
ENVIRONMENT OBSERVATION MODULE FOR THE DECI ZEBRO

Obstacle and Cliff Detection For Robotics Applications
Using Miniaturized Sonar and IR Distance Triangulation

BACHELOR THESIS OF

Lode De Herdt 4390601
Jan Maarten Buis 4351266

June 19, 2017

DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS
AND COMPUTER SCIENCE

ELECTRICAL ENGINEERING PROGRAMME

2

Abstract

This is a bachelor thesis about the design and development of an observation and sensing module for the
Deci Zebro robot that is being developed at the EEMCS faculty of Delft University of Technology.

This part of the thesis is about the development of a cliff- and obstacle detection system, as well as the
design and development of a fitting plastic enclosure for the module and the design of a PCB that integrates
the module’s electronics.

The report explores and compares different types of distance sensors and concludes that the best option is
to use two infrared-based distance sensors on the left and the right of the robot for cliff detection, and a
rotating ultrasonic transceiver on a servo motor to detect obstacles. For easy debugging and to allow com-
munication with nearby humans, a LED ring was also fitted to the top of the module. The design process
and the implementation of these components is described in detail.

The module’s enclosure is designed using SolidWorks software and afterwards printed using a 3D-printer.
The PCB is designed using the opensource KiCad software.

4

Contents

1 Introduction 7
1.1 General . 7
1.2 About the Zebro Team . 7
1.3 Project Organization . 7

1.3.1 Organization within the project group . 7
1.3.2 Organization within the faculty . 8
1.3.3 Communication with supervisors . 8

2 Program of Requirements 9
2.1 General criteria set by the Zebro team . 9
2.2 Discrete requirements for the module set by the supervisors 9
2.3 Thesis Requirements . 10
2.4 Time Constraints . 10
2.5 Interface with the Zebro body . 10

2.5.1 Physical dimensions . 10
2.5.2 Electronic interface . 10

3 State-of-the-art 11

4 Obstacle Detection 13
4.1 Problem Description . 13
4.2 Potential Sensors . 13

4.2.1 Camera . 13
4.2.2 LIDAR . 14
4.2.3 Feelers . 14
4.2.4 Infrared . 14
4.2.5 Ultrasonic . 14

4.3 Ultrasonic Sensor Testing & Comparison . 15
4.3.1 HC-SR04 . 15
4.3.2 Parallax Ping . 16
4.3.3 Comparison . 16
4.3.4 Configuration . 17

5 Cliff Detection 19
5.1 Problem Description . 19
5.2 Infrared Sensor Testing . 19

5.2.1 Testing . 20
5.2.2 Mounting . 21

6 CONTENTS

6 Implementation on Arduino 23
6.1 Main Function . 23
6.2 Cliff Detection . 24
6.3 Obstacle Detection & Servo: The Distance Class . 25

6.3.1 Reading Sensor Data . 25
6.3.2 Visual Radar . 25
6.3.3 Integrating code . 26
6.3.4 Error Correction . 28

6.4 LED Ring . 28
6.5 Servo/LED Interrupt Issue . 29
6.6 Testing & Practical Issues . 31

7 Module Enclosure 33
7.1 Requirements . 33

7.1.1 Considerations from within the project group . 33
7.1.2 General considerations . 33

7.2 Designing . 34
7.2.1 Bottom plate . 34
7.2.2 Mounting the IR sensors . 35
7.2.3 Mounting the PI camera & laser . 35
7.2.4 Mounting the PCB’s . 36
7.2.5 Mounting the Ultrasonic sensor & the Servomotor 36
7.2.6 Mounting the LED-ring . 37
7.2.7 Mounting the external temperature sensor, the light sensor & the humidity sensor . 38
7.2.8 Mounting the internal temperature sensor, the accelerometer and gyroscope 38

8 PCB 39
8.1 Problem Description . 39
8.2 Possible Microcontrollers . 40
8.3 Designing the PCB . 41
8.4 Breakout Board . 42
8.5 Manufacturing of PCBs . 43

9 Conclusion 45
9.1 Conclusion . 45
9.2 Recommendations & Future Work . 45

A PCB Files 47

B Technical Drawings 51

C Price List 55

Bibliography 58

Chapter 1

Introduction

1.1 General

This is the final thesis report for the bachelor graduation project of group L. The project consists of design-
ing the Observation and Sensing module for the Zebro research team at the EEMCS faculty. The thesis is
split up into three parts, of which this report deals with the obstacle- and cliff detection system, as well as
developing a full plastic enclosure for the module and a custom PCB.

For the final bachelor project, students are required to show off the academic knowledge and skills that they
have adopted during the three years of the Electrical Engineering program. The goal is to come up with a
creative and scientifically sound solution for a ’real world’ problem. This problem can be formulated by
the TU Delft or by a company.

1.2 About the Zebro Team

The Zebro project (Zebro is short for ’ZesBenige Robot’, Dutch for six-legged robot) at Delft University
of Technology has as aim to develop six-legged autonomous robots for numerous applications, of which
one is studying swarm behavior in robotics. The team consists of Electrical Engineering students from the
TU Delft as well as other institutions, both in the bachelor and master phase, led by researchers Dr. Chris
Verhoeven en Dr. Edwin Hakkenes.

This year, the team has adopted three teams of bachelor students to develop three external modules for the
robot as part of their final thesis. The modules are required to work with the existing Zebro interface that
is developed by the Zebro team, called Zebro-bus. This interface is used to let the central system commu-
nicate with all of its modules [1]. The modules have information-gathering and communicating with the
main system as its main goals, the modules are not supposed to make independent decisions based on the
data from the sensors.

1.3 Project Organization

1.3.1 Organization within the project group

The total Environment Observation module is developed by a group of six bachelor students. This group
is further divided into three subgroups of two people, each subgroup deals with a certain aspect of the
module. The module was divided by the project group into three parts:

• Obstacle & Cliff Detection;

8 Introduction

• Obstacle and Motion Detection using a Laser Rangefinder and Optical Flow [2];

• Safety and Sensor [3];

Figure 1.1: Overview of the entire module

Figure 1.1 shows an overview of the entire module. The submodule described in this document is high-
lighted in green. Note that the choice of microcontroller was also made by this group; this will be described
in section 8.2.

The subgroups adhere to this division of labor with regard to solving the problems laid out in the require-
ments. When it comes to additional tasks, like implementing the communication with the Zebro main
system, designing a PCB, designing the enclosure or handling the power distribution, subgroups or indi-
vidual team members volunteered to work on these tasks.

Since all the parts of the module are closely tied together physically, power-wise and communication-wise,
exchange of ideas and designs within the group is important before carrying it out.

1.3.2 Organization within the faculty

The module is developed for the Zebro robot that is developed by master and bachelor students of the TU
Delft and other institutions, supervised by Chris Verhoeven and Edwin Hakkennes. This year, three groups
of bachelor students develop a module for the robot as part of their final thesis. The bachelor graduation
groups are also under the supervision of the Zebro team supervisors. All bachelor projects are also under
the supervision of Ioan Lager.

1.3.3 Communication with supervisors

To keep the supervisors posted about the progress that is booked and the problems that are faced, every
week a meeting is scheduled where at least one of the supervisors will be present to hear what is done
and to give feedback where necessary. Since the Zebro team also acts as ’customer’ for the project group,
requirements and/or new ideas for the module can also be discussed.

Chapter 2

Program of Requirements

This chapter lays out the general criteria and the minimum requirements for developing and testing the
module. Note that these are the requirements for the entire module, per sub-module more specific require-
ments have to be set. The description here is a summary of the Thesis Requirements as was formulated by
the supervisors [4].

2.1 General criteria set by the Zebro team

• The module should be self-contained
This means that it should be capable of gathering and processing its own data without the need of
’help’ from the outside. Furthermore, it should be able to detect when faults occur in its electronics
(e.g. short circuits or overvoltage) by implementation of an Autonomous Module Damage Protection
System (AMDPS).

• The module should have very well defined interfaces with the outside world
The interfaces that are implemented are a physical interface to attach the module to the Zebro body;
a power interface to be able to provide power to the module; a control and status interface to be able
to read out the sensor data and for debugging. The interfaces that the module is going to use should
naturally adhere to the existing interfaces of the Zebro.

• The module should be easily replaceable (preferably by another robot) so that repairs can be made
without human interaction
In order for the module to be easily replaceable, it should be easy to detach the module from the
Zebro, relating to the previous requirement, and it should be easy to build a replacement module.

2.2 Discrete requirements for the module set by the supervisors

The team has also set some minimal requirements for what the finished module should be able to do. They
are numbered EM-1 til EM-6. They are:

• EM-1: Detect obstacles

• EM-2: Detect cliffs

• EM-3: Discern between scalable and dangerous obstacles and cliffs

• EM-4: Determine the system’s temperature

• EM-5: Determine the system’s voltages, currents and power flow.

• EM-6: Implement an Autonomous Module Damage Protection System

Relevant for this submodule is EM-1, EM-2, and EM-3.

10 Program of Requirements

2.3 Thesis Requirements

The thesis covers the development of the module. For the thesis, the minimum requirements are numbered
BT-1 to BT-4. They are:

• BT-1: Develop a test bench to run and record different parameters of Environment Observation
performance

• BT-2: Develop and test at least three types of sensor systems

• BT-3: Develop the necessary software, hardware, control and their architectures for requirement
EM-3

• BT-4: Develop the necessary software, hardware, control and their architectures for requirement
EM-6

2.4 Time Constraints

As the bachelor final project takes place in Q4, around ten weeks are reserved for working on the project.
This thesis is handed in the 19th of June, the defense will he held on July 5th 2017. After the thesis has
been finished, some time is left to continue working on the prototype.

2.5 Interface with the Zebro body

The module will be connected with the Zebro robot both physically and electronically. Therefore it is
necessary to know the details about the interface.

2.5.1 Physical dimensions

As designing a plastic enclosure of the module is one of the tasks, it is important to know where the module
will be located and how much space there is. The technical drawings of the Zebro body can be found in the
appendix of this report.

2.5.2 Electronic interface

The electronic interface consists of a connection with a low-level communication bus shared by several
parts of the robot that adheres to the I2C protocol, called the ’Zebro-bus’. All modules must use this
protocol to communicate with the main controller [1].

Chapter 3

State-of-the-art

Before starting to solve the problem, it is important to see what has been done before and what are ideas
that could be worked with. Since the main tasks of this sub-module are ’seeing’, whether it’s obstacles
(matter) or cliffs (absence of matter), distance sensors would be a good bet. Distance sensors come in
several flavors, of which the major ones are Time-of-Flight (ToF) based. In other words, these sensors send
out some kind of pulse, in the form of light or as a sound wave, measure the time it takes for the pulse to
come back and do some processing before returning the measurement result.

Generally, the task that has been given does not require any ground-breaking technology. Many different
types of distance sensors that suit our purpose already exist and are widely used. It would therefore likely
not be efficient to redesign products that are cheap to purchase and work well. The difficulty in this task
is the appropriate choice of sensors and the efficient integration of many different devices into one stream-
lined system.

Other projects and studies with various distance sensors have been done by other individuals. It is therefore
beneficial to look at their findings and build upon this. One such example is Kassim et al., who investi-
gated the influence of different materials’ properties on the performance of infrared (IR) and ultrasonic
(US) distance measurements. One of the conclusions of this article is that the US sensor used generally
performs better with different objects than the IR sensor used, and that the IR sensor’s range is significantly
smaller. [5]

The Ultrasonic Radar paper by Paulet et al. outlines an experiment using an ultrasonic distance sensor on
a stepper motor to create a radar, and various experiments with this system. This is an interesting solution
that could also be used on the Zebros. The paper also provides some calculations as to what the effect of
temperature is on the results; this is an interesting avenue to explore for us too. [6]

One more aspect that will need to be considered in this project is that data received from sensors may
not be reliable enough and some error-correction may be needed. Probabilistic Aspects in Mobile Robots
Navigation by Stănescu et al. investigates this and provides some comparisons of different error-correction
algorithms in real-time processing. [7] It will need to be investigated whether the algorithms described in
this paper will be appropriate for our project.

12 State-of-the-art

Chapter 4

Obstacle Detection

This chapter describes the design process of the module’s obstacle detection system.

4.1 Problem Description

The requirements that concern this subsystem, as was described in chapter 2, are EM-1 (detection of ob-
stacles) and EM-3 (discerning between scalable and dangerous obstacles). This essentially means that the
system must be able to detect the presence of an obstacle near the robot, and determine whether or not the
robot will be able to climb over it. The system will pass this information onto the main Zebro controller
(outside of our module) and this controller will make behavioural decision based on the received informa-
tion. The main controller needs this information to ensure that the Zebro can navigate around obstacles,
and does not get damaged by running into obstacles. It must be noted that many different things can be
dangerous obstacles for the Zebro. As the robot will go out into the real world, this is not limited to station-
ary obstacles like walls, but also includes moving obstacles like people and vehicles. The detection also
needs to be reasonably quick because the Zebro should react quickly if, for example, a person suddenly
steps in its path.

Lastly, it is important that the chosen sensor is cheap. This is because the Zebro robots are designed with
mass production in mind; in the near future, 100 robots will be produced. Ideally, the price of these robots
will be limited to a few hundred Euros. As a consequence, this means that very expensive sensors should
not be used.

4.2 Potential Sensors

After discussions with the group and a literature study, several possible solutions were available.

4.2.1 Camera

One possible solution would be to mount a small camera (or possibly a stereo camera) on the front of the
Zebro. This camera would give a lot of information about its surroundings, but significant amounts of image
processing would be necessary to get useful information about possible obstacles from the camera. Another
benefit of a camera is that it can be used for a lot more things than just obstacle detection. For example, it
could also be used for reading QR codes, recognizing objects/faces, recording video, etc. A camera system
is therefore potentially very useful. However, because of the complexity involved in designing the image
processing algorithms, it was decided that another subgroup would focus solely on the camera, and this
camera would eventually be used to complement a second obstacle detection system.

14 Obstacle Detection

4.2.2 LIDAR

LIDAR, short for LIght raDAR, uses a system of rotating lasers to determine distances to objects. However,
the cheapest LIDAR systems available for purchase were about ¤100. This was considered to be far too
expensive for our purposes, so LIDAR was not investigated further.

4.2.3 Feelers

In nature, animals also need to be able to detect obstacles in their path. Certain small animals, namely
arthropods, use feelers (also known as antennas) to do this. A similar principle could also be applied on
the Zebro robots; a pair of flex sensors could be attached to the front of the Zebro. If these sensors come
in contact with an obstacle, they bend and their electrical resistance changes, which can easily be read by a
simple circuit. This is a simple solution, but it does not give much information about the size and scalability
of an obstacle. The detection range is also limited to the length of the flex sensors, so the obstacle would
only be detected right before the Zebro walks into it. This is not ideal, so this sensor was abandoned.

4.2.4 Infrared

Another possible solution was to use an infrared sensor, consisting of a small IR transmitter, and an IR sen-
sor. There are two main types of IR sensors. The first type is an IR transmitter with a simple receiver. The
transmitter sends out IR radiation, which bounces off nearby objects. Next to the transmitter is a receiver;
if this receiver receives a certain intensity of IR radiation, it knows that there is an object nearby. The major
downside of this simple system is that it cannot measure distances, only whether or not an object is nearby.

A second type of IR sensor system is also available. Instead of a simple receiver, this uses an imaging
sensor similar to what is found in digital cameras. This imaging sensor allows the system to determine the
angle of the received IR radiation. As the distance between the transmitter and receiver is known, the angle
of the received radiation can be used to calculate the distance to the object which reflected the IR radiation.
This triangulation principle is shown in Figure 4.1.

This second system could work well for our purposes. Some research into available hardware showed that
out of all the readily available sensors, the one with the largest range was limited to 150 cm. While this is
acceptable for our purposes, it would be beneficial to have a higher range as this means obstacles can be
detected earlier. One concern with IR sensors is that bright sunlight (which contains some IR radiation)
may affect the readings, so this needs to be investigated.

Figure 4.1: Working principle of the Sharp IR distance sensor [8]

4.2.5 Ultrasonic

Lastly, a possible useful sensor to detect obstacles is an ultrasonic sensor. This type of sensor relies on the
’time-of-flight’ principle. The transmitter periodically sends ultrasonic pulses (usually 40 kHz). If there

4.3 Ultrasonic Sensor Testing & Comparison 15

is an object within range, then this object will reflect the sound waves and they will be received by the
receiver. As the speed of sound is finite, there will be a measurable difference in time between the trans-
mitting and the receiving of the pulses. Knowing the speed of sound and the difference in time, the distance
to this object can then be calculated.

Ultrasonic distance sensors are widely available for purchase and they are relatively cheap (starting at a
few Euros). Depending on the exact model, most of these types of sensors have a range of about 4 or 5
meters. This is significantly more than the infrared sensor discussed earlier. One possible concern with
ultrasonic sensors is that, if many ultrasonic sensors are used near each other (as is likely to be the case in
a swarm of Zebro robots), they may interfere when the ultrasonic pulses from one Zebro are reflected and
then received by another Zebro. This will need to be investigated. Another limitation of ultrasonic sensors
is that they generally cannot see obstacles which have their normal at an angle greater than 45 degrees to
the transmitter. This is because the sound will deflect from this obstacle, and will not reflect. Therefore,
the sensor will not receive the pulses it sent out. Certain absorbing materials also will not reflect the sound
waves, so these will also be invisible to the ultrasonic sensor.

Due to the cheap price and good range of ultrasonic sensors, it was decided to use this type of sensor for
the obstacle detection system. However, because of the limitations discussed above, it is useful to also
have a camera system (which will be designed by a different subgroup) as discussed in subsection 4.2.1.
Both systems inherently have unique limitations, so by combining the two systems the limitations will be
minimized. If one system is unable to detect an obstacle, the other system will detect it.

4.3 Ultrasonic Sensor Testing & Comparison

Once the sensor technology was chosen, the exact model of sensor to be used also had to be chosen. After
some research, it was determined there were two widely-used ultrasonic sensors: the Parallax Ping and the
HC-SR04. Both were ordered so they could be tested and compared.

4.3.1 HC-SR04

The HC-SR04 has 4 pins: two for power, one ’Trigger’ pin and one ’Echo’ pin. To start a measurement,
the Trigger pin must be asserted for at least 10µs. The sensor’s transmitter then sends out eight pulses of
40kHz. This sound wave then travels through the air and, if an obstacle is in its path, reflects from the
obstacle. After a certain amount of time, the reflection is received by the sensor’s receiver. The sensor then
asserts the echo pin with a width corresponding to the amount of time it took for the signal to travel to the
obstacle and back. Thus, by measuring the width of the pulse on the echo pin and knowing the speed of
sound, the distance to the obstacle can be calculated.

Figure 4.2: HC-SR04 Timing [9]

16 Obstacle Detection

4.3.2 Parallax Ping

The Ping only has 3 pins: two for power and one signal pin. It operates on a similar principle as the
HC-SR04, but the signal pin is used both as an input and an output. First the signal pin is asserted high
for a minimum of 2µs to trigger a burst of 40kHz pulses. Next, the sensor sends a high signal on this pin
with width proportional to the time the signal has travelled. Clearly, this is very similar to the HC-SR04,
the only main difference being that the Ping uses the same pin both for the input and output. This may be
beneficial as it means only one of the microprocessor’s IO pins is needed to connect this sensor.

Figure 4.3: Ping Timing [10]

4.3.3 Comparison

In order to be able to decide which sensor should be used, both were tested. The first test was to determine
the range and accuracy of both sensors. To do this, a flat solid box of approximately 1m2 was placed at
various distances from the sensors, with the sensors on the box’s normal, and the sensors’ outputs recorded
using an Arduino (which will be further discussed in chapter 6). As can be seen in Table 4.1, both sensors
have similar accuracy until 300cm. The Ping is limited to 315cm, while the HC-SR04 is not, but the
HC-SR04’s accuracy decreases significantly after about 300cm.

Table 4.1: Distances to a flat solid object measured by the Ping Parallax and HC-SR04 at normal incidence

Real Distance [cm] HC-SR04 Distance [cm] Ping Distance [cm]
20 21 20
40 40 41
60 60 60
80 79 80
100 99 100
150 147 149
200 195 198
250 245 248
300 294 296
350 338 315*(1)
400 370 315*(1)

*(1)Note: the Parallax Ping is only rated up to 300cm according to its datasheet [10] . When an object is
more than 315cm away, the sensor will simply output 315cm.

4.3 Ultrasonic Sensor Testing & Comparison 17

The ultrasonic sensors require a signal to be reflected from an object. The problem with this is that,
depending on the angle of incidence of the sound wave, the wave may simple be deflected instead of
reflected. To test the impact of the angle between the object and the sensor on the measurements, the same
box as before was placed with its center at a distance of 1m and rotated between 90 degrees (perpendicular
to the direction of propagation of the sensor’s sound waves) and 0 degrees (parallel). The results can be
found in Table 4.2. Clearly this is a major limitation of the ultrasonic sensors; they cannot see flat objects
at small angles. This could be a problem if, for example, the Zebro is approaching a flat wall at a shallow
angle. However, as mentioned before, another subgroup is also working on a camera system which will not
have this limitation, so this system will be able to see the wall in this example.

Table 4.2: Distance measured to an object at 1m for various angles

Angle [degrees] HC-SR04 Distance [cm] Ping Distance [cm]
90 99 98
80 98 101
70 95 97
60 90*(2) 102
50 88*(2) 315
40 Timeout 315
30 Timeout 315
20 Timeout 315

*(2)At these angles, the HC-SR04 did not give consistent measurements. It alternated between the noted
value and a timeout.

Lastly, an important comparison is the price. This is important as the Zebros will eventually be mass pro-
duced, so a small difference in price will become much more significant at higher quantities. The HC-SR04
is very cheap, and can be found for just under ¤1 from some sources. However, the Ping is about ¤30.

With the help of some experiments with both sensors, it was determined that the HC-SR04 and Parallax
Ping have similar performance. However, it was decided to use the HC-SR04 as this sensor is significantly
cheaper than its competitor.

4.3.4 Configuration

Another decision that had to be made was how the sensor would be mounted. There were a few options
available:

• A single sensor mounted to the front of the Zebro

• An array of sensors at different angles, as in Figure 4.4

• A sensor rotating on a servo to form a sort of radar

18 Obstacle Detection

Figure 4.4: Ultrasonic sensors connected in an array [11]

The single sensor would only give information about the distance to the nearest object in front of the Zebro;
it would give no indication about where the obstacle is. An array of sensors would work better, but this
would require several sensors so a lot of connections would be needed.

The last option is putting a sensor on a rotating servo, and measuring the distances every few degrees. This
allows the horizontal field of view to be customizable, and gives some useful information about the location
of obstacles. Therefore, this option was chosen.

Chapter 5

Cliff Detection

This chapter describes the choices made during the design of the cliff detection system.

5.1 Problem Description

The requirements for the cliff detection subsystem (see EM-2 in the Requirements chapter) are more arbi-
trary than for the obstacle detection subsystem, since the robot only has to determine whether it comes near
a cliff or not. A specification of the properties of the cliff is not necessary. Therefore a simple yet robust
sensor should suffice.
For this problem, a similar distance sensor as for the obstacle detection system could be used, but since it
only has to detect when the measured distance becomes larger than a certain standard distance (say, from
the top of the robot to the ground), a much simpler setup can be used. For this subsystem, robustness is
more important than precision.
Finally, while comparing sensors, it should be taken into account that in order to effectively sense a cliff in
front of the robot, the sensor may be placed on the robot at a certain angle. This should not be a complica-
tion for the effectiveness of the sensor.

The sensor comparison from the last chapter still holds up. The ultrasonic and infrared sensors were deemed
most suitable for this purpose. However, since the ultrasonic sensor works with sound waves, it is therefore
less effective when used under an angle due to reflection losses. IR sensors have as a disadvantage that
they can not measure as great distances as ultrasonic distance sensors, but for this subsystem, that was not
a constraint. It should also be taken into account that their prices are very similar.
Therefore, for this subsystem, a setup that employed an IR sensor was chosen.

5.2 Infrared Sensor Testing

While looking into the sensors of this type that are available, it was found that only a few very similar
sensors (most of them produced by Sharp) were suitable of our purpose, in a price range from about C10
to C25, with the more expensive ones having a longer range. However, since a range of about half a meter
would be sufficient, (the exact depth of the cliff does not have to be measured), a cheaper sensor was chosen.

Since the product/brand variety is very limited for this type of sensor, only one type of sensor was ordered
and tested, the Sharp GP2Y0A21YK0F.

20 Cliff Detection

5.2.1 Testing

Figure 5.1: The SHARP
GP2Y0A21YK0F infrared distance
sensor. [12]

One of the cheaper IR distance sensors is SHARP’s GP2Y0A21YK0F
sensor. It has a range that lies between 10 and 80 cm and
costs about ¤8. Once ordered, the sensor was tested for dif-
ferent types of surfaces. Since the sensor is IR (light) based,
it would be interesting to see how different materials, shades of
colors and angles affect the distance measurement. Several mea-
surements were done, one distance measurement for white pa-
per, one for dark metal and one measurement for white pa-
per under different angles. The results can be seen in table
5.1.

Real Distance [cm] Measured Distance for white paper [cm] Measured distance for black metal [cm]
10 11 12
20 22 21
30 33 33
40 43 44
50 54 60
60 62 70
70 76 81
80 100 random
90 126 random

100 random random

Table 5.1: The measurements done while testing the IR sensor. It can be seen that for a dark surface, the range that
can be measured reliably is diminished.

As can be seen, in most cases the sensor overestimates the distance by a few centimeters. For this purpose,
this falls within the margin, since the robot does not need to know the exact distance between the sensor
and the ground. Further, it can be noted that the measurement for light and dark materials for the same
distance differs slightly, although it is only a few centimeters. Finally, for larger distances, especially those
out of its range (as specified in the data sheet), the error margin becomes much larger, up to the point where
the measured distance seems to be random.

Next, a the sensor was tested for different angles. The sensor was placed about 30 cm from a sheet of white
paper. The results can be seen in Table 5.2.

Angle that was used [degrees] Measured distance
90 32
80 33
70 33
60 32
50 33
40 32
30 33
20 33

Table 5.2: Measurements testing the effectiveness of the sensor while placed at an angle. The distance used in the
setup was 30 cm.

5.2 Infrared Sensor Testing 21

In table 5.2, it can be seen that for different angles, the measured distance stays more or less the same. The
results in this table mean that the sensor can still be used effectively when placed under an angle. This
angle will be needed because the robot has to detect cliffs in front of him. If the sensor was to work only
when placed straight downwards, it wouldn’t be very effective as a cliff detection system since it would
only be able to detect cliffs straight under the robot.

Figure 5.2: Timing chart of the SHARP GP2Y0A21YK0F showing the output timings and intervals. [12]

In figure 5.2, the timing of the output voltage of the sensor can be seen. The first output is available after
about 43 ms, then, about 38 ms later, the second output is available, then after another 38 ms the third, and
so on. Once set up, the sensor output is updated about 26 times per second.

During testing it was found that the sensor output was very robust, the measurement error always remained
small. As the sensor requirements for this submodule are not very high, the SHARP sensor is considered
good enough for this purpose.

5.2.2 Mounting

Once the sensor had been verified to meet the requirements for this submodule, it had to be decided in what
setup the sensor would be used. As mentioned before, the sensor would be most effective when placed
under an angle. Using this configuration, the sensor would be able to detect cliffs, but only if they are
right in front of the robot. It would be better to check for cliffs on the right and left of the robot, since the
robot might approach a cliff at an angle. Therefore, it was decided that two IR sensors should be placed on
the left and right of the module, so that the system has a broader view. Later on, it was decided that both
sensors should be placed at a horizontal angle of about 10 degrees. This way, the robot would be able to
see cliffs in front of it and slightly next to it.

22 Cliff Detection

Chapter 6

Implementation on Arduino

In order to be able to read out all the sensors, perform necessary calculations, and communicate with the
ZebroBus, a microprocessor is needed. This microprocessor will also need to be programmed. To facilitate
easy prototyping, it was decided to use an Arduino board. These devices are relatively inexpensive, they
can easily be programmed and powered over USB, and their default programming language is based on
C/C++. Moreover, they generally have a sufficient amount of easily-accessible IO pins that can be used to
connect external devices (like sensors in our case).

In our case, an Arduino was used to:

• Read the analog output of the two IR sensors

• Drive the servo motor to the appropriate position

• Perform the necessary timing to trigger the ultrasonic sensor and perform calculations to read results

• Display the presence of cliffs and obstacles on the LED ring

6.1 Main Function

In Arduino syntax, there are two standard main function: setup() and loop(). The setup() function runs
once when the device starts or resets, and the loop() function then runs continuously in a loop. Both of
these functions may contain calls to other functions when necessary.

This subgroup and another subgroup worked on Arduino code for their respective sensors. The other sub-
group was responsible for integrating all Arduino code. The code was split into several classes so that each
class would contain the necessary code for one sensor/device. To ensure uniformity, a few requirements
were set:

• The class must contain an Initialize() member function. This will be called during setup.

• The class must contain an UpdateValues() member function which will be repeatedly called. When
this function is called, the appropriate variables must be updated using the measurements from the
sensors.

• The code must be as fast as possible and non-blocking, meaning it does not stop other sensors from
being read

Figure 6.1 shows an overview of how functions are called. Note that ’Foo’ is a placeholder for the name
of the specific class in question. The classes relevant for this subgroup are Cliffclass, DistanceClass, and
LEDringClass.

24 Implementation on Arduino

Figure 6.1: An overview of how functions are called

Furthermore, in the UpdateValues() a parameter can be sent. Some classes receive a pointer to ’Error Byte’,
a variable of type uint8 t. In this byte, classes can set individual bits to indicate there is an error. Relevant
for this subsystem is that bit 3 and bit 4 can be set high to indicate a cliff on the left or right respectively.
This Error Byte is displayed on the LED ring as will be discussed later. Because of this, if there is an
’error’ such as a nearby cliff, this will be displayed on the LED ring. This data will also be sent over the
ZebroBus, but the exact workings of this communication will be discussed by a different subgroup.

6.2 Cliff Detection

As discussed in chapter 5, an IR sensor which uses triangulation to measure distance is used for the cliff
detection. This sensor can be read by reading the voltage on its signal pin. This voltage is inversely pro-
portional to the distance, typically 0.4V for 80cm and 2.3V for 10cm [8].

The distance measured by the sensor is read as follows:

int cliffDistR = 4800 / (analogRead(irPinR) - 20);

The above formula converts the analog value of the output voltage of the sensor to a distance [13].

The variable maxCliffDist is the maximum distance that would be expected at the front of the Zebro. If the
IR sensor measures a distance greater than this; the conclusion is that there is a cliff in front of the Zebro
and the error byte must be adjusted:

if (cliffDistL > CONFIG.getmaxCliffDist() || cliffDistL < 0) {
(*Error_ptr) |= (1 << 3); //Cliff detected on the left!

} else {
(*Error_ptr) &= ˜(1 << 3); //No cliff on the left

}

The same is done for the right sensor.

6.3 Obstacle Detection & Servo: The Distance Class 25

6.3 Obstacle Detection & Servo: The Distance Class

6.3.1 Reading Sensor Data

The obstacle detection and the driving of the servo, which is done in DistanceClass, is significantly more
complex than that of the CliffClass. As discussed in subsection 4.3.1, the ’Trig’ pin must first be asserted
for at least 10 µs to start a measurement. After some time, the ’Echo’ pin will then be high for the length
of time there was between the transmitting of the US signal and the receiving of its reflection.

There are a few things that need to be considered. Firstly, the measurement cannot be triggered too often.
If a new measurement is triggered before all reflections of the previous US pulses have died out, the sensor
will give incorrect distances. Secondly, it is important that the code is non-blocking. When the length of
the Echo signal is being measured, the rest of the code must keep running. If it is blocked, this means that
other sensors like the gyroscope will not sense possible dangers.

The first solution that was designed used the pulseIn() function to measure the length of time that the Echo
pulse was high:

duration = pulseIn(echoPin, HIGH); // Reads the echoPin, returns the sound
wave travel time in microseconds

This works, but the pulseIn() function stops execution of other code for as long as the echoPin is high,
which can be up to 38ms [9]. This means that the updating of other sensors is paused for this amount of
time, which means there is a large risk of missing crucial sensor data, for example a sudden acceleration or
deceleration to indicate a fall.

A solution to this problem was to make use of interrupts in order to make the code non-blocking. This way,
once the short pulse has been sent on the TrigPin, other code can run while waiting for the sound waves to
return to the sensor. Once a change in the EchoPin is detected, other code can be stopped temporarily and
the necessary calculations can be made. The basic idea of this is to attach an interrupt to the EchoPin so
that the interrupt handler runs whenever there is a change detected on the EchoPin:

attachInterrupt(digitalPinToInterrupt(echoPin), distInt, CHANGE); //Attach an
interrupt to echoPin, so that the interrupt handler is run when a change
is detected

Where distInt() the interrupt handler which calls echo interrupt(). When the interrupt handler runs, it first
looks whether the EchoPin is now high or low; if it is high then it starts timing and if it is low then it stops
timing and performs necessary calculations to determine the distance to an object.

6.3.2 Visual Radar

During online research, a project by Dejan Nedelkovski was found which also used an US sensor to create
a radar [14]. This project also used an US sensor on a servo, both connected to an Arduino. The measure-
ments of the US sensor are then communicated to a computer via the serial port, and then the open source
processing software is used to visually display the results of the measurement on a computer screen. As
this seemed very convenient for initial testing of the sensor and for a demonstration of the principle to the
supervisor and colleagues, this code was adapted slightly and used for some demonstrations. A screenshot
of a demonstration can be seen in Figure 6.2.

26 Implementation on Arduino

Figure 6.2: A screenshot of the software used to display the radar measurements on a computer screen, adapted from
Nedelkovski [14].

During the test seen in Figure 6.2, a small object was placed 30 cm in front of the Zebro. The red bars on
the screenshot symbolize a detected object. As can be seen, the object is detected in front of the Zebro at a
distance of 28 cm.

6.3.3 Integrating code

The visual radar software descibed in subsection 6.3.2 proved effective for demonstrating the radar princi-
ple, but it was not very useful for the final product. Firstly, it used the pulseIn() function so the code was
blocking, as explained in subsection 6.3.1. Secondly, a measurement was taken every degree between 15
and 165 degrees. This meant there were 150 measurements for each rotation, which was unnecessary for
our purposes so slowed down the rotation speed needlessly.

For integration into the final product, a different software architecture was used in the distanceClass. A
visual overview of the distanceClass can be seen in Figure 6.3.

6.3 Obstacle Detection & Servo: The Distance Class 27

Figure 6.3: Overview of distance class

Note that this figure contains pseudocode and only the most important lines of code are shown. It only
illustrates the main functionality of the class, not the exact implementation in the code.

To be able to determine the distance to an object based on the time travelled by the US pulses, the speed
of sound is needed, which is dependent on temperature. As the module also contains temperature sensors
(implemented by a different subgroup), the temperature measured by these sensors is used in the calcula-
tion of the speed of sound. This makes the estimation more accurate than if the outside temperature were
not taken into account.

The updateAngle() function is responsible for driving the servo. The idea is that the servo rotates the US
sensor back and forth from left to right. As can be seen in Figure 6.3, the servo rotates between 23 degrees
and 158 degrees in steps of 15 degrees. Once a measurement has finished, the servo rotates 15 degrees
further and stops there for the next measurement. As the servo turns 545 degrees per second [15], it takes
about 28 ms for it to turn 15 degrees, so this is the minimum amount of time that must be waited before
starting a new measurement.

There are 10 measurements per rotation from left to right (or vice-versa). It would have been possible to

28 Implementation on Arduino

have a greater resolution with more measurements per rotation, but this would mean it would take longer to
complete a rotation. If this were the case and a sudden obstacle would appear in front of the Zebro, it may
detect it too late. Therefore the trade-off between resolution and speed had to be made and it was decided
that 10 measurements was sufficient. This is also convenient because each measurement can be mapped to
a single LED on the LED ring, as will be discussed in section 6.4.

6.3.4 Error Correction

The measurements from the US sensor will not always be reliable. This may be due to occasional interfer-
ence from, for example, the US pulses of other nearby Zebros. To reduce the amount of false positive or
false negative detections of an obstacle and to increase the reliability, some form of error correction needed
to be implemented. Many solutions were considered, including implementing a Kalman filter. However,
it was decided that this would be more complex than necessary and would also introduce computational
complexity, slowing down processing times on the microprocessor.

As a simpler solution, it was first decided to compare the current measurement with the previous mea-
surement. If the difference between these two would be greater than a a set tolerance, the servo would
remain in its current position and a new measurement would be done. This worked reasonably well, but it
meant that the servo sometimes (whenever there was a large difference between the current and previous
measurement) stopped for longer than other times. This caused the servo to have a sort of twitching effect,
which looked strange and unnatural. Therefore, another method was implemented.

The new method was to take 3 measurements per step of 15 degrees. If all 3 measurements are similar,
then they are all assumed to be reliable and the average of all 3 is taken. If 2 are similar and the other is
very different, then only the average of those first 2 is taken. If all 3 are significantly different, it is assumed
that none of them is reliable and ’0 cm’ is saved for this measurement to indicate the lack of a reliable
measurement. This system proved to work better than the previous

During the testing of the US sensor, described in 4.3.3, it was evident that the results became significantly
less reliable at long distances. For this reason, a maximum distance parameter was introduced. This is
currently set at 3m but can easily be adjusted if necessary. If the distance measured is greater than the
maximum distance, it will be changed to the maximum distance to indicate that this is outside of the range
of the sensor.

6.4 LED Ring

One of the general tasks of Zebros is that they can autonomously navigate on pavements and roads where
humans are also present. For this to go well, and also simply for debug purposes, it is useful to have
some communication with nearby humans as to what the Zebro is seeing. This way, people can easily
see whether or not the Zebro has detected an obstacle or a nearby danger. To do this, it was decided to
use a LED ring mounted on the top of the module. A Neopixel ring with 24 LEDs was used for this purpose.

The front 10 LEDs were used to display the 10 distance measurements, where the color ranges from red
for an object that’s very close to green meaning no object within the given range. 8 of the LEDs at the rear
of the ring were used to display the Error Byte (discussed in chapter 5), of which mainly the left cliff and
right cliff indications are relevant for this subgroup.

6.5 Servo/LED Interrupt Issue 29

Figure 6.4: LED ring showing the information displayed on each LED. Image source: SparkFun Electronics [16]

For the Arduino implementation of the LED ring, the FastLED library [17] was used. This library is
convenient for our purposes because the color can be controlled via CHSV instead of RGB like most other
libraries. As can be seen in Figure 6.5, red has a ’hue’ of 0 and green has a ’hue’ of 96. This makes the
calculation for the appropriate hue simple: hue = 96 ∗ distance/maxDistance where distance is the
measured distance and maxDistance is a parameter which defines the minimum distance at which an object
is considered to be outside the sensor’s range. Because of this, the LEDs will be range from red at 0 cm to
green at the maximum distance, as was required.

Figure 6.5: CHSV hue chart for FastLED library. Image source: Garcia [17]

6.5 Servo/LED Interrupt Issue

During small tests, it was found that when the LED-ring and the servo are used together, problems arise.
The servo seemed to ’twitch’ during rotating, making random turns at times. This was considered an unde-
sired effect, however, it was not immediately clear what caused this. As it turned out, after some research

30 Implementation on Arduino

was done, this was a known issue. [18]

The problem is caused by the fact that the protocol that controls LED-ring uses a very tight timing. To
prevent mistakes, the LED-ring controller temporarily disables all interrupts, including those used for the
timer, which are in turn used in the ’Servo.h’ library to control the servo motors. In short, the problem lies
in two conflicting protocols that both use interrupts and of which one disables the interrupts used by the
other.

These things are mostly controlled ’under the hood’ of the Arduino libraries and are therefore not easy to
change without shaking up other functionalities of the code. To cope with this problem, a library created by
Adafruit was used. It changes the way the servo motors are handled, and uses the microprocessor’s AVR
peripherals to make sure that servos are not affected when the LED-ring disables all interrupts. When this
code was implemented, the problem was indeed solved.

6.6 Testing & Practical Issues 31

6.6 Testing & Practical Issues

Figure 6.6: The observation module attached to the
front of the Zebro body during a test. The LED-ring
(placed inside the enclosure for testing) can be seen
displaying the relative distance. Here the robot runs
off a USB battery pack.

To test the system, several setups were considered,
including mostly outside situations like sidewalks,
bikepaths, grass, hills and slopes.

However, the system was first tested numerous times on
the floor in the practical hall. During these tests, some
issues that were not anticipated during design were dis-
covered.

Apparently, when not placed on a smooth sur-
face, the ultrasonic distance sensor suffers from re-
flections from the ground. This gave the sys-
tem the idea that an obstacle was close by, while
the robot was actually placed in open space. It
was found that tilting the sensor backwards re-
duced this effect. Therefore, as a solution,
a new enclosure for the sensor was designed
that was placed under an angle (see subsubsec-
tion 7.2.5.2).

Placing the US sensor under an angle has another benefit: it helps in determining the scalability of objects.
By rotating the US sensor backwards, objects smaller than itself will no longer be detected. This means that
small scalable objects will not be detected, which is not necessary as the Zebro can just climb over these.
This principle is shown in Figure 6.7. This adresses requirement 3; the ability to discern between scalable
and unscalable objects, to some extent. However, it is not foolproof. If an object is taller than the distance
Zebro can climb over (about half its height), but smaller than the height of the US sensor, this object will
not be detected. However, this is one of the reasons why there is also a second obstacle detection system
being developed by another subgroup [2].

(a) Both scalable and unscalable objects are detected (b) When the US sensor is placed at an angle, only scalable
objects are detected

Figure 6.7: The angle at which the US sensor is placed helps determine scalability

It was also found that, as a result of the way the code was written, the speed with which the servo motor
rotated largely depended on the processing time of a measurement. This processing time included the time
it took to send out a pulse and wait for its reflection. Consequentially, the servo motor rotated faster when
an obstacle was near by and the distance was small. As this was considered a negative side-effect, it was
decided that the transmit/receive time should not influence other parts of the code. Therefore, the structure
of the code was changed to the non-blocking implementation using an interrupt, as described in subsec-
tion 6.3.1.

32 Implementation on Arduino

Another possible issue that was anticipated is the idea of interference when two Zebros both send out an
ultrasonic pulse. As this could possibly hamper the performance of the robot’s obstacle detection system
in a swarm severely, it was tested with two HC-SR04 sensors aimed at each other. However, no severe
negative influence that would be a result of interference was detected.

Chapter 7

Module Enclosure

In this chapter the design and development of a plastic enclosure for the whole module will be discussed.
As the enclosure does not have any strict requirements other than to adhere to the existing Zebro physical
interface, there is quite some freedom in what the final product will look like and how it is implemented.
However, since the existing Zebro bodies and accessories were drawn in SolidWorks software and 3D-
printed, it makes sense, as part of the Zebro team, to go along the same route.
This chapter lays the focus on the development of the enclosure rather than its exact specifications. How-
ever, more technical drawings that show the precise dimension of each model can be found in Appendix B.

7.1 Requirements

7.1.1 Considerations from within the project group

As mentioned before, the official module requirements (see chapter 2) do not contain any specifics about
the enclosure other than that it should be (physically) compatible with the Zebros. However, within the
project group, there has to be discussed in what way all the submodules will be incorporated in the enclo-
sure. The enclosure has to fit on top of the Zebro body, so there is only so much space to put sensors or
circuit boards. Nevertheless, it would be beneficial to all if the enclosure offers all subgroups the desired
setup for the sensors and/or circuit boards they want to use.

The requirements for the enclosure are mostly communicated informally within the group. However, as
they are constraints on the freedom the designer has while making a first design, they predetermine to a
large extent what the final product will look like. In Table 7.1 the requirements for each sensor can be seen,
including what kind of interface with the body they need.

7.1.2 General considerations

This section is about some general things that have to be kept in mind during the design of the enclosure.
First of all, the enclosure is to be 3D-printed, which means during the design steep (upwards) angles should
be avoided if possible, as well as very small or very thin parts. These sections can be printed, but only by
adding so-called ’supports’. These supports are light structures of printed plastic that can be removed eas-
ily. However, the higher the part that is sticking out, the more supports are needed and the more plastic is
wasted.

Furthermore, even when parts have to fit exactly, a safety margin of a few millimeters has to be taken into
account, as the final product may have edges that are printed slightly smaller or larger than was designed.
Finally, also factors from outside the module should be kept in mind. The enclosure has to fit on the Zebro
body but also not obstruct parts on the body that were designed for something else. For example, the Zebro
body has two holes for two modules, so the enclosure of one module should not take space away or obstruct

34 Module Enclosure

the other module in any way. In the same way the enclosure has to be designed in such a way that other
parts do not obstruct this module. For that, a schematic of the Zebro body is provided by the Zebro team,
as well as already printed and assembled Zebro casts to fit the enclosure on (see figure B.1 in the Appendix).

Submodule Sensor / Device Requirements

Obstacle & Cliff Detection IR Distance Sensor

Vertical angle of 60 degrees;
Horizontal angle of 10 degrees;
One on both sides of the robot;
In the front of the robot;
Needs a mount with screwholes;

Ultrasonic Distance Sensor

Mounted on a servomotor;
Being able to rotate;
Somewhat in the front of the robot;
Needs a mount with screwholes;

Range Finding & Image Processing PI Camera
In the very front of the robot;
Needs screwholes;

Laser
Horizontal angle of 80 degrees;
Needs screwholes;

Sensors & Interfacing Temperature(1), light, humidity Need to be exposed to outside air/light;
Temperature(2), acceleration, gyroscope No specific requirement;
LED-ring Needs to be visible on the outside;

Table 7.1: Table containing the requirements for the enclosure for each device. The Temperature(1) indicates the
temperature sensor used to measure the outdoor temperature, Temperature(2) for the internal temperature.

7.2 Designing

This section is about the design process of the plastic enclosure. For creating the 3D-model of the enclo-
sure, SolidWorks software was used. This software is provided by the TU Delft. SolidWorks can save the
3D-model as an .STL file, which can than be interpreted by 3D-printing software, such as Gembird Cura,
the software that was used here.

7.2.1 Bottom plate

For the bottom of the enclosure, it was needed to study the Deci Zebros technical drawings to match the
screwholes that were provided for the module. The distance between the screwholes and the edges of the
Zebro body’s top provides a general guideline for the final dimensions of the enclosure. The Deci Zebros
body is designed with the idea that the modules are attached and can be removed without the need for
screws. For this, a twist-lock interface was designed. However, for several reasons, this interface was
discarded:
First, it was found that the Zebro body featured clips that hold it together that stick out on the top plate of
the body. Since several of the sensors that are used need to be in the front of the body, these clips need to
be covered by the enclosure, making it impractical to attach the module by turning it.
Second, since the enclosure will be printed from the bottom plate up, adding thin parts that stick out on
the bottom will make the model hard to 3D print. Printing would be possible only by adding supports
everywhere else, which would be a waste of plastic.
Third, the module can still be attached firmly to the Zebro casing with screws. Screwholes of 3 mm in
diameter that match the ones already on the Zebro body were added to the bottom of the enclosure. This
makes for a durable connection, leaving less space for the module to move around than the twist-lock
would.
To cover up the clips that were mentioned earlier, a small space of about 3 mm was left open on the bottom

7.2 Designing 35

side of the enclosure. To be able to print this, small sections of supports were added in the 3D print software.

Figure 7.1: Bottom plate seen from the side, with on the left the front of the plate.

In figure 7.1, the bottom plate that was first designed can be seen. Under the bottom plate the spaces that
were cut out for the clips on the front of the Zebro body are visible. Without these, the enclosure would
not fit properly on the front of the Zebro.

7.2.2 Mounting the IR sensors

For the SHARP distance sensors that would be used for the cliff detection system, mounts were added
under a vertical angle of 60 degrees and a horizontal angle of 10 degrees. This mount needed a space and
screwholes that matched the sensor’s dimensions plus some extra space to lead away the wires coming
from the sensor. It was decided that the mount would enclose the sensor as a whole, as loose brackets with
screwholes in it would be less structurally integer. Also, this needed to be designed twice, on each side of
the enclosure.
First, the dimensions of the sensors were measured using a caliper. Then, two new structures with holes
were added to the bottom plate, with one large cavity for the sensor and its wires and two screwholes to
secure the sensor in its place. To keep a strong structure, the mounts and their connections were designed
to be thick pieces.
In figure 7.2 the 3D model of one of the mounts is shown. The cavity at the bottom of the structure is for
the connector and the wires of the sensor.

Figure 7.2: Close-up of the enclosure showing the mount for the SHARP distance sensor.

7.2.3 Mounting the PI camera & laser

Since the camera and its laser and the cliff sensors have somewhat the same requirements for the enclosure,
the mounts are placed on top of each other. The infrared distance sensors are aimed downwards, so it makes
sense to keep them located closest to the ground. However, this choice means the IR sensor mounts (see
subsection 7.2.2) have to be adapted to support the camera and the laser.
For the PI camera, initially an enclosure was designed that would allow for the camera to be slided in.

36 Module Enclosure

However, as it proved difficult to design the right fit and working away the flat cable, it was decided that a
simpler structure would be designed. A simple flat surface with screwholes and a cavity to lead away the
cable was added.

(a) Close-up of the enclosure showing the initial design for
the camera mount. The cable sticks out on top while the PI

camera is mounted upside down.

(b) Close-up of the enclosure showing
the final mount for the PI camera. The

flatcable is lead away through the
whole below the mount

Figure 7.3: Two close-ups of different enclosure design iterations, showing two ways to implement the PI camera
mount.

In figure 7.3, two implementations of the PI camera mount can be seen. Although the first mount allows for
screw-less attachment, the camera would have to be placed upside down in the holder, causing two issues:
First, the camera image would be upside down. This can be solved in the image processing. Second, the
camera flatcable would stick out significantly, in such a way that it would be visible to the ultrasonic dis-
tance sensor, causing interference. Therefore, a simpler mount was chosen, that did not have this problems.
As the IR sensor mount is already placed under a horizontal angle of 10 degrees and the PI camera and
laser are placed on top, the camera and laser mount need to have an angle themselves. The PI camera
mount is placed under -10 degree angle to counter that of the IR sensor mount. The laser needs an angle of
80 degrees and is thus placed under an angle of 70 degrees relative to the IR sensor mount.

7.2.4 Mounting the PCB’s

As the Raspberry PI module used for the image processing section and the custom PCB (see chapter 8)
both measure 65 mm in length (the PCB is square), this should be the minimum open space in the enclo-
sure. The wires of the sensors that are in the front of the body are lead back into the main space where all
the electronics are stored. In the middle of this large space is a hole that matches the dimensions of the
hole already present on the Zebro body. Through this hole all the wires from the PCB are connected with
the main Zebro system. This section also features screw holes and mounts for the PCB and on top, the
Raspberry PI.

7.2.5 Mounting the Ultrasonic sensor & the Servomotor

7.2.5.1 Servomotor Mount

It was considered most practical to place the servomotor (which has the ultrasonic sensor attached to it) in
the front of the enclosure. Since there was enough space left, it was placed inside the large space of the
enclosure. It only needed two supports to set it at the right height. It was chosen that the upper part of
the servomotor should stick out of the enclosure, as this height would prevent the ultrasonic sensor from
detecting reflections from the frontal sensor mounts.

7.2 Designing 37

To achieve this, the servomotor was measured with a caliber and supports were placed inside the enclosure
to hold the servomotor.

7.2.5.2 Ultrasonic Sensor Mount

Initially, during testing, the ultrasonic sensor was mounted on top of the servomotor using a cable tie. This
proved quite effective, but ultimately, it was chosen to design a plastic casing for the sensor.
First, the large 3D model database Thingiverse.com was searched for an existing model of such a casing. A
casing was found there and it was printed. As it turnt out, it was not the right fitting, the Parallax Ping sen-
sor (which is not used) did fit in it, however. Therefore, it was chosen to design a custom casing anyway.
This proved harder than anticipated because a millimeter offset on the HC-SR04 (the ultrasonic sensor)
PCB was enough to obstruct the sensor from fitting in the casing. Moreover, several versions of the sensor
existed, so one type ended up fitting while another was too large. Ultimately, however, this process ended
up in a fitting casing.

For this mount, a small box was designed with holes for the transmitter and receiver of the sensor and small
holes for screws on the inside and on the outside for mounting on the servomotor.
Later on, during testing with an assembled Zebro body cast, it was found that on a rough floor, the ultra-
sonic sensor detected many reflections, causing it to see obstacles that were not there. Therefore, a new
version of the casing was made, this time the bottom of the sensor was placed under an angle, so that, once
mounted, the sensor would be aimed slightly upwards. Two versions were made, one under an angle of 25
degrees and one for 15 degrees. The 15 degrees version proved sufficient.

(a) Original casing of the ultrasonic
sensor, no angle was used.

(b) Model of the casing tilted at 15
degrees.

(c) Model of the casing tilted at 25
degrees.

Figure 7.4: Figure showing the different iterations of the design of the mount for the HC-SR04 sensor. The version
tilted at 25 degrees was chosen.

In figure 7.4, the original casing of the HC-SR04 and the two altered versions can be seen.

7.2.6 Mounting the LED-ring

The LED-ring is used to show the Zebros current status, as well as measurement results for the distance
and cliff detection system. To make it easy read out, it should be placed on top of the module. Therefore, a
’lid’ was designed to partly close the open space of the enclosure in order to create space for the LED-ring.
However, as closing off a large part of the enclosure creates issues with the freedom of rotation of the
ultrasonic sensor (most notably, the cables connected to this sensor), a lid was designed with a hole in it, so
that this part could still move freely. Further, it features an inner and an outer edge to hold the LED-ring in
place. Lastly, it features small ’legs’ that were designed to fit in the round corners of the main enclosure.
The LED-ring mount can be seen in figure 7.5a.

38 Module Enclosure

(a) 3D-model of the lid, showing the space where the
LED-ring fits in.

(b) 3D-model of the entire enclosure with the lid for the LED-ring
fitted on top.

Figure 7.5: Figure showing the individual mount for the LED-ring and the whole enclosure with the lid put together.

As can be seen in figure 7.5, the lid with the mount for the LED-ring, fits on top of the main enclosure. The
hole in the lid is needed for cabling, in particular to guarantee movement for the ultrasonic sensor, but also
to lead away the cables for the LED-ring itself.

7.2.7 Mounting the external temperature sensor, the light sensor & the humidity
sensor

Since these sensors are very small, cutting a small hole in the casing and attaching them with a screw so
that they are exposed to the outside air and light suffices for these sensors. No holes are being designed for
this in the enclosure, since it is found that leaving very small screwholes are not always properly printed.
Also, it is assumed that there will be sufficient space for these sensors in the enclosure once everything is
put together.

7.2.8 Mounting the internal temperature sensor, the accelerometer and gyro-
scope

These sensors are attached to the inside of the casing, preferably close to the circuit boards, as that is where
they are supposed to do measurements

Chapter 8

PCB

8.1 Problem Description

During most of the prototyping, an Arduino Mega2560 was used. This was very convenient as it is easy
to program and communicate with over USB. However, these devices are not cheap and contain more pins
and other connections like USB which will eventually not be needed when it is implemented in the Zebros.
Because of this, they are also bigger than needed for our purposes. To solve this problem, it was decided
to make a custom PCB with a chip loaded with an Arduino bootloader. Even though this was not explic-
itly part of the requirements, there was some time available to do this and it was decided that it would be
beneficial. Loading it with an Arduino bootloader would mean that the code would not need significant
adjustments. Designing the PCB ourselves would mean that its form factor could be adjusted to fit our
purposes, and only the necessary components and pins would be on the circuit board.

The main requirements of the PCB are:

• Be small enough to fit in the module easily

• Have connections for all peripherals

• Connect peripherals to the power supply and to an appropriate microprocessor pin

• Have the necessary hardware and connections for the microprocessor to operate and to be pro-
grammed

• Be able to efficiently run the software described in chapter 6

• Be as cheap as possible to produce (preferably only 2 layers)

The PCB needs to connect the external devices to the power circuitry and to the microcontroller. The
connections that the PCB will need to provide are:

• ISP

• Buzzer

• ZebroBus

• Temperature
1,2,3,4

• IR-R, IR-L

• LED Ring

• Ultrasonic Sensor

• Gyro

• Breakout

• Laser

• Servo

• Power

• Power 2

• Pi

• Extra IO1

• Extra IO2

• Extra Analog

• Extra UART

The ISP will be used to program the microcontroller. The ZebroBus will require a small transistor circuit
as defined in the ZebroBus interface document [19]. The breakout board will contain the Lightsensor and
humiditysensor, as these need to be in contact with outside air and thus cannot be on the PCB directly. The

40 PCB

laser and Pi signals need an amplifier and voltage divider respectively as the Pi works on 3.3V but most
other components (including the laser, which is to be controlled by the Pi) work on 5V. There are also some
extra pins in case it is later decided to, for example, add extra sensors to the module. If this is the case, the
hardware will likely not need to be changed.

On top of these connections, the PCB will also need debug LEDs, ESD protection, a reset button, decou-
pling capacitors, an oscillator circuit, and I2C pull-up resistors.

8.2 Possible Microcontrollers

The PCB will need to contain all the connections to the microcontroller. The devices that need to be
connected to the microprocessor via the PCB are shown in Table 8.1.

Table 8.1: Devices to be connected to the microprocessor

Item Type of Connection
Thermometers 4 Analog
IR Cliff Sensors 2 Analog
Ultrasonic Distance Sensor 1 Digital + 1 Interrupt
Gyro+Accelerometer I2C (Soft) + 1 Interrupt
LED Ring 1 Digital
Raspberry Pi UART
Light Sensor 1 Analog
Humidity Sensor I2C (Soft)
Speaker 1 Digital
ZebroBus I2C + 1 Interrupt
Servo 1 Digital PWM

With the requirements and the necessary connections mentioned in Table 8.1 in mind, an appropriate mi-
croprocessor had to be chosen. As the Arduino bootloader had to be loaded onto the microprocessor, the
choice was limited to microprocessors used in Arduino devices. The microprocessors of some popular
Arduino devices were compared, some of which can be seen in Table 8.2. The parameters which did not
meet the required parameter are marked in red for each microcontroller.

Table 8.2: Comparison of possible microcontrollers [20] [21] [22]

Required ATmega328P ATSAMD21G18 ATmega2560
Arduino Used Uno Zero Mega2560
Working Voltage (V) 5 1.8-5.5 1.62-3.63 4.5-5.5
Program Memory (KB) 35 32 256 256
CPU Speed (MIPS) 20 16
I/O Pins 20 23 38 86
I2C Busses 2 1 6 (UART or I2C) 1
UART Pin Sets 1 1 6 (UART or I2C) 4
ADC Channels 7 6 14 16

The ATmega 328P has too little memory, only 1 I2C bus, and only 6 ADC channels so this microprocessor
is not an option. The ATSAMD21G18 has 6 serial communication interfaces which can be configured
as either UART or I2C so this is very useful. However, its working voltage is too low as it had already
been decided that the working voltage of all components would be 5V. The ATmega2560 is sufficient on
all parameters except that it has only one I2C bus. This is problematic as the microcontroller should be
slave for the ZebroBus and master for its own sensors, which requires two separate I2C busses. None of

8.3 Designing the PCB 41

these microcontrollers are ideal, but it was decided to go with the ATmega2560 because it is possible to
use regular I/O pins for a software implementation of I2C.

8.3 Designing the PCB

To design the PCB, it was recommended by the supervisor to use KiCad. First the schematic was made,
then the appropriate footprints were added and the routing was done. After feedback from the supervisor,
certain elements were adjusted. Note that at this point in time, the design of the PCB is not yet completely
finished and still needs some minor adjustments.

(a) Schematic of the PCB (b) Front copper layer of PCB

Figure 8.1: Schematic and front copper of PCB.
Note that this figure only serves to give an impression of the PCB design. A larger version of these figures can be
found in the appendix.

The entire PCB is 65 mm X 65 mm. This means it will easily fit into the module. The Raspberry Pi will
be mounted on the bottom half of Figure 8.1b to save space; because of this, all the connectors are at the
top half so they are still accessible. In hindsight, it may have been useful to make the PCB bigger or place
some connectors on the bottom because there is some lack of space in this version.

In a PCB like this, one concern is electrostatic discharge caused by someone touching the PCB, which
could damage the microcontroller. To prevent this, some ESD protection was used. The ESD protection
consists of a capacitor in parallel with a resistor connected between the screw holes and ground. There
are also some transient voltage suppression diodes on certain pins which will be touched often, such as the
pins used for debugging.

To filter noise on the ground and VCC inputs of the microcontroller, decoupling capacitors were placed
between each pair.

The laser operates on 5V, but needs to be controlled by the Raspberry Pi. To achieve this, there is a laser
signal as input to the PCB which goes to the base of a transistor via a resistor. This laser signal is then
amplified by the transistor to 5V, which is put on the laser output pin.

42 PCB

Figure 8.2: A 3D render of the PCB

8.4 Breakout Board

As mentioned in section 8.1, the lightsensor and humiditysensor cannot be inside the enclosure as they
need to be in contact with outside air and light. Therefore, it was decided that these a second, smaller PCB
would be created to act as breakout board for these sensors.

These sensors also needed some other components. An LDO was required in order to convert the normal
5V to 3.3V for the SHT20 (humidity sensor). Similarly, a level shifter was needed to also convert the I2C
lines (which are standard at 5V in our case) to 3.3V and vice-versa.

(a) Schematic of the breakout board (b) Front copper layer of breakout board

Figure 8.3: Schematic and front copper of breakout board.
Note that this figure only serves to give an impression of the PCB design. A larger version of these figures can be
found in the appendix.

8.5 Manufacturing of PCBs 43

8.5 Manufacturing of PCBs

Both the large PCB containing the microprocessor, and the smaller PCB with the light- and humiditysensor,
need to be manufactured. In discussion with the supervisors, it was decided that it would be fastest and
cheapest to make these PCBs on the milling machine present in the faculty for the prototype. Later on,
when higher quantities of these PCBs are needed, it may be beneficial to use a PCB manufacturer. At this
point in time, only a simple breakout board for the humiditysensor (different to the one described above)
has been milled with success. In the near future, the two PCBs described above will be finalized, milled, the
appropriate components will be soldered, the microprocessor programmed, and everything will be tested.
Once the design is complete, a list of components will be generated to provide an overview of what should
be soldered where on the PCBs.

44 PCB

Chapter 9

Conclusion

9.1 Conclusion

For this thesis, a submodule has been designed that does a selection of the tasks of the complete module.
In combination with the other submodules (see [2] and [3]), the module fulfills the requirements laid out in
chapter 2.

The submodule system developed in this thesis suffices the requirements EM-1 and EM-2 in section 2.2 as
it is able to detect obstacles and get a rudimentary sense of its surroundings, it can detect cliffs by detecting
an increase in measured distance to the ground. Also, hardware and software were designed and developed
to make it work. Not a specific requirement, but according to the stated criteria, a PCB was designed to
integrate the electronics and an enclosure to make it easily attachable and replaceable.
Requirement EM-3 proved more difficult to implement with the ultrasonic distance sensor; it is only par-
tially working as is described in section 6.6. Fortunately the camera system developed by a different
subgroup is better at detecting scalability [2].
Next to developing a module, several requirements with respect to the execution and documentation were
set, also in chapter 2, namely BT-1, BT-2, BT-3 and BT-4. During this project, BT-2, BT-3 and BT-4 were
achieved. BT-1, developing a test bench and doing a run has also been done to a certain extent (the test
results are found in section 6.6), but it should be noted that at this time none of the Zebros can walk due to
circumstances outside of our control. Thus from this report it can be concluded that the module works, but
it was never tested on an operational Zebro.

Nevertheless, with the results of this project accompanied by documentation, a robust foundation has been
laid out for anyone to improve upon.

9.2 Recommendations & Future Work

From the conclusion, it should be clear that testing the module on a walking Zebro would be a logical next
step for anyone continuing with what has been developed thus far. As of now, it is not exactly clear how
the modules’ sensors and devices will react to the specific movements of the Zebro.

Another idea that could be worked out in the future is to let the ultrasonic sensor do a height and/or steep-
ness estimation of an object in some way, as to see whether it’s scalable or not. This could be done by, for
example, rotating the US sensor vertically as well as horizontally. Also, some rudimentary motion checking
could be done with this sensor if more memory is added to the module, by keeping previous measurements
in the memory and calculating the speed at which obstacles are approaching the Zebro. One could also
try to let the Sharp sensors discern between slopes downwards and upwards, instead of only looking for
cliffs. Since the sensors are already looking at the distance between the module and the ground, a smaller

46 Conclusion

distance could mean a slope upwards and a larger distance a slope downwards or, in the extreme case, a cliff.

Lastly, the behavior of the Zebro is something that needs a lot of developing. The module discussed in
this document focuses on gathering information about the Zebro’s environment, but it does not do much in
the sense of processing that information, except for some error-correction. What decision the Zebro then
makes based on the information received by the sensors is a very important topic which still needs a lot of
work.

Appendix A

PCB Files

Figure A.1: Front copper of breakout PCB

Figure A.2: Back copper of breakout PCB

48 PCB Files

Figure
A

.3:
Schem

atic
ofbreakoutPC

B

49

Figure A.4: Front copper of PCB

Figure A.5: Back copper of PCB

50 PCB Files

Figure
A

.6:
Schem

atic
ofPC

B

Appendix B

Technical Drawings

 268

 260,31

 243,46

 60

 R34
 R37

 30° 60°

 75

3

 196
 168,92

 135,50

 98
 66

A
A

B
B

C
C

D
D

E
E

F
F

G
G

H
H

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

DRAW
N

C
HK'D

A
PPV

'D

M
FG

Q
.A

UN
LESS O

THERW
ISE SPEC

IFIED
:

D
IM

EN
SIO

N
S A

RE IN
 M

ILLIM
ETERS

SURFA
C

E FIN
ISH:

TO
LERA

N
C

ES:
 LIN

EA
R:

 A
N

G
ULA

R:

FIN
ISH:

D
EBURR A

N
D

BREA

K SHA
RP

ED
G

ES

N
A

M
E

SIG
N

A
TURE

D
A

TE

M
A

TERIA
L:

D
O

 N
O

T SC
A

LE D
RA

W
IN

G
REVISIO

N

TITLE:

D
W

G
 N

O
.

SC
A

LE:1:1
SHEET 1 O

F 1

A
2

W
EIG

HT:

ExtrusiebodyBovenkant

Figure B.1: Technical Drawing of the Zebro body (top), showing the dimensions.

52 Technical Drawings

60

 141.84

 75

 70

 70

 7 46.17

 109.54

TO
P

 56.26

 21

 12.50

 5

 7.99

FRO
N

T
LEFT

A
A

B
B

2 2

1 1

D
O

 N
O

T SC
A

LE D
RA

W
IN

G

M
A

IN
 EN

C
LO

SURE
SHEET 1 O

F 1

UN
LESS O

THERW
ISE SPEC

IFIED
:

SC
A

LE: 1:2
W

EIG
HT:

REV
D

W
G

. N
O

.

A SIZE

TITLE:

N
A

M
E

D
A

TE

C
O

M
M

EN
TS:

Q
.A

.

M
FG

 A
PPR.

EN
G

 A
PPR.

C
HEC

KED

D
RA

W
N

FIN
ISH

M
A

TERIA
L: PLA

 (3D
 PRIN

TED
)

IN
TERPRET G

EO
M

ETRIC
TO

LERA
N

C
IN

G
 PER: M

M

D
IM

EN
SIO

N
S A

RE IN
 M

M
TO

LERA
N

C
ES:

FRA
C

TIO
N

A
L

A
N

G
ULA

R: M
A

C
H

 BEN
D

TW

O
 PLA

C
E D

EC
IM

A
L

THREE PLA
C

E D
EC

IM
A

L

A
PPLIC

A
TIO

N

USED
 O

N
N

EXT A
SSY

PRO
PRIETA

RY A
N

D
 C

O
N

FID
EN

TIA
L

THE IN
FO

RM
A

TIO
N

 C
O

N
TA

IN
ED

 IN
 THIS

D
RA

W
IN

G
 IS THE SO

LE PRO
PERTY O

F
<IN

SERT C
O

M
PA

N
Y N

A
M

E HERE>. A
N

Y
REPRO

D
UC

TIO
N

 IN
 PA

RT O
R A

S A
 W

HO
LE

W
ITHO

UT THE W
RITTEN

 PERM
ISSIO

N
 O

F
<IN

SERT C
O

M
PA

N
Y N

A
M

E HERE> IS
PRO

HIBITED
.

SO
LID

W
O

RKS Educational Product. For Instructional U
se O

nly

Figure B.2: Technical drawing of the main enclosure, showing the dimensions.

53

 75

 75

71

67

 33.23
 2

 2

 11
 17.12

 72

A
A

B
B

2 2

1 1

D
O

 N
O

T SC
A

LE D
RA

W
IN

G

LID
_HO

O
DSHEET 1 O

F 1

UN
LESS O

THERW
ISE SPEC

IFIED
:

SC
A

LE: 1:1
W

EIG
HT:

REV
D

W
G

. N
O

.

A SIZE

TITLE:

N
A

M
E

D
A

TE

C
O

M
M

EN
TS:

Q
.A

.

M
FG

 A
PPR.

EN
G

 A
PPR.

C
HEC

KED

D
RA

W
N

FIN
ISH

M
A

TERIA
L: PLA

 PLA
STIC

 (3D
 PRIN

TED
)

IN
TERPRET G

EO
M

ETRIC
TO

LERA
N

C
IN

G
 PER:

D
IM

EN
SIO

N
S A

RE IN
 M

M
TO

LERA
N

C
ES:

FRA
C

TIO
N

A
L

A
N

G
ULA

R: M
A

C
H

 BEN
D

TW

O
 PLA

C
E D

EC
IM

A
L

THREE PLA
C

E D
EC

IM
A

L

A
PPLIC

A
TIO

N

USED
 O

N
N

EXT A
SSY

PRO
PRIETA

RY A
N

D
 C

O
N

FID
EN

TIA
L

THE IN
FO

RM
A

TIO
N

 C
O

N
TA

IN
ED

 IN
 THIS

D
RA

W
IN

G
 IS THE SO

LE PRO
PERTY O

F
<IN

SERT C
O

M
PA

N
Y N

A
M

E HERE>. A
N

Y
REPRO

D
UC

TIO
N

 IN
 PA

RT O
R A

S A
 W

HO
LE

W
ITHO

UT THE W
RITTEN

 PERM
ISSIO

N
 O

F
<IN

SERT C
O

M
PA

N
Y N

A
M

E HERE> IS
PRO

HIBITED
.

SO
LID

W
O

RKS Educational Product. For Instructional U
se O

nly

Figure B.3: Technical drawing of the lid of the enclosure, showing the dimensions.

54 Technical Drawings

 25

 43
 45

17

17

 4.50

 4.50

1.50

 4.66

 16

 25

 13 3
 25.00°

 49

 13

 TRUE R0.30

A
A

B
B

2 2

1 1

D
O

 N
O

T SC
A

LE D
RA

W
IN

G

HC
-SR04 M

O
UN

TSHEET 1 O
F 1

UN
LESS O

THERW
ISE SPEC

IFIED
:

SC
A

LE: 1:1
W

EIG
HT:

REV
D

W
G

. N
O

.

A SIZE

TITLE:

N
A

M
E

D
A

TE

C
O

M
M

EN
TS:

Q
.A

.

M
FG

 A
PPR.

EN
G

 A
PPR.

C
HEC

KED

D
RA

W
N

FIN
ISH

M
A

TERIA
L: PLA

 PLA
STIC

 (3D
 PRIN

T)

IN
TERPRET G

EO
M

ETRIC
TO

LERA
N

C
IN

G
 PER:

D
IM

EN
SIO

N
S A

RE IN
 M

M
TO

LERA
N

C
ES:

FRA
C

TIO
N

A
L

A
N

G
ULA

R: M
A

C
H

 BEN
D

TW

O
 PLA

C
E D

EC
IM

A
L

THREE PLA
C

E D
EC

IM
A

L

A
PPLIC

A
TIO

N

USED
 O

N
N

EXT A
SSY

PRO
PRIETA

RY A
N

D
 C

O
N

FID
EN

TIA
L

THE IN
FO

RM
A

TIO
N

 C
O

N
TA

IN
ED

 IN
 THIS

D
RA

W
IN

G
 IS THE SO

LE PRO
PERTY O

F
<IN

SERT C
O

M
PA

N
Y N

A
M

E HERE>. A
N

Y
REPRO

D
UC

TIO
N

 IN
 PA

RT O
R A

S A
 W

HO
LE

W
ITHO

UT THE W
RITTEN

 PERM
ISSIO

N
 O

F
<IN

SERT C
O

M
PA

N
Y N

A
M

E HERE> IS
PRO

HIBITED
.

SO
LID

W
O

RKS Educational Product. For Instructional U
se O

nly

Figure B.4: Technical drawing of the ultrasonic sensor mount, showing the dimensions.

Appendix C

Price List

Table C.1: Price List for all components in submodule

Component Part number # ¤/ 10 ¤/ 100
Re-

seller
NL

¤/ 100 Reseller World

Buck Converter 173010578 1 8.32 6.70 Farnell 0.50 AliExpress
Temperature sensor MCP9701-E/TO 4 0.94 0.712 Farnell 0.712 Farnell

Gyro/accelero MPU-6050 1 7.24 6.97 Farnell 2.30 DX.com
Light intensity sensor LDR 1 0.871 0.743 Farnell 0.045 AliExpress

Humidity sensor SHT21 1 4.10 3.74 Farnell 1.86 AlieExpress
Speaker ABT-414-RC 1 1.81 0.896 Farnell 0.09 AliExpress

Distance sensor HC-SR04 1 3.75 3.55 Antratek 0.79 AliExpress

Cliff sensor GP2Y0A21YK0F 2 8.66 7.18 Farnell 3.45 AliExpress

Laser KY-008 1 1,95 1,95
hobby-
elec-

tronica
0.67 AliExpress

Pi Camera 1 17,97 17,97 Farnell 17,78 AliExpress

Raspberry Pi Zero W 1 11 11
Kiwi
Elec-
tronic

11 Kiwi Electronic

SD Card for RPi (8 GB) 1 7,40 7,40
Kiwi
Elec-
tronic

5 AliExpress

Pi Camera (long) flex cable 1 4,43 3,93
Kiwi
Elec-
tronic

1,70 AliExpress

Microcontroller ATmega2560 1 12.67 10.51 Farnell 3.80 AliExpress
loose components PCB Various 1 5.82 4.55 Farnell 4.55 Farnell

PCB Manufacturing 1 8.82 2.89
Euro-
Cir-
cuits

0.66 ALLPCB

Plastic Enclosure 1 13.14 11.68 3Dhubs 11.10 3Dhubs (China)

130.37 111.68 71.59

56 Price List

Bibliography

[1] P. De Vaere and D. Booms, “Zebrobus,” Internal documentation, Delft University of Technology The
Zebro Project, May 2017.

[2] O. Oosterlee and S. Peterse, “Obstacle detection using laser triangulation and opticalflow,” Jun 2017.

[3] P. Goris and S. van Leeuwen, “Safety and sensor submodule of the environment observation module,”
Jun 2017.

[4] C. Verhoeven, E. Hakkenes, and D. Booms, Research and Development of Environment Observation
Module for Nano Zebro, Zebro Team, EEMCS Faculty Delft University of Technology.

[5] A. M. Kassim, H. I. Jaafar, M. A. Azam, N. Abas, and T. Yasuno, “Performances study of distance
measurement sensor with different object materials and properties,” 2013 IEEE 3rd International
Conference on System Engineering and Technology, p. 281, Aug 2013.

[6] M. V. Paulet, A. Salceanu, and O. M. Neacsu, “Ultrasonic radar,” Proceedings of the 2016 Interna-
tional Conference and Exposition on Electrical and Power Engineering, p. 551, Oct 2016.

[7] T. Stănescu, A. Mondoc, and V. Dolga, “Probabilistic aspects in mobile robots navigation,” Romanian
Review Precision Mechanics, Optics and Mechatronics, no. 45, pp. 125–130, Jan 2014.

[8] “What is different about the sharp sensor?” http://education.rec.ri.cmu.edu/content/electronics/boe/
ir sensor/4.html, Carnegie Mellon Robotics Academy, accessed: 6 2017.

[9] Ultrasonic Ranging Module HC - SR04, Elec Freaks.

[10] PING))) Ultrasonic Distance Sensor, Parallax Inc., Feb 2013, rev. 2.0.

[11] “Add 6 ultrasonic distance sensors to existing raspberry pi robot,” http://www.instructables.com/id/
Add-6-Ultrasonic-Distance-Sensors-to-Existing-Rasp/, Instructables.com, accessed: 6 2017.

[12] Distance Measuring Sensor Unit GP2Y0A21YK0F, SHARP Corporation, Dec 2006.

[13] “3521 0 - sharp distance sensor (10-80cm),” http://www.phidgets.com/products.php?product id=
3521, Phidgets Inc., accessed: 6 2017.

[14] D. Nedelkovski, “Arduino radar project,” http://howtomechatronics.com/projects/
arduino-radar-project/, July 2015, accessed: 6 2017.

[15] Towerpro MG90 Micro Servo, Phidgets Inc.

[16] “Neopixel ring - 24 x ws2812 5050 rgb led,” https://www.sparkfun.com/products/12665, SparkFun
Electronics, accessed: 6 2017.

[17] “Pixel reference,” https://github.com/FastLED/FastLED/wiki/Pixel-reference, FastLED/FastLED
Wiki, GitHub, accessed: 6 2017.

http://education.rec.ri.cmu.edu/content/electronics/boe/ir_sensor/4.html
http://education.rec.ri.cmu.edu/content/electronics/boe/ir_sensor/4.html
http://www.instructables.com/id/Add-6-Ultrasonic-Distance-Sensors-to-Existing-Rasp/
http://www.instructables.com/id/Add-6-Ultrasonic-Distance-Sensors-to-Existing-Rasp/
http://www.phidgets.com/products.php?product_id=3521
http://www.phidgets.com/products.php?product_id=3521
http://howtomechatronics.com/projects/arduino-radar-project/
http://howtomechatronics.com/projects/arduino-radar-project/
https://www.sparkfun.com/products/12665
https://github.com/FastLED/FastLED/wiki/Pixel-reference

58 BIBLIOGRAPHY

[18] P. Burgess, “Using neopixels and servos together: An introduction to avr peripherals,” https:
//learn.adafruit.com/neopixels-and-servos/overview, Adafruit Learning System, Adafruit Industries,
accessed: 6 2017.

[19] Deci Zebro module interface specifications, TU Delft Robotics Institute, Jan 2017.

[20] 8-bit AVR Microcontrollers ATmega328/P, Atmel Corporation, Nov 2016.

[21] 32-bit ARM-Based Microcontrollers SAM D21E / SAM D21G / SAM D21J, Microchip Technology
Inc, Jan 2017.

[22] 8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash, Atmel Corporation,
Feb 2014.

https://learn.adafruit.com/neopixels-and-servos/overview
https://learn.adafruit.com/neopixels-and-servos/overview

	Introduction
	General
	About the Zebro Team
	Project Organization
	Organization within the project group
	Organization within the faculty
	Communication with supervisors

	Program of Requirements
	General criteria set by the Zebro team
	Discrete requirements for the module set by the supervisors
	Thesis Requirements
	Time Constraints
	Interface with the Zebro body
	Physical dimensions
	Electronic interface

	State-of-the-art
	Obstacle Detection
	Problem Description
	Potential Sensors
	Camera
	LIDAR
	Feelers
	Infrared
	Ultrasonic

	Ultrasonic Sensor Testing & Comparison
	HC-SR04
	Parallax Ping
	Comparison
	Configuration

	Cliff Detection
	Problem Description
	Infrared Sensor Testing
	Testing
	Mounting

	Implementation on Arduino
	Main Function
	Cliff Detection
	Obstacle Detection & Servo: The Distance Class
	Reading Sensor Data
	Visual Radar
	Integrating code
	Error Correction

	LED Ring
	Servo/LED Interrupt Issue
	Testing & Practical Issues

	Module Enclosure
	Requirements
	Considerations from within the project group
	General considerations

	Designing
	Bottom plate
	Mounting the IR sensors
	Mounting the PI camera & laser
	Mounting the PCB's
	Mounting the Ultrasonic sensor & the Servomotor
	Mounting the LED-ring
	Mounting the external temperature sensor, the light sensor & the humidity sensor
	Mounting the internal temperature sensor, the accelerometer and gyroscope

	PCB
	Problem Description
	Possible Microcontrollers
	Designing the PCB
	Breakout Board
	Manufacturing of PCBs

	Conclusion
	Conclusion
	Recommendations & Future Work

	PCB Files
	Technical Drawings
	Price List
	Bibliography

