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SUMMARY

Existing work on the pressure fluctuations in turbulent shear flows is
briefly reviewed with special reference to the problem of wall turbulence,

An approximate theory for the pressure fluctuations on the wall under
both a turbulent boundary layer and a wall jet is given and indicates in
the latter case an intensity many times that corresponding to the flow over
a flat plate at zero pressure gradient, as typified by measurements on the
wall of a wind tunnel, Experiments on a wall jet confixrm these predictions
and details of the few preliminary data are presented,

The results from the wall Jet suggest that the intensity of the pressure
fluctuations in the regions of adverse pressure gradient, on wings and bodies
approaching and beyond separation will be higher than in regions of zero
pressure gradient,

Appendices are included which deal with the necessary extensions to
the analysis to £it the velocity correlation functions as measured by
Grent (1958), the effects of time delay and eddy convection,

! To be read at the AGARD symposium on Boundary Layer Research in London,
April 1960, This work was performed under the Ministay of Aviation
Cantract No, 7/GEN/166L/ER3.,
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1. Introduction

A knowledge of the intensity and spectra of the pressure fluctuations
in turbulent shear flows is required in a wide range of aeronautical and
hydrodynamic problems today. Such problems range from aerodynamic noise
generated by turbulent motion, the vibrations of the aircraft skin at high
speeds and the transmission of noise to the cabin and cockpit, to mention
Just a few,

Although work in this area was pioneered by Heisenberg (1948),
Obukhoff (1949), Batchelor (1951) and Kraichnan (1956a and b), it is only
relatively recently that experimental data has been obtained to check the
theoretical data, and to set the pattern for investigations into more
complicated situations, where the theory at the best would be very tentative,
The work of Kraichnan is of particular interest for it deals with pressure
fluctuations in the presence of a mean shear, and also in the case of wall
turbulence, and therefore has direct application to the problem of wall
pressure fluctuations under a turbulent boundary layer. (The earlier work
of Heilsenberg, Obukhoff and Batchelor considered only the case of isotropic
turbulence)., Kraichnan showed that on a wall ‘Fp"i/iz-puni ~ oy, where f

is a factor between 2 and 12, Experimental results obtained by Willmarth
(1959) and Harrison (1958) confirmed Kraichnan's predictions and gave values
of B between 2,5 and 5,0,

The effect of Mach nunber on wall pressure fluctuations, although of
obvious current importance, will not be considered here, Indeed the flow
will be assumed incompressible throughout and the problem of boundaxry layer
noise, that is the noise radiated away from the surface, will hardly be
touched upon, Our attention will mainly be restricted to problems: of wall
turbulence, including the wall jet, and will not consider in the same detail
pressure fluctuations in free turbulence, A review paper covering the items
omitted by the authors, would naturally be of considerable topical interest,
but it was felt that, bearing in mind.the considerable efforts present in
this area today and the present state of flux of knowledge in the subject,
a greater need was for a fundamental appreciation of relatively simple flow
models, The surface over which the fluid flows will be treated as rigid,
and no account will be given of the response of the structure to pressure
fluctuations, e '

The theory of the pressure fluctuations in wall turbulence, including
the wall jet, will be treated on similar lines to the method used by
Kraichnan 1956b), In this method the intensity of the pressure fluctuations
can be obtained once the twoe~point velocity correlations, mean velocity
gradient, and the turbulence intensity and scale are knowm, Experimental
results obtained by Townsend (1956) Laufer (1955) and Grent (1958) will be
used to find p?2 on the wall, TFor the wall Jet the mean flow theory due to
Glauert (1956) will be adopted, together with results in the mean flow by
Bakke (1957) and Bradshaw and Love (1959). The prediction in this case for

P2 will be compared with those obtained from measurements,
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Finally in order to avoid confusion in the theoretical treatment and
the discussion of results, the authors stress that they are dealing with
the problem of pressure fluctuations in a pseudo~incompressible turbulent
shear flow, They prefer, and agree that it is one of personal preference
and not one agreed by convention, to refer to boundary layer noise as the
sound energy radiated away from the turbulent flow, This latter problem
considered by Curle (1955), Phillips (1956) and Doak (1960) though connected
has obvious differences from the present treatment.

2, [Theory of the pressure fluctuations in a shear flow

In most instances where the pressure fluctuations are significant the
fluctuations in the fluid density are significant also, The present problem
is no exception, However since we will be more concerned with the pressure
fluctuations inside the turbulent shear flow, which in our problem will be
an essentially 'low speed flow!, than the noise radiated from it, we may
safely assume that the flow is incompressible, The equations of continuity
and motion are therefore respectively

aui .

-=a=;.- = 0 (1)
i

dou
al 0 _ p. 2

T B, puy Uy = - ox, T M iy (2)

If we teke the time derivative of (1) from the divergence of (2) we obtain
the following equation for the pressure distribution

02 u; u,
2 = - -“—’_’—"“ﬂa

This shows that, whereas in inviscid steady flow the pressure at a point
follows immediately from tae dynamic pressure at the same point, the
pressure at a point in a turbulent flow, since it obeys an equation of
the Poisson type, is governed by fluctuations in velocity throughout the
entire flow and not just at the field point.

In the problem of the wall Jet the mean pressure is approximately
constant everywhere, and the mean velocity field is radially symmetric so
that in temms of cylindrical polar co~ordinates (R, ¢, Z), the velocity

components are given by GR (R, 2), ﬁ¢ = 0 and GZ (Ry 2Z).
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Since equation (3) above can be written alternatively in vector notation as
Vp = =pVe(u,vu (32)

we find on expanding the right hand side and meking the usual 'bomlda:r'y
layer assumption that (see Appendix A)

<.?.1il_3' E)GR au’z aﬁR >

oR " ‘ oR  °* 92 (%)

VZp £ «p

where (ué, uéﬁ . ué) denote the fluctuating components of velocity and
(Tgy Uy T,) the mean values,

o 0%

Bub === << === so that finally we have

3%
gu) ouy
Vp = -20‘5% Y (5)
oy
= =207, “¥F (52)

o
where Thy (Ry2) = '-é—z— is the local mean shear,

This result is similar to that found by Kraichnen (1956b) foar the boundary
layer flow over & flat plate with a mean velocity in the (x,) direction

vexrying with (x,) only, the direction normel to the plate,
In order to simplify the notation, in what follows, we will drop the
subsoripts on 7 and the primes on U, . Thus p and u will now refer to

the fluctuating pressure and velocity respectively, and r is the mean shear,
Thercfore we can write equation (52) in the equivalent form

Mo = e2ormd = =gz Y (6)
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where q (x, t) is the source density, We are here assuming that the

pressure fluctuations dve to the amplifying effect of the mean shear on

the turbulence, are greater than that due to the interaction of the
turbulence on itself, Kraichnan (1956b) justifies the use of this assumption
by showing that, approximately, the former will give rise to a root mean
square value of pressure about 10 db higher over that due to the latter.

The solution of (6) can be found by finding an appropriate Green
funotion, G (x, x'), which satisfies the boundary conditions. Since the

Green function satisfies
e(x,x) = « §(x=x) (7)

where 6(y) is the Dirac delta function, the appropriate solution of (6) is

Pyt = [ ag ey« (¢ B -y o) sy
v S (8)

where V is the total volume occupied by the flow and S is the total area
of the plane over which the fluid flows, provided at same initial time
P and g—% vanish, Here n is the normal to S, measured to the surface

from the volume,

If we write G_ the Green funotion which venishes on the plane 8, G,
the Green function given by

G = G - G,

- [ ] i
] (9)

G = G + G,

+ o i

whexre G:l. is the Green function for the image point in the boundery, Hence

we can find three equivalent solutions of (6), which depend on the particular
choice of Green function, Thus




. e
p(:i, t) = / a6, & + / G, 3, 4 (102)
v S
m—
=qu_av-fp-5n—ds (10b)
A S
oG
— @ - o
“/andv+f<Gom L Jrey as
v S
sevcee (100)
But on S we have
GO = G:'L
(11)
on on
and so (10) can be written altermatively
- 22
p(f,t) _/ q(G°+Gi)dV+2/G° anas (122)
v S
oG,
- [ q(Go-Gi)dv-zf psl a8 (12b)
v S
3 aGo
.-:/ QG a7 + /(G‘o 5!!; “’P'a"'ﬁ"‘) da&s  (12¢)
A S

The particular choice of one of these equations must depend on what is known
about p and %ﬁ on the plane S, Clearly if gﬁ = Oon S we would
choose (122a),



Now the equation of motion in the Z-direction at Z = 0, where u, =u é
= U, = 0, is
o%u,

0 = —gg-hu -;*Z‘; (13)

for the fluctuating quantities and

92L,
0 = y—=2 (14)
0z%
for the mean flow,
But from the equation of continuity
af\z 8uz
5%+ 5 = 0 at 2z =0 (15)
and therefore near the wall
-2 z*  Top 2
'\JZ = e man (‘a-;r% ) +* soecee (16)

L p?

From the measured distribution of “Gz’a near the wall of a flat plate,

channel or pipe Townsend (1956) finds that, (in our notation),
3

o S

23w - X
(az) 3.4 x 1074 oy | (17)

where T W(R) is the wall mean shear stress given by

- <.::z.z> (18)

A
Although (%E ) , as shown by (17) is a very small quantity we are not

immediately justified in putting (3 ) = 0 in (12a).
7=0




—

However, if ¢ , is a typical length over which the velocity is correlated
and «’-”2 a similar length with respect to pressure, we see that the

cantributions to p2 » from the volume and surface integrels in (12a),
are in the ratio

100 €% ; &*
1 2
Now if anything 62 is less than 61 and is certainly not large compared
with ¢ , and so we see that the surface integral in (122) can be neglected

in agreement with Kraichnan's approximation (1956b). Thus we note that
for this problem the solutions (12b) and (12c) are of less value than the
first. .

We therefore write approximately

P t) = 3 / (j-g™" + l>f,~z*l"’>f(z)5%<z> a
v

vocne (19)
on inserting q (’5} t) from (6) into (12a), and noting that
SRR LS, S S S
o+ Gy = 7o < + ~ ) (20)

EXR4 EXEE

~

* : '
vhere y = y (R, ¢4 = Z), and the volume of integration is over the half-
space Z > O,

On the surface of the plane x =(R, ¢, 0) so that

() 2E (5)

T —reass

Plm vy, = 2 —EHIRE g (21)
750 I'?S":X I

and the pressure covariance, for zero time delay between the pressures at
x and x’ respectively, is

~ ~

0* Ry,

———iag dz
P(x;x) = L& // () ) SRR &
s 7=0 T2 I (22)
20 =gl 1% ~% |

~



where the wvelocity covariance is

Ryg = Uy (3 u,(2)

and y = .V(R: $2), z =z (Rlv ¢,9 Z,)-.
If the turbulence is spatially locally homogeneous we ocan put

Ry, (L5 2)

e & B in) (23)
EL JE®
wvhere r = (z~y) and ﬁZZ is the velocity correlation coefficient,

Writing r (rR, T4 rz) we find that (22) becomes

2 az
P(x;x) = =& f/ r(y) rly + 1) == T, ().
Z=0 %50 az?R
2 (y) ['2 (y + 1) e _
59 {gar A LERE

PRI . T

on making the assumption that G; does not change significantly over the
region in which RZZ is different from zero., In effect this is saying that
% does not vary greatly over the entire flow at a given value of R, which is not

a  1t00 unreasonable assumption, If ﬂzz and its derivatives with respect tu rp

venish at infinity, and on the plate, an integration by parts of (24)
leads to

() VE; ()

2 2
a

(= \/r:;(z
: a%( ) uza“)> G (25)

|z - z|

~




Now it must be noted that in this analysis statiomaxry, and nO'b
moving co=ordinates are being used, Also, as stated above P(x S ),

the pressure covariance on the plane Z = O, is that for zero time delay
and inwoives the instantaneous product of the fluctuating pressures at
the points x and x’ respectively, A more logical treatment would be to

consicer the turbulence in a frame of reference moving at some mean, or
convection, speed uc o If in this freme of reference the .turbulence is
assumed to be isotrdpic, not because it is a likelihood in practice, but

mercly to simplify the analysis and to allow results for P(x ; x') to be

easily computed, and to be governed therefore by the longitudinal velocity
correlation coefficient f(r’; 7), where r’ is measured relative to the

moving axes, we can express ﬁZZ (r s T), relative to stationary axes, in
termg of f(r - U, Ty Tr,, r;;7), where T is the time delay

/ P/(r,, Ty Ty3 T+ 7)

(r ‘=“r1-ﬁo T,r,r)

'g{o, o, 0; t)

However when 7 = O we see that f(r) has the seme functional form as f(r’)
end for simplicity it is this case that will, in general, be treated below,
The extension to the case for general values of 7 presents no difficulty
in analysis but only requires pencil, paper, quiet and petience, as
witnessed by the enalyses in Appendices D) and (E),

Equation (25) is the important equation in this paper., It shows
that the pressure covarieance at a point on the wall, due to shear flow
turbulence dominated by the mean flow shear (7), is governed by
twompoint "lateral" velocity correlat:,on coefficient, the mean shea% and
the turbulent intensity,

In equation (25) the integration over y can only be effected when
the wvalues of TV, uZ are known, Now we can ea511y see that the greatest

values of 'V uZ"'! exist in two quite distinct regions of the wall Jjet at
any value of the radius R, These regions are the constant stress region

and the middle of the outer mixing region respectively, On the assumption
that the turbulent inner region of the wall jet possesses the same structural



file:///7itnessed

similarity as the inner region of a flat plate, channel or pipe flow we
have that the mean velocity distribution in this region (known as the
"Law of the Wall") is

- 1 Zu,
u/u r = % an ol A (26)
and - u
g0 e

where u = V7 7p is the sheaxr velocity,

Zu
Equation (26) is known to hold for -=-v-z > 30 and 2/Z < 0.2, where Z_

is the thickness of the shear layer up to the maximum velocity U = u .

K, knomm as the von Karman constant, has a value roughly equal to 0.k,
Since the motion in this inner region must be described by universal
functions of the wall shear stress, T r? and the viscosity, the turbulent

intensity Gé must be proportional to u,z. . From the measurements of
Loufer (1955) in a circular pipe it is found that Uy /uz = a = (28)

8 oonstant over most of the immer region, ( ais of the order of unity).
From equations (27) and (28) we see that

u!

= a T
TV = g (Z%) (29)
2

Zu,
for values of <-—U-z> > 30, Nearer the wall it is found that

7 2 3
r Vaz = 0,009 (-—?—) 2 (30)

and it is interesting to note that the maximum value of

’ fTGZ! occurs Just outside the laminax sub~layer.
In fact it is very close to the region where the total turbulent intensity

(Gﬁ + ﬁ; + G,;) reaches its maximm value, (Fig, 1).
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It is found from (29), (30) that

/:oof(z*) ézb = 0.3 (31)

2 2

-
where £(Z2 ) = T u

»
and Z

\

(Z u/v).

On the other hand it is shown in section (8) that the value of the
mean shear in the outer mixing region is

- 0,616 u
m

(2 - 2
2

(32)

T =
m

where Z1 Z  are the distances to the points of half and maxinum velocity
©

respectively., On the assumption that in this latter region '_u-; « 0,15 w

we find that

2 " 0,0085 u?
£ T et (33)
(21 =2 )

This more or less completes the formal treatment of the pressure
fluctuations in a wall jet, Since the contributions to p? from the inmer
region and the outer mixing region are very different in magnitude
(see (31) and (33)) we will consider them separately,
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3. Pressure fluctuations due to the 'immer region' shear flow

From (25) we found that

—— .—....

VL-
(x ; x') o © ,,a £ /33R<|;_ Q azR<|x/..z|>dz.

but in Appendix B it is shown that

Vo

[% G u5> % ()

d <§R - rR) / 7
= =27 ‘ T dy (34)
Br \z-g/ oo E
where E o 35’ - x , and - ﬁz"’ is assumed to be function of y, only,

As stated above we will assume that the turbulence is .‘LSO"GI‘Op:LG in axes
moving with the convection speed uc, If the time delay is neglected

_ rf’ £’

(_1:) "<f i 2> 63.46 s o rj r& (35)
where £ dis the longitudinal velocity correlation coefficient and

£ = % . This form for ﬁZZ does not agree too well with the experimental

results of Grent (1958) and others. However the errors involved in the
use of (35) can be showvn to be small and in any case avoids the necessity
for grephical or numerical integration of (25),

From (25), (34) end (35) we find that

| 22 [ame N /L. 2T
P(x ; x) = =& u dy, R, (r) (== & —=—=) ar
- T Z=0 T e @ 22 7= \p2 x4 -
r, >0
sewse (36)
vihere |x| = | x|, end the integration with respect to'y, is over the

vhole turbulent flow giving rise to large values of rzu“‘Z", and for
isotropic turbulence




d 2
ﬁzz = <f+5=g->- 'ié:;'_ z, ’ (37)

If the ranges of integration with respect to r are O < r < o3

0 <¢gm and 0 < @ <

'1°a = 2 -y
P(x, 0) = == paf £ dr f - dy, (38)
= s 15 ) ) Yy Wy

where @ is an anisotropy factor which is assumed to have a wvalue of about -}.
If in place of (34) we use the alternative result from Appendix B (equation
B,13) we find that

(0]

%
ul

P(X, O) =
L Z"

& o2 et uZ2 > / rf dr (382)
Q

where < 7""’uz2 > denotes a suitable mean value, Fram a comparison of
(38) with (38a) it is seen that if use is made of (31)

0,6 uST
< T* -*u;r> R mmem————
v &
P
If we now insert f = exp (= T/2p) (39)
with far = & (40)
0 b

into equation (38) we find that, with the aid of (31),

J‘MP(E: O)Z=O 0.12 <Zm {iT > 5 (11)
e ~ . s ° C ~ C
L opu? v S £
m
" Zm u, ¢ ' : , ,
where we have used 4p = 0,4 Z , === = 1600, and o, = 7 /(% ou’ )

is the local skin friction coefficient, This result is similar to that
found by Kraichnan (1956b) for the boundary layer on a flat plate, except
our factor 5 replaces the range 2 to 12 as given by Kraic})nan although

= 4 T

we note that strictly VB( b)/’z'pu; is proportional to o and ]'Zﬁquﬁm .
A

v

— P——

*  This value is obtained from the work of Grant (1958) by noting the
zero point velue of R,, (ry 0, 0) in the region close to the wall,
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Equation (41) can be compared with the results of various exnerimenters
for ardinary boundary layer flow, The measurements of Harrison (1958)
suggest a value of

VPR /E 0wl m 0.0095 = 4.8 o, (42)
while Willmarth (1959) gives

VB /% o = 0,006 = 2,5 c, (43)

Our measurement on the wall of a wind tunnel with a microphone 0,14 in,
diameter and a boundary layer displacement thickness of 0,238 in, gave

YR /Aol = 0.008 = 3.6 ¢ (44

All these results are qualitatively in fair agreement with the theory
and indicate that in a turbulent boundary layer on a flat plate, in zero
pressure gradient, the wall pressure fluctuation arises mainly from
disturbances in the constant stress region., Since Ca changes only slowly

with distance we sce that ff—)“z will only change slowly with increase in x,

Finally we note that owing to the approximate nature of our analysis
we are led to assume that < 72 ~u§> is inversely proportional to £p
with £p = 0,14 Zm. However the more exact analysis given in Appendix C
indicates that Tzl-lg should be averaged over a length of more nearly
0.3 Zm with 4p given by 4p = 0.3 Zm' This does not change the numerical

results quoted above significantly although if anything they bring the
theory more nearly in line with experiment. However the effect on the
spectrum is very marked producing a two to one shift in the frequency
parameter towards the lower frequencies. Further discussion on this
problem is continued in Appendix E, but we conclude this section by
noting that if 4p =~ 0.3 Zm we are not correct in assuming that the wall

pressure fluctuation is dominated by disturbances in the constant stress
region, but rather that the entire boundary layer, and especially the big
eddies, all contribute,
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s Pressure fluctuations due to the !outer mixing region! shear flow

In the outer region of the wall jet the structure of the turbulence
is uninfluenced by the wall, Nevertheless the solution of equation (6)
is still given by (19), for the contribution from the 'image! Green
function must still be included. However the problem is simpler because

—-——

2 u¥ s approximately constant over the region centred about the
Yz

-
middle of the mixing region, Equation (25) therefore reduces to

2 2.2
ki T (x = &)
Mxsx) - - & [0 R F =
=" =220 T % ﬁzz-Tg-§| -
[ EE R ()+5)
If we again put the time lag equal to zero and put (x’ - :E) = O then
Mxin) =R P T [ e (46)
~ 2=0 0
where & is the anisotropy factor,
If further f = exp (= I‘/!&o) (47)
then ' 2
Ba 2 .2 =¢r ¢
P(x ; x) = == p° T o) (48)
= T z=0 15 uz

‘ £
On inserting the values for 7% u, from (33) and putting

¢, = (Z% ) (49)
then
'\,_::2 ~
P Aprn®: « 0,1 (50)
/=0 u

The wvalue obtaincd from our mecasurements is

BHhouz = 0.1 (51)

and indicates that the contribution to V ;E from the outer mixing region
is some ten times that from the constant stress layer,

* This value of 60 corresponds to the halfwwidth of the ocuter mixing region,

At first sight this value seems unduly high but it is in keceping with
the results of the large eddy analysis in Appendix C and the measured
spectra,




This result is not surprising when one remembers that the small shear in
the outer mixing region is acting over a distance many times that of the
entire inner shear layer thickness,

The theoretical value of ‘r-f)‘z/—;—pu; is independent of the radius

(R) end this is confirmed by our experimental results, This altogether
interesting result is we feel most important for it shows that even in a
region of flow, where the velocity changes in the mainstream direction are

laxrge (um ~ 1/R) s the pressure fluctuations are still largely determined

by local conditions only, This agrees with the results of the mean shear
stress on the wall by Bradshaw and Love (1959) (Fig. 2). They showed
that the skin friction coefficient, although slightly higher than for a
flat plate, changed very slowly with increase in radius beyond an inner
radius where the wall jet was being established.

Be The spectrum and space pressure correlation for zero time delay

In sections (3) and (4) above the formal treatment of the pressure
covariance with zero time delay is given, but only the results for the
mean square of the pressure are evaluated in full, However Lilley (1958)
has already evaluated the pressure covariance in free shear flow turbulence,
and as we have scen above the results for wall turbulence will be similar
apart from a numerical factor. From Lilley's results for P(x ; x/) with

f = exp(~ o2 r?), we find (Fig. 3), that P(x;E,0, 0) has a large
negative lbop with a zero crossing point of o 151 ~ 41, On the other
hand P(g_c $ 0, O, E":) is positive for all values of gz and falls to zero
as E,s + o much slower than f(r), as r , » . The isotropic turbulence

model used in evaliating these results is a little too crude to make
camparison with experiment justified, apart from an order of magnitude
basis, yet it is interesting to note that Harrisen (1958) found similarly
_positive values for P(x ; 0, O, é:)’ although the fall off at large

values of g was slower than in our results, However this is what one
=

might expect from the enisotropy in the large scale turbulence modifying
the form of R22( r) at large values of |r |,

The wall pressure spectrum function has been evaluated in Appendix C
taking into account the large eddy structure, and in Appendix E allowing
for convection. In both these cases and also in the free shear flow
turbulence example the spectrum at low frequencies obeys the law

w? exp(~ w?), (Fig. 4). Indeed P(w) must behave like w® near w= 0

in an incompressible fluid. In our wall Jjet experiments we find such a
rise at low frequencies, in contrast with all measurements made in pipes
and on tunnel wall boundary layers, where the flatness of the low frequency
end of the spectrum is most marked.
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Harrison (1958) has also remarked on this flatness of the spectra at low
frequencies and has suggested that, except at the very lowest frequencies
outside the range of the measuring equipment this might be explained in

terms of the intermittency of the boundary layer, However this does not

in itself explain the relatively high energy content in the lower frequencies,

A complete explanation of this phenomenon has not yet been found,
assuming of course that the flatness in the low frequency end of the spectra
is not associated with spurious wind tunnel effects, such as fan noise,
flow noise extra and zbove the boundary layer noise, or tunnel circuit
rcsonance, However a clue to the explanation may come from an analysis
of results similar to the space-time correlations of wall pressure obtained
by Willmarth (1959)", These data show, as explained in Avnpendix D, that
the spatial pressure correlation for optirmum time delay (i.e. roughly
the autocorrelation in axes moving with the mean convection speed of the
eddies) does not fall to negative values at large separation distances in
contrast to the autocorrelation measured in axes fixed in the wall, This
means theat the life times of the big eddies are being extended on account
of the growing scale associated with the slow increase in the boundary
layer thickness, This consequent modification of the autocorrelation in
moving axes at lorge times could produce the necessary 1if't to the low
frequency cnd of the spectra although a fall off like ®® rmust exist at
the wvery lowest frequencies,

On the other hand it would eppear that in the case of the wall jet,
since the increase in shear laoyer thickness is relatively large coupled
vith the rapid fall off in wvelocity with increase in radius, the life time
of the eddy could not be extended in this way., These differences between
the theoretical and experimental spcctra for both the wall jet and boundary
layer are being further investigated.

6, The wall jet ~ Theory of the mecan flow

The wall jet has been studied thcoretically by Glauert (1956) and”
cxperimentally by Bakke (1957) and Bradshaw (1959). Although Glauert
found solutions for both the laminar and turbulent problems only the
turbulent case will be required here, He found that the velocity
distribution in the vicinity of the wall was similarto that in a boundary layer
with zero pressure gradient, In the inmer region one would expect the 'law of the
wall'! to apply but for simplicity Glavert assumed the Blagius distribution

n
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£ - (&
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/ 0,0225 (52)

A . : 3 4= 1 e = T °
vhere u_ is the shear velocity given by u_ J (\ w /;3
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* Results analoguous to these have been obtained by Favre and his co-
workers (1958) for the two-point velocity corrclations with scparation
in the streanwise direction. '
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In the outer regim Glavert evaluated the velocity distribution
numerically and showed that it is slightly fuller than that given by a
(1/7) th power law, The maxinum veloc:.“by occurs at Z/Z1 = 0,125, for

a value of ‘m (24 - 2 ) = L x 10% , where Z1 is the ordinate %o the
point in the léuter mixing region for which ‘UR/U. = 0,5, The value
z/z% = 0,125, where u = u_, differs from that obtained experimentally
by Bakke, but this can be explained from Glauert's analysis, for Bakke's

value of m (Z1 — ) = 3,5 x 10 s comparcd with our value above
of 4 x 10*,

£ g

The distribution of maximum velocity with radial distance follows the law

5~ A (53)

R 105

at the Reynnolds numbers of the tests reported here,

The velocity distribution in the outer mixing region is found by
Glauvert to be given approximately by

GR/um = sech® {0.875 <2 __Z‘ )} (54)

%" m

8

N

where Z_1_ ~ Ro.9 °
-3
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The experiments of Bakke confirm these predictions, Bradshaw gives
some results for the variation of wall shear stress under the wall jet,
These show that in the region of fully developed flow the wall shear stress
is some 25% higher than in the corresponding case (i.e, equal u  and zm)

for the flow over a flat plate in zero pressure gradient,

7. Apporatus
Wollet

The test rig shown in Fig, 5 was geometrically similar to that used by
Bakke (1957) for confirmation of the theoretical results obtained by
Glavert (1956), The jetwasof 1.5 inch diameter and air was supplied from
pressurised reservoir tanks via a 6 inch diameter throttling valve and
200 feet of 6 inch diameter pipe, part of the laboratory ring-main supply
which passes horizontally 18 feet above the test site, The vertical down-
pipe was of 3 inch diameter and 10 feet long comnected to the 6 inch main
through a 3 inch isolating valve, Thiswas followed by a smooth contraction
containing a wire gauze and then 5 feet of 1,5 inch diameter smooth-bore
pipe fitted with a 6 inch diameter flange forming the jet., The Jet flange
was 0,75 inch above the plate,

Either of two plateswereused both measuring U feet square, One was
constructed of light acoustic boarding 2 inch thick lined with thin
bakelite sheet, the otherwas of 2 inch thick tufnol about 100 1b in weight,

The test procedurewas to open the 3 inch valve fully and to control
the air=flow by the main 6 inch wvalve at the reservoir tanks, This was
necessary to keep the valve and pipe noise to a minimum,

The measuring regionwasg 3=10 Jet diameters from the Jet axis over
which the jet half width (distance to halfemaximum velocity) varied from
0,4 inch to 1.2 inch with maximum velocities of 140 f/s to 40 £/s.

Pressure Transducers

Ammonium di~hydrogen phosphate crystal transducers, type M213 and
ML) were used, These are manufactured by the Americen Masse Company,

The M213 has an outside diameter 0,22 inch and a diaphragm diameter
0,14 inch, Its capacity is 12 pf and has a level frequency response to
120 ko/s., It is used with a low noise and low microphone cathode=follower
connected through 6 inch of low noise cable, The input impedance of the
cathode~follower is 200 megohm shunted by 6 pf, allowing a response down
to 20 ¢/s. The cathode-follower noise level is 5 uV, although below
300 o/s the noise from the transducer is 25 uV, A highepass filter with
a cuteoff at 250 ¢/s can be inserted, but is not nommally necessary.

The sensitivity at the cathode~follower in the output terminals is
111 decibels re 1 volt/microbar (approximately 2,8 microvolt/(dyme/cm®),



The signal is amplified by a battcry powered low noise amplifier of
28 decibels voltage gain, followed by an amplifier of 9. decibels voltage
gain, Root mean square readings are measured on a meter of the linear
averaging type, The bandwidth of the amplifiers is 5 c¢/s to above 500 ke/s.

The M141 has a diameter 0,6 inch, a capacity 110 pf and a sensitivity
at the cathode-~follower output terminals of =94 decibels re 1 volt/nﬁcrobar
(approximately 20 microvolts/dyne/cm?®), The low frequency noise of this
transducer is much lower than the M213 due to its higher capacitance, and
the usable frequency response is 20 ¢/s - 30 kc/s,

The transducers are mounted in the light acoustic~board plate in
soft rubber sleecves and in the tufnol plate with a heavy brass body and
"O" ring suspension, similar to that of Willmarth (1953. The use of the
two methods of fixing in the two very different plates was to ensure that
the measurements were not affected by the vibration of the transducers
due to the impingement of the Jet on the plate,

Spectrum measurements were made using a set of third octave filters,
covering the range 4O c¢/s = 20 ko/s.

Turbulence Equipment

The turbulence equipment used for measurements of the fluctuating
velocity in the Jet was of the constant temperature kind and was a
modernised version of that described by Laurence and Landes (1953), with
a slightly higher bandwidth and lower noise level, Tungsten wires of
0,0002 inch diamster and 0,080 inch long were used, The hot wires were
mounted on the aupports using the usuel. copper plating technique,

Correlator

The correlator used in the space and time correlations of pressure
and velocity fluctuations worked on the analogue principle, The multiplier
was of the quarter-squaring type and used two special squaring valves,

The design wes based on that of Miller, Soltes and Scott (1955). However
much improved oircuitry wes employed so that, if necessary, multiplication
could be accomplished over the bandwidth DC = 200 kc/s. The accuracy was
not of the standard asscciated vith computing multipliers, but is of the
order of 1 - 2% which is quite acceptable for the present purpose., The
output was read on a DC galvanometer with a time constant variable between
2 =~ 10 seconds, '

A time delay is accomplished on a twin channel tape recorder of
extremely low wow and flutter, using one fixed and one moving head, The
recorder used 0,5 inch wide tope ruming at 75 inch/second,

The two signals to be correlated were first recorded on a loop of
tape giving a sample length of 2 seconds (this sample length could be
increased if extra idling pulleys were fitted to the machine) and then




played back inserting the required time delay by manual control of the

moving head, The signals could either be recorded on a frequency

" modulation system bandwidth DC - 20 kc/s or on an amplitude modulation :
system with a bandwidth of 250 c¢/s = 100 kc/s, The signal to noise ratio

was 42 decibels, ‘

The correlator was capable of correlating a 100 ko/s sine~wave with

15 points to the period., The maximum time delay possible was 4O millisecs
and the minimum increment was 0,67 microseconds.

8., Preliminary Results and Discussion

The measurements of mean velocity across the wall jet from 3 to 10
diameters from the Jet axis showed good agreement with the similarity
profiles obtained theoretically by Glauert (1956) and experimentelly by
Balke (1957) (Figs. 6, 7). The muximum velocity varied as R™'*°%, where
R is the distance from the Jjet axis, and the jet half thickncss Z% faried

as R°*° , The moximum vez.ocity oszcurred at Z/Z4+ = 0,15 corresponding
AR &
to a Reynolds number Yy 2u ' . o x10%.

The measurements of the wall pressure fluctuations from 3 to 10
diamcters from the Jjet axis showed that

Vo2 /% 0 uz = 0.1

end was approximately independent of radius (Fig, 8)., The corresponding
spectra (Fig, 9) obeyed a similarity law on the basis of the frequency

parcemeter w(Z% - Zm) b woo.

Comparative results were also obtained in the College of Acronautics
20 in, x 11 in, Low turbulence wind tumnel at a position in the working
section where the displacement thickness wvas 0,286 in, at a freestream
speed of 126 f/s. The corresponding volue of the skin friction cocfficient,

Cp » Obtained from the measured velocity profile, was 0,0022, The value

of Y p?¥/to u;'l wes 0,008 which is in fair agreement with the neasurements >

of Willmarth and Harrison, However this result cannot be relied upon
quantitatively because in this tunnel the low frequency extraneous noise
level is not low, although inevitably its contribution to the total pressure
cnergy is small, Perhaps what is more important is that it provides a
check both on the accuracy of the instrumentation used, and the values of

V5/% o 1,;,11"!1 as found in the wall jet using the same pressure transducers.
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The large values of vV p /-12-011:;1 as measured on the wall jet are no¥"

special to that case and have been found by Owen (1958) to exist on wings
in regions of separated flow, However the experimental data on the effect
of pressure gradient on wing pressure fluctuations is so few that we can
only speculate that, on the basis of our theory, the surface pressure
fluctuations will be high when either the value of c, is high, say at

transition, or the mean shear layer is very thick, say approaching and
beyond separation,

9. Fubure Work

A more extensive study of the wall pressure fluctuations on the wall
Jet is in progress in which auto=correlations and spacewtime correlations
are being made, These measurements together with two=point wvelocity
correlation measurements will enable the equivalent eddy convection speeds
to be established together with the detailed turbulent structure. It is
hoped that this data, together with measurements on the effect of pressure
gradient on the surface pressure fluctuations on wings, will establish

the parameters on which ‘Fﬁ‘" must depend, and thus provide a sound basis
for a better understanding of the more urgent practical problem of the
nature of wall pressure fluctuations on bodies travelling at high speeds
especially at supersonic and hypersonic speeds,

g Conclusions

A review of theoretical and experimental work on wall pressure
fluctuations in turbulent boundary layers is presented. The theory due
to Kraichnan is modified and extended to include the separate effects of
the large eddy structure and the convection of the eddies, and the treat-
ment covers both the turbulent boundary layer on a flat plate and the wall
Jet. The latter case is presented for it provides data in the important
practical case when the turbulence is being subjected to a rapid wariation
in mean shear, not unlike that associated with the flow approaching and
beyond separation,

Preliminary theoretical and experimental data for the wall jet give
values of ‘/'5 2/% 0 u’® many times that of corresponding measurements on

a flat plate with zero pressure gradient, These results are explained
in terms of the greater thickness of the shear layer, the relatively high
intensity of the turbulence, and the presence of relatively large eddies
in the flow,

The present work is intended as a basis for further work at both low

speeds and in the more important practical areas of supersonic and hypersonic
flight.
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AFFTIDIX A

T ey

The pressure equation for the wall jet

The equations of continuity and motion for an incompressible flow are,
in vector notation :

Y. (}},) = 0 (Ao1)
pD u
= = Vp + M y2u (A.2)
Dt -
where D o)
o= o o+(@.v) (he2)

If in the cylindrical co-ordinate system (R, ¢, Z) we write the
corresponding velocity components (uR, U gy uZ) , then the pressure

distribution equation, found from subtracting the time derivative of (4.1)
from the divergence of (4.2),

VZP SR O R e (E o\7> E- (A-)-l-)
can be written in full as
o ouy  u, o auy,
- 2.2 12 B S B -
- 5w Moy SR+R 55 t% %)
ou u ou ou
198 / o _¢
*R 3 T Y% az> (A.5)

Now the mean velocity u = (GR s O, GZ) satisfies the continuity equation

fm RE) 55§ = O S

(with Z measured normal to the plane), so that if we write R, GR as a
dimension end velocity of order unity, 0(1), then Z, GZ axe each O(9) where

8 is the thickness of the shear layer., Since terms involving squares and
products of fluctuating quantities will be small compared with those
involving products of fluctuating quantities and mean flow derivatives, the
only terms of importance in (A,5) are for R >> O,
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if mean velocity derivatives of 0(1) are neglected,
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APTTIDIX B

Ihe evaluation of an integral

It was shown in section 2 that the pressure correlation depends
on the value of

/ f(Y: I‘) dy
. (B.1)

v* lX-YIIX’- y -zl

where the integration is to be taken over the half-space V" for which Yo >5s

Kraichnen (1956a) has evaluated a similar integral following the method of
Teynman (1949)., He found that

_ 9 - 2 -
Tog = /53: lz-2 | 5 |zrz-T T &
v ¢ P
2
= on O |E- & (B.2)
ara arﬁ,

where § = ¥ -x , and V the volume of integration tends to infinity.

(B.1) we put

If in
AR SRR &

-e
It
]
1o
1
H

then I = / £(& ’E)dé
gl2-%t|

Now £(y s L ) is a function which vanishes on the plane ¥y, =0 and at

infinity, Let us suppose, for simplicity, that

Hy,z) = £z,r), (B.4)

then 't a7z az
I = [f(z,r)d; ]j»wi&-—m (B.5)

1 2 2 = élé" ;t_ I



If we introduce a new veriable
t

~

v with &' > 0O
et s

(see figure below) and following Kraichnan (1956a) we use the identity

1 2 & ar
—d - 2 S LA (B.6)
le | .ol " f (a2 + b2 72)

then = dé'dé'
=% [—-‘m&T /f(;,r)dc:'// - (B.7)
‘t
T e )

1 4+ 72 ém
(1 +r’>

H
}

Vi

If the surface integral, with respect to "af,’ and Z' 4 is taken

over a circle of radius R in the plane parallel to OFP’ (i,e, the wall)
we find that

= T
2 2 V 2 (Bv8)
2312 + 7ot : Z,1z + 2 4 :

(1 15 * - % (1 +7%) ®
Clearly we cannot continue further with the evaluation of I, since
it tends to infinity as R * «, However in our analysis it is not I,
that we require, but 0% I, . If therefore we differentiate (B.7)
axg?
with respect to r,, using B.,8, we find,

ff o P e+ T ""P R
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ET)R"“ 1 ° 2’ "2 = . (1 +T2)<'t2 % Z,':(‘l +T’)'>

oo ee (B09)
In order to simplify the analysis for the pressure covariance two

alternative approximations will be made in the evaluation of (B.9).
In the first of these we will assume &’ /4 << 1 giving
2

aI1 2wt
— = el b /f
5T, —--=-1t2 (g, r)az (B.10)

-
oy |2> 27r/ f(yz, rz)d Y, (B.11)

or
1 o

In the second alternative approximation we will replace £( é; s rz)
in (B.9) by @ suiteble meen value ¥(r,). It then follows that

o1 +

1 1
w -7 3 (B.12)
and , ( )
Ol E =1
e = e T f .=.§... ( oo b > (B.13)
arf 8«51 l ‘E‘:’. = l

vhich is just half the value found in (B.2) above, for F = 1, and

when I, is taken over the whole space and not the halfwspace considered
in our problem,



ACFEIDIX G

N

near the wall in a turbulent boundary layexr

The work of Townsend (1956), (1957) and that of Grent (1958) have
shown that a relatively simple structure exists for the large eddies in
a turbulent flow, or at least the experimental observations are not
inconsistent with the hypothesis that the large scale motions can be
adequately described_in terms of relatively simple eddies, Grant's
measurements of the Rij (g) velocity correlations at differcent heights

from the surface in a turbulent bowndary layer give rise to the suggestion
that the large eddies near the surface (i.e, in the constent sress layer)
have the form of 'two-dimensional' Jjets of fluid originating near the
viscous layer, and may arise from the instability of that layer, and are
roughly aligned in the direction of mean motion, Similarly in the 'outer
region! the large scale turbulent motion again appears to be dominated

by the presence of mixing Jjets of turbulent fluid which originate in the
interior of the flow and penetrate to the region of the none~turbulent
flow outside the boundary layer,

A simple extension of the Townsend-Grant description of the large eddy
structure for such motions led us to assume that the eddies randomly
distributed over all space may be described by

A 2 2 azx.z

'u,1 = ‘—a1 (1 - (X3 X 3) exp ("' ) ) (0'1)
A Y

u, = - ex (1 -0 x) exp (- ) (c.2)
A . az 2

uy = a%n x (1=, %) e (- =F) (c.3)

vhere (W 5 4,5, W) ave the components of velocity in the directions
(%5 %9 X,), with X, in the direction of the freestream and x,
perpendicular to the wall, and

X = g 2 o 2  x* O, (C.Y)
11 2 2 3 3
The velocity components, given by equ., C,1 to C.3 satisfy the equation

of continuity

au1 au ou

A b e it =

5}1 + e e = 0 (C.5)
2 3

with ( LA as) having quite arbitrary values,




Following Townsend we next find the two-point velocity correlations
are given by

—~=‘5~~- /dy(1-y2)<1-(y +r)>exp(~s'r/)exp<—x——3>

RS e (0.6)
0 = e [ G R0 (1 - G ) 5
,exp< F:0° > (.7)

R

A - e e -
anan(E) = aaa [GX Ty y,(y,+r1) (.Ys"‘rz) (1"3/’2) (1 =¥z =13)
1
» CXpD (- 3-72/2) exXp <— (y + ;)2/2> (0.8)
'Whero ;1 e a1 y1 ; 5;2 = az y'z ; 53 = a3 y3 and

I%!

= dy, dy, &y; . After integration these relations can

be vritten in the form, if §1 etc. are the velocity correlation cocfficients,
and the subscript (b) denotes the big eddy contribution,

ﬁn(g)b = 8y (1 - i:32 * ':534/12) exp (- ;2/4) (6.9)
R, ), = a,(1- ;f/z) (1 - %o+ ;;‘/12) exp (- £%/) (c.10)

Rr), = &, (1~ ;f/z) (1 - 5:/2) (1 ;«:/6) exp (= F2,)  (0.11)

Grant's experimental results close to the wall suggest that

a a a
&) ~ ~ . - .

a2 :2* ~32.0 3 &3* ~1,35 whercas in the outer region
-
1 1

a -~ Q. a
2 ~ 2-

v e 0.6 ; ~ 105 ; z 2.5 o

. a, &,
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R (o) = 4% 72 |
i (C.12)
a o, a
3
and Rys(0) = £ £ ale
ec el
we sce that
e af u;"b ot
e R - = (c.13
e 2a W :
b b

where ?1 etec, represent the big eddy contribution to ?:5 etc.
b

In the constant stress layer Leufler (1955) finds that

EE/‘G‘?“’ = 0,5 and E‘:-/'a? =-19-
whilst in the outer region
'1?; uujf = 0,5 and -ﬁ-:/-af = 0,2
This suggests that in the constant strcss region a, = 2.5 a, ;
&, = 0.9 a whilst in the outer region &, =04 & ; & = 0.9 & .,

These results show clearly that the role of the u, velocity component

is changed in passing from the constant stress region to the outer region.

The simple eddy structure, in the constant stress region, portrayed by
these results is that of an elongated vortex ring having its longest
direction in line with that of the mainstream, It is rotating in a plane
parallecl to the wall, whilst the longitudinal motion is wawvelike, being
away from and next towerds the wall, The latter motion is not unlike the
Jet=like motion described by Tovmsend and thus may similaxly be interpreted.
In the outer region the osculations are diminished in scale whilst the
eddy spreads out slightly in a direction parallel to the wall and perpendicular
to the freestream,
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The complcte value for ﬁz , must bc the sum of the contributions from
the small and big eddies, Thus to ﬁzz(g).b we must add on (1 = a,) times
the value for R,,(r) obtained from the smaller eddies. If we assume that

these eddies are isotropic, in contrast with the strong anisotropy of the
big eddies, we have that

_ i f' r: + r:
:Rzz(?_)S = (1 =a,) s == (c.14)

vhere £(r) is the longitudinal velocity correlation coefficient and

£ == . Thus finally

L

R?_z = RZZ(S) o Rzz(b) (0.15)
on the assumption that

flr) = exp (= /0) (C.16)

the values of Ezz have been evaluated and are compared with Grant's results
in Figs. 10, 11, 12 for the measurvements made close to the wall (i.e. V/8 % 0,08).

Although the agreement is not good quantitatively we have qualitatively
obtained results which predict the basic form of the measured results.
Similar comparisons can be made for R,, and R,, both in the constant stress

layer and in the outer region provided the appropriate values of ag, a,
and a; are chosen as explained above,

With these values for R,,(r) we can now find the twompoint pressure

covariance on the wall, with zero time delay., From the previous analysis
we find that the pressure covariance on the wall, with the separation vector
s is given by '
2 (g=r,)
p 0 &
P( X 3 g H O) = .';;. & sz .E: >[ §22(£> o ! ! . d{
Ge= O r, >0 « | -z

2

veees  (C.17)



and the corresponding spectrum function is

2 ‘ -
P 2 % o
”(J.E;K1’o’ KJ;O) = ,”3<T12U: >_/ R‘zz (E'.)d£ [_/
& r >0

. c.18
e_ i “ 6,1 +4 E’s) G ( )
arf

Thus if P(x ; # ; 0) is the scalar spectrum function on the surface
found by averaging % over all angles in the plane, noting that

K = f;cf+x§ and

P(x;0;0) = /‘ P(x;k;0) ax (C.19)
then ¢
pz _— 2T
F(X;K;O) = = < T2 u2>/c:os2 (VNGRS /dr
e : 277’2 12 2 e

0
1‘2 >0

- KT, _ - i( kr + € x )
.{e (1+I£r2)R22(£)e i 3}

S (C.20)

since in equation (C,18)
-i(k & +K E) 2

Kr,

il

om =;§ (1 + «kr)) e (c.21)

We cen now find the separate contributions to P from the small and big
cddies, Thus with Rzz(b) given by equation (C,10) we find after some

tedious though straightforward algebra that




wOF

- 2
Plgseso) = 6% % ST W > () O

2 (1 -(“1/@)
() o ( =y ) o ( =/ o 1, [i- (1 -“f/a-z)]

. ‘ Kz/az
1+ V7 o ° Erfc (M) (1 = 24%/a2)

2 (¥/q) (c.22)

2
Similarly with Raz(s) given by equ, (C.14) with £(r) = exp (= T/43

(in order to simplify the dlgebra but not necessarily changing the order
of magnitude of the results) we find that

e ww

: oL 42) /4 . Trto ¢
s =
(<)

A comparison between equations (C,22) and (C,23) shows that whereas the
small eddy contribution to P is dominant near wewe numbers of k= &
(the typical energy bearing scale of the smaller class of cddies) the
big eddy contribution is very dependent on the relative scales of the
big eddies in the directions (x,, x,, %,) respectively, i.c. 1/¢ ,

/0,5 /0.

Now in obtaining all these results it has been assumcd that R, (r)

Bzir;0)g = (1-a) 0" & <r%mgm (wey o) /s

does not change significantly with distance from the wall, which is
certainly not true if, as we have shown above, we pass from the constent
stress layer to the outer region, A rough comparison of cguation C,22 with
Willmorth' s (1959) results clearly shows that since high frequency peaks
beyond kK 5 = 1 (where & is the boundary layer displacement thickness)

are not preuen“b s the pressure spectrum must be determined from the form
of the velocity correlation function which is not too ncar the wall,
This means in fact that %/ &, cannot be large or in other words the

pressure spectrum is largely determined, up to the high frequency cut
off point, from the bid eddy contr:n.butlons with eddies whose transverse
ex‘bbn’c (:Ln planes parallel with that of the wall) is not greatly diffcrent
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from that in the streamwise direction, This would imply that the large
eddies outside the constant stress region play a more significant role
in the determination of the wall pressure fluctuations, than do the

large eddies inside that region, This is not a result we might have
expected from considerations of the region Just outside the viscous layer
In which the maximm values of the turbulent intensity and mean shear act.,
However it must be borne in mind that our analysis is necessarily very
approximate and the reason for this result might appear more obvious if
we had worked through the analysis retaining the variable mean shear and
turbulent intensity instead of replacing them by an averaged value taken
over the entire shear '.layer. :

IMnally in this append:n.x it is worth po::.ntlng out the differences which
exist between our results and those of Kraickman (1956'b) Kraichnan makes
the assumption that the turbulence near the wall is homogencous in planes
parallel to the wall but not in planes normal to the wall, IHe next assumecs
a model for the turbulence in which Ymirror-like' wvelocity boundary conditions
are satisfied on both sides of the wall, In this model the y and u, velocity

corponents are finite on the wall but u, is zero, The effective correlation
coefficient is then teken as

~

? - s
Roo (%ps %, 55, 13) ':Rzz(xz -x; PT rz) "'Rzz(x{z W T r:s) (C.2x)

and when inserted into equation (C.17) it leads to the result, if £ =
exp( =o®r?), e

B (x s k3 0) ~ & exp <,. (fé;) [ ﬁr<1 +T£‘e> Erfo (o) © 4 o® . J

( k/c) A
....." (C.25)

Numex 1oa11y this rosul‘b is vexry 11t’clc dlffe:c'en‘c from that given by
ecuation (C.23) but is considered less satisfoctory in view of the velocity
boundary conditions being essentially different from those existing in the
region outside the viscous layer, Xraichnem also includes the case of
veriable mean shear, follow:mg the 1aw ~e@(-— sz) » end although

this treatment is preferable fo the averaged mean shear apprdach which we
have adopted, the results are not qualitatively different and do not lead
40 an order of‘ magnitude difference in the numerical results, It would be
of intercst, however, to repeat our emalysis with 7, -~ e“m(- Bx,) and
this is being done, '




AFFEIDIX D

On space=time correlations of the

Lluctuating velocity and pressure

In the amnalysis above the pressure covariance has in the main been
calculated for the case of zero time delay in axes fixed in the wall,
However in the detailed analysis the structure of the turbulence
(i.es B, (x)) is required in a frame moving with the turbulence and it

is not immediately obvious what the relations are between the turbulence
in the moving and fixed frames, This problem will now be analysed below
and the results compared with the experimental results of Favre (1958)
end Willmarth (1959).

Let us consider a field of homogeneous turbulence in a frame of
reference moving with the mean velocity U past the fixed point P,

In this frame of reference the four-dimensional two point velocity
corrclation coefficient is

(T)

(m)g
1J

where the four dimensional vector r‘ betwecen the two points in the
moving frame is given by

* "c’ —

L= (o ,x o0 ,7)

and ri is the co=ordinate repressnting the time delay, For

example if the longitudinal velocity correlation coefficient were given
by

A

’ &
£ (L) = exp (=)  vhere

T . C(1I!:2 + a:r;2 + r': + aj r;z s then alternatively
£(r) = exp (=0® r'?), exp (= V* 7°) (D.1)

vherc 1/0 is a measure of the cddy length and 1/V is a measurc of its
life timec, and
r'® = rl® + pl* 4 pl® | This result, although not general,

is typical of the connection betwecen space and time correlations,
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In a stationary frame of refcrence (r) in which the turbulence

sweeps past at the speced Up in the direction r,, the relation between 1’“'

and r is
~
a

~ . ! '
with [ (r1 » Ty »

lll

ry ; 7) end EE(r1,r2, rz) s

(z, = fT ﬁp ()ar ,r,, z, 57) (D.2)

o
Ve now meke the hypothesis that the turbulence structure is unchanged
in passing from fixed to moving co-ordinates. Thus with uP independent

of time, the velocity corrclation coefficient in fixed axes _ \

£ - _ B
( )ﬁij (r, - Uy Ty Tps T3 T) = (m)Rij (r") (D.3)

(i) Zero time delay T=0

(f)ﬁij (r,, r,5 7,3 0) = (m)ﬁij (' 5 0) (D.L)

~

This means that the spatial correlation of velocities in a fixed
frame of refcrence equals those in a moving frame of reference,

(ii) Zero spatial separation in fixed axes r = O,

g, (- 70,057 = (g (et = - ar, 0, 057) (D.5)

This means that the auto correlation in a stationaxry frame is
equivalent to a space (r: S 7T) and tine (7) correlation in moving
axcs, This is Taylor!s hypothesis, which is supported by Favres! (1958)
measurenents in both free and shear flow turbulence,

(iii) Optimum time delay in fixed axes r, = T %

D, 00,05 7) = Mr, (0,0,05 7= 1) (0.6)




This shows that the autocorrelation using an optimum time delay in
fixed axes is equivalent to finding the autocorrelation in a moving
frame of reference, . ‘

These three examples are made clearer by reference to a particular . 1
velocity correlation coefficient,

Suppose that in the moving frame
(Mg (2] ,0,057) = axp(-0® r? ) expl- v? 77) (p.7)

then in case (i)

i

(B2 (r,,0,0;0) = expl=0® =)
* )

T
= exp(-o® r} (D.8)

showing clearly thet no change of scale occurs in changing from fixed to
moving axes,

In case (ii)

(£, (- G, 7, 0,057) =oxp(=0f B2 %) exp(= 0t TP)  (D.9)

But in the moving freme v is of the order of o W (where W is the
turbulent intensity) so that if W <« ﬁp

(f)R11 (= EP T ,0,0;7) n~ exp (-02 E; o) (D.10)

which is equal to (D.8) if

L (D
| A <, (0.11)

This rcsult is the more usual form of expressing Taylorts hypothesis,

In case (iii)

f ~ u e
(Br, (0,0, 057) = exp(=v® 72 ) = exp (-5 o9 n)
P

ceess 012
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This shows that the antocorrelation in the moving frame can be obtained
from the autosorrelation in the fixed frame (by comparing (D,10) with
(D.12)) by replaing the time delay (7) in the fixed freme by

-~

T (D.13)

FC’s::I F

The results of Favre (1958) for both grid and wall turbulence (Fig. 13),
confirm this simple result provided that the time (Tm) does not exceed

roughly the times over which the autocorrelation in fixed axes are
ssentially non-zero.

Similar results might be expected to hold for the pressure covariance.
Thus if we teke the pressure autocorrelation in moving axes to be

(m)P (OsO:O;T) = (’1 ot ) exp ("‘ v? Tz) (D'“"‘)

then we might expect that in moving axes

(m)p (ry 50, 037) =(1 =20° r/%) (1 = 2 v¥r%)exp(=0® r/ Hexp(~1*79)
(D.15)

Therefore in case (i) above

s 0y 05 0) = (1 =20° n®)exp (=0* 3°) (D.16)

1

In case (ii)

(g 8, 7T, 0,057) ¥ (1 =20 E2) e ~PE2 T (D7)

This result cannot strictly apply to the pressure coveriance at: the
wall for there U_ = 0, However if we assume that the turbulence is roughly
convected over the pleme well at some mean speed U * then the autocorrelation
in fixed axes is found from (D.17) with ﬁp replaced by q_.

o———

In incompressible flow the time vardiation of the pressure in fixed axes,
is the same as the time variation in the velocity, Thus the autocorrelation of
the pressure in fixed axes, must correspond to the autocorrelation of the
velocity averaged over all angles, If then the turbulence has a dominant
convection speed, this speed will also apply to the pressure autocorrelation,



- b

In case (iii)

)2 '
(f)p (0, 0,0;7) = (1 =20 %; . uz r; ).
uG
U.'z -2 2
exp(= 0% = Bl ) (D.18)
u
c

If we now consider the general cose of a space~time correlation in

fixcd axes where T # T » the optimum time delay,

O Y W e
P(r1-uc,0,0,7')-(1-2 @ « ™)(1 - 20% uc'r)

1"'1 2
. (o)
es < o ur r* (af wi) (D.16)
» expl~ U, + =) .
¢}

r
where a = l 1/ucT -1 1.

According to Willmarth (1959), from measurements of the pressure
fluctuations on wall turbulence we find that

U, & 0.8 u, (D.17)

where ﬁ1 is the freestrcam velocity. A comparison between Willmerth's
results and those avluated from
i - -
e (o, w5, 7,0,051) = =clr-T s (1= v]r]
. exp (—-CTII'1 ~a, |- vl (D.18)

are shown in Fig, 14. The agrecement is good for small time delays

(i.e. up to 0.5 x 103 secs., which is roughly the time for non=zero
autocorrelation) but is poor at large time delays,

The reason for Willmarth's results being non-negative for large time-

delays probably results from the growth of the ecddies as they move dovmstream,
For small time~delays this effect is small but as the time~delay is increased

the eddy-life appears to be extended as a result of this growing scale of
the moving turbulence,
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AFFENDIX B

The evaluation of the pressure spectrum

It has been shown above that the pressure covariance at the point x,

with separation distance | & |, on the wall is given by

o) co (o]
2
S S C
P(J_E,E1, 0, ES,T).—” < T uz>/; dr, _md;x:'1 wadrs ﬁza(g_c, ?.’T)
2
of o+ lp w g

lg-z |’

: (E.1)

If the velocity correlation cocfficient is given by,

2 R 12
_v2r? -’y . r-+r
Ra(z'sm) = e o /4 aaga (E.2)

where r’ is the scparation vector in co-ordinates moving vwith the

furbulence, If we assume that the turbulence is convected with the
constant speed u, then in fixed co~ordinates

2,2 ~r? +12)/0 (r, -u 1)/
23 (£ ;3 7T) = e . . e 2

R ORI R

- r v - ucT
If we write r, = "1/¢ etc and Vew= ;3 T = =&
c
then
2 -2 -2 0 £ - T2 4+ p2
~ > - &P__ 2 2 2 .- v T - e 3 2 3
P(x,O T) T ¢ <T12u > 8 et d:r‘2 3 -3
0 (o} (]
-2 -2 - - 2
r - -(r, -7)
[1 - ri - (r1 -7 2] e > e . (B.4)
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and the temporal spectrum function F(x 5 0 ;) is given by

P(E_C;O;w) i f o=k uT P(:.E;O;T) ar

2T e

LIS (5[5 ()

. 6-(i'~:+532)/°°e_5;.;’.;‘ 6" l.jzA.T“vaen(,§1 --T-) [.1 - T -(r-r):{ as

- 00

i

XXX} (En5)
where W = we/u, .

On teking the real part of E 5 we f:md that it reduces to

P(x;O;w) r?4+ ¢? -P 4+ T4
- - 2 3 4 2 3
_— g 2 dr D e
2 ;3 2
hof e <r‘2u2>/ u, r

) /co a—(.l-lz-p 1)72 OOS (EF) l:(‘l -i‘? ':'i:f S ".;F)COSh(Z ;1 ?)

+ 27T 7simh (27, F):I ar
' ‘sesse (E06)
Now 7 = o /u, and is a small quantity (i.e. << 1), We can
therefore neglect the term in V2 in equation E.6,

I ' L o ‘
Bvaluation of f e™ cos 0T [(1 - :F: - 512- Tcosh (2 51'7")
e o A :

+ 2 F T sinh (2 ;ﬁ)"].a T o= I,
This integral is reduced to 3 standaxrd :Lntegrals which can 'be
evaluated by the use of Fourier Transforms. Thus
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o) -2
T =/cos§re Tcosh(zi:?)d"'r'ﬁ-;:-;f)
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Q
[0}
/7]
el
1
o)

cosh(2§17"')1"'2d7':

+ [Toos 7 o " sinh (2% T) TaT . 2F
- Yz e-'-r1 e /L" cos (r W) 1 .52 , 52
2 1 2 3 /b
LR R ] (Eo7)
o o ;12
Bvaluation of /° I dar = I
o i:; 1 1 2

From E,7 we find that

S-S SN (NP T }/cos@m %,
2 o}

i, <5

s e

Vo e- ;2/4 { 1 e s } B ﬁ_(})%‘:f?})

P) 2 "%y *V - .
-2 -2
J Ty *+ Ty
boover (E.8)
s -(r " r
Eveluation of / f r +r ) e Iz = I3

If we put x = v'f;: + % and we use polar co-ordinates ( x, ¢) in

place of (L, , ¥,) then from E.,8,
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We note finally that

g
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1§20
£
=
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2 2 2 e "‘62 .
- %"- < B> / as | 52me o B4 -5"’/4)Ei(-'17)2/z,_)]
(] -
g £ p* . (%11
“ -:isnﬂ < T‘z u2 o e e cvon e )

which is exactly double the value found by Kraichnan (1956a) for isotropic
shear flow turbulence without boundaries, and provides an adequate check
on the algebra leading to the spectrum function given by equation (E,10),
To allow for anisotropy a multiplying factor, o & %, should be inserted

AntodE1T .,

The spectrum function is plotted in Fig. 4 where the abscissa is

.‘1331_5
- :

is the boundary layer displacement thickness and 'ﬁ" is the

froontream velocity outside the shear layer, If we toke u, = 0.8 4, ,

as given by Willmarth (1959) and Harrison (1958), and 4/8, £ 2, then
wd &
-1 = 3 (E.12)
u1

If further we insert into (E.11) the crude estimate (based on Laufer's
measurements of v and \[ﬁz and evaluated at the value of uT5 = 1550)
12 2 lv
62
R B os> =3 x107 s and include the anisotropy factor

uCO
of a=%,  then
/ P (x ; 0) Vp? e
= = = QSN O ’
* o af z oY,

compared with Willmarth's value of 0,006 and Harrison's value of 0,0095 under
comparable conditions,.




Similerly the peak value of P (x ; 0 ; w), written in the form ,

2P (x;0;0) u

10"

¢
o
=

2w b
%) 1

Al

whereas Willmerth obtained a value of L x 107°. and Harpison a value of
6.3 x 100,

It should be noted that ocur estimates are only 3 db higher than the
measured values of Willmarth and give some support to our analysis, The
inclusion of the anisotropy factor is Jjustified by Kraichnan and was
similarly used by Lilley (1958) in evaluating the megnitude of the pressure
fluctuations in the mixing region of a Jjet, Finally it might be noted
that better agreement between theory and experiment might be expected,
if the anisotropic form of the velocity correlation function were used,
with its consequent improved scale relations to replace the ratio -5/51 '
as used above,
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