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Abstract
In this study, we explore several integral and outer length scales of turbulence which can 
be formulated by using the dissipation of temperature fluctuations ( � ) and other relevant 
variables. Our analyses directly lead to simple yet non-trivial parameterizations for both 
spatially-averaged �  and the structure parameter of temperature ( C2

T
 ). For our purposes, 

we make use of high-fidelity data from direct numerical simulations of stratified channel 
flows.

Keywords Integral length scale · Outer length scale · Ozmidov scale · Stable boundary 
layer · Structure parameter

1 Introduction

The molecular dissipation of temperature fluctuations ( � ) is an important variable for char-
acterizing turbulent mixing in various environmental flows. It is frequently used in micro-
meteorology (e.g., [66]) and atmospheric optics (e.g., [43]). Furthermore, any higher-order 
closure model requires solving a prognostic equation or a diagnostic parameterization 
for ensemble-averaged �  (refer to [15, 36, 40, 65]) .

Over the years, a number of studies focused on the correlation between turbulent kinetic 
energy dissipation rate ( � ) and � (e.g., [2, 5–7, 29, 69]). In addition, some papers reported 
on the probability density function, spatio-temporal intermittency and anomalous scaling 
of � (e.g., [6, 52, 54]). Often, � has been found to be more intermittent (commonly quanti-
fied by the multifractal scaling exponents) and non-Gaussian than � (e.g., [50, 54]).

Most of these previous studies primarily focused on the instantaneous, localized traits of 
the dissipation fields. Instead, we are interested to better quantify their spatially averaged 
characteristics. Towards this goal, we first investigate the statistical properties of several 
length scales which can be formulated based on �  and other relevant variables. Based on 
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these findings, we then derive simple parameterizations for �  and temperature structure 
parameter ( C2

T
 ). For all the analyses, we utilize a direct numerical simulation (DNS) data-

base of stably stratified flows which is discussed in the following section.

2  Direct numerical simulation

Recently, for the parameterization of optical turbulence, He and Basu [31] created a DNS 
database using a massively parallel DNS code, called HERCULES [30]. The DNS runs 
were conducted by solving the normalized Navier–Stokes and temperature equations, as 
shown in Eqs. 1–3 (using Einstein’s summation notation):

where un and xn are the normalized velocity and coordinate vectors, respectively, with the 
subscript  i  denoting the ith vector component, tn is the normalized time, pn is the normal-
ized pressure, �P is the streamwise pressure gradient driving the flow, and �n is the normal-
ized potential temperature. The bulk Richardson number is denoted by:

where g denotes the gravitational acceleration, and �top and �bot represent potential temper-
ature at the top and the bottom of the channel, respectively. Pr = �∕k = 0.7 is the Prandtl 
number with k being the thermal diffusivity, and Reb =

Ubh

�
 is the bulk Reynolds number 

with h, Ub , and � being the channel height, the bulk (averaged) velocity in the channel, and 
the kinematic viscosity, respectively. The bulk Reynolds number was fixed at 20,000 for all 
the simulations.

The computational domain size for all the DNS runs was Lx × Ly × Lz = 18h × 10h × h . 
The domain was discretized by 2304 × 2048 × 288 grid points in streamwise, spanwise, 
and wall-normal directions, respectively. A total of five simulations were performed with 
gradual increase in the temperature difference between the top and bottom walls (effec-
tively by increasing Rib ) to mimic the nighttime cooling of the land-surface. The normal-
ized cooling rates (CR), �Rib∕�Tn , ranged from 1 × 10

−3 to 5 × 10
−3 ; where, Tn is a non-

dimensional time ( = tUb∕h).
All the simulations used fully developed neutrally stratified flows ( Rib = 0 ) as initial 

conditions and evolved for up to Tn = 100 . The simulation results were output every 10 
non-dimensional time. To avoid spin-up issues, in the present study, we only use data for 
the last five output files (i.e., 60 ≤ Tn ≤ 100 ). Furthermore, we only consider data from the 
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region 0.1h ≤ z ≤ 0.5h to discard any blocking effect of the surface or avoid any laminari-
zation in the upper part of the open channel. Vertical profiles and some basic statistics from 
these simulations have been documented in “Appendix 3”.

The mean dissipation of turbulent kinetic energy and temperature fluctuations are com-
puted as follows: 

 In the above equations, and in the rest of the paper, the “overbar” notation is used to denote 
mean quantities. Horizontal (planar) averaging operation is performed for all the cases. The 
“prime” symbol is used to represent the fluctuation of a variable with respect to its planar 
averaged value.

In a recent paper, Basu et al. [10] utilized this DNS database to derive parameterizations 
for � . In the present work, the focus is placed on � .

3  Integral length scales

From the DNS-generated data, we first calculate two different integral length scales as 
follows: 

 where e and �2

�
 denote turbulent kinetic energy (TKE) and the variance of temperature, 

respectively.
Based on the original ideas of Taylor [58], both [49, 59] provided a heuristic derivation 

of L . Given TKE ( e ) and mean energy dissipation rate ( � ), an associated integral time scale 
can be approximated as e∕� . One can further assume 

√

e to be the corresponding velocity 
scale. Thus, an integral length scale can be approximated as e3∕2∕� . Using dimensional 
arguments, an analogous length scale L� can be formulated based on temperature fluctua-
tions [1, 68].

In the top-panels of Fig. 1, normalized values of L and L� are plotted against the gradi-
ent Richardson number ( Rig = N2∕S2 ); where, N is the Brunt–Väisäla frequency and S is 
the magnitude of wind shear. In these plots, we have marked four specific points based on 
the data from DNS run with imposed cooling rate of 10−3 to better understand the effects of 
height and stability on the integral length scales. The points p

1
 and p

2
 represent data from 

z∕h = 0.1 and z∕h = 0.5 , respectively at non-dimensional time ( Tn ) of 60. Similarly, q
1
 and 
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q
2
 are associated with data from z∕h = 0.1 and z∕h = 0.5 , respectively at non-dimensional 

time ( Tn ) of 100.
Physically, one would expect the integral scales to be increasing with height as long 

as the eddies feel the presence of the surface (near-neutral or weakly stable condition). 
For very stable conditions, the eddies no longer feel the presence of the surface. In the 
atmospheric boundary layer literature, such a situation is known as the z-less condition 
[28, 64]. Under the influence of strong stability, the integral length scales become more-
or-less independent of the height above the surface.

From Fig. 1, it is clear that the integral length scales increase with height and they 
slowly decrease with time in all the simulations due to the increasing stability effects. 
Simulations with higher cooling rates have smaller integral length scales. Some of these 
runs (e.g., CR = 5 × 10

−3 ) exhibit z-less behavior due to strong stability effects.
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Fig. 1  Top panel: integral length scales as functions of gradient Richardson number. Both the length scales 
are normalized by the height of the open channel (h). Bottom-left panel: scatter plot of L versus L� . Bot-
tom-right panel: normalized �  as a function of normalized � , e , and �2

�
 . Please refer to Eq. 7. Simulated 

data from five different DNS runs are represented by different colored symbols in these plots. In the leg-
ends, CR represents normalized cooling rates
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Given the similar trends of normalized L and L� , they are plotted against each other 
in the bottom-left panel of Fig. 1. There is (approximately) a linear relationship between 
these length scales. If L ∝ L� , it is straightforward to derive from Eqs. 6:

This relationship was first reported by Béguier et al. [11] for shear flow turbulence. In a 
follow-up study, Elghobashi and Launder [22] hypothesized that the similarity of the gen-
eration processes of TKE and scalar variance is at the root of this intriguing relationship. In 
contrast to shear flows, they did not find Eq. 7 to hold for thermal mixed layer.

In the bottom-right panel of Fig. 1, we demonstrate the approximate validity of Eq. 7. 
Linear least-square regression with bootstrapping [21, 42] is used to estimate the slope of 
the fitted line. Given that the collapse of the data points is quite reasonable, the relationship 
� = 1.74�

�2

�

e
 might be useful for practical applications.

Please note that the appearance of the Prandtl number (Pr) in Fig. 1 (bottom-right panel) 
is due to the normalization of variables in DNS; “Appendix  2” provides further details. 
Throughout the paper, the subscript “n” is used to denote a normalized variable.

4  Outer length scales

Both shear and buoyancy prefer to deform larger eddies compared to smaller ones [16, 34, 
39, 53]. Turbulent eddies are not affected by shear and buoyancy if they are smaller than 
the outer length scales (OLSs). Ozmidov ( LOZ ) and Corrsin ( LC ) length scales are the most 
commonly used OLSs in the literature. They are defined as [17, 20, 47]: 

 Eddies which are smaller than LOZ are not affected by buoyancy; similarly, shear does not 
influence the eddies of size less than LC . In other words, the eddies can be assumed to be 
isotropic if they are smaller than both LOZ and LC.

Since L changes across the simulations, the OLS values are normalized by correspond-
ing L values and plotted as functions of Rig in Fig. 2. The collapse of the data from dif-
ferent runs, on to seemingly universal curves, is remarkable for all the cases except for 
Rig > 0.2 . We would like to mention that similar scaling behavior was not found if other 
normalization factors (e.g., h) are used.

Normalized LOZ decreases monotonically with Rig . In contrast, normalized LC barely 
exhibits any sensitivity to Rig (except for Rig > 0.1 ). Even for weakly-stable condition, it is 
less than 20% of L . Based on the expressions of LOZ , LC and Rig , we can write:
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Thus, for Rig < 1 , one expects LC < LOZ ; this relationship is fully supported by Fig. 2. In 
comparison to the buoyancy effects, the shear effects are felt at smaller length scales for the 
entire stability range considered in the present study.

Dissipation rate of turbulent kinetic energy is used in the definitions for both LOZ and 
LC . However, it is also possible to formulate OLSs based on the dissipation rate of tem-
perature fluctuations as follows: 

 where (��∕�z) is the vertical gradient of mean potential temperature and �
0
 is a reference 

potential temperature. These length scales were proposed by Panchev based on dimen-
sional analysis [41, 48]. Characteristics of yet another OLS proposed by Bolgiano [13, 14] 
and Obukhov [46] is discussed separately in “Appendix 1”.

In Fig. 3, the �-based length scale formulations are plotted against Rig . Similar to LOZ , 
the normalized L

1
 monotonically decrease with increasing Rig . Whereas, the normalized L

4
 

increase with Rig in an unphysical manner. It is quite evident that both the normalized L
2
 

and L
3
 scales behave very similar to LC (see right panel of Fig. 2).
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Fig. 2  Ozmidov (left panel) and Corrsin (right panel) length scales as functions of gradient Richardson 
numbers. These length scales are normalized by the integral length scale ( L ). Simulated data from five dif-
ferent DNS runs are represented by different colored symbols in these plots. In the legends, CR represents 
normalized cooling rates
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Given the trends in Fig. 3, we plotted a few inter-relationships of OLSs in Fig. 4. In each 
case, the collapse of DNS-based data on a single curve is excellent. In the case of L

1
-ver-

sus-LOZ plot, the curve is nonlinear. However, in the case of L
2
-versus-LC and L

3
-versus-LC 

plots, the data fall on more-or-less straight lines. The regressed slopes are reported in the 
legends of these plots.

If we assume L
2
≡ LC , based on Eq. 8b and Eq. 10b, it is trivial to arrive at:

Interestingly, the assumption of L
3
≡ LC also leads to the same equation. As a matter of 

fact, this equation can be derived from the budget equations of TKE and temperature vari-
ance with certain assumptions as elaborated below. Assuming steady-state condition, hori-
zontal homogeneity, and neglecting the secondary terms (e.g., transport), we can write: 
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Fig. 3  �-based length scales as functions of gradient Richardson numbers. These length scales are normal-
ized by the integral length scale. Simulated data from five different DNS runs are represented by different 
colored symbols in these plots. In the legends, CR represents normalized cooling rates
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and

 If we apply K-theory, these equations can be further simplified to: 

and
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Fig. 4  Variation of the normalized �-based length scales against the normalized Ozmidov length scale (top-
left panel) and the normalized Corrsin length scale (top-right and bottom-left panels). Bottom-right panel: 
normalized �  as a function of normalized � , S, and (��∕�z) . Please refer to Eq. 11. Simulated data from five 
different DNS runs are represented by different colored symbols in these plots. In the legends, CR repre-
sents normalized cooling rates
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 where KM and KH are eddy viscosity and diffusivity, respectively. By utilizing the defini-
tions of Rig and turbulent Prandtl number ( PrT = KM∕KH ), we can deduce from Eq. 13a 
and Eq. 13b:

Anderson [4] conducted a rigorous statistical analysis of the observational data collected 
at the British Antarctic Survey’s Halley station on the the Antarctic. He avoided the self-
correlation issue and proposed the following empirical relationship for 0.01 < Rig < 0.25:

Clearly, the Rig-dependence of the Prandtl number is rather weak for small values of Rig . 
Similar findings were reported in other experimental and modeling studies (e.g., [35, 38, 
55]).

In the bottom-right panel of Fig. 4, we have plotted Eq. 11 in a normalized form. The 
slope of the fitted line is 2.35. For Rig = 0.2 , according to Eq. 15, PrT ≈ 1 . Thus, the ratio 
2∕(PrT − Rig) is approximately 2.48. When Rig equals to 0.1, PrT ≈ 0.93 following Eq. 15. 
In this case, the ratio 2∕(PrT − Rig) is close to 2.40. These values are not far from the esti-
mated slope of 2.35 in Fig. 4 (bottom-right panel). In other words, our DNS-based results 
are in-line with past observational studies.

5  Structure parameter of temperature ( C2

T
)

Using the DNS database of the current study,  Basu et  al. [10] recently found that 
� = 0.23eS and � = 0.63�2

w
S for 0 < Rig < 0.2 . If we insert these formulations in Eq. 11, 

we get: 

and

 
The top panels of Fig. 5 strongly support the validity of these formulations. The propor-

tionality constants in these equations are found to be equal to 0.55 and 1.47, respectively.
By definition, C2

T
≈ �

−1∕3
�  . The proportionality constant is usually taken equal to 1.6 

[31, 67]. Thus, we can write: 
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and

 In the bottom panels of Fig. 5, we establish that these equations (especially Eq. 17b) nicely 
hold for our DNS-generated data.

Based on theoretical and numerical work, Hunt et al. [32, 33] proposed the shear-based 
length scales, LH ≡

(

e
1∕2

S

)

 and LH ≡

(
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 , as the characteristic length scales for 
0 < Rig < 0.5 . Thus, we can re-write Eqs. 17 as:
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Fig. 5  Top panels: normalized �  as a function of normalized e , �2

w
 , S, and (��∕�z) . Please refer to Eqs. 16. 

Bottom panels: normalized �−1∕3�  as a function of normalized e , �2

w
 , S, and (��∕�z) . Please refer to 

Eqs. 17. Simulated data from five different DNS runs are represented by different colored symbols in these 
plots. In the legends, CR represents normalized cooling rates
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A very similar equation was proposed by Tatarskii more than 50 years ago [56, 57], albeit 
with an OLS which needs to be prescribed. In the literature, several empirical parameteri-
zations were proposed for this unknown length scale [8, 18, 19, 62]. In this study, based 
on DNS-generated data, we demonstrate that the outer length scale in Tatarskii’s equation 
should be equal to LH for 0 < Rig < 0.2.

At this point, we point out an interesting relationship that one can further deduce 
from our findings. If we compare Eq. 7 against Eq. 11, we get:

Equivalently, one can write: 

or,

 where LE is a length scale proposed by Ellison [23]. The dependence of LE on Rig is docu-
mented in the left panel of Fig. 6. In the right panel, we show the one-to-one relationship 
between LE and LH . With the exception of a few data points from the simulation with the 
strongest cooling rate, it is clear that these length scales are linearly related to each other. 
Thus, the following equation can be used as a viable alternative to Eq. 18:
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Fig. 6  Left panel: normalized Ellison length scale as a function of gradient Richardson number. Right 
panel: normalized Ellison length scale as a function of normalized Hunt length scale. Simulated data from 
five different DNS runs are represented by different colored symbols in these plots. In the legends, CR rep-
resents normalized cooling rates
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In the literature, several studies have demonstrated the similarities between the so-called 
Thorpe scale ( LT ; [60, 61]) and LE using observed and simulated data (e.g., [34, 39]). A 
simple heuristic derivation was also provided by Gavrilov et al. [27]. Thus, it is plausible to 
replace LE with LT in Eq. 21:

This equation was proposed by Basu [8] and was validated using observational data from a 
field campaign over Mauna Kea, Hawaii.

In summary, we conjecture that Eqs.  18,   21, and   22 are all valid parameterizations 
for C2

T
 as long as Rig does not exceed 0.2. For larger values of Rig , a different length scale 

might be more appropriate; our present DNS runs cannot shed light on such a strong stabil-
ity regime.

6  Concluding remarks

In this study, we analyze DNS-generated data to characterize several integral and outer 
length scales. From these results, we propose simple parameterizations for � and C2

T
 when 

gradient Richardson number is less than 0.2. In the continuously turbulent atmospheric sta-
ble boundary layer, Rig is usually less than 0.2 [26, 45]. Thus, the proposed parameteriza-
tions should be suitable for certain practical boundary layer problems. However, they will 
have limited applications for intermittently stable conditions.

In closing, we would like to emphasize the importance of Eq. 19. To the best of our 
knowledge, it was first reported by Fulachier and Dumas [25] from boundary layer experi-
ments over a slightly heated plate. In a latter study, Fulachier and Antonia [24] found this 
formulation to hold for various other types of flows. They even concluded:

It seems therefore reasonable, from both mathematical and physical points of view, 
to seek a relationship, not between momentum and heat fluxes, as in the case with 
the Reynolds analogy, but preferably between the turbulent kinetic energy and the 
temperature variance.

To the best of our knowledge, Eq. 19 is not used in atmospheric boundary layer studies. 
Since our findings are in agreement, we strongly endorse the assertion of Fulachier and 
Antonia [24] and advocate further research on this equation.
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Appendix 1: Bolgiano–Obukhov length scale

Bolgiano [13, 14] and Obukhov [46] independently proposed a buoyancy-range scaling and 
the following OLS based on theoretical arguments:

Several laboratory and numerical studies (e.g., [12, 44]) reported the existence of Bol-
giano-Obukhov scaling in unstable condition. However, studies involving stably stratified 
conditions are rather limited [3, 51]. Recently, [37, 63] reported that the Bolgiano-Obuk-
hov scaling only exists for moderately stable condition. It is non-existent for near-neutral 
and very stable conditions.

In Fig. 7, we show the traits of LBO as a function of Rig . Similar to LOZ and L
1
 , this length 

scale also shows a decreasing trend with increasing stability. However, the relationship 
between LBO and LOZ is nonlinear. As a consequence, we were unable to derive any simple 
formulation involving � , �  , and other variables.
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Fig. 7  Left panel: normalized Bolgiano length scale as a function of gradient Richardson number. Right 
panel: normalized Bolgiano length scale as a function of normalized Ozmidov length scale. Simulated data 
from five different DNS runs are represented by different colored symbols in these plots. In the legends, CR 
represents normalized cooling rates
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Appendix 2: Normalization of DNS variables

In DNS, the relevant variables are normalized as follows: 

 After differentiation, we get: 

 The gradient Richardson number can be expanded as:

Using the definition of Rib (see Sect. 2), we re-write Rig as follows:

Similarly, N2 can be written as:
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The velocity variances, TKE, and temperature variance can be normalized as: 

(28)N2 = Rib
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Fig. 8  Vertical profiles of normalized potential temperature (top-left panel), longitudinal velocity (top-right 
panel), gradient Richardson number (bottom-left panel), and vertical velocity variance (bottom-right panel). 
Simulated data from five different DNS runs are represented by different colored symbols in these plots. In 
the legends, CR represents normalized cooling rates. All the profiles correspond to Tn = 100
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 Following the above normalization approach, we can also derive the following relation-
ships for the dissipation rate of TKE and variance of temperature fluctuations: 

 We can combine Eqs. 29d, 29e, 30a, and 30b, we can re-write Eq. 7 as follows:

In a similar fashion, we can utilize Eqs.  25c, 25d, 29d, and 30b to re-write Eq.  16a as 
follows:
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Fig. 9  Dependence of vertical and horizontal velocity variances on gradient Richardson number. The vari-
ances are normalized by TKE. Simulated data from five different DNS runs are represented by different 
colored symbols in these plots. In the legends, CR represents normalized cooling rates
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Appendix 3: Supplementary analyses of DNS‑generated data

In Fig. 8, vertical profiles of several key variables are plotted. It is clear that stability mono-
tonically increases with height. As a result, turbulence in the upper part of the domain 
becomes quasi-laminar (especially for the runs with higher cooling rates).

For continuously turbulent stable boundary layers (SBLs), it has been frequently 
observed that Rig stays below 0.2 within the SBL (e.g., [9, 26, 45]). Above the SBL, in the 
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represented by different colored symbols in these plots. In the legends, CR represents normalized cooling 
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free atmosphere, Rig becomes much larger. Similar behavior is noticeable in Fig. 8 (bot-
tom-left panel).

We would like to point out that our DNS results are also in agreement with the cel-
ebrated ‘local scaling’ hypothesis by Nieuwstadt [45]. By utilizing the observational data 
from the Cabauw tower, Nieuwstadt [45] showed that normalized variances remain more 
or less constant for a wide range of stability conditions. Basu and Porté-Agel [9] analyzed 
datasets from field campaigns, wind tunnel, and large-eddy simulations and confirmed the 
original findings of Nieuwstadt. In Fig. 9, normalized variances from our DNS runs are 
shown.

Recently,  Basu et  al. [10] found that for 0 < Rig < 0.2 , � = 0.23eS and � = 0.63�2

w
S . 

Thus, one can easily deduce that �2

w
∕e = 0.365 . This relationship is overlaid on the DNS 

data in the left panel of Fig. 9. Except for the data from the simulation with the highest 
cooling rate, this relationship is reasonably valid. Based on the LES data, [9] reported: 
�2

w
∕e = 0.39 . Our DNS-based result is remarkably close to this previous finding.
The vertical profiles of dissipation rates are shown in the top panel of Fig.  10. As 

expected, the dissipation rates decrease with increasing height. For z∕h < 0.1 , due to the 
viscous effects, the values of the dissipation rates are very high. Thus, for the computations 
of various length scales, we disregarded data from this region.

In our DNS runs, the bulk Reynolds number ( Reb ) is fixed along with the initial tur-
bulence level. Given this setup, the production of shear-generated turbulence remains the 
same across all the simulations. However, the destruction of turbulence due to the buoy-
ancy effects is more predominant for the runs with higher imposed cooling rates. As a 
result, under steady-state condition, the dissipation rates are lower in the simulations with 
higher cooling rates. Such behavior can be clearly seen in both the top and bottom panels 
of Fig. 10.
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