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SUMMARY

This thesis explores how artificial intelligence (AI) can be used to bridge the gap between
simulation and experiment in nanoscience. As both theoretical modeling and exper-
imental techniques in nanoscience become increasingly sophisticated, AI is emerging
as a powerful tool to tackle challenges such as tuning experiments, accelerating sim-
ulations, generating synthetic data, and automating data analysis. This work presents
applications of AI in three main domains: neuroscience, quantum computing, and con-
densed matter physics.

In neuroscience, we address the problem of efficiently simulating neuronal activity
data by implementing a quantum machine learning model that uses a reduced number
of trainable parameters. On the experimental side, we develop a computational package
that automates the analysis of micro-electrode array data using a neural network trained
to replicate human expert detection of burst patterns from spiking activity.

In spin-based quantum computing, we develop a computational package that sim-
ulates charge stability diagrams (CSDs) based on device characteristics, enabling the ef-
ficient creation of synthetic datasets. We also demonstrate how machine learning mod-
els can be used to filter high-quality CSDs for building experimental datasets, and we
present the first implementation of diffusion models to complete partially measured
CSDs, an approach that can be integrated into measurement routines to accelerate the
process.

In condensed matter physics, we leverage neural quantum states to detect phase
transitions by analyzing the evolution of neural network weights, without the need to
calculate order parameters, and discuss potential directions for combining this tech-
nique with neural quantum states trained on experimental data.

These studies show that AI can accelerate simulations and data analysis, while also
supporting the design and interpretation of experiments, highlighting its growing and
essential role in the future of nanoscience.

xi





SAMENVATTING

Deze thesis onderzoekt hoe kunstmatige intelligentie (AI) kan worden ingezet om de
kloof tussen simulatie en experiment in de nanowetenschap te overbruggen. Naarmate
zowel theoretische modellering als experimentele technieken in de nanowetenschap steeds
geavanceerder worden, ontwikkelt AI zich tot een krachtig hulpmiddel om uitdagingen
aan te pakken zoals het afstellen van experimenten, het versnellen van simulaties, het
genereren van synthetische data en het automatiseren van data-analyse. Dit werk pre-
senteert toepassingen van AI in drie hoofdgebieden: neurowetenschappen, kwantum-
computing en gecondenseerde-materie-fysica.

In de neurowetenschappen richten we ons op het efficiënt simuleren van neuronale
activiteitsdata door een kwantum-machine learningmodel te implementeren met een
gereduceerd aantal trainbare parameters. Aan de experimentele kant ontwikkelen we
een computationeel pakket dat de analyse van micro-elektrode-arraydata automatiseert
met behulp van een neuraal netwerk dat getraind is om de detectie van burstpatronen
uit spikingactiviteit door menselijke experts na te bootsen.

In spin-gebaseerde kwantumcomputing ontwikkelen we een computationeel pakket
dat ladingsstabiliteitsdiagrammen (CSDs) simuleert op basis van apparaatkenmerken,
waardoor het efficiënt genereren van synthetische datasets mogelijk wordt. We demon-
streren ook hoe machine learning-modellen gebruikt kunnen worden om CSDs van hoge
kwaliteit te filteren voor het samenstellen van experimentele datasets, en presenteren de
eerste implementatie van diffusiemodellen om gedeeltelijk gemeten CSDs aan te vullen,
een aanpak die geïntegreerd kan worden in meetroutines om het proces te versnellen.

In de gecondenseerde-materie-fysica benutten we neurale kwantumtoestanden om
faseovergangen te detecteren door de evolutie van neurale netwerkgewichten te analy-
seren, zonder dat berekening van ordeparameters nodig is. We bespreken tevens moge-
lijke richtingen om deze techniek te combineren met op experimentele data getrainde
neurale kwantumtoestanden.

Deze studies tonen aan dat AI simulaties en data-analyse kan versnellen, en tege-
lijkertijd kan bijdragen aan het ontwerp en de interpretatie van experimenten, wat de
groeiende en essentiële rol van AI in de toekomst van de nanowetenschap onderstreept.

xiii





1
INTRODUCTION

Nanoscience refers to the study, manipulation, and engineering of matter at the nanome-
ter scale. Several topics fall into this definition, from the control of individual atoms to be
used as advances sensor or for quantum computation, to the understanding of molec-
ular mechanisms that lead to cellular functions. In the last decades, several outstand-
ing advances in nanoscience occurred. In the field of quantum science and technology,
some examples include the universal control of semiconductor based quantum proces-
sors [1], long distance entanglement color centers in diamond [2], and efficient control
of spin-waves [3]. In bionanoscience, notable advancements include steps towards the
formation of synthetic cells [4], and the correct establishment of synaptic connections
in order to understand neural circuitry formation [5].

1.1. SIMULATION AS A TECHNIQUE TO SOLVE SCIENTIFIC PROB-
LEMS

One tool that sped up significantly the pace of scientific advances in nanoscience - and
in any other scientific discipline - is the computer. Since their advent computers are be-
ing heaviliy used for solving problems in nanoscience. Historically, the use of comput-
ers has first been applied in physics in the 1940s and 1950s to simulate complex atomic
phenomena using the Monte Carlo method, developed by Metropolis and Ulam [6]. This
probabilistic approach allowed physicists to study processes such as neutron transport,
that was previously inaccessible by analytical methods [7]. From the 1960s to the 1980s
the world witnessed the rise of computational chemistry and material science. Molec-
ular dynamics simulations allowed the atomistic modelling of materials and fluids [8,
9]. In 1985, the Car and Parrinello method [10] unified molecular dynamics with density
functional theory, allowing the simulation of quantum mechanical systems with high
precision. This had a profound impact in nanoscience, enabling prediction of molecular
structures and nanoscale interactions.

At the same time, neuroscience started implementing computational methods to
simulate brain activity. The Hodgkin-Huxley model for a neuron, originally proposed

1
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as a mathematical framework in 1952 [11], became widely simulated using some of the
most powerful digital computers available at the time [12, 13]. In the 1980s and 1990s,
computational neuroscience solidified itself as a field, focusing on topics such as neural
plasticity, neural networks, and spiking dynamics [14, 15, 16].

In parallel, the field of quantum computing was born. From 1980 to 1982, Paul Be-
nioff and Richard Feynman proposed the use of quantum machine to simulate quantum
matter [17] and perform general computation [18, 19]. This later led to the formulations
on algorithms designed to run on quantum circuits, like the Shor’s algorithm for factor-
ization [20], Grover’s algorithm for search [21], and Kitaev’s method for phase estimation
[22]. The latter was particularly important for the development of the field now known as
quantum simulation - using quantum systems to emulate complex many-body Hamil-
tonians - opening a new path to the simulation of nanoscale physical systems and ma-
terials [23].

1.2. EXPERIMENTS IN NANOSCIENCE: FROM QUANTUM COM-
PUTING TO NEUROSCIENCE

The significant advances in theory and simulation in nanoscience were accompanied
by several field-changing experimental discoveries, which throughout the 20th century
evolved from analysis of bulk properties of materials to control and manipulation of in-
dividual atoms. Early works at the beginning of the 20th century started using X-ray
diffraction to infer structural properties of materials [24], and electron microscopes to
visualize materials’ surfaces and morphology [25]. Later, the discovery of the Scanning
Tunneling Microscope (STM) allowed scientists to produce images of surfaces with sub-
nanometer resolution [26]. In 1990 the same method was used to move atoms around
a surface, allowing engineering of atomic patterns [27]. Advances in lithography, first in
the 1970s with electron-beam lithography and later with extreme ultraviolet lithography,
enabled the fabrication of devices with sizes below 10 nm [28, 29].

The realization of computation using quantum bits (qubits) also developed signifi-
cantly during the last decades. Qubits can be implemented using different physical sys-
tems, which give rise to different ways on how to construct a quantum computer. After
the Cirac-Zoller proposed scheme for quantum computing [30], in 1995, the first demon-
stration of a quantum logic gate is proposed using a single trapped ion [31], and later
expanded to two and four ions [32, 33]. Quantum computation using nuclear magnetic
resonance was first demonstrated in 1997 [34, 35], followed in the next years by the first
experimental realization of Grover [36]and Shor [37] algorithms. Superconductor based
quantum computers were also proposed around the same time [38], with rapid advances
in the beginning of the 21st century [39, 40]; a similar timeline was followed by the use of
quantum dots as qubits, with its first proposal in 1998 by Loss and di Vincenzo [41], and
significant progress in the early 2000s [42, 43, 44]. Each one of these quantum comput-
ing platforms offer different advantages and face distinct implementation challenges,
and since their inception, they have been advancing in parallel, sometimes competing,
and often collaborating. Despite their differences, all of the platforms showed outstand-
ing progress. In 2025 we have superconducting based quantum computers reaching one
hundred and more qubits, and with error rates below the surface code threshold [45,
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46, 47]; and spin quantum dot based chips achieving high-fidelity gates [48], universal
control [1], capable at operating at high temperatures [49, 50], and fabrication processes
that leverage compatibility with industrial settings [51].

Another sub-field of nanoscience, and specifically bionanoscience, that was trans-
formed by novel experimental techniques in the last 50 years, is neurophysiology. One of
the main experimental challenges in neuroscience in recording the activity of individual
neurons. The first steps towards this goal started in the 1950 with microelectrodes being
used to recording electrical signals from the cerebral cortex [52, 53, 54]. In the late 70s,
the patch-clamp technique by Neher and Sakmann which made possible the recording
of electrical currents in ion channel molecules [55]. Concurrently, the first implemen-
tation of Micro-Electrode Arrays (MEAs) to measure electrical activity in cultured cells
took place [56, 57]. Unlike electroencephalography (EEG), which records global brain
activity from the scalp and, while giving informative data about the functional brain or-
ganization and connectivity, offers only coarse spatial resolution, the micro-electrode-
based techniques can capture the activity of individual neurons or small circuits with
millisecond precision [58, 59, 60]. In the last decade, experimental breakthroughs in
nanotechnology enhanced the capability of tools used to record neuronal activity with
increasing precision [61]. Some examples of this integration between nanoscience and
neuroscience include the development of nanomaterials-based MEAs [62, 63] and the
use of nitrogen-vacancy centers as sensors for nanometer scale measurement of neu-
ronal activity [64, 65].

1.3. SIMULATION - EXPERIMENT SYNERGY
The experimental and theoretical advances cited show how the field of nanoscience
came to its current state, however, we did not specify how these two approaches work
in synergy: experiments require interpretations and insights given by theoretical mod-
els, and simulations need experimental validation. The development of nanomaterials
is a perfect example of this collaboration: when designing a new material with specific
desired properties, a first step often consists of analyzing theoretical predictions, using
methods such as density functional theory [66, 67] to calculate the material electronic
band structure and its Raman spectrum, for example, to guide experimentalists towards
the most promising synthesis routes. After synthetizing the material, experimental char-
acterization using techniques like X-ray absorption spectroscopy [68] and Raman spec-
troscopy [69] can be used to confirm theoretical predictions, or reveal discrepancies be-
tween the simulation and experiment, which can then be used to either refine the theo-
retical modeling or the synthesis strategy. In condensed matter physics, the case of topo-
logical insulators [70] are one exceptional demonstration of the theory-experiment col-
laboration, with theoretical studies predicting the existing of such materials [71, 72, 73],
followed by the experimental observations confirming the theoretical findings [74, 75].
The field of quantum computing is full of examples where a theory-experiment feedback
loop takes place, from which we chose two cases to discuss in this thesis. One of them
is error correction, crucial to build fault-tolerant quantum computers. Error correcting
codes are first proposed as mathematical frameworks, like the toric and the surface code
[76, 77, 78], and consecutively tested in experimental implementations [79, 80], which
provide feedback the new theoretical models, like incorporating better noise models of
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the devices when running the error correcting scheme [81, 82]. Similarly, the design of
novel qubit architectures often consists of theoretical proposals, like for the supercon-
ducting transmons qubits and the silicon spin qubit [83, 41], followed by experimental
fabrication and characterization of the design [84, 85], from which noise sources and
coherence times and be calculated and used to improve qubits with improved design
and material composition that mitigate the experimental challenges [86, 87]. In neuro-
science, the synergy between computational models and experiments is also crucial to
decode the complex functions of the brain at the nano scale. In the case of synaptic plas-
ticity, for example, computational models of neural networks are used to propose rules
of how synaptic strength change [88, 89]. Afterwards, data coming from measurements
of neuronal activity [90, 91] is used to developed refine theoretical models [92, 93].

1.4. AI FOR NANOSCIENCE
Both the theoretical and experimental methods applied to solve scientific problems in
nanoscience were greatly impacted by a development that has become an everyday agent
in modern life, the use of artificial intelligence (AI) models. AI impacted the entire scien-
tific workflow, from the design of experiments and the analysis of results to the accelera-
tion of computational simulations [94, 95, 96]. On the simulation side, AI enhanced the
efficiency and accuracy of several techniques across different subfields of nanoscience.
One seminal example is AlphaFold, an AI model that obtained unprecedented perfor-
mance in predicting protein structure based on amino acid sequences [97], revolution-
izing the field of molecular nanoscience, achievement for which the AlphaFold main
proposers received the 2024 Nobel Prize in Chemistry [98]. In condensed matter physics,
AI has created entire new subfield. The topic of machine learning force fields uses AI to
approximate potential energy surfaces as a way to replace expensive ab initio simula-
tions in molecular dynamics simulations, enabling the modeling of larger systems and
achieving greater accuracy [99, 100, 101]. Neural Quantum States are another example of
an AI application that created a thriving scientific community; AI is used to approximate
the quantum wave function of physical systems, critical for ultimately understanding
and developing novel quantum materials [102, 103]. The technique showed as a strong
competitor to more traditional alternatives, such as Tensor Networks [104] or Quantum
Monte Carlo [105, 106], and in some cases, outperforming them and obtaining state of
the art simulation energies [107, 108].

In quantum computing and technology, AI gave rise of a whole new subfield again:
quantum machine learning, which consists or running AI algorithms on quantum cir-
cuits. On the experimental side, AI has been used to speed-up measurements by au-
tomating the selection of important samples [109, 110], tuning routines in quantum
dots devices [111, 112, 113], and extract Hamiltonian parameters from measurements
of quantum simulations [114, 115, 116], between several other applications [117]. In
computational neuroscience, AI models have emerged as an alternative to simulating
neuronal activity with physics or biology informed models [118, 119, 120], showing great
generalization and accuracy [121, 122, 123]. Concurrently, AI stands out at automat-
ing the analysis of high-dimensional neuronal data coming from experimental measure-
ments [124]: from the reconstruction of connectomes [125, 126] to the identification and
sorting of neuronal spikes [127, 128, 129].
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1.5. THESIS OUTLINE
In this thesis, we use AI to bridge simulation and experiments in nanoscience, by ex-
panding the literature on several topics in which AI models are applied to solve prob-
lems related to the simulation of neuronal and quantum data, and the automation of
data analysis in neuronal and quantum experiments. We divide the thesis in three main
parts, each related to a specific field of nanoscience. Each part combines a simulation-
based study with an experimental or application-oriented component, except in the last
part, where the focus remains theoretical and the experimental outlook is discussed in
the conclusion. An overview of the thesis structure can be seen in Table 1.1, where the
parts-field are linked to the correspondent chapters.

Table 1.1: Structure of the thesis, divided in three parts, each related to a specific field, with related chapters,
divided in simulation and experiment-focus.

Field Simulation Experiment

Neuroscience Exploring Biological Neu-
ronal Correlations with
Quantum Generative Mod-
els [Chapter 3]

autoMEA: Machine learning-
based burst detection
for multi-electrode array
datasets [Chapter 4]

Quantum Computing
and Technology

QDsim: A user-friendly
toolbox for simulating large-
scale quantum dot devices
[Chapter 5]

Diffusion CSD [Chapter 6]

Condensed Matter
Physics

Adiabatic Fine-Tuning of
Neural Quantum States
Enables Detection of Phase
Transitions in Weight Space
[Chapter 7]

Outlook [Chapter 8]

In Part 1, we show two works related to the field of neuroscience. In Chapter 3, the
simulation work consists of an implementation of a quantum generative learning model
to simulate neuronal activity. We show that it is possible to reduce the number of param-
eters necessary to simulate neuronal activity by using quantum models instead of clas-
sical deep learning alternatives. In Chapter 4, we show an application of AI to automate
experimental data analysis. Specifically, we automate the process of burst detection in
Micro-Electrode Array datasets, using a neural network trained on human-labeled data,
capable of replace most of the human job necessary in the data analysis pipeline, and
therefore drastically reducing experiment time.

Part 2 is in the field of Quantum Computing and Technology, specifically spin quan-
tum dot devices. In Chapter 5 we introduce QDSim, a charge stability diagram simula-
tor, tailored to simulate large arrays of quantum dots. The main goal of this package is
to have a fast data generator, useful to construct large datasets useful to train machine
learning models to automate experimental processes. Chapter 6 is directly related to this
automation endeavor. We first design a charge stability diagram classifier, trained on
a small human-labeled dataset, capable of distinguishing samples that are considered
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useful or not to be used by experimentalists. We then show first results on the applica-
tion of generative models to complete missing data in charge stability diagrams. This
model can be exploited to speed-up measurement routines in spin quantum devices.

In Part 3 we dive into the field of Condensed Matter Physics. In Chapter 7, we show
an application of weight space learning to detect phase transition in quantum systems
when simulated using neural quantum states. We train neural networks to represent the
ground states of a quantum Hamiltonian across a phase diagram, using a fine-tuning
scheme to keep weights between different sections of the phase diagram correlated. We
then analyze the mapping of the networks’ weights to a lower dimensional space, where
it is straightforward to find the phase transition of the system. A possible experiment ap-
plication of AI in Condensed Matter is discussed in the Outlook and Conclusion chapter.

Since the thesis covers several topics that are not always directly related to each other,
we give a general introduction to some of the main concepts necessary to understand the
remaining of the thesis in Chapter 2. First, in Section 1, we introduce the topic of arti-
ficial intelligence and deep learning, which is central throughout the whole thesis. We
briefly discuss neural networks architectures, backpropagation, and generative learning
models. Then, in Section 2, we expand on the role of neural codes and spiking activity
in neuroscience. We review computational methods used to simulate neuronal activity,
both physics-informed methods an machine learning based methods. We finalize the
section describing micro-electrode array measurements, and the challenges of analyz-
ing this data of data. In Section 3, we give a general overview of quantum computing,
focused on quantum dots based devices; we explain what are charge stability diagrams
and challenges related to their measurement. In Section 4, we unify elements from Sec-
tion 1 and 3 to illustrate the concept of quantum machine learning and quantum gener-
ative learning models. Ending the chapter, Section 5 introduce neural quantum states:
how we can use machine learning models to approximate the wavefunction of quantum
systems. We describe the restricted Boltzmann machine architecture, and outline how
we can exploit ideas from neural networks interpretability and machine learning theory
to learn useful information from the weights of neural quantum states.

1.6. AUTHOR’S CONTRIBUTIONS
In this section, I will clarify my contributions to the chapters of the thesis which were
published as articles.

In Chapter 3, the idea of simulating neuronal activity using quantum models was
conceived by Eliska Greplova. Later, we jointly explored different approaches, eventu-
ally settling on using quantum generative adversarial networks. From there, I ran all the
simulations, performed the data analysis, and created the figures. The results were dis-
cussed with Eliska, who also helped with writing and revising the paper.

The idea for the project in Chapter 4 was conceived by Eliska and myself during a
meeting with Dimphna Meijer, Geeske van Woerden, and other students, in which we
were discussing prospects for the project in Chapter 3. All experimental data was col-
lected by Anouk Heuvelmans. Valentina Gualtieri conducted the initial simulations and
data analysis for her Master’s thesis. After that, I carried out new computational simu-
lations and designed the Python package. Anouk and I performed the data analysis and
plotted all the figures. The results were discussed with all the authors, who also con-



1.6. AUTHOR’S CONTRIBUTIONS

1

7

tributed to manuscript revisions, starting from a first draft written by Anouk and myself.
The proposal to build a charge stability diagram simulator came from Eliska. Ini-

tial simulations, not included in the final paper, were run by Maia Rigot while intern-
ing at QMAI. The first version of the results and code that appear in the paper shown
in Chapter 5 was developed by Charles Renshaw-Whitman during his Master’s thesis in
our group, co-supervised by me. After that, I took the code written by Charles and devel-
oped the first version of QDSim as a Python package. Valentina completed the project
by optimizing the code, adding new functions, plotting the results, and writing the main
manuscript. Eliska and I supervised the project from start to finish, contributing to dis-
cussions about the results and providing feedback on the manuscript and package orga-
nization.

The idea of using diffusion models to generate charge stability diagrams was mine,
and I proposed it to Joseph Rogers, who developed the first version of the project, which
became his Master’s thesis. I designed new simulations by training a new model, per-
formed the data analysis, created the figures, and wrote the first version of the manuscript,
currently in preparation. Throughout the project, results and new experimental ideas
were discussed with Eliska, Thomas Spriggs, and Rouven Koch.

In Chapter 7, the initial idea of finding phase transitions by analyzing the weights
of trained neural quantum states came from Eliska and Thomas, and was proposed to
Saqar Khaleefah. Saqar and Thomas developed the main results for a preliminary ver-
sion of the project, which formed the basis of Saqar’s Master’s thesis. Building on that,
I developed a new methodology, ran all the new simulations, created the figures, and
wrote the manuscript. Discussions about the results and manuscript preparation were
held with Thomas and Eliska.
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2
BACKGROUND

This chapter presents the essential background for the topics explored in the thesis, pro-
viding a brief, high-level introduction to varied domains, aiming to cover just enough to
fill any foundational knowledge gaps needed for the subsequent chapters. We start with
Artificial Intelligence basics, covering the evolution of neural networks and the rise of deep
generative models. Then, we explore the simulation and analysis of neural activity, from
biophysical models to machine learning approaches. The discussion then moves to Quan-
tum Computing, covering qubits, quantum gates, and circuits, with a focus on spin qubits
and their experimental tuning using charge stability diagrams. Another section bridges
some of these fields by introducing Quantum Machine Learning, with a focus on quan-
tum generative models, like the Quantum Generative Adversarial Network. Finally, we
introduce Neural Quantum States, exploring how neural networks can be used as varia-
tional ansatzes to find ground states of quantum systems.
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2.1. ARTIFICIAL INTELLIGENCE BASICS

2.1.1. FROM NEURONS TO DEEP LEARNING

While AI does not have an unique definition, within this thesis we will refer to Artifi-
cial Intelligence (AI) as the set of systems used to tackle tasks that would require some
level of human intelligence to be solved [1]. One the main sub-fields of AI is machine
learning (ML), in which algorithms iteratively improve their performance by learning
from data instead of using handcrafted rules [2]. Before the 2000s and the advent of the
deep learning era [3], main ML approaches included techniques like linear regression,
decision trees, and support vector machines. Linear regression, in which a function
f (x) = wT x+ b is used to fit data, by adjusting learnable parameters called weights (a
vector w) and a bias (constant b), so that the function minimizes the mean-square er-
ror between predicted outputs and the correct values from the data [4]. Decision trees,
in which the input/feature space is recursively partitioned into regions with same out-
put/target values, by selecting thresholds that maximize information gain [5]. Support
vector machines (SVM), in which the goal consists of finding boundaries or hyperplanes
in high-dimensional spaces that separate the input space in different classes by maxi-
mizing a margin (distance between closest points of each class) [6].

Another class of models in machine learning, Neural Networks (NN), were devel-
oped in the mid 20th century, but saw exponential rise in usage, accuracy, and develop-
ment, in the 2000s. NNs are composed of individual units called perceptrons [7], which
functioning was inspired by the biological neuron [8] and the mathematical model for
a neuron [9]. The perceptron computes the weighted sum z = ∑

i wi xi +b of inputs x,
and return σ(z) as output, where σ is a non-linear activation function, and w and b are
learnable parameters, called weights and biases. When perceptrons/neurons are orga-
nized in layers - usually one input layer, one or more hidden layers, and one output layer
- the architecture is called a multi-layer perceptron (MLP), which can be used to approx-
imate any function with arbitrary accuracy, as proven in the universal approximation
theorem [10]. Even though MLPs can approximate any function, they need to be trained
so that the optimal parameters θ (which include both the w and b defined before) are
learned, and this is not necessarily an easy task, especially when the networks are deep
(many hidden layers). This changed when an algorithm called backpropagation, which
efficiently computes gradients of a loss function L (θ) with respect to the parameters θ,
was developed in 1986 [11]. In the late 1990s and early 2000s, progress in neural net-
works research rapidly advanced, reaching a milestone in 2012, when a neural network
architecture called AlexNet achieved unseen accuracy in classifying images from a large
image database [12], starting the deep learning era [3].

2.1.2. MACHINE LEARNING PARADIGMS AND MAIN ARCHITECTURES

Broadly speaking, ML methods can be categorized into three main classes: supervised
learning, unsupervised learning, and reinforcement learning [13]. In supervised learn-
ing, models learn tasks by being trained on labeled data so that they can generalize and
be used to perform the task on unseen data [14]. In this setting, the loss function, the
object to be minimized that dictates how the network’s learnable parameters are update,
consists of some functional form of the error between the network’s prediction/output,
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and the real output - the labeled data sample. This scheme is very efficient, but it re-
quires a large amount of labeled data, that grows with the size of network/ number of
trainable parameters, which can be necessary to solve more complex problems [15]. On
the other end of the "supervision" spectrum, we have unsupervised learning, where the
network has no access to labeled data. In this case, the goal is usually to learn general
patterns present in the data, so that it can be exploited to predict classes or values of
unseen samples. Common techniques used in the unsupervised setting include cluster-
ing and dimensionality reduction [16, 17, 18, 19, 20]. The third category, reinforcement
learning (RL), is fundamentally different than the cases already described [21, 22]. In RL,
an agent learns to take actions in a certain environment, so to maximize an cumulative
reward. The method emulates more closely the psychology of learning, with inspirations
coming from studies on learning in animals and children. Instead of having a predefined
dataset, the agent has access to an environment, which changes depending on the ac-
tions it takes. A reward function is design to incentivize the agent to take actions that
navigate or change the environment to achieve a goal. RL is particularly useful when
one wants to build an agent to simulate a task performed by a human, with some of the
most successful examples are videogames [23, 24].

Different architectures, deviating from the simple case of the MLP, can be designed to
more efficiently solve specific tasks, exploiting symmetries and structures in the data. In
Convolutional Neural Networks (CNNs) a specific operation called convolution is used
instead of the usual weighted sum present in MLPs, so that the local correlations present
in image data is better exploited, making them a better option in tasks that operate on
images [25], like segmentation (separating individual objects present in an image) [26],
reconstructing missing parts of pictures [27], or denoising noisy images [28]. Recurrent
Neural Network (RNNs) are another example of an architecture tailored to work in spe-
cific settings [29, 30]. RNNs, and its variants like LSTMs [31] and GRUs [32], implement
self-feedback connections, which enable the processing of sequential data, such as time
series [33, 34] or language [35, 36]. More recently, mainly in the field of natural language
processing, recurrent layers were replaced by an operation called attention, which is the
base of the transformer architecture [37]. In transformers, instead of having a word in a
sentence being related to the previous word, the following word, and to themselves, like
in the recurrent case, a position-dependent correlation between all words in the input is
calculated. The advent of transformers completely changed the field of NLP at first, and
then most of the ML fields, achieving state of the art results across different modalities
and benchmarks [38, 39, 40].

2.1.3. GENERATIVE LEARNING, AUTOENCODERS, AND DIFFUSION MOD-
ELS

Many of the architectures described up to this point in the thesis are primarily used for
discriminative tasks, like classification or regression, in which the goal is to predict a
label or a numerical value, given an input. Even in the case of unsupervised learning,
where the data in unlabeled, very often the goal of the learning algorithm is still dis-
criminative: learning some structure of the data so that new samples can be classified
or regressed. However, there is a specific subclass of unsupervised learning known as
generative learning. In generative learning, the goal is to learn the underlying distribu-



2

20 2. BACKGROUND

tion pD (x) of a dataset D , so that new samples can be drawn from it. Some of the most
influential paradigms in recent generative learning literature include variational autoen-
coders, generative adversarial networks, and more recently, diffusion models.

Variational Auto-Encoders (VAEs) [41] build upon the idea behind a (standard) Auto-
Encoder [42, 43, 44], which compresses input data x into a lower dimensional space z us-
ing an encoder module, and then uses a decoder to try to reconstruct the input from the
latent space z. VAEs introduce a probabilistic component, where the encoder maps in-
puts to a distribution in latent space q(z|x), and the decoder learns the likelihood p(x|z),
modeling the probability of seeing a sample x given a latent variable z. Training is per-
formed using a loss function that comprises both a reconstruction term, calculating the
difference between the reconstructed output and the original input, and a KL divergence
term that enforces the latent space to be a normal distribution [45, 46].

Generative Adversarial Networks (GANs) [47] propose a different approach, based on
game theory: two networks, a generator G(z) and a discriminator D(x) are trained simul-
taneously and in a competitive scheme. The generator is responsible to map noise to
data samples, or in other words, to produce synthetic samples similar to the real ones;
the discriminator attempts to distinguishing real data from synthetic samples. This be-
havior is described by the min-max equation:

min
G

max
D

Ex∼Px

[
logD(x)

]+Ez∼Pz

[
log(1−D(G(z)))

]
. (2.1)

While very unstable and difficult to train when they were first proposed, GANs and
its variants, like the Wasserstein GAN [48, 49], are able to produce extremely realistic
samples. This generative power is mainly exploited in computer vision, in which GANs
can be used to generate high-quality synthetic images [50, 51].

More recently, Diffusion Models (DM) [52, 53] have risen as a more stable, scalable,
and efficient alternative to GANs. These models learn to reverse a gradual noising pro-
cess: starting from a data sample x0, Gaussian noise is added over T steps by using a
forward diffusion process q(xt |xt−1). A neural network is then used to learn the inverse
process pθ(xt−1|xt ), effectively learning to denoise the data. When trained with a large
amount of image data, and by improving parts of the diffusion scheme, DM can be used
to generate diverse and hyper-realistic images [54, 55]. They can be made conditioned,
so that the image output depends on the initial random noise, plus some other con-
straint, from text, which effectively create models that generate images from sentences,
to other (parts of) images, which can be used to inpaint or upscale images [56, 57, 58,
59].

2.2. SIMULATION AND ANALYSIS OF NEURAL ACTIVITY

2.2.1. BIOPHYSICAL NEURONS
The brain consists of a highly interconnected network of billions of neurons. While arti-
ficial neural networks, as described in the previous section, are inspired by the biological
brain, and can be thought on a very high-level as an abstraction of it, the simulation of
neuronal activity in biological networks is way more complex, and a correct description
of its components requires tools from biology and physics. The pioneering Hodgkin-
Huxley (HH) describes the generation and propagation of action potential in neurons
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by combining ideas from physics and biology: physics by modeling the potential of a
cell membrane using partial differential equations from electrodynamics, and biology
to describe the ion channels and their interaction [9]. Although biophysically precise,
the HH model is computationally expensive for large-scale network simulations. Sim-
plified alternatives include integrate-and-fire models, like leaky integrate and fire (LIF)
[60], which neglects the ion channel details, and only considers that the neurons inte-
grate over inputs, and spike/fire after reaching a certain threshold. This simplification
allows the efficient simulation of networks with many more neurons when compared
to the more precise HH model, still showing high accuracy when describing phenomena
like synchronization and information propagation in cortical and sub-cortical neural cir-
cuits [61, 62].

2.2.2. SPIKE TRAINS: MAXIMUM ENTROPY MODELS AND MACHINE LEARN-
ING

Moving to a higher level of abstraction, we can think of neurons as units that commu-
nicate using short electrical impulses known as spikes, with a spike train being the time
trace of the spike of a single neuron, or, of a whole sub-network when activity from sev-
eral connected neurons is recorded at the same time. This simplifies neuronal activity
so that neurons can only assume two possible states over a certain time bin: active (1) or
silent (0) [63, 64].

Rather than trying to model the correct biophysics of neuronal dynamics, one can
focus on the description of the statistics of spike trains [65, 66]. One technique that uses
tools from statistical physics to successfully capture the complex statistics of spike trains
is Maximum-Entropy (MaxEnt) models [67, 68], which given some spike train as data,
aim to find the most unbiased (highest entropy) probability distribution that matches
certain properties in the data, like average firing rate (how often neurons spike in a given
time) and pairwise correlation (how correlated are spikes between pairs of neurons).
This allows to model spike trains without assuming how they are generated. First re-
sults showed that, for small populations of the salamander retina ganglion cells, a model
considering only pairwise correlations between neurons captures most of the signifi-
cant statistics, suggesting that higher-order correlations were not needed to efficiently
describe complex spike trains [67]. The finding was reinforced when studying larger net-
works of different types of neurons, but with small deviations from the correct statistics
starting to emerge [69, 70, 71, 72, 73]. Refined version of the model include higher order
correlations, correction terms, and temporal dependence, making it possible to capture
more complex statistical behaviors, like synchronization and bursting patterns [74, 75,
76].

An even more simplified alternative to MaxEnt models, that discards the physical-
informed assumption that the probability distribution that fits the data needs to be the
one that gives the highest entropy, is to use machine learning models to produce syn-
thetic data that matches the statistics of a spike train dataset. Early works include a
supervised approach, where a CNN is trained to predict spike trains dynamics given ex-
ternal stimula [77], however, it is clearly limited by the necessity of labeled data and its
deterministic nature. Generative models offer a better alternative, given that they are
designed to fit the distribution of the dataset. Generative approaches to generate syn-



2

22 2. BACKGROUND

thetic neuronal activity include using VAEs, RNNs, and GANs [78, 79, 80, 81]. Like in
several other fields, transformers also showed great performance to model neuronal ac-
tivity [82, 83, 84]. More recently, an approach using a diffusion model showed promising
results, which, aside from generating realistic spike trains, encodes low-dimensional la-
tent representations of the data [85].

In Chapter 4, we use concepts from this section and the previous one (2.1), to show
how it possible to automate the analysis routine of MEA data by using convolutional
neural networks.

2.3. QUANTUM COMPUTING WITH QUANTUM DOTS

2.3.1. QUBITS, GATES, AND QUANTUM CIRCUITS
The basic unit in quantum computing is the qubit, a quantum object that can be in the
state of superposition between its basis states, |0〉 and |1〉, fundamentally different than
their classical version, the bit, which can only be in the binary states 0 or 1 [86]. In prac-
tice, the qubit is a quantum two-level system, and thus it needs to be experimentally
implemented; common implementations of qubits include the spin of electrons, the po-
larization state of photons, and the discrete energy levels of an atom. The state of a qubit
is changed by using gates, a unitary operation that coherently acts on one or more qubits.
An example of a quantum gate is X , which in matrix form is described as[

0 1
1 0

]
which, when applied to a qubit in a general superposition state

ψ= a |0〉+b |1〉 ,

returns the state ψ = b |0〉+ a |1〉, flipping its components - so if a qubit is in the |0〉
state and X is applied, the qubit state changes to |1〉, and vice-versa. Different operations
are defined by other gates, and small sets of gates can be combined to get universality:
any unitary transformation of the qubits state can be obtained [87]. The act of sequen-
tially applying gates to qubits, and therefore consecutively changing the system state, is
equivalent to running what is known as a digital quantum algorithm, which can be rep-
resented graphically by a quantum circuit [88, 86]. Digital quantum algorithms, like the
Shor’s factoring algorithm [89], or Grover’s search algorithm [90], make use of carefully
chosen sequences of single and two qubit gates so that the overall unitary evolution of
the quantum system reaches a speed-up when compared to classical alternatives.

2.3.2. SPIN QUBITS AND CHARGE STABILITY DIAGRAMS
As mentioned before, in practice the qubit needs to be physically implemented as a
quantum system. There are multiple ways of achieving this, with different implemen-
tations giving rise to different paradigms of quantum computing, like superconducting
quantum computing if qubits are implementing using superconductor electronic cir-
cuits [91], or trapped-ion quantum computing if the qubit is encoded as different elec-
tronic states of confined ions [92, 93].
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Spin qubits are implemented by confining spins of semiconductors, and using the up
and down possible states of the spin as the two-level system [94]. The Loss–DiVincenzo
proposal employs the spin of a single electron trapped in a gate-defined quantum dot
(QD) as a qubit, taking advantage of the long coherence times of electron spins in cer-
tain semiconductor heterostructures [95]. This allows to perform single qubit gates by
coherently rotating the spin of an isolated quantum dot, and two qubit gates by making
two neighboring quantum dots interact [96, 97, 98, 99, 100].

One of the key requirements that needs to be met in order to use quantum dots
as qubits, is having each quantum dot in an operational regime, which typically in-
volves precise control over the number of electrons confined in each dot. This control is
achieved using electrostatic gates that locally tune the potential landscape in the semi-
conductor and define the quantum dot itself. By adjusting the voltages applied to these
gates, one can control both the formation of the dot and the number of electrons it holds
[95, 101]. Charge stability diagrams (CSDs) are graphical representations that assist in
this tuning process by mapping the electron occupation in each dot as a function of the
applied gate voltages [102, 103]. Experimentally, charge stability diagrams are obtained
by sweeping gate voltages over a two-dimensional grid and recording an electrical signal
that reveals transitions in the dot’s charge state. The two main ways of getting a CSD are:
direct current (DC) transport measurements, in which the measured signal is the current
through the dot under a small source–drain bias [104, 105]; and radio-frequency (RF) re-
flectometry, where the dot is embedded in a resonant circuit, and changes in the RF
signal, caused by variations in the dot’s charge configuration, are used to detect single-
electron tunneling events [106, 107, 108].

2.3.3. OPERATING QUANTUM DOTS

The ability to record signals from quantum dots and construct charge stability diagrams
is necessary, but not enough to set the system in an operational qubit state: one has to
cleverly navigate the high-dimensional voltage landscape to calibrate each physical pa-
rameters. The process occurs in sequential stages, starting with coarse tuning, in which
the device is cooled, sensors are activated, and voltages are swept to find wether the
system is in a zero, one, or double dot configuration. Afterwards, virtual gates can be
defined to mitigate crosstalk effects and allow control of individual dots. Next, in the
charge state tuning stage, gate voltages are finely tuned to achieve exact number of elec-
trons in each QD. This is one of the main steps in which the CSD can be analyzed and
navigated (changing the voltages) to obtain target charge states - since crossing the lines
in CSDs correspondent to changing the number of electrons in the QDs. Finally, some
of the system’s physical parameters are adjusted to obtain optimal control for quantum
computation.

Manually tuning a dot by going through all the steps described is extremely labor-
intensive, does not scale efficiently with the number of QDs/voltage gates, and requires
repeating the task for different devices. In this context, classical optimization methods
are used to automate the tuning [109, 110, 111]. While obtaining satisfactory results in
some settings, the noisy nature of CSDs makes it challenging for these methods to pre-
cisely detect transition lines [112, 113]. As a more resilient-to-noise alternative, machine
learning algorithms have been implemented to automate the tuning process, with dif-
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ferent works addressing all steps of tuning, from coarse tuning [114, 115, 116], to setting
virtual gates [117], and charge tuning [118, 119, 120]. We are now at the point that a
combination of different techniques can be implemented to fully automate the tuning
process [121, 122], with remaining challenges to refine the tuning routines, such as the
need for standardized benchmarks and datasets to develop and test new algorithms, be-
ing addressed by the community [123].

In chapter 5 and 6, we use concepts from this section and the section 2.1, by propos-
ing a CSD simulator, useful to efficiently build synthetic datasets for ML applications
(Chapter 5), and in Chapter 6 by designing a ML approach to classify experimental CSDs,
which can be used to build datasets with experimental measurement, and preliminary
results on using diffusion models to complete measurements in CSDs, in order to reduce
measurement time.

2.4. MACHINE LEARNING ON QUANTUM COMPUTERS

2.4.1. QUANTUM MACHINE LEARNING

One the possible intersections of machine learning models, as described in section 2.1,
with quantum computing and the quantum circuit paradigm, introduced in section 2.3,
is quantum machine learning (QML): running learning algorithms on quantum circuits,
harnessing quantum phenomena like superposition and entanglement [124, 125, 126].
One standard model used in QML is the parametrized quantum circuit (PQC): quantum
circuits with layers of parameter-dependent single-qubit rotations and entangling gates,
which parameters are optimized classically based on measurement outcomes [127]. Some
of the main architectures in machine learning were translated to the quantum regime,
with examples such as Quantum Convolutional Networks [128], Quantum Recurrent
Networks [129], and Quantum Transformers [130]; and several works study the appli-
cation of PQCs, from classification tasks in toy problems to real classical and quantum
data [131, 132, 133]. Nonetheless, several challenges remain in the field, from proving
advantages compared to classical alternatives [134, 135], to finding an efficient training
scheme [136, 137, 138] and dealing with vanishing gradients (Barren plateaus) [139, 140].

2.4.2. QUANTUM GENERATIVE LEARNING

Mirroring the categories in machine learning, QML can also be divided in different cat-
egories. When models are used to learn the distribution of a dataset, we have Quan-
tum Generative Learning. In quantum generative learning, models prepare parameter-
ized quantum states and generate samples via measurement [141]. When compared to
discriminative tasks, quantum generative learning was shown to be resilient to training
problems like Barren plateaus [142, 143]. Quantum Circuit Born Machines (QCBMs),
for instance, use PQCs to encode distributions over bit strings, exploiting natural quan-
tum randomness and entanglement, and show potential to encode distributions with
complexity beyond classical models [144, 145]. Quantum Boltzmann Machines [146]
and Quantum Variational Autoencoders [147] extend classical generative frameworks
into the quantum domain. Quantum Generative Adversarial Networks (QGANs) are an-
other example of a quantum adaptation of a classical architecture. They use the same
scheme described in Section 2.1, implementing two networks, a generator and a dis-
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criminator, but using a PQC for one of the networks (or both) [148]. Several works show
that QGANs can efficiently learn classical distributions [149, 150, 151]. Moreover, refine-
ments in QGAN architectures have advanced their scalability and performance: patch
QGANs [152], which decompose high-dimensional data into smaller patches processed
by compact PQC sub-generators, enables efficient image generation on limited qubit
hardware, while a Wasserstein style GAN implementation, with a critic replacing the dis-
criminator, allows QGANs to produce high-resolution images [153].

In Chapter 3, we use concepts from this section, and section 2.2, to implement an ap-
plication of quantum generative learning in neuroscience, by using QGANs to simulate
neuronal activity.

2.5. NEURAL QUANTUM STATES

2.5.1. VARIATIONAL GROUND STATES

One of the main challenges in modern science, and especially in quantum physics, is
finding the ground states of quantum systems: the state with the lowest energy possi-
ble. This is a particularly important state that can be used to describe general properties
of the system. For example, in quantum chemistry, the ground state of a molecule pro-
vides essential information about the system’s stability, reactivity, and other chemical
properties [154, 155]. For simple systems, it is feasible to exactly find the ground state;
however, increasing the number of particles in the systems accompanies an exponential
scaling of the Hilbert space, which make exact solutions impractical, and approxima-
tions methods are required. This computational complexity is one of the main reasons
why quantum computers were proposed in the first place: simulating quantum systems
efficiently [156, 157]. However, in the absence of scalable quantum hardware, alterna-
tive approaches based on classical variational methods have proven useful. The core
idea behind variational methods is to propose an approximate wave function, known as
an ansatz, which depends on a set of adjustable parameters and, according to the varia-
tional principle, the expectation value of the system Hamiltonian for the approximated
wave function will always be higher than the true ground state energy [158]. This prin-
ciple can be exploited to reframe the ground state problem as an optimization problem:
the expected value of the system Hamiltonian is minimized with respect to the ansatz
parameters, and the process is iterated over until the approximate energy converges to
the true ground state energy. Several variational methods can be used, each with their
own advantages and limitations. For instance, tensor networks methods [159], such as
matrix product states and projected entangled pair states, in which the wave function
is encoded in a contracted tensor of a network of individual tensors, enable obtaining
high-accuracy ground state approximations with efficient computational cost, but lose
most of their strength when dealing with system in higher-dimensional, or that have
volume-law entanglement [160]. Quantum Monte Carlo methods [161], such as Diffu-
sion Monte Carlo, which uses a Green’s function to calculate the low energy states of the
system Hamiltonian, show state of the art accuracy for certain cases, but are affected
by the sign problem when simulating fermionic or frustrated systems [162]. The advent
of deep learning, with neural networks proven to be universal function approximators
[163], led to idea of using machine learning models as variational ansatzes to approx-
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imate quantum wave functions. This approach, called Neural Quantum States (NQS)
[164], in which the ansatz parameters to be optimized are the weights and biases of a
neural network, shown extremely successful in simulating quantum states, even in com-
plex cases such as highly-entangled or frustrated systems [165].

2.5.2. NQS: VARIATIONAL AND FULL-SUM STATES
Using a neural networks as an ansatz for the variational problem does not solve the curse
of dimensionality: the energy of the system must be assessed in order to be minimized,
and to obtain the exact energy, one needs to calculate the expectation value of the Hamil-
tonian with respect to all basis states of the wave function, which grow exponentially
with the system size. This is circumvented, like in other variational methods, by using
techniques like Markov Chain Monte Carlo to sample a polynomial number of signifi-
cant configurations to calculate an approximation of the system’s energy. This makes
the computation of NQS efficient even when simulating larger systems, at the cost of
introducing noise and biases associated with the sampling routine. The process of sum-
ming over all the (2N for N particles) possible configurations is called “full sum state”.
While computationally inefficient and unfeasible for large systems, minimizing the ex-
act energy by summing over all possible configurations, is often used in theoretical works
where the goal is to study general properties of NQS that do not originate from the sam-
pling method.

2.5.3. THE RESTRICTED BOLTZMANN MACHINE
Among all neural networks architectures, the Restricted Boltzmann Machine (RBM) [166]
stands out in the field of NQS, being the first ansatz used in the seminal work by Carleo
and Troyer [164], and is still being studied and implemented in recent works, both in the
neural quantum state community [167, 168] and in the machine learning community
[169]. Originally proposed in 1986 by Paul Smolensky [170], and later popularized by
Geoffrey Hinton and collaborators [171], the RBM is a type of generative neural network
with two layers: a visible layer, which in NQS represents the physical degree of freedom
of the quantum system, and a hidden layer, which encodes a non-linear transforma-
tion of the visible layer. The RBM, and its deep learning version, the deep belief net-
work [172], were some of the first generative models to show useful applications, from
early works using it for dimensionality reduction [171] and feature learning [173], where
training methods used sampling techniques and algorithms like contrastive divergence
[174], and later in tailored applications such as quantum physics, using the network in a
more discriminative manner and using the standard backpropagation algorithm to train
it [165].

2.5.4. FINDING PHYSICS IN NEURAL NETWORKS
One reason why restricted Boltzmann machines were widely accepted in the physics
community is the possibility of obtaining the model’s energy in an analytical form, which
makes it possible to physically investigate the optimization process of the network. An-
other exciting aspect of using RBMs as ansatz in variational methods is the potential to
extract physical insights from the network learned parameters [175]. The weights con-
necting visible and hidden layers can be directly related with physical correlations in
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the quantum system, offering an extra framework to interpret what the model is learn-
ing. This analytical form can even be exploited to represent transformations between
quantum states as transformation in the RBM parameters, which can be use to exactly
implement quantum gates in the classical simulation of quantum circuits [176]. How-
ever, this analytical form does not always hold for more complex and deeper architec-
ture, like convolution or recurrent networks. Nonetheless, a growing body of literature
is now dedicated to applying interpretability techniques to extract physical representa-
tions from networks used to solve physics problems [177, 178, 179]. Some recent works
show promising results in uncovering physical quantities encoded in the parameters of
NQS ansatzes [180], even in cases where the networks are more complex than RBMs,
including transformer-based architectures [181, 182].

In Chapter 7 we show how it is possible to detect phase transitions in quantum sys-
tems, by approximating the wave function at different points of the phase diagram with
NQS, and mapping the networks’ weights to a lower dimensional space, using Principal
Component Analysis.
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3
EXPLORING BIOLOGICAL

NEURONAL CORRELATIONS WITH

QUANTUM GENERATIVE MODELS

Understanding of how biological neural networks process information is one of the biggest
open scientific questions of our time. Advances in machine learning and artificial neural
networks have enabled the modeling of neuronal behavior, but classical models often re-
quire a large number of parameters and highly task-specific architectures, which can com-
plicate model design and scalability. Quantum computing offers an alternative approach
through quantum machine learning, which can achieve efficient training with fewer pa-
rameters. In this work, we introduce a quantum generative model framework for gener-
ating synthetic data that captures the spatial and temporal correlations of biological neu-
ronal activity. Our model demonstrates the ability to achieve reliable outcomes with fewer
trainable parameters compared to classical methods. These findings highlight the poten-
tial of quantum generative models to provide new tools for modeling and understanding
neuronal behavior, offering a promising avenue for future research in neuroscience.

The results of this chapter have been published as: V. Hernandes, E. Greplova, “Exploring biological neuronal
correlations with quantum generative models”, Cell Reports Physical Science 6, 8 (2025) [1]
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3.1. INTRODUCTION
Exploring the information processing within biological neuronal networks remains a
core challenge in contemporary science, with direct implications across disciplines like
neuroscience, medicine, and deep learning [2, 3, 4, 5]. One way to approach this problem
is to use computational models that can reproduce the neuronal activity data produced
in real systems. Accurate synthetic data can be extremely useful to study properties such
as network connectivity and response to stimuli under controlled conditions [6, 7].

Several models for neuronal activity have been developed, and many achieve out-
standing results in replicating neuronal network correlations. One class of methods that
use statistical mechanics tools to model neuronal activity are Maximum Entropy models,
which reliably capture some network correlations by only fitting pairwise interactions
[8, 9]. Even though numerous adaptations of this technique have been implemented to
achieve higher accuracy or to include temporal correlations [10, 11, 12, 13, 14, 15], this
approach shows several limitations when addressing larger networks, especially due to
its assumption that pairwise correlations are sufficient to encapsulate most of the statis-
tical features of these complex systems [16, 17].

Another effective approach for modeling neuronal activity is to use machine learning
(ML) models to produce data that fits the biological network statistics and use the model
to further investigate the properties of the real system. The ML models do not rely on
prior information about the biological system but instead learn to reproduce correla-
tions solely from data. A supervised strategy using Convolutional Neural Networks first
showed that a deep learning approach can be successful at generating neural responses
from stimuli [18]. However, the model’s benefits are hampered by limited accuracy and
its dependency on labeled data. With the increasing popularization of generative mod-
els, models with superior predictive performance and generalization power were imple-
mented. Models like Variational Auto-Encoders [19], Recurrent Neural Networks [20],
Generative Adversarial Networks (GANs) [21], and Transformers [22] have been used to
produce spike trains (binary sequence representing neuronal activity) with high accu-
racy and good correspondence of spatial and temporal correlations when compared to
real data. While each iteration of these models improves in quality, all share the same dis-
advantage regarding their interpretability. In order to fit the statistics of larger systems,
these models need to use a number of trainable parameters that scales unfavourably
with the number of simulated neurons. Apart from demanding more computational
power, excessive number of parameters make the models difficult to analyze or be used
as a tool to investigate concrete properties of biological networks.

As the field of quantum computing rapidly advances, quantum machine learning
(QML) models are rising as an alternative to classical methods, with the possibility of
achieving similar results while keeping the parametrized model more compact in terms
of trainable parameters [23, 24, 25, 26]. Specifically, the field of quantum generative
learning received much attention recently: quantum models have shown better general-
ization and expressivity for specific tasks when compared to their classical counterparts
[27, 28, 29]. Since the conception of QML, one class of quantum generative models has
been extensively studied: quantum generative adversarial networks (QGANs) [30]. The
adversarial approach has proven successful and is being continually improved, produc-
ing higher-dimensional data with more stable training routines [31, 32, 33, 34, 35].
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This work is inspired by the observation that quantum generative models have shown
promise in replication of discrete distributions [34, 36]. Additionally, the salamander
retina dataset has been used as a benchmark for distribution learning using quantum
Boltzmann machines [37, 38]. These observations suggest a possibility of full recon-
struction of both spatial and temporal correlations with a quantum generative model
that we present here. We build on our preliminary work [39] and design SpiQGAN, an
efficient quantum framework that enables the production of synthetic neuronal data for
biological neuronal networks. SpiQGAN generates spike trains of neuronal activity: data
that consist of binary activation states of the neurons obtained from recording the re-
sponse of ganglion cells of the salamander retina to a visual stimulus as a function of
time [40]. This data set represents one of the standard benchmarks in neuronal activa-
tion modelling.

To achieve generation of the data that maximally resembles the real biological sam-
ple, we apply a hybrid quantum generative adversarial network, with a quantum genera-
tor that produces synthetic activity data, and a classical critic that aims to distinguish real
data from the dataset [40] from those produced by the quantum generator. The model is
trained adversarially, and the outcome is a generator that can reproduce neuronal activ-
ity that is to the high degree similar to the salamander retina dataset. Compared to clas-
sical neural networks alternatives, the quantum generator has the advantage of achiev-
ing reliable outcomes with a significantly reduced number of trainable parameters, that
scale more favourably for increasing systems’ sizes: the number of parameters is linear
in the number of neurons. In other words, SpiQGAN is able to reproduce the behavior
of this complex neuronal data set in both space and time with significantly fewer train-
able parameters than classical ML models, thus forming a stepping stone towards using
quantum approaches for more compact and more interpretable models for neuronal be-
havior.

3.2. RESULTS

3.2.1. DISTRIBUTIONAL SIMILARITY BETWEEN GENERATED AND REAL DATA

We trained SpiQGAN for t = {1,5,10,20,30} timesteps and for n = {2,4,6,8,10} neurons,
in order to evaluate the quality of the generated data as a function of system size and
time trace length.

Comparing the distribution of possible states of the simulated data to that of the
salamander retina data is a straightforward way to evaluate the quality of our generative
model. Reconstruction of these distributions also allows us to calculate distributions dis-
tances such as the Jensen-Shannon (JS) divergence. However, direct distribution com-
parison is particularly challenging: for n neurons and t time steps, the number of pos-
sible (spiking) states is 2nt . We are thus able to directly visually compare distributions
only for a small number of neurons.

For two neurons, n = 2, and and one time step, t = 1, the possible states are {00,01,10,11}.
For two neurons and two time steps, t = 2, the possible states are {0000,0001, ...,1110,1111}.
In this representation, the first two bits represent neurons 1 and 2 at time step 1 and
the last two the states of these neurons at time step 2. This means that the distribution
of states quickly becomes intractable for increasing number of neurons or time steps.
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Figure 3.1: Illustration of the model architecture. (A) Architecture of the model, with generator G producing
generated samples, and dataset D producing biological samples, which are both used as input for critic C. (B)
Architecture of generator. In the upper left corner, the generator composed of several sub-generators is shown.
The bottom part shows that each sub-generator is a quantum circuit following a re-uploading scheme. Here
a noise-encoding layer and a parametrized layer are repeated for l layers, with the parametrized layer ansatz
of each parametrized layer shown in the top right side. After trained, the generator can be used to produce
samples (D) similar to samples obtained from the biological dataset (C).

Nonetheless, it is very informative to compare distributions directly for low number of
neurons.

For all cases, regardless of system size, we calculated a series of statistical values use-
ful to evaluate the behavior of the generated and the real data from the salamander retina
dataset. Specifically, we calculate the pairwise covariance between the activation state
of a pair of neurons; the mean firing rate, which correspondent to how many times a
neuron spikes per second; the k-probability, equal to the probability of k neurons being
active at the same time; and the autocorrelogram to estimate the correlation between a
trace of spikes and itself for delayed timesteps.

First we consider the case with a unique timestep (one subgenerator quantum cir-
cuit), and neurons varying from 2 to 8. In these cases the distribution is easily numeri-
cally tractable. We show the final distribution of generated spiking states, compared to
the distribution of the real data in 3.2, with a zoom on the most prominent terms of the
distribution in the bottom inset. The probabilities of the spiking states are calculated
using the last iteration of the trained circuit. This is coincident with the last value of the
JS divergence, which steadily decreases during training, visible in the bottom insets of
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Figure 3.2: Comparison between distribution of states and JS divergence calculated using generated and real
data. Each panel show the distribution of spiking states for generated data obtained after training with the
K-loss (in red) and with the standard loss (in blue), and the real distribution of the spiking states (black), for (A)
2, (B) 4, (C) 6, and (D) 8 neurons, all for the case of 1 timestep. The bottom inset shows a zoom of the first four
activation states. The upper inset shows the JS divergence for all training steps, for K (red) and standard (blue)
loss.

3.2. These results show that for a sufficient number of training steps the distribution
of generated states converges to the distribution of the salamander retina dataset. This
distribution convergence is a first indication that the training is working as intended,
and the samples produced by the generator match some of the statistics of the real data.
Throughout, we compared both standard loss and biologically inspired K -loss, defined
in the experimental procedures section. We found that on average K -loss performed
slightly better (see Supplementary Note S1 and Fig. 3.4 for a detailed comparison).

3.2.2. STATISTICAL ANALYSIS OF GENERATED ACTIVITY
In Fig. 3.3 we show further statistics used to assess the quality of the generated data, for 2
and 10 neurons and varying the number of time steps, focusing only on the biologically
informed K -loss from now on. Complete results for all neuron numbers and timesteps,
accompanied by a focused comparison between the statistics obtained with two differ-
ent loss functions, are shown in the Supplementary Text (Supplementary Note S1) and
figures of the Supplementary Material (see Fig. ?? for statistical metrics and Fig. ?? for
activity traces). In Fig. 3.3(H), we see that number of generated spikes as a function
of simulated time steps gets closer to the real distribution as the number of time steps
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Figure 3.3: Statistics and generated data for 2 and 10 neurons. (A-H) Statistics for the case of 2 and 10 neurons,
with 1, 5, 10, and 30 timesteps represented with different colors in each image. Specifically, (A,E) pairwise
covariance, (B,F) k-probability, (C,G) firing rate, and (D,H) autocorrelogram are shown. (I-P) Spike traces for 2
and 10 neurons, for the case of generated data with 1 (I,M), 10 (J,N), and 30 timesteps (K,O), and for real data
(L,P).

increases.

3.2.3. SPIKE TRAIN COMPARISON WITH BIOLOGICAL DATA
Visual comparison of spike trains generated by SpiQGAN and those from the biological
dataset is shown in Fig. 3.3 for 2 (I-L) and 10 (M-P) neurons. A visual comparison be-
tween the generated spikes and the salamander retina samples shows that for increasing
number of time steps the QGAN generated samples start forming bursting clusters, an
important feature of the biological dataset.

3.3. DISCUSSION
Overall, all SpiQGAN iterations we implemented achieved a reasonable fit of the key sta-
tistical features of the data, especially given the model’s simplicity and general purpose
design, while maintaining a low number of parameters, which scale favorably (linearly)
in the number of neurons. Specifically, for our model, with 4 parameterized layers, the
total number of trainable parameters is equal to 8 times the number of neurons per time
step. This scaling has the following implication: data generation for neuronal network
with dozens of neurons in our implementation uses hundreds of trainable parameters,
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compared to thousands, or tens of thousands, in the case of the traditional machine
learning approaches [21, 22]. A detailed comparison benchmarking our quantum gen-
erator against classical fully-connected generators, which consistently underperformed
even with more parameters, can be found in Supplementary Note S2 and Figs. ??. More-
over, it is clear that models that simulate more neurons presented improved perfor-
mance, which insinuates that using larger circuits could return even better results. While
some metrics like mean firing rate and pairwise covariance show discrepancies, others
such as the k-probability and the similarity between generate and real spike train pat-
terns, including burst-like patterns, indicate the model captures essential features of the
neuronal data.

We have shown that Quantum Generative Adversarial Networks are able to generate
synthetic neuronal activity data that faithfully reproduce both spatial and temporal cor-
relations of the biological dataset. We designed and implemented a resource efficient
SpiQGAN that re-uses the same building block across the model. Additionally, we in-
cluded a biologically informed loss function to take into account statistical properties of
the generated samples.

This work lays the foundation for the utilization of quantum learning models be-
yond quantum science, here in neuroscience modeling. In particular, SpiQGAN opens
the possibility of running resource efficient algorithms on quantum computers to bene-
ficially model neuronal activity. With the compact quantum models, the dynamics and
interpretation of neuronal activity can be efficiently explored in future work.

3.4. METHODS

3.4.1. GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [41], are a
powerful class of generative models that learn to synthesize data samples by framing the
learning process as an adversarial game between two neural networks: a generator and
a discriminator. The generator network, G , aims to produce data samples that mimic
those drawn from the true data distribution Px . It takes a noise vector z, sampled from
a predefined distribution Pz (e.g., a Gaussian or uniform distribution), and transforms
it into a synthetic data sample, G(z). Meanwhile, the discriminator network, D , acts as
a binary classifier, distinguishing between real samples from the true data distribution
and fake samples generated by G .

The training objective is formulated as a minimax game, where the generator tries
to minimize the probability of the discriminator correctly identifying generated sam-
ples, while the discriminator simultaneously maximizes its ability to correctly classify
the samples:

min
G

max
D

Ex∼Px

[
logD(x)

]+Ez∼Pz

[
log(1−D(G(z)))

]
. (3.1)

Although GANs have achieved remarkable success in various applications (e.g., im-
age synthesis, text generation), they are often plagued by training instabilities such as
vanishing gradients and mode collapse [42]. These issues arise primarily because the
loss function may not provide meaningful gradients when the discriminator is too strong
or too weak, leading to poor convergence.
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The Wasserstein GAN (WGAN) [42] addresses many of the training challenges as-
sociated with standard GANs by leveraging the Wasserstein distance (also known as the
Earth-Mover distance) to measure the divergence between the true data distribution and
the generated data distribution. Unlike the original GAN, the discriminator in WGAN, re-
ferred to as a critic, outputs a scalar value instead of a binary classification, quantifying
how well the generated samples approximate the real data distribution. The WGAN ob-
jective is formulated as:

min
G

max
D∈D

Ex∼Px [D(x)]−Ez∼Pz [D(G(z))], (3.2)

where D is the set of all 1-Lipschitz functions, enforced through weight clipping or gra-
dient penalties [43]. By stabilizing the gradients, WGAN significantly improves conver-
gence behavior, allowing the generator to learn a more accurate representation of the
target distribution.

3.4.2. PARAMETRIZED QUANTUM CIRCUITS AND QUANTUM GANS
As quantum computing has advanced, quantum machine learning has emerged as a
promising frontier. One key concept is Parametrized Quantum Circuits (PQCs). PQCs
consist of a sequence of quantum gates with parameters that are classically optimized.
PQCs can encode complex quantum states and can be used to approximate complex
distributions.

Building on this foundation, Quantum Generative Adversarial Networks (QGANs) ex-
tend the GAN framework into the quantum domain by incorporating quantum compo-
nents such as quantum generators, quantum discriminators, or both. In QGANs, the
generator may be implemented as a PQC, which is trained to generate samples that
match the desired distribution.

3.4.3. IMPLEMENTATION OF THE QUANTUM GENERATOR AND THE CLASSI-
CAL CRITIC

SpiQGAN uses a quantum generator to model the spike activity patterns of retinal gan-
glion cells. Specifically, we employ a Patch WQGAN approach, where the quantum gen-
erator is divided into several sub-generators, each corresponding to a different timestep.
Each sub-generator shares the same PQC architecture but has independent trainable pa-
rameters, allowing for flexibility in capturing the temporal dynamics of neuronal activity.

The generator begins with a random initial quantum state |z〉, which is mapped to
the final state |g 〉 using a data re-uploading scheme [44]. The quantum circuit consists
of five layers, where each layer applies a sequence of parametrized unitaries U (θi ) and
noise-encoding unitaries U (z). The parametrized unitary U (θi ) is implemented using
rotation gates around the Y and Z axes (RY and RZ ) and entangling operations (CNOT
gates) between adjacent qubits, while the encoding block applies RX rotations to each
qubit to encode a sampled noise vector. The generator outputs a sequence of activity
states for multiple neurons over several timesteps by concatenating the outputs from
all sub-generators. All quantum circuit results in this work are obtained from classical
numerical simulations of ideal quantum hardware. This allows us to benchmark the be-
havior of the model without the influence of noise. This comes with the cost of longer
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training times, given the inefficienty of calcuting quantum gradient. The range of train-
ing times in this range from approximately 2 hours for the smallest system, to 5 days for
the larger systems. We also tested generators with a higher number of variational lay-
ers per sub-generator to evaluate whether deeper circuits would improve performance.
However, the improvements were not significant, while training became significantly
more expensive due to the cost of quantum gradient estimation. For this reason, we
fixed the number of layers to five in all reported experiments, balancing expressivity and
trainability.

The critic in our QGAN framework is a fully connected classical neural network. The
network consists of:

• An input layer matching the size of the generated samples,

• A hidden layer with 64 neurons using ReLU activation,

• An output layer without an activation function, which directly provides a scalar
value representing the divergence between the real and generated distributions.

3.4.4. TRAINING PROCEDURE
SpiQGAN is trained by optimizing two separate loss functions for the generator and the
critic. The critic’s loss function aims to maximize the difference between its outputs for
real samples x and generated samples G(z):

LC = 1

2B

∑
j

(
C (G(z j ))−C (x j )

)
, (3.3)

whereas the generator’s objective is to minimize the critic’s evaluation of the generated
samples:

LG =− 1

B

∑
j

C (G(z j ))−K

(∑
i

G(z j )i −xi
j

)
, (3.4)

with B being the batch size, and the term K (
∑

i G(z j )i −xi
j ) added to the standard Wasser-

stein’s generator loss function, inspired by Maximum-Entropy models [12], correspond-
ing to the difference between the number of spikes in a fake sample and those in a real
sample. This loss was named K-loss, and by setting K = 0 the standard loss is retrieved.
Training alternates between two updates of the critic and one update of the generator,
ensuring stable convergence. The Adam optimizer is employed with learning rates of
0.05 for the generator and 0.002 for the critic.

3.4.5. DATASET AND EVALUATION METRICS
The dataset is comprised of neuronal spike activity recorded from retinal ganglion cells
in a salamander retina [40]. It contains 297 repetitions of a 19-second natural movie,
recorded as binary spike events, where 1 indicates a spike and a 0 indicates no spike.
The goal is to generate synthetic data that replicates these binary spike patterns while
maintaining important statistical properties. To evaluate the performance of the QGAN,
we used the following statistical metrics:
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• Pairwise Covariance: Measures the extent to which two neurons fire together.
High covariance suggests that the neurons are more likely to spike simultaneously.

• Mean Firing Rate: The average rate at which a neuron fires spikes over time. This
metric helps ensure that the generated data matches the overall activity level of
the real data.

• k-Probability: The probability distribution over the number of spikes (k) in a given
time window. Matching this distribution ensures that the generated data captures
the variability in spike counts.

• Autocorrelogram: A measure of the temporal structure of the spike train, repre-
senting the correlation of a neuron’s spike times with itself over different time lags.
This metric is crucial for capturing the temporal dynamics of neuronal activity.

To comprehensively assess the model’s performance, we conducted experiments vary-
ing the number of neurons n={2,4,6,8,10} and timesteps t={1,2,5,10,20,30 }. For small-
scale systems, alongside the metrics listed above, we computed the exact probabilities
of all possible spiking states, used to compare the generated and real data distributions
using distance measures such as Jensen-Shannon divergence, which, for two probability
distributions P and Q is defined as:

JS(P ∥Q) = 1

2
KL(P ∥ M)+ 1

2
KL(Q ∥ M), (3.5)

where M = 1
2 (P +Q), and KL denotes the Kullback-Leibler divergence:

KL(P ∥Q) =∑
i

P (i ) log
P (i )

Q(i )
. (3.6)

3.5. SUPPLEMENTARY MATERIAL

3.5.1. SUPPLEMENTAL NOTES

NOTE S1
In Fig. 3.4 we show a comparison between the biological K -loss and standard loss. For all
combinations of (neurons, timesteps, loss function), we calculate the mean square error
between statistics (k-probability and firing rate) obtained with SpiQGAN generated and
real samples. Figs. 3.4(A) and (D) show the error for both losses for all timesteps as a
function of the number of neurons. Figs. 3.4(B) and (E) show the error for all neurons as
a function of the number of timesteps. The error visibly decreases for increasing number
of neurons. Interestingly, the same is not true for increasing number of timesteps, sug-
gesting that even the time correlations (see Fig. 3.3(H)) are better fitted by using more
qubits rather than by increased number of parametrized circuits in the generator. Figs.
3.4(C) and (D) shows the difference between the mean-square error obtained using the
K -loss and the standard loss, for all combinations of (neurons, timesteps). A positive
value mean that the error using the K -loss is lower, while a negative value means that
the error obtained with the standard loss is lower. We see that for most cases, the val-
ues are positive, indicating the K -loss achieves a better fit for the majority of models,
especially for the k-probability (panel C).
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NOTE S2
To benchmark the performance of our quantum generator, we compared it with existing
classical models applied to the same dataset. Notably, classical models generally require
a significantly larger number of parameters and must be tailored specifically to the pat-
terns in neuronal data. To establish a fair baseline for comparison with our quantum
generator, we implemented a classical fully-connected generator and varied its hyper-
parameters to create several classical models with different parameter counts. Despite
extensive hyperparameter searches, none of the classical training runs converged well,
suggesting that our quantum generator provides a more flexible and general approach,
while classical networks require highly task-specific design.

We evaluated the classical GAN in two configurations: 2 neurons and 2 timesteps,
and 6 neurons and 10 timesteps. For both settings, we varied learning rates, training
iterations, and the size of the generator’s hidden layers, resulting in over 80 hyperparam-
eter combinations and a wide range of parameter counts.

In the smaller configuration (neurons = 2, timesteps = 2), the classical generator con-
sistently failed to capture meaningful structure. Autocorrelogram analysis revealed a
lack of temporal correlation, and the generated samples often exhibited mode collapse,
producing nearly identical outputs. Increasing the number of parameters did not signif-
icantly improve performance. We show selected results for this case in Fig. 3.5.

A similar trend was observed in the larger configuration (neurons = 6, timesteps =
10), with representative results shown in Fig. 3.6. While the autocorrelogram showed mi-
nor signs of improvement, indicating weak temporal structure in a few cases, the overall
quality of the generated data remained poor. Importantly, the classical models tested
in this case already exceeded the number of parameters used in our quantum model
(which has fewer than 1000 parameters), further supporting the claim that the quantum
generator achieves better fidelity with fewer parameters.

3.5.2. SUPPLEMENTAL FIGURES
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Figure 3.4: Mean-Square Error of k-probability and firing for models using K -loss and standard loss. (A) Error
of k-probability value for K (orange) and standard (blue) loss as a function of the number of neurons. (B) Error
of k-probability value for K and standard loss as a function of the number of timesteps. (C) Difference between
the mean-square error of k-probability obtained using the K -loss and the standard loss, for all combinations
of (neurons, timesteps). (D) Error of firing rate value for K (orange) and standard (blue) loss as a function
of the number of neurons. (E) Error of firing rate value for K and standard loss as a function of the number
of timesteps. (F) Difference between the mean-square error of firing rate obtained using the K -loss and the
standard loss, for all combinations of (neurons, timesteps). Data are represented as mean (solid lines) +/-
standard deviation (shaded area).
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Figure 3.5: Statistics and generated data for 2 neurons and 2 timesteps, using classical GAN. From left to right,
columns show pairwise covariance, k-probability, firing rate, autocorrelogram, spike traces for the case of gen-
erated data, and spike traces for the case of real data. Each row shows the result for a models with different
number of parameters in the generator.
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Figure 3.6: Statistics and generated data for 6 neurons and 10 timesteps, using classical GAN. Same as 3.5, for
6 neurons and 10 timesteps.
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Figure 3.7: Statistics for 2 neurons. From left to right: pairwise covariance, k-probability, firing rate, and auto-
correlogram. The first row shows the results for the model that uses standard loss, for the case of 1, 2, and 5
timesteps. The second row shows the results for the model that uses K-loss, for the case of 1, 2, and 5 timesteps.
Third and fourth rows show the results for 10, 20, and 30 timesteps, for models using standard loss (third) and
K-loss (fourth).
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Figure 3.8: Statistics for 4 neurons. Same as 3.7, for 4 neurons.
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Figure 3.9: Statistics for 6 neurons. Same as 3.7, for 6 neurons.
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Figure 3.10: Statistics for 8 neurons. Same as 3.7, for 8 neurons.
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Figure 3.11: Statistics for 10 neurons. Same as 3.7, for 10 neurons.
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Figure 3.12: Comparison between generated and real data samples for 2 neurons. The first and second rows
show spike traces for generated data from trained models with 1, 2, 5, 10, 20, and 30 timesteps, using standard
loss, and a spike trace for real dataset. Third and fourth rows show the same as the first two, for the models
trained with K-loss.
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Figure 3.13: Comparison between generated and real data samples for 4 neurons. Same as 3.12, for 4 neurons.
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Figure 3.14: Comparison between generated and real data samples for 6 neurons. Same as 3.12, for 6 neurons.
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Figure 3.15: Comparison between generated and real data samples for 8 neurons. Same as 3.12, for 8 neurons.
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Figure 3.16: Comparison between generated and real data samples for 10 neurons. Same as 3.12, for 10 neu-
rons.



REFERENCES

3

63

REFERENCES
[1] Vinicius Hernandes and Eliska Greplova. “Exploring biological neuronal corre-

lations with quantum generative models”. In: Cell Reports Physical Science 6.8
(2025).

[2] Fred Rieke et al. Spikes: exploring the neural code. 1999.

[3] Andrew White et al. “EEG spike activity precedes epilepsy after kainate-induced
status epilepticus”. In: Epilepsia 51.3 (2010), pp. 371–383.

[4] Demis Hassabis et al. “Neuroscience-inspired artificial intelligence”. In: Neuron
95.2 (2017), pp. 245–258.

[5] Andrew Saxe, Stephanie Nelli, and Christopher Summerfield. “If deep learning is
the answer, what is the question?” In: Nature Reviews Neuroscience 22.1 (2021),
pp. 55–67.

[6] Jianbin Wen, Michael Peitz, and Oliver Brüstle. “A defined human-specific plat-
form for modeling neuronal network stimulation in vitro and in silico”. In: Jour-
nal of Neuroscience Methods 373 (2022), p. 109562.

[7] Johanna Senk et al. “Connectivity concepts in neuronal network modeling”. In:
PLoS Computational Biology 18.9 (2022), e1010086.

[8] Gasper Tkacik et al. “Ising models for networks of real neurons”. In: arXiv preprint
q-bio/0611072 (2006).

[9] Elad Schneidman et al. “Weak pairwise correlations imply strongly correlated
network states in a neural population”. In: Nature 440.7087 (Apr. 2006), pp. 1007–
1012. ISSN: 1476-4687. DOI: 10.1038/nature04701. URL: https://doi.org/
10.1038/nature04701.

[10] Aonan Tang et al. “A Maximum Entropy Model Applied to Spatial and Temporal
Correlations from Cortical Networks In Vitro”. In: Journal of Neuroscience 28.2
(2008), pp. 505–518. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.3359-07.2008.
eprint: https://www.jneurosci.org/content/28/2/505.full.pdf. URL:
https://www.jneurosci.org/content/28/2/505.

[11] Olivier Marre et al. “Prediction of spatiotemporal patterns of neural activity from
pairwise correlations”. In: Physical review letters 102.13 (2009), p. 138101.
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AUTOMEA: MACHINE

LEARNING-BASED BURST

DETECTION FOR

MULTI-ELECTRODE ARRAY

DATASETS

Neuronal activity in the highly organized networks of the central nervous system is the
vital basis for various functional processes, such as perception, motor control, and cog-
nition. Understanding interneuronal connectivity and how activity is regulated in the
neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays
(MEAs) are particularly useful for studying the dynamics of neuronal network activity and
their development as they allow for real-time, high-throughput measurements of neural
activity. At present, the key challenge in the utilization of MEA data is the sheer complexity
of the measured datasets. Available software offers semi-automated analysis for a fixed set
of parameters that allow for the definition of spikes, bursts and network bursts. However,
this analysis remains time-consuming, user-biased, and limited by pre-defined param-
eters. Here, we present autoMEA, software for machine learning-based automated burst
detection in MEA datasets. We exemplify autoMEA efficacy on neuronal network activity of
primary hippocampal neurons from wild-type mice monitored using 24-well multi-well
MEA plates. To validate and benchmark the software, we showcase its application using
wild-type neuronal networks and two different neuronal networks modeling neurodevel-
opmental disorders to assess network phenotype detection. Detection of network char-

The results of this chapter have been published as: ∗V. Hernandes, ∗A.M. Heuvelmans, V. Gualtieri, D.H. Mei-
jer, †G.M. van Woerden, †E. Greplova, “autoMEA: Machine learning-based burst detection for multi-electrode
array datasets”, Frontiers in Neuroscience 18, 1446578 (2024) [1]
∗,†These authors contributed equally.
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acteristics typically reported in literature, such as synchronicity and rhythmicity, could
be accurately detected compared to manual analysis using the autoMEA software. Addi-
tionally, autoMEA could detect reverberations, a more complex burst dynamic present in
hippocampal cultures. Furthermore, autoMEA burst detection was sufficiently sensitive to
detect changes in the synchronicity and rhythmicity of networks modeling neurodevelop-
mental disorders as well as detecting changes in their network burst dynamics. Thus, we
show that autoMEA reliably analyses neural networks measured with the multi-well MEA
setup with the precision and accuracy compared to that of a human expert.

4.1. INTRODUCTION
In the human brain, highly orchestrated activity of neuronal networks lie at the basis
of various functional neurological processes. In these networks, excitability is tightly
regulated through a complex interplay between glutamatergic, excitatory neurons, and
GABAergic, inhibitory neurons [2]. In the search to better understand processes con-
tributing to a balanced network, multi-electrode arrays (MEAs) have provided a valu-
able tool to study the activity of neuronal networks as a whole [3, 4]. MEA devices al-
low for non-invasive measurement of electrical activity in neuronal cultures in vitro [5,
6]. Importantly, it allows one to follow the development of network activity as the cul-
ture matures and record responses of the network to compounds of interest [7, 8]. MEA
has furthermore proven to be a valuable tool to model neurological diseases in vitro [9].
Many neurological diseases have been studied using neuronal networks derived from ro-
dent brain tissue, such as Alzheimer’s disease, epilepsy, and various neurodevelopmen-
tal disorders (NDDs) [9]. Since researchers are able to develop human induced pluripo-
tent stem cell models of neurological diseases through differentiation into neuronal net-
works, MEAs have gained even more interest.

MEA electrodes record fluctuations in the electric field around them. When neurons
on top of an electrode fire action potentials, the fast flux of sodium and potassium ions
across the membrane generates a typical change in the extracellular potential surround-
ing the MEA electrode, which is classified as a spike [9, 6, 10]. In typical MEA analysis
software, spikes can be detected using a threshold for a minimal amplitude deviation
from baseline noise (typically +/- 5 standard deviations) [6]. While frequencies of spik-
ing activity can give information about the excitability of a network, this parameter is
prone to fluctuations by technical and batch-to-batch variation [11]. More interesting
and robust outcome measures are parameters that describe the activity of the network
as a whole. During the initial phase of network development in vitro, spikes can be de-
tected mostly in a random sequence. However, as the network starts to mature, periods
of high-frequency spike trains are interrupted by periods of quiescence [10]. These high-
frequency spike trains are classified as bursts. Typically, these bursts are recorded syn-
chronously by multiple electrodes across the culture indicating the formation of a func-
tionally connected network, hence, these are called network bursts (NB). Many parame-
ters can be extracted from this type of activity, such as the synchronicity of the network,
the rhythmicity of network activity, and characteristics such as network burst duration
and composition.
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One major challenge faced when analyzing MEA data is the definition of bursts, about
which no consensus has been reached in the research field [9]. Generally, bursts are de-
fined based on a MaxInterval method, which defines a maximum inter-spike interval
that is used as a threshold to classify a sequence of spikes as a burst. More extensive
methods also include a maximum interval between bursts, the minimum duration of
a burst, and a minimum number of spikes fired within a burst [12]. These thresholds
can be chosen by an experimenter, or determined using adaptive burst detection algo-
rithms [7, 13]. Electrophysiological mechanisms underlying burst dynamics depend on
multiple characteristics, such as neuronal excitability, synaptic transmission, and net-
work connectivity. Hence, burst dynamics may differ between different types of neu-
ronal cultures and change throughout network development [14]. For example, a study
by Charlesworth and colleagues (2015) identified a unique feature of hippocampal neu-
ronal cultures when compared to cortical cultures. From 11 days in vitro (DIV), hip-
pocampal bursting dynamics were characterized by a theta rhythm, in which a single
burst can be divided into multiple reverberations, i.e. short sequences of high-frequency
spiking activity that closely follow each other, clustering into a burst [14]. While these
reverberations can be detected using the same MaxInterval method, there is a higher
chance of interference by spiking noise, e.g. single spikes occurring in between two re-
verberations thereby merging them together, because the inter-spike intervals will re-
main below the threshold. It is thus challenging to define a single set of parameters that
can reliably define bursts over different experiments and culture types, and more com-
plex burst dynamics may require more adaptive detection methods.

Currently, analysis is often carried out in software provided with the hardware (e.g.
Multiwell Screen by Multi Channel Systems). In this software, parameters are set by the
experimenter, based on visual inspection of the data, searching for the most ideal param-
eters for a certain dataset or by thresholding using the log inter-spike interval (ISI) [12,
7, 13]. However, this default set of parameters is often error-prone, especially when the
data contains more complex bursting dynamics such as the reverberations in hippocam-
pal cultures. For example, reverberations can also be detected using the MaxInterval
method, but may be merged due to a single spike fired in between two reverberations.
Current detection methods can only ignore such spiking noise if settings are manually
altered by the experimenter through visual inspection. The visual inspection of the data
to find the ideal set of parameters and adjust within a parameter’s defined range if nec-
essary, is a very labor-intensive process, requiring file-by-file analysis of the data, and
creates a risk for experimenter bias and reduces the objectivity of the analysis method.
Therefore, often a default set is chosen taking for granted that multiple reverberations
may be merged together in more noisy recordings.

Over the past years, several analysis packages for MEA data have been published
[15, 16, 17, 18]. While these packages provide more extensive and automated analysis
options than software provided with the recording system, the MaxInterval and logISI
burst detection methods integrated into this software generally use parameters that are
not suitable for the detection of reverberations within bursts (e.g. interburst interval of
100ms). These methods are thus limited to simpler bursting dynamics, and not that of
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for example hippocampal bursts. Furthermore, the MEA technique is currently well-
adopted in the iPSC field as a relevant technique for functional phenotyping of NDDs
[19, 11]. Interestingly, recent studies have started to identify reverberations in NDD mod-
els of iPSC-derived neurons. For example, reverberating bursts emerged in iPSC-derived
neuronal cultures of Rett syndrome [20], Kabuki syndrome [21], Dravet syndrome [22]
and Kleefstra syndrome patients [23]. This further implicates the usefulness of a detec-
tion model that can accurately detect these more complex burst dynamics for the broad
MEA community.

Machine learning (ML) models have become common in various domains, demon-
strating remarkable efficacy and facilitating practical applications in everyday life. In
scientific tasks, ML has spread through nearly every field, offering a valuable tool, par-
ticularly for tasks requiring automation, such as fine-tuning intricate devices [24, 25] or
analyzing complex datasets [26, 27]. In connection to the problem of burst detection
described above, ML emerges as a promising solution. Particularly, in scenarios em-
ploying the MaxInterval method, human experts must iteratively select parameters and
inspect data quality until convergence to an optimal parameter set is achieved. One
can exploit the optimal parameter determination process by selecting a set of MEA-data
and correspondent optimal MaxInterval parameters and use it to effectively train a ML
model to replicate the decision-making of human experts in parameter selection. Here,
we have developed an automated analysis software tool, including optimized burst de-
tection using a machine learning approach. We generated a sophisticated noise-resilient
algorithm that takes a MEA signal or a spike train as input, and outputs the MaxInterval
parameters that return reverberating bursts that would have been manually detected by
a human expert. This process is fully automated and does not need any manual assis-
tance by a human operator. We present our algorithmic solution to the burst determina-
tion challenge and provide its implementation as a ready-to-use open-source package,
autoMEA [28, 29], that the neuronal network community can immediately use and ex-
pand upon. We demonstrate that our approach works for a range of different input data
(raw measurements averaged in different ways as well as binary spikes data) and we val-
idate the model using existing datasets of two neurodevelopmental disorders (NDDs)
across different time points in neuronal network development.

4.2. RESULTS

4.2.1. MACHINE LEARNING MODELS

The autoMEA software detects bursts using two different methods: 1) the default method,
with which detection is done using the same MaxInterval parameters as in the manual
analysis software, and 2) burst detection based on MaxInterval parameters predicted by
a machine learning model. In this work 3 different models were generated and imple-
mented in the software. The three models are all built upon 1D-convolutional artificial
neural networks, and have a different architecture depending on the input data: spikes30
model uses a 5-second binary spike trace averaged by 30 time-steps; signal30 uses real-
valued signal averaged by 30 time-steps; and signal100 the real-valued signal averaged
by 100 time-steps. Schematic depiction of our workflow is shown in Figure 4.1. The de-
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Figure 4.1: Schematic depiction of our workflow. After collecting the raw MEA data, we feed them into three
different workflows: we post-process the data either into the form of spikes or averaged signal (over 30 or 100
time bins). We follow by training the neural network specific to each of the inputs (these models are referred to
as spikes30, signal30, and signal100) to output key parameters for the MaxInterval method: maximum interval
to start and end the reverberations and minimal time between the reverberations. These parameters predicted
by each machine learning model are then used for MaxInterval method that predicts the reverberations that
are combined into bursts

.

tailed information on the architecture and training of neural network machine learning
models spikes30, signal30, and signal 100 is available in the Supplemental Information.
The averaging of the original 5-second data was performed to reduce input size, thereby
significantly reducing the computational power needed by the models. We tested dif-
ferent averaging window sizes to make sure the model’s performance was not compro-
mised. All models’ output consist of a three-dimensional array, corresponding to 3 out of
the 5 MaxInterval parameters. These predicted parameters are then applied in the stan-
dard MaxInterval method to detect reverberating bursts and network activity, of which
an example is presented in Figure 4.2.

To train the machine learning models, a relatively small dataset comprising 797 burst
samples was utilized. The dataset was built by using a functionality of our package
that plots windows containing signal, spikes, reverberations and bursts detected using
specific MaxInterval parameters. This feature was used to perform a standard post-
processing analysis, where optimal MaxInterval parameters for detecting bursts were
selected by the experimenter, and windows of 5-second duration containing signal or
spikes or bursts and their corresponding parameters were saved for each sample.

The training of all three types of artificial neural network models (spikes30, signal30,
and signal100) employed Mean Squared Error (MSE) as a loss function to measure the
distance between the optimal human-selected parameters and those predicted by the
network. A thorough hyperparameter tuning process was conducted by experimenting
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Figure 4.2: Example of activity in primary hippocampal cultures. Top left: rasterplot with activity recorded on
12 electrodes with spikes indicated in black and network reverberations indicated with grey shading. Parame-
ters random spike, bursts and network bursts, IBI (inter-burst interval) and NIBI (network inter-burst interval)
are indicated with boxes/lines in the raster. Bottom left: zoom in of the raw signal of a burst in one channel
with spikes indicated in black, and reverberations and burst indicated in orange at the bottom. Right: raw sig-
nal of activity during a network burst. Bursts and reverberations detected on single channels are indicated in
orange, overlaying light blue shade indicates detected network reverberations and the surrounding blue dot-
ted line indicates the detected network burst.

with different layers sizes and activation functions, followed by selecting the best over-
all hyperparameters for each model. To evaluate the efficacy of the predicted param-
eters in producing optimal bursts, simply relying on the loss function showing differ-
ences between sets of MaxInterval parameters was insufficient since there are multiple
MaxInterval method parameter combinations that yield low loss and none of these com-
binations are captured by a single label consisting of experimenter’s parameter choice.
Hence, a custom accuracy metric was introduced: it compares the bursts obtained ob-
tained from parameters chosen by the artificial neural network and those selected by
the experimenter. The learning curves showing the custom accuracy, for the training
and validation set, are shown in Figure 4.3. From the learning curves, we observed that
the spikes30 model gradually learned to predict MaxInterval parameters throughout the
training process. The custom accuracy stayed very close to zero for the first 15 to 25
epochs, and then increased until converging to a value close to 0.86 (Figure 4.3A). In con-
trast, the signal30 and signal100 models, which use normalized signal as input, achieved
a high value of custom accuracy (approximately 0.86) already in the first learning epoch,
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and the learning process was mostly visible by a shortening of the shaded area (statis-
tical variation of network’s predictions), signaling that the accuracy of the signal30 and
signal100 models was converging to a common value (Figure 4.3B-C).

Figure 4.3: Custom accuracy for three machine learning models: spikes30, signal 30, and signal100. The solid
line is the median of all custom accuracy values calculated for each epoch, and the shaded area is the range
between the minimum and maximum values of custom accuracy for each epoch.

Assessment of burst detection quality
Next, we assessed the accuracy of burst detection by the machine learning model in
comparison to using the default MaxInterval parameter. We compared the default pa-
rameters and machine learning model as follows: an experienced experimenter was pre-
sented with one burst, the detection of its reverberations was presented in two different
ways: using the default parameters, and the machine learning model’s predicted pa-
rameters. Being blind to the detection type, the experimenter then scored the detection
as equal or gave a preference for one over the other detected burst. The quantitative
overview of this comparison is shown in Figure 4.4. The experimenter scored 120 bursts
for each of the three neural network models: spikes30, signal30, and signal100. The ma-
jority of bursts were detected equally well by the default method and either of the model’s
detection as judged by the experimenter. For the spikes30 model, there was an equal
amount of bursts that were better detected by the default or machine learning methods.
For signal30 and signal100 models,bursts detected using the machine-learning-based
parameter prediction were slightly more often the preferred detection. Overall, the de-
tection accuracy was not statistically different between the 3 different models (χ2(4) =
5.814, p=0.2135).

4.2.2. VALIDATION OF PARAMETER DETECTION

Accuracy of spike and network dynamics detection by the autoMEA software.

Network bursts are typical electrical activity patterns characterized by high-frequency
spiking activity happening simultaneously across multiple electrodes in the well. Similar
to the MCS Software, in the autoMEA software, spikes are used to detect bursting activity
in the network. Thus, for the model to accurately detect network bursts, it was first of all
important that the spikes could be correctly detected with the reproduction of the signal
and threshold settings in autoMEA software. To this extent, we correlated the MFR of all
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Figure 4.4: Burst quality metric for the parameter prediction models. A) 3 examples of bursts as presented for
scoring to an experimenter. Raw signal of a burst with detected spikes indicated in black at the bottom and
above the reverberations as detected by either the default method or one of the detection models (spikes30,
signal30, signal100). During scoring, the experimenter was blind to which color represented the default and
spikes30/signal30/signal100 detection, and color could switch with each presentation of a new burst. e.g. A
(left) default in blue, spikes30 in orange, (middle) default in blue, signal100 in orange, (right) default in orange,
signal100 in blue. B-D) Burst quality score with the % of bursts scored as preferred with default method, with
a predicted model, or equal for each method.

wells in our hippocampal datasets, detected by manual analysis using the MSC software,
to the MFR detected by the autoMEA software. We found a near-perfect correlation be-
tween the MFR detected by the manual analysis and autoMEA software (r(79) = 0.9939,
p < 0.0001, Figure 4.5).

Subsequently, we assessed the correlation between the manual analysis and the dif-
ferent detection methods: using default parameters, and either of the machine learning
prediction models, for a set of outcome measures that can be used to describe neuronal
network dynamics (Figure 4.6). We focused here on outcome parameters related to net-
work bursting activity as these have been reported to be more robust than single chan-
nel bursting activity, the latter being more sensitive to e.g. technical and batch-to-batch
variation [11].
Firstly, the % of random spikes (%RS, i.e. spikes not being part of a network burst) and
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autoMEA software on the y-axis. The correlation between the two detection methods is near-perfect. The blue
dot is the datapoint presented in figures A and B. N = 81 wells

the network burst rate (NBR) can together describe the level of synchronicity in the net-
work (Figure 4.6B1-2). We found that the detection of these parameters by any of the
autoMEA models strongly correlated with the manual analysis. For both parameters, all
autoMEA models showed correlations of r > 0.9 (statistics are presented in Table 4.1). All
autoMEA models slightly overestimated the %RS, while on average fewer network bursts
were detected (Figure 4.6B1-2).

Table 4.1: Correlation statistics between manual and autoMEA output for all analyzed parameters. %RS = %
random spikes, NBR = network burst rate, NIBI = network inter-burst interval, CoV of NIBI = Coefficient of
variance of NIBI, NBD = network burst duration, NBC = network burst composition

Method %RS NBR NIBI CoV of NIBI NBD NBC Network reverberation duration

Default 0.9315 0.9720 0.9279 0.9239 0.9470 0.9911 0.9882
spikes30 0.9331 0.9284 0.8864 0.9653 0.9446 0.0955 0.9842
signal30 0.9333 0.9586 0.9228 0.9706 0.9499 0.9912 0.9880

signal100 0.9340 0.9623 0.9184 0.9668 0.9512 0.9912 0.9867

Secondly, the rhythmicity of network burst firing can be described by the network
inter-burst intervals (NIBI) and more specifically, the coefficient of variance (CoV-NIBI)
thereof. These two parameters, determined by all autoMEA models, also strongly corre-
lated with the results of the manual analysis (Figure 4.6C1-2, statistics are presented in
Table 4.1). Interestingly, the outcome parameter NIBI showed a difference in the direc-
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tionality of the change for the different models. The spikes30 model detected a slightly
increased NIBI and showed the least strong correlation to the manual analysis (r(74) =
0.8864, p>0.0001). The default, signal30 and signal100 results showed strong correlations
with manual analysis (r > 0.9). For these approaches, the detection resulted in a reduced
NIBI compared to the manual analysis.
Finally, network bursts can be characterized by their duration and reverberations. We
again correlated the outcome of each autoMEA model to the manual analysis and found
a strong correlation between the Network burst duration (NBD), Network burst com-
position (NBC i.e. network reverberations / network burst), and networkreverberation
duration (Figure 4.6D1-3, statistics are presented in Table 4.1). Here, both network re-
verberation duration and NBC were lower when detected using any autoMEA model,
while NBD was slightly higher.

Importantly, we observed that the difference between the prediction models and the
manual analysis was mostly driven by the data processing method, as we observed that
the default method already introduced small differences in burst detection compared
to the manual analysis. The deviation between the default method and the prediction
models was very small, showing the autoMEA models accurately reproduced the detec-
tion of reverberating network bursts compared to detection by a default parameter set.
Only for the outcome parameter NIBI did the spikes30 model deviate more from the de-
fault method and the signal prediction models.

Taken together, these results show that we can accurately detect reverberating net-
work bursts using the autoMEA software, in a way that is at least as good as a default set
chosen by an experimenter through extensive visual inspection.

4.2.3. VALIDATION OF PHENOTYPE DETECTION

Detection of neuronal network phenotypes in genetic models of NDDs.
To validate the sensitivity of the autoMEA software for phenotype detection in disease
models, we compared the analysis of the autoMEA software with manual analysis per-
formed by an experienced researcher. Two different MEA datasets of NDDs were used for
this comparison: 1) The RHEB-p.P37L model [30, 31], representing a disorder associated
with severe refractory epilepsy due to hyperactivity of the mTOR pathway. The RHEB-
p.P37L model has been well characterized on the MEA and showed increased spike and
network bursting activity, premature synchronization of network activity, and loss of the
reverberating burst pattern [32]. 2) The CAMK2g-p.R292P model [33, 34] for a neurode-
velopmental disorder associated with severe intellectual disability, autism, and general
developmental delay. This model has not previously been characterized using multi-
electrode arrays.

RHEB-p.P37L
In this validation experiment, we used a dataset of neuronal network activity recordings
of the RHEB-p.P37L model at two recording days (days in vitro: DIV): DIV7 and DIV14.
The hippocampal cultures were transduced at DIV1 with a virus inducing the expression
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Figure 4.6: Validation of accurate parameter detection by the autoMEA models: A) 1. examples of raster plots
and 5-second sections of a single electrode as detected by the Manual analysis in MCS (top) or signal30 au-
toMEA software (bottom). Black lines represent spikes, light gray bars overlaying raster plot represent rever-
berations, dark grey bar at the bottom of the zoom section represents the network burst. 2. raw data example
of a single channel during a network burst with reverberation detection presented at the bottom of the graph
by manual analysis MCS in orange (top) and signal30 autoMEA analysis in blue (middle) and spikes in black
(bottom). B) correlation between outcome parameters for network synchronicity 1. % random spikes, 2. Net-
work burst rate. C) correlation between outcome parameters for network rhythmicity 1. Network inter burst
interval (NIBI), 2. Coefficient of variance of NIBI. D) correlation between outcome parameters for network
burst characteristics 1. network burst composition, 2. network reverberation duration, 3. network burst dura-
tion. N = 81 wells.

of the patient-identified pathogenic RHEB-p.P37L variant [32], or a control virus.

First, we compared the network activity of control and RHEB-p.P37L neuronal net-
works, with bursts detected using the manual analysis to all autoMEA models at DIV14,
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a time-point at which control hippocampal cultures show reverberating bursts synchro-
nized across the network and in a rhythmic pattern. The averages of both genotypes
were very similar, comparing the different autoMEA approaches to the manual analysis
(Figure 4.7, for all outcome parameters, see Supplementary Figure 1). While there are
slight differences in the exact numbers detected by the autoMEA software when com-
pared to the manual analysis, these differences have the same directionality for both
genotypes tested, e.g. the average network reverberation duration slightly reduces for
both the control and RHEB-p.P37L group. Furthermore, performing statistics on the
difference between the two groups revealed that all methods accurately detected previ-
ously identified phenotypes: a decrease in NBC (Figure 4.7 B) and an increase in net-
work reverberation duration (Figure 4.7C). Parameters that did not manifest a pheno-
type through manual analysis, similarly remained non-significant when analyzed using
the autoMEA models (Supplementary Figure 1).

To assess whether the software can also accurately detect bursts across the devel-
opment of the culture, we included the analysis of the RHEB-p.P37L dataset at DIV7.
At this time point, hippocampal cultures have not yet developed the reverberating net-
work bursts and show more random spiking activity [14]. Similar to DIV14, we observed
genotype averages very similar to the manual analysis for each parameter, and again,
the directionality of change was the same for both genotypes (Figure 4.8, for all outcome
parameters, see Supplementary Figure 2). Notably, also network bursts in younger cul-
tures, without reverberations appear to be accurately detected by the autoMEA models,
which we trained to detect reverberating bursts. Furthermore, statistical comparison of
the groups showed that phenotypes were accurately detected in DIV7 cultures (Figure
4.8, for all outcome parameters, see Supplementary Figure 2).

CAMK2g-p.R292P
We included a second NDD model, that has not yet been extensively characterized using
MEA. Patients with this mutation suffer from severe intellectual disability (ID), autism
spectrum disorder (ASD), and general developmental delay [33, 34]. In this second vali-
dation experiment, we used a set of neuronal network activity recordings at DIV18, from
primary hippocampal neuronal networks transduced at DIV1 with a virus expressing
either CAMK2G wildtype (CAMK2G-WT), the previously published pathogenic variant
of CAMK2G, CAMK2G-p.R292P [34] or a control virus. Manual analysis of this novel
dataset presented multiple phenotypes. We observed a decrease in the firing rate in both
CAMK2G-WT and CAMK2G-p.R292P cultures compared to cultures transduced with a
control virus (Supplementary figure 3A). Furthermore, the expression of CAMK2G-p.R292P
reduced network synchronicity as there was an increased percentage of random spikes
(Supplementary figure 3B-C). Interestingly, we identified decreased rhythmicity of net-
work bursts for CAMK2G-WT, but not CAMK2G-p.R292P cultures, as shown by the sig-
nificant increase in the CoV-NIBI (Figure 4.9B). We further observed apparent pheno-
types in the network burst characteristics, namely that the NBD significantly decreased
in CAMK2G-p.R292P cultures, while the network reverberation duration increased (Fig-
ure 4.9C,E). CAMK2G-WT cultures displayed the opposite effect, an increased NBD while
network reverberation duration significantly decreased. Finally, we observed an increase
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Figure 4.7: Validation of the detection of epilepsy-related phenotypes in a DIV14 set of the RHEB-p.P37L NDD
model by the autoMEA software: A) Example raster plots with a 5-second section of a single electrode of a
control (black, left) and RHEB-p.P37L (orange, right) well from manual MCS analysis and the spikes30 au-
toMEA model, and a raw data trace example of a single channel during a network burst for both genotypes at
the bottom, black lines at the bottom represent spikes, orange bars (top) represent reverberations as detected
with manual MCS analysis and the blue bars (middle) reverberations detected using the spikes30 autoMEA
model. B) Comparison of the network burst composition for control and RHEB-p.P37L cultures detected us-
ing all different burst detection methods. C) Comparison of the network reverberation duration for control
and RHEB-p.P37L cultures detected using all different burst detection methods. N = 11 wells/group. Student’s
t-test: ***p<0.0001, ****p<0.00001

in the NBC in the CAMK2G-WT cultures while this was drastically decreased in the CAMK2G-
p.R292P cultures (Figure 4.9D). Also in this disease model, genotype averages were com-
parable between the manual analysis and the different autoMEA models and we could
detect the same phenotypes in a novel dataset using the autoMEA models compared to
the manual analysis.

In summary, the autoMEA model accurately detects phenotypes in hippocampal cul-
tures of two different NDD models. Importantly, it detects phenotypes at multiple time
points in the development of the cultures. This data shows that the autoMEA software is
a reliable tool to analyze hippocampal MEA datasets. We did not observe striking differ-
ences between the performance of the different prediction models incorporated in the
autoMEA software in the detection of NDD-related phenotypes.
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Figure 4.8: Validation of the detection of epilepsy-related phenotypes in a DIV7 set of the RHEB-p.P37L NDD
model by the autoMEA software: A) Example raster plots with a 5-second section of a single electrode of con-
trol (black, left) and RHEB-p.P37L (orange, right) well from manual MCS analysis and the signal100 autoMEA
model, and a raw data trace example of a single channel during a network burst for both genotypes at the bot-
tom, black lines at the bottom represent spikes, orange bars (top) represent reverberations as detected with
manual MCS analysis and the blue bars (middle) reverberations detected using the signal100 autoMEA model.
B) Comparison of the %RS for control and RHEB-p.P37L cultures detected using all different burst detection
methods. C) Comparison of the network burst rate for control and RHEB-p.P37L cultures detected using all
different burst detection methods. D) Comparison of the NIBI for control and RHEB-p.P37L cultures detected
using all different burst detection methods. E) Comparison of the network burst duration for control and
RHEB-p.P37L cultures detected using all different burst detection methods. N = 11 wells/group. Student’s t-
test: *p<0.05, **p<0.01, ***p<0.001 ***p<0.0001, ****p<0.00001

Cortical data
To investigate if the performance of the model is specific to the hippocampal burst dy-
namics of the dataset that was used to generate the model, or if it can accurately de-
tect bursts across datasets with different burst dynamics, we included a set of recordings
from a cortical dataset at DIV14. While hippocampal cultures generate spontaneous re-
verberating network bursts, cortical cultures do not present this reverberating pattern
(Figure 4.10). A cortical dataset of 18 wells was analyzed using the manual settings used
to analyze the hippocampal data and analyzed using the autoMEA models. On top of
that, the MaxInterval method parameters in the manual detection analysis were adjusted
to more accurately detect bursts with cortical burst dynamics. To this extent, the maxi-
mum interspike intervals to start and end a burst were set to 100 ms, and the minimum
interval between bursts was set to 200 ms, from here referred to as ISI100 analysis.
Similar to the hippocampal datasets, the detection of bursts with all its analyzed char-
acteristics was very similar between the manual analysis and the autoMEA models for
most of the wells. The adaptation of the MaxInterval parameters significantly affected
the detection of the following parameters: as expected when the threshold for the ISI in-
creases, network burst duration significantly increased, paired with a decrease in the %
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Figure 4.9: Validation of the detection of phenotypes in a DIV18 set of the CAMK2G-p.R292P NDD model by the
autoMEA software: A) Example raster plots with a 5-second section of a single electrode of control (black, left)
and CAMK2G-WT (dark blue, middle), and CAMK2G-p.R292P (light blue, right) well from manual MCS analy-
sis and the spikes30 autoMEA model, and a raw data trace example of a single channel during a network burst
for all genotypes at the bottom, black lines at the bottom represent spikes, orange bars (top) represent rever-
berations as detected with manual MCS analysis and the blue bars (middle) reverberations detected using the
spikes30 autoMEA models. B) Comparison of the %RS for control, CAMK2G-WT, and CAMK2G-p.R292P cul-
tures detected using all different burst detection methods. C) Comparison of the network burst rate for control,
CAMK2G-WT, and CAMK2G-p.R292P cultures detected using all different burst detection methods. D) Com-
parison of the NIBI for control, CAMK2G-WT, and CAMK2G-p.R292P cultures detected using all different burst
detection methods. E) Comparison of the network burst duration for control, CAMK2G-WT, and CAMK2G-
p.R292P cultures detected using all different burst detection methods. N(control) = 13 wells, N(CAMK2G-WT)
= 12, N(CAMK2G-p.R292P) = 12. One way ANOVA: *p<0.05, **p<0.01, ***p<0.001 ***p<0.0001, ****p<0.00001
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Figure 4.10: Testing the performance of autoMEA burst detection on a cortical dataset. A) Example raster plots
with a 5-second section of a single electrode, analyzed using manual MCS analysis and the signal30 autoMEA
model, and a raw data trace example of a single channel during a network burst for all genotypes at the bottom,
black lines at the bottom represent spikes, orange bars (top) represent reverberations as detected with manual
MCS analysis, the blue bars (middle) reverberations detected using the signal30 autoMEA models and the pink
(bottom) the manual detection in MSC using ISI 100. B) Comparison of the MFR, %RS, and NBR using all
different burst detection methods. C) Comparison of the NIBI and CoV-NIBI using all different burst detection
methods. D) Comparison of the NBD and NBC and network reverberation duration using all different burst
detection methods. N = 18 wells. One way ANOVA: *p<0.05, **p<0.01, ***p<0.001 ***p<0.0001, ****p<0.00001

RS, as more spikes were identified as part of the network burst (Figure 4.10). The other
parameters regarding network burst frequency and rhythmicity were not significantly
affected by increasing the ISI threshold, and as such, the autoMEA model accurately de-
tected these outcome parameters in our cortical cultures.

Interestingly, the dataset also presented a clear outlier (Supplementary figure 4), which
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appeared most obviously in the read-out parameters %RS and CoV-NIBI. Inspection of
this well showed that some network bursts were not detected using the detection models,
and most network bursts were missed when the spikes30 model was used. The ampli-
tude of the spikes within these bursts appeared lower, however this was not quantified.

In summary, our findings demonstrate that our automated quantitative machine-
learning based analysis software tool, autoMEA, is a reliable tool to analyze MEA datasets
in a high-throughput manner, presumably without inter-experimenter bias. Moreover,
the model’s detection proficiency extends to effectively capture bursts with varying dy-
namics, showing its ability to generalize across different datasets.

4.3. DISCUSSION
In this project, we generated automated detection software that can be used for the anal-
ysis of neuronal network activity recorded using a multiwell MEA system. More specifi-
cally, our focus was on creating a package with the capability to accurately identify intri-
cate burst dynamics inherent to hippocampal neuronal networks. With this approach,
we additionally aimed to reduce the manual aspect of the analysis and improve the ef-
ficiency with which the data can be analyzed. We showed that the different detection
models included in our autoMEA software can accurately detect network burst activity
from the MEA signal, comparable to a manual data analysis, using a defined set of Max-
Interval parameters. The outcome from the autoMEA models showed very strong cor-
relations with the manual analysis. Additional scoring of the model’s performances re-
vealed that in most cases, the models could predict network bursts as well as the default
MaxInterval parameters, in some cases performing even better than default as judged
by an experienced experimenter. More importantly, the autoMEA models were able to
identify the same phenotypes that were identified using manual analysis in two separate
datasets for NDDs. Finally, the models could accurately detect bursts with different dy-
namics that appear throughout the maturation of a neuronal network, as was shown by
the detection of bursts in a dataset of DIV7 neuronal networks.

MEA is a valuable tool for investigating neuronal network activity and is often used
for disease modeling or toxicological assessments. However, burst detection remains a
challenge in the field, as burst dynamics can vary depending on the type of cultures that
are recorded [14, 35]. While previously, several MEA-analysis tools have been generated,
they focused on the analysis and visualization of bursts with simpler network dynamics
[15, 16, 17, 18]. In these models, bursts are detected based on the MaxInterval and/or
logISI burst detection methods that have not been optimized for the detection of rever-
berations. Here, we presented a model that accurately detected reverberations based on
the MaxInterval method but using adaptive parameters to optimize reverberation detec-
tion, a parameter that is sensitive to spiking noise.

With autoMEA software, we also provide experimenters with an open-source user-
friendly software package. While the software that is provided with the commercial hard-
ware outputs timestamp files that need to be post-processed to extract relevant parame-
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ters, our model does not require any need for coding expertise or manual data processing
to post-process the output into quantifiable outcome parameters that are relevant to de-
scribe neuronal network dynamics. Besides outputting timestamp files, it automatically
generates an additional output file with the network parameters describing network syn-
chronicity, rhythmicity, and burst characteristics. Furthermore, one can input multi-
ple recording files into the software, letting it analyze multiple recordings at the same
time. Additionally, manual analysis requires the experimenter to actively adjust settings
during the analysis of each file, while with autoMEA software, the analysis is performed
completely autonomously without the experimenter’s input. Running the software may
take from minutes up to a few hours, depending on the size of the dataset. Therefore
autoMEA software enhances the throughput of MEA-data analysis. For a demonstration
of the user-friendliness of autoMEA, see Supplemental Information.

Our MEA package is an open source package that can be completely adapted de-
pending on the user’s needs. The key feature is that the machine learning models can
be fine-tuned or retrained using new datasets. This may be preferred when datasets
with different burst dynamics than the murine hippocampal cultures are analyzed. Re-
searchers can build upon the current dataset, which could enhance the accuracy of the
model to detect bursts with different burst dynamics, and importantly, can further re-
duce any experimenter bias as the model is now trained based on the analysis of an
experienced researcher. By blinding the experimenter to bursts presented during the
training, we tried to ensure the objectivity of the burst quality metric introduced in this
study.

In this study, the machine learning model was generated to specifically detect the
more complex burst dynamics observed in hippocampal neuronal networks, in which
bursts generally consist of multiple reverberations. To broaden the usefulness of the au-
toMEA software, we showed that our package could also accurately detect many of the
outcome parameters in a cortical dataset. However, as burst dynamics are different in
cortical cultures, the MaxInterval parameter threshold for the ISI with which this type
of data is analyzed is typically higher [7], which affected significantly the outcome pa-
rameters %RS and the duration of network bursts and reverberations. For different types
of data, it may be necessary to retrain the models with a specific dataset, however, the
autoMEA software could still be used without retraining if a predetermined set of Max-
Interval parameters is known. In this case, the software can be run using the default
method, similar as to what was done using the manual MCS analysis settings in the de-
fault method of the autoMEA software in this paper. We did not observe obvious differ-
ences between the performance of the different prediction models (spikes30, signal30,
signal100). Both using binary spike input and real-valued signal, the machine learn-
ing approach was trained to accurately detect parameters describing network dynamics.
The only small difference was identified in the detection of the NIBI, wherein the NIBI
was increased using the spikes30 model compared to default, while it was reduced in the
signal models. However, these deviations were small and did not affect the detection of
phenotypes in our NDD models. Therefore, we consider all autoMEA models suitable
for the analysis of MEA-data.
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The autoMEA machine learning approach for detecting bursts from signal or spikes
demonstrated robust generalization across diverse datasets. We introduced a customized
accuracy metric that evaluates the difference between bursts detected by manually set
MaxInterval Parameters and those predicted by our machine learning models, enabling
precise performance assessment. Despite being trained on a modest dataset derived
from a limited set of recordings, these models accurately replicate the experimenter’s
MaxInterval Parameter selections for analysis. It’s noteworthy that all the machine learn-
ing models examined in this study are based on simple convolutional neural networks
that are well established in the machine learning community and straightforward to im-
plement. Despite their simplicity, all the machine learning models assessed in this study
have shown impressive accuracy. Notably, the autoMEA package facilitates easy fine-
tuning of the used machine learning models with additional data or their substitution
with more advanced architectures, ensuring adaptability to evolving research needs.

With recent technological advancements that allow the development of neuronal
networks derived from iPSCs, the MEA system has become more popular as a func-
tional readout in disease modeling studies using stem cell methods [19, 9]. Interestingly,
in multiple disorders, the appearance of reverberations, otherwise referred to as frag-
mented bursts or super bursts, was identified as a phenotype [20, 36, 21, 23]. Therefore,
we believe that our software can be of interest to a broader audience. The flexibility of
our software allows users to use the models trained with the datasets presented in this
paper, but also retrain it using their own dataset to optimize detection in datasets with
different burst dynamics. Additionally, adding training data onto the current dataset
may increase the ability of the software to analyze more complex or diverse datasets,
and may result in better convergence of the model onto a dataset with varying burst dy-
namics. Thus, we provided here an effective software tool for multi-well MEA analysis
that is user-friendly, high-throughput, and adaptable to the researcher’s preferences.

4.4. METHODS

4.4.1. MEA DATA COLLECTION

MEA recordings of primary hippocampal neurons
Primary hippocampal and cortical neuronal cultures were prepared from embryonic day
(E) 16.5 FvB/NHsD wild-type mice according to the procedure previously described [31]
[37]. Neurons were plated in a multiwell multi-electrode array (MEA) plate with an epoxy
base (Multichannel Systems, MCS GmbH, Reutlingen, Germany) in a density of 35,000
neurons / well. Cultures were maintained in neurobasal medium (NB, GIBCO) supple-
mented with 2% B27, 1% penicillin/streptomycin and 1% glutamax (NB+++) and placed
in an incubator at 37 ◦ C with 5% CO2.
Each MEA well is embedded with 12 PEDOT-coated gold electrodes of 100 µm in diam-
eter and 1 reference electrode. Recording electrodes are arranged in a 4x4 grid, spaced
700 µm apart.
Twice weekly, neuronal network activity of the cultures was recorded after which one-
third of the medium in each well was replaced with fresh NB+++.
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MEA plates were recorded using the Multiwell-MEA headstage in a recording chamber
at 37 C with 5% CO2. Recordings were started after 10 minutes of acclimatization in the
MEA set-up. Channels with excessive noise (above +/- 15mV) were excluded from the
recording. Neuronal activity was recorded for 10 minutes at a sampling rate of 10 kHz
and the signal was filtered with a 4th order low-pass filter at 3.5kHz and 2nd order high-
pass filter at 100 Hz [32].

Manual MEA data analysis using the MCS software
MEA data was manually analyzed using the MultiChannel System software package. Anal-
ysis was performed on the full 10-minute recording period. Baseline noise was calcu-
lated as the average of 2x200 ms segments without activity at the start of the analysis
period, and a threshold of +/- 5 SD from baseline was used to detect spikes. Reverber-
ations were detected using the MaxInterval method that is incorporated into the MCS
software. For the dataset used in this study, the most ideal parameters for reverberation
detection were identified as:

Max. interval to start = 15 ms
Max. interval to end = 20 ms
Min. interval between = 25 ms
Min. duration = 20 ms
Min. number of spikes = 5

For the cortical dataset, manual analysis of the same wells was run with the settings
adapted to Max. interval to start and end a burst = 100 ms and Min. interval between
bursts at 200 ms.
Whenever at least two-thirds of the active channels in a well participated in synchro-
nized activity, of which at least half were simultaneously active, it was classified as a
network reverberation.
Output from the MCS Software was then further processed using a custom-written script
in MATLAB R2021a. Reverberations were combined into bursts when the interval to the
next reverberation was <300ms, and similarly, network reverberations were combined
into network bursts when the interval to the next network reverberation was <300 ms.

Using the custom-written processing script in MATLAB, multiple outcome parame-
ters were extracted from the data that can describe the network development and dy-
namics in the culture. We calculated 8 different outcome parameters that could be clas-
sified into 4 categories: 1) Spiking activity described by the mean firing rate (MFR), 2)
Network synchronicity, described by network burst rate (NBR), and the % random spikes,
i.e. spikes that are not part of a network burst (%RS). 3) Network rhythmicity, described
by the network interburst interval (NIBI) and more specifically the coefficient of vari-
ance thereof (CoV-NIBI). 4) Network burst characteristics, to which the network burst
duration (NBD), network reverberation duration, and network burst composition (NBC:
network reverberations/network burst) are descriptive.
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4.4.2. MACHINE-LEARNING AUTOMATION

The ultimate goal of MEA data analysis is to quickly and robustly detect bursts for large
amounts of measured data. While the ideal MaxInterval parameters are hard to unify
across the dataset, due to the spiking noise, it is still possible to adapt them manually to
the different levels of noise. These manual adjustments can be automatized if one is able
to develop an algorithmic mapping from MEA signal (or spikes) to the parameters during
the processing of the dataset. Machine learning is a powerful tool that is able to approx-
imate complex multivariable functions as well as to generalize well under the influence
of noise. In our approach, we chose to use MEA data, such as processed signals and
spikes, as input to a supervised neural network, trained to output optimal MaxInterval
parameters for each data sample. This way, we allow for the parameters to be continu-
ously adapted without the constant attention of a human operator. In this approach, the
model developed closely mimics what an experimenter does when analyzing MEA data:
it finds the parameters that help extract the best burst configuration from the dataset.
More specifically, the parameters predicted by the model are used as input for the Max-
Interval method to detect reverberations, which are then used as input to precited bursts,
network reverberations, and network bursts, using fixed (user-defined) parameters.

Below we describe how we generated a dataset to be used to train and test the models
developed, and details about the methods implemented.

Dataset generation
In order to train and test the models in this work, we generated a dataset in which we
selected five-second windows of MEA activity, during which bursts occur, and together
with the experimenter expert, the values of the first three MaxInterval parameters (Max.
interval to start, Max. interval to end, and Min. interval between bursts) are adjusted un-
til an optimal burst detection set is obtained. This process is repeated multiple times,
adding at each iteration one sample to the dataset - for this work, a total of 797 sam-
ples were generated, using recordings for different systems at different DIVs. For each
selected window, all the data useful to train and evaluate the developed models is saved.
For the sampling rate considered, 10kHz, a five-second window corresponds to 50 thou-
sand timestamps, which is why most of the data is saved as arrays with lengths equal
to 50 thousand. Specifically, MEA signal is saved a float array, while spikes and bursts
as binary arrays, with an element equal to zero in case there is no spike/bursts activity
occurring at the correspondent timestamp, and equal to one in case there is activity. Fi-
nally, the MaxInterval parameters are saved as an integer array with length equal to three
- since we are just interested in the first three parameters. Afterwards, part of the original
dataset was post-processed, to get variables in the form of input/output used by the dif-
ferent models developed, and divided into Training/Validation/Test sets. In details, the
signal arrays were normalized between 0 and 1, and all temporal arrays (signal, spikes
and bursts) were averaged by either 30 or 100 timestamps. In the end, we have three dif-
ferent inputs for each approach considered. In Table 4.2 we show the various inputs and
outputs used for each model developed, assigning a name for each specific model.
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Table 4.2: Relation of input, output and name of every model developed in this work.

Approach Input (length) Output (length) Name

Parameter Prediction
Binary spike array (1667)

Float parameter array (3)
spikes30P

Float signal array (1667) signal30P
Float signal array (500) signal100P

Prediction of MaxInterval parameters
The models implemented consist of convolutional neural networks that receive as input
MEA data, and map it into three of the five MaxInterval parameters. Different mod-
els were developed based on the different input choices, as described in the Dataset
Generation section. All models were developed using the Tensorflow/Keras framework.
The models were trained in a supervised learning regime, where a loss function - Mean
Square Error in this case - is defined to calculate an error between the convolutional
networks’ predicted output and the target output - the manually selected MaxInterval
parameters. This error is then used to update the internal parameters of the model until
the predicted output converges to the target. This iterative procedure used to optimize
the model parameters is called training. During training, the model calculates differ-
ent loss values for the samples taken from the Training Set and the Validation Set, with
the main difference being that the model parameters are just updated based on the loss
retrieved from the Training Set only. Moreover, the iterative training process is divided
into epochs, where one epoch is an instance for which the model used the totality of the
Training/Validation Set.

While designing a convolutional neural network many hyperparameters have to be
defined, such as the architecture of the network, which optimizer is used to change the
internal parameters, and how many samples are used before updating the parameters.
In order to find the best hyperameter for each model implemented - depending on the
input type, we used a package called hyperas, which works within the keras framework
and makes it possible to define a set of values for each hyperparameter, and scan which
combination of these values return the best models, based on the final loss value. Then,
using hyperas, we trained each of the three models one hundred times using different
hyperameters values, and post-selected three best cases for each one, based on the be-
havior of the training and validation loss.

The three best cases for each model were trained again, now calculating a new metric
to characterize the accuracy of the model. Accuracy is a metric used to quantify the per-
formance of a machine learning model, however, it is just meaningful when it is used for
classification, when the output is a discrete value correspondent to a class, and the ob-
jective is to distinguish between different classes. In the Parameter Prediction approach,
the models developed are performing what is called regression, when the output is a real
value, used to estimate the value of a variable. However, the error that defines a distance
between the predicted MaxInterval parameters and the target values is not enough by
itself to define how the models are performing. The final goal of the automation de-
veloped in this work is to obtain optimal bursts, independently by the combination of
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MaxInterval parameters used to detect these bursts. We defined a custom accuracy met-
ric, which compares the predicted bursts - in this case, the bursts detected using the
predicted MaxInterval parameters, and the target bursts - the bursts detected using the
target MaxInterval parameters. Considering the binary representation of the burst ar-
rays, the custom accuracy is defined as

A =
∑

i |bp [i ]−bt [i ]|∑
i bt [i ]

, (4.1)

where bp [i ] is the binary burst array, obtained using the predicted parameters, at
index i , and bt [i ] is the binary burst array obtained using the target parameters, at in-
dex i . This metric quantifies how many timestamps the bursting state differs between
the bursts detected using predicted and target parameters, normalized by the number
of timestamps in which the target bursts are active (equal to one). The normalization
is necessary, given the sparse nature of the binary burst arrays, to avoid high accuracy
values in cases where the predicted bursts are a full-zero array (no burst activity).

Calculation of the custom accuracy while training a model takes a considerable amount
of time, since for each sample used a burst has to be detected and compared to the
target one. That is why we just perform the custom accuracy calculation for the three
best-performing cases for each model. Then, from the new training procedure, one best
model for each input type is chosen, based on both the loss and the custom accuracy,
and is trained five more times to obtain averaged values of loss/accuracy and test its
consistency.

To further quantify the model performance, we defined a new metric, called Burst
Quality, using the test set (never seen by the model), in which we detect bursts using
both the MaxInterval parameters predicted by the ML-model, and those used as default
by the experimenter expert. Both sets of bursts are shown to the expert together with the
correspondent signal and spikes, and the expert votes on which burst detection better
represents that in the specific time trace. For this we built a GUI that shows difference
signals/spikes figures, randomly shuffling the position/color with which bursts detected
using predicted/default parameters are plotted.

4.4.3. MODEL VALIDATION
To assess whether the model could accurately detect phenotypes in models for NDDs
that were identified using the manual analysis in the MCS software, datasets of two dif-
ferent NDD models were used: RHEB-p.P37L and CAMK2G-p.R292P. The RHEB-p.P37L
pathogenic variant has previously been identified in focal cortical dysplasia type 2 and
is associated with severe epilepsy [30, 31], and has been extensively characterized us-
ing the Multi-electrode array [32]. The CAMK2G-p.R292P pathogenic variant has been
identified in patients with severe intellectual disability [33, 34]. These disorders were
modeled through a lentivirally induced expression of the RHEB-p.P37L, CAMK2G-WT
or CAMK2-p.R292P genes, compared to transduction with a control virus. Recordings
from different days in vitro were included in this study to verify the accurate detection of
bursts throughout the development of the culture. Manual and autoMEA analysis were
done using data from DIV7 and DIV14 for the RHEB-p.P37L model, and at DIV18 for
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the CAMK2G-p.R292P model. Additionally, the convergence of the model onto a cortical
dataset was tested using a wild-type dataset of cortical data recorded at DIV14.

4.4.4. STATISTICS
Statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, Inc.,
CA, USA). Burst detection accuracy was tested using the Chi-square test. The normality
of the data was assessed using the Shapiro-Wilk test. The correlation for each outcome
parameter comparing the model analysis to the manual analysis was analyzed using
Pearson’s r or the non-parametric alternative if the normality assumption was not met,
and the linear relationship was plotted using simple linear regression. Statistical analy-
sis of disease phenotypes was performed using a Student’s t-test (RHEB-p.P37L data), or
One-way ANOVA (CAMK2g-p.R292P and cortical data). For all statistical analyses, alpha
was set at 0.05. The specific tests used for each experiment are specified in the figure
legends or the results section. Values are represented as averages ± SEM. Sample sizes
for each experiment are indicated in the figure legends.

4.5. SUPPLEMENTAL TEXT

4.5.1. MODELS’ ARCHITECTURE AND HYPERPARAMETERS
From the hyperameter optimization step while training the machine learning models
used in this work, it was possible to choose three best models for each input type, for
which the training was repeated calculating the custom accuracy. Then, one single model
is chosen for each input type, based on the highest value of custom accuracy achieved.
An overview of the final models’ hyperameters is shown in Table 4.3.

Table 4.3: (DRAFT - have to recheck every hyperameter in the office pc) Hyperparameters for the best model
for each input type. CL refers to the Convolutional Layer and FC to the Fully Connected Layer.

Spike30 Signal30 Signal100

CL1
Filters 128 128 128

Kernel size 3 7 7

CL2

Filters 64 64 64
Kernel size 5 7 7

Max Pooling Yes No No
Dropout 0.33 0.18 0.18

CL3
Filters - 16 16

Kernel size - 9 9

FC1
Units 64 32 32

Dropout 0.12 0.62 0.62
Optimizer RMSProp SGD SGD

Learning Rate 1E-6 1E-4 1E-4
Batch size 2 4 4

Trainable parameters 6865731 921299 323795
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4.5.2. AUTOMEA FULL ANALYSIS METHOD
In this section, we showcase an example of how to use the autoMEA package in prac-
tice. The easiest way to use autoMEA is to perform a full analysis of a series of datasets
and corresponding wells, using one of the machine learning models available with the
package for burst detection.

The standard workflow consists of preparing a csv file containing datasets and cor-
responding wells to be analyzed. The structure to be followed is shown below in the
example file called datasets_and_wells.csv.

Input file example

#dataset, wells
dataset_1.h5, A1 A2 B2
dataset_2.h5, B1 C2

This file is used to analyze the wells A1, A2 and B2 from dataset_1.h5, and wells B1
and C2 from dataset_2.h5.

If the csv file, the datasets to be analyzed, and the machine learning model saved as
a h5 file are present in the same folder, a script to run the analysis can be:

Python Code

import automea

# create automea analysis object
am = automea.Analysis()

# define machine learning model to use, and load it
am.model_name = ‘signal30.h5’
am.loadmodel()

# define which output will be saved
am.analysis_params[‘save_stats’] = True
am.analysis_params[‘save_net_bursts’] = True

# run analysis
am.analyze_dataset(‘datasets_and_wells.csv’)

The analysis is performed using the model called signal30.h5, and a statistics file
and a network bursts file are produced as output, as specific by setting the correspon-
dent items of the analysis_params attribute as True.

The network bursts are saved as csv file with information about the datasets and well
analyzed, and information about each network burst. An example of the network bursts
file structure is shown below, with ellipses used to omit less significant columns present
in the file.
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Network bursts output file example

Dataset, Well Label, Start time[µs], Duration[µs],Spike Count,...
dataset_1.h5, A1, 981800, 395800, 498, ...
dataset_2.h5, C2, 465000, 120500, 112, ...
\end{verbatim}

The statistics output file contains several higher-order statistical quantities that are
calculated during the analysis. An example of the file structure is shown below, using
again ellipses to omit some of the columns present in the file.

Statistics output file example

Dataset, Well Label, Fir. Rate[Hz], Stray spikes[%], ...
dataset_1.h5, A1, 7.8, 11.92, ...
dataset_2.h5, B1, 8.2, 12.33, ...

This example shows how easy and practical it is to use autoMEA as a ready-to-use
analysis package. One of the main goals of the package is to place itself as an accessible
alternative to researchers with limited coding skills. At the same time, more advanced
functionalities can be accessed, and modified depending on users’ needs. A series of tu-
torials showcasing how to use autoMEA to perform tailored analysis of MEA datasets can
be found on https://automea.readthedocs.io.

4.5.3. SUPPLEMENTARY FIGURES

https://automea.readthedocs.io
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Supplementary �gure 1

Figure 4.11: Validation of the detection of epilepsy-related phenotypes in a DIV14 set of the RHEB-p.P37L NDD
model for all outcome parameters by the autoMEA software: A) detection by manual analysis and autoMEA for
outcome parameters describing spiking activity and network synchronicity. B) detection by manual analy-
sis and autoMEA for outcome parameters describing network rhythmicity. C) detection by manual analysis
and autoMEA for outcome parameters describing burst characteristics. N = 11 wells/group. Student’s t-test:
*p<0.05, **p<0.01, ***p<0.001 ***p<0.0001, ****p<0.00001
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Supplementary �gure 2

Figure 4.12: Validation of the detection of epilepsy-related phenotypes in a DIV7 set of the RHEB-p.P37L NDD
model for all outcome parameters by the autoMEA software: A) detection by manual analysis and autoMEA
for outcome parameters describing spiking activity and network synchronicity. B) detection by manual anal-
ysis and autoMEA for outcome parameters describing network rhythmicity. C) detection by manual analysis
and autoMEA for outcome parameters describing burst characteristics. N = 11 wells/group. Student’s t-test:
*p<0.05, **p<0.01, ***p<0.001 ***p<0.0001, ****p<0.00001
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Supplementary �gure 3

Figure 4.13: Validation of the detection of epilepsy-related phenotypes in a DIV18 set of the CAMK2G-p.R292P
NDD model for all outcome parameters by the autoMEA software: A) detection by manual analysis and au-
toMEA for outcome parameters describing spiking activity and network synchronicity. B) detection by man-
ual analysis and autoMEA for outcome parameters describing network rhythmicity. C) detection by man-
ual analysis and autoMEA for outcome parameters describing burst characteristics. N(control) = 13 wells,
N(CAMK2G-WT) = 12, N(CAMK2G-p.R292P) = 12. One way ANOVA: *p<0.05, **p<0.01, ***p<0.001 ***p<0.0001,
****p<0.00001
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Figure 4.14: Example of outlier neuronal network in the cortical dataset A-D) Rasterplot and 5 second zoom
in of a single electrode of spikes and bursts detected by manual analysis (A), autoMEA default method (B),
spikes30 model (C), and signal100 model (D). Black arrows represent network bursts that are not detected
in using the autoMEA software. E) raw trace of a burst that was not accurately detected using the autoMEA
software. black lines at the bottom represent detected spikes, blue bar (bottom) represents burst as detected
using the manual analysis, orange bar (top) represents burst as detected using the default method.
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QDSIM: A USER-FRIENDLY

TOOLBOX FOR SIMULATING

LARGE-SCALE QUANTUM DOT

DEVICES

We introduce QDsim, a python package tailored for the rapid generation of charge stabil-
ity diagrams in large-scale quantum dot devices, extending beyond traditional double or
triple dots. QDsim is founded on the constant interaction model from which we rephrase
the task of finding the lowest energy charge configuration as a convex optimization prob-
lem. Therefore, we can leverage the existing package CVXPY, in combination with an ap-
propriate powerful solver, for the convex optimization which streamlines the creation of
stability diagrams and polytopes. Through multiple examples, we demonstrate how QD-
sim enables the generation of large-scale dataset that can serve a basis for the training
of machine-learning models for automated tuning algorithms. While the package cur-
rently does not support quantum effects beyond the constant interaction model, QDsim is
a tool that directly addresses the critical need for cost-effective and expeditious data acqui-
sition for better tuning algorithms in order to accelerate the development of semiconductor
quantum devices.

The results of this chapter have been published as: V. Gualtieri, C. Renshaw-Whitman, V. Hernandes, E. Gre-
plova, “QDsim: A user-friendly toolbox for simulating large-scale quantum dot devices”, SciPost Physics Code-
bases 46 (2025) [1]
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5.1. INTRODUCTION
Quantum dots (QDs) have emerged as a particularly promising quantum computing
platform [2, 3, 4, 5, 6, 7]. These semiconducting systems, that operate by trapping charge
carriers in potential wells called "dots", have been the subject of extensive research due
to their scalability potential and the relative simplicity to fabricate them, that leverages
already existing techniques in the semiconductor industry.

The scalability of quantum dot-based qubits is considered a cornerstone for practical
quantum computation. At the same time, the complexity of these systems scales with
the number of quantum dots, and it poses a significant challenge in establishing and
maintaining the desired electron occupancy across the array.

Furthermore, with increasing device size, the task of manually tuning each quantum
dot becomes impractical. The scaling of these systems necessitates an automated ap-
proach to tuning. In this context, artificial intelligence (AI) emerges as a highly promis-
ing solution. AI algorithms have the potential to learn and adapt to the complex variety
of quantum dot behaviors, automating the tuning process with efficiency and precision.

However, the efficacy of AI depends on the availability of extensive datasets that cap-
ture the diverse operational regimes of quantum dot arrays. These datasets are critical
for training robust machine learning. The scarcity of such data is a significant bottleneck
in the advancement of AI applications within this field [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

In response to these challenges, we present QDsim, a novel computational framework
designed to simulate the electrostatic environment of quantum dot arrays efficiently.
Our approach reduces the complexity of the simulation problem to a convex optimiza-
tion task, offering an efficient and user-friendly solution. QDsim is implemented as a
open-source Python package, providing a flexible tool for quantum dot array design and
large-scale data generation for machine learning (ML) applications [18].

The most important feature of QDsim is its ability to generate charge stability dia-
grams, which are essential for understanding the operational regimes of quantum dot
arrays. These diagrams show the connection between gate voltages and charge con-
figurations, and are characterized by a tessellation of the voltage space into polytopes.
The geometry of these polytopes provides insights into the charge configuration of the
quantum dot system. While other simulators of quantum dot arrays exist, QDsim pack-
age offers unprecedented flexibility in geometry of the device in term of placement of
dots, gates and sensors. Additionally, we demonstrate a significant speed in the charge
stability diagram generation that allows for rapid simulations of 100+ quantum dots.

By enabling the rapid generation of charge stability diagrams for large-scale quan-
tum dot devices, QDsim serves as a foundational tool for creating the vast datasets re-
quired for machine learning training. Its ability to simulate complex quantum dot arrays
and produce charge stability diagrams is a step towards the future where AI-driven au-
tomatization becomes the standard for quantum device tuning.

The paper is structured as follows. In Section 5.2 we introduce the theory behind the
model: constant capacitance model and Coulomb polytopes. In Section 5.3 we discuss
key QDsim classes and provide detailed explanation of the package functionalities. In
Section 5.4 we discuss relevant examples for the QDsim. We provide detailed discussion
of default device designs and their possible customization as well as instructions on how
to a design and simulate completely custom architectures.
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5.2. FORMULATION OF THE ELECTROSTATIC MODEL: CHARGE

STABILITY DIAGRAMS
In this section, we describe the theoretical foundation of the QDsim package: the constant-
interaction (or constant-capacitance) model applied to quantum dot arrays.

Charge stability diagrams are visual manifestations of the Coulomb blockade effect,
a quantum phenomenon that occurs in small conducting or semiconducting structures,
such as quantum dots. At the quantum scale, electrons are not free to flow into and out
of a quantum dot without restriction; instead, they are influenced by the Coulomb force
from other electrons within the dot. When an electron is added to a quantum dot, it
increases the energy of the system due to this repulsive force. If the energy required to
add another electron exceeds the thermal energy of the system, the dot will not take on
any additional electrons until the external conditions (such as gate voltage) are altered.
This leads to a blockade of charge transfer, which is observable as discrete jumps in the
conductance through the quantum dot.

Experimentally, charge stability diagrams are obtained by varying the voltages on the
electrostatic gates that control the quantum dots and measuring the resulting conduc-
tance. For multiple dots devices, these diagrams exhibit a characteristic pattern, each
corresponding to a stable number of electrons within the quantum dots. The bound-
aries between these regions represent points of charge degeneracy, where the number of
electrons on a dot can change.

In our model, we represent these phenomena within the classical framework of the
constant interaction [19]. In this model, each quantum dot is considered a conductor
with capacitive coupling to other dots and to electrostatic gates. The charge stability di-
agrams emerge from this model as a tessellation of the gate voltage space, where each re-
gion corresponds to a stable charge configuration. These configurations are the ground
states of the system’s free energy function.

By simulating charge-stability diagrams, QDsim provides a powerful tool for efficiently
simulating the behavior of quantum dot arrays.

5.2.1. DERIVATION OF THE CONSTANT-CAPACITANCE MODEL ENERGY EQUA-
TION

In the constant interaction model, each quantum dot is considered a conductor with
capacitive coupling to other dots and to electrostatic gates [20] [21].

The electrostatic characteristics of the system with ND dots and NG gates are cap-
tured by two mutual capacitances matrices:

• the dot-to-dot mutual capacitance matrix, in which each element �C DD
i j represents

the capacitive coupling between dot i and dot j , and the diagonal elements repre-
sent the dot’s self capacitance; and

• the dot-to-gate mutual capacitance matrix, in which each element �C DG
i j represents

the capacitive coupling between dot i and gate j .

The dot-to-dot mutual capacitance matrix �C DD requires ND (ND − 1)/2 values due
to the symmetrical relation of the mutual capacitances, i.e. the capacitance between
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element i and element j is the same between element j and element i . No symmetry

relations are present in the dot-to-gate mutual capacitance matrix �C DG , therefore it is
defined by ND NG values.

Capacitance, C , relates the charge state Q, i.e. the charge contained on the conduc-
tor, to the electrostatic potential, V via Q = CV . For multiple conductors, Q and V are
column vectors Q and V, and C is a matrix C. However, in order for the relation

Q = CV (5.1)

to hold true in matrix form, some distinctions must be made. Here we first introduce the
total system’s mutual capacitance C̃ , which is obtained by stacking the dot-to-dot and
dot-to-gate capacitance matrices in the following way:

C̃ =
[

C̃DD C̃DG

C̃T
DG 1

]
. (5.2)

Matrix C̃ satisfies the condition

Qi =
∑

j
C̃i j (Vi −V j ), (5.3)

which is different from the aforementioned Q = CV. Here the indexes i , j run from 1 to
ND +NG . Vi represents the voltage applied to the i -conductor. V j represents the voltage
applied to the j -conductor. These conductors are both dots and gates, accounting for a
total of ND +NG conductors. Specifically, in our notation, a general index i running from
1 to ND will account for the dots, while the same index running from ND +1 to ND +NG

will account for the gates.
Upon manipulation, the relation Q = CV holds when C is the Maxwell matrix [22],

defined as:
Ci j = δi j

∑
k

C̃i k + (1−δi j )(−C̃i j ), (5.4)

where δi j is the Kronecker delta.
Given that all self-capacitances C̃i i are positive, the Maxwell matrix is strictly diago-

nally dominant [23], ensuring its invertibility via the Levy-Desplanques theorem [24].
Distinguishing between dot and gate properties, we express Q , V and C as:

Q =
[

QD

QG

]
, V =

[
VD

VG

]
, C =

[
CDD CDG

CT
DG CGG

]
. (5.5)

The capacitance relation in Equation (5.1) then becomes:[
QD

QG

]
=

[
CDD CDG

CT
DG CGG

][
VD

VG

]
. (5.6)

The free energy function F of the system is given by:

F =U −W = 1

2

[
QT

D ,QT
G

][
VD

VG

]
−VT

G QG . (5.7)
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Assuming QD = eND , where e is the elementary charge with sign (+1 for holes, −1 for
electrons), we can rewrite the free energy function in terms of ND (the charge configura-
tion that we want to obtain) and VG (the gate voltages that we want to tune). Omitting
gate self-energies, we rewrite the free energy from Equation (5.7) as

F (ND ;VG ) =1

2

(
e2NT

D C−1
DD ND

−2eNT
D C−1

DD CDG VG

+VT
G CT

DG C−1
DD CDG VG

)
. (5.8)

For the remainder of the paper, we will adopt units such that |e| = 1, and define the
charging-energy matrix EC = C−1

DD . It is worth noting that we will need to take into ac-
count the sign of the charge, which will be negative for electrons, and positive for holes
simulations.

5.2.2. GROUND STATES AND COULOMB POLYTOPES IN V-SPACE
In this section we show that the ground states of the free energy function define the poly-
topes in the voltage space. We define the ground-state energy FGS (VG ) and the corre-
sponding occupation numbers GS(VG ) as

FGS (VG ) = min
N∈ZND

F (N;VG ), (5.9)

GS(VG ) = {N ∈ZND | F (N,VG ) = FGS (VG )}. (5.10)

The set of voltages for which a given occupation N0 is a ground state, GS−1(N0), is
determined by the condition that F (N0,VG ) ≤ F (N0 + t ,VG ) for all t ∈ZND . This leads to
the the following description of a convex polytope

(t T EC CDG )VG ⪯ 1

2
t T EC t + t T EC N0, (5.11)

where ⪯ denotes element-wise inequality.
Convex polytopes can be defined as an intersection of a finite number of half-spaces.

This definition is called a half-space representation or H-description [25]. Inequality
(5.11) represents the H-description of the coulomb polytopes.

A direct consequence of the inequality (5.11) is that the regions in VG -space admit-
ting a particular occupation N as a ground state form convex polytopes. We can also
prove that two polytopes sharing an interior point V0 must coincide, implying that two
states N1 and N2 are degenerate if and only if N1 −N2 ∈ Null(CT

DG EC ).
To prove this statement, we can consider two polytopes which share a point V0 inte-

rior to each, therefore all the inequalities in (5.11) hold strictly. Suppose that two ground-
states, N1 and N2, are admitted for the point V0, which is in the interior of the respective
polytopes. Then there exists an open ball B of finite radius η ∈ R++ such that all the
points in Bη(V0) are also in both polytopes. Within this ball, by assumption the occu-
pations N1 and N2 remain ground states, therefore have the same energy. Then for all
δV ∈ Bη(0), the following holds:
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F (N1,V0 +δV) = F (N2,V0 +δV) (5.12)

1

2
(NT

1 EC N1−NT
2 EC N2)− (CDG V0)T EC (N1 −N2)

= (CDGδV)T EC (N1 −N2) (5.13)

The left hand side is equal to 0 when δV = 0. Hence, the right-hand side vanishes in-
dependently of δV. Thus N T

1 EC CDG = N T
2 EC CDG . It follows that F (N1,V0) = F (N2,V0) for

all V0 ∈ RNG . Further, any two states are degenerate if and only if N1 −N2 ∈ Null(CT
DG EC )

[26].
In this section, we have demonstrated that the task of identifying Coulomb diamonds

can be reformulated through convex optimization. The established convexity enables
the framing of Equation (5.8)’s minimization as a convex problem. This approach leads
to the determination of ground states as the sought-after solution.

5.3. QDsim PACKAGE
QDsim is a Python package that bridges the gap between theoretical frameworks and
practical quantum dot device simulations. This versatile tool comprises three essential
classes: QDDevice (quantum dot device), QDSimulator (quantum dot simulator), and
CapacitanceQuantumDotArray (capacitance quantum dot array). All the code is avail-
able in a public repository on GitLab [27].

5.3.1. THE QUANTUM DOT DEVICE CLASS: QDDevice
The QDDevice class is a key element for device definition. It focuses on translating de-
sign of the device into capacitance matrices, specifically addressing dot-to-dot and dot-
to-gate mutual capacitance matrices. This class is responsible for defining key parame-
ters related to the device’s geometry and design. Users can specify the number of dots,
the number of gates, the locations of the dots, as well as the dot-to-dot �CDD and dot-to-
gate �CDG mutual capacitance matrices.

Upon initialization, the QDDevice class provides an empty object, which users can
then populate with the desired device characteristics. A range of standard design options
is available, each tailored to specific device configurations. These standard options in-
clude the following methods:

• one_dimensional_dots_array: This option configures a line of dots with indi-
vidual gate control, where users can define the number of dots, their locations, the
dots’ self-capacitance, the average dot-to-gate capacitance, if the dots are equal
(i.e. they all have the same self-capacitance), if the gates are equal (i.e. if the dot-
to-gate capacitance is the same for every couple in which the gate directly controls
the dot), and the strength of the crosstalk interaction.

• bi_dimensional_10_dots_array : It sets up a 2D array of 10 dots with individual
gate control, allowing customization of the device properties and capacitances as
listed in the previous case.
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• crossbar_array_shared_control: This option creates a crossbar array of dots
with shared control. Users can specify the number of dots per side of the square
lattice, and other device characteristics as in the previous case.

The QDDevice class features several attributes, including device type (for plotting
purposes), the number of dots, the number of gates, dot self-capacitance, dot locations,
dot-to-dot mutual capacitance matrices, and dot-to-gate mutual capacitance matrices.

Additionally, QDDevice offers methods for setting dot locations, the number of gates,
custom dot-to-dot mutual capacitance matrices, and custom dot-to-gate mutual capac-
itance matrices. It also provides functionality for automatically evaluating dot-to-dot
and dot-to-gate mutual capacitance matrices based on dot locations, assuming individ-
ual gate control. These methods facilitate the definition and customization of quantum
dot devices and enable users to configure the device to their specific requirements, mak-
ing it a versatile tool for simulations. Here, we provide an overview of the key methods
offered:

• set_physical_dot_locations: This method allows users to assign dot locations
to the QDDevice object. By specifying the coordinates (x, y) of each dot in the
device, users can precisely define the spatial arrangement of quantum dots.

• set_dot_dot_mutual_capacitance_matrix: With this method, users can as-
sign a custom dot-to-dot mutual capacitance matrix to the QDDevice object. This
level of customization enables precise modeling of the capacitance interactions
between quantum dots.

• set_dot_gate_mutual_capacitance_matrix: Similarly, users can define a cus-
tom dot-to-gate mutual capacitance matrix using this method. The dot-to-gate ca-
pacitance matrix plays a crucial role in simulating the interactions between quan-
tum dots and gate electrodes.

• evaluate_dot_dot_mutual_capacitance_matrix: This method calculates the
dot-to-dot mutual capacitance matrix of the QDDevice based on the dot locations.
It employs a distance-based model to compute the capacitance interactions, tak-
ing into account the arrangement of quantum dots.

• evaluate_dot_gate_mutual_capacitance_matrix: This method is used to com-
pute the dot-to-gate mutual capacitance matrix based on the dot locations. It as-
sumes that each gate corresponds to a dot in only controls that dot, making it suit-
able for certain device configurations.

The package’s versatility extends to device visualization, with a plotting method
plot_device that allows users to create graphical representations of the device, includ-
ing optional sensors and dot labels. The generated plots are exportable in various image
formats, such as PDF and PNG, allowing flexibility in saving visual representations. De-
vice attributes can also be exported to JSON files with the save_to_json method, pro-
viding a structured format for documentation. These JSON files can be easily imported
and utilized using the load_from_json class method.
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INDEXING

We begin by explaining the indexing conventions used for one_dimensional_dots_array,
crossbar_array_shared_control, and potential custom configurations.

In the context of QDsim package, each dot and gate is associated with a distinct index,
designated as i and j respectively. These indices range from 0 to ND − 1 for dots and
NG −1 for gates. For instance, the matrix element C̃DD

i j denotes the mutual capacitance

between dot i and dot j . This notation is consistently applied across the various mutual
capacitance matrices within the package.

In the standard design templates provided, the indexing scheme of the dots and gates
is readily represented through a plot of the device, via the plot_device method. Within
the one_dimensional_dots_array configuration, the dots and their corresponding
gates are sequentially numbered from left to right, from 0 to ND − 1. Given the one-
to-one correspondence between dots and gates in this arrangement, gate indices are not
explicitly depicted; however, they adhere to the same left-to-right numbering conven-
tion, extending from 0 to NG −1, where NG equals ND in this case.

The crossbar_array_shared_control design has a distinct indexing pattern, as
can be seen in Figure 5.1.

0 1 2 3
X Location (au)

0
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2

3
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ca
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n 
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D11

D12

D13

D14

D15

Physical device

Dot

Figure 5.1: Example of the indexing of the dots in the crossbar array design. The ’D’ stands for ’dot’, the adjacent
number represents the index.

Here, dots are numbered starting from the upper left corner, progressing downwards,
and subsequently ascending diagonally towards the right. This process is repeated, de-
scending from the leftmost point for one step and ascending in the rightward diagonal
direction.

This convention ensures that increasing dot indices are governed by the same gate.
The gates themselves are arranged diagonally and are numbered from the upper left to
the lower right corner.

It is of course possible for users to modify our template configurations, but when
doing so it is essential to adhere to the above described indexing convention such that
correct capacitance matrices are generated.
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5.3.2. THE SIMULATOR CLASS: QDSimulator
The QDSimulator class is a fundamental component of the QDsim package, and serves
as the user’s interface for simulating quantum dot charge stability diagrams.

The QDSimulator class is built atop the CapacitanceQuantumDotArray class. The
CapacitanceQuantumDotArray class is utilized to construct and solve the convex op-
timization problem that characterize the quantum dot array. It will be covered in de-
tails in the next section. At this point, the important distinction to be made is that the
QDSimulator class is a wrapper of the CapacitanceQuantumDotArray class. Therefore
the user will interact directly only with the QDSimulator class, leaving the CapacitanceQuantumDotArray
class working in the background.

When creating an instance of QDSimulator, the user has the discretion to specify
the type of simulation—either ’Electrons’ or ’Holes’. By default, the system assumes an
’Electrons’ simulation.

The key attributes of the QDSimulator class are the following:

• _qd_device: This attribute represents the quantum dot device to be simulated
and must be an instance of the QDDevice class.

• _physics_to_be_simulated: Determination whether the device consists of ‘Elec-
trons’ or ‘Holes’.

• _variable_gate_index_1 and _variable_gate_index_2: These represent the
indices of the gates to be scanned, i.e. which gates will be shown in the charge
stability diagram axes. For simulations of the charge stability diagram, only a pair
of gates can be simultaneously scanned.

• _voltage_ranges: This attribute sets the minimum and maximum voltages for
the x- and y-axes, associated with gates indexed by _variable_gate_index_1
and _variable_gate_index_2, respectively.

• _sensor_locations: This attribute determines the spatial coordinates (x, y) of
each sensor within the device layout, which must be set via the class method
set_sensor_locations. While the simulation itself, framed as a minimization
problem, is independent of sensors, they are incorporated for more realistic vi-
sualization purposes. Specifically sensors allow visualization of realistic potential
and current values and they would be monitored in an experiment.

The core method of this class issimulate_charge_stability_diagram. Central to
the QDsim package, this function bridges the representation of the quantum dot device,
defined by the QDDevice object, to the framework of the constant interaction model.
The method utilizes a CapacitanceQuantumDotArray object, which serves as the pow-
erhouse driving the entire simulation.

Users can choose their preferred convex optimization solver, including options like
the open-source SCIP or the licensed MOSEK, for use within CVXPY. This higher-level in-
terface seamlessly integrates with either MOSEK or SCIP as its back-end solvers, offering
flexibility in solver selection.
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Following the philosophy of flexibility, this method allows the specification of the
gates to be scanned, with the number of probe points on both x- and y-axes, and an in-
dividual voltage range for each. Furthermore, the fixed voltage approach ensures a fixed
potential for non-scanned gates, while the gates’ voltages can be individually defined for
more granular control. All the details will be described in Section 5.4 by taking advantage
of some use cases.

A beneficial feature is the saving mechanism: The resulting arrays of occupation, po-
tential, and current can be stored using the associated file path parameters. This ensures
that simulation data can be revisited or shared without the need to rerun computations.

The final feature of the QDSimulator class is its inbuilt capability to visualize the
simulated results. Through its integrated plotting methods, users can render charge sta-
bility diagrams.

The plot_charge_stability_diagrams method of the class is designed to create
a visual representation of the charge stability diagram. Its features include:

• Colormap Customization: By default, the method employs the ’RdPu’ colormap.
However, users can modify the colormap using the cmapvalue argument.

• Noise Inclusion: The method allows for the introduction of Gaussian, white, or
pink noise to the plots, enhancing the realism of simulations. They can be added
by using the boolean gaussian_noise, white_noise, and pink_noise arguments.

• Potential vs. Current Mapping: While the default visualization mode displays the
current map, there exists an option to showcase the potential map instead by set-
ting the boolean argument plot_potential to True.

• Custom Noise Parameters: Users have the liberty to specify parameters for Gaus-
sian, white, and pink noise using the gaussian_noise_custom_params,
white_noise_custom_params, and pink_noise_custom_params arguments. In
the absence of user-defined values, default settings are applied.

• Saving Plots: If desired, the generated visualizations can be saved to a predeter-
mined file path, set via the save_plot_to_filepath argument.

5.3.3. THE POWERHOUSE OF THE PACKAGE: THE CapacitanceQuantumDotArray
CLASS

The CapacitanceQuantumDotArray class acts as the core computational engine of our
framework. It completes the task of defining the problem parameters, establishing the
correct environment, and running the actual simulation. This class operates predom-
inantly in the background; users typically interact with higher-level interfaces such as
QDDevice and QDSimulator and do not directly engage with CapacitanceQuantumDotArray.

The CapacitanceQuantumDotArray class is rooted in convex optimization tech-
niques, particularly leveraging the CVXPY package. It aims to minimize the system’s free
energy, defined in Equation 5.7.

To obtain the system’s ground state defined in Equation 5.9, we manipulated the free
energy expression (Equation 5.8) in terms of ND and VG , where ND delineates the dot
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occupations. The free energy undergoes minimization concerning ND , ensuring that ND

remains an integer vector.

For simplicity in calculations and units, the class assumes the unit charge |e| as 1,
meaning the free energy is denoted in eV.

Here we present a brief overwiew of the key methods:

• select_solver: This method allows to choose a solver for the convex optimiza-
tion problem. Available options include ’MOSEK’ and ’SCIP’. This method takes
in input the solver selected by the user while interacting with the QDSimulator
class. The user never access the methods of the CapacitanceQuantumDotArray
class directly.

• probe_voltage_space: It explores the entire voltage space and determines the
ground state for each point, returning both the dot occupations and associated
energy.

• _find_ground_state: For a specific voltage point, this method identifies the sys-
tem’s ground state.

• _set_up_convex_optimization_problem: This method prepares the convex op-
timization problem, serving as a foundation for _find_ground_state.

• _evaluate_maxwell_matrices: Here, the system’s Maxwell capacitance matrix
is determined, acting as a precursor for the optimization setup.

5.4. EXAMPLES

In this section we highlight several common use-cases of QDsim, some of which corre-
sponding to recently experimentally achieved devices [7] [6].

5.4.1. THE DOUBLE DOT DEVICE

Let us begin with a fundamental example of quantum dot device: double quantum dot.
We begin with a QDDevice object in order to specify the physical parameters of the de-
vice. The one_dimensional_dots_array method significantly streamlines this initial-
ization. By setting the n_dots parameter to 2, the system is automatically configured as
a double dot device. The physical parameters of this default configuration can be seen
by calling the print_device_info method, as shown below.
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Python Code

from qdsim import QDDevice, QDSimulator

# create a quantum dot device object
qddevice = QDDevice()
# double dot
qddevice.one_dimensional_dots_array(

n_dots=2)
# print the device information
qddevice.print_device_info()

The output generated is as follows:

Code Output

Device type: in-line array
Number of dots: 2
Number of gates: 2
Physical dot locations: [(0,0), (1,0)]
Dot-dot mutual capacitance matrix:[

0.12 0.08
0.08 0.12

]
Dot-gate mutual capacitance matrix:[

0.12 0.00
0.00 0.12

]

Upon specifying the n_dots, the QDDevice class autonomously initializes all requi-
site attributes. However, the package offers flexibility for further customization, either
through standard alteration functions or by manual attribute assignment using setter
methods.

The following code snippets illustrate both methods of customization.

CUSTOMIZATION VIA DEFAULT ATTRIBUTES

In this double-dot scenario, we leverage the built-in modification functions accessible
through the architecture specification method. This is achieved by specifying equal_dots
= False, equal_gates = False, and/or adjusting the crosstalk_strength param-
eter within a range from 0 (indicating no crosstalk) to 1 (representing the maximum
threshold of crosstalk, determined in proportion to the capacitances within the simu-
lation). For users seeking further customization, the capacitance values can be adjusted
by examining and modifying the source code as necessary.
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Python Code

from qdsim import QDDevice, QDSimulator

# create a quantum dot device object
qddevice = QDDevice()
# double dot
qddevice.one_dimensional_dots_array(

n_dots=2, equal_dots=False,
equal_gates=False,
crosstalk_strength=0.3)

# print the device information
qddevice.print_device_info()

The output generated is as follows:

Code Output

Device type: in-line array
Number of dots: 2
Number of gates: 2
Physical dot locations: [(0,0), (1,0)]
Dot-dot mutual capacitance matrix:[

0.12 0.08
0.08 0.11

]
Dot-gate mutual capacitance matrix:[

0.13 0.02
0.02 0.15

]

In this example, the alteration in the dot-to-dot and dot-to-gate mutual capacitance
matrices is achieved by the introduction of random values. Using equal_dots = False
will add random values on the diagonal of the dot-to-dot mutual capacitance matrix,
while equal_gates = False will add random values to the diagonal of the dot-to-gate
mutual capacitance matrix. Setting a value for crosstalk_strength will add random
numbers to the off-diagonal, to ensure crosstalk effects. The random values applied can
be both positive and negative, and are properly scaled with respect to the order of mag-
nitude used in the matrices to ensure the maintenance of realistic and physically plau-
sible parameters, i.e. they would only account for small variations of the values, roughly
10-20% variations.
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CUSTOMIZATION VIA SETTER METHODS

Conversely, for users seeking to employ custom capacitance matrices, the package pro-
vides two setter methods for this purpose: set_dot_dot_mutual_capacitance_matrix
and set_dot_gate_mutual_capacitance_matrix.

Python Code

from qdsim import QDDevice, QDSimulator

# create a quantum dot device object
qddevice = QDDevice()

# double dot
qddevice.one_dimensional_dots_array(

n_dots=2)

# define the custom capacitance matrices
cdd = np.array([[0.10, 0.7],[0.7, 0.15]])
cdg = np.array([[0.14, 0.3],[0.3, 0.12]])

# modify the class attributes
qddevice.

set_dot_dot_mutual_capacitance_matrix(
cdd)

qddevice.
set_dot_gate_mutual_capacitance_matrix(

cdg)

# print the device information
qddevice.print_device_info()

The output generated is as follows:
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Code Output

Device type: in-line array
Number of dots: 2
Number of gates: 2
Physical dot locations: [(0,0), (1,0)]
Dot-dot mutual capacitance matrix:[

0.10 0.07
0.07 0.15

]
Dot-gate mutual capacitance matrix:[

0.14 0.03
0.03 0.12

]

When customising the capacitance matrices, it is key to pay attention to the indexing
convention described in Section 5.3.1 and to guarantee the symmetry of the dot-to-dot
mutual capacitance matrix.

We recommend to use plot_device plotting method to verify that dots and gates
are ordered as intended.

The inclusion of a sensor (along with its label) in the plot for enhanced visualization,
as well as the capability to export the plot to a file with a preferred format, is achieved by
executing the line of code provided below.

Python Code

# plot the device, the sensor
# and save the plot to a file
qddevice.plot_device(

sensor_locations=[[2,1]],
sensor_labels=[’S0’],
save_plot_to_filepath=’dqd_device.pdf’)

It is pertinent to note that the plotting method does not render the gates. This omis-
sion is intentional for two primary reasons: firstly, the geometry of the gates is not critical
for simulation objectives, as the interactions between gates and dots are encapsulated
within the dot-to-gate mutual capacitance matrices. Secondly, in devices with individual
control mechanisms, the indexing for gates and dots is identical. We provide a schematic
depiction of gates only for the cross-bar device, where the shared control aspect (single
gate controls multiple dots) requires an indexing guidance.

SIMULATION

To start the simulation of the device, create an instance of the QDSimulator class. This
class has a method named simulate_charge_stability_diagram, which accepts qd_device
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Figure 5.2: A schematic plot of the double quantum dot architecture with sensor, which is the output of the
plot_device method.

as one of its parameters. Thus, an instance of the QDDevice class designated for simu-
lation is inputted into the QDSimulator’s simulation method, rendering the simulator
class agnostic to the specific device being simulated. Consequently, the code snippets
provided herein are applicable across all use-cases discussed within this Examples sec-
tion.

Python Code

# create a quantum dot simulator object
# simulating electrons
qdsimulator = QDSimulator(simulate=

’Electrons’)

# set the sensor locations
qdsimulator.set_sensor_locations([[2, 1]])

# simulate the charge stability diagram
qdsimulator.

simulate_charge_stability_diagram(
qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 1],
use_ray=True)

After initializing a QDSimulator object with the intention of simulating an electron-
based quantum dot device, the simulate attribute is set to ’Electrons’. This attribute
can alternatively be configured to ’Holes’. If this attribute remains unspecified, the sim-
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ulation defaults to ’Electrons’.

The subsequent step is determination of the sensor locations within the simula-
tion environment. This is achieved by specifying their coordinates in Cartesian format
[[x0, y0], [x1, y1], . . .] through the set_sensor_locations method.

The simulation process is then executed via the simulate_charge_stability_diagram
method, requiring the specification of several parameters. These include the qd_device
parameter, which requires an instance of the QDDevice class, and the selection of an
optimization solver (’MOSEK’ for licensed use or ’SCIP’ for an open-source option via
CVXPY). When unspecified, the solver defaults to ’SCIP’. Voltage ranges along the x and y
axes are defined by v_range_x and v_range_y, respectively, with n_points_per_axis
determining the plot’s resolution. The indices of the gates to be scanned are specified in
scanning_gate_indexes, with a maximum of two gates allowed simultaneously. The
indexing order is significant, as the first index always denotes the x-axis and the second
the y-axis. Additionally, the attribute use_ray=True can be employed to leverage the
Ray parallelization library [28] [29] for enhanced computational efficiency. By using Ray
we can speed up the computational time by parallelizing the computation at each pixel
of the plot.

PLOTTING AND ADDING NOISE

The plot_charge_stability_diagrams method visualizes the simulation outcomes,
plotting either the potential or current landscape, with an option to incorporate noise.
To visualize the sensed potential, the plot_potential argument should be set to True.
Conversely, setting plot_potential to False directs the method to plot the sensed cur-
rent.

For introducing noise into the visualization, three distinct types of noise can be ap-
plied: gaussian_noise, white_noise, and pink_noise. Activating any of these noise
features is achieved by setting the corresponding attribute to True. The introduced noise
is composed of random values added to each plot point, sourced from respective prob-
ability distributions for Gaussian and white noise, and utilizing functions from the py-
plnoise [30] library for pink noise.

Following are three examples of plots for the default double quantum dot device,
using the default settings:
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Python Code

# plot the charge stability diagram

# potential, no noise
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’, plot_potential=True,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

# current, no noise
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

# current, noisy
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True,
white_noise=True,
pink_noise=True)

The resulting plots are shown in Figure 5.3.

The noise can further adjusted through specific method attributes: gaussian_noise_params
for setting the mean and standard deviation of the distribution, white_noise_params
for defining the noise range, and pink_noise_params for adjusting the frequency and
amplitude range. For instance, to configure Gaussian noise with a mean of 0.5 and a
standard deviation of 0.3, one would set gaussian_noise = True and
gaussian_noise_params = [0.5, 0.3].
Lastly, the color scheme of the plot can be personalized by assigning the desired color
code to the cmapvalue attribute.

5.4.2. THE CROSSBAR 4X4 SHARED CONTROL DEVICE

The crossbar_array_shared_control architecture, as presented in Ref. [7], repre-
sents another default configuration accessible to users. In contrast to the
one_dimensional_dots_array, this architecture employs a two-dimensional grid lay-
out for dot placement, featuring a shared control system where a single gate can simul-
taneously influence multiple dots. Such architectures are of particular interest within
the academic community for their potential to mitigate the scalability challenge inher-
ent to quantum dot devices. Typically, the number of gates increases linearly with the
addition of dots, complicating tuning efforts for expanding device configurations. The
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Figure 5.3: Simulated charge stability diagrams for a double dot device. In Figure (a) the potential sensed is
plotted without noise. In Figure (b) and (c) the gradient is evaluated, therefore plotting the current, with and
without noise.

shared control approach is considered as an option to lessen this scalability concern.

To simulate a shared-control quantum dot crossbar array, usersfirst create an in-
stance of the QDDevice class and then choose the crossbar_array_shared_control
function. Similar to the one_dimensional_dots_array method, specifying the n_dots_side
argument as an integer representing the grid’s side length automatically configures the
device with default parameters. These parameters, may be further customized through
either a selection of built-in adjustments (e.g., equal_dots = False, equal_gates =
False) or via setter methods for more granular control.

In the following code box, a 4x4 shared-control quantum dot crossbar array is shown.
By utilizing the built-in modification functions, we adjust the default settings, subse-
quently outputting the device’s specifications, including the dot-to-dot and dot-to-gate
mutual capacitance matrices, and visualizing the device alongside the designated sen-
sor.
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Python Code

# create a quantum dot device object
qddevice = QDDevice()

# crossbar array with shared control
# with 4 dots per side
qddevice.crossbar_array_shared_control(

n_dots_side=4, equal_dots=False,
equal_gates=False)

# print the device information
qddevice.print_device_info()

# plot device with sensors and save plot
qddevice.plot_device(

sensor_locations=[[0,4]],
sensor_labels=[’S0’],
save_plot_to_filepath=’4x4_device.pdf’)
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Code Output

Device type: crossbar
Number of dots: 16
Number of gates: 7
Physical dot locations: [(0,3), (0,2), (1,3), (0,1), (1,2),
(2,3), (0,0), (1,1), (2,2), (3,3), (1,0), (2,1), (3,2),
(2,0), (3,1), (3,0)]
Dot-dot mutual capacitance matrix:

0.12 0.08 0.08 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.08 0.12 0.04 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.08 0.04 0.12 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.08 0.00 0.12 0.04 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
0.04 0.08 0.08 0.04 0.12 0.04 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00
0.00 0.00 0.08 0.00 0.04 0.11 0.00 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00
0.00 0.00 0.00 0.08 0.00 0.00 0.12 0.04 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00
0.00 0.04 0.00 0.08 0.08 0.00 0.04 0.12 0.04 0.00 0.08 0.08 0.00 0.04 0.00 0.00
0.00 0.00 0.04 0.00 0.08 0.08 0.00 0.04 0.12 0.04 0.00 0.08 0.08 0.00 0.04 0.00
0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.04 0.12 0.00 0.00 0.08 0.00 0.00 0.00
0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.00 0.12 0.04 0.00 0.08 0.00 0.00
0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.04 0.11 0.04 0.08 0.08 0.04
0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.04 0.11 0.00 0.08 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.11 0.04 0.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.04 0.12 0.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.08 0.08 0.12


Dot-gate mutual capacitance matrix:

0.15 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.18 0.00 0.00 0.00 0.00 0.00
0.00 0.18 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.13



In this architecture, gates are arranged diagonally, with the indexing of both dots and
gates illustrated in Figure 5.4.

SIMULATION

Similar to the double dot device scenario, simulating the device requires an instance
of the QDSimulator class. While it’s not imperative to create a new simulator instance
for each device instance, allowing for the reuse of a single simulator instance, there are
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Figure 5.4: A schematic plot of the crossbar 4x4 shared control architecture with sensor, which is the output of
the plot_device method.

situations where dedicating a separate simulator instance to each device may facilitate
direct comparisons between simulations. The choice of approach is left to the user’s
discretion based on their specific requirements.

Following the selection of the physical phenomena to be simulated (either electrons
or holes), the user employs the set_sensor_locations method to specify the Carte-
sian coordinates of the sensor(s) involved in the simulation. Subsequently,
the simulate_charge_stability_diagram function is executed. This involves select-
ing the device, selecting a solver, setting the voltage ranges, determining the simulation’s
resolution (noting that higher resolution increases computational demand), and identi-
fying the gates to be scanned.

This example differs from the prior shown in Section 5.4.1 due to the presence of
additional gates beyond those being actively scanned. To ensure a successful simula-
tion, it is necessary to define the voltage settings for these additional gates. There are
two approaches to manage gate voltages in scenarios with more than two gates: uni-
formly applying voltages using fixed_voltage or customizing voltages for each gate via
gates_voltages. For instance, in a setup with three gates, where Gates 0 and 2 are be-
ing scanned and Gate 1 is set to 1.5 volts, this would be represented as gates_voltages
= [None, 1.5, None]. Alternatively, the same outcome would be achieved by setting
fixed_voltage = 1.5.

In scenarios with more than three gates, employing fixed_voltage = 1.5 assigns
a uniform voltage of 1.5 to all gates not under scan. In contrast, the gates_voltages op-
tion permits users to selectively assign specific voltage values to each of the un-scanned
gates as per their preference.

It is required to exclusively use either gates_voltages or fixed_voltage for spec-
ifying gate voltages.

In the following code snippet, we assign a uniform voltage of 1 to all gates of sec-
ondary interest (specifically Gates 2, 3, 4, 5, and 6).
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Python Code

# create a quantum dot simulator object
# simulating electrons
qdsimulator = QDSimulator(simulate=

’Electrons’)

# set the same sensor locations
qdsimulator.set_sensor_locations([[0, 4]])

# simulate the charge stability diagram
qdsimulator.

simulate_charge_stability_diagram(
qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 1],
fixed_voltage=1, use_ray=True)

Employing the identical functions used in the double dot scenario to plot the simu-
lated charge stability diagrams, we generate the subsequent plots shown in Figure 5.5.
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# plot the charge stability diagram

# potential, no noise
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’, plot_potential=True,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

# current, no noise
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

# current, noisy
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True,
white_noise=True,
pink_noise=True)

GETTING THE CHARGE CONFIGURATION

In order to simplify the labelling of the polytopes, users can take advantage of the
get_charge_configuration method of the QDSimulator class. Users can provide
in input a tuple representing the voltage coordinates in the charge stability diagram,
and the method will automatically evaluate the closest simulated point and provide the
charge configuration at that point. The need to approximate the voltage point comes
from the limitation in the granularity of the plot.

An example on how to use the function is shown below.
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Figure 5.5: Simulated charge stability diagrams for a 4x4 shared-control dot device. In Figure (a) the potential
sensed is plotted without noise. In Figure (b) and (c) the gradient is evaluated, therefore plotting the current,
with and without noise correspondingly.

Python Code

# Let’s test the empty region
voltage_point = [0, 0]

# Get the charge configuration of a
# point in the charge stability diagram

print(’Charge configuration at chosen
point’, voltage_point, ’:’)

qdsimulator.get_charge_configuration(
voltage_point=voltage_point)

Code Output

Charge configuration at chosen point [0, 0] :
Voltage point considered: [0.08474576 0.08474576 1. 1. 1. 1. 1. ]
Charge configuration: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
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It is also possible to save the voltage point-charge configuration couple into a vari-
able, as in the following code:

Python Code

# Let’s test another region
voltage_point = [7, 0]

# Get the charge configuration of a
# point in the charge stability diagram

print(’Charge configuration at chosen
point’, voltage_point, ’:’)

voltage_and_charge_config =
qdsimulator.get_charge_configuration(

voltage_point=voltage_point)

print("voltage_and_charge_config =",
voltage_and_charge_config)

Code Output

Charge configuration at chosen point [7, 0] :
Voltage point considered: [6.86440678 0.08474576 1. 1. 1. 1. 1. ]
Charge configuration: [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
voltage_and_charge_config =
(array([6.86440678, 0.08474576, 1. , 1. , 1. , 1. , 1. ]), array([1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0.]))

5.4.3. CUSTOM DEVICE CONFIGURATION
Users have two main options for configuring custom devices. The first option involves
only specifying the locations of the quantum dots. In this case, an individual control
system is assumed (one gate per dot), and standard mutual capacitance matrices are
derived based on a simple model that considers distance, focusing on first and second
nearest neighbors interactions. The second option allows for the further manual specifi-
cation of the mutual capacitance matrices between dots (dot-to-dot) and between dots
and gates (dot-to-gate), thus enabling simulation of complex gate-dot configurations.

Below we show examples of both approaches to custom device simulation.

INDIVIDUAL CONTROL: DOT LOCATION SPECIFICATION

First, we consider a scenario where the simulation of a custom device focuses solely on
the placement of quantum dots. This can be achieved by creating an instance of the
QDDevice class and utilizing the set_custom_dot_locations method. The order of
coordinates tuples directly maps to the dots’ indices. The use of set_custom_dot_locations
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triggers an internal function that calculates the mutual capacitance matrices for both
dot-to-dot and dot-to-gate interactions. As a result, printing the device information
shows these matrices as configured attributes within the class. Similar to the method
for the default architectures shown above, minor customizations can be implemented
through the boolean parameters equal_dots, equal_gates, and crosstalk_strength
for adjusting crosstalk strength. Additionally, the default capacitance value, set at 0.12,
can be altered via the c0 parameter to suit specific requirements.

Python Code

# create a quantum dot device object
qddevice = QDDevice()

# set the custom dot locations
qddevice.set_custom_dot_locations([[2, 2],

[3, 1.5], [4, 2], [1, 1], [5, 1],
[2, 0], [3, 0.5], [4, 0]],

equal_dots=False, equal_gates=False,
crosstalk_strength=0.2, c0=0.12)

# print the device information
qddevice.print_device_info()

# plot the device with sensor
qddevice.plot_device(

sensor_locations=[[1,2]],
sensor_labels=[’S0’])
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Code Output

Device type: custom
Number of dots: 8
Number of gates: 8
Physical dot locations: [[2,2], [3,1.5], [4,2], [1,1], [5,1], [2,0], [3,0.5], [4,0]]
Dot-dot mutual capacitance matrix:

0.12 0.06 0.00 0.04 0.00 0.00 0.00 0.00
0.06 0.12 0.06 0.00 0.00 0.00 0.08 0.00
0.00 0.06 0.12 0.00 0.04 0.00 0.00 0.00
0.04 0.00 0.00 0.13 0.00 0.04 0.00 0.00
0.00 0.00 0.04 0.00 0.11 0.00 0.00 0.04
0.00 0.00 0.00 0.04 0.00 0.12 0.06 0.00
0.00 0.08 0.00 0.00 0.00 0.06 0.13 0.06
0.00 0.00 0.00 0.00 0.04 0.00 0.06 0.12


Dot-gate mutual capacitance matrix:

0.14 0.01 0.00 0.01 0.00 0.00 0.00 0.00
0.01 0.13 0.01 0.00 0.00 0.00 0.01 0.00
0.00 0.01 0.12 0.00 0.01 0.00 0.00 0.00
0.01 0.00 0.00 0.12 0.00 0.01 0.00 0.00
0.00 0.00 0.01 0.00 0.10 0.00 0.00 0.01
0.00 0.00 0.00 0.01 0.00 0.10 0.02 0.00
0.00 0.01 0.00 0.00 0.00 0.02 0.14 0.01
0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.13


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Figure 5.6: A schematic plot of the custom design with sensor, which is the output of the plot_device method.

Figure 5.6 shows an outline of the custom device, allowing verification of the dot in-
dices against the provided list of coordinates. Currently, a schematic depiction of the
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gates in custom designs is not available, though such a feature may be incorporated in
future releases. In this case each dot is controlled by an individual gate. For the device
simulation itself we simply repeat the procedure defined for the default devices: create
a simulator instance, specify the sensor(s) locations, and execute the
simulate_charge_stability_diagram method. Note that, despite the system featur-
ing more than two gates, neither the fixed_voltage nor the gate_voltages param-
eters are employed. This is due to reliance on the default setting where, in the absence
of explicit specifications for these parameters, the system defaults to fixed_voltage =
0.

The outcome of the simulation can be plotted like so (output shown in Figure 5.7):

Python Code

# create a quantum dot simulator object
qdsimulator = QDSimulator(simulate=

’Electrons’)

# set the sensor locations
qdsimulator.set_sensor_locations([[1, 2]])

# simulate the charge stability diagram
qdsimulator.

simulate_charge_stability_diagram(
qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 3],
use_ray=True)

# plot the charge stability diagrams
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’, plot_potential=True,
gaussian_noise=False, white_noise=False,
pink_noise=False)

qdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=False, white_noise=False,
pink_noise=False)

qdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True, white_noise=True,
pink_noise=True)
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Figure 5.7: Simulated charge stability diagrams for a custom design with individual control. In Figure (a) the
potential sensed is plotted without noise. In Figure (b) and (c) the gradient is evaluated, therefore plotting the
current, respectively with and without noise.

SHARED CONTROL: SPECIFYING THE DOT-TO-GATE MUTUAL CAPACITANCE MATRIX

In this example, we evolve the previously discussed custom model by transitioning from
an individual control system to introducing a custom shared control system, reflected
through modifications to the dot-to-gate mutual capacitance matrix.

We adopt a notation that allows us to specify which dots are controlled by which
gate. Specifically, let’s assume we want to use four gates overall to control all dots. We
add one of the following four letters: n, w,e, s, representing north, west, east, and south,
respectively. Dots sharing the same letter are understood to be under the control of the
same gate.

Let us illustrate this concept on the concrete example:
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Python Code

# create a quantum dot device object
qddevice = QDDevice()

# set the custom dot locations
qddevice.set_custom_dot_locations([[2, 2],

[3, 1.5], [4, 2], [1, 1], [5, 1],
[2, 0], [3, 0.5], [4, 0]],
equal_dots=False, equal_gates=False,
crosstalk_strength=0.2, c0=0.12)

# plot the device with custom labels
# and sensor
qddevice.plot_device(

sensor_locations=[[1,2]],
sensor_labels=[’S0’],
custom_dot_labels=[’D0n’, ’D1n’, ’D2n’,

’D3w’,’D4e’, ’D5s’,’D6s’, ’D7s’])
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Figure 5.8: Another schematic plot of the custom design, in which the labels of the dots have been manually
changed to adhere to the new labelling system: ’D’ stands for dot, the integer number represents the dot index,
the letter represents the gate controlling the dot.

In the example above, Dots 0, 1, and 2 are controlled by the northern gate, Dot 3 is
governed by the western gate, Dot 4 responds to the eastern gate, while Dots 5, 6, and 7
are controlled by southern gate.

The next step involves encoding this gate-dot architecture into the dot-to-gate mu-
tual capacitance matrix. The dot-to-dot mutual capacitance matrix remains unchanged,
still calculated automatically based on the proximity of the dots. For the purpose of ma-
trix notation, we adopt the indexing scheme [n : 0, w : 1,e : 2, s : 3], needed for the con-
struction of an 8x4 matrix representing the dot-to-gate interactions.
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This conversion is accomplished through the code snippet below, wherein we em-
ploy the set_dot_gate_mutual_capacitance_matrix setter method. This allows us
to update the dot-to-gate mutual capacitance matrix from the default, automatically
generated one, indicative of individual control, to our newly conceptualized matrix that
reflects the shared control system.

Python Code

dot_gate_matrix = np.array([
[0.14, 0.00, 0.00, 0.00],
[0.14, 0.00, 0.00, 0.00],
[0.14, 0.00, 0.00, 0.00],
[0.00, 0.13, 0.00, 0.00],
[0.00, 0.00, 0.12, 0.00],
[0.00, 0.00, 0.00, 0.15],
[0.00, 0.00, 0.00, 0.15],
[0.00, 0.00, 0.00, 0.15]

])

qddevice.
set_dot_gate_mutual_capacitance_matrix(

dot_gate_matrix)

qddevice.print_device_info()



5.4. EXAMPLES

5

133

Code Output

Device type: custom
Number of dots: 8
Number of gates: 4
Physical dot locations: [[2,2], [3,1.5], [4,2], [1,1], [5,1], [2,0], [3,0.5], [4,0]]
Dot-dot mutual capacitance matrix:

0.12 0.06 0.00 0.04 0.00 0.00 0.00 0.00
0.06 0.12 0.06 0.00 0.00 0.00 0.08 0.00
0.00 0.06 0.12 0.00 0.04 0.00 0.00 0.00
0.04 0.00 0.00 0.12 0.00 0.04 0.00 0.00
0.00 0.00 0.04 0.00 0.12 0.00 0.00 0.04
0.00 0.00 0.00 0.04 0.00 0.12 0.06 0.00
0.00 0.08 0.00 0.00 0.00 0.06 0.12 0.06
0.00 0.00 0.00 0.00 0.04 0.00 0.06 0.12


Dot-gate mutual capacitance matrix:

0.14 0.00 0.00 0.00
0.14 0.00 0.00 0.00
0.14 0.00 0.00 0.00
0.00 0.13 0.00 0.00
0.00 0.00 0.12 0.00
0.00 0.00 0.00 0.15
0.00 0.00 0.00 0.15
0.00 0.00 0.00 0.15



Finally, we proceed to simulate and plot the charge stability diagrams in Figure 5.9.
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Python Code

# create a quantum dot simulator object
qdsimulator = QDSimulator(simulate=

’Electrons’)

# set the sensor locations
qdsimulator.set_sensor_locations([[2, 1]])

# simulate the charge stability diagram
qdsimulator.

simulate_charge_stability_diagram(
qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 3],
use_ray=True)

# plot the charge stability diagrams
qdsimulator.plot_charge_stability_diagrams(

cmapvalue=’RdBu’,plot_potential=True,
gaussian_noise=False, white_noise=False,
pink_noise=False)

qdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’,plot_potential=False,
gaussian_noise=False, white_noise=False,
pink_noise=False)

qdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True, white_noise=True,
pink_noise=True)

5.5. PERFORMANCE EVALUATION AND CONSTRAINTS
QDsim package is designed to equip the scientific community with a user-friendly tool
for simulating charge stability diagrams of arbitrary architectures. Our primary goal is
to create an accessible codebase, allowing researchers to efficiently simulate charge sta-
bility diagrams for extensive quantum dot arrays with a minimal setup and little pre-
liminary knowledge. The ultimate objective of QDsim package is to introduce a rapid
and efficient tool for generating comprehensive datasets for subsequent use in machine
learning model training.

Among comparable available tools, the QTT package [31] stands out, although it pri-
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Figure 5.9: Simulated charge stability diagrams for a custom design with shared control. In Figure (a) the
potential sensed is plotted without noise. In Figure (b) and (c) the gradient is evaluated, therefore plotting the
current, respectively with and without noise.

marily addresses highly specialized experimental scenarios. QTT is geared more towards
analysis and measurements within precise experimental frameworks, rendering it some-
what challenging for beginners and limiting its applicability to a narrow range of devices
(e.g., double dots, in-line 6 dot array, triple dot, square dot) all under individual control
schemes. This specificity in focus is the primary reason a detailed comparison with QTT
has not been pursued, as the two packages cater to distinct needs and applications. Fur-
thermore, very recently a new package named SimCATS [32] has been published. It aims
to achieve a maximally realistic description of CSD especially with regards to sensing and
noise implementations. While having a different focus, it caters to the need of realistic
noise and could be a promising addition to our approximated solution. Furthermore,
our work is complementary to a simultaneously published package called QDarts [33],
which leverages a polytope-finding algorithm to efficiently simulate and locate charge
transitions in the presence of tunnel couplings, non-constant charging energy and re-
alistic noise. However due higher computational complexity, it focuses on smaller dot
arrays (approximately 10 dots).

Focusing on the strengths of our package, QDsim distinguishes itself with its speed
and capability to simulate extensive arrays. To quantify these advantages, all simula-
tions and time measurements discussed herein were conducted on an Apple M2 chip
equipped with 16 GB of memory.
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Speed optimization in the package is influenced by two main factors: the device ar-
chitecture size (i.e. number of dots and gates), reflected by the matrix dimensions, which
offers limited parallelization opportunities, and the plot granularity, which can benefit
from advanced parallelization techniques.

Here we compare across several configurations, including double dots, in-line 6 dots,
and shared control arrays of sizes 4x4, 6x6, and 8x8.

The comparison results are illustrated in Figure 5.10.
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Figure 5.10: Comparing the computational time (in seconds) to simulate a specific architecture, with respect
to the granularity of the plot’s axis. The number of points evaluated for the plot is therefore the x-axis numbers
squared. From the plot we can see how the computational time increases with increasing number of plot
points, but also with the size of the device, i.e. more dots require more computational time for a given axis
granularity. A 64-dot device with shared control system can be simulated with good granularity on a laptop in
less than 4 minutes.

Granularity requirements will vary based on the desired plot quality and voltage space
size; naturally, broader voltage ranges would likely necessitate higher granularity levels.
For instance, in our example section, a voltage range of 25 and a granularity level of
60 yielded satisfactory plots in under a minute, highlighting the package’s emphasis on
speed and ease of use.

When considering limitations, we identify two main categories: physical and func-
tional constraints. On the physical side, it is crucial to acknowledge that the simula-
tions are based on electrostatics and do not account for quantum mechanical effects.
This limitation impacts the simulations’ realism, potentially affecting the precision in
modeling actual devices. However, the package’s primary goal is not to perfectly repli-
cate physical systems but rather to generate datasets for machine learning applications,
where models can be initially trained on sufficiently accurate simulated data and later
fine-tuned with real experimental data.

From a functional perspective, potential enhancements could include improved vi-
sualizations of gate configurations, optimization of parallel processing routines for in-
creased speed, and the development of a graphical user interface (GUI). This GUI could
allow users to intuitively position dots and gates, with the software automatically sug-
gesting starting points for mutual capacitance values between dots and gates.
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5.6. CONCLUSION
The development of this package was driven by the ambition to offer the scientific com-
munity a highly accessible and user-friendly tool, specifically designed to streamline the
generation of charge stability diagrams for extensive quantum dot arrays. With a focus
on efficiency and speed, this package aims to significantly reduce the time and com-
plexity traditionally associated with such simulations. By simplifying the process for
both students and professionals, whether in theoretical or experimental domains, the
package opens up new avenues for exploration and discovery in the field of quantum
computing and nanotechnology. Furthermore, it lays the groundwork for the creation
of comprehensive datasets, essential for the advancement of machine learning applica-
tions within this sphere.

As we look forward to contributions from the community, enriching the package with
more sophisticated models, our ultimate hope is that it becomes a cornerstone for inno-
vation, fostering advancements that leverage both computational simulations and ma-
chine learning to unravel the complexities of quantum systems.
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6
MACHINE LEARNING FOR

QUANTUM DOT EXPERIMENTS:
FROM DATASET CURATION TO

MEASUREMENT COMPLETION

Quantum dots offer significant potential for quantum computing, but tuning their charge
states by measuring charge stability diagrams (CSDs) is both time-intensive and resource-
demanding. While measurement techniques have improved in speed and signal-to-noise
ratio, the inherent variability in experimental conditions often leads to the acquisition of
low-quality or noisy CSDs, hindering the development of robust automated tuning algo-
rithms. To address this, we first explore a supervised machine learning approach to classify
CSDs based on their quality, thereby enabling the construction of high-quality experimen-
tal datasets. By fine-tuning a ResNet18-based classifier on a small, human-labeled subset
of CSDs, we demonstrate the ability to rapidly curate large datasets of CSDs from a large
number of experimental measurements. This curated dataset is then leveraged to train
and evaluate generative models. Specifically, we investigate the use of diffusion models to
reconstruct CSDs from partial measurements, aiming to reduce experimental time.

The results of this chapter are part of the manuscript: V. Hernandes, J. Rogers, T. Spriggs, R. Koch, E. Greplova,
“Diffusion Model Reconstruction of Charge Stability Diagrams for Quantum Dots”, in preparation (2025), and
the dataset: S. de Snoo, V. Hernandes, T. Spriggs, et al., “Delft Charge Stability Diagram Dataset”, Zenodo (2025)
[1]
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6.1. INTRODUCTION
Quantum computing has the potential to impact several fields, including cryptography,
optimization, and materials discovery. To realize this potential, it is essential to identify
scalable and practical qubit implementations. Quantum dots stand out as a modern
platform for quantum computing, thanks to their scalability, long coherence times, and
compatibility with semiconductor fabrication techniques [2, 3, 4, 5, 6, 7]. Quantum dots
are typically implemented in 2D quantum well heterostructures. By carefully designing
gate voltages, individual electrons can be isolated and controlled, forming charge or spin
qubits. Adjacent dots can interact to enable two-qubit gates.

Despite their potential, operating quantum dots reliably requires extensive tuning.
Standard procedures involve mapping electron configurations as a function of gate volt-
ages, forming a charge stability diagram (CSD) [8]. These diagrams offer a visual rep-
resentation of charge states, with boundaries indicating a transition to a different state.
Generating CSDs requires high-resolution measurements across a multidimensional pa-
rameter space, which is both time-consuming and resource-intensive. Traditional ap-
proaches rely on DC measurements, which, although accurate, are inherently slow. RF
reflectometry greatly accelerates this process, allowing tuning quantum dots in video-
mode. Nonetheless, further advances will be needed to effectively automate the tuning
of thousands or millions of quantum dots in future quantum chips [9, 10].

As the number of quantum dots and gate voltages to be controlled increases, manual
tuning becomes impractical. Automation of this process is essential, and numerous ma-
chine learning approaches have been implemented to automate the tuning routine [11,
12, 13, 14, 15, 16, 17, 18, 19]. Existing works have focused on discriminative techniques,
which use existing data to perform some prediction or classification. More recently, gen-
erative models, which aim to create new data or reconstruct missing information, have
been extensively used in all domains, but their application in quantum dots tuning re-
mains largely unexplored. The ability to generate new data based on partial measure-
ments could be leveraged to reduce the amount of experimental data required for tuning
quantum dots [20].

A fundamental challenge in applying machine learning techniques to experimental
routines in quantum dot systems is the inherent noise and diversity present in the data.
Experimental charge stability diagrams can vary significantly depending on factors like
environmental noise, device imperfection, or even the measurement technique: radio-
frequency reflectometry, for example, can return the same CSD with different noise pro-
files depending on the integration time chosen [21]. In order to build robust machine
learning based routines that work reliably on experimental data, the availability of high-
quality datasets is crucial [22]. During tuning routines of quantum dots, a large quantity
of data is produced, however, not all of this raw data is beneficial to be included in a
dataset used to train machine learning models, due to the presence of a vast amount of
noisy or non-representative samples. Therefore, the ability to systematically curate and
filter experimental data to obtain high-quality datasets is critical for the development
of automated tuning algorithms. While one could, in principle, manually label every
obtained CSD to build a high-quality dataset, this approach is prohibitively time con-
suming and labor intensive, especially considering the large amount of data needed to
train accurate machine learning models [23]. To overcome this bottleneck, a powerful
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technique consists on using an ML model trained of a small manually labeled dataset,
used to automatically classify (and therefore label) a larger raw experimental dataset [24,
25].

In this work, we first address the challenge of building high-quality experimental
quantum dot measurement datasets, by classifying CSDs based on their visual quality.
We leverage representation learning, by fine-tuning ResNet18 models to perform binary
classification, trained on a small carefully human-labeled subset of a large CSD dataset.
This allows us to efficiently build controllable high-quality CSD dataset that can be used
to train subsequent machine learning models tailored to tasks like automated tuning
routines.

Following the dataset curation, we show preliminary results on how the high-quality
dataset can be used to train diffusion models [26, 27] for reconstructing partially mea-
sured CSDs, reducing the amount of data that needs to be collected. We propose two
measurement protocols based on grid-like voltage slices, where the diffusion model com-
pletes the missing data. This marks the first application of diffusion models in exper-
imental quantum dot systems, opening up new possibilities for efficient and scalable
quantum dot tuning.

The following of the chapter consists of methods first regarding the approach of
building a high-quality CSD dataset by using a model fine-tuned on a small human-
labeled dataset, and then about the diffusion model application of inpainting CSDs to
reconstruct measurement data. Then, results are shown following the same structure,
starting with the CSD classifier, followed by the diffusion model. We finalize the chapter
with a conclusion revising the main finding and open challenges.

6.2. CSD AUTOMATED LABELING

6.2.1. CSD DATASET ACQUISITION AND CURATION

Our research begins with a large collection of approximately 120 thousand raw charge
stability diagrams measurements. Each measurement consists of a h5-structured file
with information about voltages and respective measured signal. These measurements
were obtained over a long period of time from different quantum dot devices. This in-
herent heterogeneity in the raw dataset means that image quality varies significantly,
encompassing highly resolved diagrams, noisy measurements, and incomplete or unin-
terpretable patterns. Figure 1 shows an illustration showing the data composition, la-
beled by the name of the device from which the sample comes from, and examples of
significant CSDs for selected devices.

As a first step, all files are used to build a CSD image dataset, by simply plotting all
the signals as function of the voltages, choosing image transformations and rescaling
techniques so that all figures have consistent size and color.

Then, to establish a gold standard for CSD quality, a crucial step was human labeling.
A small representative subset of approximately 4000 CSDs images was randomly selected
from the large image dataset, taking into account origin device so to have a balanced
dataset. The images were split into 4 subsets of approximately 1,000 samples, each of
which has been manually labeled by four experienced researched. The labels assigned
were clean, intermediate, and noisy, reflecting the utility of the CSD for subsequent
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tasks, based on the noise and features present. The labeling task was carried out by using
a custom GUI, that loads a CSD, give labeling options, and based on the label chosen,
saves the pair CSD-label in a text file.

6.2.2. ENSEMBLE CLASSIFIER FOR CSD QUALITY ASSESSMENT

We formulated the task of labeling CSDs as a binary classification problem: disgtinguish-
ing between “clean/intermediate” and “noisy” CSDs. Given the imbalance present in
the dataset obtained from manual labeling, and since our goal is to construct an ensem-
ble of classifiers, we constructed five balanced training datasets, each containing 540
“clean/intermediate” CSDs, this number being all the CSDs classified as clean or inter-
mediate by the labelers, and 540 “noisy” CSDs, randomly sampled from the 3523 CSDs
classified as “noisy” by the labelers. This balancing strategy mitigates the risk of the clas-
sifier becoming biased towards the majority class during training. Each of this balanced
datasets was randomly split into a training set (85%) and a validation set (15%), to track
model performance during training, using batch size equal to 64.

In order to maximally leverage representation learning power, instead of training net-
works from scratch to classify the CSDs, we fine-tuned pre-trained ResNet18 [28]. A fully
connected layer was added to each pre-trained model, connecting the number of fea-
tures output by ResNet18 to one output unit, so that the networks can perform binary
classification (0 or 1 being “noisy” and ”clean/intermediate” CSDs, respectively). Train-
ing was performed by freezing the weights of the original model, and only updating the
last layer weights, for 5 epochs, using Adam optimizer with learning rate set to 3×10−4,
and Binary Cross-Entropy as loss function. Five models were fine-tuned using the five
different training sets described in the previous paragraph, with a balanced number of
CSD per class.

The trained ensemble was then used to classify the larger, noisy, raw dataset, by em-
ploying a simple voting mechanism. For each unlabeled CSD image, all five trained mod-
els predict a logit score, from 0 to 1, representing their confidence in the image belonging
to the “clean/intermediate” class. An image was assigned the label “clean” if at least three
out of the five networks produce a logit score exceeding a predefined threshold. Specifi-
cally, we used threshold of 0.3, 0.5, 0.8, and 0.95, expecting that a higher threshold would
imply CSDs with low noise and well defined CSD image-like features, such as Coulomb
diamonds and color gradients.

6.3. DIFFUSION MODELS FOR INPAINTING CSDS
Diffusion models (DMs) are a class of generative models that iteratively transform ran-
dom noise into structured data through a process of denoising [27]. Differently from
other generative models, like variational auto-encoders or generative adversarial net-
works, DMs to do generate data directly from a latent space, but instead are trained to
reverse a gradual diffusion process, where noise is gradually added to the data until it
becomes indistinguishable from Gaussian noise.

The forward diffusion process starts with a clean data sample x0, in our case a charge
stability diagram. At each step t , a small amount of Gaussian noise is added to the sam-
ple xt−1 to get xt , and the process is repeated T times, until the final image xT consists
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of pure noise. An example of the forward diffusion process applied to a CSD is shown in
Figure.

The goal of the DM is to learn the reverse of the forward diffusion. A neural network,
usually a U-Net [29], is trained to predict the noise that was introduced at a step t : given a
noisy sample xt , the network predicts what is the noise structure that, if subtracted from
xt , would revert the sample to its less noisy version xt−1, or, in some implementations,
the final denoised image x0. After being trained, the model can be used to generate new
data by denoising a random noise sample xT over T steps, to get a clean sample x0 that
matches the distribution of the dataset used during training.

DMs can be adapted to work with conditional generation, where the denoising pro-
cess is guided by some context, given as input data together with the noisy sample [30].
This conditioning is used to build models that can generate image depending on a prompt
or increase the definition of an image given a low-resolution sample. The task of inpaint-
ing is one example of using a conditional DM, in which the goal consists of denoising
masked parts of an image given the non-masked parts. In the context of charge sta-
bility diagrams (CSDs), we treat the task of complete missing measurement data as an
inpainting problem, where masked parts of the diagram are reconstructed based on the
surrounding available data.

6.3.1. MODEL AND MASKING STRATEGY
In this work, we adapt a diffusion-based inpainting model originally developed for re-
constructing missing regions in texture, line drawing, and material images [31]. The
original model was trained using randomly erased regions that simulate the effect of an
eraser removing a stain through back-and-forth motions, resulting in irregular, stochas-
tic mask patterns.

However, our use case diverges significantly. The goal here is to accelerate the ac-
quisition of CSDs by training a diffusion model to reconstruct voltage slices from only
partially measured data. To better match this practical setting, we introduce a structured
masking scheme designed to resemble realistic experimental measurement protocols.

We propose two types of grid-like masks that simulate an experimental measure-
ment scheme with significantly reduced amount of measured data, while still providing
sufficient context for the diffusion model to infer missing values:

• Reduced Pixel Mask: In this scheme, only every m-th pixel along each spatial di-
mension is retained, while the remaining pixels are masked out. This results in a
dotted-grid pattern across the image and simulates a coarse scan of the full CSD,
significantly reducing the total number of measurements required. The mask is
generated using:

mask[0, ::reduce_factor, ::reduce_factor] = 0.0

• Line-Cut Mask: This scheme retains square regions of the CSD by masking out
horizontal and vertical stripes of configurable spacing and thickness. This sim-
ulates a measurement strategy where only selected “windows” of the image are
measured. The mask has a checkerboard-like appearance and is created by:
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Model 1 Model 2 Model 3 Model 4 Model 5
Final Train. Acc. (%) 89.06 76.56 89.06 90.62 93.75

Final Val. Acc. (%) 86.42 78.40 84.57 85.80 78.40

mask[:, max(0, top):min(h, bottom), :] = 0.0 # horizontal cuts
mask[:, :, max(0, left):min(w, right)] = 0.0 # vertical cuts

These structured masks are specifically designed to reflect plausible experimental
procedures, allowing us to train a model that can reconstruct full CSDs from significantly
fewer direct measurements. Examples of masked CSDs with the two schemes proposed
are shown in Figure.

6.3.2. EXPERIMENTS
Building on the masking schemes described above, we conduct a comprehensive grid
search over key hyperparameters to assess their effects on inpainting performance. We
test different batch size, learning rate and number of training steps, along with size of
the denoising U-Net by changing the number of channels in the convolutional layers.

We adjust the number of diffusion steps, trading off reconstruction fidelity against
inference speed, where fewer steps translate directly into faster CSD completion and
hence reduced measurement time.

Simultaneously, connecting to the work on classifying CSDs to build high-quality
datasets, we evaluate models trained on dataset obtained different classifier thresholds,
which returns CSD datasets of varying size and characteristic features: high-threshold
sets contain only the cleanest and conventional diagrams, while lower thresholds intro-
duce greater diversity and noise.

6.4. CSD CLASSIFIER PERFORMANCE AND DATASET CHARAC-
TERISTICS

The five models obtained approximate training accuracies between 75% and 93%, and
validation accuracies between 78% and 86%. Individual models’ accuracies and showed
in Table 1, and training/validation accuracy and loss as a function of training step shown
in Figure 2.

The accuracy/loss results show that each network is individually capable of classify-
ing the CSDs with high accuracy (around 80% when analyzing validation values), with
a small difference between final accuracies of each model suggesting robustness of the
training procedure. By looking at the training curve, one can infer that the models also
gradually improve (by having increasing accuracy and decreasing loss throughout train-
ing).

These individual results are important for the ensemble learning scheme, where us-
ing models together can help reducing variance and producing a more robust prediction,
but it is only benefited by the ensemble models being individually accurate.

By setting a threshold in the ensemble approach, we can generate different datasets
by filtering the 120 thousand CSDs with different levels of accuracy. As expected, we ob-



6.4. CSD CLASSIFIER PERFORMANCE AND DATASET CHARACTERISTICS

6

147

Figure 6.1: Loss (blue) and accuracy (red) for training and validation dataset as a function of training step.
Average values are showed as solid lines, with standard deviation presented as shaded area.

Figure 6.2: Visualization of 6 clean (top row) and noisy (bottom row) samples, for datasets generated using the
machine learning ensemble classifier (left) and Fourier filter (right).

served distinct patterns in the composition of the resulting dataset. A threshold of 0.95
resulted in a dataset of 593 images. As shown in Figure 3, one can see that these fig-
ures included only extremely clear CSDs, with barely any noise. Moreover, the dataset
include CSDs with very well defined features, which can be positive if one is looking
for specific patterns, but lacks diversity. Relaxing the threshold to 0.8 significantly ex-
panded the dataset to 9820 images. While still of high quality, this dataset include CSDs
with very different features from those present in the 0.95-dataset. Further reducing the
threshold to 0.5 resulted in a dataset of 28234 images, and a threshold of 0.3 pushed the
size to 34094 images. These larger datasets contained a wider variety of CSDs, includ-
ing examples with more complex configurations, and some level of noise that human
labelers might have categorized as “intermediate”, but still usable for downstream tasks.
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These results show that it is possible to systematically build datasets including CSDs
with different features by setting the threshold of the ensemble classifier. This makes the
approach more robust and appealing when comparing to filter out “noisy” CSD using
a Fourier method, for example. This last case is shown at the bottom of Figure 3, where
one can see that while the FFT is capable of picking noisy samples, some extremely noisy
CSDs are still included in the “clean” dataset.

6.5. DIFFUSION MODEL PERFORMANCE

6.5.1. TRAINING CONVERGENCE

In total, we tested 284 hyperparameters combinations, changing learning rate between
0.001 and 0.01; batch size between 4 and 512; diffusion steps between 10 and 1000, train-
ing epochs between 10 and 1000; number of channels of the inner convolutional layers
of the U-Net between 32 and 96; and training for different datasets, for threshold equal
0.95 with 100 samples, threshold equal to 0.8 and selecting 1000 samples, and threshold
0.5 and 10000 samples. By analyzing all the runs, we found that using Adam as optimizer
with learning rate equals to 0.003 returned a smooth training loss, independently of the
batch size chosen. Training for 10 steps returned poor results, and 1000 was found not
necessary to achieve good performance, so we chose to contrain training to 100 epochs.

Independently of the number of epochs and batch size, we save in total 200 models
for each training run, and call each of this saving points a training step. In Fig. 6.3 we
show results for inpainting a chosen CSD for a model saved at different training steps,
for masking using the reduction method with reduce factor equals to 5, and 100 diffu-
sion steps. We can see that the model gets progressively better at the task at each train-
ing step, with the final inpainted CSD getting less noisy throughout training. Here it is
already possible to observe that the inpainted image has an artifact at the edges, which
is a behavior present in all models trained, and will be disconsidered in the remaining of
the chapter, focusing on the “bulk” of the image, and leaving further discussions to the
conclusion section. Aside from the artifact, we can see that the result at the end of train-
ing is a successful reproduction of the original CSD, especially considering that the main
important features for tuning, the phase transitions between different charge states, are
present in the synthetic image, and that the mask used occluded 96% of the image.

6.5.2. DIFFUSION STEPS AND DATASET DEPENDENCE

Since one of the final goals of our application is to speed up the CSD measurement rou-
tine, so that more data can be collected more efficiently, the speed of the inpainting
process is important, and the number of diffusion steps drastically influences speed,
since the more diffusion steps, the more inference steps have to be run. While we first
tested using 1000 diffusion steps, training time increases drastically, without significant
improvements compared to fewer steps. Given this, we chose to focus on 10 and 100
diffusion steps. In Figures 6.4, 6.5, and 6.6, we show three examples of CSDs inpainted
using models trained for different datasets and different diffusion steps, for the reduced
mask with reduce factor equals 3 (which occludes 88% of the image), and for the line
cut mask with 4 lines and thickness equal to 8 pixels (which occludes X% of the image)
in Figures 6.7, 6.8, and 6.9. All the models were trained for 100 epochs with batch size
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Masked Train. Step: 20 Train. Step: 40 Train. Step: 60 Train. Step: 80 Train. Step: 100

Train. Step: 120 Train. Step: 140 Train. Step: 160 Train. Step: 180 Train. Step: 200 Original

Figure 6.3: Visualization of one inpainted CSD at different stages of training, accompanied by masked CSD and
original CSD.

equal to 128, Adam as optimizer and learning rate equals to 0.003, using 32 channels in
the inner convolutional layers of the U-Net.

It is visible that for both mask tested, independently of the datasets used to train
the models, 10 diffusion steps is not enough to perform high-quality denoising of CSDs
(top row in all figures). The only examples that show sufficiently clean CSDs are when
training using the dataset obtained with threshold equal to 0.8, especially for reduced
mask, like it can be seen in Figures 6.4, 6.5, and 6.6. For the line cut mask, it seems to
work for one example, in Fig. 6.7, but not for other cases (Figs. 6.8 and 6.9). This could be
improved by implementing better noise schedulers, given that for all the models tested
here, we used a simple linear decay in the noise schedule. Regardless, 100 diffusion steps
consistently return high-quality CSDs, especially for the reduced-mask case, while not
increasing drastically the inference time. For this reason, from now on, we focus the
discussion to the cases of 100 diffusion steps.

It is clear from the comparison between the masks, that it is more challenging to ob-
tain sharp and clean CSDs when using the line cut mask: while Fig. 6.7 shows a pristine
example, Figures 6.8 and 6.9 contain clear artifacts in the form of noisy squares in cer-
tain regions of the image. The reason for this contrasting results is probabily because the
example inpainted in Fig. 6.7 is part of the high-threshold filtered dataset, which contain
the main features selected by the ensemble classifier, while the cases of Figures 6.8 and
6.9 are more complex.

6.5.3. INCREASED DATA OCCLUSION
After seeing the potential of obtaining high-quality images containing phase transitions
and main features of the original CSDs, we wanted to test if the results are consistent
when increasing the percentage of occluded data, which in the experiment setting would
mean measuring fewer data to build a partial CSD and feed it to the diffusion model. In
Figures 6.10, 6.11, and 6.12, we show results for inpainting using the reduced mask with
reduce factor equals to 5, which means 96% of the original image occluded, and with the
line cut mask with 4 lines 4-pixel thick in each direction, occluding X% of the original
data. All the models diffuse for 100 steps, and were trained for 100 epochs with batch
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Figure 6.4: Result for inpainted CSDs masked using the reduce method, for models with different diffusion
steps, and trained on different datasets, generated with thresholds for the ensemble classifier.
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Figure 6.5: Same as Fig. 6.4, for a different CSD sample.

size equal to 128, Adam as optimizer and learning rate equals to 0.003, using 96 channels
in the inner convolutional layers of the U-Net.

We can see that, independently of the training set, the model returns high-quality
results, with little noise and main features of the original image recovered, when the
mask used is the reduced one, while all results for the line cut mask are very poor, with
most of the output image being noisy. Alongside the previously showed examples, this
indicates that inpainting the line cut mask is a significantly harder task than the reduced
case. This makes sense, since the context the model has available to inpaint (the non-
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Figure 6.6: Same as Fig. 6.4, for a different CSD sample.

d
if
fu
si
o
n
st
ep
so
ri
g
in
a
l

m
a
sk
ed

1
0

1
0
0

threshold/dataset

0.95 0.80 0.50

Figure 6.7: Result for inpainted CSDs masked using the line cut method, for models with different diffusion
steps, and trained on different datasets, generated with thresholds for the ensemble classifier.

occluded pixels) are sparsely distributed throughout the full image in the reduced mask
case, while the line cut mask creates larger regions of occluded data, which creates a
large distance between some of the occluded pixels and available context.

6.5.4. TIME PERFORMANCE
As mentioned before, an intended application of our approach is to implement trained
models online in experimental measurement routines, speeding up measurement time
by only measuring partial CSDs and inpainting them with the diffusion model. For this,
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Figure 6.8: Same as Fig. 6.7, for a different CSD sample.
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Figure 6.9: Same as Fig. 6.7, for a different CSD sample.

it is crucial that the inference time of inpainting one image is faster than measuring it.
Especially, the approach shows itself advantageous if considering the time to measure
the partial CSD plus the inpainting time is still (significantly) lower than performing the
measurement of the complete CSD.

For this reason, we analyze the inference time of inpainting a CSD with a diffusion
model using 100 diffusion steps, throughout different platforms. In Fig. 6.13 we show the
average inpainting time using an M1 processor, and three different GPUs: V100S, A100-
Small (A100 divided into 8 nodes) and A100, alongside with the time taken to measure
a CSD with the same number of points/pixels as the inpainted image (128 x 128), for
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Figure 6.10: Result for inpainted CSDs masked using the reduce method (top row) and line cut method (bottom
row), for models with 100 diffusion steps, and trained on different datasets, generated with thresholds for the
ensemble classifier.
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Figure 6.11: Same as Fig. 6.10, for a different CSD sample.

different integration times in RF-spectroscopy. All the GPUs take less than half the time
of measuring a full CSD using 20µs integration time, which is close to an usual value used
across different labs. This means that, , it is significantly faste to measure the partial data
and performing inpainting than to measure the full CSD. The case where inpainting is
performed using the reduced mask with reduce factor equals to 5, in which 96% of the
data is occluded, for example, means that a full measurement with 20µs integration time
would take approximately 0.3s, while measuring only 4% of the pixels and inpainting
with a A100 GPU, takes approximately 0.08s, almost a four-fold speedup. This advantage
can be even higher by using faster GPUs, and significantly improved by training models
that use 10 diffusion steps.
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Figure 6.12: Same as Fig. 6.10, for a different CSD sample.
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Figure 6.13: Running time of inpainting one CSD using different processors (bars), compared to time to mea-
sure the CSD with the same size using RF-spectroscopy with different integration times (colored lines and inset
images).

6.6. CONCLUSION
In this work, we’ve demonstrated a robust, machine learning-driven framework designed
to accelerate and enhance quantum dot experiments, specifically focusing on the critical
and often time-consuming task of tuning. Our approach addresses two key challenges:
curating high-quality experimental datasets and reducing measurement time through
data reconstruction.
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We first introduced a supervised machine learning methodology for classifying charge
stability diagrams based on their quality. By fine-tuning ResNet18 models on a small,
human-labeled subset of CSDs, we successfully built an ensemble classifier capable of
accurately distinguishing between clean and noisy CSDs. The ability to precisely control
the quality and diversity of the CSDs by adjusting the classifier’s threshold is a major step
towards developing datasets that can be used to train more robust and generalizable au-
tomated tuning models.

Building upon this high-quality dataset, we introduced the use of diffusion models
for inpainting partially measured charge stability diagrams. We use a grid-like mask-
ing strategy that emulates a measurement protocol in which only selected regions of the
original CSD are measured, and are then used as input to the diffusion model to be com-
pleted. Our results show that diffusion models can successfully reconstruct full CSDs
from significantly occluded data, particularly when using a "reduced pixel mask" that
retains sparsely distributed information across the image. While the "line-cut mask"
proved more challenging, further improvements in noise schedulers and model archi-
tectures could potentially address this. Importantly, our time performance analysis clearly
indicates that the combined time for partial data acquisition and inpainting is substan-
tially faster than measuring a full CSD, offering up to a four-fold speedup with current
hardware.
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7
ADIABATIC FINE-TUNING OF

NEURAL QUANTUM STATES

ENABLES DETECTION OF PHASE

TRANSITIONS IN WEIGHT SPACE

Neural quantum states (NQS) have emerged as a powerful tool for approximating quan-
tum wavefunctions using deep learning. While these models achieve remarkable accuracy,
understanding how they encode physical information remains an open challenge. In this
work, we introduce adiabatic fine-tuning, a scheme that trains NQS across a phase dia-
gram, leading to strongly correlated weight representations across different models. This
correlation in weight space enables the detection of phase transitions in quantum sys-
tems by analyzing the trained network weights alone. We validate our approach on the
transverse field Ising model and the J1-J2 Heisenberg model, demonstrating that phase
transitions manifest as distinct structures in weight space. Our results establish a connec-
tion between physical phase transitions and the geometry of neural network parameters,
opening new directions for the interpretability of machine learning models in physics.

The results of this chapter have been published as: V. Hernandes, T. Spriggs, S. Khaleefah, E. Greplova, “Adia-
batic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space”, Work-
shop on Neural Network Weights as a New Data Modality of the International Conference of Learning Repre-
sentations 2025 [1].
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7.1. INTRODUCTION AND RELATED WORK

The simulation of quantum many-body systems represents one of the most challeng-
ing problems in computational physics, primarily due to the exponential growth of the
Hilbert space with system size [2, 3]. Neural Quantum States (NQS) have emerged as
a promising approach, leveraging the expressive power of deep learning to represent
quantum wavefunctions [4, 5]. In this approach, neural networks serve as ansätze for
the wavefunction, mapping quantum states to their corresponding probability ampli-
tudes. While these models give very good results in ground state energy calculations [6,
7, 8, 9], it remains challenging to understand how they encode physical information.

Recent work by Rende et al. [10] introduced a fine-tuning strategy in which a net-
work pretrained near a phase transition is adapted across a phase diagram by updating
only the output layer, reducing computational costs while maintaining accuracy across
phases. Building on this idea, we investigate how phase transitions relate to the geome-
try of neural network weight space. In deep learning, various studies have explored the
structure of weight space with diverse objectives, ranging from analyzing the loss land-
scape to understand mode connectivity [11, 12], to leveraging neural network weights
as data for downstream predictions [13, 14, 15]. Meanwhile, in quantum physics, phase
transitions are traditionally characterized through order parameters and correlation func-
tions. The intersection of these fields has led to emerging research on how neural net-
works capture physical symmetries and order parameters [16, 17, 18], and how it’s possi-
ble to exploit machine learning models to learn about physical phase transitions [19, 20,
21, 22]. However, directly analyzing the weights of neural quantum states as a means of
detecting phase transitions remains largely unexplored.

In this work, we introduce a fine-tuning scheme, called adiabatic fine-tuning, that
enables systematic training of NQS across a phase diagram, leading to more accurate
models, and highly correlated weights across different models. We show that this cor-
relation can be leveraged to detect phase transitions by analyzing the PCA projection
of trained network weights alone. Applying this method to the transverse field Ising
model and the J1-J2 Heisenberg model, we demonstrate that phase transitions manifest
as distinct geometric patterns in weight space. By directly analyzing the trained network
weights, we show how the evolution of neural network parameters reflects physical fea-
tures of quantum systems, providing a new method to understand phase transitions.

7.2. METHODOLOGY

7.2.1. NEURAL QUANTUM STATE TRAINING

We trained neural networks models to approximate the quantum wavefunctions of the
systems under study. Specifically, the wavefunctions for the transverse field Ising model
(TFIM) and J1-J2 Heisenberg model were parameterized using neural networks, with the
goal of minimizing the energy of the system. We implemented a restricted Boltzmann
machine architecture with a single hidden layer, using system sizes of N = 8 spins for
the Ising model and N = 12 spins for the J1-J2 model (see Appendix C for architectural
details). In this study, we focus on small system sizes for which we can compute the exact
wavefunction, allowing direct comparison to known results.
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7.2.2. TRANSVERSE FIELD ISING MODEL
The TFIM in one dimension is defined by the Hamiltonian:

Ĥ =−J
∑

i
σz

i σ
z
i+1 −h

∑
i
σx

i , (7.1)

where J is the interaction strength between neighboring spins, and h is the external
transverse magnetic field. This model exhibits a quantum phase transition from a fer-
romagnetic to a paramagnetic phase at the critical field value |hc /J | = 1

7.2.3. J1-J2 HEISENBERG MODEL
The 1D J1-J2 model is described by the Hamiltonian:

Ĥ = J1
∑

i
Si ·Si+1 + J2

∑
i

Si ·Si+2, (7.2)

where Si represents the spin operator at site i , and J1 and J2 define the nearest and next-
nearest neighbor interactions, respectively. This model exhibits several distinct mag-
netic phases depending on the ratio J2/J1.

7.2.4. MODEL PERFORMANCE METRICS
The performance of our model in obtaining the correct ground state is assessed by cal-
culating the energy error and infidelity. The energy error, defined as |ENQS−Eexact|, quan-
tifies the deviation of the neural network-estimated energy from the exact ground state
energy. The infidelity, given by 1− |〈ψexact|ψNQS〉|2, measures the discrepancy between
the trained and exact wavefunctions, with lower values indicating better overlap.

7.2.5. FINE-TUNED TRAINING STRATEGY
To explore the structure of weight spaces across phase transitions, we employ two dis-
tinct training strategies. The first approach is independent training. In this method,
each model is initialized randomly and trained separately for each value of the control
parameter, h (for the Ising model) or J2/J1 (for the J1-J2 Heisenberg model). This strategy
allows us to study how the model weights evolve when trained independently for each
specific parameter setting. It serves as a baseline for understanding how weight space
behaves when there is no continuity between parameter values.

The second approach we call adiabatic fine-tuning. In this case, we initialize each
new model using the weights of a previously trained model from the neighboring point
in the phase diagram. This ensures continuity in the evolution of model parameters,
creating a smooth trajectory through weight space that reflects the gradual changes in
the underlying quantum system. Fine-tuning allows us to capture the relationship be-
tween the geometry of weight space and physical phase transitions in a more connected
and coherent manner. By comparing the results from fine-tuned training to those from
independent training, we can identify phase transitions as distinct features in the neu-
ral network parameter evolution, revealing the structural nature of weight spaces across
these transitions.

This fine-tuned training strategy creates a connected trajectory in weight space, which
resembles the concept of mode connectivity observed in deep learning. The continuity
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in parameter evolution provided by fine-tuning enables us to detect phase transitions
in quantum systems as sharp, discernible features in the progression of the network pa-
rameters.

7.2.6. PRINCIPAL COMPONENT ANALYSIS OF WEIGHTS

After training the models, we analyze the resulting weight vectors by performing princi-
pal component analysis (PCA). This dimensionality reduction technique identifies the
dominant directions in weight space and helps reveal how the weights evolve as the
quantum system’s control parameters change.

7.3. RESULTS

7.3.1. TRANSVERSE FIELD ISING MODEL
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Figure 7.1: Results for the Ising model. From top to bottom the rows show: the energy error over the first
two training iterations, the last energy error values for each value of h, the infidelity values, and the principal
component analysis of the weights. From left to right columns show the case of independent training, and
fine-tuning models starting from h = 0.0, and h = 3.0. The colorbar represents the value of h.

Our analysis of the transverse field Ising model reveals a clear correspondence be-
tween the known quantum phase transition at hc = 1 when J = −1 and features in the
weight space trajectory. The first principal component shows a pronounced minimum
at the critical point, providing a direct signature of the transition from the ferromagnetic
to paramagnetic phase, as shown in Figure 7.1.

The energy plots in the top row of Figure 7.1 reveal a key difference between indepen-
dent training and fine-tuning strategies. In the case of independent training, each model
starts at an arbitrarily high energy and gradually converges to a lower value. In contrast,
fine-tuning ensures that the energy at the beginning of a new training run is already close
to the final energy of the previous one. This continuity in the optimization process sug-
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gests that fine-tuned training preserves learned features from previous models, leading
to a smoother transition through the phase diagram. Additionally, examining the second
and third rows of the figure, we see that the final energy and infidelity values remain close
for consecutive fine-tuned runs, except for lower values of the field h, where deviations
become more pronounced.

7.3.2. J1-J2 HEISENBERG MODEL
In the J1-J2 model, our method successfully identifies the change in the system’s struc-
ture at J2/J1 = 0.5, appearing again as a minimum in the first PCA component, as shown
in the bottom row of Fig. 7.2.
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Figure 7.2: Results for the J1-J2 model. From top to bottom the rows show: the energy error over the first two
training iterations, the last energy error values for each value of J2/J1, the infidelity values, and the principal
component analysis of the weights. From left to right columns show the case of independent training, and
fine-tuning models starting from J2/J1 = 0.0, and J2/J1 = 1.0. The colorbar represents the J2/J1 ratio.

The J1-J2 model exhibits the same trends in energy evolution, final energy values,
and infidelity as observed in the Ising model, as shown in the top three rows of Figure
7.2.

7.4. DISCUSSION AND CONCLUSIONS
Our work establishes a novel connection between phase transitions in quantum systems
and the geometry of neural network weight spaces. The success of our method in detect-
ing known phase transitions suggests that neural networks encode physically meaning-
ful information in their weights in a structured and analyzable way.

This finding has several important implications. First, it provides a new tool for
studying quantum phase transitions that doesn’t require explicit construction of order
parameters or prior knowledge of the relevant physical observables. Second, it offers in-
sights into how neural networks encode physical information, this can be seen from the
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change in the behavior of the network’s weights across the phase transition.
Future directions include extending this analysis to more complex quantum systems

and investigating whether adiabatic fine-tuning can be applied to other domains where
neural networks model systems with phase transitions or structural changes. The con-
nection to mode connectivity in deep learning also suggests potential applications in
understanding the loss landscapes of neural networks more generally.

7.5. ENERGY FOR ALL MODELS
Figures 7.3 and 7.4 show the energy error as a function of training steps for all values
of the control parameters in both models. These plots highlight how the adiabatic fine-
tuning strategy maintains lower initial energy errors compared to independent training,
demonstrating the advantage of leveraging previously trained weights for improved con-
vergence.
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Figure 7.3: Energy error as a function of training step for all values of h in the TFIM model.
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Figure 7.4: Energy error as a function of training step for all values of J2/J1 in the J1-J2 model.

7.6. PCA VISUALIZATIONS
Further visualizations of the principal component analysis projections for both models
are shown in Figure 7.5. The scatter plots and 3D visualizations provide a clearer under-
standing of how weights for models trained with different values of h (Ising model) and
J2/J1 (J1-J2 model) show strong correlation, forming a helix structure when projected in
PC space. The existence of a similar pattern for different systems suggests that the fine
tuning training scheme results in universal properties to be investigated in future work.
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Figure 7.5: Scatter plots and 3D visualizations of PCA projections of the weights of neural networks trained for
different values of h in the case of the Ising model (first row), and for different values of J2/J1 in the case of the
J1-J2 model (second row). From left to right, columns show PC1 vs PC2 space, PC2 vs PC3 space, PC1 vs PC3
spaces, and the 3D PCA projection. The colorbars to the right indicate the corresponding parameter values for
each model. The phase transition point for all images is represented by the divergence of the colormap, shown
in white.

7.7. NETWORK ARCHITECTURE AND TRAINING DETAILS

Table 7.1: Training hyperparameters

Parameter Ising Model J1-J2 Model
Learning rate 0.01 0.01
Training steps 200 200
System size (spins) 8 12
Hidden layer ratio (α) 1 2
Coupling increment (∆h or ∆J2/J1) 0.025 0.01
Coupling range [0,3] [0,1]
Network weights type Real Complex

Our neural network architecture consists of a restricted Boltzmann machine (RBM)
with a single hidden layer using logcosh activation function, implemented as follows:

ψ(x) =∑
i

logcosh(Wi x +bi ) (7.3)

where Wi represents the weights connecting the input to the hidden layer, and bi are
the bias terms. The number of neurons in the hidden layer is determined by αN , where
N is the number of input neurons (spins) and α is the hidden layer ratio. For the Ising
model, we used real-valued weights, while for the J1-J2 model, we employed complex-
valued weights (with PCA performed on the real components only). Hyperparameters
used to trained models for both systems are shown in Table 1.
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8
OUTLOOK

This chapter explores some possible future directions emerging at the intersection of ar-
tificial intelligence and nanoscience, building upon the advancements presented in the
thesis.
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8.1. NQS-ASSISTED QUANTUM STATE RECONSTRUCTION
Neural quantum states (NQS) provide a powerful ansatz to approximate many-body wave
functions. We saw in Chapter 7 that it is possible to fine-tune neural networks across a
phase diagram of a quantum system, and detect where the phase transition happens
purely by analyzing the weights of the trained networks. A natural direction of this work
involves testing the technique for more complex systems than the one-dimensional trans-
verse field Ising model (TFIM) , such as two-dimensional systems, fermionic systems,
and systems that exhibit topological phase transitions. Furthermore, while principal
component analysis provided effective for detecting the phase transition in the example
of the TFIM, more sophisticated techniques from the weight-space learning literature [1,
2] could be implemented to obtain a more robust and systematic phase transition de-
tection algorithm, like training a different neural network to classify the system’s phase
based on the weights of the NQS models.

A different framework in which NQS are increasingly being utilized is quantum state
tomography (QST), which consists in the reconstruction of quantum states from experi-
mental measurements [3]. In quantum computing, accurately characterizing a quantum
state as the number of qubits grows quickly becomes an untractable task, due to the ex-
ponential scaling of the Hilbert space with the system size. To circumvent this, strategies
such as classical shadow tomography, which employs random measurement protocols
and classical post-processing to efficiently estimate observables, have been developed
[4]. Alternatively, one can use a specific ansatz to approximate a quantum state based
limited experimental data.The fitted ansatz can then be used to generate new samples or
predict properties of the full quantum state by efficiently estimating observables. Early
explorations in this domain have utilized tensor networks, and, more recently, NQS [5,
6].

The first work to propose NQS for QST implemented an RBM to fit ground-state
wavefunction and dynamical states for simulations of up to 100 qubits [5]. Following
works cleverly adapted this protocol so that a product of single-qubit Positive Operator-
Valued Measures (POVMs) is used to train the RBM, and also tested an RNN as the NQS
neural network architecture [7]. This combination of methods was coined POVM-NQS
and it was applied to reconstruct states like GHZ, and states of spin models in one and
two dimensional lattices. One clear advantage of reconstructing states using NQS lies
in their ability to efficiently calculate observables of the system that would otherwise
necessitate an prohibitively large number of measurements. This capability was im-
plemented by Torlai and collaborators for quantum chemistry Hamiltonians [8]. Later,
Iouchtchenko and collaborators have further investigated the aspect of sample complex-
ity, assessing the number of independent measurements required to reproduce system
properties like energy or fidelity within a given accuracy [9]. More recently, the sam-
ple complexity for the specific case of POVM-NQS for mixed-state reconstruction has
been explored in depth [10]. Simultaneously, the field has seen the implementation of
transformer-based NQS architectures for reconstructing the states of experimental Ryd-
berg atom systems [11], demonstrating the versatility and power of these advanced neu-
ral network designs in real-world quantum experiments.

A possible future direction, bridging the approach introduced in Chapter 7 with this
experimental NQS setting, is implementing weight-space learning techniques to NQS
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models trained on experimental data. This could be used to try to extract features of
the reconstructed quantum state form the weights of the ansatz alone, of even to assess
properties of the system without the need of calculating observables.

Another significant path for future research involves a deeper understanding of the
energy landscape of NQS models. A more comprehensive knowledge of this landscape
could guide the design of more tailored and efficient NQS architectures. Recently, groups
interested in restricted Boltzmann machines (RBMs) as NQS ansatzes have started ap-
plying physically-informed tools to investigate their landscape properties [12]. Our plan
is to employ techniques from the broader machine learning literature on visualizing loss
landscape and training dynamics [13, 14, 15], to gain deeper insight into how NQS learn
to represent complex quantum states. In Chapter 7 we demonstrated that there is a clear
mark of the phase transition in the principal components of the weights of trained NQS;
understanding how the weights evolve for different physical regimes, depending features
of the energy landscape, such as curvatures or the presence of valleys, could provide a
powerful tool to study physical systems of interest. This knowledge can be exploited to
design optimal training strategies that depend on features of the physical system, and as
a probe to gain deeper knowledge about quantum models.

8.2. QUANTUM-ASSISTED COMPUTATIONAL NEUROSCIENCE

In Chapter 2 we introduced the use of quantum generative adversarial networks (QGAN)
to generate synthetic neuronal activity data, and believe this intersection between quan-
tum computing and computational neuroscience is a fertile ground for scientific ad-
vancements. While the statistical fit showed by this approach is not on par with classical
counterparts, we argued that the latter needs to development of tailored architectures
that exploit symmetries of neuronal data, while our quantum model achieved significant
results using a general architecture with a reduced number of parameters. One straight-
forward expansion of this work consists in implementing more efficient and easily train-
able quantum machine learning models, and verify if including symmetries improve the
statistical fit to a level close to that obtained when using classical machine learning mod-
els. Developing a model that achieves this while maintaining a low number of trainable
parameters would significantly improve the practical utility of quantum techniques in
neuroscience.

Another direction consists in using quantum models to generate synthetic that is
considerably more complex than the salamander retina dataset, which is often consid-
ered a simplistic benchmark. This include datasets similar to that used in Chapter 4: an
experimental dataset with intricate spatio-temporal features, like network bursts. Here,
an opportunity to integrate Chapter 3 and Chapter 4 is also present: one could use the
autoMEA tool to predict burst activity within synthetic data generated by a quantum
model. This cross-validation, comparing predictions on synthetic quantum-generated
data with results from experimental data, would serve as a powerful method to validate
the accuracy of quantum generative models in capturing complex neuronal phenom-
ena.
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8.3. AI-ASSISTED CSD MEASUREMENT
The characterization and tuning of quantum dot devices is a crucial step in experimental
quantum computing, but comes with several challenges, from the scalability of controls
with system size, to the necessity of a human-operator in the tuning loop. In Chapter 2
we introduced QDSim, a computationally efficient simulator of synthetic charge stability
diagrams (CSD), based on device specification and geometry. In Chapter 6, we presented
a machine learning based technique to build high-quality CSD datasets, and a diffusion
model application to reconstruct full CSDs based on partial measurements. Integrating
ideas from both chapter open several scientific directions.

One possible path is to run several simulations using QDSim, for systems with differ-
ent device features, changing geometry (quantum dot and gate positions) and physical
properties (dots and gate capacitances), and classify the outcome using the ensemble-
classifier. This technique could be interpreted as a filter of device features that return
CSDs indicative of well-formed quantum dots, assisting in device design.

Another promising approach is to train diffusion models trained on QDSim gener-
ated data. We showed that the ensemble classifier, depending on the threshold used,
can filter CSDs with different features, such as specific charge transitions. This allows
a strategy where QDSim is used to generate CSD with very specific features, which can
then be utilized to enhance the training of the diffusion models. For example, if exper-
imental data for CSDs with certain features are rare or scarce, QDSim could be used to
create a synthetic dataset that exhibit these features. This targeted data augmentation
would allow diffusion models to learn a more robust representation of the CSD manifold,
improving their ability to accurately inpaint or complete CSDs even under challenging
experimental conditions.
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9
CONCLUSION

This thesis constitutes an interdisciplinary exploration of the power of artificial intelli-
gence when applied to diverse domains within nanoscience. This work not only signifi-
cantly contributes to the development of methodologies that increase our understand-
ing of physical and biological systems, but also streamline the processes of experimental
analysis and device tuning. The overall topic has been to build strong connections be-
tween theoretical models and empirical observations, using artificial intelligence as a
unifying tool.

In the domain of computational neuroscience, we obtained significant advancements
by implementing a quantum machine learning approach to model neuronal activity, and
an AI-assisted experimental data analysis routine. In Chapter 3, we showed how quan-
tum generative adversarial networks can be used to generate synthetic neuronal activity
data. While early-stage, this work highlighted the potential of quantum approaches to
capture intricate statistical correlations in neural data with potentially fewer parameters.
Chapter 4 presented autoMEA, an AI-driven solution for the automated and robust de-
tection of neuronal bursts in complex multi-electrode array recordings. This tool signif-
icantly reduces manual labor time, providing a pipeline for analyzing high-dimensional
data.

In the context of quantum device characterization and tuning automation, this the-
sis delivered state-of-the-art tools and methodologies for advancing the capabilities of
quantum computing hardware. Chapter 5 introduced QDSim, a computationally effi-
cient simulator designed for generating synthetic charge stability diagrams (CSDs) of
quantum dot devices. This simulator offers a critical resource for exploring vast design
spaces and generating training data for machine learning models. Chapter 6 demon-
strated the power of advanced deep learning techniques, including ensemble classifiers
for CSD filtering, and diffusion models for inpainting missing data within CSDs. The de-
veloped AI models offer a path towards more autonomous and efficient quantum device
tuning, mitigating the time-consuming and expertise-intensive manual procedures that
currently limit scalability.

On the subject of condensed matter physics, this thesis demonstrated a significant
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contribution to the field of neural quantum states (NQS). We showed how to expand
the utility of NQS, from an efficient ansatz to represent quantum wavefunctions, to a
tool to study the underlying physics of the simulated systems. In Chapter 7, we showed
an approach where NQS, when trained in an adiabatically fine-tuning scheme, enabled
the detection of quantum phase transitions by analyzing the evolution of their weight-
space trajectories. This methodology provides a computationally efficient alternative to
traditional order parameters, offering a new perspective on phase detection.

In summary, this thesis demonstrates that artificial intelligence is not only a sup-
plementary tool but a fundamental paradigm shift for nanoscience. By providing new
computational techniques for studying complex quantum systems, developing analy-
sis and simulations frameworks for large-scale neuroscience data, and introducing ef-
ficient methods for quantum device characterization and tuning, this work showcases
connections between theoretical and experimental frameworks in diverse nanoscience
domains.



ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor, Eliška. You have truly built an inclu-
sive research group where everyone feels welcome and heard. Your ability to propose
and manage such diverse research topics demonstrates a broad knowledge and deep
scientific curiosity, which inspire young researchers to strive for a more equal and fair
academic environment.

I would also like to thank my co-promotor, Ronald, and the committee members
Juan, Anna, Menno, Leo, and Herre for agreeing to evaluate my thesis and for engaging
in a fruitful scientific discussion.

Then I would like to thank my paranymphs, Rouven and Tom. Thank you for accept-
ing to be there and helping me with the defense. I’m even more grateful for the projects
we are developing together, and for the constant laughs during lunch and at bar tables
after work.

I would also like to thank all my collaborators and colleagues. Special thanks to Arash
and Jin, who welcomed me into the group when I arrived in the Netherlands in the mid-
dle of the pandemic. You made my adaptation to a new university and country much
easier, and passed along the values and camaraderie of QMAI.

I’m deeply grateful to all the students I supervised: Maia, Charles, Valentina, Aram,
Antón, Yicong, and Bianca. I learned much more by supervising you than you learned
from me. Thank you for that opportunity.

I could not forget to mention the other members who were and are part of QMAI:
Jan, Tanko, Naoual, Achmed, Ignacio, Genya, Mohammed, Cagan, Sibren, Stan, Sam,
Saqar, Joey, Varsha, Ana, and Dima - you all contributed to making the group more di-
verse, welcoming, and fun. And also the other colleagues from the department: José,
Bowy, Julien, Pietro, Klaiv, and Toshi. I will always remember the two-hour lunch
breaks and all the beers we had sitting at the corner table at Doerak.

Big thanks to my bionanoscience and neuroscience collaborators: Anouk, Dimphna,
and Geeske. It was an enriching experience to work on a project so far from my comfort
zone; I learned a lot, and hopefully you did too.

People always say that when you live abroad, your friends become your family, and
that couldn’t be truer. I want to thank all my friends who became family in Delft and
Rotterdam, many from the Brazilian community, whose warmth made the Netherlands
truly feel like home.

Também queria agradecer minha família, que levo no coração e sinto saudade todos os
dias. Pai e Mãe, seria impossível chegar até aqui sem o suporte de vocês, que sempre
acreditaram em mim e me deram tudo o que precisei para poder focar nos estudos. A
escolha de morar fora é sempre difícil, mas é extremamente confortante saber que toda
vez que vou de férias pro Brasil tenho tantas pessoas que amo me esperando. Também

177



178 ACKNOWLEDGMENTS

foi inestimável ter parte da família morando no mesmo continente: Tio André, Tia Da-
iane, Sofia e Giovanni, obrigado pelas férias que passamos juntos e por estar sempre
presentes.

Meus amigos de Pelotas são amigos que levarei para a vida toda, que, ajudaram a
formar minha personalidade e minha visão de mundo. Queria citar em especial o Bruno,
que quando eu vim morar em Delft estava começando o mestrado em Haia. Já ter um
amigo aqui quando cheguei foi um privilégio que não todos têm, e provavelmente eu
teria desistido se não fosse pela tua ajuda.

Por fim, eu gostaria de agradecer ao amor da minha vida, Paola, por ser minha eterna
parceira e amiga. É difícil colocar em palavras o quanto és importante pra mim. Obri-
gado por tudo - por me apoiar antes e durante essa jornada, por ter mudado radical-
mente de vida e vindo pra outro país comigo, por estar junto em todos os momentos,
bons e ruins. Nada parece incerto no futuro sabendo que estaremos juntos. Te amo
muito.



CURRICULUM VITÆ

Vinicius FONSECA HERNANDES

2021–2025 Ph.D, Physics
Delft University of Technology, Delft, The Netherlands
Thesis: Bridging simulation and experiment in nanoscience with AI
Promotor: Ronald Hanson
Co-Promotor: Eliska Greplova

2020–2021 Master of Science, Physics
Universidade Federal de Pelotas, Pelotas, Brazil
Thesis: Applied machine learning to phase classification of soft matter systems
Advisor: Jose Rafael Bordin

2016–2019 Bachelor of Science, Physics
Universidade Federal de Pelotas, Pelotas, Brazil

30-12-1096 Born in Pelotas, Brazil

179





LIST OF PUBLICATIONS

10. V. Hernandes, T. Spriggs, S. Khaleefah, E. Greplova, Adiabatic Fine-Tuning of Neural Quan-
tum States Enables Detection of Phase Transitions in Weight Space, arXiv:2503.17140 (2025).

9. V. Gualtieri, C. Renshaw-Whitman, V. Hernandes, E. Greplova, QDsim: A user-friendly tool-
box for simulating large-scale quantum dot devices, SciPost Physics Codebases 046 (2025).

8. V. Hernandes, A. M. Heuvelmans, V. Gualtieri, D. H. Meijer, G. M. Woerden, autoMEA: Ma-
chine learning-based burst detection for multi-electrode array datasets, Frontiers in Neuro-
science 18, 1446578 (2024).

7. V. Hernandes, E. Greplova, Exploring biological neuronal correlations with quantum gener-
ative models, Cell Reports Physical Science 6, 8 (2025).

6. V. Hernandes, E. Greplova, Modeling Neuronal Activity with Quantum Generative Adversar-
ial Networks, 2023 IEEE International Conference on Quantum Computing and Engineer-
ing (QCE)(2023).

5. A. R. das Neves Stigger, V. F. Hernandes, M. M. Ferrer, M. L. Moreira, Optical and electri-
cal features of calcium molybdate scheelite solar cells, New Journal of Chemistry 47(26),
12458–12467 (2023).

4. V. F. Hernandes, M. S. Marques, J. R. Bordin, Phase classification using neural networks:
application to supercooled, polymorphic core-softened mixtures, Journal of Physics: Con-
densed Matter 34(2), 024002 (2021).

3. D. S. Cardoso, V. F. Hernandes, T. P. O. Nogueira, J. R. Bordin, Structural behavior of a two
length scale core-softened fluid in two dimensions, Physica A: Statistical Mechanics and its
Applications 566, 125628 (2021).

2. M. S. Marques, V. F. Hernandes, J. R. Bordin, Core-softened water–alcohol mixtures: the
solute-size effects, Physical Chemistry Chemical Physics 23(30), 16213–16223 (2021).

1. M. S. Marques, V. F. Hernandes, E. Lomba, J. R. Bordin, Competing interactions near the
liquid-liquid phase transition of core-softened water/methanol mixtures, Journal of Molecu-
lar Liquids 320, 114420 (2020).

181

https://arxiv.org/abs/2503.17140


77668-os-Hernandes77668-os-Hernandes77668-os-Hernandes77668-os-Hernandes


	Summary
	Samenvatting
	Introduction
	Simulation as a technique to solve scientific problems
	Experiments in Nanoscience: from Quantum Computing to Neuroscience
	Simulation - Experiment Synergy
	AI for Nanoscience
	Thesis Outline
	Author's Contributions

	Background
	Artificial Intelligence Basics
	From Neurons to Deep Learning
	Machine Learning Paradigms and Main Architectures
	Generative Learning, Autoencoders, and Diffusion Models

	Simulation and Analysis of Neural Activity
	Biophysical neurons
	Spike Trains: Maximum Entropy Models and Machine Learning

	Quantum Computing with Quantum Dots
	Qubits, Gates, and Quantum Circuits
	Spin Qubits and Charge Stability Diagrams
	Operating Quantum Dots

	Machine Learning on Quantum Computers
	Quantum Machine Learning
	Quantum Generative Learning

	Neural Quantum States
	Variational Ground States
	NQS: Variational and Full-Sum States
	The Restricted Boltzmann Machine
	Finding Physics in Neural Networks


	Exploring Biological Neuronal Correlations with Quantum Generative Models
	Introduction
	Results
	Distributional Similarity Between Generated and Real Data
	Statistical Analysis of Generated Activity
	Spike Train Comparison with Biological Data

	Discussion
	Methods
	Generative Adversarial Networks
	Parametrized Quantum Circuits and Quantum GANs
	Implementation of the Quantum Generator and the Classical Critic
	Training Procedure
	Dataset and Evaluation Metrics

	Supplementary Material
	Supplemental Notes
	Supplemental Figures


	autoMEA: Machine learning-based burst detection for multi-electrode array datasets
	Introduction
	Results
	Machine learning models
	Validation of parameter detection
	Validation of phenotype detection

	Discussion
	Methods
	MEA data collection
	Machine-learning automation
	Model validation
	Statistics

	Supplemental Text
	Models' architecture and hyperparameters
	autoMEA full analysis method
	Supplementary figures


	QDsim: A user-friendly toolbox for simulating large-scale quantum dot devices
	Introduction
	Formulation of the electrostatic model: charge stability diagrams
	Derivation of the Constant-Capacitance Model Energy Equation
	Ground States and Coulomb Polytopes in V-Space

	QDsim package
	The quantum dot device class: QDDevice
	The simulator class: QDSimulator
	The powerhouse of the package: the CapacitanceQuantumDotArray class

	Examples
	The double dot device
	The crossbar 4x4 shared control device
	Custom Device Configuration

	Performance Evaluation and Constraints
	Conclusion

	Machine Learning for Quantum Dot Experiments: From Dataset Curation to Measurement Completion
	Introduction
	CSD Automated Labeling
	CSD Dataset Acquisition and Curation
	Ensemble Classifier for CSD Quality Assessment

	Diffusion Models for Inpainting CSDs
	Model and Masking Strategy
	Experiments

	CSD Classifier Performance and Dataset Characteristics
	Diffusion Model Performance
	Training Convergence
	Diffusion Steps and Dataset Dependence
	Increased Data Occlusion
	Time Performance

	Conclusion

	Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space
	Introduction and Related Work
	Methodology
	Neural Quantum State Training
	Transverse Field Ising Model
	J1-J2 Heisenberg Model
	Model Performance Metrics
	Fine-tuned Training Strategy
	Principal Component Analysis of Weights

	Results
	Transverse Field Ising Model
	J1-J2 Heisenberg Model

	Discussion and Conclusions
	Energy for all models
	PCA Visualizations
	Network Architecture and Training Details

	Outlook
	NQS-Assisted Quantum State Reconstruction
	Quantum-assisted Computational Neuroscience
	AI-assisted CSD Measurement

	Conclusion
	Acknowledgments
	Curriculum Vitæ
	List of Publications

