
Data hound: Analysing non-English data smells in large code datasets

Bogdan-Mihai Buzatu1

Supervisor(s): Prof. Dr. Arie van Deursen1, Assistant Prof. Dr. Maliheh Izadi1, ir. Jonathan Katzy1

and ir. Razvan-Mihai Popescu1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Bogdan-Mihai Buzatu
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Arie van Deursen, Assistant Prof. Dr. Maliheh Izadi, Associate Prof. Dr. Avishek Anand, ir. Jonathan Katzy
and ir. Razvan-Mihai Popescu,

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Data hound: Analysing non-English data smells in large code
datasets

Bogdan-Mihai Buzatu

Delft University of Technology
Delft, the Netherlands

Abstract
Large Language Models (LLMs) are increasingly used for code-
centric tasks. However, their training data often exhibits data smells
that may hinder downstream quality. This research focuses on
the “Uneven Natural Languages” smell and the presence of non-
English text in source code and investigates its effect on LLM-based
code generation and summarisation. We construct a three-stage
(Detection, Generation, Evaluation) pipeline that annotates every
character in a file with its predicted language using Tree-sitter,
FastText, and pycld2; masks target spans via causal masking and
Fill-in-the-Middle (FIM) and prompts using three chosen models
(SmolLM2, StarCoder 2, and Mellum-4B). The Heap dataset is used
for the pipeline; however, this research only focuses on the Java
subset of the Heap.

In 3.35 million Java files, we find that English tokens account for
more than 90% of comments, strings, and identifiers, while Chinese,
Spanish, Portuguese, and French form a long-tailed minority. De-
spite this skew, LLMs achieve marginally higher BLEU, METEOR,
ROUGE, and Exact Match scores when non-English elements are
present or masked. Mellum consistently yields the most fluent con-
tinuations; StarCoder 2 retains broader token recall; SmolLM2 lags
on both axes, reflecting its smaller capacity.

Our publicly available code enables reproducible assessment
of multilingual data smells and lays the groundwork for cleaner,
language-aware pre-training corpora and more robust multilingual
code assistants.

Keywords
Data Smell, Multilingual, Code Generation, Code Summarisation,
Large Language Models

1 Introduction
Large Language Models (LLMs) have been increasingly utilised
in various tasks beyond natural language generation. One of the
primary use cases of LLMs is code generation and summarisation
for different programming languages. Given that LLMs are trained
in open-source code repositories for code generation purposes, data
smells [1] may introduce challenges that affect future reasoning
capabilities of the model and overall model quality.

In this research, we examine the presence of non-English lan-
guages [2] within the source code, considering that LLMs are typi-
cally pre-trained on English data [3, 4]. The "Uneven Natural Lan-
guages" data smell, which refers to the inclusion of non-English
text in code, has been identified and studied, along with strategies
to remove it, while being tested alongside other data smells [2].
However, there is a research gap in evaluating the effect of "Uneven
Natural Languages" data smell at inference time. Building on this

identified gap, we aim to understand the impact of non-English
code elements on code generation and summarisation. In particular,
we would like to focus on the following:
RQ1 What languages are commonly used in the code in addition

to English?
RQ2 What is the distribution of English and non-English ele-

ments across the Heap?
RQ3 What is the effect on Large Language Models’ code gener-

ation when non-English code elements are present in the
prompt dataset?

RQ4 How is Large Language Models’ code summarisation influ-
enced when non-English code elements are masked in the
prompt dataset?

To address the identified challenges, we design a pipeline that
detects, masks, and then prompts the masked code to an LLM. This
process is applied to a dataset, The Heap [5], which is completely
decontaminated from the training data of SmolLM2 [6], StarCoder2
[7] and Mellum [8] to ensure the reliability of our results. For each
code sample, we identify the smell in non-English language using
Abstract Syntax Trees generated by Tree-sitter [9] and language
detection tools such as FastText [10, 11]. Once the smell is detected,
it is masked using Casual Masking and Fill-in-the-middle [12]. The
modified code is passed to SmolLM2 [6], StarCoder2 [7] andMellum
[8] to complete the code or summarise it. The resulting completion
is then evaluated using metrics such as BLEU [13] and exact match.

Based on the developed pipeline, we find that English tokens
account for over 90 % of all comments, string literals and identifiers
present in the 3.35 Milion files Java subset of the Heap. Moreover,
after sampling between 1000 and 2000 files from both English and
non-English datasets and performing code generation and sum-
marisation tasks, we find that the models perform slightly better
on non-English data.

With this work, we contribute in the following ways:
(1) We develop a three-stage pipeline consisting of Detection,

Generation, and Evaluation through which the "Uneven
Natural Languages" data smell can be evaluated in tasks
like code generation and summarisation using metrics like
BLEU and exact match.

(2) Our Detection stage produces character-level annotations,
stating the language of each specific character for each
character present in the content of the data point. These
annotations can be leveraged for further evaluation and
deeper analysis of the effects of non-English data smell on
the Heap dataset.

(3) The repository used for the development of the pipeline is
publicly available to reproduce the research and the results.
The repository contains the code used for the pipeline, along

1

https://orcid.org/1234-5678-9012

Bogdan-Mihai Buzatu

with samples of the dataset and the results from inferring
those samples. 1

2 Background Research
Data smells [1] are identified as data quality issues that may lead
to future problems for LLMs as they are present inside the training
data of the models. They usually appear as a result of avoiding
using recommended best practices, their suspicion not being depen-
dent on a specific context. Based on a defined taxonomy [2], there
is a class for smells related to the language used inside the code.
The ’Uneven Natural Language’ sub-category is associated with the
presence of different languages inside the code other than the ones
that the model has been usually pre-trained on. Since English is the
most used language for the training of the LLMs, the ’Uneven Natu-
ral Language’ data smell is related to the ’Long-Tailed Distribution’
data smell category, which highlights the higher representation of
a particular class compared to other classes inside the dataset.

Currently, most research on this data smell focuses on detecting it
using variousmethods. Among others, we can highlight the removal
of the instances where English is not present, or the probability of
being present is low [1, 14] using existing libraries for language de-
tection or by removal of the instances where non-ASCII characters
[15]. In the case of FineWeb [14], filtering out non-English content
is done to improve downstream performance. However, there is
no significant research done to address the influence of ’Uneven
Natural Language’ data smell at inference time.

In the following subsection, we will go through detection meth-
ods of non-English language, FIM used for masking and multiple
ways of evaluating the result (such as Exact Match, BLEU Score
and Human Evaluation)

2.1 Detection
There were a few highlighted methods for identifying the language
of a given text to solve the problem of Uneven Natural Language
inside the code block, based on the Systematic Literature Review
conducted [2] (langid, cld3, and fasttext). In the following bullet
points, we are going to go through multiple methods of detecting
non-English language that can be used to detect the data smell
inside a code block:

(1) Dictionary-Based Lookup [16] is a lexicon-based approach
in which a wordlist is stored for each language. Based on
the tokens from the input text, each token is checked to
see which dictionary is part. The dictionary that has the
most tokens inside the input text is considered the language
of that text. It is an efficient and transparent approach as
it is fast, and there is no need for training or an external
model. However, there are cases where words can be part
of multiple languages, and this approach would fail in this
case.

(2) Langid (Character N-Gram + Naive Bayes) [17, 18] is a
model that converts text into character n-grams (e.g., tri-
grams: fun, unc, nct, etc.)and then the input is applied to a
Naive Bayes classifier trained to distinguish languages by
their n-gram frequencies. This model can work well with

1https://github.com/bogdanbuzatu04/Research-Project

variable names inside the code (e.g., isOpened, closedTick-
ets), as the tokenisation is independent (cite the survey). In
addition to Being Tokenisation-Independent, the model is
fully self-contained with no external dependencies, and it
provides deterministic results.

(3) pycld2 and pycld3 (Google’s Compact Language Detector
2 and 3) [19] use a neural model trained on massive multi-
lingual web data (CLD3 made by Google), through which
it computes character-level embeddings and produces top
k languages with probabilities. It can be very accurate on
short, web-like text (e.g., comments and short literals), and
it supports many languages. However, it is a closed model
with biases coming from the training data (the model might
favour more web-dominant languages).

(4) FastText (Facebook Short Neural Model) [10, 11, 20] is a
Facebook AI-developed shallow neural network, initially
developed for text classification. The language identifica-
tion model is a specific application of this architecture. The
model used for language identification is trained based on
Common Crawl & Wikipedia for 170+ languages. When re-
ceiving an input string, it is extracted into n-grams, which
are further converted into a vector. Furthermore, the in-
put is embedded by averaging the vector and then passes
through a linear layer where the language of the input
string is predicted. It achieves good accuracy and efficiency
for most input texts, providing reliable confidence scores
for the resulting languages.

2.2 Masking
For the masking of smells, we are going to use the ’Fill-in-the-
middle’ (FIM) paradigm. ’Fill-in-the-middle’ [12] is a paradigm used
to generate the middle part of a text based on the given prefix and
suffix for the LLMs. When using the FIM paradigm, we encode
both the prefix and suffix, and we provide the prompt for the Large
Language Model as: <PRE> Enc(prefix) <SUF> Enc(suffix) <MID>.
Where <PRE>, <SUF> and <MID> are sentinel tokens used to mark
the boundaries between the given prefix and suffix. The generated
response is prompted until the <EOT> token is generated, which
signals that the middle part has been generated successfully.

The paradigm can be used without affecting the model’s ability
to generate tokens from left to right. This property is called "FIM-
for-free" as defined by Bavarian et al. [12], where there is no actual
loss on standard task (including code completion) by adding this
new capability. Moreover, FIM can work at both the document
level (where the transformation occurs after fragmentation) and
at the context level (where the transformation takes place before
tokenisation and fragmentation), which can impact the generation
of the middle depending on the size of the input and the splitting
of both the prefix and suffix.

Using FIM, language models can generate the missing/masked
part of the code at a specific location within the code while con-
ditioning on both a prefix and a suffix. This is particularly useful
for tasks such as code completion, generation of docstrings or infill
generation, where edits are made mid-function or mid-comment.

2

https://github.com/bogdanbuzatu04/Research-Project

Data hound: Analysing non-English data smells in large code datasets

The Heap

Detection and
Annotation

No

Yes

Is the file’s primary
language English?

Sampling among Non-
English files

Sampling among
English files

Masking Evaluation

RQ1 and RQ2
Distribution of Languages

RQ3 and RQ4
Metrics Evaluation

Figure 1: Pipeline of this research

2.3 Evaluation of the result
Taking into account that the focus of this research is to determine
the effect of masking certain data smells identified in the code, the
evaluation of the result focuses on either the code generated or the
docstring based on the provided prefix and suffix. In the following
bullet points, we are going to present different evaluation methods
that have been used in the past for evaluating the result of a given
prompt to a Large Language Model:

(1) BLEU (Bilingual Evaluation Understudy)[13] measures n-
gram overlap (typically up to 4-grams) between a generated
string and one or more references. It has been widely used
in the field of natural language processing tasks, offering
fast performance and ease of computation.

(2) METEORMetric for Evaluation of Translation with Explicit
ORdering) [21] adds up on the n-gram overlap measured by
the BLEU score by taking into account also fragmentation,
stemming, and synonymy. In this way, it captures recall
and partial, and it offers a better sentence-level correlation
with human judgments than BLEU.

(3) ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) [22] consists of a suite of metrics built for summari-
sation and can be used for LLM-generated summarisation
evaluation. The ROUGE-1 score is calculated based on the
number of overlapping unigrams divided by the number
of total reference unigrams. In contrast, ROUGE-2 is cal-
culated taking into account the bigrams (sequences of two
consecutive words). In addition to the overlapping n-grams,
ROUGE-L is calculated based on the largest common sub-
sequence between the result and the reference, the subse-
quence not being consecutive but still in order.

(4) The Levenshtein distance measures the number of single-
character edits needed to transform one string into another.
It is often normalised by 1 −

(
distance

max(len(ref),len(pred))

)
. It is

simple to interpret and useful when the exact surface form
matters (e.g., identifier names).

(5) Exact Match compares the predicted and the reference
string, and then one is returned in case the two strings
are the same. Taking into account its structure, it is clear
and strict, while it is also appropriate for deterministic com-
pletions (e.g., variable names, short docstrings).

3 Methodology
To conduct our experiments, we use The Heap dataset [5], which
contains code in multiple programming languages and is suitable
for evaluating LLMs. The Heap is contamination-free with respect
to several public pre-training datasets, such as The Stack v1 [23]
and The Stack v2 [7], both used for the training of SmolLM2 [6],
StarCoder2 [7] and Mellum [8]. Therefore, the dataset is suitable
for a fair evaluation of the chosen LLMs on unseen code. In our
experiments, we prompt chosen LLMs with code samples in which
we mask the English and non-English targets, allowing us to deter-
mine the influence of Uneven Natural Languages data smell on the
models’ performance. In general, the methodology of this research
follows three essential parts: Detection and annotation,Masking and
Evaluation

3.1 Detection and annotation
We start the detection by using Tree-sitter [9, 24] to produce con-
crete Abstract Syntax Trees that preserve all code details. By query-
ing inside the generated AST, we look into specific parts of code like
string literals, comments, variables, and class and method names
where non-English content typically appears. The detection of the
used language is addressed in two different ways, depending on
the part of the code being tackled.

Yes

No

Is the right
format?

Parsing (format
check and split)

Annotate with "-1"

Normalisation
(lowercase and

combine)

Language
Detection

No

YesIs reliable?

Extracted Identifier

Annotate with the
code of the

detected lang

Array of annotations

Figure 2: Language Detection for Identifiers

Identifiers. Based on good practices, identifiers for methods and
variables should adhere to the following formats: Camel Case (blueRedYel-
low), Snake Case (blue_red_yellow) and Kebab Case (blue-red-
yellow). The identifiers can be easily parsed and split into multiple
parts (e.g. blue, red, yellow) using a regular expression, where each
part is lowercase and then combined into a string with spaces in
between elements. The resulting string is then passed to detect()
pycld2 and FastText [10, 11] for secondary check. In case the
result is reliable, each of the characters inside the identifiers is an-
notated with the code of the resulting language or "-1" otherwise.

3

Bogdan-Mihai Buzatu

Parsing (Removing
elements

specific to comments in
programming

languages)

Computing
Slidings Windows

Language
Detection

Extracted
Comment/String Array of annotationsWeighted Sum

Yes

No

Is reliable?

Annotate with "-1"

Annotate with the
code of the

detected lang

Figure 3: Language Detection for Comments and Strings

String literals, comments, and docstrings. Since comments and
docstrings may contain annotations and tags specific to program-
ming languages, the input text is first cleaned using regular ex-
pressions to remove the particular annotations and tags. With the
cleaned text, sliding windows are used to determine the language
for smaller parts of the text using FastText [10, 11]. The result of
the sliding window is the list of the top 3 languages and their confi-
dence scores. For each character, the detection algorithm computes
the weighted sum of confidence scores of the languages for the
windows where that character is present. In case the language with
the highest confidence score is bigger than the threshold, assign
that language to the character. Otherwise, perform a fallback using
pycld2 where the character is in the centre of the input window.

After detecting the language, we annotate the data smell to have
a general overview of the existence of such data in the format of
an array which contains the language code or "-1". By default, the
other parts of the code that are not tackled by the detection algo-
rithm have their annotations set to "-1". Based on the annotations,
we can determine the share of natural languages across the dataset,
directly answering RQ1 and RQ2.

3.2 Masking
To evaluate the influence of Uneven Natural Languages data smell
in completing code and generating comments given partial context,
we apply two masking strategies: FIM masking [12] and causal
masking. In both cases, the unmasked context (either containing
both prefix and suffix or only the prefix) is drawn from the original
reference code, and the model is tasked with filling in the masked
region.

Comments and docstrings. Since comments and docstrings de-
scribe the implementation written in the code, we would like to
determine the influence of the data smell on code generation by
masking the first line after the comments or the docstring. The
other case is to mask the entire docstring or block comment to
evaluate the summarisation of the code.

After annotating each file for language content, we split our
dataset into English-only and non-English subsets. From each sub-
group, we draw random samples for our experiments.We then apply
the same masking procedures to all files, regardless of whether they
exhibit the Uneven Natural Languages data smell so that we can di-
rectly compare models’ performance on clean versus contaminated
code. For each file in the sample, we make generations for every
comment (for FIM, we use block comments and docstrings, while
for casual masking all the comments).

3.3 Evaluation
Based on the result of the inference, we compute Exact Match, BLEU
[13], METEOR [21] and ROUGE [22] to compare the similarity of
the result against the ground truth target. We use these metrics to

Number of files where the language is solely present
Language ISO-639-1 Code Files
English en 1907629
Chinese zh 2000
Spanish es 1355

Portuguese pt 1005
French fr 771
Italian it 454
German de 433
Czech cs 189

Japanese ja 183
Polish pl 177
Russian ru 173
Danish da 170
Korean ko 150
Dutch nl 143
Turkish tr 114

Table 1: Natural languages used across the Heap

determine how Uneven Natural Languages data smell influences the
code summarization and generation, directly answering RQ3 and
RQ4.

4 Results
In this section, we report findings for RQ1–RQ4. RQ1: among 3.35
million Java files, 57 % use only English; the rest mix languages
or use a single non-English tongue—chiefly Chinese, Spanish, Por-
tuguese and French (Table 1). RQ2: across comments, strings and
identifiers, English accounts for over 90 %, with a minor tail of
Romance and Germanic languages. RQ3: on 8 457 English ver-
sus 1 911 non-English next-line generations, BLEU and ROUGE
scores are near zero but slightly higher for non-English; Mellum
and StarCoder 2 outperform SmolLM2 in both recall and fluency.
RQ4: masking non-English terms boosts Mellum’s BLEU at the
expense of coverage, while StarCoder 2 sustains broader token
recall (ROUGE-1/ROUGE-L); both better reconstruct non-English
comments than English ones.

4.1 RQ1: What languages are commonly used in
the code in addition to English?

Based on a subset of 3 350 000 Java files, 1 907 629 (about 57 %),
as shown in Table 1, contain only English. The remaining files
either mix multiple languages or use a different single language.
More specifically, other languages present solely in the files include
Chinese, Spanish, Portuguese, and French, which occur in more
than 500 files each.

4.2 RQ2: What is the distribution of English and
non-English elements across the Heap?

Figures 6, 7 and 8 all confirm that English utterly dominates code-
adjacent language use, with token counts an order of magnitude
greater than any other language—hence the logarithmic ’y’ axes.
In comments (Figure 6), English accounts for approximately 92.4%
of all monolingual entries, dwarfing Chinese (≈ 3.0%), Galician (≈

4

Data hound: Analysing non-English data smells in large code datasets

ble
u

mete
or

rou
ge

1_f

rou
ge

2_f

rou
ge

L_f

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

SmolLM2 - English
SmolLM2 - Non-English
StarCoder2 - English
StarCoder2 - Non-English
Mellum - English
Mellum - Non-English

Figure 4: Metrics evaluation for Next Line Generation

exa
ct_

matc
h

ble
u

mete
or

rou
ge

1_f

rou
ge

2_f

rou
ge

L_f

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Mellum - English
Mellum - Non-English
StarCoder2 - English
StarCoder2 - Non-English

Figure 5: Metrics evaluation for Code Summarisation

1.1%), French (≈ 0.6%), German (≈ 0.6%), Spanish (≈ 0.6%), Japanese
(≈ 0.5%), Portuguese (≈ 0.4%), Italian (≈ 0.4%) and Russian (≈ 0.3%).
Identifier names (Figure 8) show an even stronger skew: English
comprises about 97.8% of tokens, while the next-most-frequent
tongues—Spanish (≈ 0.49%), Italian (≈ 0.44%), French (≈ 0.42%),
German (≈ 0.26%), Portuguese (≈ 0.23%), Dutch (≈ 0.14%), Czech
(≈ 0.10%), Swedish (≈ 0.10%) and Catalan (≈ 0.09%)—barely register
by comparison. String literals (Figure 7) similarly feature English at
roughly 92.4%, versus Chinese (≈ 1.3%), German (≈ 1.1%), Danish
(≈ 1.1%), French (≈ 0.9%), Portuguese (≈ 0.7%), Italian (≈ 0.7%),
Spanish (≈ 0.7%), Latin (≈ 0.6%) and Dutch (≈ 0.5%).

En
glis

h

Chin
ese

Galic
ian

Fre
nch

Germ
an

Sp
an

ish

Jap
an

ese

Por
tug

ue
se

Ita
lian

Ru
ssi

an

105

106

107

Co
un

ts
 (l

og
 sc

al
e)

Chinese
39.7%

Galician

14.7%

French8.0%

German
7.9%

Spanish

7.7%

Japanese

6.5%

Portuguese

5.7%

Italian

5.3%

Russian

4.5%

Figure 6: Comments containing a single language

5

Bogdan-Mihai Buzatu

Beyond English, most of the nine next-most-common languages
in each category can be clustered into two principal families, ex-
cluding Chinese and Japanese. The six Romance languages (French,
Italian, Spanish, Portuguese, Galician and Catalan) collectively con-
tribute to a significant amount of non-English tokens, reflecting
a shared lexicon and broad adoption among developer commu-
nities in Southern Europe and Latin America. Meanwhile, four
Germanic languages—Danish, Swedish, Dutch, and German—also
feature prominently, underscoring the influence of Northern Euro-
pean languages in open-source code. These patterns suggest that,
although English remains the unchallenged lingua franca across the
Heap dataset, secondary languages used in comments, identifiers,
and strings tend to mirror broader familial affinities, with devel-
opers favouring terminology drawn from their native or closely
related languages.

En
glis

h

Chin
ese

Germ
an

Dan
ish

Fre
nch

Por
tug

ue
se

Ita
lian

Sp
an

ish Lat
in

Dutc
h

105

106

107

Co
un

ts
 (l

og
 sc

al
e)

Chinese 17.2%

German

14.8%

Danish

14.0% French

12.3%

Portuguese9.1%

Italian

9.0%

Spanish

8.7%

Latin

8.1%

Dutch

6.8%

Figure 7: Strings containing a single language

En
glis

h

Sp
an

ish
Ita

lian
Fre

nch

Germ
an

Por
tug

ue
se

Dutc
h

Czec
h

Sw
ed

ish

Cata
lan

105

106

107

Co
un

ts
 (l

og
 sc

al
e) Spanish 21.4%

Italian

19.4%
French

18.6%

German
11.3%

Portuguese

10.2%

Dutch

6.2%

Czech

4.4%

Swedish

4.2%

Catalan

4.1%

Figure 8: Identifiers containing a single language

Sample Number of
files

Containing only English language 1 913 782
Containing only English language

with at least one comment
1 362 819

Randomly selected from the English subset
for Next Line generation

2 000

Randomly selected from the English subset
for FIM generation

1 000

Containing a singular non-English language 8 897
Containing a singular non-English language

with at least one comment
3 928

Randomly selected from the non-English subset
for Next Line generation

1 000

Randomly selected from the non-English subset
for FIM generation

1 000

Table 2: Number of files used for sampling

4.3 RQ3: What is the effect on Large Language
Models’ code generation when non-English
code elements are present in the prompt
dataset?

To evaluate the effect on code summarisation, we randomly take
1000 file samples from the non-English subset and 2000 file sam-
ples from the English subset. Figure 2 shows a detailed view of
the sampling procedure, taking into account the total number of
monolingual files that use either English or non-English languages.

Based on 8457 generations for English and 1911 generations for
non-English languages, Figure 5 shows that BLEU is essentially
zero for all models in both English and non-English, indicating
almost no exact n-gram overlap in next-line predictions. There are
also zero values for the exact-match, which have been removed
from the chart, but they are visible in the Appendix of the paper.
Looking at ROUGE-1, Mellum seems to have the highest recall,
while StarCoder 2 has a solid recall, and SmolLM2 has the lowest
overlap. When it comes to fluency, the order is maintained, with
Mellum producing the most coherent bigram sequences, StarCoder
2 offering moderate continuity, and SmolLM2 being last.

Moreover, the means (marked by “×” in Figure 5) closely track
the medians for every model and language, indicating that extreme
outliers do not drive these central tendencies. SmolLM2’s IQR is
very tight—its next-line performance is uniformly low—. In contrast,
Mellum and StarCoder 2 show wider IQRs and longer whiskers,
signalling greater variability (sometimes quite strong, sometimes
weak) across examples. Occasional high-scoring outliers, particu-
larly for Mellum on non-English ROUGE-2 and ROUGE-L, under-
score that a subset of lines can be reconstructed extremely well
even when the median remains modest.

In general, non-English following lines are easier for everymodel
and metric, with consistently higher scores on non-EN than Eng-
lish, reflecting the models’ slightly stronger handling of shorter or
more formulaic comment patterns in those languages. Moreover,
the order of performance between the models is maintained for
both English and non-English. The lower scores of SmolLM2 can be

6

Data hound: Analysing non-English data smells in large code datasets

justified by the much lower number of parameters (135 M) [6] com-
pared to Mellum [8] and StarCoder 2 [7], which limits its capacity
both to recall tokens and to generate fluent continuations.

4.4 RQ4: How is Large Language Models’ code
summarisation influenced when
non-English code elements are masked in
the prompt dataset?

To evaluate the effect on code summarisation, we randomly take
1000 file samples from the non-English subset and 1000 file samples
from the English subset.

Based on 2531 generations for English and 1222 generations for
non-English languages, Figure 5 shows that neither English nor
non-English comments are recreated verbatim, with exact-match
hovering around 10–15 % in every condition.Mellum sacrifices some
token recall (ROUGE-1) to boost local cohesion (BLEU), yielding
smoother two-gram continuity at the expense of overall coverage.
Additionally, Mellum seems to perform a more fluent phrasing,
ignoring completeness: its median BLEU and Meteor scores both
exceed those of StarCoder 2 by several percentage points, especially
on non-English samples. On the other hand, StarCoder 2 has a
slightly broader recall, given its marginally higher ROUGE-1 score
and superior ROUGE-L performance, which indicate it retains a
larger fraction of the original comment’s vocabulary and ordering.
Looking at Meteor, Mellum’s candidates are “closer” in word order
and content on average, particularly for non-English, where its
median Meteor rises by nearly 0.10 compared to English.

Here again, the close alignment of means and medians confirms
that these differences are robust rather than skewed by outliers. The
interquartile ranges for Mellum and StarCoder 2 are wide, highlight-
ing that masking induces a variety of outcomes—some comments
are very faithfully reconstructed, others much less so. Rare but
notable high-end outliers in the non-English distributions point to
specific cases where FIM recovers nearly complete comments.

When comparing the English and non-English generations, both
models generally reconstruct non-English comments more accu-
rately, achieving higher medians and narrower interquartile ranges
across all metrics. However, StarCoder 2 has slightly higher scores
for BLEU, METEOR, and ROUGE in English, as evidenced by its
elevated mean values (depicted with “×” in Figure 5), suggesting
that despite lower overall fluency, it captures a broader array of
English comment tokens with greater consistency.

5 Discussion
We now discuss the main findings in more detail from the perspec-
tive of the research questions and their implications. We provide
a transparent summary and comment on the limitations of the ex-
isting research in the latter part of the section and discuss future
work.

5.1 Language Detection
Looking at the 2024 Octoverse report by GitHub2, we see that the
United States, United Kingdom and Canada, three predominantly
English-speaking countries—rank first, fifth and tenth, respectively,

2https://github.blog/news-insights/octoverse/octoverse-2024/

among GitHub’s Developer Community. Other large developer
populations include China, Brazil (Portuguese), Germany and Japan.
This global distribution partially mirrors our Java subset analysis
of the Heap: English, as the de facto lingua franca of programming,
unsurprisingly represents the vast majority of the code-adjacent
text.

As shown in Figure 6, Galician appears with unexpectedly high
frequency among monolingual comments, despite having only
around 2.4 million native speakers in northwestern Spain3. A man-
ual inspection of the annotated dataset reveals that many occur-
rences of "Galician" are artefacts of Eclipse’s internationalisation
markers, e.g. ‘//$NON-NLS-1$‘—which the detector misclassifies as
Galician rather than recognising them as tool-generated tokens45.
Moreover, the maximum monolingual comment length for Galician
is only 610 characters, versus 647 658 for English, 7 022 for Span-
ish or 5 278 for Portuguese, further evidence that these are false
positives due to detector fallback behaviour and pycld2’s known
limitations as fallback method for the detection 6.

A parallel issue arises with strings flagged as Latin: many of these
literals contain significant non-alphabetic noise (e.g. UUIDs, log-
format placeholders), which again confuses the language detector.
In both cases, our findings underscore a key limitation of automated
language identification in source code contexts, especially when
tool-specific markers or noisy tokens are present.

5.2 Code generation and summarisation
The evaluation metrics, BLEU, ROUGE and METEOR, align with
human expert rankings across languages and preserve their exact
ordering. When presented with noisy comments, their scores trend
towards zero [25], demonstrating their ability to flag truly incoher-
ent outputs. However, because they quantify only surface overlap,
they do not account for semantic equivalence between reference
and generation. In non-English settings, absolute scores drop even
further (due to inflectional variation, compounding, or segmenta-
tion issues), so language-specific tokenisation and per-language
threshold calibration are critical to interpret and compare results
fairly.

It is worth mentioning that across the Java subset of the Heap,
the maximum size of theMonolingual comment in English is 647658
characters, while for non-English, the maximum number of charac-
ters is around 90000 while taking into account that these numbers
include spaces, special character and random noises. Additionally,
looking at the samples selected for the generation, there is a higher
number of comments on average per file for English files compared
to non-English (EN: 2000 files - 8457 line, block comments or java
docs, non-EN: 1000 files - 1911 line, block comments or java docs)

With these in mind, we now turn to two complementary tasks:
next-line generation and code summarisation.

5.2.1 Next line generation. The near-zero BLEU and exact-match
scores confirm that predicting arbitrary "next lines" in code com-
ments is inherently challenging; even state-of-the-art models rarely
reproduce the author’s phrasing verbatim. Medians and means for

3https://minorityrights.org/communities/galicians/
4https://www.eclipse.org/articles/Article-Internationalization/how2I18n.html
5https://stackoverflow.com/questions/654037/what-does-non-nls-1-mean
6https://github.com/pemistahl/lingua-py

7

https://github.blog/news-insights/octoverse/octoverse-2024/
https://minorityrights.org/communities/galicians/
https://www.eclipse.org/articles/Article-Internationalization/how2I18n.html
https://stackoverflow.com/questions/654037/what-does-non-nls-1-mean
https://github.com/pemistahl/lingua-py

Bogdan-Mihai Buzatu

these metrics sit at or near zero, with very narrow interquartile
ranges, indicating uniformly poor overlap across examples. This
suggests that practical code-completion systems should rely on
fuzzy matching or semantic retrieval rather than literal regenera-
tion.

Models exhibit a clear recall-vs-fluency trade-off: Mellum > Star-
Coder 2 > SmolLM2 on ROUGE-2 (bigram continuity) and the in-
verse ordering on ROUGE-1 (token coverage). Wider interquartile
ranges and occasional high-scoring outliers for the larger models
hint at cases of surprisingly accurate predictions, while SmolLM2’s
tight IQR reflects consistently low performance. All models per-
form better on non-English snippets, implying that shorter, more
stereotypical patterns in those languages are easier to predict and
yield higher median scores with reduced variance.

5.2.2 Code summarisation. FIM’s 10–15 % exact-match rate shows
that, even with contextual masks, verbatim recovery is rare. The
close alignment of means and medians for exact-match and BLEU
underscores that this limitation is consistent rather than driven by
outliers. Yet moderate ROUGE-1 and BLEU scores indicate models
still capture the local phrasing.

Non-English masked comments perform better in all metrics.
However, a select few high-value outliers within the non-English
distributions demonstrate a tendency to over-fit simplistic tem-
plates. While specific comments are reconstructed with remarkable
accuracy, others significantly underperform relative to the median.
This variability highlights the need for a more in-depth examina-
tion of language-specific patterns and the development of adaptive
masking strategies.

5.3 Limitations
(1) The research has been conducted on a subset of the Heap

dataset. Consequently, it is hard to have a general overview
of the languages present while also lacking generalisation
about the influence of non-English languages on code sum-
marisation and generation

(2) Pycld2 is not fully reliable when detecting the Language.
The library has been chosen for this research, mainly be-
cause of the lack of support of pycld3 for python versions
>= 3.10 7

(3) The evaluation of the generations does not take into account
the semantics when comparing the reference solution to the
generated one. This is caused by how the chosen metrics
are calculated

5.4 Future work
Based on the findings and the limitations of our current research,
we define further areas of development around this research:

(1) There can be an improvement of the existing pre-processing
done on comments and strings so that we can strip or nor-
malise such artefacts, which would yield more accurate
language distributions.

(2) We should change pycld2 with other libraries for language
detection. This way, we can improve the fallback method

7https://pypi.org/project/pycld3/

used for comments and strings, as well as the general de-
tection used for identifiers.

(3) We should run the pipeline across the entire Heap dataset,
as it might reveal a slightly different distribution of lan-
guages and the influence of non-English on LLMs’ code
summarisation and generation.

(4) We should also tackle generations around identifiers and
strings, as they are essential parts of the code that contain
non-English Language.

6 Conclusion
In this study, we designed and implemented a three-stage (Detec-
tion, Generation, Evaluation) pipeline to investigate the impact of
the "Uneven Natural Languages" data smell on LLM-based code
generation and summarisation. Our pipeline incorporates character-
level language annotations for every code file in the dataset, en-
abling us to gain a more comprehensive understanding of the lan-
guages used in each file and across the entire dataset.

Our experiments focus on the Java portion of the Heap dataset,
comprising 3.35 million files. Once annotated, we find that English
tokens account for over 90 % of all comments, string literals and
identifiers. At the same time, Romance languages (e.g. Spanish,
French, Portuguese) and Germanic languages (e.g. German, Dutch,
Danish) constitute a long-tail minority.

Based on the annotated subset, we derive four sample subsets
(three of which consist of 1000 files and another of 2000 files) to use
for generation. Based on the presence of data smell, we define the
context and the target for Fill-in-Middle and Casual Masking while
utilising StarCoder2, SmolLM2, and Mellum for the generation. In
code generation and summarisation tasks based on the derived
samples, English remains overwhelmingly the most pervasive, yet
the presence of non-English components informs LLMs’ behaviour.
In particular, the non-English samples perform slightly better on
specific tasks, as indicated by BLEU, METEOR, and ROUGE scores.

7 Responsible Engineering
While conducting this research, we put the accent on the integrity,
transparency and reproducibility of the research by having:

Transparent and reliable research process. In the 10 weeks of this
research, the progress has been continuously supervised by 2 PhD
students with knowledge and expertise in the field of research.
During the process, they have provided us with feedback on the
work that has been done. Moreover, a responsible professor verified
our progress midway through the research while fellow students
provided feedback on specific parts of the research.

Open-Source Dataset. The Heap dataset [5] is a publicly available
dataset and can be used by anyone to research testing the LLM’s
generation capabilities.

Reproducibility of the results. The repository used for the de-
velopment of the pipeline is publicly available to reproduce the
research and the results. The repository contains the code used
for the pipeline, along with samples of the dataset and the results

8

https://pypi.org/project/pycld3/

Data hound: Analysing non-English data smells in large code datasets

from inferring those samples. 8. This ensures that the research is
reproducible.

References
[1] Harald Foidl, Michael Felderer, and Rudolf Ramler. Data smells: Categories,

causes and consequences, and detection of suspicious data in ai-based systems,
2022.

[2] Antonio Vitale, Rocco Oliveto, and Simone Scalabrino. A catalog of data smells for
coding tasks. ACM Trans. Softw. Eng. Methodol., December 2024. Just Accepted.

[3] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[5] Jonathan Katzy, Razvan Mihai Popescu, Arie van Deursen, and Maliheh Izadi.
The heap: A contamination-free multilingual code dataset for evaluating large
language models, 2025.

[6] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guil-
herme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Pi-
queres Lajarín, Vaibhav Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son
Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao,
Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas
Wolf. Smollm2: When smol goes big – data-centric training of a small language
model, 2025.

[7] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian
Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li,
Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii
Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He,
MananDey, Edoardo Abati, Yekun Chai, NiklasMuennighoff, Xiangru Tang,Muh-
tasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank
Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet,
Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
Starcoder 2 and the stack v2: The next generation, 2024.

[8] Nikita Pavlichenko, Iurii Nazarov, Ivan Dolgov, Ekaterina Garanina, Karol
Lasocki, Julia Reshetnikova, Sergei Boitsov, Ivan Bondyrev, Dariia Karaeva,
Maksim Sheptyakov, Dmitry Ustalov, Artem Mukhin, Semyon Proshev, Nikita
Abramov, Olga Kolomyttseva, Kseniia Lysaniuk, Ilia Zavidnyi, Anton Semenkin,
Vladislav Tankov, and Uladzislau Sazanovich. Mellum-4b-base, 2025.

[9] Tree-sitter Contributors. Tree-sitter Documentation: An Incremental Parsing
System. https://tree-sitter.github.io/tree-sitter/, 2025. Accessed: 2025-05-06.

[10] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. Fasttext.zip: Compressing text classification models. arXiv
preprint arXiv:1612.03651, 2016.

[11] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of
tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[12] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. Efficient training of language models
to fill in the middle, 2022.

[13] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Pierre Isabelle, Eugene
Charniak, and Dekang Lin, editors, Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsyl-
vania, USA, July 2002. Association for Computational Linguistics.

[14] Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret
Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb
datasets: Decanting the web for the finest text data at scale, 2024.

[15] Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin
Xia, and Qing Wang. Are we building on the rock? on the importance of data
preprocessing for code summarization. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, page 107–119, New York, NY, USA, 2022.
Association for Computing Machinery.

[16] Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Timothy Baldwin, and Kris-
ter Lindén. Automatic language identification in texts: A survey. CoRR,
abs/1804.08186, 2018.

[17] Marco Lui. langid.py: Stand-alone Language Identification System. https://
github.com/saffsd/langid.py, 2011. Accessed: 2025-05-06.

8https://github.com/bogdanbuzatu04/Research-Project

[18] Marco Lui and Timothy Baldwin. langid.py: An Off-the-shelf Language Identifi-
cation Tool. In Proceedings of the ACL 2012 System Demonstrations, pages 25–30,
Jeju Island, Korea, 2012. Association for Computational Linguistics.

[19] Benjamin Solomon. pycld3: Python Bindings for Compact Language Detector v3
(CLD3). https://github.com/bsolomon1124/pycld3, 2024. Accessed: 2025-05-06.

[20] Facebook AI Research. FastText Language Identification. https://fasttext.cc/docs/
en/language-identification.html, 2024. Accessed: 2025-05-06.

[21] Alon Lavie and Abhaya Agarwal. METEOR: An automatic metric for MT evalu-
ation with high levels of correlation with human judgments. In Chris Callison-
Burch, Philipp Koehn, Cameron Shaw Fordyce, and Christof Monz, editors,
Proceedings of the Second Workshop on Statistical Machine Translation, pages
228–231, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

[22] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004.
Association for Computational Linguistics.

[23] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos
Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm de Vries. The stack: 3 tb of
permissively licensed source code. Preprint, 2022.

[24] Tree-sitter Contributors. Tree-sitter Source Code Repository: Incremental Pars-
ing System. https://github.com/tree-sitter/tree-sitter, 2025. Accessed: 2025-05-06.

[25] Jonathan Katzy, Yongcheng Huang, Gopal-Raj Panchu, Maksym Ziemlewski,
Paris Loizides, Sander Vermeulen, Arie van Deursen, and Maliheh Izadi. A
qualitative investigation into llm-generated multilingual code comments and
automatic evaluation metrics, 2025.

A Other Language charts

En
glis

h

Por
tug

ue
se

Chin
ese

Galic
ian

Germ
an

Fre
nch

Sp
an

ish
Dan

ish
Ita

lian

Jap
an

ese

106

107

Co
un

ts
 (l

og
 sc

al
e)

Portuguese 27.2%

Chinese

26.8%

Galician9.5%

German
7.3%

French

7.1%

Spanish

6.8%

Danish

5.8%

Italian

4.9%

Japanese

4.5%

Figure 9: Distribution of languages in comments containing
one or more languages

En
glis

h

Chin
ese

Dan
ish

Germ
an

Fre
nch

Sp
an

ish

Por
tug

ue
se

Ita
lian Dutc

h
Lat

in
105

106

107

Co
un

ts
 (l

og
 sc

al
e)

Chinese 15.9%

Danish

15.0%

German

14.3% French

11.9%

Spanish8.9%

Portuguese

8.8%

Italian

8.7%

Dutch

8.4%

Latin

8.1%

Figure 10: Distribution of languages in string literals contain-
ing one or more languages

9

https://tree-sitter.github.io/tree-sitter/
https://github.com/saffsd/langid.py
https://github.com/saffsd/langid.py
https://github.com/bogdanbuzatu04/Research-Project
https://github.com/bsolomon1124/pycld3
https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
https://github.com/tree-sitter/tree-sitter

Bogdan-Mihai Buzatu

exa
ct_

matc
h

ble
u

lev
en

sht
ein

mete
or

rou
ge

1_p

rou
ge

1_r

rou
ge

1_f

rou
ge

2_p

rou
ge

2_r

rou
ge

2_f

rou
ge

L_p

rou
ge

L_r

rou
ge

L_f

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

SmolLM2 - English
SmolLM2 - Non-English
StarCoder2 - English
StarCoder2 - Non-English
Mellum - English
Mellum - Non-English

Figure 11: Metrics evaluation for Next Line Generation

exa
ct_

matc
h

ble
u

lev
en

sht
ein

mete
or

rou
ge

1_p

rou
ge

1_r

rou
ge

1_f

rou
ge

2_p

rou
ge

2_r

rou
ge

2_f

rou
ge

L_p

rou
ge

L_r

rou
ge

L_f

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Mellum - English
Mellum - Non-English
StarCoder2 - English
StarCoder2 - Non-English

Figure 12: Metrics evaluation for Code Summarisation

B Fully-Detailed Metrics Evaluations

10

	Abstract
	1 Introduction
	2 Background Research
	2.1 Detection
	2.2 Masking
	2.3 Evaluation of the result

	3 Methodology
	3.1 Detection and annotation
	3.2 Masking
	3.3 Evaluation

	4 Results
	4.1 RQ1: What languages are commonly used in the code in addition to English?
	4.2 RQ2: What is the distribution of English and non-English elements across the Heap?
	4.3 RQ3: What is the effect on Large Language Models’ code generation when non-English code elements are present in the prompt dataset?
	4.4 RQ4: How is Large Language Models’ code summarisation influenced when non-English code elements are masked in the prompt dataset?

	5 Discussion
	5.1 Language Detection
	5.2 Code generation and summarisation
	5.3 Limitations
	5.4 Future work

	6 Conclusion
	7 Responsible Engineering
	References
	A Other Language charts
	B Fully-Detailed Metrics Evaluations

