.015. 

[19] Saeedifar M, Najafabadi MA, Zarouchas D, Toudeshky HH, Jalalvand M. Clustering 
of interlaminar and intralaminar damages in laminated composites under 
indentation loading using Acoustic Emission. Compos Part B Eng 2018;144: 
206–19. https://doi.org/10.1016/j.compositesb.2018.02.028. 

[20] Broer A, Galanopoulos G, Benedictus R, Loutas T, Zarouchas D. Fusion-based 
damage diagnostics for stiffened composite panels. Struct Heal Monit 2021. p. 
14759217211007128. 

[21] Rajendraboopathy S, Sasikumar T, Usha KM, Vasudev ES. Artificial neural network 
a tool for predicting failure strength of composite tensile coupons using acoustic 
emission technique. Int J Adv Manuf Technol 2009;44(3–4):399–404. https://doi. 
org/10.1007/S00170-008-1874-X. 

[22] Arumugam V, Shankar RN, Sridhar BTN, Stanley AJ. Ultimate strength prediction 
of carbon/epoxy tensile specimens from acoustic emission data. J Mater Sci 
Technol 2010;26(8):725–9. https://doi.org/10.1016/S1005-0302(10)60114-4. 

[23] Liu Y, Mohanty S, Chattopadhyay A. A Gaussian process based prognostics 
framework for composite structures. Modeling, signal processing, and control for 
smart structures 2009 2009;7286:72860J. 

[24] Eleftheroglou N, Loutas T. Fatigue damage diagnostics and prognostics of 
composites utilizing structural health monitoring data and stochastic processes. 
Struct Heal Monit 2016;15(4):473–88. 

[25] Loutas T, Eleftheroglou N, Zarouchas D. A data-driven probabilistic framework 
towards the in-situ prognostics of fatigue life of composites based on acoustic 

emission data. Compos Struct 2017;161:522–9. https://doi.org/10.1016/j. 
compstruct.2016.10.109. 

[26] Eleftheroglou N, Zarouchas D, Loutas T, Alderliesten R, Benedictus R. Structural 
health monitoring data fusion for in-situ life prognosis of composite structures. 
Reliab Eng Syst Saf 2018;178:40–54. https://doi.org/10.1016/j.ress.2018.04.031. 

[27] Eleftheroglou N, Zarouchas D, Benedictus R. An adaptive probabilistic data-driven 
methodology for prognosis of the fatigue life of composite structures. Compos 
Struct 2020;245:112386. 

[28] Galanopoulos G, Milanoski D, Broer A, Zarouchas D, Loutas T. Health monitoring 
of aerospace structures utilizing novel health indicators extracted from complex 
strain and acoustic emission data. Sensors 2021;21(17):5701. 

[29] Loutas T, Eleftheroglou N, Georgoulas G, Loukopoulos P, Mba D, Bennett I. Valve 
failure prognostics in reciprocating compressors utilizing temperature 
measurements, PCA-based data fusion, and probabilistic algorithms. IEEE Trans 
Ind Electron 2019;67(6):5022–9. 

[30] Coble J, Hines JW. Identifying optimal prognostic parameters from data: a genetic 
algorithms approach. In: Annual conference of the PHM society. vol. 1, no. 1; 2009. 

[31] Medjaher K, Zerhouni N, Baklouti J. Data-driven prognostics based on health 
indicator construction: application to PRONOSTIA’s data. European Control 
Conference (ECC) 2013;2013:1451–6. 

[32] Yan J, He Z, He S. A deep learning framework for sensor-equipped machine health 
indicator construction and remaining useful life prediction. Computers & Industrial 
Engineering, Volume 172, Part A, 2022, https://doi.org/10.1016/j.cie.2022.10 
8559. 

[33] Liu K, Gebraeel NZ, Shi J, Stewart HM. A data-level fusion model for developing 
composite health indices for degradation modeling and prognostic analysis the 
authors are with the. IEEE Trans Autom Sci Eng 2013; 10(3). doi: 10.1109/ 
TASE.2013.2250282. 

[34] Li M, Sadoughi M, Shen S, Hu C. Remaining useful life prediction of lithium-ion 
batteries using multi-model Gaussian process. 2019 IEEE Int Conf Progn Heal 
Manag ICPHM 2019;2019. https://doi.org/10.1109/ICPHM.2019.8819384. 

[35] Benker M, Bliznyuk A, Zaeh MF. A Gaussian process based method for data- 
efficient remaining useful life estimation. IEEE Access 2021;9:137470–82. https:// 
doi.org/10.1109/ACCESS.2021.3116813. 

[36] Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S. Gaussian processes 
for time-series modelling. Gaussian Process Time-Series Model 2013. https://doi. 
org/10.1098/rsta.2011.0550. 

[37] Liu Y, Mohanty S, Chattopadhyay A. Condition based structural health monitoring 
and prognosis of composite structures under uniaxial and biaxial loading. 
J Nondestruct Eval 2010;29(3):181–8. https://doi.org/10.1007/s10921-010-0076- 
2. 

[38] Galanopoulos G, Eleftheroglou N, Milanoski D, Broer A, Zarouchas D, Loutas T. An 
SHM data-driven methodology for the remaining useful life prognosis of 
aeronautical subcomponents; 2023. p. 244–253. doi: 10.1007/978-3-031-07254-3_ 
24. 

[39] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, vol. 2, 
no. 3. MIT press Cambridge, MA, 2006. 

[40] Tibshirani RJ, Efron B. An introduction to the bootstrap. Monogr Stat Appl Probab 
1993;57:1–436. 

[41] Heskes T. Practical confidence and prediction intervals. Advances in neural 
information processing systems 1996;9. 

[42] Zio E. A study of the bootstrap method for estimating the accuracy of artificial 
neural networks in predicting nuclear transient processes. IEEE Trans Nucl Sci 
2006;53(3):1460–78. https://doi.org/10.1109/TNS.2006.871662. 

[43] Khosravi A, Nahavandi S, Creighton D, Atiya AF. Comprehensive review of neural 
network-based prediction intervals and new advances. IEEE Transactions on neural 
networks 2011;22(9):1341–56. 

[44] Saxena A, et al. Metrics for evaluating performance of prognostic techniques. In: 
2008 international conference on prognostics and health management; 2008. 
p. 1–17. 

[45] Lei Y. Intelligent fault diagnosis and remaining useful life prediction of rotating 
machinery. Intell Fault Diagnosis Remain Useful Life Predict Rotating Mach 2016: 
1–366. https://doi.org/10.1016/C2016-0-00367-4. 

G. Galanopoulos et al.                                                                                                                                                                                                                         

https://doi.org/10.1115/1.1381395
https://doi.org/10.1115/1.1381395
https://doi.org/10.1007/s10462-022-10260-y
https://doi.org/10.1016/J.COMPSCITECH.2011.10.011
https://doi.org/10.1016/J.COMPSTRUC.2007.02.015
https://doi.org/10.1016/J.COMPSTRUC.2007.02.015
https://doi.org/10.1016/J.COMPSCITECH.2005.09.011
https://doi.org/10.1016/J.TAFMEC.2022.103286
https://doi.org/10.1016/J.TAFMEC.2022.103286
https://doi.org/10.1016/J.COMPOSITESB.2020.108039
https://doi.org/10.1016/J.COMPOSITESB.2020.108039
https://doi.org/10.1016/0266-3538(95)00121-2
https://doi.org/10.1016/0266-3538(95)00121-2
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0080
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0080
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0080
https://doi.org/10.1016/j.matdes.2011.12.015
https://doi.org/10.1016/j.compositesb.2018.02.028
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0100
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0100
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0100
https://doi.org/10.1007/S00170-008-1874-X
https://doi.org/10.1007/S00170-008-1874-X
https://doi.org/10.1016/S1005-0302(10)60114-4
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0115
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0115
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0115
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0120
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0120
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0120
https://doi.org/10.1016/j.compstruct.2016.10.109
https://doi.org/10.1016/j.compstruct.2016.10.109
https://doi.org/10.1016/j.ress.2018.04.031
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0135
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0135
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0135
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0140
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0140
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0140
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0145
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0145
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0145
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0145
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0155
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0155
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0155
https://doi.org/10.1016/j.cie.2022.108559
https://doi.org/10.1016/j.cie.2022.108559
https://doi.org/10.1109/ICPHM.2019.8819384
https://doi.org/10.1109/ACCESS.2021.3116813
https://doi.org/10.1109/ACCESS.2021.3116813
https://doi.org/10.1098/rsta.2011.0550
https://doi.org/10.1098/rsta.2011.0550
https://doi.org/10.1007/s10921-010-0076-2
https://doi.org/10.1007/s10921-010-0076-2
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0200
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0200
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0205
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0205
https://doi.org/10.1109/TNS.2006.871662
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0215
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0215
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0215
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0220
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0220
http://refhub.elsevier.com/S0141-0296(23)00806-4/h0220
https://doi.org/10.1016/C2016-0-00367-4

	Acoustic emission-based remaining useful life prognosis of aeronautical structures subjected to compressive fatigue loading
	1 Introduction
	2 Case study
	2.1 Experimental campaign
	2.2 Acoustic emission based health indicators

	3 Machine learning algorithms for prognostics
	3.1 Gaussian processes for regression (GPR)
	3.2 Bootstrapped Neural Networks (BNN)

	4 Results and discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Acknowledgement
	Appendix B Acknowledgement
	References

	ADP28BF.tmp
	Sheet1

	IEEE Open Access Author Guide for TU Delft_SHORT.pdf
	Guide for IEEE Authors at  TU DELFT
	Submission Process – OA vs. Hybrid
	Step 1 of Submission to an OA Only Journal �
	Submission process – Step 2
	Adding Authors During Submission
	Connecting Ringgold During Submission
	Step 3 – Acceptance and Post-Acceptance tasks
	Post-acceptance: final file upload
	Post acceptance – copyright selection
	eCF – step 1
	eCF – step 2
	eCF – step 3
	Slide Number 20
	eCF – step 4
	eCF – step 5
	RightsLink for Scientific Communications (RLSC)
	Approving requests
	Need additional assistance?

	ADP6414.tmp
	2021

	A91reh06o_71sepu_6io.tmp
	Lokale schijf
	file:///C/Users/mvanadrichem/Desktop/doi%20maken.txt





