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Summary

In Upper Motor Neuron Lesion (UMNL) following stroke, patients can experience increased joint impedance,
resisting joint rotation and hindering functional movement. This heightened impedance in UMNL is driven
by both exaggerated reflexes and increased intrinsic muscle activation through co-contraction, hypertonus,
or synergies. The simultaneous presence of these mechanisms complicates clinical distinction, especially
given their theorised interplay, where increased intrinsic activation would further heighten reflex responses.
Separate quantification of this intrinsic and reflexive impedance and their interaction, can aid in further
investigation of the pathophysiology of post-stroke joint impairment and its treatment.

This work presents the investigation of an Open Loop System Identification (OL-SID) protocol, to perform
this separate quantification of intrinsic and reflexive impedance for the elbow joint. Perturbation experi-
ments were performed with 16 healthy subjects, using multisine positional perturbations and measuring the
elbow torque response. An impedance model consisting of both intrinsic and reflexive parameters was fit
to the estimated frequency response function (FRF), relating perturbation angle to joint torque. It was as-
sessed how background muscle activation, as well as the frequency and velocity of the perturbation signal,
influenced the modelled intrinsic stiffness, intrinsic damping, and reflex velocity-gain.

For this, three different bicepsmuscle activation levels were requested from the participants in different trials;
0%, 10%, and 30% of Maximum Voluntary Contraction (MVC), as confirmed by online EMGmeasurements.
Participants were requested to not actively resist perturbations, but only to comply with the requested biceps
activation level. Furthermore, three rotational multisine perturbations with a max. amplitude of 2 degrees
were applied; Wide Bandwidth (0.2 − 10Hz bandwidth and ∼ 0.5 rad

s avg. velocity), Narrow Bandwidth
(0.2− 3Hz bandwidth and ∼ 0.2 rad

s avg. velocity), and Wide Bandwidth Low Power (0.2− 10Hz bandwidth
and ∼ 0.2 rad

s avg. velocity). Cross-combination of biceps activation levels and perturbation signal resulted
in 9 impedance quantifications per participant.

Increased biceps activation resulted in a significant increase of intrinsic stiffness, intrinsic damping, and the
reflex-gain. This confirmed the expected relationship between muscle activation and intrinsic impedance,
as well as the theorised relation between intrinsic activation and the reflex response. Unexpectedly, differ-
ences in used perturbation bandwidth or velocity showed no clear influence on identified reflex gain. This
contradicts findings of reflex suppression during high-bandwidth force perturbations in tasks that require
resisting these perturbations, as well as during high-velocity binary or unidirectional joint stretches. This
discrepancy shows that joint system identification results are highly dependent on perturbation type and
subject task, emphasising the need to align the experimental design with the clinical question at hand.

Despite some shortcomings regarding low coherence of the estimated FRFs, and necessary further re-
search on perturbation signal properties and their effect on the reflex response, the results of this study are
promising. The observed trends in fitted parameters with increased activation levels in line with physiologi-
cal expectations, indicate the ability of this technique to validly identify reflexive and intrinsic joint impedance.
This distinction is highly valuable for advancing investigation of the pathophysiology and clinical presenta-
tion of UMNL post-stroke, in the pursuit of adequate treatment for different patients.
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1
Introduction

A cerebrovascular incident, or stroke, is the leading cause of adult disability in Europe [1]. Disruption of
oxygen flow to the brain, whether from a haemorrhage or thrombus leading to ischaemia, can damage the
upper motor neurons, resulting in upper motor neuron lesion (UMNL). UMNL causes a subsequent move-
ment disorder and disability [2]. Shortcomings in the post-stroke rehabilitation process include subjective
assessment and limited understanding of the complex clinical presentation of UMNL [3, 4]. Technological
advancements in diagnostic robotics have attempted to solve these shortcomings over recent decades, but
remain in the experimental stage without wide adoption in clinical practice [4].

The elbow joint is of particular interest in clinical diagnostics of UMNL. Its impairment greatly affects daily
activities [5] and occurs frequently compared to other joints [6], with reported incidences of ∼ 57% [7]
across all stroke cases. Its monoplanar motion makes it an ideal candidate for robotic assessment, as this
simplifies the evaluation of joint properties [8]. Focusing on advancing robotic diagnostics for the post-stroke
elbow is thus a strategic step towards increased clinical relevance and adoption of these techniques.

1.1. Post-stroke joint impedance
UMNL changes the dynamic properties of joints, hindering patients in interactions with their environment [9].
Clinical terms for distorted post-stroke joints (e.g. spasticity, hypertonia, and hypotonia) are often indefinite
and used inconsistently in literature [10, 11]. The overarching term ’joint impedance’ describes the dynamic
torque resistance to a joint rotation in a general manner. The problem of post-stroke joints is twofold: de-
creased volitional joint impedance when functional for a task, and increased non-volitional joint impedance
when attempting to relax [12, 13]. Clinical relevance lies in connecting UMNL pathophysiology to either in-
creased or decreased joint impedance, referred to as ’positive’ and ’negative’ features respectively [2, 14].
The changes to joint impedance of a post-stroke joint are comprised of a combination of different mecha-
nisms. These can be categorised into those affecting intrinsic impedance, through passive biomechanical
changes or alterations in active muscle tension, and those affecting reflexive impedance (fig. 1.1).

Intrinsic active changes
UMNL initially presents with reduced joint impedance following reduced voluntary muscle tension, due to
distorted muscle control [2, 13] or (fear of) pain in muscle activation [22, 23]. The ensuing upregulation
of alternative motor pathways to replace the disrupted ones can cause a non-volitional increase in muscle
activation [16]. This includes co-contraction [14], muscle hypertonia in rest [14], and synergistic activation
patterns [16, 24, 25], presumably due to cortical overlap of the newly formed motor pathways [25].

Intrinsic passive changes
The disuse and immobilisation of musculature in UMNL changes the passive biomechanical properties of
muscles and tendons. Reduced muscle mass and cross-sectional area can cause a decreased intrinsic
muscle stiffness [19]. On the other hand, a reduction of the number of sarcomeres in series [18] and fibrosis
of muscle and tendon structures [17] can increase passive joint stiffness [12, 13, 15]. Furthermore, joint
damping can be increased through the formation of viscous oedemas [20, 21].

Reflexive changes
Patients with UMNL exhibit exaggerated ’spastic’ spinal cord reflexes, involving a monosynaptic Ia affer-
ent pathway that is activated by the stretch of velocity-sensitive muscle spindles [2, 13, 15]. While partly
explained by hyperexcitable muscle spindles [13], the pathological increase in reflex response is also a
secondary consequence of disturbed cortical influences. Decreased dorsal reticulospinal inhibition and

1
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Figure 1.1: Overview of proposed causes of changed joint impedance post-stroke, as found in [2, 12, 13, 15–23]. Green and red
color indicate increased non-volitional joint impedance (’positive’) and decreased volitional joint impedance (’negative’), respectively.

’denervation hyperexcitability’ of the α-motor neurons, both due to the absence of voluntary cortical control
[13], contribute to a heightened reflex response [26].

While the exaggerated stretch reflex increases joint impedance, reflexes in UMNL show ’negative’ charac-
teristics as well. In cases where reflexes are functional for task performance, post-stroke patients show
both decreased short- [12] and long-latency [15, 27, 28] reflexes compared to a healthy cohort. This is
most likely explained by muscle weakness and the inability to upscale reflex gains when functional [12, 27].

Clinical interaction between joint impedance mechanisms
Intrinsic and reflexive joint impedance cannot be regarded as fully separate entities. Increased intrinsic
activation would bring motor units closer to the firing threshold [29] and lead to larger motor unit recruitment
in case of a reflex, according to the size-recruitment principle [30]. This causes a positive correlation
between muscle activation and reflex response, referred to as ’gain scaling’ [30–32]. A similar relationship
is theorised in the post-stroke population between non-volitional intrinsic muscle activation and exaggerated
spastic reflexes [24, 29]. In the elbow specifically, a relation can be observed between synergistic elbow
flexor activation during shoulder abduction and elbow flexor reflexes [16, 24, 29]. However, this gain scaling
phenomenon remains disputed. It is reportedly reduced or absent in stroke patients [15, 31, 33] and even
absent in healthy cohorts [34] or only seen in long-latency reflexes [35].

Still, the simultaneous presence and interaction of increased intrinsic and reflexive joint impedance creates
disagreement on the primary cause of the high non-volitional resistance to joint rotation observed in post-
stroke patients. This hinders finding adequate treatment for the right patient population. Stretching should
increase the extensibility of soft tissues and normalise muscle tone, but remains without consensus regard-
ing its ability to reduce joint impedance [36]. Interventions with Botulinum Toxin do reduce joint impedance
through presynaptic inhibition of reflexes [37], but remain without clear advantages in functional outcome
[37] and appear effective for only specific patient populations [38]. Separate quantification of intrinsic and
reflexive impedance and their interaction will aid in a further understanding of pathophysiology, assessment
of specific treatment effects, and shaping therapies for UMNL [9, 39].

1.2. Quantification of joint impedance
Clinical evaluation
Clinically, increased joint impedance is assessed with the (Modified) Ashworth Scale (MAS) [40] or (Mod-
ified) Tardieu Scale (MTS) [41], consisting of a clinician extending a joint and rating the resistance on an
ordinal scale. Both the MAS and MTS are criticised for low inter-rater reliability [41–43] and poor ability to
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specify the severity of spasticity due to only using 5 or 6 ordinal levels respectively [43]. A further drawback
of these clinical examinations is the lack of discriminative ability. The MAS as a measure for ’spasticity’ is
unable to differentiate between different causes of increased joint impedance and therefore of low validity
to determine the presence of exaggerated reflexes rather than intrinsic impedance increase [10, 44]. This
hinders providing treatment focused on individual UMNL presentation and assessing the effect of treatment
on specific joint impedance mechanisms.

Robotic quantification of joint impedance
Over the past decades, there has been a rise of diagnostic devices and robotics, proving a useful tool in
objective and precise measurements of post-stroke joint impedance [3, 4, 8, 45, 46]. The more simple
forms of this robotic quantification use Ramp-and-Hold (RH) joint rotations [47, 48] and mimic the MAS
examination. These continue to face difficulties in simultaneously and separately identifying intrinsic and
reflexive contributions to joint impedance [49]. This could partly explain the low evidence for the clinical
benefit of these techniques [4, 46, 50]. Increased attention to a proper model for joint impedance quantifi-
cation [4, 45], with a focus on discriminating different contributions to joint impedance, could aid in clinical
uptake [3]. A promising approach for this is the use of system identification, where the relation between
input perturbations and the joints response, is fit to such a mechanical model. This allows for simultaneous,
but separate, quantification of intrinsic, both passive and active, and reflexive joint impedance [31, 51–53].

One common approach is the use of continuous multisine torque perturbations and system identification
in the frequency domain, combined with different task instructions. In a ’position task’ the participant is
asked to resist perturbations and retain a fixed joint angle, effectively increasing their impedance [53, 54].
In a ’force task’, the participant is asked to minimise deviations of the force exerted on the perturbator, thus
actively ’giving way’ to the perturbations and reducing their impedance [55]. These assignments mimic our
natural interaction with the environment and assess the ability to voluntarily change our joint impedance
[9]. The use of a multisine perturbation gives great control over its bandwidth, which is known to alter the
nonlinear reflex response. More specifically, a perturbation bandwidth containing frequencies around or
above the joints’ eigenfrequency would cause participants to reduce their reflex response [12, 53].

Conversly, when not the voluntary adjustment of joint impedance but the non-volitional joint impedance is
of interest, another approach is common. Short rotational stretches or alternating binary switches of joint
angle in Pseudo Random Binary Sequence (PRBS) perturbations [52, 56, 57] are often used in identifying
the involuntary torque response to perturbation. The task instruction for the participant is often to fully
relax or to match a specific constant muscle flexion, but not to react to perturbations. This approach more
directly captures Ia-reflexes, as these respond to displacement rather than torque disturbance. The reflex
response is especially sensitive to the velocity of this displacement, with both too low [47] and too high [52,
57] movement velocities theorised to reduce reflex magnitude.

1.3. Research goal
This work focuses on the joint impedance of the elbow, separating the reflexive and intrinsic contributions
using system identification. With the ultimate goal of designing a system identification protocol to distinguish
and quantify spastic reflexes, intrinsic synergistic activation, and their interaction as observed in the post-
stroke elbow, a first step is made investigating a healthy cohort.

As the choice of task and perturbation type influence the identified joint behaviour [9, 58], these must be
carefully considered regarding the clinical question at hand. With the focus on non-volitional reflexes and
non-volitional (synergistic) muscle activation, a positional perturbation which is not actively resisted by the
participants is chosen as a fitting experimental setup. A task instruction to match a requested level of
biceps contraction is used to mimic synergistic activation, as this is not displayed in a healthy cohort [29].
To fully control both the bandwidth and velocity of perturbation, multisine rotational perturbations are used.
Previous research on this specific perturbation type is limited, with little investigation into how perturbation
properties influence identified joint impedance in these experiments [31, 33, 59, 60].

First, the effect of activation level is assessed, to understand its’ influence on both the identified intrinsic
impedance and on the reflexive impedance through the gain scaling phenomenon. Secondly, it is assessed
how varying perturbation velocity and bandwidth affect the identified impedance to determine which signal
properties are most effective in either inducing or suppressing a reflex response. These assessments aid
in validating and optimising the system identification approach used to quantify elbow impedance.



2
Methodology

2.1. Participants
16 healthy participants (ages 22-56), consisting of 6 males and 10 females, were recruited for the exper-
iments. All participants had no history of elbow impairment and gave their informed consent prior to the
experiments.

2.2. Perturbation device
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Figure 2.1: Overview of the full experimental setup, consisting of both hardware and software components that make up the
Shoulder Elbow Perturbator (SEP) as used in this thesis. DLS = Data Logging System, ’meas’ = measured, and ’ref’ = reference.

Technical drawing of the SEP is taken from [61].

2.2.1. Hardware and software
For the experiments, a diagnostic robotic device developed by Hankamp Rehab B.V., the Shoulder Elbow
Perturbator (SEP), was used [61]. It features two primary diagnostic functionalities.

• Assessing joint impedance through elbow perturbation. A high torque rotary table (TMS3C, HI-
WIN, Taiwan), connected to a cantilever underarm support, rotates the elbow joint through alignment
with the medial epicondyle of the elbow. The rotary encoder embedded in the rotary table measures
the angular rotation of the elbow. A strain gauge load cell (LCM200, USA) connected in series to the
cantilever beam measures the force between the arm and the lever, used to estimate elbow torque.

• Assessing flexion synergy of the elbow through varying shoulder abduction support. A Sarrus
linkage mechanism is used to passively support the arm in shoulder abduction, of which the support
force can be varied. This allows for studying the effect of own shoulder abduction efforts of a post-
stroke subject on their elbow joint impedance through synergistic elbow flexor activation.

4
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Two extra analogue input channels allow for connecting a surface electromyography (sEMG) measurement
system (Bagnoli 16ch system, Delsys, USA). Data transfer and communication with a controller PC is
performed through an ethernet module (EK1100, Beckhoff, Germany). On the PC, a controller algorithm
in Simulink (MATLAB, 2014b) runs at 1000 Hz, which is compiled to C++-code before deployment through
EtherLab. EtherLab Data Logging Service (DLS) can be used to acquire and save data corresponding to
channels in the Simulink model at a sample frequency of 1000 Hz. The controller model can be commanded
through TestManager software, which allows for control mode switches, initiating preset experiments and
real time data monitoring.

2.2.2. Position controller
Rotational perturbations require a highly stiff perturbator control algorithm, to provide perturbation of the
joint up to adequate bandwidth. Issues with inadequate sampling frequency and resolution of the rotary
encoder data communicated to the controller PC, can destabilise position control. As within the motor
servo controller itself (D1 Drive, HIWIN, Taiwan), more detailed encoder information is available, the internal
velocity controller can be used to display higher controller stiffness without instability. This ensures adequate
reference signal tracking in different loading conditions (stiff arm, slack arm, and no arm). The Simulink
controller model is then used solely for preprocessing the rotation reference signal and activating the HIWIN
velocity controller mode. Controller design efforts and comparisons of initial and final controller performance
can be found in Appendix A.

2.2.3. Participant positioning
As the current experiment was conducted with a healthy cohort, the mechanism to analyse flexion synergy
of the elbow was unused and put to ’maximum support’, allowing subjects to fully rest their elbow on the
support. For elbow joint positioning, the medial epicondyle of the humerus was aligned with the centre of
the rotary table. To properly transfer the perturbations to the elbow, a clamp at the end of the cantilever
underarm support was fixated on the wrist as tight as possible without causing more than mild discomfort.
The neutral elbow angle around which perturbations were applied was 90°. Dry electrodes for sEMG mea-
surements were placed on the biceps brachii and the medial head of the triceps brachii, known as main
elbow flexor and extensor muscles [62]. This completed the full experimental setup as shown in figure 2.1.

2.3. Task instruction
To mimic the effect of non-volitional intrinsic activation due to post-stroke synergies, different biceps flexion
levels were requested from the healthy participants [29]. Participants were asked to match a specific acti-
vation level, instead of a flexion torque. As the relation between neurological muscle activation and force
output can change due to fatigue [63], EMG signal was deemed a more direct indicator of muscle activation.
Note the fundamental difference between the described task instruction and the often used ’force task’ [55].
In a force task the participant actively minimises force deviations by reducing joint impedance. In the cur-
rent task, the participant ’ignores’ the perturbations and only focuses on maintaining the correct background
muscle activation, not actively adjusting their joint impedance. This is referred to as an ’activation task’ in
the remainder of this work.

Prior to the experiments, EMG signal during maximum voluntary contraction (MVC) of the biceps in neutral
position (90°) was determined. All further EMG measurements were normalised with respect to the range
between this MVC and a baseline rest EMG level, which is deemed an appropriate method for assessing
voluntary activation levels [64]. Three biceps activation levels were requested during different perturbation
trials. A 0% MVC level served as a baseline with no expected reflex, a 10% MVC level was expected to
induce a reflex [65], and a 30% MVC level was used to evaluate if increased activation would further in-
crease the reflex gain. Higher activation levels were anticipated to increase fatigue [34] without significantly
affecting reflex gains, as the relationship tends to plateau [35, 59, 60].

Real-time visual feedback of EMG signal was provided to the participant to aid in maintaining the correct
activation level. The signal was low-pass filtered at ∼ 0.2 Hz, as higher frequency feedback hindered main-
taining steady background activation. A first-order Bessel filter was used to minimise phase lag and thus
time delay, known for its linear phase response in the passband [66]. As a Bessel filter is not common
in EMG signal analysis, an offline comparison was made between the Bessel filter and the more com-
monly used moving Root Mean Square (RMS) filter with a 1-second window [67], to assess the validity of
the Bessel filter for EMG signal visual feedback. Online monitoring ensured that triceps activation levels
remained below 3% of MVC, to prevent active resisting of perturbations through co-contraction.
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2.4. Perturbation signals
For the perturbation trials, multisine rotational perturbations, with a maximum amplitude of 2° were used,
comparable to other system identification experiments [56, 59, 68]. Larger amplitudes could cause nonlin-
earity in the estimated system, as joint impedance is known to vary for different joint angles [34, 60, 69]. The
used multisine perturbations had a constant spacing of 0.2Hz between excited frequencies. This reduction
in frequency resolution compared to a white noise perturbation, increases the power per frequency and
thus the signal-to-noise ratio (SNR) in the analysis [70]. Three different multisine perturbation signals were
designed by varying frequency and velocity content. These different properties were used to investigate
their influence on the identified joint impedance, especially the nonlinear reflex response.

The natural frequency of the elbow (ωn =
√

k
I ) is expected around ∼ 1 Hz in rest and ∼ 4 Hz in high

activation, based on a reported inertia of 0.11 Nm·s2
rad and a stiffness of 1-8 Nm

rad in a relaxed state and 50 - 80
Nm
rad

in an activated state [59, 68, 71]. A Wide Bandwidth (WB) perturbation up to 10 Hz was expected to
excite frequencies well above ωn and capture the full system dynamics. A second Narrow Bandwidth (NB)
perturbation up to 3 Hz was designed to only excite frequencies below ωn of the activated elbow.

The desired velocities of the different perturbations were determined based on a comparison of other system
identification literature (Appendix B) and achieved through cresting. The cresting of a multisine is a process
of optimising the relative phase shifts to obtain a high velocity and high power signal. Added sinusoids with
random relative phase create a multisine with a crest factor of ∼ 3 - 4, while an optimised signal for high
velocity and power has a crest factor of ∼ 2 [70].

The slightly crested WB signal had an average velocity of above 0.5 rad
s , theorised to suppress reflex re-

sponse [52, 57]. The crested NB signal had an average velocity of 0.2 rad
s , above the theorised lower bound

for reflex induction [47, 48], but below the suppression velocity. A third perturbation signal (WB Low Power
- WB LP) was designed to separate the effects of perturbation bandwidth and velocity, by using a wide
bandwidth perturbation but an average velocity similar to the NB signal. This was achieved through more
power at the low frequencies, a high crest factor, and a reduction of amplitude to max. 1.5°.

To increase the robustness of the analysis, the three perturbation signal types were realised in two variants
that were expected to generate similar results. These differed in the random phase of the added sinusoids,
without large changes in the bandwidth or velocity properties of the perturbation. This resulted in the 6
signals presented in table 2.1. Figure 2.2 shows the Power Spectral Density (PSD) of the three different
perturbation signal designs.

Table 2.1: Velocity and frequency content of the different perturbation signals used in the experiments. RMS = Root Mean Square,
WB = Wide Bandwidth, NB = Narrow Bandwidth, WB LP = Wide Bandwidth Low Power.

Perturbation Bandwidth RMS vel ( rads ) Max vel ( rads ) Crest factor
1. WB 0.2 - 10 Hz 0.56 1.75 2.68
2. WB 0.2 - 10 Hz 0.53 1.28 2.50
3. NB 0.2 - 4 Hz 0.21 0.45 1.89
4. NB 0.2 - 4 Hz 0.21 0.51 2.96

5. WB LP 0.2 - 10 Hz 0.23 0.83 3.18
6. WB LP 0.2 - 10 Hz 0.20 0.73 3.67
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Figure 2.2: Power Spectral Density (PSD) of the used perturbations.



2.5. Protocol and recordings 7

2.5. Protocol and recordings
Cross-combination of the six perturbation signals with the three activation level tasks, resulted in 18 trials
per participant. The 0% MVC and 10% MVC trials had a duration of 210 seconds. To prevent fatigue, the
30%MVC trials were split into two segments of 110 seconds. To further prevent the effects of fatigue on the
outcomes, the perturbation types were applied in random order, while the activation levels were always in
the order of 0%, 10%, 30% MVC. As a control, the full perturbation experiment was also performed without
a participant, to assess the impedance of the unloaded arm support.

For the system identification, joint angle and joint torque were recorded at a sample frequency of 1000 Hz.
Joint torque was calculated by multiplying the force measurement with the 0.11 m moment arm between
the sensor and center of rotation. The low-pass filtered sEMG measurements from the biceps musculature
were not used for system identification, but recorded for offline assessment of adequate task execution
from the participants.

The full experimental protocol, including safety measures, the SEP device report, and informed consent
documentation can be found in Appendix C-Appendix F. Approval of this protocol was provided by the
Human Research Ethical Committee of the Mechanical Engineering faculty of the TU Delft on June 6th
2024. The experiments were conducted between June 6th and June 26th.

2.6. Data analysis
2.6.1. Experiment assessment
Activation level assessment
Comparability of the results was deemed more important than exact biceps activation levels of 0%, 10%,
and 30% of MVC. Therefore, the calculated mean (Actmean) and standard deviation (ActSD) of activation
level across all participant trials were used for trial inclusion or exclusion, rather than thresholds based
on exactly 0%, 10% and 30% MVC. Normal distribution of average EMG signal per activation level was
confirmed with the Shapiro-Wilk test [72]. Subsequently, two criteria were used for the exclusion of a trial
based on activation level.

• An average activation level outside of the Actmean ± 2 ·ActSD range.
• An activation level outside of the Actmean ± 3 ·ActSD range for a full signal period (5 seconds).

As during 0% MVC trials, negative readings occurred due to some EMG signal drift and not actual deviation
from the target activation, it was decided to only exclude 0%MVC trials based on an upper boundary breach.

Perturbation signal assessment
To analyse the performance of the perturbator controller in tracking the desired perturbation signal over the
different experiments, a comparison between the desired and actual perturbation angle was performed in
both the time and frequency domain. For assessment in the time domain, the tracking root mean square
error (RMSE) between desired and actual joint rotation was calculated. For assessment in the frequency
domain, the frequency response function (FRF) from desired to actual joint rotation and its deviation from
a magnitude of 1, was assessed.

2.6.2. Non-parametric Open Loop System Identification (OL-SID)
Figure 2.3a shows the used system identification setup. The rotation exerted by the perturbator results in a
torque on the handle applied by the human. The perturbator is infinitely stiff compared to the joint, assuming
adequate perturbator control and actuator stiffness. This results in Open Loop System Identification (OL-
SID), where the torque exerted on the perturbator by the human, does not influence the angular rotation
of the perturbator and the joint. For this OL-SID, an FRF relating the perturbation angle as input to the
measured joint torque as output can be derived, based on a similar derivation for Closed Loop System
Identification (CL-SID) described in the work by van der Helm et al. [53].

In the frequency domain, the Fourier transform of the human reaction torque Thandle and the handle angle
θpert are related through a multiplication operation with the FRF HTθ. With the addition of the unmodeled
N(f) (noise or nonlinearity), the measured torque at the handle (Tmeas) can then be derived as follows:

Tmeas(f) = θpert(f) ·HTθ(f) +N(f). (2.1)
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Figure 2.3: Block diagrams of Open Loop System Identification (OL-SID) setups.

By multiplying equation 2.1 with the complex conjugate transform of joint angle θ∗pert(−f) and making use
of the definition of the (cross-)PSD Sxy:

Sxy = E{X(f) · Y ∗(−f)}, (2.2)

equation 2.1 changes to

STθ = Sθθ ·HTθ + SNθ. (2.3)

Note that since calculating the true PSD requires an infinite number of data points, an approximation is often
used instead. If the noise is assumed to be uncorrelated with the positional perturbation, the cross-PSD
between N(f) and θpert (SNθ) equals 0, resulting in the estimation for HTθ:

ĤTθ(f) =
ŜTθ

Ŝθθ

. (2.4)

The coherence between in- and output gives an indication of of system linearity and measurement noise:

γ2(f) =
|ŜTθ|2

Ŝθθ · ŜTT

, (2.5)

which ranges from 0 to 1, equalling 1 if the unmodelled noise and nonlinearity N(f) equals 0 [53].

Prior to PSD approximation, the first 10 seconds of the acquired data for each trial were discarded to
remove initial transient effects. Joint angle and torque data were low-pass (6th order, 11 Hz) and high-pass
(2nd order, 0.1 Hz) filtered to reduce effects of drift and high-frequency noise. The remaining 200 seconds
per trial (or 2x 100 s for the 30% MVC trials) were split into 40 segments containing one signal period of 5
seconds.

The (cross-)PSDs of perturbation angle (θpert) and measured joint torque (Tmeas) were estimated using
the Welch periodogram spectrum estimation method, averaging the estimated PSD of the 40 segments
to reduce the effects of noise [73]. If one of the two 100 seconds 30% MVC trials was excluded due to
the procedure described in 2.6.1, the remaining 20 segments were averaged in the Welch procedure to
estimate the PSDs. The resulting PSDs were used to estimate joint FRFs and coherence according to
equations 2.4 and 2.5 respectively. The FRF of the unloaded SEP was calculated using the same method.
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2.6.3. Parametric model
The FRF relating perturbation angle and output joint torque can be estimated with a model for elbow joint
impedance, HELB . Figure 2.3a shows three components of HELB . HCON describes the viscoelasticity of
the contact between the perturbator and the subject. HINT is the intrinsic impedance of the joint, dictated
by passive biomechanical properties and intrinsic muscle activation. Lastly, HREF describes the reflex
reaction to a rotation of the joint. Block diagram algebra for fig. 2.3a gives the full relationship between
θelbow and Thandle, where the (f) indicating frequency dependence is omitted for legibility:

Thandle = HCON · θpert −HCON · θelbow

= HCON · θpert −HCON (
Thandle ·HINT

1 +HREF ·HINT
)

(2.6)

For OL-SID, it is assumed that the contact between the perturbator and the human limb is infinitely stiff,
meaning the joint (θelbow) and perturbator (θpert) angle are equal [31, 52, 71]. This assumption is expected
to hold up until ∼ 13 Hz [68] (Appendix H). The assumption of HCON = ∞, allows rewriting of equation 2.6
into:

Thandle

HCON
= θpert −

Thandle ·HINT

1 +HREF ·HINT
= 0, (2.7)

leading to

θpert
Thandle

=
HINT

1 +HREF ·HINT
. (2.8)

For the torque resistance of the elbow joint to the perturbation, described by the full elbow impedanceHELB ,
equation 2.8 needs to be inverted:

Thandle

θpert
= HELB =

1

HINT
+HREF . (2.9)

Note that the only difference between the actual exerted joint torque (Thandle) as used in equation 2.9 and
the measured torque (Tmeas) as used in the PSD estimation for equation 2.4, is the addition of noise and
nonlinearity (N ).

The derived equation 2.9 can be schematically depicted in a parallel configuration, seen in figure 2.3b. Here
the output torque as a result of angular perturbation is an addition of the parallel intrinsic and reflexive paths,
as often seen in OL-SID research [52, 56, 71].

The intrinsic joint impedance, consisting of both passive biomechanical and active muscle contributions,
was modelled with the common mass-spring-damper model in rotation, depicted in the Laplace domain as:

HINT ≃ 1

I · s2 + bint · s+ kint
, (2.10)

where s = jω, I, b, and k are the Laplace operator, inertia, damping, and stiffness respectively [31, 51, 68].

Reflexive impedance in the most elaborate description is modelled as follows:

HREF ≃ (ka · s2 + kv · s+ kp) · e−Td·s ·HACT . (2.11)

Here ka, kv, and kp are the acceleration, velocity and positional reflex gain respectively, Td is the reflex time-
delay and HACT describes muscle activation dynamics [51, 53]. In this work, kp and ka were considered
negligible, assuming reflexes mostly respond to perturbation velocity [13, 70]. Both the activation dynamics
and time delay parameters were fixed based on related literature. For HACT , a first-order system with a
time constant of 0.03 and thus a low-pass cut-off frequency of 5.3 Hz was used [53]. The time-delay of the
reflex Td was estimated at 40 ms [29, 74–76]. This resulted in a reflex model with only kv as a free variable.
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2.6.4. Parameter estimation
The parameters of the elbow impedance model were estimated to match the modelled impedance to the
measured FRF. For this, parameter fitting was performed by using the MATLAB ’lsqnonlin’ solver, with the
gradient-based ’Trust-Region Reflective’ algorithm [77], to minimise the error function:

L(p) =

f=BW∑
f=0.4

1

1 + f
· | ln ĤTθ(f)

ĤELB(f)
|2. (2.12)

Here f is the analysed frequency, p the model parameter set, ĤθT the measured FRF, and ĤELB the
modelled elbow impedance [68]. As the 0.2 Hz content appeared to be distorted by both drift and the applied
low-pass filter, the fits were performed for the frequencies from f = 0.4 Hz up to bandwidth (f = BW ), only
evaluating frequencies present in the perturbation. A factor (1 + f)−1 and use of the logarithmic error both
prevent emphasis on high frequencies where larger errors occur due to large absolute impedance [68].

Elbow inertia was fit separately from the other parameters, as it was expected to be uninfluenced by pertur-
bation signal type or activation level. The inertia was estimated for the 0%MVC trials of the WB and WB LP
signals and averaged to yield one inertia estimation used in all other fits. The best inertia fit was sought by
minimising the objective function shown in eq. 2.12 for frequencies between 4 - 7 Hz only, a range above
the natural frequency of the elbow and well below the influence of contact dynamics. As only a small range
of high frequencies was used, the correction factor (1 + f)−1 was omitted.

The NB perturbation bandwidth was too limited to estimate the intrinsic damping parameter. The average
of the damping estimations for the other perturbations (WB and WB LP) was thus used as a fixed damping
value for NB fitting, as seen in other literature [53, 70].

Two models for HELB were fit to the measured FRFs. One consisting of only the intrinsic impedance (I-
model, HINT ) and one consisting of both the intrinsic and reflexive impedance (IR-model, 1

HINT
+HREF ).

Both models were fit with the same initial and boundary values for the intrinsic parameters (Appendix G).
The quality of both fits was assessed using the ’Variance Accounted For’ (VAF) metric, which indicates how
much of the data variance is explained by the fitted model (eq. 2.13). Measured (T (t)) and model predicted
torque (T̂ (t)) were compared, with a VAF of 100% indicating a perfect fit.

V AF = (1−
∑N

i=1(T (ti)− T̂ (ti))
2∑N

i=1 T (ti)
2

) · 100% (2.13)

2.7. Statistical analysis
The fitted parameters were averaged over the 2 different realisations of the same perturbation signal. If a
trial with one of the realisations was excluded based on the procedure described in section 2.6.1, the fitted
parameters of the single remaining realisation were used as the ’average’. This resulted in 1 value for each
parameter per perturbation signal (WB, NB, WB LP) per activation level, averaged over all participants and
used for statistical evaluation. Both the effect of activation level on intrinsic impedance parameters kint and
bint as on reflexive parameter kv were statistically evaluated. Only the fitted parameters of the IR-model
were statistically compared, while the differences between the I- and IR-model were discussed qualita-
tively, to limit the number of statistical comparisons. For similar reasons, the effect of different perturbation
signals on the quantified impedance, specifically the nonlinear reflex response, was also only discussed
qualitatively.

Prior to statistical comparison, the normal distribution of the fitted parameters was assessed using the
Shapiro-Wilk test [72]. A one-way Repeated Measures (RM) ANOVA statistical test [78] was performed to
identify the influence of muscle activation level on the fitted parameters, with an additional Greenhouse-
Geisser [79] correction in case a sphericity violation was determined with Mauchly’s test for sphericity [80].
A posthoc analysis was performed for 0% → 10%, 0% → 30%, and 10% → 30% MVC activation level steps
using a paired t-test with Bonferroni correction. This is a good alternative to the Tukey Honest Difference
test in the case of repeated measures with possible sphericity violations [81, 82]. Since an increase in
fitted parameters with activation level was expected, a one-tailed t-test was used. For the three post-hoc
comparisons, the significance level was adjusted to α = 0.05/3 = 0.0167, to keep the family-wise error rate
below 0.05. This same threshold was applied when assessing normality and sphericity prior to statistical
comparison, ensuring the same correction across the three activation levels.



3
Results

3.1. Activation level assessment
Offline comparison of the MVC values obtained from EMG signals filtered with the commonly used moving
RMS filter versus the Bessel filter revealed an average difference of approximately 5% (Appendix I). The
first-order online Bessel filter was thus considered adequate for real-time feedback of muscle activation.

Using the Bessel-filtered EMG signals, the mean estimated biceps EMG level during MVC was 562.3 mV,
compared to a mean EMG signal in the relaxed state of 47.9 mV. Some presence of drift in the EMG signal
reading resulted in readjusting these normalisation values in between trials. Average EMG drift magnitude
was 6.8% of the total range from relax to MVC (Appendix J).

The activation levels reached during trials were normally distributed over participants, as assessed with
the Shapiro-Wilk test (Appendix K). Average activation levels were -0.08% [±2.3%] (negative due to slight
EMG-drift), 10.82% [±1.0%] and 29.87% [±1.1%] of MVC for the 0%, 10% and 30%MVC trials respectively.
Appendix L shows the exclusion based on the two criteria stated in 2.6.1. In total, 32 out of 375 completed
trials were excluded based on muscle activation level (18 due to average, 14 due to 5 s deviation).

3.2. Perturbation signal tracking
The tracking of the desired perturbation signal by the SEP was adequate, but decreased slightly with in-
creasing muscle activation and increasing perturbation velocity, as both require more control force. When
comparing reference and actual perturbation signals in the time domain, the tracking RMSE was highest at
30% MVC for the WB signal, with an average of 0.16°.

In the frequency domain, the FRF from desired to actual joint rotation showed a slight overshoot around
∼ 7Hz with an FRF magnitude >1, while at the highest perturbated frequencies (∼ 9 - 10 Hz), it dropped
below 1. The highest average overshoot occurred at theWB signal and 30%MVC trial (FRF = 1.42±0.10))
and the lowest FRF magnitude occurred at the WB LP signal and 10% MVC trial (FRF = 0.46 ± 0.09).
Tracking in both time and frequency domain is visualised in Appendix M, including listed RMSE and max.
and min. FRF values for all activation levels and perturbation types.

3.3. Non parametric analysis
3.3.1. Frequency response functions
The average frequency response functions (fig. 3.1) resemble a second-order system for all activation levels
and all signal types. While slightly less straightforward than in a regular mass-spring-damper model due to
the added reflex, the transition of the stiffness dominated impedance to the mass dominated impedance will
still be referred to as the natural frequency (ωn). An increase in the standard deviation of the FRFmagnitude
and phase can be observed for higher activation levels. The FRF of the unloaded SEP identified using the
different perturbation signals can be observed in Appendix N.

3.3.2. Coherence
At low frequencies, the coherence drops significantly, equalling almost 0 at the lowest excited frequencies
(fig. 3.1). Coherence appears to increase simultaneously with the impedance increase beyond ωn. As the
activation level increases, ωn increases, and the point where coherence improves is also shifted upwards.
For the NB signals, coherence at low frequencies is slightly higher, not dropping below 0.2 as for the WB
and WB LP perturbations.

11
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Figure 3.1: Results for non-parametric analysis. Top row shows the magnitude of the Frequency Response Function (FRF), middle
row the phase of the FRF and bottom row the coherence between the input perturbation angle and output torque. Columns

correspond to the different perturbation signals, and colors to the different activation levels.

3.4. Parametric analysis
3.4.1. Qualitative description
Figure 3.2 shows an exemplary fit of the IR-model for two trials at 0% and 30%MVC, best suited to show the
reflex contribution to impedance. Exemplary fits for all signals types and activation levels can be found in
Appendix O. At the 0% activation level, the fitted reflex component is minimal as the intrinsic model properly
describes the FRF (fig. 3.2, left). As muscle activation level increases to 30% MVC, the total stiffness and
ωn increase. However, the increase in ωn is larger than can be explained by only the increased stiffness,
causing a mismatch unsolvable only by the intrinsic model (fig. 3.2, centre).

As the reflex is modelled as a velocity gain with a time delay, its main action can be observed up until and
around the natural frequency of the system, between ∼ 1 - 4 Hz. The addition of the reflex model acts
twofold:

• Reflexive impedance is added, resulting in a slightly lower estimate of intrinsic stiffness, added to-
gether with the reflexive impedance to match the FRF at low frequencies.

• Due to the reflexive and intrinsic impedance being out of phase in the 2-4 Hz region, the higher
impedance caused by inertia in the intrinsic model is reduced by the reflexive response. This results
in what appears as a longer flat ’stiffness line’ in the FRF and postponing of ωn, thus solving the
mismatch in stiffness and ωn. This is visible in the right column of figure 3.2.

These effects seen in the exemplary fits were further supported by the average fits of the I-model and
IR-model (Appendix P), which overlapped for lower activation levels, but deviated as muscle activation
increased. The average VAF of both fits can be seen in table 3.1. Overall VAF values were quite low,
in line with the low average coherence, especially for the NB perturbation where only the low coherence
frequencies were analysed. Despite the clearly improved FRF fit, only a slight increase in VAF could be
observed when fitting with the IR-model instead of the I-model. The VAF increase was largest for the
NB signals and the highest activation levels. A comparison of measured and modelled torque in the time
domain, used to calculate the VAFs, is shown in Appendix Q.
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Figure 3.2: Example of fitting a joint impedance model to the measured FRF. The fitted model is a combination of intrinsic and
reflexive impedance (IR-model). Left: A 0% MVC trial. Right: A 30% MVC trial.

Table 3.1: Variance Accounted For (VAF) [SD] for the intrinsic (I-model) and combined intrinsic and reflexive (IR-model) model fits,
for different perturbation types and activation levels.

Perturbation Model Activation level
0% MVC 10% MVC 30% MVC

WB Int 67.7% [14.7%] 75.1% [9.1%] 76.7% [2.5%]
Int + Ref 67.4% [14.4%] 71.7% [8.4%] 79.7% [3.0%]

NB Int 73.3% [6.6%] 26.1% [12.8%] 27.9% [11.8%]
Int + Ref 80.7% [5.6%] 41.4% [12.5%] 35.4% [9.9%]

WB LP Int 68.3% [9.6%] 65.8% [5.9%] 60.9% [8.0%]
Int + Ref 65/6% [9.3%] 63.0% [11.2%] 70.2% [8.1%]

3.4.2. Fitted parameters
Averaging, normality, and distribution
Fits were performed separately for the two realisations of each perturbation signal. No statistical differences
between the fitted parameters of the two realisations were found (Appendix R), supporting the choice to
average all fitted parameters over the two signal realisations. This results in one value for each parameter
per signal type (WB, NB, WB LP), per activation level, averaged over participants and shown in figure 3.3.

As the activation level increased, the difference between the fitted parameters of the I-model and IR-model
increased, in line with the qualitative observations in section 3.4.1. All four fitted parameters for all nine
trials were normally distributed over participants (Appendix S), except kint at the WB 10% MVC trial due
to two outliers and kv at the WB 0% MVC trial due to equalling 0 for almost all participants. This was
deemed adequate for a parametric analysis. Statistical comparisons were executed for the IR-model only.
A complete overview of the statistical analysis, including all p-values, F-statistics, Greenhouse-Geisser
correction factors for the ANOVA, and confidence intervals for the post hoc analyses, can be found in
Appendix T.

Intrinsic parameters
For the inertia estimation for all activation levels and perturbation signals, the average of the inertia estima-
tion from 0% WB and 0% WB LP was used. The average inertia estimation for the 0% WB (0.155Nm·s2

rad )
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Figure 3.3: Average fitted parameters for all participants for different activation levels and signal types. Bars show ±1 · SD. kint,
bint, and kv are intrinsic stiffness, intrinsic damping and reflex gain respectively. NB bint parameters are not shown, as these were

not fit separately but obtained through averaging WB and WB LP bint.

and for the 0% WB LP (0.173Nm·s2
rad ) did differ significantly (p < 0.001). Averaging thus resulted in a slight

over- and underestimation of inertia for WB and WB LP trials respectively.

The RM-ANOVA showed a significant increase in intrinsic stiffness (p < 0.0001 for all perturbation types)
and in intrinsic damping (p < 0.0001 for all perturbation types) with increased activation level, as seen in
figure 3.3. The post hoc analysis results were the same for intrinsic stiffness and damping. A significant
increase of kint and bint was found for all increases in activation level (p < 0.0167 for the 0% → 10%,
10% → 30% and 0% → 30% steps) for all perturbation types, except for the WB LP perturbation 10% → 30%
activation level step.

Visual inspection of figure 3.3 shows no large influence of perturbation type on the intrinsic stiffness es-
timations. For intrinsic damping, parameter estimation did change slightly with the perturbation signal,
decreasing from WB to WB LP. For the NB perturbation damping is not presented, as it was not fitted
separately.

Reflex gain
Just as the intrinsic parameters, the reflex gain increased significantly with increased activation level (p <
0.001 for all perturbation types). The increase for the WB and WB LP perturbations appeared similar,
whereas the increase for the NB perturbation appeared slightly smaller (fig. 3.3). This was confirmed by
the post hoc testing. A significant increase of kv was found for all increases in activation level (p < 0.0167
for the 0% → 10%, 10% → 30% and 0% → 30% steps) for all perturbation types, except the 10% → 30%
step for the NB perturbation.

The standard deviation for the fitted reflex parameter was large, especially at high activation levels, due
to large inter-subject differences. Illustrative of the inter-subject variability is the considerable number of
subjects that show no reflex response at all, even at high activation levels where the average reflex gain
clearly increases. Table 3.2 shows the high number of trials where no reflex response was identified, which
was especially large for the WB and WB LP perturbations.

Table 3.2: Number of trials for which a reflex gain of kv = 0Nm·s
rad

was fit, for different activation levels and perturbation types.

Perturbation Activation level
0% MVC 10% MVC 30% MVC

WB 26 6 8
NB 6 6 3

WB LP 14 4 6



4
Discussion

This study utilised OL-SID with an activation task and multisine perturbations at different bandwidths and
velocities for system identification of the elbow joint. The goal was to fundamentally assess the influence of
both activation level and perturbation signal properties on the identified intrinsic and reflexive contributions
to joint impedance. This could lead to an experimental protocol to quantify and distinguish the impedance
contributions of spastic reflexes and non-volitional muscle activation through synergies, as seen in the post-
stroke elbow. The reported findings are promising for reaching this objective. The voluntary activation task
to mimic non-volitional synergistic activation was executed well with aid of visual EMG feedback, and the
perturbation trials with the SEP produced consistent results. The used impedance model distinguished
intrinsic and reflexive impedance. The increase of both with increased activation level suggests proper
quantification, aligning with physiological expectations. The unexpected limited influence of perturbation
type on the nonlinear reflex response forms a starting point for further research.

4.1. Effect of activation level on fitted parameters
4.1.1. Intrinsic parameters
Both intrinsic stiffness (kint) and damping (bint) increased with activation level. This is in line with other
experimental research [31, 34, 57, 59, 83] and can be explained physiologically by an increased number
of recruited cross-bridges in activation [83]. These exhibit both stiff behaviour when stretched and viscous
damping behaviour due to cyclic-turnover [84]. The increase from 0% to 10%MVC appears larger than that
from 10% to 30%. This ’flattening’ of the relationship between muscle activation and intrinsic impedance
has been previously reported [57, 59, 60]. The assumption occasionally made that intrinsic parameters are
linearly dependent on the level of muscle activation might thus be overly simplistic [54] .

The large spread in intrinsic parameters can be explained by differences in strength of participants [59],
confirmed by the increased standard deviation with activation level. The average values of the fitted intrinsic
parameters correspond to other literature on the elbow joint, with reported ranges for elbow stiffness and
damping at different activation levels being 0-75Nm

rad and 0.3-3
Nm·s
rad respectively [34, 59, 68].

4.1.2. Reflex gain
The reflex gain is shown to increase with activation level, confirming the theorized ’gain scaling’ relation-
ship, consistent with findings in most literature investigating this at both neurological [24, 29, 30, 33] and
neuromechanical [31, 33, 59] level. The opposing claim in the work of Mirbagheri et al. that reflex gain de-
creases with intrinsic muscle activation, could be explained by the used model [34]. Mirbargheri et al. use
the bandwidth of muscle activation dynamics as a free parameter in the reflex model, seeing it increase with
muscle activation. This could result in a similar increased reflex response as observed with the increased
kv value in the current work. Found average values for reflex gain of the elbow are in the same order of
magnitude as in related literature, ranging from 0 to 2Nm·s

rad [31, 59, 71].

The distribution of reflex gain for different subjects has a large standard deviation, and results show a
relatively large number of subjects with trials with kv = 0Nm·s

rad values, even at higher activation levels. This
large inter-subject variation can be seen in other studies using OL-SID with background activation tasks
as well [34, 83]. This task does not let reflexes contribute to performance, causing less homogeneous
group behaviour [34]. Another explanation could be a local minimum for the gradient-based solver of the
error function in equation 2.12. To remain conservative in adding reflex action to the model, low initial
values (kv = 0.1Nm·s

rad ) for the reflex gain were used for the solving algorithm, possibly converging to a local
minimum at kv = 0Nm·s

rad for some trials.

15
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4.2. Effect of perturbation signal on fitted parameters
4.2.1. Intrinsic parameters
The inertia parameter for the WB LP signal was significantly larger than that of the WB signal. This is
a remarkable finding which can only be explained by noise or unmodelled dynamics, as arm inertia is
independent of perturbation type. Further investigation is required to ensure valid identification of elbow
inertia with the SEP.

The influence of perturbation type on the intrinsic stiffness (kint) and damping (bint) appears minimal as
is often assumed [53, 70] and demonstrated [52, 57] in literature. However, the WB LP signal shows
a slightly lower damping across all activation levels, possibly due to the 25% reduction in perturbation
amplitude (sec. 2.4) for this signal. The muscle response to stretch generally consists of an initial stretch
of the attached cross-bridges, followed by their cyclic turnover, displaying viscous damping [85]. Reducing
stretch length could decrease the relative contribution of damping, resulting in the witnessed change for the
WB LP perturbation [83]. While the difference is small and sensitive to noise, it does imply that assuming
all intrinsic parameters independent of perturbation type may be overly simplistic.

4.2.2. Reflex gain
Effect of perturbation bandwidth
The current work shows no reflex suppression by any of the perturbations, with bandwidths of WB and WB
LP perturbations well over the natural frequency (ωn) of the elbow. Conversely, in most CL-SID research
with a position task, the reflex gain decreases if the perturbation bandwidth contains the joints ωn. Around
ωn, a reflex response and its time delay cause instability and large position deviations. As position deviations
reduce task performance, the reflex gain is thus scaled down [12, 53, 70].

This confirms that reflexes assessed in a context where they are functional for task performance (as with
CL-SID and a position task) should be considered separate from those in the current context where the
presence of reflexes is unrelated to task performance [58]. While previous OL-SID research with relax
or activation tasks does not specifically investigate the effect of perturbation bandwidth on the reflex re-
sponse, higher bandwidth perturbations encompassing joint ωn [31, 52, 59] are utilized. The largest reflex
contribution to impedance is even seen around this ωn [52].

As in this work, the largest reflex contribution is also seen around the joints natural frequency (2-4 Hz
range), including this in the perturbation spectrum could even improve reflex estimations. This reasoning
might partly explain the lower estimated reflex activity for the NB perturbation, as ωn was not within the
analysed spectrum.

Effect of perturbation velocity
Unexpectedly, the different perturbation velocities do not greatly induce or suppress the modelled reflex
gains either. The discrepancy regarding the interaction between perturbation velocity and reflex gain in
related literature confirms the complexity of this relation. From the overview of used perturbation velocities
in literature in Appendix B, it can be observed that the relationship between perturbation velocity and reflex
suppression is highly dependent on the type of perturbation signal used.

In most OL-SID research with small amplitude perturbations, kv (Nm·s
rad ) is used as a main reflex parame-

ter; a velocity gain of the reflex that itself will decrease when perturbation velocity increases [52, 59, 83].
However, disagreement remains on which specific velocities induce or suppress a reflex (Appendix B), war-
ranting consideration of other perturbation properties. One key difference is the movement pattern of the
different perturbation types: small amplitude ramp-and-hold stretches rotate ∼ 0.15 rad at a constant veloc-
ity, PRBS perturbations involve high-velocity binary switches (∼ 0.03 rad) with rest periods, and multisine
perturbations alternate directions with variable velocities. These patterns also affect acceleration content
of the perturbation, which is known to influence reflex response independently of velocity [86].

Reflex responses are highly nonlinear, influenced by muscle spindle nonlinearity [57, 85], presynaptic inhibi-
tion during fast joint rotation or high-frequency vibration [87], and nonlinear muscle activation dynamics [52].
As these nonlinearities could be sensitive to different movement patterns and perturbation accelerations,
comparing velocity effects across different perturbation types may not be feasible. In this study, perturba-
tion velocities were close to those expected to alter the reflex response in PRBS but lower than used in
other multisine studies (Appendix B). This suggests that ’high-velocity’ perturbations may not have been
sufficient to cause reflex suppression, indicating a need to further consider perturbation signal differences.
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4.3. Methodological considerations
4.3.1. Used reflex model
To reduce model fit complexity, the reflex response was assumed to consist only of a positive velocity gain
kv, with the lower bound for fitting set at 0. This forces the reflexes in the current research to be an excitory
response only to the perturbation velocity, exiting musculature to resist the perturbation. This neglects
other possible contributions to reflexes, such as positional and acceleration gains [51, 59], force feedback
reflexes through Golgi Tendon Organs (GTO) [55], and inhibitory Ia-reflexes with a negative kv value [55].
While addition of more components can make the model more complete, the physiological implication of
the fitted parameters must be considered.

The velocity sensitivity of muscle spindles grounds the assumption that kv is the primary contributor to the Ia-
reflex response [13]. Inhibitory negative kv feedback and inhibitory GTO feedback, are not often identified,
typically only in tasks where subjects actively aim to reduce joint impedance. Since participants in this
experiment were not instructed to reduce their impedance, inhibitory Ia- and GTO-feedback were omitted
from the model fits. An additional analysis allowing kv to fall below 0 (Appendix U) revealed inhibitory
negative reflex fits in some trials, even at high activation levels without the task to reduce impedance. This
indicates that while a model may converge to a solution, deviations from physiological expectations require
cautious interpretation of the results.

The fitted reflex response in this study (fig. 3.3) aligns with physiological expectations. For the 0% MVC
trials, the I-model and IR-model fit overlap, conform the absence of a reflex response for a healthy relaxed
biceps muscle. As muscle activation increases, so does the IR-model’s reflex response, consistent with the
’gain scaling’ phenomenon [29, 30]. At higher activation levels, intrinsic impedance is higher for the I-model
than the IR-model fits, as the reflex response in the IR-model partly replaces this intrinsic impedance [59].
The IR-model’s better fit for the FRFs translates to slightly higher VAF values at higher activation levels.
While VAF generally increases with model complexity [59], the observed trends, consistent with neuromus-
cular control theories, further support confidence in the fitted reflex response. However, a more detailed
reflex model could enhance the analysis. Specifically, including ka could better address the complex rela-
tionship between perturbation velocity and reflex gain, which is also acceleration-dependent [86].

4.3.2. Coherence
A caveat in the analysis is the low coherence for the FRFs at low frequencies. This may be due to noise
or drift in the torque signal, caused by inconsistent biceps contractions of participants, when matching
requested activation levels. At low frequencies, impedance is minimal, making the torque output relatively
small compared to this noise (Appendix V), resulting in a low SNR, low coherence, and low VAF values
for the fit [70]. This explanation is supported by the rise of coherence as the impedance increases due
to inertia beyond ωn. Low coherence at low frequencies caused by drift is shown and discussed in other
research using OL-SID with position perturbations [33, 59]. However, the issue does not appear for CL-
SID with torque perturbations with the SEP [68]. This difference may arise because the dependency of
coherence on joint impedance as seen in the current OL-SID is not present in CL-SID coherence, as derived
in Appendix W.

Low coherence does not necessarily indicate incorrect joint impedance estimation. The Welch-averaging
of 40 segments in he current analysis reduced the noise effects in the PSD estimation [73]. To evaluate
this averaging, the analysis was also conducted with half the data (100s, 20 segments), of which results
are shown in Appendix X. The 100s and 200s measurement analysis resulted in very similar PSDs, FRFs,
and average fitted parameters. This similarity suggests convergence to the ’true’ PSD and FRF, with noise
adequately averaged out. However, individual fitted parameters per trial showed larger variations between
the 100s and 200s measurements, highlighting their sensitivity to noise and number of averaged segments.
Since the low-coherence and low-frequency region does remain an important part of the parameter es-
timation, the fitting error function was not weighted by coherence to avoid reducing the influence of low
coherence frequencies on the fit, as seen in other research [68].

4.3.3. Contact and attachment dynamics
The high-frequency region of the FRFs (fig. 3.1) showed some deviation of the common inertia +2 slope in
magnitude and +180° in phase, possibly related to contact dynamics. For OL-SID, the contact dynamics
must be ’infinite’, assuming the same rotation angle for the perturbator as the joint. An estimation based
on previous research with the SEP [68] (Appendix H) showed validity of this assumption up to ∼ 13 Hz,
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while the the measured FRFs showed contact dynamics effects up from ∼ 7 Hz. To reduce the influence
of contact dynamics on the parameter estimations, the inertia was fit only using frequencies up to 7 Hz.
Further research should aim at increasing contact stiffness, to increase the frequency up untill which the
’infinite’ stiffness is valid. Alternatively, perturbation signal frequencies above 7 Hz should be omitted if not
essential for adequate inertia estimation, as this could increase power at other lower frequencies.

The impedance of the cantilever attachment securing the forearm was expected to consist of only a small
inertia component, consistent across perturbation signals. The estimated joint impedance was thus lumped
with this ’attachment impedance’, as in other OL-SID research [59]. Note that the attachment impedance
does not contain motor impedance, as the torque measurement is taken from a sensor between the rotary
table and the attachment, not from the motor drive. Unexpectedly, the attachment impedance FRF differed
for the different perturbation signals, showing some stiffness for the WB and WB LP perturbations (Ap-
pendix N). This inconsistency could be due to oscillations of the SEP during experiments, adding varying
SEP structural dynamics to the FRF, with shaking increasing from NB to WB LP to WB perturbations. While
these differences are small, they ask for further investigation and careful consideration of results. Especially
at 0% MVC trials, where human joint impedance is relatively low compared to this inconsistency.

4.4. Future work
4.4.1. Experimental design
For further research, the issue of decreased coherence at low frequencies must be addressed by increas-
ing low-frequency SNR. This can be achieved by reducing the number of excited frequencies to increase
the input power per frequency [70], as demonstrated by the NB perturbation showing slightly higher low-
frequency coherence than the WB and WB LP perturbations (fig. 3.1). When reducing the perturbation
spectrum, the discussed advantage of keeping the joints ωn within this spectrum (sec. 4.2.2) should be
kept in mind. A reduction in frequency resolution could increase SNR further. Alternatively, CL-SID ex-
periments with torque perturbations could be used to mitigate the low coherence issue, adding a virtual
environment to prevent drift during the activation task [88].

In the current work, overall averaged parameter fits and trends appeared adequate, even in the presence
of low coherence and SNR. However, fitting procedures for individual participants were unpredictable, sus-
ceptible to signal noise, and had divergent results with large standard deviations. More consistent fitting
procedures in the presence of noisy measurement data should be further investigated. For instance, Kear-
ney et al. demonstrate an iterative fitting procedure that effectively increases SNR in a fit [52].

Furthermore, investigation is needed into the effect of perturbation velocity on reflex response and how
this differs per perturbation type. Special attention must be paid to comparing the effect of instantaneous
velocity, average velocity, acceleration, and direction switch patterns. For more ’instantaneous’ switches of
higher acceleration between joint angles, controller performance would need to improve. The current SEP
controller is sufficient for a 10 Hz bandwidth and 2°-amplitude multisine rotational perturbation (Appendix A),
but signals approaching PRBS perturbations require higher controller performance. Enhancing hardware
with a higher resolution encoder could help meet these demands.

4.4.2. Clinical use and applicability
The current system identification protocol shows promising results in clinically separating (spastic) reflexes
from (synergistic) background activation. To enhance its clinical relevance, further steps are needed to
improve the protocol’s applicability.

EMG measurements are a burden in fast assessments and should thus be replaced. If the mimicking of
non-volitional synergistic activation is still desirable for subjects where this does not show naturally, a level
of biceps flexion torque could be requested instead [29]. To aid in matching a constant background biceps
flexion level, visual feedback of a severely low-pass filtered (∼ 0.2 Hz) torque signal could be used. The
low-pass filtering is crucial, to prevent subjects from adjusting their joint torque in response to perturbation,
actively decreasing their admittance as in a ’force task’ [55].

Further clinical applicability can be reached by consolidating the protocol. Given the minimal effect of
perturbation bandwidth on identified impedance, a single perturbation signal with a bandwidth of ∼ 5-6 Hz
may suffice for the analysis. Future research should investigate the optimal perturbation velocity to induce
a reflex response allowing for optimal quantification, and explore the minimal measurement time needed
for accurate FRF estimation using Welch averaging [73].



5
Conclusion

This thesis presents the design and evaluation of an OL-SID protocol with multisine rotational perturbations,
for simultaneously quantifying intrinsic and reflexive impedance. Both the effect of increased background
activation and the effect of different perturbation signal properties on the identified impedance parameters
was assessed.

Intrinsic and reflexive impedance both significantly increased with increased activation level, in line with
related literature and physiological expectations. This demonstrates the ability of this technique to reliably
differentiate and quantify both intrinsic and reflexive impedance. The investigation of different perturbation
bandwidths and velocities on the identified impedance parameters brought little-discussed findings to light.
First, excitation of the joint natural frequency does not suppress reflex responses in the current experimental
setup. Second, the effect of perturbation velocity on reflex suppression is complex and cannot be directly
extrapolated from other OL-SID research with PRBS or ramp-and-hold perturbations. Further research
is needed to thoroughly investigate this effect and determine the optimal perturbation velocity for reflex
induction.

Overall, the separate identification of both intrinsic and reflexive impedance and their change with activation
level is a promising result regarding post-stroke research. Clinical separation of these two phenomena
could aid in seeking consensus on what is the most prominent problem of post-stroke motion disorder, in
pursuit of adequate treatment. Are patients mostly hindered by excessive spastic reflexes in rest [31, 47]
or by distorted gain scaling of the reflex due to non-volitional intrinsic muscle activation [12, 29, 33]? Or is
the biggest hindrance formed by a change in passive biomechanical impedance, unrelated to reflexive or
intrinsic muscle activation at all [18]?
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A
Controller SEP

As used in previous research [61, 89], the SEP controller consisted of 4 control modes:

• Voluntary active motion of the test-subject. Only an anti-cogging controller is embedded in the
Simulink to counteract the motor-cogging effect, allowing smooth rotation of the elbow joint in a vol-
untary motion.

• Ramp-and-hold (RH) rotations of the elbow. A position control mode is embedded in the Simulink
model. A Proportional-Integral-Derivative (PID) controller is used, with an algorithm providing the
option for either a 6deg

sec or a 100deg
sec RH-motion.

• Maximum voluntary torque experiment. The same PID controller as for the RH-motion is used, but
with the reference rotation kept constantly at a 90-degree bend of the elbow.

• Multisine torque perturbations. No position controller is used, but a multisine torque signal is sent
to the motor driver directly.

For the current experiments, a position controller able to perform a multisine rotational perturbation of the
elbow joint was developped, as this was not yet present in the Simulink controller algorithm. This section
describes the efforts to tune the control of the SEP to attain a flat power spectrum for multisine perturbations
up to 10Hz, of 2°-amplitude.

Two different options for control were considered:

• PID-controller implemented in the Simulink model, converting a position (or rotation angle) error to a
desired motor torque sent to the HIWIN motor driver.

• Putting the HIWIN motor driver itself in velocity control mode, only providing a target velocity signal.

A.1. PID controller in Simulink
APID controller previously designed for the RH-motion consisted of gains 4, 5, and 0.1, for the P-gain, I-gain
and D-gain respectively. The large I-gain resulted in the desired controller behaviour in the RH-experiments
but hindered adequate control in the multisine tracking. Without the I-gain, the relatively low P- and D-gain
resulted in a decreasing power spectrum at higher frequencies, as shown in figure A.1.
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Figure A.1: PSD of actual perturbation signal as a result of a 0.2− 10Hz multisine reference perturbation, for the initial SEP
controller.
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To increase power at higher frequencies two changes were implemented:

• An increased P-gain for higher controller stiffness.
• An increased D-gain to achieve adequate controller stability margins in the presence of high control
stiffness.

• A feedforward component for D-gain, allowing feedforward control with the noise-less reference signal
velocity.

These changes resulted in the controller shown in figure A.2.
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Figure A.2: A Proportional Derivative (PD)-controller converting a rotation angle error and the derivative thereof to a target torque,
combined with feed forward derivative control.

The effect of the increased stiffness of the controller is visible in figure A.3a. The PSD at high frequencies
increases, but the peak PSD at the new closed-loop resonance frequency increases as well. As also visible
in figure A.3a, increasing the D-feedback gain reduces this peak.

However, the measured rotation angle signal sent from the motor encoder to the controller PC contained is
slightly delayed and coarsly discretized. This caused inconsistencies in the derivative of the rotation angle
signal, used for the derivative action. Therefore, feedback D-gain could not be further increased beyond
∼ 0.25 before causing instability.

The addition of feed-forward D-gain allowed more derivative action uninfluenced by the noisy and discre-
tised encoder signal. It also caused extra power for tracking signals with a high velocity without causing
instability, as both seen by the increased power at high frequency in figure A.3b.

While this controller could be considered adequate, this method required intensive tuning to reach a stable
controller. Furthermore, the stability margins remained small due to the inability to further increase damping.
This resulted in the fact that any additional stiffness of the participants arm in the SEP-device, which is
required for multiple trials, caused instability of the closed loop system. Tuning the control-parameters for
every participant and every different activation level was not desired. Therefore, a different control strategy
was employed.
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Figure A.3: Comparisons of PSDs of actual and reference perturbation signal. Showing the effect of different controller parameters.

A.2. HIWIN internal velocity control
The HIWIN motor drive features an internal PI-controller as well, converting a desired velocity input to a
necessary motor torque using the HIWIN software. The internal velocity controller of the HIWIN has a more
direct input of the motor encoder, less discretized and delayed, resulting in a smoother velocity signal for
control. The internal HIWIN controller could thus be tuned stiffer, while retaining adequate stability through
increased damping. This allowed adequate reference signal tracking even in the presence of a human joint
resisting the perturbation.

Within the Simulink model, the derivative of the reference multisine perturbation was calculated and sent
to the HIWIN controller. This derivative was calculated as a filter state of a first order LP-filter. The filter
coefficient of the LP-filter was set high, at 100, to allow high frequency variations in velocity signal to be
sent to the HIWIN controller.

Furthermore, as a velocity controller is susceptible to drift, a drift correction term was added. This consists
of a multiplication of the rotation angle error with a gain, which gets added to the desired velocity. Tuning
of the drift correction resulted in a rotation angle error gain of 2. The final controller configuration is shown
in figure A.4.

The final controller performance for tracking a 10Hz bandwidth perturbation signal, while the SEP is loaded
with a stiff arm, is shown in figure A.5. This performance appeared adequate for tracking the desired signal
for the current experiments.

A.3. Conclusion
The final used controller is an internal velocity controller of the HIWIN driver, which tracks a velocity signal
consisting of the differentiated reference rotation and a drift correction term.

Controller performance significantly increased compared to the initial controller settings, with the final con-
troller set-up proving adequate for the current experiments. However, for further experiments and more
demanding rotational perturbation signals, a more advanced control scheme is needed. This could be
achieved with a high resolution rotary encoder and more advanced control schemes.
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Figure A.4: The controller set-up making use of the HIWIN internal velocity controller.
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B
Perturbation velocities in related

research

OL-SID research uses a range of different perturbation types and velocities, which are theorised to affectthe
nonlinear reflex response. Table B.1 shows an overview based on related literature of different perturbation
types and the used velocity content. Optimal velocities for reflex induction are presented and an indication
of whether an increased or decreased velocity is theorized to suppress reflexes is given. As a measure of
average velocity over a perturbation, the Root Mean Square (RMS) of perturbation velocity is used. The
small differences in velocity between articles using the same perturbation type were neglected, displaying
one estimate of the average velocity content per type of perturbation.

For the multisine perturbations studies, as no explicit investigation of the effect of perturbation velocity
on reflex response was performed, the average and maximum velocity of perturbation were not reported.
These were estimated by regenerating the described perturbation signal in Matlab and calculating velocity
through numerical differentiation.

Table B.1: Velocity content of different types of perturbation signals, taken from OL-SID literature.

Perturbation type Avg. velocity Max. velocity Reflex reduction at ... velocities
Long RH stretches [47, 48] ∼ 1.5 rad

s ∼ 1.5 rad
s Lower

Short RH stretches [57] ∼ 0.5 rad
s ∼ 0.5 rad

s Higher
PRBS [34, 52, 56, 71] ∼ 0.2 rad

s ∼ 2 rad
s Higher

Multisine [31, 33, 59] ∼ 0.8 rad
s ∼ 2.5 rad

s Higher
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C
Experimental protocol

C.1. Preparing experiment
The following steps are taken in preparation of the experiment. These ensure proper participant informed
consent, adequate data saving and a safe testing environment.

• Turn on the SEP laptop and SEP at least 30 minutes before start of the experiment.
• Ensure the end-stops of the SEP are set at a 10 degree amplitude from the 170 degree centre position.
• Ensure both foam supports to relieve elbow and wrist discomfort are in place on the SEP.
• Ensure the emergency button is connected to the SEP device.
• Provide the participant with the printed experiment information and the informed consent file.
• Explain the experiment, allow for participant questions, request the participant to sign the consent
form and store the signed consent safely.

• Assign a KEY to the participant and store this only within the KEY decipher file.
• Create a folder on the data transfer device (USB-stick) for the participant titled ’data_KEY’.
• Ensure adequate storage space on the laptop and correct date- and time-settings.

C.2. Setting up the experiment
C.2.1. Attaching EMG

• Find and mark electrode placement sites on the biceps brachii and triceps brachii muscle belly of the
participant.

• Clean the placement sites with alcohol.
• Stick 1 EMG-electrode on the biceps brachii and 1 EMG-electrode on the triceps brachii of the partic-
ipant. Place electrodes in line with muscle fibre direction.

• Stick the reference electrode on the elbow of the participant.
• Connect the EMG-electrodes and reference electrode to the amplifier.
• Connect the amplifier to the 2 BNC analogue input channels of the SEP.

C.2.2. Positioning subject in the SEP
• Station a stable and non-rolling seat next to the SEP for the participant and position the torso of the
participant next to the centre of rotation of the elbow on the SEP.

• Adjust the height of the SEP to ensure approximately 80 degrees of shoulder abduction when the
elbow and underarm are supported by the SEP.

• Strap the emergency button around the leg of the participant.
• Place the underarm of the patient on the device, with the medial epicondyle of the elbow on the centre
of rotation of the SEP and the wrist in the clamp distal of the underarm support. Tighten the wrist clamp
as tight as possible without causing discomfort to the participant.
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C.2.3. Setting up the software
• Start the DLS-manager through the Linux command prompt.
• Set-up the data saving folder in the command prompt.
• Start the SEP interface program in TestManager.
• Set the virtual endstops of the SEP to 155-185 in the TestManager interface.
• Set the ’Filter gain’ and ’Drift gain’ as seen in figure A.4 to 100 and 2 respectively.
• Start the motor drive in the TestManager interface.

C.3. The MVC experiment
• Start the motor in the TestManager interface.
• Start MVC experiment in the TestManager interface.
• Ask participant to flex their elbow joint as at maximum effort for 5 seconds.
• Set MVC biceps level in the TestManager interface.
• Ask participant to relax their elbow joint for 5 seconds.
• Ask participant to fully extend their elbow joint for 5 seconds.
• Set MVC triceps level in the TestManager interface.
• Ask participant to fully relax their elbow joint for 5 seconds.
• Set baseline activation level in the TestManager interface.

C.4. The perturbation experiment
C.4.1. Initiating experiment

• Start motor in the TestManager interface.
• Choose and set perturbation signal from the six signals described in table 2.1, through selecting the
correct column in the TestManager interface.

• Choose and set activation level in the TestManager interface.
• Reset driver state.
• Start a measurement in the DLS software.
• Start experiment in the TestManager interface.

Saving experiment data

• Stop experiment in the TestManager interface.
• Stop data logging in the DLS software.
• Save data from through running the data-saving script in the command window.



D
Device report SEP

Delft University of Technology  
INSPECTION REPORT FOR DEVICES TO BE USED IN CONNECTION 

WITH HUMAN SUBJECT RESEARCH 
 

This report should be completed for every experimental device that is to be used in interaction with 
humans and that is not CE-certified or used in a setting where the CE certification no longer 
applies1.  

The first part of the report has to be completed by the researcher and/or a responsible technician.  

Then, the safety officer (Heath, Security and Environment advisor) of the faculty responsible for 
the device has to inspect the device and fill in the second part of this form. An actual list of safety-
officers is provided on this webpage. 

Note that in addition to this, all experiments that involve human subjects have to be approved by 
the Human Research Ethics Committee of TU Delft. Information on ethics topics, including the 
application process, is provided on the HREC website. 

 

Device identification (name, location): Shoulder Elbow Perturbator (SEP) 
Located in F-1-180 in the ME faculty. 

Configurations inspected2: NA 

Type of experiment to be carried out on the device:3 Human experiments with simple motor 
control tasks for the upper extremity.  

Name(s) of applicants(s): Mark van de Ruit 

Job title(s) of applicants(s): Assistant professor BmechE 

(Please note that the inspection report should be filled in by a TU Delft employee. In case of a BSc/MSc 
thesis project, the responsible supervisor has to fill in and sign the inspection report.)  

 

Date: 09/04/2024 

 

Signature(s): 

 

 

 

 

1 Modified, altered, used for a purpose not reasonably foreseen in the CE certification 

2 If the devices can be used in multiple configurations, otherwise insert NA 

3 e.g. driving, flying, VR navigation, physical exercise, ... 
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Setup summary 

The SEP (fig. 1), produced by Hankamp Rehab B.V., is a device used for perturbation of the elbow 
joint. The device requires strapping the under-arm to a splint. The splint then gets rotated around 
the elbow joint by a torque-motor, that is controlled through EtherCAT software, with the 
controller built in a MATLab Simulink environment.   

The height of the splint, and thus the elbow joint during evaluation, is variable. The participant 
can lift their elbow through shoulder abduction while splinted to the device. The amount of 
loading support for this abduction can be varied through an adjustable spring mechanism.  

Previously, the SEP was approved for usage in the Erasmus MC and Rijndam Revalidatie Centrum 
for assessing the elbow joint impedance of patients with upper motor neuron lesion. The approval 
was given by the Medical Ethical Committee of the Erasmus MC, among other things based on the 
device description in the IMDD of the SEP. This IMDD contains a full device description (Appendix 
1), risk assessment (Appendix 2) and risk mitigation strategy (Appendix 3). The most relevant 
device aspects and risks for the current experiment are explicitly listed in this device report.  

 The approval was given for usage of the SEP in 3 control conditions: 

- Position control. A PID controller in the software converts a positional input signal to a 
motor torque. This motor torque is applied to the human arm.  

- Torque control. A torque signal is directly exerted by the torque motor to the human arm. 
- Free motion, controlled by the participant. The device is turned on, but no torque is 

applied to the participant's arm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The SEP-device, A) in use, B) internal mechanics. Taken from [van der Velden et al. 2022] 



Participants can be asked to keep specific shoulder abduction levels in combination with an elbow 
flexion angles or torque, while the device rotates the elbow joint. During this, the angular rotation 
of the elbow and the elbow torque are measured. This allows for the assessment of motor control 
of the elbow joint.  

The experiments with the SEP at the TU Delft will involve healthy participants, that is; participants 
without neurological injury or current injuries of the elbow joint according to self-report.   

The SEP is located in the corner of the ‘NeuroMuscular Control laboratory’ with enough wall 
clearance to safely rotate the splint with the attached arm of the participant. The device is placed 
securely on the floor and cannot accidentally move or shift due to its’ weight.  

Safety mechanisms:  

The device has multiple implemented safety stops:  

- Software - Rotation limits: Virtual end-stops limiting rotation of the splint past a certain pre-set 
angle are present. 
 

- Software - Force limits: When a certain limit torque is needed to rotate the split, further rotation of 
the splint is halted. This limit torque can be adjusted for different experiments.  
 

- Software Velocity limits: Within the position control, a rate limiter for rotation speed is set up. 
 

- Hardware - Mechanical stops limiting rotation of the splint. These can be set at a chosen rotation 
angle.  
 

- Electrical - There is an emergency button attached to the device. This emergency button remains 
within reach of both the participant and the researcher at all times. When pressed, the power 
supply to the torque motor is halted. 

  



Device inspection  
(to be filled in by the AMA advisor of the corresponding faculty) 

Name: 

Faculty: 

 

The device and its surroundings described above have been inspected. During this inspection I could not 
detect any extraordinary risks. 

(Briefly describe what components have been inspected and to what extent (i.e. visually, mechanical 
testing, measurements for electrical safety etc.) 

 

 

 

 

 

 

Date: 

Signature: 

Inspection valid until4: 

Note: changes to the device or set-up, or use of the device for an experiment type that it was not 
inspected for require a renewed inspection 

 

 

4  Indicate validity of the inspection, with a maximum of 3 years 

Maarten Lugt

Mechanical Engineering

The device has been shown, including all safety measures. Discussed that an additional 
layer of foam (or other soft material) will be included in the wrist-pads.

29-04-2024

29-04-2027



Risk checklist 

Please fill in the following checklist and consider these hazards that are typically present in many research 
setups. If a hazard is present, please describe how it is dealt with. 
Also, mention any other hazards that are present. 

Hazard type Present Hazard source Mitigation measures 
Mechanical (sharp 
edges, moving 
equipment, etc.) 

X The rotating splint to which 
the participant's arm is 
attached, could rotate too 
far or too fast, causing 
discomfort, pain or injury 
to the participant. 

Multiple safety stops are 
present within the software to 
prevent too fast, painful or too 
far rotation:  

- Rotation limits 
- Force limits  
- Velocity limits 

 
Electrical X Due to electrical 

malfunction, sensor 
malfunction or software 
malfunction, the safety 
stops that are built into the 
software could fail. 
This could lead to over-
rotation of the elbow joint. 
 

In case of a malfunction of the 
virtual safety stops, there are 
set mechanical end-stops to 
prevent over-rotation of the 
elbow joint.  

Electrical X Motor malfunction, 
running out of control. 

If the motor runs out of control, 
the low-level controller goes 
into a corresponding ‘error 
state’. The motor can then 
coast.  
Furthermore, an emergency 
button is present to halt the 
power supply to the motor at all 
times. 

Structural failure X The mechanical end-stops 
can break if the splint is 
rotated with a very high 
force.  

The software's built-in torque 
limit should prevent excessive 
force on the end-stops.  
In the case of both software 
end-stops and mechanical end-
stops failing, there is a described 
emergency button attached to 
the device.  
 

Other: Human factor X Virtual end-stops can be 
set incorrectly by the 
researcher, due to 
insufficient knowledge of 
flexion and extension angle 
definitions.  

The set mechanical end-stops 
can resist over-rotation of the 
elbow. These can be used more 
intuitively. Furthermore, the 
input rotation signal will not 
contain large rotation angles.  

Other: Human factor X The mechanical end-stops 
can be set incorrectly or 
forgotten by the 
researcher. 

The setting of the end-stops is 
taken up into the protocol. End-
stops are not removed in 
between trials to reduce the 
chance of forgetting to replace 
them.  



Furthermore, the input rotation 
signal will not contain large 
rotation angles. 

Touch Temperature -   
Electromagnetic 
radiation 

-   

Ionizing radiation -   
(Near-)optical radiation 
(lasers, IR-, UV-, bright 
visible light sources) 

-   

Noise exposure -   
Materials (flammability, 
offgassing, etc.) 

-   

Chemical processes -   
Fall risk -   
Other:    
Other:    
Other:    

 

 

 



E
Participant information

Participant information elbow perturbation study  
Dear participant,  

You are invited to participate in the study called ‘System identification of the elbow joint with the 
“Shoulder Elbow Perturbator” (SEP) device’. This is a study conducted by Karien ter Welle 
(master student Mechanical Engineering), supervised by Arno Stienen (Assistant professor 
BmechE department at the TU Delft) and Mark van de Ruit (Assistant professor BmechE 
department at the TU Delft).  

Study objective 

This study is looking at a way to better understand the impedance of elbow joints by using a 
technique called system identification (SI) in the frequency domain. Joint impedance generally 
describes the resistance of a joint to an external perturbation. When people have damage to 
certain nerves in their upper body, like after a stroke, it can affect their joint stiffness and their 
reflex responses to joint movement. The SEP device uses perturbation of the elbow joint and 
measurements of the response to perturbation to identify this changed joint impedance. This 
study aims to validate the usage of the SEP device to perform such system identification in 
healthy participants. Eventually, this could lead to clinical usage of this device for diagnostics in 
patients with upper motor neuron lesions. 

What is expected of you? 

During the session of approximately 60 minutes of work, you will undergo positional 
perturbations of the elbow joint during different experimental conditions. The positional 
perturbations will be a multi-sinusoidal signal, which means that they will feel like a random 
oscillation of your elbow joint. Within all experimental conditions, it is requested that you 
attempt to not resist the perturbation.  

During the experiment, your arm will be strapped into the SEP-device, shown in figure 1. The 
fixation of your arm within the device should be as firm as possible without causing discomfort. 
While you are seated next to the device, your strapped-in arm will be perturbed by the SEP.  

The experiment consists of three different phases: 

- In the first experiment phase no perturbation will be used. Instead, you are asked to 
generate as much force as possible in the elbow flexion direction, while strapped into 
the device.  

- In the second experiment phase you will rest your arm fully supported on the SEP device 
and attempt to fully relax your arm. Perturbations with different multisinusoidal signals 
will take place and measurements of your response will be taken.  

- In the third experiment phase you will be asked to generate different levels of elbow 
flexion, while the perturbation takes place. It is requested to not resist the perturbation, 
but instead maintain a steady elbow flexion level at all times. The flexion level of the 
elbow will be provided to you through visual feedback, such that you can maintain the 
required level of flexion during the experiment. The experiment will be repeated for 
different required levels of elbow flexion.  
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Figure 1: The SEP device in use (left) and a mechanical drawing of the SEP device (right) taken 
from [van der Velden et al., 2022] 

 

What data will be acquired?  

During the first phase of the experiment, the maximum flexion force that you can generate will be 
saved as data. During the perturbation trials, the torque signal that you exert on the device in the 
presence of the perturbation will be saved as data. The positional perturbation signal will be 
saved as well. These two signals together will be analyzed to determine your joint's impedance 
response to the perturbation. Furthermore, EMG-measurements will be taken of two muscles 
responsible for stretching and flexing the elbow. EMG measurements are measurements of the 
electrical activity of muscles and can be used to detect muscle activity. These measurements 
are taken non-invasively with three conductive stickers on your arm.  

What happens to the data? 

Your data will be anonymised with a unique number, thereby dissociating the data from directly 
identifiable information such as your name. After one week, the document linking your EMG, 
torque or position data to your name will be deleted. This means that upon request, you can only 
have your data deleted in the first week after the experiment, as after this period it will be 
untraceable. The data will be used for research that may result in publication in an international 
scientific journal. 

To reduce the possibility that your age and gender lead to your re-identification, your exact age 
will not be stored. Instead, you will be assigned to an ‘age-group’ (e.g. 18-25, 25-35 etc.). Your 
age group and gender will be stored together with the EMG-, torque- and position data, to use for 
further research.  

What are the risks associated with this study?  

This device perturbes your elbow-joint by moving the under-arm. In case of a device malfunction 
the possibility arises of overstretching the elbow joint. However, the device has multiple safety 
mechanisms built-in to prevent this overstretching from happening:  

- Virtual end-stops within the software, shutting down the motors at certain rotation 
angles of the joint.  



- Mechanical end-stops within the device, not allowing the device to rotate the elbow joint 
further than the mechanical end-stop location.  

- A safety button in reach of both you and the researcher at all times during the 
experiment. Pressing this safety button shuts down the motors immediately 

If you are experiencing elbow pain or currently have an elbow injury, the perturbations could lead 
to serious discomfort or even pain. Therefore, in the case of an elbow injury you are not allowed 
to participate in this study.  

EMG measurements are without risk. Such measurements have been performed on patients in 
hospitals and in research settings for years, with no known harmful effects. 



F
Consent form

 

Consent Form SEP-perturbation experiment 
For participation in the study: ‘Usage of the Shoulder Elbow Perturbator for system identification’ 
Please check the appropriate box 

 
 
 
 
Name of participant             Signature    Date 
 
I, as researcher, have accurately read out the information to the potential participant. I did my 
utmost to ensure that the participant understands what they are voluntarily consenting.  
 
 
 
 
Name of researcher             Signature    Date 

Participation in the study  Yes No 

I have read and understood the participant information from 03/2024. I have asked my questions 
about the study, and they have been answered to my satisfaction.  

  

I voluntarily consent to participate in this study as a participant, and I understand that I can refuse to 
answer questions and that I can withdraw from the study at any time without giving a reason. 

  

I understand that participation in the study involves undergoing mechanic elbow perturbations and 
EMG-measurements.  

  

I understand that there is no compensation for my participation.    

I understand that taking part in the study involves the following risks, as described in the participant 
information, namely: 

- Overstretching of the arm, causing pain or injury 
I understand that these will be mitigated by numerous safety mechanisms present as described in the 
participant information, namely:  

- Virtual end-stops for the device based on sensor information 
- Mechanical end-stops for the device prohibiting further elbow rotation 
- An emergency button within reach of both participant and researcher.  

  

(Further) use of information/data in the study   

I understand that taking part in the study also involves collecting specific personally identifiable 
information (PII),  specifically my name, sex, and age,  with the potential risk of my identity being 
revealed.  

  

I understand that the following steps will be taken to minimize the threat of a data breach, and 
protect my identity in the event of such a breach: 

- Anonymization of data through using a ‘key’ linked to my data, instead of my name. The link 
between ‘key’ and name is removed one week after data collection. 

- Storing all information, and the link between the ‘key’ and my name, on a secured project 
drive, instead of locally on a laptop.   

  

I understand that, for confidentiality reasons, all information that could lead to linking my identity to 
my measurement data will be removed. Therefore, I have a one-week period to request the deletion 
of my data. After that, my data cannot be retraced. 

  

I understand that the data I provide will be used for a possible publication in an international 
scientific journal. 

  

I understand that the personal information that can identify me, like my name and age, will not be 
shared outside the study team.  

  

I give permission to the research team to archive all data (age, gender, EMG data, kinetic 
measurements) that has been collected from me, to use for future research and learning. 

  

TU Delft - Faculty Mechanical 

Engineering (ME) 

Mekelweg 2 

2628 CD Delft 

Tel: +31 (0)15 27 89809 41



G
Intitial and boundary values for fitting

Table G.1 shows the used initial values and upper and lower boundaries used in minimising the error func-
tion in the fitting procedure (eq. 2.12), with the ’lsqnonlin’ solver in MATLAB. The used inertia, stiffness
and damping initial and boundary values were the same for the model consisting of intrinsic and reflexive
impedance (IR-model) and the model consisting of only intrinsic impedance (I-model). The kv parameter
was only fit in the IR-model.

Table G.1: Table of the initial values and upper and lower boundaries used for minimising the error function in equation 2.12 with the
’lsqnonlin’ solver, for both the I- and IR-model.

Parameter Initial value Lower boundary Upper Boundary
Interia Nm·s2

rad 0.2 0 1
Stiffness (kint) Nm

rad 10 0 100
Damping (bint) Nm·s

rad 0.5 0 2
Reflex gain (kv) Nm·s

rad 0.5 0 2
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H
Estimation of the bandwidth of infinite

contact dynamics

Using the block scheme depicted in figure 2.3a, the transfer function from θpert to θelbow can be derived.
As long as the contact impedance is adequately stiff, the transfer function between these two should equal
∼ 1.

θelbow is derived as follows:

θelbow =
Thandle ·HINT

1 +HREF ·HINT
. (H.1)

Substituting the relation

THandle = (θpert − θelbow) ·HCON , (H.2)

into equation H.1, gives:

θelbow =
θpert ·HCON ·HINT

1 +HREF ·HINT
− θelbow ·HCON ·HINT

1 +HREF ·HINT
, (H.3)

resulting in

(1 +
HCON ·HINT

1 +HREF ·HINT
) · θelbow =

HCON ·HINT

1 +HREF ·HINT
· θpert. (H.4)

This can be further derived to an expression of relation between θpert and θelbow:

θpert
θelbow

=
1 + HCON ·HINT

1+HREF ·HINT

HCON ·HINT

1+HREF ·HINT

=
1 +HREF ·HINT

HCON ·HINT
+ 1

=
1

HINT
+HREF

HCON
+ 1

(H.5)

Using the models described by equations 2.10 and 2.11 for HINT and HREF respectively, equation H.5
can be changed to:

θpert
θelbow

=
m · s2 + (bint + kv) · s+ kint

HCON
+ 1 (H.6)

where s is the Laplace operator andm, bint, kint, and kv are the inertia, intrinsic damping, intrinsic stiffness
and reflex gain respectively. As previous research with the SEP did not include a kv parameter, it is set to 0
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for the current analysis. An estimation of the other parameters can be taken from previous research by van
de Ruit et al. [68], resulting in values of 0.11Nm·s2

rad , 2Nm·s
rad , and 50Nm

rad for m, bint, and kint for the activated
elbow joint.

The contact dynamics of the SEP, HCON , was also modelled in the same research, as an impedance
function of:

HCON = 4 · s+ 340. (H.7)

Combining equations H.6 and H.7 and filling in all numerical values gives:

θpert
θelbow

=
0.11 · s2 + 6 · s+ 390

4 · s+ 340
(H.8)

As the transfer function from θpert to θelbow is the inverse of equation H.8, the final transfer function equals.

θelbow
θpert

=
4 · s+ 340

0.11 · s2 + 6 · s+ 390
(H.9)

When assessing the contact dynamics as a low pass filter, the bandwidth can be determined through nu-
merical solving of

|HθEθP | = 0.707, (H.10)

whereHθEθP is the FRF from θpert to θelbow, as depicted in equation H.9, and 0.707 is a common magnitude
value used for determining filter cut-off frequencies. Numerically solving H.10 with s = j · ω results in a
cut-off frequency ’ωc’of 13.9Hz.

It must however be noted that the transfer function never has the value of 1, but rather takes the value of
340
390 = 0.87 at the low frequency limit.



I
EMG signal - Bessel filter versus moving

Root Mean Square

To ensure the reliability of the first order Bessel filter in assessing online EMG-data, a comparison to the
often-used moving RMS filter was performed. The moving RMS filter used a moving window of 1-second
duration, so a length of 1000 samples. Figure I.1 shows a comparison between the Bessel and RMS filtered
signals, during a MVC experiment and a perturbation trial.
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(a) Example of both filters for an MVC trial.
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(b) Example of both filters for a 30% MVC trial.

Figure I.1: Visual comparison between the offline Root Mean Square (RMS) filter and online first order Bessel filter.

For 7 participants, both the offline and online filtered Bessel EMG data was available, allowing quantitative
comparison between the online Bessel filter and offline moving RMS filter. This was evaluated by comparing
the different ’rest’ and ’MVC’ EMG signal levels found when using the different filters. Table I.1 shows the
estimated MVC and relax activation level using the online Bessel filter and offline moving RMS filter, as
an indication of the magnitude of differences caused by different filter usage. The average of absolute
difference between filters is small, at only 5% of measured signal magnitude in MVC, and 0.44% in rest.

Table I.1: Difference in MVC EMG-signal, between Bessel filtered and moving average filter, for 7 subjects with raw EMG data
available. An average of the absolute percentual deviation is provided.

Bessel MVC (mV) RMS (mV) Difference Bessel Relax (mV) RMS Relax (mV) Difference
791.5 721.5 -9.7% 28.4 28.6 -0.5%
344.7 330.8 -4.2% 83.5 83.3 +0.2%
1145.5 1135.5 +0.9% 20.0 20.1 -0.6%
520.5 581.4 -11.7% 36.2 35.9 +0.9%
535.4 558.8 -4.4% 45.2 45.3 -0.3%
659.4 663.9 0.7% 62.2 62.0 +0.4%
307.0 316.6 -3.1% 50.8 50.7 +0.2%

AVG = 4.9% AVG = 0.44%
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J
EMG signal - Normalization and drift

During the experiment, the EMG signal measured during full relaxation drifted. This drift was corrected by
resetting the ’relax’ normalisation value in between trials. Table J.1 shows used values for normalization per
participant, and gives an indication of the relative magnitude of EMG drift compared to the full EMG-signal
normalisation range.

Table J.1: EMG signal at rest and during MVC, used as normalisation range, together with the drift in the EMG signal that was
corrected during the experiment. Drift is also depicted as a percentage of the total EMG-signal normalised range between rest and

MVC.

MVC (mV) Relax (mV) Range (mV) Drift (mV) Drift percentage (-)
535 50.5 485 33 6.8%
939 44 895 0 0%
540 73 467 34 7.3%
307 88 219 67 30.7%
330 45 285 58 20.4%
659 25 634 25 3.9%
381 60 321 43 13.4%
622 21 601 0 0%
540 40 500 0 0%
593 47 546 20 3.7%
721 33 688 0 0%
520 35 485 0 0%
902 57 845 0 0%
264 50 214 21 9.8%
577 57 520 68 13.1%
567 40 527 0 0%

AVG = 562 AVG = 47.9 AVG = 514.5 AVG = 23.1 AVG = 6.8%

46



K
EMG signal - Normal distributions

Figure K.1 shows the distribution of muscle activation across trials for at three different target activation
levels. The 0% MVC target activation shows two outliers at large negative activation values. Since nega-
tive activation values are physiologically impossible, these are attributed to uncorrected EMG signal drift.
This drift occurred because the manual correction by the examiner was performed only between trials, al-
lowing some EMG drift during the long trials. These two outliers were removed for assessing normality of
distribution as they were known false measurements.

Figure K.1: Violin plots of the distribution of activation levels over different trials and participants. Activation levels are given as
fraction of MVC.

Normality of the distribution was assessed using the Shapiro-Wilk test. As three activation levels were
analysed, the critical value was set at α = 0.05/3 = 0.0167 through a Bonferroni correction. A p-value
smaller than this critical value indicates that the null-hypothesis that the data is normally distributed should
be rejected. As shown in table K.1, this was the case for none of the different target activation levels.

Table K.1: Outcome of the Shapiro-Wilk test for normality of the muscle activation for different participants, at different target
activation levels. Critical p-value for normality was set at α = 0.0167.

Target activation P-value Shapiro-Wilk test Normality (1= normal, 0= not normal)
0% MVC 0.022 1
10% MVC 0.72 1
30% MVC 0.091 1
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L
EMG signal - Trial exclusion

The exclusion for trials based on activation level as explained in section 2.6.1 is visualised in figure L.1. A
total of 14 trials was excluded for the average activation deviating more than 2 ·SD from the group average.
Additionally, 18 trials were excluded for activation deviating more than 3 ·SD from group average for longer
than 5 seconds. For the 0% MVC trials, only the upper boundaries were used for exclusion.
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Figure L.1: Visualisation of the two trial exclusion criteria based on EMG signal.
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M
Tracking analysis

Figure M.1 shows a visual representation of tracking of a desired angular perturbation of the elbow joint
by the SEP controller. Table M.1 quantifies the tracking performance in the time domain, providing RMSE
values between the reference perturbation signal and the actual achieved elbow angle. Table M.2 shows
the quantified tracking performance in the frequency domain. The frequency response function between
the reference and actual achieved elbow joint angle would equal 1 at all perturbed frequencies for perfect
tracking. The overshoot at ∼ 7Hz and subsequent drop at the highest frequencies are quantified as the
average maximum and minimum values of the FRF magnitude, averaged across different participants.
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an exemplary trial at 30% MVC.

(b) Average FRF from reference to actual joint angle
for an exemplary trial at 30% MVC.

Figure M.1: Performance in desired perturbation signal tracking of the SEP controller, both in time and frequency domain.

Table M.1: Average [±SD] Root Mean Square Error (RMSE) in degrees, between reference and actual perturbation angle.

0% MVC 10% MVC 30% MVC
WB 0.11 [±0.04] 0.15 [±0.05] 0.16 [±0.05]
NB 0.03 [±0.006] 0.04 [±0.008] 0.05 [±0.01]

WB LP 0.06 [±0.01] 0.07 [±0.02] 0.07 [±0.02]

Table M.2: Max. and min. [±SD] magnitude of the Frequency Response Function (FRF) from reference to actual perturbation angle.

0% MVC 10% MVC 30% MVC

WB Max FRF mag. 1.21 [±0.10] 1.36 [±0.16] 1.42 [±0.19]
Min FRF mag. 0.58 [±0.08] 0.48 [±0.08] 0.48 [±0.12]

NB Max FRF mag. 1.02 [±0.02] 1.00 [±0.02] 1.00 [±0.02]
Min FRF mag. 0.90 [±0.01] 0.90 [±0.01] 0.92 [±0.02]

WB LP Max FRF mag. 1.21 [±0.11] 1.33 [±0.15] 1.40 [±0.17]
Min FRF mag. 0.52 [±0.07] 0.46 [±0.09] 0.51 [±0.17]
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N
Estimation of impedance of the

unloaded SEP

Figure N.1 shows the FRF of the SEP identified without any loading (no arm condition), with the different
perturbation signals. The parameter values for fitting an inertia-stiffness-damping model to the FRFs are
shown in table N.1. It can be seen that the impedance is not the same when identified with different
perturbation signals. Coherence is relatively high for the SEP without load, indicating the reduced torque
noise in the signal compared to the trials with a human elbow joint.
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Figure N.1: Estimation of the impedance of the unloaded SEP. Showing magnitude and phase of the FRF and the coherence
between input rotation and output torque. The fitted impedance models to these FRFs (inertia, stiffness, damping) are shown in the

dotted lines.

Table N.1: Parameter values obtained when fitting model to the unloaded SEP FRF, consisting of inertia, stiffness, and damping.

WB NB WB LP
I(Nm·s2

rad ) 0.076 0.074 0.093
B(Nm·s

rad ) 0.00 0.081 0.092
K(Nm

rad ) 3.36 0.014 1.34
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O
Exemplary fits of the IR-model

Figures O.1, O.2, and O.3 show an example of the fitting procedure of the IR-model for different signals at
0%, 10%, and 30% respectively. For further insight, the intrinsic and reflexive component of the IR-model
are separated. It can be observed that as activation level increases, the reflex component of the impedance
model increases as well.
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Figure O.1: Exemplary fit of the IR-model for different perturbation types at 0% MVC activation level.
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Figure O.2: Exemplary fit of the IR-model for different perturbation types at 10% MVC activation level.
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Figure O.3: Exemplary fit of the IR-model for different perturbation types at 30% MVC activation level.



P
Average fits of the I- and IR-model

Figures P.1, P.2, and P.3 show the average model fits of 0%, 10%, and 30% MVC trials respectively, for
different perturbation signals. A comparison is made between the I-model and IR-model fits. It can be
observed that as activation level increases, the I-model and IR-model fits start to deviate.
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Figure P.1: Average fits for the I- and IR-model for 0% MVC trials for different perturbation types.
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Figure P.2: Average fits for the I- and IR-model for 10% MVC trials for different perturbation types.
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Figure P.3: Average fits for the I- and IR-model for 30% MVC trials for different perturbation types.



Q
Model fit in time domain

Figure Q.1 shows an exemplary fit of the modelled torque to the measured torque for the I- and IR-model
for different perturbation signals for 30% MVC activation. Only slight differences can be identified in the
fits, consistent with the small changes in VAF shown in 3.1. The largest difference can be seen for the
NB-perturbations.
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Figure Q.1: Exemplary comparison of the measured and modelled torque in the time domain, for trials at a 30% MVC activation
level with different perturbation types.
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Fitted parameters - Statistical

comparison of two signal realisations

Tables R.1, R.2, and R.3 show the p-value outcomes of the t-test comparison between the two different
realisations of the same signal (sig.1&2, sig.3&4, and sig.5&6, as described in sec. 2.4). As described
in section 2.7 the critical value was set at α = 0.0167. A p-value below this critical value would imply a
rejection of the null hypothesis that there is no difference between the fitted parameters for the different
signal types. This was the case in none of the comparisons. As no damping parameter was fit for the NB
perturbation, these results are missing in table S.2.

Table R.1: P-values for the t-test comparing intrinsic stiffness fitted for impedance identified with the two different realisations of the
same signal. Critical value was set at α = 0.0167.

0% MVC 10% MVC 30% MVC
WB 0.30 0.46 0.68
NB 0.22 0.98 0.03

WB LP 0.03 0.81 0.71

Table R.2: P-values for the t-test comparing intrinsic damping fitted for impedance identified with the two different realisations of the
same signal. Critical value was set at α = 0.0167.

0% MVC 10% MVC 30% MVC
WB 0.20 0.08 0.28
NB - - -

WB LP 0.69 0.76 0.72

Table R.3: P-values for the t-test comparing reflex gain fitted for impedance identified with the two different realisations of the same
signal. Critical value was set at α = 0.0167.

0% MVC 10% MVC 30% MVC
WB 0.44 0.74 0.04
NB 0.06 0.04 0.27

WB LP 0.50 0.08 0.95
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Fitted parameters - Normal distribution

Figure S.1 shows the distribution of the different fitted parameters for all trials in a violin plot, combining
distribution density overlayed with a boxplot.

(a) Violin plot showing the distribution of kint for different
perturbation signals and activation levels.

(b) Violin plot showing the distribution of kint for different
perturbation signals and activation levels.

(c) Violin plot showing the distribution of kint for different perturbation signals and
activation levels.

Figure S.1: Distribution densities combined with boxplots, showing the fitted intrinsic parameters for the different perturbation signal
types and activation levels.
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Tables S.1, S.2, and S.3 show the p-value outcomes of the Shapiro-Wilk test for normality. As discussed
in section 2.7, the critical value was determined at α = 0.0167. A p-value below this critical value would
imply a rejection of the null hypothesis that the fit values for a parameter for a specific activation level and
perturbation type is normally distributed across participants. This was the case for kint at the WB 10%MVC
trial, and for kv at the WB 0% MVC trial. Looking at the violin plots in S.1 it appears the former is caused
by one extreme outlier and the latter by the fact that a excessively large part of the distribution is centred
at kv = 0 which reduces the normality of the distribution.

Table S.1: P-values for the assessment of a normal distribution for kint with the Shapiro-Wilk test. Critical value was set at
α = 0.0167.

0% MVC 10% MVC 30% MVC
WB 0.04 0.005 0.14
NB 0.32 0.31 0.89

WB LP 0.41 0.18 0.65

Table S.2: P-values for the assessment of a normal distribution for bint with the Shapiro-Wilk test. Critical value was set at
α = 0.0167.

0% MVC 10% MVC 30% MVC
WB 0.87 0.33 0.41
NB 0.95 0.90 0.89

WB LP 0.37 0.62 0.46

Table S.3: P-values for the assessment of a normal distribution for kv with the Shapiro-Wilk test. Critical value was set at
α = 0.0167.

0% MVC 10% MVC 30% MVC
WB 2 · 10−5 0.21 0.10
NB 0.14 0.07 0.15

WB LP 0.03 0.11 0.13



T
Statistical analysis

Table T.1 shows the results of the Mauchly test for sphericity and the RM-ANOVA. As indicated in section
2.7 the critical value for the Mauchly test was α = 0.0167. If the resulting p-value was below this critical
value, the sphericity assumption was violated. In these cases, a Greenhouse Geisser correction factor was
calculated, with which the p-value for the RM-ANOVA was corrected. The critical value for the RM-ANOVA
was set at α = 0.05. The RM-ANOVA results show statistical significance for the effect of activation level
on all parameters for all perturbation types.

Table T.2 shows the results of the post hoc analysis, performed to investigate specific effects of activation
level increments on fitted parameters. The post hoc analysis consisted of a one-tailed t-test with Bonferonni
correction resulting in a critical value of α = 0.0167. Almost all activation level increments showed significant
increase of the fitted parameters, except for kint and bint for the 10% MVC to 30% MVC increment for the
WB LP perturbation, and kv for the 10% MVC to 30% MVC increment for the NB perturbation.

Table T.1: Results of the Mauchly test for sphericity, and the Repeated Measures (RM) ANOVA. Critical value for the Mauchly test
was set at α = 0.0167. Critical value for the RM ANOVA was set at α = 0.05.

p-value
Mauchly

Greenhouse Geisser
correction

F test statistic
RM-ANOVA

p-value
RM-ANOVA

WB
kint 0.21 - 72.15 8.95 · 10−12
bint 0.31 - 47.68 9.74 · 10−10
kv 0.0062 0.65 14.39 6.6 · 10−4

NB
kint 0.44 - 70.85 2.99 · 10−11
bint 0.015 0.68 46.27 3.75 · 10−7
kv 0.87 - 13.36 1.02 · 10−4

WB LP
kint 0.18 - 36.52 2.81 · 10−8
bint 0.081 - 21.98 2.58 · 10−6
kv 0.032 0.69 16.01 3 · 10−4
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Table T.2: Results of the post hoc one-tailed t-test for all fitted parameters, all perturbation signal types and all activation level
increments. A Bonferonni correction was applied resulting in a critical value of α = 0.0167.

0% vs. 10% 0% vs 30% 10% vs 30%
Mean diff.
[95% CI]

p-value Mean diff.
[95% CI]

p-value Mean diff.
[95% CI]

p-value

WB
kint 19.21

[12.81-25.43]
7.03·10−6 34.36

[27.22-41.49]
1.76·10−8 13.60

[9.28-17.93]
4.69·10−6

bint 0.71
[0.48-0.94]

6.04·10−6 1.00
[0.76-1.24]

1.32·10−7 0.29
[0.11-0.47]

1.8 · 10−3

kv 0.59
[0.29-0.90]

4.9 · 10−4 1.39
[0.72-2.07]

2.7 · 10−4 0.88
[0.21-1.54]

7.0 · 10−3

NB
kint 19.50

[14.57-24.44]
5.46·10−7 32.72

[25.94-39.49]
1.71·10−8 12.06

[6.47-17.64]
2.2 · 10−4

bint 0.61
[0.42-0.79]

2.93·10−6 0.82
[0.59-1.04]

5.63·10−7 0.20
[0.08-0.32]

1.5 · 10−3

kv 0.54
[0.18-0.90]

3.2 · 10−3 0.80
[0.43-1.17]

1.5 · 10−4 0.34
[-0.01-0.70]

0.029

WB LP
kint 23.60

[17.08-30.12]
9.65·10−7 29.87

[23.18-36.55]
7.92·10−8 6.58

[-2.78-15.94]
0.076

bint 0.46
[0.25-0.67]

1.81·10−4 0.55
[0.36-0.74]

1.05·10−5 0.07
[-0.06-0.19]

0.12

kv 0.89
[0.51-1.27]

8.57·10−5 1.47
[0.73-2.22]

4.2 · 10−4 0.75
[0.13-1.36]

0.01



U
Fitting results allowing for negative kv

In the primary fitting analysis, the lower bound for the parameter kv is set at 0. This implies that the stretch-
reflexes are only ’excitory’, thus causing a resistance force based due to a stretching of the muscle spindles.
It prohibits the ’inhibitory’ stretch reflex, where a stretch of the spindles would cause a decrease in force or
even a force in the stretch direction. This inhibitory stretch reflex is not physiologically common, but it is
interesting to observe the behavior of the fitted parameters when this negative kv value is allowed.

Figure U.1 shows the resulting fit values for kv when the lower parameter bound is set at -5 Nm·s
rad instead

of 0. It can be observed that the trend of increase in kv with increased activation level does not change
compared to the primary analysis (fig. U.1b). However, there are a lot of negative kv values present in
the individual fits (fig. U.1a), even causing negative average kv values for the 0% MVC activation level (fig.
U.1b).

(a) Violin plot.

WB NB WB LP
-2

-1

0

1

2

3

4

R
e

fl
e

x
 g

a
in

 (
N

m
 

 s
/ ra

d
)

0% MVC

10% MVC

30% MVC

(b) Mean and SD.

Figure U.1: Distribution visualisations for kv when the parameter is allowed to take on a negative value.

Figure U.2 shows what a fit with a negative kv value looks like in a 0% and 30%MVC trial. As the magnitude
is insensitive to sign, the magnitude of the reflexive part of the model, is comparable to the fits of the primary
analysis. However, the phase shows a ∼ 180° difference to that of the fits with positive kv. This causes the
intrinsic and reflexive impedance to be out of phase before the natural frequency, causing a subtraction of
the reflexive impedance from the intrinsic impedance, and in phase after the natural frequency, causing an
addition of the reflexive impedance. This is opposite to what is observed when fitting with a positive kv.

For 0% MVC a negative reflex gain is somewhat comprehensible. The very low impedance at the full relax
trials can be mimicked by the model using inhibitory reflex responses. Lowering the intrinsic stiffness or
adding a negative kv have a similar effect, thus the slightly unpredictable fitting procedure can result in
either of these outcomes.

For the 30% MVC trial in figure U.2 the negative kv is harder to explain. It appears that the added reflex
gain does not necessarily improve the fit. One possibility is a local minimum of the fitting solver algorithm,
as the initial kv value starts close to 0 and could thus converge to a negative value. Furthermore, the
measured FRF shows large variance from frequency to frequency, in both the phase and magnitude. This
erratic fluctuation makes the fit more unpredictable, as it could converge to either the higher values or the
lower values of the measured FRF.
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Figure U.2: A 0% and 30% fit with negative values of kv .

These findings stress the importance of two things. First, that an effort must be made to achieve more
consistent fitting procedures. Partly by reducing the variance in themeasured FRFs and partly throughmore
insight into the effect of different initial values and boundaries, solver settings, and cost-functions on the final
parameter values. Second, that the used model must be carefully considered with respect physiological
reality. Adding a parameter that lacks physiological explanation may lead to inaccurate fitting results, as this
parameter might yield incorrect values to align with the frequency response function (FRF). The choice to
only allow ’excitory’ stretch reflexes is in line with most literature on the stretch reflex, especially combined
with the current task instruction. Therefore, the choice to use kv = 0 as a lower bound can be considered
sensible.



V
PSDs at low frequencies
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(a) PSD of joint angle at low frequencies at 2 different resolutions.
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(b) PSD of joint torque at low frequencies at 2 different resolutions.
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Figure V.1: (Cross) PSDs for joint angle and torque at low frequencies region (0− 2Hz).
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The figure V.1 shows the (cross-)PSDs for the joint angle input and torque output signals at 2 resolutions, the
one used for impedance estimation (0.2Hz increments) and one of doubled resolution (0.1Hz increments).
Within these figures, an explanation for low coherence at low frequencies can be identified. First, figure
V.1a shows a clean PSD for the joint angle. The 0.1 Hz frequency resolution PSD shows no power at the
unexcited frequencies in perturbation. Looking at figure V.1b, the difference between power at excited and
not excited frequencies is small and inconsistent at the high resolution PSD. This indicates noise in the
signal, at both the excited and unexcited frequencies in the perturbation. The increase of noise is clearly
visible at lower frequencies and is higher at increased activation level. It is also relatively larger for the WB
perturbation than the NB perturbation.

Looking at the cross-PSD which is used in impedance estimation, the noise at the unexcited frequencies
is cancelled out, as the position signal does not contain power at those frequencies However, the noise is
also present at the excited frequencies, resulting in some inconsistencies visible for the Cross PSD as well.
This inconsistency is best seen at the WB 30% MVC trial, where at the lowest few frequencies the PSD
appears almost random. This relatively large noise in the torque signal compared to actual torque output
signal related to the perturbation, results in the low observed coherence at low frequencies.



W
Mathmatical coherence analysis

W.1. Open Loop coherence
Looking at the blockscheme in 2.3 depicting open loop system identification, the output Tmeas as dependent
on perturbation θpert and noise N can be derived in the frequency domain as follows:

Tmeas(f) = HELB(f) · θpert(f) +N(f) (W.1)

Using the definition of (cross-)power spectral density:

Sxy = E{X(f) · Y (−f)}, (W.2)

equation W.1 can be converted to a relation between PSDs through multiplication with the complex conju-
gate of the perturbation angle fourier transform, θ ∗pert (−f):

SθT = HELB · Sθθ + SθN . (W.3)

Similarly, multiplication with the complex conjugate N ∗ (−f) gives:

STN = HELB · SθN + SNN . (W.4)

and multiplication with T ∗meas (−f) gives:

STT = HELB · STθ + STN , (W.5)

If the noise is assumed uncorrelated with the perturbation signal, SθN = SNθ = 0. Substitution of equation
W.3 and W.4 into equation W.5, then gives:

STT = H2
ELB · Sθθ + SNN . (W.6)

The coherence, calculated with the (cross-)PSDs of the input and output signal, then becomes:

γ2 =
|SθT |2

Sθθ · STT

=
|HELB · Sθθ|2

(H2
ELB + Sθθ + SNN ) · Sθθ

=
1

1 + SNN

|HELB |2S2
θθ

(W.7)

This coherence is clearly dependent on HELB , with the limit of γ2 going to zero if |HELB | approaches 0.
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W.2. Closed Loop coherence 66
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Figure W.1: Blockscheme of a Closed Loop System Identification (CL-SID) setup.

W.2. Closed Loop coherence
For the CL-SID blockscheme depicted in figure W.1, the measured output θhandle(f) can be derived depen-
dent on the input Tpert(f) and noise N(f):

θhandle(f) = HPERT (f) · Tpert(f) +HPERT (f) ·N(f)− θhandle(f) ·HELB(f) ·HPERT (f). (W.8)

Similar multiplications can be performed as in the OL-SID coherence analysis, between equation W.8 and
the complex conjugates: N ∗ (−f), θ ∗handle (−f), and T ∗pert (−f). Again making use of the PSD definition
W.2, results in three definitions for Sθθ, STθ, and SNθ.

Sθθ = HPERT · SθT +HPERT · SθN − Sθθ ·HELB ·HPERT

=
HPERT · SθT +HPERT · SθN

1 +HELB ·HPERT
,

(W.9)

STθ = HPERT · STT +HPERT · STN − STθ ·HELB ·HPERT

=
HPERT · STT +HPERT · STN

1 +HELB ·HPERT
,

(W.10)

and

SNθ = HPERT · SNT +HPERT · SNN − SNθ ·HELB ·HPERT

=
HPERT · SNT +HPERT · SNN

1 +HELB ·HPERT
.

(W.11)

Again the perturbation (Tpert(f) and noise (N(f)) can be assumed uncorrelated resulting in STN = SNT = 0.
Equation W.9, through substitution of equation W.11 and W.10, then becomes:

Sθθ =
H2

PERT · STT +H2
PERT · SNN

(1 +HELB ·HPERT )2
. (W.12)

Filling in STθ and Sθθ into the definition of coherence gives:
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γ2 =
|SθT |2

Sθθ · STT

=

∣∣∣∣ HPERT · STT

1 +HPERT ·HELB

∣∣∣∣2
H2

PERT · STT +H2
PERT · SNN

(1 +HELB ·HPERT )2
· STT

=
H2

PERT · S2
TT

H2
PERT · S2

TT +H2
PERT · SNN · STT

=
STT

STT + SNN

(W.13)

This coherence is independent of the arm impedance. Indirectly, the PSD of the torque disturbance STT is
dependent on the total impedance of the arm and perturbator if the amplitude must remain limited during
the experiments. However, if a flat power spectrum for STT is used, the low impedance at low frequencies
does not directly cause a low coherence at those frequencies.



X
Data analysis for a 100s measurement

Figure X.1 shows the average impedance magnitude, phase, and coherence calculated for both 200 s and
100 s of data. Note that the 100 s of data is copied from the first half of the 200 s data. It is visible that
all FRF and coherence estimates are very similar, with the exception of low-frequency phase for the 0%
MVC trials and WB signal. At these low frequencies, the signal-to-noise ratio is low, causing larger need
for adequate averaging to reduce the effect of noise on the PSDs. The phase is especially sensitive to
noise, as with small imaginary or real parts of the FRF, a sign switch can occur quickly when noise is added,
causing a 180-degree phase shift. As observed from figure X.2 the similarity in impedance functions is also
seen in the fitted IR-model parameters. A similar trend can be observed when using the 100 s date, as
when using the 200 s data.

However, when looking at individual participants, the differences increase. Table X.1 shows the average
percentual deviation of the impedance magnitude, averaged across all frequencies and across all partic-
ipants. As the magnitude differs largely per frequency, a choice was made to normalise the differences
with respect to the absolute magnitude at that frequency. Table X.2 shows the average deviation in phase
averaged over all frequencies and participants.

While differences impedance remain small, the effect on the fitted parameters is large. As fitting behavior
remains unpredictable, small deviations in impedance magnitude or phase can cause large deviations in
fitted parameters per individual. Tables X.3, X.4, and X.5 show large percentual deviations when assessing
the absolute difference between the 100 s and 200 s analysis per participant and then averaging these. It
must be noted that these percentages quickly attain high values if the original parameter fit was close to 0,
as is the case for most 0% MVC trials. However, it is apparent that while the overall average effects are
not highly influenced by changing the measurement time, the individual fits are.

Table X.1: Average percentual differences between magnitude
of joint impedance for the 100 s and 200 s analysis.

0% MVC 10% MVC 30% MVC
WB 7.3% 11.4% 11.1%
NB 4.4% 10% 12.5%

WB LP 4.8% 11.8% 14.5%

Table X.2: Average differences between phase of joint
impedance for the 100 s and 200 s analysis.

0% MVC 10% MVC 30% MVC
WB 8.0 7.7 7.7
NB 2.6 6.6 6.0

WB LP 4.6 6.4 11.2

Table X.3: Averaged percentual differences between fitted
intrinsic stiffness for the 100 s and 200 s measurement.

0% MVC 10% MVC 30% MVC
WB 70.8% 29.4% 23.2%
NB 7.3% 8.5% 11.2%

WB LP 25.3% 15.8% 27.3%

Table X.4: Averaged percentual differences between fitted
intrinsic stiffness for the 100 s and 200 s measurement.

0% MVC 10% MVC 30% MVC
WB 61.9% 25.1% 14.4%
NB 41.4% 23.8% 14.8%

WB LP 58.1% 36.2% 29.1%

Table X.5: Averaged percentual differences between fitted reflex gain for the 100 s and 200
s measurement.

0% MVC 10% MVC 30% MVC
WB 54.1% 47.2% 50.3%
NB 48.7% 37.8% 28.6%

WB LP 56.7% 42.1% 28.7%
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Figure X.1: Average impedance magnitude, phase, and coherence for different signals at different activation levels, comparing a
100 s and 200 s analysis.
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Figure X.2: Average fitted IR-model parameters for the 100 s and 200 s analysis.
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