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Nomenclature

Symbol Description
λ Scale parameter
κ Shape parameter
ti Observed lifetime

ti0, ti1 Interval limits for interval-censored lifetimes
δRi, δIi Indicator variables for right- and interval-censoring

θ Parameter vector in multi-parameter models
H Hessian matrix
∇L Gradient vector of the log-likelihood function
C Censoring time

S(t;λ) Survival function
f(t;λ) Probability density function
F (t;λ) Cumulative distribution function

Ti Actual lifetime
H0 Null hypothesis
H1 Alternative hypothesis
F Distribution under consideration
F0 Specified distribution for comparison
n Group size of components
δi Indicator variable for censoring
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1 Introduction

The Netherlands is uniquely vulnerable to flooding due to its low-lying geography, with
nearly half of its landmass situated below sea level [20]. This geographical challenge
has led to the development of specialized flood defense systems. Among these, storm
surge barriers hold a pivotal role. These barriers, which were introduced following the
catastrophic 1953 flood in the province of Zeeland as part of the Deltaplan [21], are
designed to be both flexible and robust. They remain open to allow for the regular
flow of water and maritime navigation but can be closed promptly when a storm surge
poses a flooding risk.

The reliability of these closures is critical for the effectiveness of storm surge barriers.
For instance, a study on the Hollandsche IJsselkering (HIJK) demonstrated that the
expected water levels behind the barrier are significantly influenced by the reliability
of its closure [26]. A reliable closure reduces the expected water level and thereby the
risk of flooding. Conversely, if the barrier is less reliable, the flood risk increases.

The Probabilistic Operation, and Maintenance (ProBO) framework is essential for
maintaining closure reliability in storm surge barriers [2]. Initially developed for the
Maeslant barrier, the ProBO method employs rigorous risk analysis techniques, bor-
rowing from high-safety sectors like nuclear power [12]. This approach relies on detailed
risk models that utilize fault or event trees, and incorporate various failure data such
as human errors, software issues, component defects, and external events like lightning
strikes [31]. A key principle in the implementation of ProBO at storm surge barriers
is the assumption of component failure rates remain constant over time, provided that
regular preventive maintenance is conducted [2, 32].

The risk analysis methodology supporting ProBo exhibits limitations in its approach
to estimating failure rates of storm surge barriers [31]. Specifically, while it employs
Bayesian updates to fine-tune failure rate estimates, it holds the assumption that com-
ponent failure rates are constant in time. This static assumption tends to overlook
potential variations in component failure rates. If these rates increase, the closure reli-
ability of the barrier decreases. Neglect of the dynamic nature of these rates could lead
to underestimation of expected water levels behind the barrier. Conversely, a reduc-
tion in failure rates may result in overly conservative reliability estimates. Therefore,
examining the potential variation in component failure rates over time is a crucial area
of research for enhancing flood risk management practices.

The central research question of this thesis is: Is the assumption of constant failure
rates in time for storm surge barriers valid?

To address this question, the thesis will explore:

1. Does existing literature challenge the assumption of time-constant failure rates
in storm surge barriers?

2. Is there empirical data that can be used to assess variations in storm surge barrier
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failure rates over time?

3. How can statistical methods be applied to this data to evaluate the assumption
of constant failure rates?

4. Does a time-variable failure rate model provide a statistically better fit to the
existing data than a constant rate model?

Chapter 2: Literature Review on ProBO Method and Dynamic Reliability
This chapter starts with an introduction to the ProBO methodology as it is currently
applied to assess the reliability of storm surge barriers. It then identifies and discusses
any shortcomings in this methodology, particularly focusing on whether it assumes
constant failure rates. The chapter ends by reviewing evidence in the literature that
suggests the possibility of time-varying failure rates. This structured approach aims
to answer the first research sub-question.

Chapter 3: Data Description and Pre-processing
This chapter is dedicated to addressing the second research sub-question. It begins by
describing the dataset used in the thesis: its source, types of data, and characteristics.
The chapter then details the steps taken to prepare and pre-process this data, including
any cleaning, transformation, or coding required. Lastly, it discusses how the prepared
data is structured to be suitable for the subsequent statistical analysis.

Chapter 4: Development of Statistical Framework for Failure Rate As-
sumptions
This chapter addresses the third research sub-question by establishing the statistical
methods and framework for evaluating failure rate assumptions. The chapter details
the criteria for selecting appropriate statistical models and introduces the goodness-
of-fit metrics that will be used for model evaluation.

Chapter 5: Empirical Evaluation of Failure Rate Assumptions
Building upon the framework developed in Chapter 4, this chapter addresses the fourth
research sub-question. It begins with the application of two distinct models to the
available data: one model assumes constant failure rates, while the other allows for
variability. The chapter concludes by employing the previously introduced goodness-
of-fit metrics to compare the fit of these two models. The results are then discussed to
determine whether a time-variable failure rate model provides a statistically superior
fit to the data.

Chapter 6: Discussion, Conclusion, Contribution and Recommendations
In the final chapter, findings from earlier chapters are synthesised to address the key
research question: Does a time-variable failure rate model provide a statistically better
fit to the existing data than a constant rate model? This chapter offers a discussion,
the conclusion, contributions, the recommendations, and proposed future research.
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2 Current Methods, Limitations, and Literature Re-
view on Failure Rate Assessment

In this chapter, the current methods to assess the closure reliability of storm surge
barriers are discussed. First, an overview of the current approach is provided. Second,
the limitations of this approach are discussed.

2.1 Current Methodologies for Analyzing Closure Reliability
in Dutch Storm Surge Barriers

The risk models employed in ProBO are grounded in Performance-based Risk Analy-
sis (PRA) methodologies The PRA methodology can be applied to ensure that Dutch
storm surge barriers meet the essential criteria for Reliability, Availability, Maintain-
ability, and Safety (RAMS) [19]. The PRA is a detailed analytical method involving
techniques such as fault trees to pinpoint risks affecting barrier reliability [2]. For crit-
ical infrastructure like storm surge barriers, the PRA offers a quantitative assessment
of reliability, resulting in a conservative performance evaluation [2, 19].

The initial step in evaluating the closure reliability of a storm surge barrier is setting
a failure rate requirement, serving as a benchmark for reliability assessments [19]. For
example, the Maeslant Barrier is mandated by Dutch Water Law to at least have a
failure probability of 1 in 100 for each individual closure operation [1]. Subsequently,
a functional and system analysis is conducted to map the system and identify the
essential subsystems required for its intended operation [31]. This analysis includes
factors like external events, human actions, and hardware and software components
that may affect performance [19].

In the evaluation of storm surge barrier reliability, qualitative risk analysis serves
to pinpoint failure modes and assess their consequences [19]. A failure mode is a
specific way in which the system can fail; for example, a hardware malfunction that
prevents the barrier from fully closing and allows water to pass through. Tools like
Failure Mode and Effect Analysis (FMEA) provide a detailed breakdown, extending
to individual mechanical and software components [31]. The SVKO case underscores
this granularity by identifying failure modes associated with solenoids.

For a more nuanced risk assessment, fault tree analysis (FTA) is employed [19]. FTA
delineates the combinations of failure modes, such as hardware malfunctions, that can
culminate in a closure failure. Additionally, FTA offers quantification of the primary
failure event [31], thus serving as a multi-faceted risk assessment tool.

Building on the qualitative risk analysis, quantitative risk models like fault trees are
used to determine likelihood of a storm surge barrier failing to close [31]. Figure 1
presents an example of a fault tree quantitative risk model for the failure to close of a
storm surge barrier. These types of quantitative models incorporate failure probabili-
ties of components or events, and use Boolean algebra to calculate the probability of
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the primary failure event. The sources for the failure probabilities used in the quan-
titative analysis can include performance statistics from manufacturers or component
reliability databases. When existing data are not sufficient, expert estimates are used
to complete the analysis [31].

Figure 1: Fault tree depicting the failure to close of a hydraulic system consisting of two
sets of doors. The failure modes that could result in the failure of the system are both the
first and second set of doors failing. A set of doors fails when one of the doors fails. The
failure probability is presented by P . Since the failure of one door has probability P , the
failure probability of a set of doors is 2P . The system only fails if both sets of doors fail, with
each set of doors having a probability of 2P , the overall failure probability of the system is
4P 2 [31]

2.2 Assumptions in PRA Methods Supporting ProBO

The implementation PRA methods that support ProBO relies on specific key assump-
tions. These assumptions serve to simplify the some of the reliability behavior of storm
surge barrier components, reducing the complexity of the risk analysis as this behavior,
such as aging, does not have to be accounted for.

The first key assumption deals with the condition of a component after maintenance.
It is assumed that a component is “as good as new” after repair or replacement [19].
Operators of storm surge barriers commonly adopt this assumption in their analyses.

The second key assumption states that the failure rates of components remain con-
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stant over time, provided that a preventive maintenance (PM) strategy is followed [19].
Generally, mechanical components exhibit failure rates that follow a bathtub curve, as
illustrated in Figure 2. In this curve, failure rates are initially elevated due to nascent
faults, commonly referred to as the ”child-disease” phase. These rates subsequently
stabilize after the initial faults are addressed and later escalate owing to long-term
degradation. A PM strategy aims to preemptively replace components before they
enter the wear-out phase. The adoption of a PM strategy is standard practice among
operators, thereby justifying the assumption of constant failure rates when modeling
the reliability of a storm surge barrier.

Figure 2: Bathtub curve depicting the three key phases of component failure rates over
time [19].

During the operational phase of a storm surge barrier, adjustments to initial failure
rate estimates are possible. Using operational data, and Bayesian updating methods,
the initial risk estimates can be revised [19]. After a revision, the failure rates are once
again assumed to be constant, in line with the second key assumption.

2.3 Limitations of Current Risk Evaluation Methods for Storm
Surge Barriers

The risk analysis methodologies used to support ProBO, contain limitations that can
affect the reliability assessments of these barriers. One such limitation is the inherent
conservatism in the model [2, 19]. This conservatism can be exacerbated when all
system redundancies are mapped in great detail [2]. Additionally, the conservatism
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may be further intensified by conservatively estimated model parameters [2]. One
specific model parameter contributing to this conservatism is the assumption that
component failure rates remain constant over time. This assumption is at odds with
the potentially dynamic nature of storm surge barriers, which can be affected by various
factors including maintenance, repairs, upgrades, and aging.

In actuality, complex repairable systems like storm surge barriers often exhibit failure
rates that are not constant but dynamic [18, 22, 28, 29]. These dynamic failure rates
can be influenced by various factors such as maintenance, repairs, upgrades, and aging.
Although the risk analysis methodologies supporting ProBO typically assume that
maintenance and repairs restore components to their “as-new” state, this assumption
may not always hold true. Incremental modifications, repairs, and updates can either
extend or reduce the original lifespans of individual components, thereby influencing
the overall system reliability.

2.4 Challenges in the Literature to Constant Failure Rates

In storm surge barriers, the approach to component-level reliability often mirrors that
used for non-repairable systems. This employs “renewal theory”, where a failed com-
ponent is replaced, bringing the system back to an “as new” state. This process is
called a Homogeneous Poisson Process (HPP), which assumes a constant probability
of failure over any given time interval [7]. For example, if failures for a hydraulic cylin-
der in a storm surge barrier are assumed to follow HPP, the probability of its failure
remains the same between each failure, irrespective of its operational age or recent
maintenance history.

In repairable systems like storm surge barriers, components such as hydraulic cylin-
ders are often repaired rather than replaced. To account for the varying failure
probabilities of these components over time, statistical methods based on a Non-
Homogeneous Poisson Process (NHPP) are more appropriate [7]. The NHPP allows for
a changing failure probability, which can be influenced by several factors. For instance,
the probability of failure for a hydraulic cylinder may decrease as maintenance crews
become more skilled at repairs or implement effective preventive measures. Conversely,
the failure probability may increase if repairs do not fully restore the component to
its original “as new” condition. Therefore, methods that incorporate NHPP are more
adept at capturing the dynamic nature of failure rates in repairable systems. This is
especially pertinent for components such as hydraulic cylinders, which are more likely
to undergo repair rather than replacement. As maintenance and repair methodologies
evolve, NHPP-based methods offer a more accurate representation of the changing
failure rates.

Building on the relevance of models that account for variable failure rates, a study
focused on aircraft engines further substantiates their applicability [33]. Like storm
surge barriers, aircraft engines are complex systems that are repairable and subject
to rigorous safety standards. This makes them a pertinent comparison in terms of
system complexity, maintenance protocols, and reliability criteria. The study employed
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a Weibull model to analyze aircraft engine data and found that it could precisely
forecast the time before an overhaul was required. Moreover, the study confirmed that
the failure rate of these engines is not constant but varies over time [33]. This evidence
strengthens the argument for adopting models that account for variable failure rates
in the reliability assessments of storm surge barriers.
Much like the approach taken for storm surge barriers, the nuclear industry also

frequently employs models that assume constant failure rates for components in their
system reliability assessments [23, 31]. Both types of infrastructure—nuclear power
plants and storm surge barriers—are critical and have stringent safety requirements,
making them comparable in the context of reliability modeling. A study in the nu-
clear industry challenged this assumption, revealing that failure rates can indeed vary
over time, often due to system updates and improvements [23]. Models that account
for variable failure rates, such as Weibull, are found useful in capturing these varia-
tions. Beyond their descriptive capabilities, these models also offer actionable insights
for maintenance strategies. They can evaluate the economic benefits of changing a
maintenance approach and identify shifts in failure trends—insights valuable for both
general monitoring and long-term life cycle management.

The utility of models that account for variable failure rates extends beyond merely
describing failure rates; they can also serve as a guide for optimizing maintenance
policies for storm surge barriers [23,33]. By capturing the variable nature of component
failure rates, these models can inform more adaptive and cost-effective maintenance
strategies. The adaptability of these models allows for the prediction of failures, which
is crucial for planning maintenance activities. For instance, if the model indicates a
decreasing failure rate due to improved repair procedures, maintenance intervals could
be extended, leading to cost savings. Conversely, if the failure rate is increasing, more
frequent inspections could be scheduled to mitigate risks [23, 33]. This adaptability
in maintenance planning not only enhances the reliability but also potentially extends
the lifespan of critical components within the barrier. A side note is that both studies
suffered from a lack of data, mainly due to the scarcity of actual failures [23,33].

The traditional “bathtub curve” often used to describe failure rates may not be
fully applicable to repairable systems like storm surge barriers [18]. If the system
undergoes continuous repairs or improvements, the failure rate could deviate from this
curve, especially in the continuous and wear-out phases. This deviation underscores
the limitations of using constant failure rates and highlights the need for more dynamic
models [6].

13



Figure 3: Example of the bathtub curve illustrating the dynamic nature of failure rates [6].

In summary, the research sub-question:“Does existing literature challenge the as-
sumption of time-constant failure rates in storm surge barriers?” is affirmatively an-
swered. Studies from related fields such as the nuclear industry and aircraft engine
maintenance support this claim. Models that provide a more nuanced understanding
of variable component failure rates challenge the assumption of time-constant failure
rates. This evidence contributes to the broader inquiry posed by the main research
question: “Is the assumption of constant failure rates in time for storm surge barriers
valid?” Given the findings presented, there is a compelling case for re-evaluating this
assumption in the reliability assessments of storm surge barriers.
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3 Data Sources, Processing and Storage for Failure
Rate Assessment.

This chapter details the data used to study component failure rates in storm surge
barriers. The primary data for this analysis is SVKO component malfunction data,
supplied by the operator of the SVKO. To handle this data efficiently, it is stored in a
database developed using the PostgreSQL language.

3.1 Background

To evaluate storm surge barrier component failure rates, relying on empirical data
from real-world observations can be informative. This approach provides an avenue to
scrutinize the widely accepted assumption of constant failure rates. Analyzing actual
component behaviors over time can provide insight into changing reliability. Conse-
quently, this nuanced understanding may provide insights into the system’s evolving
reliability.

3.1.1 Use of Empirical Data

Empirical data has been used in various sectors to question and refine assumptions
about variations in component failure rates over time. In the nuclear sector, time-
to-failure data serves as a basis for such evaluations [23]. The aviation industry, es-
pecially in aircraft engine maintenance, turns to time-to-removal data to gain similar
insights [33]. In case of storm surge barriers, empirical data detailing the total lifetime
and observed malfunctions have been used. Researchers have coupled this data with
Bayesian methods to update existing failure rates [4, 8].

3.1.2 Justification for a Data-Centric Approach

Relying on empirical data, akin to the methodologies adopted in the nuclear and
aviation sectors, ensures a grounded and realistic approach to analysis. A data-driven
methodology facilitates objective evaluations based on actual observations, which in
turn increases the credibility and realism of the conclusions drawn.

3.2 Raw Data Description

This subsection presents a comprehensive description of the raw data for SVKO com-
ponents, along with the methods employed for data processing and analysis.

3.2.1 Raw Data Sources

Two primary sources contribute to the raw data for SVKO components: the RWS
Bayesian Update BMS (RBU) Excel sheet and the Data Update 2016 Faalkansanalyse
Stormvloedkering Oosterschelde (DU16) report. These documents contain malfunction
data collected between May 10, 2010, and June 30, 2016, originating from the BMS+
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maintenance and management software [8]. In these sources, 1501 malfunctions, 554
maintenance groups and 611 Type Codes are reported.

While the SVKO has been operational for 37 years, the data covers approximately
6 years. This leaves an estimated 31 years of operational history without observed
malfunction data. Given the limited timeframe of the data, the 1501 malfunctions
recorded are likely only a fraction of the total malfunctions that have occurred since
the SVKO became operational in 1986. Figure 4 shows that the sources used in this
study only cover roughly 16% of the total operational time.

Figure 4: Illustration of the period for which observations on malfunctions are available for
this research compared to the total operational time.

3.2.2 Maintenance Groups

RBU lists 554 maintenance groups, each distinguished by unique codes and descrip-
tions. Although DU16 does not provide an explicit definition, it is inferred that a main-
tenance group includes components with similar functionalities or types and, therefore,
similar maintenance needs. For instance, cylinders are grouped under the code H-ZC,
and motor-controlled switches are classified as E-VM. Among these 554 maintenance

groups, only 92 are included in the failure analysis. These 92 groups are specifically
relevant to the storm surge barrier’s closure reliability. The remainder are excluded as
they are not included in the failure model of the SVKO [8]. A comprehensive list of
these 92 maintenance groups can be found in Appendix A.

For each of these 92 groups, data are collected on total failures, failures relevant to
closure, and the number of operational components. As an example of a failure that
does not impact the closure, the B-GC group experienced a deviation in the value
measured and that returned by the sensor, which was determined to have no effect
on the closure performance [8]. The ”total components” figure is inferred to represent
the number of operational components within each group. This inference is based on
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a calculated total observed time, which, when divided by the number of components,
consistently results in 53,616 hours, the number of hours between start and end time
of the observation period.

Table 1: Sample of Maintenance Groups records [8].

Code Description Total Failures Relevant Failures Total Com-
ponents

B-DI Digital input module 7 6 1786
B-GC Graycode-giver 12 9 372

Table 1 shows the ”Graycode-giver” (B-GC) has 12 total failures, 9 relevant to
closure, among 372 components in the maintenance group that are in operation at any
given time. Similarly, the ”Digital input module” (B-DI) group shows 7 total failures,
6 of which are relevant to closure, with a total of 1786 operational components.

3.2.3 Type-Codes

RBU includes 611 Type-codes that represent various failure modes. Although DU16
does not explicitly define what a Type-code is, it can be inferred that a Type-code
describes a specific failure mode often linked to a particular type of component and the
nature of its failure. For example, the Type-code “LEDGSN” is described as “Diesel
generator does not start”. Failure modes can vary in their clarity; for instance, the
Type-code “LBDOM” is ambiguously described as “Output Module Detectable”.

Out of the 611 Type-codes, 88 are directly associated with the maintenance groups
included in the failure model. Table 2, showing a sample of records, demonstrates
that the Type-code “BDIM” refers to a noticeable failure in the Digital Input Mod-
ule, falling under the B-DI maintenance group, which has 1786 components operational
at any given moment. Similarly, the Type-code “LBGC” indicates a malfunction in
the Graycode-giver, associated with the B-GC maintenance group, comprising 372 op-
erational components. An overview of all the Type-codes can be found in Appendix B

Table 2: Sample of selected records for Type Codes [8].

Code Description Maintenance
Groups

Code Mainte-
nance Group

Components
in Group

LBDIM Noticeable Digital In-
put Module Failure

Digital Input Mod-
ule Control OSK

B-DI 1786

LBDINM Unnoticeable Digital
Input Module Failure

Digital Input Mod-
ule Control OSK

B-DI 1786

LBGC R14 Graycode-giver 1
North Not Functioning

Graycode-giver B-GC 372
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Table 2 demonstrates that the Type-code “LBDIM” refers to a noticeable failure in
the Digital Input Module, falling under the B-DI maintenance group, which consists of
1786 operational components. Similarly, the Type-code “LBGC” indicates a malfunc-
tion in the Graycode-giver, associated with the B-GC maintenance group, comprising
372 operational components.

3.2.4 Relations Between Type Codes and Maintenance Groups

In the dataset, a multifaceted relationship exists between type codes and maintenance
groups. A single Type-code can correspond to one or multiple maintenance groups,
and inversely, a single maintenance group can be linked to one or various type codes [8].
Firstly, a single type code may relate to multiple maintenance groups in two ways:

1. Failure modes of components that result in the malfunction of a larger system or
machine, like a diesel generator, are unified under a single type code. For such
instances, the study perceives the machine as a singular unit with one Type-code
’Diesel-generator does not start’ [8].

2. A type code can represent components that perform similar functions across
different maintenance groups. For instance, switches of varying voltage levels
but with identical functions might be grouped under one Type-code ’Does not
switch’. In this scenario, the study aggregates the total number of components
across these maintenance groups [8], so the number of components associated
with the Type-code is the total sum of all components in the maintenance groups.

Secondly, a single maintenance group can be associated with multiple type codes,
indicating various failure modes for components within that group. Each observed
malfunction of interest is then assigned its appropriate type code, as reflected in the
raw data [8]. For concrete examples, refer to Table 3. The type code “LHSVT”
is associated with different maintenance groups, demonstrating that a single failure
mode can be relevant for multiple types of machinery. Similarly, the maintenance
group H-SV5 has two Type-codes, LHSVT and LHOV.
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Table 3: Example of Type Codes and Corresponding Maintenance Groups [8].

Type-code Description Maintenance Group (Code and
Description)

LHSVT Solenoid 4/3 control valve 15
does not open

H-SV5 (Solenoid Valve POS15)

LHOV Hydraulically-controlled valve 15
does not open

H-SV5 (Solenoid Valve POS15)

LHSVT Solenoid 4/2 slide valve 38 does
not open

H-SV8 (Solenoid Valve POS38)

LHSVT Solenoid 4/2 slide valve 17 does
not close

H-SV7 (Solenoid Valve POS17)

LHSVT Solenoid 4/2 slide valve 38 does
not close

H-SV8 (Solenoid Valve POS38)

3.2.5 Objects

In the excel a list of objects is included. An ”object” specifically means a component
in use at a designated location. Each object is assigned a unique object code and
description. Special characters in object codes, such as asterisks or slashes, are removed
for the sake of data processing simplicity.
Table 4 shows examples of such objects. Note that all objects in the table are part

of the same maintenance group ’B-DI’. This implies that these objects have similar
operational roles and are managed under the same set of maintenance protocols.

Table 4: Example of Objects and Their Attributes [8].

Object Name Description Maintenance Group

=H01+26:LC1-EDI.1.U0119 Digital Input B-DI

=H01+26:LC1-EDI.2.U0129 Digital Input B-DI

=H01+26:LC1-EDI.3.U0139 Digital Input B-DI

3.2.6 Malfunctions

The study documents 1501 malfunctions recorded between 20 May 2010 and 30 June
2016. It categorizes these into malfunctions that are critical and non-critical to the
closure reliability of the SVKO storm surge barrier [8]. Specifically, 308 malfunctions
are related to 92 maintenance groups that affect closure reliability. 87 of these 308
malfunctions are identified as having a direct impact on the closure reliability of the
SVKO [8]. Each record in the malfunction data is initially allocated to a maintenance
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group; this allocation can be updated [8]. The 87 malfunctions identified as directly
impacting the closure reliability are also associated with 17 unique Type-Codes.

Table 5 provides a concise view of selected malfunction records. It includes the
initial and updated maintenance groups, object code, malfunction number, date and
time of occurrence, detectability, and Type-code. For example, the first record in the
table indicates a malfunction initially assigned to the B-PM-T maintenance group and
later updated to B-DI, marked as detectable. Conversely, the third record lacks a
Type-code, signifying it is not critical to the barrier’s reliability [8].

Table 5: Example of Partial Malfunction Records [8].

Initial
Main-
tenance
Group

Malfunction
Number

Object Code Date and
Time

Detectable Updated
Main-
tenance
Group

Type-code

B-PM-T 353514 =S14+26:LC2 3/09/2011
1:30

Yes B-DI LBDIm

E-DG:DB 618010 =A01+73*CBB:30-
ETANK

30/09/2015
14:15

No E-DG:DB

B-PM-T 822387 =R21+11:GN-
EU290

05/11/2010
14:23

No B-PM-T LBGC

The raw data for each malfunction record originally contains 37 fields. For the pur-
pose of this study, which focuses on lifetime analysis, only select fields are included in
Table 5. These selected fields comprise the initial and updated maintenance groups,
object code, malfunction number, date and time of occurrence, detectability, and Type-
code. The maintenance groups and Type-code are crucial for grouping malfunctions
and evaluating their impact on component lifetimes. The malfunction number serves
as a unique identifier for individual malfunction records. Object code is utilized to
ascertain whether a specific component at the same position has experienced multi-
ple failures. Finally, the detectability of a malfunction is essential for choosing the
appropriate analysis method.

3.2.7 Missing Data

Several limitations are present in the available data set, particularly concerning the
timing of component failures and their operational status. Failures that are unde-
tectable during regular operation are only recorded upon SVKO testing, and the exact
occurrence dates remain unspecified. A supplemental document indicates the test clo-
sure dates for the SVKO, thus providing an interval between the last successful test
and the detection of the malfunction. However, neither the primary report nor the
accompanying Excel sheet contain comprehensive lists of test dates.
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Additional shortcomings include the absence of data on component replacement
times and the resumption of normal functionality. This lack of information complicates
the task of determining the specific start dates for each component within the SVKO.
The data set also omits the initial operational dates of components and any failures
that may have occurred prior to the observation period. This results in uncertainty
regarding the start date of each component’s initial lifetime if it was already operational
at the beginning of the observation period.

The number of components and failures within maintenance groups, along with the
six-year duration of the observation period, allow for certain inferences about compo-
nent lifetimes. For instance, the B-DI maintenance group, which includes digital input
modules, reports only 7 failures among 1786 components during this period. Consid-
ering that industrial-grade input modules have documented lifetimes ranging between
15 and 20 years [15], it becomes evident that the six-year observation period may not
adequately represent the potential longevity of these components.

In the context of reliability analysis, this relatively short observational period poses
a risk of underestimating the system’s actual reliability. Limited data could artificially
elevate observed failure rates, thus not accurately reflecting the longer-than-expected
lifetimes of certain components, such as digital input modules. This mismatch has
implications for interpreting failure patterns over time and may conceal trends related
to component degradation or improvement.

3.2.8 Data Consistency

A check of data samples reveals discrepancies in the malfunctions associated with the
diesel generator. The dataset shows 10 components for Type-Codes LEDGSN and
LEDSSN. Closer inspection reveals 20 failures attributed to LEDGSN, involving 18
unique objects.
The discrepancies may be due to:

• Data entry errors, possibly exemplified by truncated object codes:

Possible truncated code: A01 + 74CBB : 30

Full intended code: A01 + 74CBB : 30EG001

• Misclassification or incomplete documentation of the operational objects.

Given the unclear attribution of the reported malfunctions to the initially docu-
mented 10 objects, we have opted to base our analysis on the 18 unique object codes
that have been explicitly recorded. This choice avoids speculative allocation of failures
and is thus considered more pragmatic.

Implications of an increased object count include: A diluted failure rate per object,
possibly suggesting a more robust system than if a lower count were used. they could
affect the reliability analysis and maintenance strategies for the diesel generators.
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3.3 Data Preprocessing and Database Construction

This section outlines the methodology employed for the transformation and prepara-
tion of raw data, as initially presented in Section 3.2. It discusses the procedures for
data cleaning, the establishment of the database structure, the maintenance of data
relationships, and the methods used to provide an overview of the created database.

3.3.1 Preprocessing Data

Data preprocessing comprises a series of structured steps designed to enhance data
identifiability, standardization, and quality for subsequent analysis.

Identification Enhancement: To distinguish between Type Codes more effec-
tively, a prefixed ID is added. For instance, “LBDIM” is converted to “1-LBDIM”.

Character Normalization: Special characters are removed from the dataset. For
example, the string “=R31+11:GN-EU270” is simplified to “R3111GNEU270”. All
text strings are also converted to uppercase, which is advantageous for data manipu-
lation in programming languages such as Python.

Temporal Cross-Referencing: A search algorithm is utilized to correlate the
most recent SVKO test dates, obtained from a supplementary document, with dates
of malfunction detection. This serves to estimate the approximate time of failure for
each component.

Boolean Standardization: The detectability field, initially containing various
spellings of ‘Yes’ and ‘No’, is standardized to Boolean values of ‘True’ or ‘False’.

Lifetime Dataset Initialization: The dataset accounting for component lifetimes
is initialized on May 20, 2010. If a component experiences a malfunction, the period
from May 20, 2010, to the malfunction date is recorded as one lifetime. A new lifetime
commences from this malfunction date, extending either to the next malfunction or to
the observation period’s end date, June 30, 2016. As an illustrative example, consider
Type-code LBGC, which consists of 372 operational objects. Of these, 7 unique objects
experience a total of 9 malfunctions. Initially, all 372 objects have lifetimes that begin
on May 20, 2010. Among them, 365 continue without malfunction until the end of the
observation period. For the 7 malfunctioning objects, an additional 16 lifetimes are
generated due to the 9 malfunctions, making the total 381 lifetimes for LBGC.

Censoring Types: If a component remains functional at the observation period’s
conclusion on June 30, 2016, its lifetime is termed “censored” [16]. This implies that
the object has been operational until the end of the observation period, but its fu-
ture lifespan remains uncertain. Additional types of censoring are recognized, such
as “interval censoring,” where the exact time of malfunction is not known. In such
cases, the interval between the last successful test and the detection of malfunction is
recorded. Lifetimes are categorized based on their type of censoring, a crucial factor
for subsequent statistical analyses, as elaborated in Chapter 4.
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This approach to data preprocessing ensures that the dataset is in a suitable format
for the comprehensive statistical analyses that follow.

3.3.2 Constructing the Database

The component data are organized in a structured database managed using Post-
greSQL, an open-source object-relational database management system. PostgreSQL
is chosen for its capacity to manage large datasets and execute intricate queries. The
database consists of multiple tables, each housing records of distinct data points re-
lated to components. Every record in these tables is assigned an internal database ID,
serving multiple purposes:

1. Identifies and groups related records

2. Defines explicit relationships between records in different tables

The construction of the database involves the following steps:

1. Gather relevant component data from the SVKO report [8].

2. Create a database schema that specifies the structure of tables and the relation-
ships between them.

3. Identify potential correlations between records across multiple tables.

4. Assign an internal database ID to each record for easier identification and linkage.

5. Populate the PostgreSQL database, utilizing SQL for effective data management.

3.3.3 Structuring Tables

Tables in the database are designed with specific columns, data types, and attributes
to meet the study’s requirements. For example, a component database might include
columns for component type and failure mode, with data type specified as “Text”.
Data integrity is maintained using constraints like primary keys (PK) and foreign keys
(FK). The table structure is also optimized to facilitate the types of queries expected
to be executed, ensuring efficient performance.

3.3.4 Visualising the Database

Unified Modeling Language (UML) diagrams are used to offer a visual representation
of the database structure. These diagrams display the organization and relationships
between tables and attributes, aiding in a better understanding of the component data
and facilitating subsequent analysis. A more detailed description of UML can be found
in appendix C.
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3.4 Constructed Component Database

The SVKO database developed for this study consists of four main tables: the Mainte-
nanceGroups table, the FailureTypeCode table, the FailureTypeCodeChangeHistory
table, and the MalfunctionRecord table. These tables collectively store and organize
data related to the operationas of the storm surge barrier components.

The Maintenance Group Table holds all the maintenance groups of the SVKO. Each
record in this table contains an ID, a maintenance group identifier, and a description
of the maintenance group. Figure 5 shows the UML diagram for the Maintenance
Group table.

MaintenanceGroups

ID : Integer [PK]
Code : varchar
Description : varchar

Figure 5: The UML diagram of the Maintenance Group table. The attributes are ID
(Integer, primary key), Code (Text), and Description (Text).

The FailureTypeCode Table provides information on type-codes of storm surge barrier
components. Each record contains an ID, a Type-code, and a description of the Type-
code. Figure 6 illustrates the UML diagram for the FailureTypeCode table.

FailureTypeCode

ID : varchar(36) [PK]
Code : varchar
Description : varchar

Figure 6: The UML diagram of the FailureTypeCode table. The attributes are ID (var-
char(36), primary key), Code (varchar), and Description (varchar).

The FailureTypeCodeChangeHistory Table captures the historical changes in failure
frequencies and the number of components associated with each Type-code. This
allows for nuanced data analysis, especially when failure attributes evolve over time.
Each record in this table includes an ID, a reference to the associated Type-code,
the failure frequency, the number of components, and the start and end dates for the
validity of this data. The UML diagram for the FailureTypeCodeChangeHistory table
is shown in Figure 7.
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FailureTypeCodeChangeHistory

ID : varchar(36) [PK]
FailureTypeCodeID : varchar(36) [FK]
FailureFrequency : float8
NumberOfComponents : int4
StartDate : date
EndDate : date

Figure 7: The UML diagram of the FailureTypeCodeChangeHistory table. The attributes
are ID (varchar(36), primary key), FailureTypeCodeID (varchar(36), foreign key), Failure-
Frequency (float8), NumberOfComponents (int4), StartDate (date), and EndDate (date).

The MalfunctionRecord Table logs component malfunctions. It includes attributes
such as the maintenance group ID, malfunction number, object code ID, a description
of the malfunction, the date and time of the event, the visibility of the malfunction
(observable or hidden), the associated failure type code ID, and the last test date. The
UML diagram for the MalfunctionRecord table is presented in Figure 8.

MalfunctionRecord

ID : varchar(36) [PK]
MaintenanceGroupID : varchar(36) [FK]
MalfunctionNumber : int4
ObjectCodeID : varchar(36) [FK]
Description : varchar
EventDate : date
EventTime : time
Observable : bool
FailureTypeCodeID : varchar(36) [FK]
LastTestDate : date

Figure 8: UML diagram of the MalfunctionRecord table. Attributes include ID (varchar, pri-
mary key), MaintenanceGroupID (varchar, foreign key), MalfunctionNumber (int4), Object-
CodeID (varchar, foreign key), Description (varchar), EventDate (date), EventTime (time),
Observable (bool), FailureTypeCodeID (varchar, foreign key), and LastTestDate (date).

Figure 9 showcases the relationships between tables in the SVKO component database.
Arrows denote foreign key connections, while cardinality symbols, such as “1..” and
“0..”, indicate the number of instances between tables. This diagram provides an
overview of the interconnected tables, fostering efficient data analysis and manage-
ment.
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MaintenanceGroups

ID : Integer [PK]
...

FailureTypeCodeChangeHistory

ID : varchar(36) [PK]
FailureTypeCodeID : varchar(36) [FK]
...

FailureTypeCode

ID : varchar(36) [PK]
...

MalfunctionRecord

ID : varchar(36) [PK]
MaintenanceGroupID
: varchar(36) [FK]
FailureTypeCodeID : varchar(36) [FK]
...

1..

0..

1..

0..

1..

0..

Figure 9: A holistic UML diagram depicting the relationships between tables in the SVKO
component database. Arrows represent foreign key connections, and cardinality symbols (e.g.,
1..* and 0..) illustrate the number of instances between tables. This diagram aids in grasping
the database structure and ensures efficient data analysis and management.

In summary, the SVKO database is an organized system designed for the efficient
storage, retrieval, and analysis of data related to the reliability of storm surge barrier
components.

3.5 Availability of Data for Assessing Constant Failure Rates

To address the sub-research question—”Is there empirical data available to assess vari-
ations in storm surge barrier failure rates over time?”—the data sources confirm that
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such empirical data do exist. The BMS Excel sheet and the DUA16 report collectively
offer malfunction data covering 6 years within the SVKO’s 37-year operational span.
A total of 1501 malfunctions have been documented, of which 87 malfunctions related
to 17 unique Type-codes are directly pertinent to the SVKO’s closure reliability. These
87 malfunctions form lifetime datasets that are suitable for fitting models. A summary
of this data, organized by Type-code, can be found in Table 6. For instance, Type-code
LBQENM is associated with 15 failures among 992 components, resulting in a dataset
that encompasses 1007 lifetimes.

While the available data are adequate for initial analyses, it is advisable for future
research to include additional data for a more comprehensive and robust assessment.
This is particularly relevant given that the BMS+ system is assumed to remain oper-
ational, thereby continuing to accumulate new malfunction data.

Figure 10: Visualization of the proportion of available data that is related to the closure
failure of the SVKO storm, relative to their totals.
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Table 6: Number of failures and number of components for each Type Code, classified by
lifetime scenario. Detailed explanations of the abbreviations and column descriptions can be
found in the appendix D.

Type Code Description Lifetime Scenario Failures (No.) Components (No.) Liftimes (No.)

1-LBDIM Failure digital input mod-
ule

Observable Failure 2 1786 1788

2-LBDINM Failure digital input mod-
ule

Unobservable Failure 4 1786 1790

3-LBGC Bug gray code module Unobservable Failure 9 372 381

4-LBKLO Interruption safely closure
cable

Unobservable Failure 1 3 4

5-LBPRC Failure I-O digital module Observable Failure 9 260 269

6-LBPRNI Failure network interface
I-O module

Observable Failure 1 260 261

7-LBQENM Failure QE module Unobservable Failure 15 992 1007

8-LBREL Failure relay Unobservable Failure 1 1240 1241

9-LBSWAM Computer bug switch type
A in mid section

Observable Failure 2 256 258

10-LBSWB Computer bug switch type
B

Observable Failure 1 256 257

11-LEDGSN Failure start diesel gener-
ator

Unobservable Failure 20 18 38

12-LEDSSN Failure motor controlled
switch

Unobservable Failure 2 18 20

13-LERA38 Failure 380V transformer
container earth leakage

Observable Failure 1 79 80

14-LEVSSN Failure motor controlled
switch of 10kV trans-
former

Unobservable Failure 6 42 48

15-LESS Signal failure local
computer to 10kV trans-
formerfield

Unobservable Failure 1 17 18

16-LHGR Function failure charging
rectifier

Observable Failure 9 63 72

17-LHSVT Switching failure solenoid Observable Failure 1 384 385
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4 Statistical Framework for Failure Rate Assessment

This chapter addresses an unexplored question in the literature: How can statistical
methods challenge the assumption of constant failure rates in storm surge barriers?
While existing studies have primarily focused on updating failure rates using Bayesian
methods [4,8], these works do not assess the validity of assuming constant failure rates.
This chapter aims to fill this research gap by outlining statistical methods specifically
designed to question this assumption. These methods will be applied to data analysis
in subsequent chapters.

The study introduces a specific framework centered on empirically determining fail-
ure rates over time. This framework employs two key statistical models for analysis:
the exponential and Weibull distributions. The exponential model assumes a constant
failure rate and is commonly utilized in the context of storm surge barrier reliability [5].
On the other hand, the Weibull distribution accommodates variable failure rates and
is favored in reliability theory [16]. The choice between these models is guided by
their prevalence and versatility in existing research. Both models aim to estimate the
hazard function, a key parameter in describing failure rate over time, as emphasized
in statistical literature [16].

The chapter begins with a Background section to establish foundational context.
Following this, it delves into the characteristics of the data that influence model selec-
tion, referencing constraints and conditions elaborated in chapter 3. The chapter then
presents the mathematical foundations of the framework, which include the Nelson-
Aalen estimator for deriving the empirical hazard function. It also outlines the lifetime
models—Exponential and Weibull—that the study employs and provides the method-
ology for their application to the data. Tests devised to evaluate the appropriateness
of the chosen models are discussed in the succeeding section. The chapter concludes
with an overview of a code repository to facilitate future work, followed by a summary
that focuses on how the methods presented address the research question.

4.1 Background and Rationale for Enhanced Reliability Anal-
ysis

Reliability assessment in storm surge barriers is instrumental for resource allocation
and public safety. Accurate predictive models are a prerequisite for informed risk
management and policy decisions. Underestimating the reliability can result in un-
necessary allocation of resources. On the other hand, overestimating reliability could
jeopardize the safety behind the storm surge barrier.

4.1.1 Current Approaches in Reliability Analysis

As detailed in Chapter 2, current methodologies for reliability analysis predominantly
employ the assumption of constant failure rates for components of storm surge barriers.
This assumption is valid under the condition of regular preventive maintenance and
proactive testing [2, 19].
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4.1.2 Identification of Research Gap

The critical research gap resides in the empirical validation, or lack thereof, of the
assumption of constant failure rates, specifically in the context of storm surge barriers.

4.1.3 Proposed Framework for Addressing Research Gap

To address this research gap, this chapter outlines a comprehensive analytical frame-
work, to analyse the available data, which is discussed in Chapter 3. The framework
incorporates two statistical lifetime models: the Exponential andWeibull distributions.

4.1.4 Rationale for Model Selection

The Exponential model, commonly used as a reference for constant failure rates, as-
sumes a constant rate of failure [16]. The exponential model is also one of the models
used to model component lifetimes in storm surge barriers [5]. Conversely, the Weibull
distribution allows for both constant and variable failure rates [16]. Both models can
be used to estimate the hazard function, a crucial metric for understanding failure
rates over time [16].

4.1.5 Framework Implementation and Validation Details

The proposed framework will utilize statistical tools such as the Nelson-Aalen esti-
mator to derive the empirical hazard function. To compare model performance, the
Akaike Information Criterion (AIC) will be employed. Hypothesis testing methods
like the Kolmogorov–Smirnov test are used to assess the fit of the models to the data.
Additional validation will include visualistion of the models and the data, to assist in
model selection if AIC and hypothesis testing do not provide satisfactory results. A
code repository will contain the implementation codes, enhancing the reproducibility
and future adaptability of the study.

4.2 Statistical Assessment Framework

This section introduces the statistical framework that can be used to asses the constant
failure rate assumption.

4.2.1 Data Characteristics

The characteristics of the available data, delineated in Chapter 3, influence the design
and implementation of the statistical framework of this thesis.

Failure Scenarios For the purpose of this analysis, Type-codes are employed as the
failure scenarios. This choice is motivated by two main reasons. First, the Type-codes
encompass various failure modes and are instrumental for identifying and grouping
malfunctions, as highlighted in Table 3 and Table 5. Second, the original study from
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which this dataset is derived also uses Type-codes for updating failure rates and as-
sessing system reliability [8]. Adopting Type-codes as failure scenarios thus not only
provides a structured approach but also ensures consistency with the existing litera-
ture.

Censoring Types and Treatment Secondly, the data contains instances of right-
censoring, interval-censoring, and left-censoring, each affecting statistical analysis [16].

Interval and Right-Censoring Interval censoring occurs when a failure is iden-
tified within a specific time frame rather than a distinct point in time. For instance,
components under failure scenario 8-LBREL undergo periodic tests at intervals de-
noted as 0 = a0 < a1 < . . . < am < ∞. Failure may occur within the interval
(aj−1, aj ] [16]. Right-censoring is observed when the data collection period terminates
before all components fail, leaving incomplete failure information [16]. These forms of
censoring necessitate specialized statistical methods to handle the incomplete data.

Left-Censoring Although the data inherently contains left-censoring, it is not
considered in the analysis. This exclusion aligns with the treatment in the original
study, which assumes that the lifetimes of components start at the onset of the obser-
vation period [8]. The decision not to consider left-censoring is deemed justifiable as
it does not contradict the methodology employed in the original study.

Assumptions on Operational Components The framework presumes a constant
count of operational components for each failure scenario throughout the observation
period. This assumption is justified by two key factors. First, no data are available on
repair or replacement times for failed components. Second, the original study implicitly
maintains this constant count when calculating total observed lifetime hours [8]. This
simplifies the analysis and aligns with the original study’s methodology.

4.2.2 Statistical Foundation

This section covers the statistical foundation and the approach to parameter estimation
used in this study.

Reliability Functions The probability density function (pdf), denoted as f(t;λ),
describes the distribution of probabilities for a continuous random variable t across its
possible values. In this expression, λ represents one or more parameters that shape
this distribution.
Derived from the pdf, the cumulative distribution function (cdf) quantifies the prob-

ability that a continuous random variable t will take a value less than or equal to
a specific point. It provides the cumulative probability from the lower bound of the
distribution up to a given value of t.

F (t;λ) = P (T ≤ t) (1)
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Building on the cdf, the reliability function, also known as the survival function,
quantifies the probability that a component or system will function beyond a specified
time T :

S(t;λ) = P (T > t) (2)

The hazard function, denoted by h(t), quantifies the instantaneous failure rate at a
specific time t, conditional on the component having survived until that time. It is
mathematically represented as:

h(t) =
f(t)

S(t)
(3)

Subsequent to the hazard function is the cumulative hazard function H(t), which
serves as an integrative measure of risk over time. This function is calculated as the
integral of the hazard function h(u) from 0 to t:

H(t) =

∫ t

0

h(u) du (4)

The shape of H(t) offers pivotal insights into the system’s reliability characteristics
and is subject to detailed interpretation in reliability analyses. The function can
manifest in several forms, each indicative of specific reliability behaviors:

1. Increasing (H ′(t) > 0): An upward trend in the cumulative hazard function
signifies a failure rate greater than zero, indicative of an increasing risk over time.

• Linear Increase: A linearly increasingH(t) often implies a constant failure
rate and is generally modeled by the Exponential distribution [16].

• Non-Linear Increase: A nonlinearly increasing H(t) suggests that the
failure rate itself may be a function of time, often indicative of wear-out,
aging mechanisms [16].

2. Constant (H ′(t) = 0): A constant or horizontal cumulative hazard function
denotes h(t) = 0, which could suggest an extremely reliable system or may
require further examination for data truncation or censoring issues.

3. Decreasing (H ′(t) < 0): A downward trend is generally not physically inter-
pretable as it implies a negative failure rate.

4. Complex or Mixed Shapes: These can occur in systems with multiple con-
tributing factors to reliability. A complex H(t) shape could emerge from a blend
of “burn-in” failures, constant hazard rates, and wear-out mechanisms.
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Non-Parametric Estimation using Nelson-Aalen In this study, the Nelson-
Aalen estimator is employed for the non-parametric estimation of the cumulative
hazard function. The Nelson-Aalen estimator computes the cumulative hazard func-
tion H(t) without making assumptions about a specific distribution for the data at
hand [3, 14]. Mathematically, it is expressed as follows:

H(t) =
∑
ti≤t

di
ni

(5)

In the equation, di signifies the number of events at time ti, and ni is the number
at risk just before ti. Utilizing this method has the benefit of using the observed data
directly to provide an empirical estimation of the hazard function. The choice for using
the Nelson-Aalen estimator is guided by its general simplicity in application and the
study’s specific focus on the hazard function. Additional information on Nelson-Aalen
can be found in appendix F.
Note that Nelson-Aalen can only be used for complete and right censored lifetimes.

Parametric Estimation Using Maximum Likelihood Estimation In this study,
the Maximum Likelihood Estimation (MLE) method is used to estimate the param-
eters for the Exponential and Weibull models. MLE assumes that the observed data
conform to the specified distribution, such as Exponential or Weibull. The aim is to
find the optimal parameters, such as λ, that maximize the likelihood of the observed
data. In contrast to non-parametric methods, MLE requires an assumption about the
distribution of data. This assumption enables the quantification of the likelihood of
the observed data for different potential values of λ, or other parameters. The study
opts for MLE due to its proven applicability to censored lifetime data, a common
characteristic in reliability studies [16]. Mathematically, the likelihood function within
the MLE framework is defined as:

L(λ) =

n∏
i=1

f(ti;λ) (6)

This equation measures how well the model, determined by parameters such as λ,
fits the observed data. The primary goal is to maximise this function to identify the
value of λ that makes the observed data most probable under the model. The form
of the likelihood function can vary depending on the data characteristics—complete
lifetimes, right-censored, or interval-censored.

4.2.3 Likelihood Functions for Censored Data

In this section, likelihood functions for various censoring scenarios in component
malfunction data are derived. These scenarios encompass both complete and right-
censored lifetimes, as well as interval and right-censored lifetimes. The symbol λ serves
as a placeholder, representing either a single parameter or a vector of parameters de-
pending on the specific statistical distribution under study.
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In failure scenarios of the SVKO where the component malfunction is observable, the
data set includes both complete lifetimes and right-censored lifetimes. Specifically, for
a group of size n, the lifetime Ti of a unit can exceed the censoring time C. Therefore,
two scenarios are possible: either Ti > C or Ti ≤ Ci. In the former, the lifetime is not
fully observed, while in the latter, it is.
The observed lifetime ti depends on whether it is censored or not. To distinguish

between these scenarios, an indicator variable δi is introduced. The variable ti and
the indicator δi are defined as follows:

ti = min(Ti, C), & δi = I(Ti ≤ C) (7)

Both ti and δi are treated as random variables.
Given these definitions, the joint probability of observing the data points (ti, δi) is:

P (ti, δi) =

{
P (Ti > C), if ti = C, δi = 0

f(ti), if ti = Ti, δi = 1
(8)

Consequently, the joint probability density function (pdf) of (ti, δi) can be expressed
as [16]:

f(ti;λ)
δiP (Ti > C)1−δi (9)

By incorporating this joint pdf into the likelihood function, the expression for right-
censored data becomes:

L(λ) =

n∏
i=1

f(ti;λ)
δiS(ti;λ)

1−δi (10)

Here, S(ti;λ) represents the survival function, as given in equation 2.

In failure scenarios of the SVKO where the component malfunction is unobservable,
the data set includes both interval-and right censoring.
In the case of interval-censoring, the lifetime Ti of a component is confined to a

specific interval (ti0 , ti1 ]. In this context, ti0 and ti1 denote the times at which tests
were conducted. Specifically, ti0 is the time of the preceding test, and ti1 is the time
of the following test. The probability of a unit failing within this interval is calculated
as P (ti0 < Ti ≤ ti1), which can be expressed as:

P (ti0 < Ti ≤ ti1) = F (ti1)− F (ti0) (11)

Thus, the likelihood function for interval-censored data can be formulated as:

L(λ) =

n∏
i=1

[F (ti1 ;λ)− F (ti0 ;λ)] (12)

To accommodate both interval and right-censoring in the data, the likelihood func-
tion is modified. Specifically, if a component has not failed by the end of the obser-
vation period at time C, its lifetime is considered to fall within the interval (C,∞).
Consequently, the probability of failure for such a component is calculated as follows:
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F (∞;λ)− F (C;λ) = 1− F (C;λ) (13)

= S(C;λ) (14)

Hence, in case of interval and right censoring, the likelihood function can be expressed
as:

L(λ) =

n∏
i=1

S(ti0 ;λ)
δRi [F (ti1 ;λ)− F (ti0 ;λ)]

δIi (15)

with indicators δIi and δRi defined as:

δIi =

{
1, if the lifetime is interval censored

0, otherwise
(16)

δRi = 1− δIi (17)

The analysis employs the log-likelihood function and its derivative to maximize the
likelihood function. The log-likelihood function simplifies the task of finding the deriva-
tive. It is obtained by taking the natural logarithm of the likelihood function. This
transformation often leads to a function that is easier to differentiate.

Upon obtaining the derivative of the log-likelihood function, the first step is to look
for a closed-form solution. The approach consists of the following steps:

1. Differentiate the log-likelihood function with respect to the parameters.

2. Equate the first-order derivative to zero and solve for the parameters.

A closed-form solution, if found, provides optimal parameter values that maximize the
likelihood function for the given data.

Exponential Distribution The estimation of the parameter λ for the Exponential
distribution fitted to complete and right censored lifetimes commences with inserting
exponential pdf and survival function into equation 10, which results in:

L(λ) =

n∏
i=1

e−λtiδ
(1)
i (18)

It follows that the loglikelihood is given by:

l(λ) = logL(λ) =

n∑
i=1

(log λ− λti) δ
(1)
i (19)

The derivative of l(λ) with respect to λ is

dl

dλ
=

∑n
i=1 δ

(1)
i

λ
−

n∑
i=1

tiδ
(1)
i (20)
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Solving dl
dλ = 0 yields a closed-form solution for λ̂:

λ̂ =

∑n
i=1 δ

(1)
i∑n

i=1 tiδ
(1)
i

(21)

For interval and Right-Censored Lifetimes the exponential pdf and survival function
are inserted into equation 12, which results in:

L(λ) =

n∏
i=1

(
e−λti1 − e−λti0

)δ(2)i (22)

Here, δ
(2)
i is an indicator variable set to one for interval-censored observations and zero

otherwise. The log-likelihood function is then

l(λ) =

n∑
i=1

δ
(2)
i log

(
e−λti1 − e−λti0

)
(23)

The derivative l(λ) with respect to λ is given by:

dl

dλ
=

n∑
i=1

δ
(2)
i

−ti1e
−λti1 + ti0e

−λti0

e−λti1 − e−λti0
(24)

The equation for dl
dλ is nonlinear in terms of λ, stemming from the combination of ex-

ponential functions and linear coefficients. The summation captures differences across
various lifetime data points, adding layers of complexity to the equation. Given this
intricate structure, obtaining a closed-form solution through algebraic means becomes
challenging. Therefore, a numerical approach is adopted in this thesis to determine
the equation’s roots.

Weibull Distribution In case of the Weibull distribution, the scale parameter λ > 0
and the shape parameter κ > 0 are estimated. The Weibull pdf is represented by:

f(t;λ, κ) =
κ

λ

(
t

λ

)κ−1

e(−
t
λ )

κ

(25)

With cdf and survival functions:

F (t;λ, κ) = 1− e(−
t
λ )

κ

(26)

S(t;λ, κ) = e(−
t
λ )

κ

(27)

where t is the lifetime.
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For complete and Right-Censored Lifetimes, the Weibull pdf and survival function
are insterted into equation 10, which results in:

L(λ, κ) =

n∏
i=1

(
κ(

ti
λ
)κ−1e(−

ti
λ )

κ
)δi (

e(−
ti
λ )

κ)1−δi

= κ
∑

i δi

n∏
i=1

(
ti
λ

)κδi−δi

e(−
ti
λ )

κ

(28)

It follows that the log likelihood is given by:

l(λ, κ) =
∑
i

δi ln(κ) +
∑
i

(κδi − δi) ln

(
ti
λ

)
−

∑
i

(
ti
λ

)κ

(29)

The derivative of the log likelihood function is given by:

∂l(λ, κ)

∂κ
=

∑
i

δi
1

κ
+
∑
i

δi ln

(
ti
λ

)
−
∑
i

ln

(
ti
λ

)(
ti
λ

)κ

∂l(λ, κ)

∂λ
= −

∑
i

(κδi − δi)
ti
λ2

+ κ
∑
i

(
ti
λ

)κ−1
ti
λ2

(30)

setting these equations to zero, then solving for κ and λ results in the following non-
linear equations:

1

κ

∑
i

δi +
∑
i

δi ln

(
ti
λ

)
−
∑
i

ln

(
ti
λ

)(
ti
λ

)κ

= 0

(κ− 1)
∑
i

δi
ti
λ2

+ κ
∑
i

(
ti
λ

)κ−1
ti
λ2

= 0

(31)

Due to the complexity of these specific non-linear functions, it is assumed that there
are no closed form solutions to determine κ and λ. Hence to derive the parameters, a
numerical solver should be used.
For interval and right-Censored lifetimes, the Weibull pdf and survival function are

inserted into equation 15, producing:

L(λ, κ) =

n∏
i=1

[
e(−

ti0
λ )

κ]δRi
[(

1− e(−
ti1
λ )

κ)
−
(
1− e(

ti0
λ )

κ)]δIi
(32)

A simplified version is presented by:

L(λ, κ) =

n∏
i=1

[
e(−

ti0
λ )

κ]δRi
[
e(−

ti0
λ )

κ

− e(−
ti1
λ )

κ]δIi
(33)

The log-likelihood function then becomes:
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l(λ, κ) =

n∑
i=1

δRi log
(
e(−

ti0
λ )

κ)
+ δIi log

(
e(−

ti0
λ )

κ

− e(−
ti1
λ )

κ)
(34)

The derivative of the log likelihood function with respect to κ and λ is:

∂l(λ, κ)

∂κ
=

n∑
i=1

δRi

(
− ti0

λ

)κ

log

(
ti0
λ

)
e(−

ti0
λ )

κ

+ δIi

((
− ti0

λ

)κ

log

(
ti0
λ

)
e(−

ti0
λ )

κ

−
(
− ti1

λ

)κ

log

(
ti1
λ

)
e(−

ti1
λ )

κ
)

∂l(λ, κ)

∂λ
=

n∑
i=1

δRiκ

(
− ti0
λ2

)κ

e(−
ti0
λ )

κ

+ δIiκ

((
− ti0
λ2

)κ

e(−
ti0
λ )

κ

−
(
− ti1
λ2

)κ

e(−
ti1
λ )

κ
)

(35)

Setting the above equations to zero and then solving for κ and λ results in the
following non-linear equations:

n∑
i=1

δRi

(
− ti0

λ

)κ

log

(
ti0
λ

)
e(−

ti0
λ )

κ

+ δIi

((
− ti0

λ

)κ

log

(
ti0
λ

)
e(−

ti0
λ )

κ

−
(
− ti1

λ

)κ

log

(
ti1
λ

)
e(−

ti1
λ )

κ
)

= 0,

n∑
i=1

δRiκ

(
− ti0
λ2

)κ

e(−
ti0
λ )

κ

+ δIiκ

((
− ti0
λ2

)κ

e(−
ti0
λ )

κ

−
(
− ti1
λ2

)κ

e(−
ti1
λ )

κ
)

= 0.

(36)

Due to the complexity of these specific non-linear functions, it is assumed that there
are no closed form solutions to determine κ and λ. Hence to derive the parameters, a
numerical solver should be used.

4.2.4 Numerical Parameter Fitters: Newton-Raphson Method

When a closed-form solution is not attainable, numerical optimization methods are
employed for parameter estimation. The Newton-Raphson method serves as a robust
solution for solving the MLE [16].
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Newton-Raphson for Single-Parameter Models For models with a single pa-
rameter λ, the Newton-Raphson update formula simplifies to:

λnew = λold − l′(λold)

l′′(λold)

Here, l′ and l′′ denote the first and second derivatives of the log-likelihood function,

respectively. The iterative process continues until the relative error |λnew−λold|
|λnew| falls

within predefined acceptable limits.

Newton-Raphson for Multi-Parameter Models For models with multiple pa-
rameters, the Newton-Raphson method generalizes to handle a parameter vector θ =
[θ1, θ2, . . . , θp]. The generalized iterative update formula is:

θnew = θold −H−1(θold)∇L(θold)

Where:

• H(θ) is the Hessian matrix, detailed in Appendix E.

• ∇L(θ) is the gradient vector of the log-likelihood function.

The iterative procedure for multi-parameter models is analogous to the single-parameter
case but operates in a multidimensional parameter space. Convergence is assessed us-
ing the relative error metric:

Relative Error =
∥θnew − θold∥

∥θnew∥
Iteration continues until the relative error falls within predefined acceptable limits

for all parameters.

4.2.5 Assessing Models

This section covers the proposed approach to assessing the models using AIC, Goodness-
of-Fit testing and visualisation.

Akaike Information Criterion The Akaike Information Criterion (AIC) can be
used to determine which model is more likely given the lifetime data. AIC is chosen
for its simplicity and in providing an initial comparison between different models. The
formula for AIC is:

AIC = −2 ln(Likelihood) + 2k (37)

In the AIC formula, ln(Likelihood) denotes the natural logarithm of the model’s
likelihood given the data, while k signifies the number of model parameters. Lower
AIC values suggest a model is more probable given the observed data. As a penalty
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against overfitting, models with more parameters are subject to a higher AIC. Taking
the Weibull and Exponential distributions as an example: if both yield the same
likelihood for a dataset, the Exponential, having only one parameter compared to the
Weibull’s two, will possess a lower AIC. This is because the AIC inherently favors
simplicity, penalizing the added complexity of the Weibull’s extra parameter. By
balancing goodness of fit with model complexity, AIC provides a streamlined method
for initial model comparison.

AIC Rule of Thumb The general rule of thumb for comparing AIC scores posits
that a difference of less than two points implies the models are essentially indistinguish-
able in performance. A difference of exactly two points provides moderate evidence
favoring one model over the other, while a difference exceeding four points constitutes
strong evidence for a substantial difference between the models [11]. In a specific case
where a Weibull model has an AIC of 200 and an Exponential model has an AIC of
202, the two-point difference suggests moderate evidence in favor of the Weibull model.

Goodness-of-Fit Testing To further evaluate the performance of the statistical
models, the study employs Goodness-Of-Fit (GOF) tests. Unlike the AIC, which fo-
cuses on balancing model fit and complexity for the purpose of model selection [11],
GOF tests provide a direct measure of how closely a model’s predictions align with the
observed data. This makes GOF tests a critical tool for assessing the empirical validity
of a model. By using both AIC and GOF tests, the study aims to achieve a compre-
hensive evaluation, facilitating a more robust comparison between the Exponential and
Weibull models.

To see if the model fits the data, the first step is to set up two opposing statements:
the null hypothesis H0 and the alternative hypothesis H1.

H0 : F = F0 vs H1 : F ̸= F0 (38)

In this study, F denotes the empirical cumulative hazard function, estimated using
Nelson-Aalen, while F0 denotes a theoretical distribution, such as the Exponential or
Weibull models. To evaluate these hypotheses, a statistical metric known as the p-
value is employed. This metric quantifies the likelihood of observing data at least as
extreme as the sample data, under the assumption that the null hypothesis is true.

First, a test statistic Dn is computed based on the original dataset. Subsequently,
bootstrapping methods are employed to create multiple simulated datasets from the
observed data. For each simulated dataset, an individual test statistic is calculated,
resulting in a distribution of test statistics. The p-value is then derived by assessing
the proportion of these test statistics that meet or exceed the value of the original Dn.
The p-value effectively gauges the probability that the observed test statistic could
arise by random chance, under the assumption that the null hypothesis is true.
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Censored Data Dealing with censored data introduces complexity in statistical
analysis. Specifically, censored data complicates the calculation of the test statistic,
the application of bootstrapping methods, and the determination of the empirical dis-
tribution. The key challenge arises because the exact lifetime values (ti) are unknown,
which hinders the precise estimation of empirical distributions and test statistics. To
handle the data censoring, this study employs a modification of the Leveraged Boot-
strap Method [24]. The original method uses an empirical distribution function, while
this study uses interval midpoints to replace interval-censored lifetimes. Validation is
provided by a statistical test in Appendix F, and the p-values obtained confirm the
approach’s validity within the scope of this thesis.

Kolmogorov-Smirnov Test In terms of deriving the test statistic, the study uti-
lizes the Kolmogorov-Smirnov (KS) test. The selection of the KS test is motivated by
its ease of application and its well-documented use in reliability analysis [16]. The KS
test aims to identify the largest difference between the empirical cumulative distribu-
tion Fn and the theoretical cumulative distribution F0, which serves to assess the fit
of the model to the data. The KS test formula is given by:

Dn = sup
ti

|Fn(ti)− F0(ti)| (39)

Visual Assessment of Statistical Models This study incorporates both numer-
ical and visual assessment techniques to ensure a robust evaluation of the statistical
models. Visual assessment serves several critical roles:

• Model-Data Alignment: The initial set of plots compares the Exponential and
Weibull models to the empirical data points. These plots serve as a qualitative
check for model fit. The rationale is that numerical metrics alone may not capture
subtle deviations or patterns in the data. A visual inspection thus provides an
additional layer of validation.

• Test Statistic Distribution: The second tool involves density plots that rep-
resent the distribution of test statistics, generated from bootstrapped datasets
for each model. These plots can identify whether the model is consistently fit-
ting the data well across multiple samples. Such a distributional view can signal
potential issues like overfitting or underfitting, which may not be immediately
apparent from single-value metrics.

• Cumulative Hazard Function Assessment: The final tool consists of plots
that juxtapose the empirical cumulative hazard function with the fitted models.
These plots not only gauge the model’s fidelity to real-world data but also reveal
nuances in the rate of failure over time. This is crucial for understanding the
reliability and limitations of the model in practical applications.

By employing these visual tools in conjunction with numerical assessments, the study
aims for a methodologically sound, multi-faceted evaluation. This dual approach en-
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ables a more nuanced understanding of the model fits, ultimately leading to more
reliable conclusions.

4.3 User Interface and Database

The software architecture is designed with modularity and scalability in mind, suitable
for both current utilization and future expansions. The code repository for this project
has been comprehensively documented and can be accessed for further details [10].

Technological Components The technological components are carefully selected
based on their performance, flexibility, and compatibility:

• Database Management with SQLAlchemy (2.0.10): Employed for its ro-
bust object-relational mapping capabilities.

• User Interaction through FastAPI (0.95.1): Implemented for its RESTful
capabilities and compatibility with Uvicorn.

• User Interface via Swagger UI: Chosen for its user-friendly design.

• Data Processing and Calculations with Pandas and NumPy: Integrated
for efficient data manipulation and numerical computation.

Performance and Efficiency Parallel computing techniques are utilized to en-
hance computational efficiency, particularly when managing large datasets or complex
calculations.

Structure and Design The architecture comprises three layers:

1. Database Layer : Manages data storage and retrieval.

2. Middleware Layer : Handles user requests, serving as an interface between the
database and the user.

3. User Interface Layer : Facilitates user interaction via a graphical interface.

Three figures are included to provide a visual overview: Figure 11 illustrates the
user interface, while Figures 12 and 13 represent the input schema and plot output,
respectively.
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Figure 11: Overview of User Interface

Figure 12: Input Interface

Figure 13: Plot Output Interface

For further elaboration on the technological choices, specifically the rationale behind
the selection of Python packages, refer to Appendix G

4.4 Summary

This chapter addresses the key research question: How can statistical methods be
used to challenge the constant failure rates assumption in storm surge barriers? The
chapter outlines a framework that incorporates Type-codes as failure scenarios. These
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Type-codes specify failure modes, relate to recorded malfunctions, and correspond to
various system components. To examine the assumption of constant failure rates, the
chapter details a structured methodology that employs the Nelson-Aalen estimator
and two statistical models: the Exponential and Weibull distributions.
The Nelson-Aalen estimator serves to estimate the cumulative hazard function. A

linear increasing cumulative hazard function is indicative of constant failure rates,
while a non-linear shape suggests variable failure rates.

The analysis suggested in the framework begins by contrasting two models: the Ex-
ponential, which assumes a constant failure rate, and the Weibull, which allows for
variation in failure rates. To assess the relative performance of these models, AIC is
employed. The AIC provides a measure of model quality that penalizes unnecessary
complexity to prevent overfitting. Additionally, hypothesis testing offers further vali-
dation. Specifically, the Kolmogorov-Smirnov test, along with bootstrapping methods
for p-value calculation, enables a direct comparison of the models to the actual lifetime
data of SVKO components. Should the data lead to the rejection of the Exponential
model, whilst accepting the Weibull model, it could imply that failure rates vary over
time. This chapter introduces a critical evaluation of the models, preparing the way
for more detailed empirical investigation in subsequent sections.

However, applying the proposed methods can be difficult due to data censoring.
Fitting models often requires numerical methods, which can be complex and time-
consuming. The Exponential model offers a simpler approach for complete and right-
censored data. Nevertheless, most scenarios involve complicated equations that are
hard to solve. Although this can be overcome using numerical methods like the
Newton-Raphson algorithm, these can be problematic. They may not find the best
solution, but settle for a local maximum, and the initial guess can significantly affect
the results. Future research should aim to apply more reliable methods for fitting the
distribution models to censored data.
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5 Assessment of Component Failure Rates via Sta-
tistical Framework

This chapter will attempt to answer a question that remains unexplored in prior re-
search on storm surge barriers: does a time-variable failure rate model provide a
statistically better fit to the existing data than a constant rate model? Prior studies
tend not to focus on validating the underlying model of the data, instead focusing on
updating failure rates [4, 8].

To answer the research sub-question, the chapter uses component lifetime data of the
SVKO, discussed in section 3.2. This data is assessed through a statistical framework
described in section 4. Under the current approach to storm surge barrier reliability
failure rates are assumed to be constant in time [2,19,31]. A constant failure rate can be
represented by the exponential distribution [16], real-world conditions suggest a more
intricate landscape, which is discussed in Chapter 2. Factors like the repair of hydraulic
cylinders can lead to non- “as-new” conditions, potentially altering the established
constant failure rate, λ [18]. Given the potential complexities in real-world conditions,
this chapter will evaluate whether an Exponential or a Weibull model fits better to the
data. The Weibull model, with its shape parameter β, is designed to accommodate
time-variable failure rates. A superior fit from the Weibull model, especially if its β
parameter differs from one, is evidence for failure rates being variable [16,18].

The chapter begins with background on prior work that evaluates component life-
times, followed by the method to apply the statistical framework, the results and a
discussion to answer the sub research question.

5.1 Background

Statistical models are crucial for assessing the reliability of storm surge barriers by
determining component failure rates. In relation to the SVKO, a previous study used
an assumed statistical model to describe the component lifetimes with the primary
aim of updating these failure rates [8]. This model, however, was not validated using
the observed data.

The lack of validation in the previous work is noteworthy. Additionally, the prior
study simplified the analysis by omitting important data characteristics like censoring,
which might influence the reliability estimate, and choice of methods used.

This study distinguishes itself by being the first to use the available maintenance
system data from the SVKO for validating lifetime models. It is also unique in its
consideration of data censoring. Practical implications of knowing the model are ad-
ditional insight into whether the failure rates are constant or vary over time, which is
valuable information for resource allocation and effective maintenance, as discussed in
Chapter 2.

The aim of this chapter is to validate the underlying statistical models for the life-
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times of SVKO components. The SVKO component data described in Chapter 3 will
be analysed using the statistical framework discussed in Chapter 4. The primary goal
is to determine which model offers the best fit for describing the lifetimes of these
components.

5.2 Method

The research subquestion addressed is: ”Does a time-variant failure rate model provide
a superior fit to the data compared to a constant rate model?” To answer this question,
models are fitted to lifetime data. The dataset under consideration, obtained from the

SVKO, is outlined in Chapter 3.2. A statistical framework, detailed in Chapter 4, is
utilized. This framework has two main components: 1) a non-parametric estimation
of the hazard function to provide an empirical representation of failure rates over time,
and 2) parametric model fitting, specifically employing the Exponential and Weibull
models.

Two models are evaluated: the Exponential and the Weibull models. The Exponen-
tial model assumes a constant failure rate, while the Weibull model allows for a time-
variant failure rate. These models are assessed using the Akaike Information Criterion
(AIC) for model selection and the Kolmogorov-Smirnov (KS) tests for Goodness-of-
Fit. The KS tests in tandem with bootstrapping are used to calculate the p-value to
quantify the adequacy of the model fit to the observed data.

If the Weibull model is a better fit and its shape parameter is not equal to 1, it
indicates that failure rates vary over time. A non-linear pattern in the cumulative
hazard function would substantiate this conclusion.

The methodology consists of the following steps:

1. Data Preparation Raw data are processed for statistical analysis. Datasets
with lifetimes in hours are generated for each failure scenario.

2. Model Fitting: Both Exponential and Weibull models are fitted to the unmodi-
fied lifetime data for each failure scenario using Maximum Likelihood Estimation
(MLE).

3. Model Assessment: AIC values are computed for preliminary model selection.
Bootstrapping generates new lifetime datasets, which are fitted to Exponential
and Weibull models. The KS test then quantitatively evaluates the fit, producing
a p-value for each model.

4. Visualization: Visualizations such as plots and graphs are generated to provide
a qualitative assessment of the models, complementing the numerical criteria.
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5.2.1 Data Preparation

The data used in this study originates from the BMS+ system and focuses on the
failure rates within the SVKO. The dataset spans from May 20, 2010, to June 30,
2016. For further details on the raw data, refer to Section 3.2. This dataset allows for
the analysis of 17 unique failure scenarios, which are summarized in Table 6.

For each failure scenario, a dataset is constructed that captures the lifetimes of the
components in hours. These lifetimes are then categorized into one of three types:
complete, right-censored, or interval-censored, as illustrated in Figure 14. The red
dashed line for right censoring indicates that the failure occurs sometimes in the future,
and is not yet observed. The categorization of lifetime data is crucial as it imposes
specific requirements on the statistical models used for the analysis. The mathematical
treatment of these different types of lifetime data is elaborated in Chapter 4.

Figure 14: Illustration of component lifetime types: complete, interval-censored, and right-
censored data.

5.2.2 Model Fitting

To evaluate which of the two models, Exponential or Weibull, best fits the component
lifetime data, a statistical framework is adopted. This framework is described in
Chapter 4, which aims to identify the model that best represents the observed failure
rates in the data.

In reliability engineering, the term ”failure rate” is often synonymous with the ”haz-
ard function” [16]. The Exponential and Weibull models are chosen for their differing
underlying hazard functions. Specifically, the Exponential model assumes a constant
hazard function, given by Equation 40. On the other hand, the Weibull model allows
for a time-varying hazard function, as described by Equation 41.
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h(t) = λ (40)

h(t) =
κ

λ

(
t

λ

)κ−1

(41)

Models are initially fitted to lifetime data using MLE, adapted to account for cen-
sored data, as elaborated in Chapter 4. Given the constraints introduced by data
censoring, numerical solvers such as the Newton-Raphson method are employed in the
MLE process. For ensuring global convergence, initial parameter values are initially
optimized using the AIC iteratively. For instance, an initial fit is conducted using
rudimentary parameter estimates, which are then iteratively refined using the AIC to
guide the Newton-Raphson method toward global convergence.

5.2.3 Model Assesment

The AIC quantitatively assesses model fit, penalizing excessive complexity to deter
overfitting. It inherently addresses censored data by utilizing the likelihood function,
which is adapted for such datasets. A lower AIC value for the Weibull model implies
that its additional parameters, particularly the shape parameter, provide a meaningful
improvement in describing the data over the Exponential model, affirming its statistical
significance.

Censored data presents unique challenges for goodness-of-fit testing. To overcome
this, a bootstrap approach, based on leveraging data midpoint imputation, is employed
to approximate the incomplete data. This preparation allows for the application of the
KS test, where the empirical distribution is compared against the hypothesized model
to ascertain the congruity between observed data and model predictions.

The KS tests are used in the calculation of a p-value, reflecting the probability that
the observed data could plausibly be generated by the specified model. For instance,
suppose a p-value of 0.03 for the Exponential model and 0.07 for the Weibull model are
obtained. The p-value for the Exponential model being below 0.05 suggests that the
data does not fit well with a constant failure rate assumption, and thus, this model is
rejected. On the contrary, the Weibull model with a p-value above 0.05 is not rejected,
which implies that incorporating the shape parameter provides a significantly better fit.
This indicates that the failure rates are not constant and vary over time. Conversely,
if both models yield p-values above 0.05, for example 0.08 for the Exponential and
0.10 for the Weibull, it indicates that both models are statistically plausible and the
data does not provide a strong reason to prefer one over the other based on the KS
test alone. However, if the Weibull model has a lower AIC than the Exponential,
it would suggest that despite both models fitting within the acceptable range, the
Weibull model, with its varying failure rate assumption, provides a more nuanced
understanding of the data.
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The structured process for model evaluation and selection consists of the following
steps:

1. Initial Model Fitting and AIC Calculation: Fit the models to the raw data
and compute AIC values.

2. Data Preparation: Simplify censored data using the aforementioned method
to enable robust GoF testing.

3. KS Test on Simplified Data: Conduct the KS test using the simplified data.

4. Bootstrapped Model Fitting: Generate bootstrapped data sets based on the
simplified data.

5. Test Statistic and P-Value Calculation: Apply the KS test to the boot-
strapped data sets to compute test statistics. Which are used to determine the
p-values.

6. Final Model Evaluation: Assess the suitability of the model based on the
p-values.

Supplementary to these quantitative analyses, the following visual methods are also
used:

• Graphical Comparisons: Direct graphical comparisons between the fitted
models and empirical data.

• Density Plots: Study density plots based on test statistics from the boot-
strapped data sets to understand model adequacy in more detail.

• Empirical Cumulative Hazard Function: Observe how the hazard function
evolves over time to assist in model selection.

• Empirical Survival Function: Facilitates direct comparison between the fit-
ted and observed hazard functions.

5.2.4 Assumptions and Limitations

This study relies on several assumptions to enable the analysis of component reliability.
Both the assumptions and the inherent limitations of the dataset could influence the
findings and should be considered when interpreting the results.

The dataset is limited in its scope in time, covering only six years of operation while
the SVKO has been in service for 37 years. This limitation could affect the reliability
estimations related to component lifetimes and failure rates. The dataset of this study
also omits certain failure scenarios, including only those scenarios for which malfunc-
tions have actually been recorded. If a failure scenario has not occurred, all lifetime
data for that scenario is set equal to the length of the observation period. This is prob-
lematic because a dataset with zero variance cannot inform parameter estimations. In
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addition, the dataset lacks key information like test times for components and does
not establish a link between component replacements and recorded malfunctions.

1. Analysis Timeframe: The dataset spans from May 20, 2010, to June 30,
2016. Failures occurring outside this period are not accounted for, even though
the SVKO continues to operate.

2. Test Times: To mitigate the limitation of incomplete data, an additional
dataset containing SVKO test dates is used to infer component test times. This
data are the test closures, it is assumed that these lead to the hidden malfunc-
tions being discovered.

3. Failure Event Characteristics: Each failure event is characterized by a unique
combination of component type and failure type. Components are assumed to
be as good as new post-maintenance, indicating that their pre- and post-failure
conditions are independent.

4. Immediate Replacement: The study assumes immediate replacement of failed
components, ensuring a constant number of units at risk throughout the obser-
vation period. This assumption facilitates a streamlined analysis, although it
may not accurately represent real-world situations where delays in replacement
are typical. Such delays could lead to overestimated component lifetimes, as the
time taken for replacement is not accounted for. Regarding the variation of the
failure rate over time, the immediate replacement assumption could potentially
flatten the observed trend. This would make the failure rate appear more con-
stant over time than it actually is, as immediate replacement would artificially
reduce the perceived rate of failure, particularly for components with shorter
lifetimes.

5.3 Results

This section details the results obtained by applying the framework constructed in 4
to the data detailed in 3.2.

5.3.1 Failure Scenarios and Object Lifetimes

Building upon the 17 unique failure scenarios identified in the dataset, the lifetime of
each component is analysed. In Table 6, 9 of these failure scenarios were found to be
interval-censored, and 8 were right-censored.

Each component in the dataset was further classified based on the nature of its failure.
If a component is operational at the end of the observation period, it is considered
right-censored. Components that failed during this period and were observable are
categorized as complete, whereas those that are unobservable are classified as interval-
censored. This classification is also highlighted in Table 6. Figures 15 and 16 represent
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the component lifetimes of failure scenarios 5-LBPRC and 6-LBQENM. The figures
use various symbols to indicate the nature of the failure, a • represent an observable
failure, ▷ and ◁ represent the start and end of an interval in which an unobservable
failure occurred. The blue lines represent lifetimes that have not ended at the end of
the observation period.

Figure 15: Lifetimes of objects experiencing the observable LBPRC failure scenario. Red
lines concluding with a • symbolize observed failure scenarios. Blue lines depict objects
subject to right censoring.
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Figure 16: Lifetimes of objects subject to the unobservable LBQENM failure scenario. Red
lines indicate objects with interval censoring, with the ▷ and ◁ symbols specifying the start
and end of the interval. Blue lines illustrate objects subject to right censoring.

5.3.2 Model Fits

The Exponential and Weibull models have been fitted to the lifetime datasets for 17
failure scenarios, for which malfunctions relevant to the closure reliability are observed.
The model parameters estimated using MLE are provided in Table 7. In case of the
exponential model, the failure rate λ is estimated, whereas both the shape κ and scale
λ parameters are derived in for Weibull model.

In Table 7 specific cases such as the 1-LBDIM scenario with κ = 1.3 indicate an
increasing failure rate, while the 5-LBPRC scenario with κ = 0.7 reveals a decreasing
failure rate. Table 8 lists the AIC values, p-values, and a single KS test statistic ob-
tained from applying the Exponential and Weibull models to various failure scenarios.

Based on AIC values, 12 out of the total failure scenarios show a preference for
the Exponential model, while the Weibull model performs better for 4 scenarios (7-
LBQENM, 9-LBSWAM, 13-LERA38, and 16-LHGR). For 5-LBPRC, the AIC values
are identical. Importantly, the difference in AIC values between the two models is
smaller than two for most scenarios, suggesting both models are equally well suited
to describe the data [11]. The difference in the AIC values for the models is likely
due to the penalty for model complexity [11]. Figure 17 depicts the difference in AIC
values between the models, and shows that scenario 7-LBQENM stands out for its
large difference, over 13, and preference for Weibull.

In evaluating the fit of both Exponential and Weibull models to the data, the p-values
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from hypothesis testing for all failure scenarios exceed 0.05. This means that there
is insufficient statistical evidence to reject the null hypothesis, which in this context
is that the observed data can be modeled adequately by either an Exponential or a
Weibull distribution.

Based on the statistical indicators in Table 8 the Weibull model has a lower absolute
distance to the empirical distribution for the original lifetime data for 7 failure sce-
narios 3-LBGC, 4-LBKLO, 5-LBPRC, 6-LBPRNI, 7-LBQENM, 15-LESS, 16-LHGR,
there are 2 ties, 11-LEDGSN, 17-LHSVT, and the remaining 8, 1-LBDIM, 2-LBDINM,
8-LBREL, 9-LBSWAM, 10-LBSWB, 11-LEDSSN, 13-LERA38, 14-LEVSSN, the re-
mainder Exponential results in a lower test statistic value. Note that this is just one
test statistic calculate for each failure scenario, hence it cannot be readily used to
determine if one or the other model is better, and serves more a quantitative indicator
for how well the models fit to the data for this moment in time.

Table 7: Comparison of Exponential and Weibull model parameters for each component.

F. Scenario
Exponential Weibull
Rate (λ) Scale (λ) Shape (κ)

1-LBDIM 2.1e-08 1.1e07 1.3
2-LBDINM 4.2e-08 2.2e07 1.0
3-LBGC 4.5e-07 2.0e07 0.6
4-LBKLO 6.2e-06 1.7e05 0.9
5-LBPRC 6.5e-07 6.3e06 0.7
6-LBPRNI 7.2e-08 4.0e06 1.2
7-LBQENM 2.8e-07 7.7e8 0.4
8-LBREL 1.5e-08 9.0e7 1.0
9-LBSWAM 1.5e-07 7.5e05 1.8
10-LBSWB 7.3e-08 6.6e5 1.1
11-LEDGSN 5.2e-05 4.9e4 0.9
12-LEDSSN 3.7e-06 4.0e05 0.9
13-LERA38 2.4e-07 8.5e04 9.5
14-LEVSSN 2.7e-06 3.5e05 1.0
15-LESS 1.1e-06 6.4e06 0.6
16-LHGR 2.7e-06 1.9e06 0.6
17-LHSVT 4.9e-08 1.2e7 1.1
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Table 8: Comparison of Exponential and Weibull model AIC values, KS test statistics, and
p-values for each component.

Failure Scenario
Exponential Weibull

AIC p-value KS AIC p-value KS
1-LBDIM 77 0.76 3.24-4 78 0.69 3.77e-4
2-LBDINM 100 0.88 4.08e-4 102 0.86 4.18e-4
3-LBGC 187 0.53 9.40e-3 188 0.58 5.76e-3
4-LBKLO 18 0.83 1.48e-1 19 0.83 1.27e-1
5-LBPRC 277 0.70 8.96e-3 277 0.79 6.27e-3
6-LBPRNI 37 0.85 3.69e-3 40 0.85 3.67e-3
7-LBQENM 338 0.53 6.34e-3 324 0.85 2.00e-3
8-LBREL 29 0.79 1.98e-5 31 0.79 1.22e-4
9-LBSWAM 70 0.84 9.50e-4 69 0.75 2.56e-3
10-LBSWB 37 0.85 3.78e-3 40 0.81 5.32e-3
11-LEDGSN 259 0.28 2.22e-1 260 0.27 2.22e-1
12-LEDSSN 35 0.56 8.22e-2 37 0.55 8.97e-2
13-LERA38 35 0.58 8.22e-2 34 0.46 6.54e-2
14-LEVSSN 100 0.64 3.24e-2 101 0.68 3.31e-2
15-LESS 21 0.87 4.08e-2 23 0.87 3.18e-2
16-LHGR 251 0.53 4.37e-2 249 0.71 2.95e-2
17-LHSVT 26 0.40 2.25e-3 28 0.85 2.25e-3
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Figure 17: Diverging bar chart comparing the AIC values of the Exponential and Weibull
models across different failure scenarios. Bars extending to the left and colored in orange
indicate a lower AIC value for the Exponential model, making it more favorable. Bars ex-
tending to the right and colored in blue indicate a lower AIC value for the Weibull model.
The symbol ¡ indicates that the actual difference is lower than, e.g. 2¡ is lower than 2. The
numerical annotations represent the magnitude of the AIC difference. A legend in the lower
right corner clarifies the significance of each color. Scenarios are presented in the same order
as the table.

5.3.3 Graphical Assessment of Model Fits

Graphical evaluations for both Exponential and Weibull models are documented in
Appendix H. Two key findings are presented:

• For datasets with low variability and fewer average failures, both models gener-
ally exhibit poor fit. These datasets do not appear to suitable for rigorous model
assessment using the framework based on the visualisation.

• For datasets with higher variability and a greater number of failures, the Weibull
model typically performs as well as or better than the Exponential model.
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Since a Weibull model with a shape parameter of 1 functions similarly to an Ex-
ponential model. it is expected that datasets showing a constant failure rate are
well-captured by both models. For datasets indicating a varying hazard rate—a fea-
ture not accommodated by the Exponential model—the Weibull model is expected to
perform better.

This behavior is supported by the visualisation presented in Appendix H. For a more
comprehensive understanding, Appendix I categorizes these failure scenarios based
on how well each model fits the empirical data. Key metrics from this analysis are
consolidated in Table 9. Notably, the table highlights that the average number of
failures in well-fitting scenarios is 10.29, significantly higher than in poorly-fitting
scenarios, which average 1.30 failures. Additionally, the minimum number of failures
in well-fitting scenarios (4) is double the maximum number of failures in poorly-fitting
scenarios (2).

Table 9: Key Findings: Summary Statistics of Good Fits vs Poor Fits. For detailed infor-
mation, see Appendix I.

Metric Good Fit Scenarios Poor Fit Scenarios

Mean Number of Failures 10.29 1.30

Maximum Number of Failures 20 2

Minimum Number of Failures 4 1

Mean Number of Components 504.71 429.90

Mean Lifetime-to-Component Ratio 1.21 1.05

Case-by-Case Graphical Assessment A detailed analysis is provided for specific
scenarios, comparing the graphical assessments with previous quantitative analyses.
Five distinct cases are examined: one where both models are similarly not very effec-
tive, two where both models seem to offer a comparable fit, and two where the Weibull
model is seems to be preferable. These assessments corroborate the quantitative anal-
yses, offering nuanced insights into the suitability of each model for different failure
scenarios.

17-LHSVT Analysis Table 8 reveals that the Exponential and Weibull models
have similar AIC scores in the 17-LHSVT scenario, implying that their fit to the
data is comparably adequate. Despite this, their p-values are high enough to prevent
statistical rejection. However, a closer look through visual analysis points to a poor fit
for early failure times. The single component failure out of 384 suggests that the data
lacks sufficient variability to differentiate between the models’ performance, resulting
in a potential overestimation of their fit.

Figure 20 displays the bootstrapped test statistics for the dataset (detailed in Ta-
ble 6) as clustering at distinct values, with no intermediate data points. This phe-
nomenon arises because the dataset predominantly consists of a single failure time
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(e.g., 1000 hours) with only one or two component lifetimes deviating from this cen-
tral tendency (e.g., at 1100 and 1200 hours). The absence of gradation between the
clusters signifies that the bootstrap method, given the original dataset’s limited vari-
ability, does not yield a continuous range of outcomes necessary for a nuanced model fit
assessment. Consequently, caution must be exercised when interpreting these results,
as the test statistics derived may not accurately reflect the models’ goodness-of-fit.

The empirical cumulative hazard function, depicted as a near-horizontal line in Fig-
ure 21, signals an absence of failure events, leading to a potentially misleading zero-
failure-rate inference. This suggests that the dataset is not sufficiently informative to
assess the failure rate accurately or to compare model efficacy. The lack of failures to
analyze means that reliability assessments are based on a dataset that may not reflect
the true failure behavior.

In light of these findings, interpreting other failure scenarios with a similar pattern
should be approached with skepticism. Specifically, it is advisable to question the in-
formativeness of the dataset and consider seeking additional data. When encountering
a near-horizontal empirical cumulative hazard function, it may suggest an insufficient
number of events to validate a model’s assumptions or to capture the potential com-
plexity of the failure process, necessitating a cautious approach to model selection and
validation.

Figure 18: Exponential model fit for the
failure scenario LHSVT.

Figure 19: Weibull model fit for the fail-
ure scenario LHSVT.
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Figure 20: Histogram of TS values for
failure scenario LHSVT.

Figure 21: Hazard function for failure
scenario LHSVT.

11-LEDGSN Analysis For the 11-LEDGSN scenario, the Weibull model fit for
the data is clearly depicted in the Cumulative Distribution Function (CDF) plot,
which shows lifetimes of 11-LEDGSN on the x-axis. The plotted data points follow
the Weibull model curve fairly closely, especially for lifetimes ranging approximately
between 8700 and 43000 hours, as indicated in Figure 22. Outside this range, the data
points tend to diverge from both the Exponential and Weibull model curves.

The density plot in Figure 24 showcases overlapping Test Statistic (TS) distributions
for both the Exponential and Weibull models derived from 1000 samples. The over-
lapped distributions of both models suggest their comparable fit to the 11-LEDGSN
data. Notably, the two vertical lines representing the original test statistics from the
Weibull and Exponential models are quite close, reaffirming the observation of similar
performance by both models.

Figure 25 compares the hazard functions of the Exponential and Weibull models
against the empirical Nelson-Aalen estimator. The Weibull and Exponential models
seem to provide a good fit to the data, with both aligning closely with the Nelson-Aalen
estimator, particularly for lifetimes up to about 40000 hours. Beyond this point, there
is a noticeable divergence. This divergence suggests that the underlying risk factors
or processes governing the hazard rate might change after 40000 hours. Moreover, it
emphasizes the importance of considering time-varying effects or more flexible models
when assessing long-term reliability or risk.
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Figure 22: Exponential model fit for the
failure scenario LEDGSN.

Figure 23: Weibull model fit for the fail-
ure scenario LEDGSN.

Figure 24: Histogram of TS values for
failure scenario LEDGSN.

Figure 25: Hazard function for failure
scenario LEDGSN.

14-LEVSSN Analysis Table 8 summarizes the results derived from the LEVSSN
dataset. Both the Exponential and Weibull models yield comparable performances, as
indicated by their similar AIC values. Furthermore, neither model is rejected based
on their respective p-values.

The fit of these models to the dataset can also be visually assessed. Figures 26 and
26 demonstrate that both the Exponential and Weibull models closely align with the
data points, reinforcing the statistical tests’ findings.

Further evidence for the suitability of both models comes from the distribution of the
test statistics values. As seen in Figure 28, the TS distributions for the Exponential
and Weibull models overlap, suggesting an equivalent fit to the data.

The cumulative hazard function also provides insights into the models’ character-
istics. For the Nelson-Aalen, Exponential, and Weibull models, a linearly increasing
hazard function is observed. This is indicative of a constant failure rate over time.
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Notably, the Weibull model fitted to the failure data also has a shape parameter of 1,
further supporting the notion of a constant failure rate.

Figure 26: Exponential model fit for the
failure scenario LEVSSN.

Figure 27: Weibull model fit for the fail-
ure scenario LEVSSN.

Figure 28: Histogram of TS values for
failure scenario LEVSSN.

Figure 29: Hazard function for failure
scenario LEVSSN.

3-LBGC Analysis For the 3-LBGC scenario, the statistical indicators in Table 8,
such as the AIC, do not show a clear preference for one model over the other, graphical
evidence provides additional insights.

Figures 30 and 31 display the fit of the Exponential and Weibull models, respectively,
to the observed data in the 3-LBGC scenario. The Exponential model appears to have
limitations in accurately representing lifetimes below 8700 hours, with some estimates
lying outside the 95% confidence interval. The Weibull model, in contrast, displays
a tighter fit, encapsulating all lifetimes within the 95% confidence bounds. However,
caution should be exercised in overinterpreting the superiority of the Weibull model
based solely on this visualization.

Figure 32, a density plot derived from bootstrap samples, highlights the distributions
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of the test statistic values for both models. While the Weibull model often registers
lower TS values, indicating a closer alignment with the bootstrapped data, it’s essential
to note the overlap in the TS distributions of the two models. This overlap suggests
that, based on the test statistic alone, neither model is definitively superior.

The survival rate comparison in Figure 33 further emphasizes the nuanced differences
between the two models. The Weibull model appears to align more closely with the
empirical hazard function, derived using the Nelson-Aalen estimator, particularly at
specific intervals.

Additionally, the shape parameter of 0.58 of the Weibull model, as presented in
8 indicates that the failure rate is decreasing over time [16]. The hazard function
itself appears to show a decreasing steepness in time, a decrease of cumulative hazard
function steepness indicates a decreasing failure rate over time [16]. inlign with the
shape parameter of the fitted model.

Figure 30: Exponential model fit for the
failure scenario LBGC.

Figure 31: Weibull model fit for the fail-
ure scenario LBGC.

Figure 32: Histogram of TS values for
failure scenario LBGC.

Figure 33: Hazard function for failure
scenario LBGC.
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7-LBQENM Analysis For the 7-LBQENM scenario, the Weibull model exhibits
a different trend compared to the Exponential model, a fact supported by the AIC
value in Table 8. The discrepancy between the two models is further evidenced in the
Cumulative Distribution Function (CDF) plot, displayed in Figure 35.

The density plot presented in Figure 36 shows less overlap between the test statistic
distributions for the Exponential and Weibull models, unlike the 11-LEDGSN scenario.
This divergence implies that the models offer different fits to the 7-LBQENM data.

As depicted in Figure 37, a stark contrast is evident between the cumulative hazard
functions of the Exponential and Weibull models. The Exponential model’s cumu-
lative hazard function shows a consistent linear increase over time, aligning with its
presupposition of constant failure rates. In contrast, the Weibull model’s cumulative
hazard function displays a variable rate of increase. Notably, the function’s slope
lessens over time, which resonates with a shape parameter of 0.4, as documented in
Table 7. This non-linear behavior of the Weibull cumulative hazard function indicates
variable failure rates, corroborated by the empirical cumulative hazard data. These
observations suggest a dynamic failure rate pattern over time, which is more com-
prehensively captured by the Weibull model due to its ability to account for changing
failure rates—an aspect that the Exponential model, with its assumption of constancy,
fails to encapsulate.

Figure 34: Exponential model fit for the
failure scenario LBQENM.

Figure 35: Weibull model fit for the fail-
ure scenario LBQENM.
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Figure 36: Histogram of TS values for
failure scenario LBQENM.

Figure 37: Hazard function for failure
scenario LBQENM.

5.4 Summary

The research sub-question “Does a time-variable failure rate model provide a statis-
tically better fit to the existing data than a constant rate model?” is addressed by
comparing the Weibull and Exponential models across various failure scenarios using
the framework suggested in Chapter 4. The analysis reveals that the Weibull model
does not consistently offer a superior fit compared to the Exponential model based on
the existing data.

A key determinant in model selection is the AIC, which suggests near equivalence
in model performance with no clear preference for most failure scenarios, as the dif-
ference in AIC values is within 2 points. Notable exceptions where AIC indicates a
preference are scenarios 6-LBPRNI and 10-LBSWB favoring the Exponential model,
and 7-LBQENM showing a preference for the Weibull model.

Statistical hypothesis testing fails to decisively reject either model across the scenar-
ios, implying that within a 95% confidence level, both models are statistically viable
for describing the failure data. This outcome is supported by p-values that do not fall
below the significance threshold of 0.05.

Graphical evaluation of the models’ fit to the data provides additional insights. For
seven out of the seventeen failure scenarios reviewed, namely 2-LBDINM, 3-LBGC,
5-LBPRC, 7-LBQENM, 11-LEDGSN, 14-LEVSSN, and 16-LHGR, the model appear
visually to fit adequately. Particularly for scenarios 3-LBGC, 5-LBPRC, 7-LBQENM,
and 16-LHGR, the Weibull model, with its time-varying failure rate feature, provides a
more accurate description of failure behavior. Especially, Weibull more closely follows
the empirical cumulative hazard function. In contrast, scenario 11-LEDGSN exhibits
a pattern of increasing failures towards the end of the observation period that neither
model captures effectively, suggesting an anomaly or a wear-out effect. The remaining
scenarios demonstrate that both the Weibull and Exponential models are compara-
bly effective, both seeming to approximate the empirical cumulative hazard function,
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which appears to be linearly increasing. In these cases, the Weibull model approaches
the characteristics of the Exponential model as its shape parameter nears 1.

Correlating the scenarios that exhibit appropriate model fits visually, as identified
in Appendix H, with the principal characteristics of their lifetime datasets presented
in Table 9, it becomes evident that datasets with a higher average number of failures
typically correspond to a more satisfactory fit from the models compared to those
characterized by a lesser frequency of failure instances.

The implications of these results are multifaceted. The Weibull model’s compara-
ble or superior performance in some scenarios underscores its potential in depicting
complex failure dynamics. Its added flexibility with an additional parameter makes it
a robust option for reliability modeling, particularly beneficial for strategies requiring
adaptive maintenance and enhanced predictive risk assessments. Nevertheless, the Ex-
ponential model’s simplicity and convenience remain valuable, especially when data is
limited. In scenarios where both models perform similarly, it could reflect either insuf-
ficient data differentiation or inherently constant failure rates. Therefore, the choice
between models may depend on the specific scenario, with the Weibull model offering
greater flexibility and the Exponential model providing a simpler alternative.

5.4.1 Implications

The analysis conducted does not uniformly support the superiority of the Weibull
model over the Exponential model for all failure scenarios. This uncertainty in model
efficacy indicates that the appropriateness of a time-variable failure rate model like
Weibull versus a constant rate model like Exponential may depend on the nuances
of the specific data set. The findings imply that when failure rates are not evidently
variable, the additional complexity of the Weibull model may not yield significant
benefits over the simpler Exponential model. Conversely, when there is an indication
of non-constant failure rates, the Weibull model’s extra parameter, which allows for
the adjustment of the failure rate over time, could potentially offer a more nuanced
understanding of the system’s reliability.

5.4.2 Recommendations for Future Research

Future research should consider the following strategies to enhance the robustness of
reliability model comparisons:

• Data Expansion: More comprehensive datasets with an increased number of
failure events could provide a stronger statistical basis for model evaluation and
could lead to more conclusive evidence regarding the appropriateness of different
models.

• Model Exploration: Given the limitations of the Weibull and Exponential
models in certain scenarios, such as 11-LEDGSN, investigation into alternative
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models that capture wear-out effects or non-standard failure patterns is recom-
mended. These models should be able to account for complexities not addressed
by the models fitted in this thesis.

• Methodological Advancements: For datasets characterized by low variance,
the development of specialized methodologies is advisable. Extreme value anal-
ysis, or similar statistical methods, may offer more suitable insights for datasets
that include infrequent or outlier failure events.

Enhanced datasets and refined analytical methods could improve the accuracy of
statistical comparisons, providing clearer evidence for or against the superiority of
time-variable failure rate models over constant rate models, directly addressing the
research sub-question.
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6 Discussion and Conclusion

6.1 Discussion

The study centered around the research question: “ Is the assumption of constant
failure rates over time for storm surge barriers valid?” The analysis presents a nuanced
picture: some data supports the assumption, while other data contradicts it, indicat-
ing variable failure rates. The evaluation of Weibull and Exponential models, in the
context of storm surge barrier failure rates, indicates that no single model adequately
captures the nuances across all observed failure instances. Therefore, it is not feasible
to categorically affirm the constancy of failure rates for these structures.

Literature supports the presence of variable failure rates in safety-critical systems,
a finding which resonates with the observations from the current analysis that shows
a Weibull model more aptly describing certain failure scenarios. In the majority of
the failure scenarios analyzed, the Weibull and Exponential models performed com-
parably, as reflected by their AIC scores with minimal differences. This similarity in
performance does not substantiate a clear preference for either model in those sce-
narios. However, one scenario notably diverged, with the Weibull model’s AIC score
significantly lower, suggesting a better fit and pointing to the possibility of variable
failure rates in that instance.

The analysis, informed by p-values from hypothesis testing, does not provide clear
evidence to reject the Exponential model or the Weibull model conclusively across
the studied scenarios. In an ideal analysis, if the Exponential model is unsuitable, it
would be rejected, leaving the Weibull model as the more appropriate choice if it is
not rejected, and vice versa. This kind of outcome would offer clear evidence as to
which model better characterizes the data for a specific scenario. However, the study
does not demonstrate such a definitive outcome. Therefore, it is not possible to firmly
support the hypothesis of constant failure rates, nor to unambiguously affirm that
failure rates are variable for storm surge barriers. The ambiguous p-values suggest
that neither the dataset at hand nor the statistical methods applied are sufficient to
arrive at a conclusive judgment, allowing for the possibility that both constant and
variable failure rates could be present.

Visual inspection of the SVKO component data provides additional insight into
failure rate trends. Out of seventeen scenarios, seven demonstrate a good visual fit with
the proposed models. Scenarios 2-LBDINM and 14-LEVSSN, in particular, show linear
trends, suggesting the potential for constant failure rates, as both the Exponential and
Weibull models indicate.
Conversely, scenarios such as 3-LBGC, 5-LBPRC, 7-LBQENM, and 16-LHGR, ex-

hibit non-linear trends, implying variability in failure rates. The stark outlier is sce-
nario 1-LEDGSN, where the observed increase in failure rate is not captured by either
model, challenging their predictive accuracy.

In summary, the examination of storm surge barrier failure rates through this re-
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search reveals that the assumption of constant failure rates may not hold universally
across different scenarios. The inconclusive evidence from statistical tests, the com-
parative analysis of the Weibull and Exponential models, and the visual assessment
of failure data collectively suggest that both constant and variable failure rates may
exist in different components.

6.2 Conclusion

The research into the consistency of failure rates over time for storm surge barriers
presents a nuanced view of predictive modeling in this area. The analysis comparing
Weibull and Exponential models does not conclusively favor one over the other. This
suggests that flexibility in model selection based on specific circumstances could be
more appropriate than a uniform approach.

The study hints at the possibility that a generic approach to failure rate prediction
might not capture the full complexity of the issue. The observed low variability when
applying a single model across the board indicates that a strategy tailored to the indi-
vidual characteristics of each component may offer advantages. Such a strategy would
involve selecting the most fitting model that accounts for the unique failure patterns
over time, potentially leading to improved maintenance planning and reliability of bar-
riers. This nuanced modeling could accommodate variations in failure rates, enhancing
the accuracy of predictions, which is essential for effective flood risk management.

In conclusion, the research contributes preliminary insights into the failure patterns
of storm surge barriers and points towards the need for further investigation into more
refined and potentially adaptive modeling techniques. This direction may be important
for advancing our understanding of flood defense reliability.

6.3 Contributions

The presented research advances the understanding of storm surge barrier reliability
by examining the behavior of failure rates over time, rather than assuming their con-
stancy. It merges theoretical analysis with practical application, resulting in several
key contributions:

• Statistical Framework: A framework is introduced for the comparative anal-
ysis of constant and variable failure rates using Exponential and Weibull distribu-
tions. The framework utilizes standard statistical tests, including the Kolmogorov-
Smirnov test, and incorporates a version of bootstrapping designed to manage
censored data within the lifespan of storm surge barrier components.

• Code Repository Release: To support the research community, a code repos-
itory has been made publicly available. This repository aids in the creation of
databases and interfaces for statistical analysis of component data, facilitating
standardization and collaboration within the field of reliability engineering.
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• Methodology for Closure Data Analysis: An approach to analyzing clo-
sure data is detailed in an appendix, which could be instrumental for evaluating
the reliability of storm surge barriers. The corresponding code repository pro-
vides standardized procedures for data handling and analysis, contributing to
methodological consistency in this research area.

6.4 Recommendations

To further the applicability of theoretical models to real-world scenarios, the study
proposes the following recommendations:

• Sustained and Comprehensive Data Collection: It is suggested that data
collection should be both extensive and ongoing, with an emphasis on enhancing
the detail and accuracy of data for improved reliability assessments. Strategies
may include developing databases that capture detailed malfunction records for
storm surge barrier components. The current system employed by the SVKO
is a strong model that could be further augmented by including the time to re-
placement data for each malfunction record, which would enrich the information
regarding component lifetimes.

• Further Evaluation of Failure Rates: In light of observed variations in failure
rates within limited datasets, it is recommended to employ the available data to
assess failure rate dynamics. This could involve empirical analysis of cumulative
hazard functions or the application of models, such as the Weibull distribution,
to gain insights into failure patterns over time. Furthermore, enhancing the
recording of individual components and their lifetimes would contribute to a
deeper understanding of failure rates and maintenance needs.

• Adoption of Malfunction Recording Systems: Other storm surge barriers
are encouraged to adopt malfunction recording systems akin to that used by the
SVKO, BMS+. Such systems are invaluable, not only for the data they provide,
also for the potential improvements they can prompt in maintenance practices. A
comprehensive database that includes timing and details of replacements would
offer significant benefits for predictive maintenance and reliability forecasting.

6.4.1 Future Research Strategies

The study indicates several avenues for future research:

• Data Expansion: Broadening the data collection to encompass more complete
operational data can enhance the potential insights. Such data should be avail-
able for the SVKO, assuming that BMS+ maintenance management software is
still in active use.

• Model Exploration: The exploration of statistical models that can accommo-
date complex and non-standard failure behaviors, such as those due to wear-out
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effects, is recommended to supplement Exponential and Weibull models in the
analysis of component lifetimes.

• Methodological Advancements: Advancing methodologies capable of ana-
lyzing data with infrequent failures or high variability is encouraged, potentially
involving the application of extreme value analysis or other sophisticated statis-
tical techniques that cater to the prediction of rare, significant failure events.
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A Maintenance Groups SVKO

This appendix provides an overview of the maintenance groups associated with the
Storm Surge Barrier Control System (SVKO). The groups included in the table are
specifically relevant to the reliability of the storm surge barrier’s closure mechanism.
Each entry contains details about the total number of failures, the number of fail-
ures that are relevant to the closure reliability, and the total components within each
maintenance group. For a comprehensive understanding, see the original report [8].

Table 10: Records of Maintenance Groups [8]

Maintenance
Group

Description Failures (No.) Relevant Failures (No.) Components (No.)

B-DI Digital input mod-
ule

7 6 1786

B-DO Digital output
module

0 0 704

B-DS S16 Switch (Safety
Operation)

0 0 3

B-GC Graycode sensor 12 9 372
B-GC-C Graycode sensor

CCF ¿1v3 North or
South

1 1 124

B-GV Stabilized power
supply VSL

0 0 6

B-GV-T General stabilized
power supply VSL

0 0 1

B-KL ’Safe closing line’
cable

1 1 6

B-KL-T General ’Safe clos-
ing line’ cable

0 0 1

B-PM I-O bus/network
communication
controller/module

16 6 260

B-PM-T General I-O
bus/network
communication
controller/module

6 4 248

B-QE QE Module (AND
gates)

10 10 992

B-QE-T QE-22 (2 out of 3
selection)

6 5 62

B-QS QESI Module 0 0 124
Continued on next page
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Table 10 Continued
Maintenance
Group

Description Failures (No.) Relevant Failures (No.) Components (No.)

B-QS-T Optocouplers for
safe closing line

0 0 62

B-SF LCC Software 2 0 62
B-SS Safety operation

key switch
0 0 1

B-SW Switch 3 3 256
E-ATD ATD

(=A02+00*CB2:23-
U130)

0 0 1

E-BC Control signal from
LC4 to 10kV Trans-
former field

2 1 17

E-BT Battery (Trans-
former field)

6 0 63

E-DG Diesel generator 8 3 10
E-DG:AKD Diesel generator

control cabinets
14 7 30

E-DG:ALG General diesel gen-
erator

6 3 40

E-DG:BAT Diesel generator
battery

0 0 10

E-DG:DB Diesel generator
day tank + fuel
pump

4 0 10

E-DG:GEN Diesel generator
generator

2 2 10

E-DG:MCP Diesel generator en-
gine control panel

1 1 10

E-DG:MOT Diesel generator en-
gine

13 5 10

E-DG:VJ Diesel generator fan
+ radiator

1 0 20

E-GRS Charging rectifier
(24 V)

20 9 63

E-KLL Low voltage cables
(400V)

0 0 13

E-KLM Medium voltage ca-
ble (10 kV)

0 0 10

E-MCK Switch (400V) Bar-
rier

1 0 26

Continued on next page
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Table 10 Continued
Maintenance
Group

Description Failures (No.) Relevant Failures (No.) Components (No.)

E-MCTEB Switches (400V)
Topshuis Own
Business

0 0 4

E-MCTFF Switches (400V)
Topshuis Flip-Flop

0 0 2

E-RD Diesel switching re-
lay (NSTA box)

0 0 1

E-RHK Relay 1 1 1240
E-RHK-T General relay 0 0 62
E-RL1 Low voltage rail

(400V) CB1:21 and
CB1:27

0 0 2

E-RLE Low voltage rail
(400V) Topshuis
Own Business

0 0 2

E-RLK Low voltage rail
(400V) Barrier

2 1 79

E-RLS Control voltage rail
(24V)

0 0 62

E-RLT Low voltage rail
(400V) Topshuis
CBB 23

0 0 1

E-RMT Medium voltage
rail (10kV Top-
shuis)

0 0 5

E-RN Down relay 0 0 1
E-RS Medium voltage re-

lease relay
0 0 6

E-SR Load switch Q020 0 0 17
E-SVH 24V fuse auxiliary

voltage
0 0 17

E-TFD Diesel transformer 1 0 10
E-TFK Barrier transformer 3 0 17
E-TFT Topshuis trans-

former
1 0 4

E-VM1 Motor-operated
switch TRRR (10
kV Barrier)

1 0 8

E-VM2 Motor-operated
switch TRRb (10
kV Barrier)

4 2 42

Continued on next page
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Table 10 Continued
Maintenance
Group

Description Failures (No.) Relevant Failures (No.) Components (No.)

E-VM3 Motor-operated
switch TRRo
(10kV Roompot-
sluis)

1 0 3

E-VMD Motor-operated
switch (10 kV
Diesels)

34 2 10

E-VMT Motor-operated
switch (10 kV
Topshuis)

23 4 20

E-VSL Delta Nuts Switch 2 1 1
H-BG Hydraulic tank

compensator
(POS50)

0 0 65

H-DV Pressure control
valve (POS16)

0 0 130

H-FL Filter (POS05/13) 18 0 260
H-GK Controlled check

valve Cylinder
(POS35)

2 0 124

H-KC Ball valve Cylinder
(POS21/22)

5 0 260

H-MP Pump (POS02) 13 0 130
H-MPB Motor control cabi-

net (MBS)
1 0 130

H-NK Emergency choice
switch

4 0 130

H-NK-T Emergency hy-
draulic choice

1 0 62

H-SL3 Hose 30-33
(POS75)

0 0 124

H-SL6 Hose 61 0 0 130
H-SM Flow control valve

(POS34)
1 0 124

H-SV5 Solenoid valve
POS15

9 0 130

H-SV7 Solenoid valve
POS17

8 1 130

H-SV8 Solenoid valve
POS38

15 0 124

Continued on next page
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Table 10 Continued
Maintenance
Group

Description Failures (No.) Relevant Failures (No.) Components (No.)

H-TKT Check valve
(POS04/43/47)

3 0 390

H-VT Tank (POS60) 3 0 65
H-VV2 Safety valve POS12 0 0 130
H-VV9 Safety valve POS19 1 0 130
H-ZC Cylinder 7 0 124
L-LCC Lightning strike

LCC
0 0 62

L-VSL Lightning strike
VSL

0 0 1

N-BP Backplane 0 0 5
N-CP CPU 0 0 5
N-DI Digital input mod-

ule
0 0 4

N-DO Digital output
module

0 0 4

N-GV 24V D.C. NSTA 1 0 2
N-NS Level measurement 0 0 6
N-PL Valves / pipe pile

inlets
0 0 2

N-PM Power module 0 0 5
N-RI RS232 module 0 0 6
N-RLS NSTA 24 volt dis-

tribution
0 0 2

N-SF Software Inwin
units

0 0 1

N-US UPS NSTA 1 0 2
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B Type-codes SVKO

This appendix provides an overview of the Type Codes associated with the Storm
Surge Barrier Oosterschelde. The Type codes included in the table are specifically
relevant to the reliability of the storm surge barrier’s closure mechanism. Each entry
holds the Code and the description [8].

Table 11: Type Codes and their English Descriptions

Type Code Description (Translated to English)
LBBL Failure Frequency Buslock LCC (LC-1,2,3)
LBBO Failure Frequency Bus Interruption LCC (LC-1,2,3)
LBDIm Failure Frequency Digital Input Module (noticeable)
LBDInm Failure Frequency Digital Input Module (not noticeable)
LBDOm Failure Frequency Digital Output Module (noticeable)
LBDOnm Failure Frequency Digital Output Module (not noticeable)
LBDS Failure Frequency Push-button Switch
LBGC Failure Frequency Graycode Sensor 1 North Not Functioning
LBGV Failure Frequency Stabilized Supply VSL (-35V/+35V)
LBKLA Failure Frequency Earth Short Circuit Safe Close Line
LBKLO Failure Frequency Interruption Safe Close Line
LBPRC Failure Frequency Processor Module
LBPRNI Failure Frequency Processor Module Network Interface
LBQEnm Failure Frequency QE22 Module Fails Not Noticeably
LJQEnm Failure Frequency QE22 Module Fails Not Noticeably, Tested An-

nually
LBQSnm Failure Frequency QESI Module/Channel Not Noticeable
LBREL Failure Frequency Relay Does Not Switch
LBSS Failure Frequency Key Switch
LBSWAm Failure Frequency Switch Type A in LCC in the Middle of a Sec-

tion
LBSWB Failure Frequency Switch Type B in LCC
LEBT Failure Frequency 24V Batteries in Electrocontainer
LEDGSN Failure Frequency Diesel Generator Does Not Start
LEDGSV Failure Frequency Diesel Generator Stops Prematurely
LEDSSN Failure Frequency Switch of Diesel Generator Does Not Close
LEEBOM Failure Frequency Switching to Own Operation Fails
LEKLL Failure Frequency Low Voltage Coupling Cable
LEKLRG Failure Frequency 10kV Cables Roompot White or Black, Ground

Segment
LEKLRK Failure Frequency 10kV Cables Roompot White or Black, Conduit

Segment
LEKLSG Failure Frequency 10kV Cables Hammen/Schaar White or Black,

Ground Segment
Continued on next page
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Table 11 Continued
Type Code Description (Translated to English)
LEKLSK Failure Frequency 10kV Cables Hammen/Schaar White or Black,

Conduit Segment
LEMCSN Failure Frequency Low Voltage Switch Does Not Close
LEMCSO Failure Frequency Low Voltage Switch Opens Spontaneously
LERA Failure Frequency Rail Earth/Fault
LERA24 Failure Frequency 24V Rail (Room A2) in Electrocontainer to

Earth
LERA38 Failure Frequency 380V Rail Transformer Container to Earth
LERARW Failure Frequency 10kV Rails Roompot White to Earth
LERARZ Failure Frequency 10kV Rails Roompot Black to Earth
LERASW Failure Frequency 10kV Rails Hammen/Schaar White to Earth
LERASZ Failure Frequency 10kV Rails Hammen/Schaar Black to Earth
LESD Failure Frequency Fuse (open)
LESRL Failure Frequency Disconnect Switch Q020 Transformer Container

Does Not Open
LESRSO Failure Frequency Disconnect Switch Q020 Transformer Container

Opens Spontaneously
LESS Failure Frequency No Control Signal from LC4 to 10kV A01

Transformer Field
LETR Failure Frequency Transformer Barrier (in operation)
LETRDG Failure Frequency Transformer Diesel/Switching Station Defec-

tive
LEVSON Failure Frequency Delta Switch Does Not Open
LEVSSN Failure Frequency Power Switch Does Not Close
LEVSSO Failure Frequency Power Switch Opens Spontaneously
LHBG Failure Frequency Ball Valve Leakage
LHDV Failure Frequency Pressure Control Valve Does Not Regulate
LHFL Failure Frequency Filter Blocked
LHGKON Failure Frequency Controlled Check Valve Does Not Open
LHGKSN Failure Frequency Controlled Check Valve Does Not Close
LHGR Failure Frequency Charging Rectifier Not Functioning
LHHKOM Failure Frequency Hand Valve Not Switchable
LHMPSN Failure Frequency Pump Does Not Start
LHMPSV Failure Frequency Pump Stops Prematurely
LHOV Failure Frequency Hydraulically Controlled Valve Does Not Open
LHRA24 Failure Frequency Earth Short Circuit 24V DC Distribution
LHRA38 Failure Frequency Earth Short Circuit 380V AC Distribution
LHSL Failure Frequency Hose Leak/Break
LHSM Failure Frequency Flow Control Valve Blocked
LHSTK Failure Frequency Check Valve Does Not Open
LHSVS Failure Frequency Solenoid Control Valve Switches Spontaneously
LHSVT Failure Frequency Solenoid Control Valve Does Not Switch

Continued on next page
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Table 11 Continued
Type Code Description (Translated to English)
LHVT Failure Frequency Tank Leakage
LHVVOS Failure Frequency Pressure Protection Opens Spontaneously
LHZCLK Failure Frequency Cylinder Not Functioning (Leakage)
LHZCMS Failure Frequency Cylinder Not Functioning (Blocking)
LNBP Failure Frequency Backplane
LNCA Failure Frequency Carrier
LNCPI Failure Frequency CPU Fails
LNCPPM Failure Frequency CPU Fails Noticeably
LNCPPN Failure Frequency CPU Fails Not Noticeably
LNDIMI Failure Frequency DI Module, Total, Inwin
LNDIR Failure Frequency DI Module, Process, Test Relay
LNDIV Failure Frequency DI Module, Process, Full Test
LNDOR Failure Frequency DO Module, Test Relay
LNDOV Failure Frequency DO Module, Full Test
LNMM Failure Frequency Memory
LNPM Failure Frequency Power Module
LNRA24 Failure Frequency NSTA 24 Volt Distribution
LNRI Failure Frequency RS232 Module
LNRS Failure Frequency Relay Does Not Close
LNRSMS Failure Frequency Medium Voltage Relay Does Not Close
LNUSM Failure Frequency UPS Fails Noticeably
LNUSN Failure Frequency UPS Fails Not Noticeably
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C Unified Modeling Language

Unified Modeling Language (UML) for classes is used to model the data. In UML
applied to data modelling a class is an object with a name and attributes. The class
name is based on the data type. The class attributes are the characteristics of the
data type. Every table in the database is essentially a class. Its attributes are the
table columns. The class objects are the table records.

There exist multiple data relations. The two relevant types are aggregations and
compositions. An example is presented in figure 38. The first is an aggregation.
Where one object owns the other but both can exist without the other. The second is
a composition. In this case, an object is part of another and cannot exist without the
parent.

Figure 38: Data relations

The multiplicity of tables details the records of a table that take part in a relationship
between tables.

Table 12: Multiplicity table

Symbol Meaning
1 Exactly 1
0..1 0 or 1
1..* 1 or more
0..* 0 or more
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D Type-codes: Detailed Breakdown

In Table 6, several abbreviations are used to describe different failure scenarios and
components. Below, we detail each abbreviation and provide a brief description of the
respective scenarios and components.

Table 13: Detailed Descriptions of Type Codes

Type Code Detailed Description
LBDIM Failure digital input module (Observable): Refers to observable failures occur-

ring in the digital input module, which is a part of the control system where
digital signals are inputted.

LBDINM Failure digital input module (Unobservable): Pertains to unobservable failures
in the digital input module, indicating scenarios where the failure is not imme-
diately noticeable or detectable.

LBGC Bug gray code module (Unobservable): Indicates unobservable issues within
the gray code module, a unit responsible for handling gray code, a binary
numeral system.

LBKLO Interruption safely closure cable (Unobservable): Involves unobservable inter-
ruptions in the safety closure cable, potentially affecting the secure closure of
systems or components.

LBPRC Failure I-O digital module (Observable): Refers to observable failures in the
Input-Output (I-O) digital module, affecting the proper functioning of digital
signal processing.

LBPRNI Failure network interface I-O module (Observable): Indicates observable fail-
ures occurring in the network interface of the I-O module, which could affect
network communications.

LBQENM Failure QE module (Unobservable): Pertains to unobservable failures in the
QE module, where QE refers to a specific type of module in the system (the
exact function should be detailed according to the system specifics).

LBREL Failure relay (Unobservable): Involves unobservable failures in relay compo-
nents, which are electrically operated switches.

LBSWAM Computer bug switch type A in mid section (Observable): Refers to observable
computer bugs affecting type A switches in the mid section of the system,
potentially affecting the switching operations.

LBSWB Computer bug switch type B (Observable): Indicates observable computer bugs
affecting type B switches, which can have implications on the performance of
the switch.

LEDGSN Failure start diesel generator (Unobservable): Pertains to unobservable failures
occurring during the start-up of diesel generators.

LEDSSN Failure motor controlled switch (Unobservable): Indicates unobservable failures
in motor-controlled switches, affecting the operation of motors in the system.

Continued on next page
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Table 13 Continued
Type Code Detailed Description
LERA38 Failure 380V transformer container earth leakage (Observable): Refers to ob-

servable failures due to earth leakage in 380V transformer containers, a serious
issue that can affect the safety and functionality of the electrical system.

LEVSSN Failure motor controlled switch of 10kV transformer (Unobservable): Pertains
to unobservable failures in the motor-controlled switches of 10kV transformers,
which can affect the proper functioning of the transformers.

LESS Signal failure local computer to 10kV transformer field (Unobservable): Indi-
cates unobservable signal failures between the local computer and the 10kV
transformer field, which can affect the monitoring and control of the trans-
former field.

LHGR Function failure charging rectifier (Observable): Refers to observable functional
failures in the charging rectifier, a device that converts AC voltage to DC
voltage.

LHSVT Switching failure solenoid (Observable): Indicates observable switching failures
in solenoids, which are a type of electromagnet where the wound wire is in tight
coils, creating a magnetic field when electricity is passed through it.
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E Hessian Matrix

The Hessian matrix H is a square matrix comprising the second-order partial deriva-
tives of a function, usually denoted as L(θ) in the context of MLE. For a function with
p parameters, the Hessian is a p× p matrix defined as:

H(θ) =


∂2L
∂θ2

1

∂2L
∂θ1∂θ2

· · · ∂2L
∂θ1∂θp

∂2L
∂θ2∂θ1

∂2L
∂θ2

2
· · · ∂2L

∂θ2∂θp
...

...
. . .

...
∂2L

∂θp∂θ1
∂2L

∂θp∂θ2
· · · ∂2L

∂θ2
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F Validation Simplified Bootstrap Method

The purpose of this appendix is to validate the efficacy of a simplified bootstrap method
for estimating the parameters of a statistical model, within the constraints and context
of this study. The validation is carried out by using a Z-test to compare the original
parameters of the model to those obtained via bootstrapping.

The Z-test is applied to two parameters, k and λ, which are estimated both through
the original method and the simplified bootstrap method. The following steps outline
the process:

1. Calculate Descriptive Statistics: For each parameter k and λ, the mean µ
and standard deviation σ are calculated from the bootstrapped samples.

µk =
1

n

n∑
i=1

ki

σk =

√√√√ 1

n

n∑
i=1

(ki − µk)2

Similarly for λ.

2. Compute Z-scores: The Z-scores for the original parameters koriginal and
λoriginal are calculated using the formula:

Zk =
koriginal − µk

σk

Zλ =
λoriginal − µλ

σλ

3. Calculate P-values: Using the calculated Z-scores, p-values are obtained as-
suming a standard normal distribution.

pk = 2× (1− Φ(|Zk|))

pλ = 2× (1− Φ(|Zλ|))

where Φ is the cumulative distribution function of the standard normal distribu-
tion.

4. Significance Test: The p-values are compared to a pre-defined significance level
α = 0.05.

If the p-values obtained are above α, the null hypothesis that the parameters esti-
mated by the original and simplified methods are statistically equivalent cannot be
rejected. In other words, it confirms that the simplified bootstrap method produces
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estimates that are statistically indistinguishable from those obtained through the orig-
inal method.

Note: The conclusions drawn here are not to be considered definitive proof of the
efficacy of the simplified bootstrap method. They are shown to be effective only within
the context and limitations of this thesis.

The data used for this Z-test is derived from taking the midpoints of interval-censored
lifetimes.

Table 14: Z-test Results for Different Datasets

Dataset pExponential (Lambda) pWeibull (Kappa)
LBDINM 0.93 0.87
LBGC 0.98 0.88
LBPRC 0.98 0.86

LBQENM 0.98 0.91
LEDGSN 0.95 0.75
LEVSSN 0.97 0.97
LHGR 0.99 0.81
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Nelson-Aalen Estimator in Constant Risk Settings: The Nelson-Aalen esti-
mator is often used for estimating the cumulative hazard function H(t) in survival
analysis. In settings where the number of components under risk remains constant,
the estimator becomes simplified.

Hazard Rate: The hazard rate h(ti) at each distinct time ti is calculated using
the constant number of components at risk n and the number of events (failures) di
at that time:

h(ti) =
di
n

(42)

Cumulative Hazard Function: In the case of a constant number of components
under risk, the cumulative hazard function H(t) can be calculated by summing the
hazard rates at each event time ti less than or equal to t:

H(t) =
∑
i:ti≤t

h(ti) (43)

Advantages and Applications: The advantage of having a constant number of
components under risk is that it simplifies the calculations and the interpretation of
the cumulative hazard function. It is applicable in contexts where the risk population
is fixed, such as specific engineering settings where the number of components does
not change over time.

Summary: In situations where the number of components at risk remains con-
stant, the Nelson-Aalen estimator provides a straightforward method for calculating
the cumulative hazard function. Its simplicity makes it an effective tool for reliability
analysis in such specialized settings.
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G Detailed Description of Python Packages

This appendix aims to elucidate the rationale behind the selection of specific Python
packages in the project. A comprehensive understanding of each package’s functional
role aids in both present comprehension and potential future modifications or scaling.

G.1 Pandas

Pandas is employed for its robust data manipulation capabilities, specifically data
cleaning, transformation, and analysis. Its DataFrame structure offers a flexible and
efficient way to handle large sets of structured data.

G.2 FastAPI

FastAPI is utilized for developing the RESTful API layer. It is chosen for its speed,
validation capabilities, and compatibility with Swagger UI and Uvicorn , which serve
as the web server gateway interface.

G.3 SQLAlchemy

SQLAlchemy is implemented for database management. Its object-relational mapping
features allow seamless interaction between Python objects and the database, offering
a versatile yet strong layer for data storage and retrieval.

G.4 Python-DotEnv

The Python-DotEnv package is used to read key-value pairs from a .env file and add
them to the environment variable, providing a secure way to configure application
settings.

G.5 Uvicorn

Uvicorn serves as the ASGI server, providing a production-ready platform to host the
FastAPI application. It is known for its speed and robustness.

G.6 NumPy

NumPy is employed for its efficient handling of numerical operations, array manipula-
tions, and statistical functions. Its performance is critical in tasks involving complex
calculations.

G.7 Psycopg2

This package acts as a PostgreSQL database adapter for Python. It offers functional-
ities to connect to PostgreSQL databases, enabling direct manipulation and transac-
tional control.
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G.8 Reliability

The Reliability library is used for statistical analysis pertinent to reliability engineer-
ing. Its specialized functions are vital for performing survival analysis and generating
reliability models.

G.9 Alembic

Alembic is a database migration tool for SQLAlchemy. It is implemented to manage
changes to the database schema, ensuring a consistent and version-controlled database
structure.

G.10 Surpyval

Surpyval is specifically integrated for survival analysis, offering a plethora of para-
metric models, non-parametric estimators and statistical tests to aid in reliability
engineering.
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H Plots of Failure Scenarios

For each failure scenario, four main visual analyses are provided:

1. Fit of the Exponential model.

2. Fit of the Weibull model.

3. Histogram of test statistic (TS) values.

4. Hazard function comparison.

H.1 Failure Scenario - LBDIM

Figure 39: Exponential model fit for the
failure scenario LBDIM.

Figure 40: Weibull model fit for the fail-
ure scenario LBDIM.

Figure 41: Histogram of TS values for
failure scenario LBDIM.

Figure 42: Hazard function for failure
scenario LBDIM.
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H.2 Failure Scenario - LBDINM

Figure 43: Exponential model fit for the
failure scenario LBDINM.

Figure 44: Weibull model fit for the fail-
ure scenario LBDINM.

Figure 45: Histogram of TS values for
failure scenario LBDINM.

Figure 46: Hazard function for failure
scenario LBDINM.

91



H.3 Failure Scenario - LBGC

Figure 47: Exponential model fit for the
failure scenario LBGC.

Figure 48: Weibull model fit for the fail-
ure scenario LBGC.

Figure 49: Histogram of TS values for
failure scenario LBGC.

Figure 50: Hazard function for failure
scenario LBGC.
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H.4 Failure Scenario - LBKLO

Figure 51: Exponential model fit for the
failure scenario LBKLO.

Figure 52: Weibull model fit for the fail-
ure scenario LBKLO.

Figure 53: Histogram of TS values for
failure scenario LBKLO.

Figure 54: Hazard function for failure
scenario LBKLO.
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H.5 Failure Scenario - LBPRC

Figure 55: Exponential model fit for the
failure scenario LBPRC.

Figure 56: Weibull model fit for the fail-
ure scenario LBPRC.

Figure 57: Histogram of TS values for
failure scenario LBPRC.

Figure 58: Hazard function for failure
scenario LBPRC.
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H.6 Failure Scenario - LBPRNI

Figure 59: Exponential model fit for the
failure scenario LBPRNI.

Figure 60: Weibull model fit for the fail-
ure scenario LBPRNI.

Figure 61: Histogram of TS values for
failure scenario LBPRNI.

Figure 62: Hazard function for failure
scenario LBPRNI.
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H.7 Failure Scenario - LBQENM

Figure 63: Exponential model fit for the
failure scenario LBQENM.

Figure 64: Weibull model fit for the fail-
ure scenario LBQENM.

Figure 65: Histogram of TS values for
failure scenario LBQENM.

Figure 66: Hazard function for failure
scenario LBQENM.
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H.8 Failure Scenario - LBREL

Figure 67: Exponential model fit for the
failure scenario LBREL.

Figure 68: Weibull model fit for the fail-
ure scenario LBREL.

Figure 69: Histogram of TS values for
failure scenario LBREL.

Figure 70: Hazard function for failure
scenario LBREL.
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H.9 Failure Scenario - LBSWAM

Figure 71: Exponential model fit for the
failure scenario LBSWAM.

Figure 72: Weibull model fit for the fail-
ure scenario LBSWAM.

Figure 73: Histogram of TS values for
failure scenario LBSWAM.

Figure 74: Hazard function for failure
scenario LBSWAM.

98



H.10 Failure Scenario - LBSWB

Figure 75: Exponential model fit for the
failure scenario LBSWB.

Figure 76: Weibull model fit for the fail-
ure scenario LBSWB.

Figure 77: Histogram of TS values for
failure scenario LBSWB.

Figure 78: Hazard function for failure
scenario LBSWB.

99



H.11 Failure Scenario - LEDGSN

Figure 79: Exponential model fit for the
failure scenario LEDGSN.

Figure 80: Weibull model fit for the fail-
ure scenario LEDGSN.

Figure 81: Histogram of TS values for
failure scenario LEDGSN.

Figure 82: Hazard function for failure
scenario LEDGSN.
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H.12 Failure Scenario - LEDSSN

Figure 83: Exponential model fit for the
failure scenario LEDSSN.

Figure 84: Weibull model fit for the fail-
ure scenario LEDSSN.

Figure 85: Histogram of TS values for
failure scenario LEDSSN.

Figure 86: Hazard function for failure
scenario LEDSSN.
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H.13 Failure Scenario - LERA38

Figure 87: Exponential model fit for the
failure scenario LERA38.

Figure 88: Weibull model fit for the fail-
ure scenario LERA38.

Figure 89: Histogram of TS values for
failure scenario LERA38.

Figure 90: Hazard function for failure
scenario LERA38.
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H.14 Failure Scenario - LEVSSN

Figure 91: Exponential model fit for the
failure scenario LEVSSN.

Figure 92: Weibull model fit for the fail-
ure scenario LEVSSN.

Figure 93: Histogram of TS values for
failure scenario LEVSSN.

Figure 94: Hazard function for failure
scenario LEVSSN.
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H.15 Failure Scenario - LESS

Figure 95: Exponential model fit for the
failure scenario LESS.

Figure 96: Weibull model fit for the fail-
ure scenario LESS.

Figure 97: Histogram of TS values for
failure scenario LESS.

Figure 98: Hazard function for failure
scenario LESS.
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H.16 Failure Scenario - LHGR

Figure 99: Exponential model fit for the
failure scenario LHGR.

Figure 100: Weibull model fit for the
failure scenario LHGR.

Figure 101: Histogram of TS values for
failure scenario LHGR.

Figure 102: Hazard function for failure
scenario LHGR.
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H.17 Failure Scenario - LHSVT

Figure 103: Exponential model fit for
the failure scenario LHSVT.

Figure 104: Weibull model fit for the
failure scenario LHSVT.

Figure 105: Histogram of TS values for
failure scenario LHSVT.

Figure 106: Hazard function for failure
scenario LHSVT.
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I Comparative Analysis of Failure Scenarios Based
on Model Fits

This appendix provides a detailed analysis comparing failure scenarios that yielded
good model fits with those that yielded poor fits. Table 15 summarizes the metrics
for both categories, including the Lifetime to Component Ratio and Number of Fail-
ures. Table 16 enumerates the Lifetime to Component Ratios for each failure scenario.
Lastly, key observations and implications stated.

The key observations are:

• Lifetime to Component Ratio: Scenarios with good fits demonstrate a higher
mean Lifetime to Component Ratio of 1.21, compared to 1.05 in scenarios with
poor fits. This suggests that scenarios with a higher ratio may be more suitable
for detailed modeling.

• Number of Failures: Scenarios with good fits have a significantly higher mean
number of failures (10.29) as opposed to those with poor fits (1.30). The higher
variability in scenarios with good fits indicates that they capture a broader range
of conditions.

• Minimum and Maximum Failures: The minimum number of failures in
scenarios with good fits is 4, which is twice as high as the maximum number of
failures in scenarios with poor fits (2). This implies that scenarios in the poor
fit group may require additional data or alternative methodologies for effective
reliability modeling.

Table 15: Summary Statistics for Good and Poor Fits

Metric Good Fit Scenarios Poor Fit Scenarios
Mean Number of Failures 10.29 1.30
Max Number of Failures 20 2
Min Number of Failures 4 1
Mean Number of Components 504.71 429.90
Mean Lifetime to Component Ratio 1.21 1.05
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Table 16: Lifetime to Component Ratio for Each Failure Scenario

Scenario Code Good Fits Poor Fits
LBDINM 1.002 –
LBGC 1.024 –
LBPRC 1.035 –
LBQENM 1.015 –
LEDGSN 2.111 –
LEVSSN 1.143 –
LHGR 1.143 –
LBDIM – 1.001
LBKLO – 1.333
LBPRNI – 1.004
LBREL – 1.001
LBSWAM – 1.008
LBSWB – 1.004
LEDSSN – 1.111
LERA38 – 1.013
LESS – 1.059
LHSVT – 1.003
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J Data Types

In computer science and information technology, a byte is a basic unit of data storage.
It represents a group of eight binary digits (bits) and can store a single character,
such as a letter or number. The term ”byte” is used to specify the amount of storage
capacity of storage mediums and the memory size.
In database management, various data types are used to define the type of data that

can be stored in a particular column of a table. Below are explanations for some of
the data types used in the SVKO component database:

varchar(36): A variable-length character string data type. It allows for storing
strings with a maximum length of 36 characters. The ‘varchar‘ type is efficient
for storing strings as it only uses storage equivalent to the length of the string
entered, plus an additional 2 bytes for overhead. If a string with a length of 5
characters is stored in a ‘varchar(36)‘ column, it will only use 7 bytes of storage.

int4: Represents a four-byte (or 32-bit) integer data type. It can store whole numbers
in the range of -2,147,483,648 to 2,147,483,647.

float8: An eight-byte (or 64-bit) floating-point number data type. It is used to store
numbers that require decimal precision. The ‘float8‘ type can store numbers
with up to 15 decimal digits of precision.

date: Represents a date value. It is used to store date values without time. The typical
format for a date is ’YYYY-MM-DD’. It does not store time information.

time: A data type used for storing time values without the date. The typical format
for time is ’HH:MM:SS’.

bool: Represents a Boolean data type. It can store only two possible values: ‘true‘ or
‘false‘. It’s often used for fields that have a binary nature, such as ”Is Active?”
or ”Is Deleted?”.

Choosing the correct data type for each field in a database is crucial. It ensures that
the data stored is accurate and valid, optimizes storage space, and can improve the
speed and efficiency of database operations.
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K Closure Data Analysis

K.1 Literature Review

This literature review aims to investigate data-driven techniques for evaluating the
reliability of storm surge barrier closures. Emphasis is laid on methods that are apt
for analysing closures with constant failure rates and scarce failure data.

K.1.1 Challenges in Failure Data Analysis

The primary obstacle in the analysis of storm surge barrier closures is the limited avail-
ability of failure data. The paucity of such data arises from the high success rate of
barrier closures and the overall limited number of existing storm surge barriers. Tradi-
tional statistical methods, like maximum likelihood estimation, tend to underestimate
the failure rate due to this data scarcity [16].

K.1.2 Review of Data-Driven Methods

Rule of Three The Rule of Three (R3) serves as a specialized technique for es-
timating the upper confidence limit of failure rates, especially when no failures are
observed. It is particularly applicable for rare event scenarios and relies on the bino-
mial distribution [30].

Figure 107: Graphical representation of the convergence of the Rule of Three with a binomial
distribution. Convergence start at approximately 100 occurrences
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The study Bakker et al. (2019) utilises Bayesian analysis to account for the failure
probability in storm surge barrier closures. They calculate this by considering the ratio
of failure events to total events. This yields an accurate estimate, whilst also accom-
modating statistical uncertainties associated with random failure events by modeling
the probability distribution around the failure rate [4].

K.1.3 Methodological Implications for This Thesis

The integration of the Rule of Three and Bayesian analysis suggests a balanced
methodology for this thesis. The Rule of Three focuses on empirically observed data,
whereas Bayesian analysis adds layers of complexity by considering prior knowledge
and uncertainties. This dual approach could potentially compensate for the limita-
tions posed by scarce data in storm surge barrier analysis. Specifically, the Rule of
Three could be applied to observed patterns, while Bayesian methods could be used
to update the prior estimates using observations.

K.2 Methodology

K.2.1 Methodology Framework

In light of the literature review, which underscores the potential of data-driven meth-
ods like the Rule of Three (R3) and Bayesian analysis, this section delineates the
methodological approach adopted for assessing storm surge barrier closure reliability.
The assessment of storm surge barrier closure reliability necessitates a methodology
that is both robust and attuned to the intricacies of the data. While traditional meth-
ods have their merits, they often prioritize historical data and engineering judgments.
To provide a more comprehensive approach, the Rule of Three (R3) is considered for
its data-centric perspective.

The methodology introduced evolves around the hypothesis that using data can
potentially result in a more realistic storm surge barrier closure reliability, it takes the
following steps to achieve this:

1. Application of Rule of Three (R3): As a starting point, the Rule of Three,
tailored for binomially distributed data sets without observed failures, is applied.
This provides an initial estimate of the upper confidence bounds based on the
observed data, laying the groundwork for a deeper reliability assessment.

2. Bayesian Analysis with a Uniform Prior: Subsequently, Bayesian statistics
is employed with an initial uniform prior. This approach yields a posterior
distribution derived from observed data, without being influenced by strong prior
assumptions.

3. Refinement with a Weakly Informed Prior: To enhance the analysis,
domain-specific insights and historical data are incorporated to establish a weakly
informed prior. This step refines the posterior distribution, potentially leading
to a more realistic estimate of the failure rate.
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The synergy between R3’s empirical foundation and the comprehensive nature of
Bayesian statistics forms the essence of this framework. While R3 offers preliminary
estimates, Bayesian statistics further refines these by integrating prior knowledge, such
as expert insights and historical data. By juxtaposing this combined approach with
traditional methodologies, the potential advantages of a data-driven methodology in
storm surge barrier closure reliability assessments are potentially highlighted.

K.2.2 Rule of Three and Closure Reliability

The Rule of Three (R3) serves as a statistical methodology tailored for binomial dis-
tributions with infrequent events. It asserts that if no failures are detected over n
trials, the upper boundary for the 95% confidence interval of the failure probability is
approximately 3

n [30]. This method is instrumental in estimating the maximum likeli-
hood of failure, especially when no failures are evident. For instance, in the context of
100 trials with zero failures, the 95% confidence boundary for a failure is 3

100 = 0.03
or 3%. A detailed proof of this principle can be found in appendix M.

Delving into the implications of the R3 for storm surge barrier closures:

1. Empirical Basis: The R3, anchored in observed data, provides an empiri-
cal alternative to models that might predominantly rely on historical data or
engineering-based assumptions.

2. Flexibility: The foundational principle of R3 is adaptable. It can be modified
to address more complex scenarios or to integrate additional data, highlighting
its versatility in reliability assessments.

The integration of the Rule of Three (R3) into the reliability assessment framework
for storm surge barrier closures aims to balance traditional methods with data-driven
insights. This approach seeks to anchor the assessment in empirical data, potentially
capturing a more nuanced understanding of closure reliability.

K.2.3 Bayesian Analysis in the Context of Storm Surge Barrier Closures

Bayesian analysis provides a methodological framework that integrates prior knowledge
with new data, facilitating a deeper understanding of complex scenarios. This approach
proves particularly relevant when examining storm surge barrier closures, a domain
often constrained by limited data and the rarity of failures. [8]

Central to Bayesian inference is the principle of refining beliefs about a model pa-
rameter θ based on new data Dn = {x1, x2, . . . , xn}. This principle is encapsulated by
Bayes’ theorem:

p(θ|Dn) ∝ p(Dn|θ)× p(θ) (44)

Breaking down the components:
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• p(θ|Dn): The updated belief after incorporating the data.

• p(Dn|θ): The likelihood of observing the data under the assumption of θ.

• p(θ): The initial stance or belief about θ prior to data observation.

For a deeper exploration, readers are directed to Appendix L.

The Bayesian procedure for storm surge barrier closures will follows these methodical
steps:

1. Selection of a Prior: Determine an initial belief before incorporating data.

2. Computation of the Posterior: Integrate the initial belief with the observed
data to derive an updated belief.

3. Estimation of Failure Rates: Utilize the updated belief to make predictions
about potential failures.

Selection of a Prior: In the context of storm surge barrier closures, individual
closures can result in two outcomes: failure or success. Thus, when considering mul-
tiple closures, their outcomes can be described by a binomial distribution. Given
this scenario, the Beta distribution is often employed to represent beliefs about these
outcomes. The formulas for these distributions are:

p(Dn|θ) =
(
n

k

)
θk(1− θ)n−k (45)

p(θ|α, β) = 1

B(α, β)
θα−1(1− θ)β−1 (46)

When beliefs are updated using the Beta distribution in conjunction with new data,
the updated beliefs continue to follow a Beta distribution:

p(θ|Dn) ∝ p(Dn|θ)× p(θ|α, β) (47)

= θk+α−1(1− θ)n−k+β−1 (48)

A more detailed proof can be found in Appendix N..

When determining the prior, several considerations come into play:

• Uninformative Prior: Adopted when there is minimal prior knowledge and a
neutral starting point is desired [27].

• Weakly Informative Prior: Employed when there exists a modicum of prior
information [17].
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In this thesis both a uniformed and informed prior are used. First, an Uninformative
Prior will be utilized for storm surge barrier closures, reflecting the desire to commence
with a neutral perspective. Once data is assimilated, the posterior distribution will
be computed, providing an updated belief about the failure rates. Subsequently, an
Informed Prior will be introduced, drawing upon any available data or domain-specific
insights. Again, the posterior distribution will be derived, this time reflecting the
combined influence of the informed prior and the observed data.

By comparing the results derived from both priors and their respective posteriors,
the influence of starting beliefs on the conclusions can be assessed. Furthermore, the
posterior distributions will be analyzed to estimate failure rates, determine confidence
intervals, and make predictions about future barrier closures.

This dual approach not only aids in understanding the significance of initial beliefs
but also demonstrates the utility of the posterior in making informed decisions and
predictions.

K.2.4 Combining Different Closure Types for Enhanced Data Analysis

The quest for a robust analysis often requires maximizing the available data. While
storm closures are the primary focus, their sporadic occurrence might not provide
ample data for a comprehensive analysis. An option to augment this data scarcity is
to amalgamate storm closures with operational and test closures, thereby enriching
the dataset. However, there are three main challenges:

1. Diverse Operating Conditions: Storm closures typically occur under distinct
conditions compared to operational or test closures. The urgency and potential
threat during a storm closure are considerably elevated.

2. Flexibility of Test Closures: Test closures possess the distinct advantage of
being abortable if conditions are deemed suboptimal. This preemptive measure
ensures that potential failures, which might have manifested under continued
suboptimal conditions, are averted. Such a safety net is absent during storm
closures, where the stakes are high and the margin for error is minimal.

3. Potential for Data Bias: Merging data from varied conditions might introduce
biases. The reliability metrics from test or operational closures might not be
directly translatable to storm closures due to the differing stakes and conditions.

To navigate these challenges, the following two strategies will be employed:

1. Clearly demarcate and label data from different closure types.

2. Conduct individual analyses for each closure type before amalgamation, to dis-
cern individual reliability metrics.

By adopting this meticulous approach, the study aims to harness the benefits of a
combined dataset while being acutely aware of its inherent challenges. The objective
is to strike a balance between data richness and analytical precision.
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K.2.5 Comparative Analysis and Evaluation of Conservatism

This research investigates whether data-driven methods for storm surge barrier closure
reliability yield less conservative estimates than traditional models rooted in historical
data and engineering insights. The evaluation is based on the following criteria:

• Comparison Against Phistoric: The conservatism in traditional methods can
be assessed by comparing Phistoric with estimates from PR3 and PBayesian. A sig-
nificant difference in values suggests potential overestimation by the conventional
approach.

• Correlation between R3 and Bayesian Estimates: A high correlation be-
tween PR3 and PBayesian would validate the reliability of data-driven methods.
Consistent results from both methods indicate their robustness.

In essence, this analysis aims to highlight any conservatism in current methodologies.
If data-driven methods consistently deviate from traditional models, it signals a need
for re-evaluation. The ultimate goal is to base storm surge barrier assessments on up-
to-date and accurate data, ensuring a realistic evaluation of barrier closure reliability.

K.2.6 Assumptions, Limitations, and Evaluation of Methods

The methodology employed in this study is underpinned by two foundational assump-
tions:

• Each closure event is independent of others.

• The failure rate of closures remains consistent over time.

• Each closure only has one of two outcomes, either success or failure.

These assumptions find their basis in consultations with barrier operators and are in
line with the guidelines presented in ”Leidraad Kunstwerken” [32]. Any significant
deviation from these assumptions could impact the study’s validity.

The specific failure rates for the closures of the HIJK, MLK, and HK are derived from
the Dutch Waterwet § 2. Normen waterkering Artikel 2.2 [1]. For the HIJK this is 1
in 200, whilst both the MLK and HK have a failure rate of 1 in 100. Additionally, the
unique multi-gate structure of the SVKO is considered. According to the operator’s
criteria, an SVKO failure is defined as a scenario where 90% (or 56) or fewer of its
gates successfully close. The implications of 6 gates failing to close are elaborated
upon in the NRG Report 2017, with the failure rate being approximately 1 in 1700 [8].
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Evaluation of Methods:

• Rule of Three (R3): The R3 offers a direct approach to determine an upper
confidence bound from observed data. Its constraints encompass:

– A presumption of binomial distribution, which may not align with all real-
world data and only comes into effect at a set number of observations. For
R3 this is around 100.

– A focus solely on the upper bound, potentially neglecting other aspects of
reliability.

– Optimal utility in the absence of observed failures, which restricts its ap-
plicability across diverse datasets.

• Bayesian Analysis: The Bayesian methodology excels in melding prior knowl-
edge with current observations, showcasing its adaptability and depth. Yet, it is
not without its challenges:

– The selection of the prior can substantially sway the outcomes. Misguided
priors can yield skewed posterior distributions.

– The computational demands can escalate, especially when dealing with non-
conjugate priors or extensive datasets.

– The efficacy of the method hinges on the accuracy and timeliness of the
prior information. Outdated or unreliable priors can distort the results.

To encapsulate, both the R3 and Bayesian methodologies provide insightful per-
spectives on storm surge barrier closure reliability. However, their inherent limitations
necessitate a cautious interpretation of the results, ensuring that conclusions are drawn
with an understanding of these constraints.

K.3 Results

This section delves into the reliability of storm surge barriers by analyzing observed
closure data. The HIJK barrier is particularly noteworthy due to its elevated count
of storm-induced closures. Through the Rule of Three, certain barriers exhibited dis-
crepancies between their stated failure rates and the 95% upper confidence bounds.
Further examination using Bayesian analysis, incorporating both non-informative and
weakly informative priors, indicated that most storm surge barriers present posterior
closure failure rates that are more favorable than their stated rates, especially when
considering all types of closures. This comprehensive analysis offers a clearer perspec-
tive on the closure reliability of storm surge barriers.

K.3.1 Observed Closure Data

Table 17 enumerates the closure events associated with each storm surge barrier.
Notably, the HIJK barrier recorded 240 closures attributed to storms, contrasting
sharply with the MLK and HK barriers, which reported only two such closures each.
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Table 17: Observed storm surge barrier closures: Number of storm, non-storm and test
closures for the four storm surge barriers that are analysed in the thesis.

Storm Closures Operational Closures Test Closures
HIJK 239 70 71
SVKO 29 - 354
MLK 2 - 25
HK 2 - 25

K.3.2 Rule of Three Analysis

The Rule of Three was employed to deduce the 95% upper confidence bound of the
closure failure rate based on observed closures for each type. As illustrated in Table
18, the upper confidence bounds for the storm surge barriers’ closure failure rates
significantly exceed the stated rates. For instance, the HIJK barrier, despite having
the highest number of storm-induced closures, has a 95% upper confidence bound
of 1 in 80, contrasting with its stated failure rate of 1 in 200.

Table 18: Observed storm surge barrier closures and corresponding upper confidence bounds
(95% percentile) for failure rates calculated using the Rule of Three.

Storm Closures Operational Closures Test Closures
Number 95% CI Number 95% CI Number 95% CI

HIJK 239 1:80 70 1:24 71 1:24
SVKO 29 1:10 - - 354 1:118
MLK 2 1:0.67 - - 25 1:9
HK 2 1:0.67 - - 25 1:9

Figure 108: Comparison of R3 Failure Rates for Different Types of Closures (Storm, Oper-
ational, Test) with the Stated Failure Rates for Each Storm Surge Barrier.
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Given the limited data on storm closures, understanding storm surge barrier closure
reliability becomes potentially challenging. Table 19 offers insights into this by pre-
senting the observed closures alongside their upper confidence bounds, derived from
the Rule of Three. For the HIJK barrier with 239 closures, the 50% confidence inter-
val suggests a closure failure rate upper bound of 1 in 344, more favorable than its
stated 1 in 200. Conversely, the SVKO barrier’s 50% confidence interval indicates a
less favorable rate of 1 in 42, compared to its stated 1 in 1700.

Table 19: Observed storm surge barrier storm closures and corresponding upper confidence
bounds calculated using rules derived from the Rule of Three.

Storm Surge Barrier Storm Closures 50% CI 75% CI 90% CI
HIJK 239 1:344 1:172 1:104
SVKO 29 1:42 1:21 1:13
MLK 2 1:3 1:1.5 1:0.86
HK 2 1:3 1:1.5 1:0.86

Figure 109: Comparison of Confidence Intervals Upper Bounds (50%, 75%, 90%) Based on
Storm Closures with the Stated Failure Rates for Each Storm Surge Barrier.

To address the scarcity of individual storm closure data, an aggregation of all clo-
sure types, including operational and test closures, was considered. This consolidated
approach, especially when paired with lower confidence intervals, offers a clearer per-
spective on upper confidence bounds, as demonstrated by the Rule of Three in Table
20. Notably, the HIJK barrier’s 50% confidence interval suggests a favorable failure
rate of 1 in 548, surpassing its stated rate of 1 in 200. Conversely, other barriers exhibit
50% confidence interval rates that exceed their respective stated failure rates.
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Table 20: Observed storm surge barrier closures and corresponding upper confidence bounds
for failure rates based on total number of closures.

Storm Surge Barrier Total Closures 50% CI 75% CI 90% CI 95% CI
HIJK 380 1:548 1:274 1:165 1:127
SVKO 383 1:552 1:276 1:166 1:128
MLK 27 1:39 1:20 1:12 1:9
HK 27 1:39 1:20 1:12 1:9

Figure 110: Comparison of Confidence Intervals Upper Bounds (50%, 75%, 90%, 95%)
Based on the Total Number of Closures with the Stated Failure Rates for Each Storm Surge
Barrier.

K.3.3 Bayesian Analysis

The failure rates of each storm surge barrier were assessed using a Bayesian approach
with the Beta distribution as the prior. The analysis began with a non-informative
prior, later integrating an informed prior to account for existing knowledge on barrier
performance.

Table 21 details failure rates based solely on storm closures, highlighting the barri-
ers’ robustness during specific weather events. Notably, the HIJK barrier exhibits a
posterior rate of 1 in 241, which is more favorable than its stated rate of 1 in 200.

Table 21: Failure Rates Derived from Storm Closures (Uninformed Prior)

Barrier Prior Rate Posterior Rate 95% CI Lower 95% CI Upper
HIJK 1:2 1:241 1:9,482 1:66
SVKO 1:2 1:31 1:1,185 1:9
MLK 1:2 1:4 1:119 1:1.4
HK 1:2 1:4 1:119 1:1.4
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For a comprehensive assessment of barrier reliability, all closure types—operational,
test, and storm closures—were analyzed. The findings are detailed in Table 22. No-
tably, the HIJK barrier’s posterior failure rate is more favorable than its stated rate.
In contrast, other barriers exhibit posterior rates that exceed their stated rates. How-
ever, all stated failure rates lie within the 95% confidence interval, suggesting that the
observed data is consistent with the stated rates, even if the most likely rates differ.

Table 22: Failure Rates Derived from Total Closures (Uninformed Prior)

Barrier Prior Rate Bayesian Rate 95% CI Lower 95% CI Upper
HIJK 1:2 1:382 1:15,090 1:104
SVKO 1:2 1:385 1:15,312 1:105
MLK 1:2 1:29 1:1,107 1:8
HK 1:2 1:29 1:1,107 1:8

Incorporating a weakly informative prior offers a refined view of the data. As il-
lustrated in Table 23, not only does the HIJK barrier’s posterior failure rate align
favorably with its stated rate, but the SVKO, MLK, and HK barriers also exhibit
posterior rates of 1 in 1728 and 1 in 102, respectively, which are more favorable than
their stated rates. Crucially, all these stated rates are encompassed within the 95%
confidence intervals.

Table 23: Failure Rates Derived from Storm Closures (Weakly Informative Prior)

Barrier Prior Rate Posterior Rate 95% CI Lower 95% CI Upper
HIJK 1:200 1:439 1:17,301 1:119
SVKO 1:1700 1:1728 1:68,259 1:469
MLK 1:100 1:102 1:3,990 1:28
HK 1:100 1:102 1:3,990 1:28

To achieve a potentially more thorough assessment of the closure reliability, all clo-
sure types were incorporated into the analysis. As detailed in Table 24, the pos-
terior failure rates for all storm surge barriers are more favorable than their stated
rates. While the 95% confidence intervals present even more favorable lower and up-
per bounds, it is noteworthy that the stated failure rates consistently lie within these
intervals for all barriers.

Table 24: Failure Rates Derived from Total Closures (Weakly Informative Prior)

Barrier Prior Rate Posterior Rate 95% CI Lower 95% CI Upper
HIJK 1:200 1:580 1:23,023 1:157
SVKO 1:1700 1:2082 1:82,239 1:564
MLK 1:100 1:126 1:4,940 1:34
HK 1:100 1:126 1:4,940 1:34
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K.4 Discussion

This section outlines the methodology utilized in determining the failure rates of storm
surge barrier closures, underpinned by observational data and analytical strategies
including the Rule of Three (R3) and Bayesian analyses. Subsequent paragraphs delve
into the data employed, scrutinize the limitations of the existing strategies, and present
the findings.

K.4.1 Reflecting on Data

The dataset, formulated from publicly available reports and operator inputs, could po-
tentially be incomplete. Despite adherence to the Dutch Water Law [1] by operators,
there may be instances of human error in record-keeping or difficulties in data access,
thereby impacting the comprehensiveness of the dataset. Therefore, an acknowledg-
ment of the potential for missing data is crucial, and it is recommended that future
studies extend and refine the data collection to enhance the reliability assessment of
storm surge closures.

The current dataset classification divides closures into ”successful” or ”failed,” miss-
ing out on the significant intermediary group of ”aborted closures.” Such closures,
prominently featured in the SVKO dataset, are initiated but halted due to consider-
able technical complications, thus not clearly fitting into the success or failure cate-
gories. Ignoring this category could potentially lead to an overoptimistic view of the
reliability assessment, neglecting the early signs of trouble that led to the abortion
of the procedure. Recognizing and studying ”aborted closures” is crucial as it paints
a more comprehensive picture of the system performance, encompassing insights into
emerging technical issues. Therefore, including ”aborted closures” in the classification
could refine the reliability assessment of storm surge barrier closures.

The existing dataset has a notable limitation – the lack of detailed information on the
performance of individual gates during barrier closures, as seen in the HIJK dataset
where it remains unclear whether the first, second, or both gates were functional
during the closures. This omission restricts a detailed reliability analysis of the storm
surge barriers as the overall reliability is tied to the performance of each individual
gate. Consequently, incorporating data on individual gate performances could help in
understanding their reliability. Therefore, including these data points could enhance
the reliability assessments of storm surge barriers, allowing for a more detailed analysis
that incorporates performance of individual gates.

K.4.2 Reflecting on the Limitations

The present methodology assumes a constant failure rate over time, disregarding po-
tential variations arising from maintenance adjustments, aging, or upgrades. As delin-
eated in section 2.3, the long-term reliability of a system is influenced by maintenance
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and repair strategies, necessitating a more dynamic approach to failure rate assessment
that considers these variables.

K.4.3 Reflecting on the Results

The examination of closure data employed R3 and Bayesian analysis techniques. While
R3 offers a preliminary failure rate estimate based solely on closure observations, the
Bayesian approach refines this estimate by incorporating additional reliability infor-
mation. For a detailed explanation of these methods, refer to sections 2.1 and 2.3. The
application of these techniques aims to obtain more realistic failure rate predictions,
provided sufficient data is available.

The HK and MLK barriers lack closure observations, making the application of
R3 not possible, and the results from Bayesian analysis uncertain and potentially
uninformative. Therefore, caution must be exercised when interpreting results derived
from storm surge barriers with insufficient closure data.

In contrast, the SVKO, with a substantial number of test closures, allows for a more
confident application of R3 and Bayesian analyses. However, the limited storm closure
data pose a constraint in applying R3 rigorously. The analyses reveal that the actual
failure rate is likely less conservative than the stated rate, suggesting the necessity for
revised reliability estimations.

For the HIJK barrier, the considerable amount of data enables a reliable application
of both R3 and Bayesian analyses, leading to less conservative failure rate estimates.
This illustrates the potential of these methods in deducing realistic closure reliability
metrics when backed by substantial data, as detailed in section K.3.
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L Bayesian Inference for Parameter Estimation

Bayesian inference offers a systematic framework for refining the beliefs about a model
parameter θ based on new data, denoted by Dn = {x1, x2, . . . , xn}. This belief re-
finement is captured by Bayes’ theorem, which mathematically combines the prior
knowledge and observed data to yield a posterior belief about θ:

p(θ|Dn) ∝ p(Dn|θ)× p(θ) (49)

Where:

• p(θ|Dn) represents the posterior distribution of θ after considering data Dn.

• p(Dn|θ) is the likelihood, indicating the probability of the observed data under
a specific value of θ.

• p(θ) constitutes the prior distribution, which encapsulates our preliminary be-
liefs about θ before data observation.
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M Rule of three

The rule of three provides the 95% confidence bound for independent events with
probability p, on the basis that the event has not occurred in n Bernoulli trials. The
formula of the cumulative binomial function for zero successful events in a population
of size n, (1 − p)n, can be used to derive the rule of three. The upper limit of the
confidence interval is P (x = 0) = 0.05. This is used to deduce the rule of three:

(1− p)n ≤ 0.05

⇔ n ln(1− p) ≤ ln(0.05) ≃ −2.996
(50)

A Taylor series expansion around x = 0 is used to estimate ln 1− p.

f(x) = f(0) +
f ′(0)

1!
(x) +

f ′′(0)

2!
(x)2 +

f ′′′(0)

3!
(x)3 + · · · (51)

By inserting ln 1− p it is found that:

f(x) = 0 +

d
dp (ln(1− p)(0)

1!
+

d2

dp2 (ln(1− p)(0)

2!
+

d3

dp3 (ln(1− p)(0)

3!
+ · · ·

= −p− 1

2
p2 − 1

3
p3 − · · ·

≈ −p( for p close to 0)

(52)

Hence, it is shown that −np ≤ −2.996 or more formally:

p ≤ 3

n
(53)

Modifications of the rule of three exist. For example, the rule of four. Which can be
used to provide the upper limit of the 99% confidence interval. Naturally, the formulas
for other confidence bounds can also be deduced.
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N Proof of Beta-Binomial Conjugacy

The binomial distribution models the count of successes in n independent Bernoulli
trials. Its likelihood is described by:

p(Dn|θ) =
(
n

k

)
θk(1− θ)n−k (54)

Given that θ is a probability and varies between 0 and 1, the Beta distribution serves
as an apt choice for the prior. This distribution is characterized by:

p(θ|α, β) = 1

B(α, β)
θα−1(1− θ)β−1 (55)

Where B stands for the Beta function.
As the Beta distribution is the conjugate prior for the binomial distribution, it en-

sures that when commencing with a Beta-distributed prior and then observe binomial
data, the resultant posterior is also Beta-distributed.
Combining these, the posterior distribution for θ after observing the data becomes:

p(θ|Dn) ∝ p(Dn|θ)× p(θ|α, β) (56)

∝ θk(1− θ)n−k × θα−1(1− θ)β−1 (57)

= θk+α−1(1− θ)n−k+β−1 (58)

Thus, the revised parameters for the Beta distribution are:

θ|Dn ∼ Beta(k + α, n− k + β)

The conjugacy between the Beta and binomial distributions streamlines the Bayesian
updating process, making it both intuitive and analytically manageable.
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O Storm Surge Barrier Closure Database

The Storm Surge Barrier Closure Database centralizes record-keeping for storm surge
barrier closures. This adaptable tool is designed to aid agencies and researchers in
efficiently monitoring and analyzing closure events.

Integrated with the FastAPI framework, the system allows users to perform CRUD
operations with ease. They can access barrier details, register new barriers, and view
specific closure instances. Additionally, endpoints for the rule-of-three and beta dis-
tribution calculations are available for in-depth analysis.

Relying on the PostgreSQL database, the system offers both reliability and scala-
bility in data storage. In regions where storm surge barriers play a vital role in flood
prevention, this database becomes instrumental in offering insights into operational
statuses and reasons for closures.

The clean and structured codebase is designed for adaptability, allowing users to
tailor it to specific requirements. The entire codebase can be accessed in the repository
for modifications or further applications.

For a detailed overview, please refer to the repository maintained by Jelle Epema [9].

Figure 111: Methods available in the FastAPI interface for database interactions: PUT for
updating, POST for adding, and GET for fetching data.
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Figure 112: Interface for retrieving a comprehensive list of storm surge barriers.

Figure 113: Procedure for analyzing closure data using the R3 method.
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P Overview of the Oosterscheldekering

Situated in Zeeland, the Oosterscheldekering, or Eastern Scheldt Storm Surge Bar-
rier, is a significant flood defense completed in 1986. Designed to withstand extreme
storms with a 1-in-40,000-year recurrence interval, it incorporates 62 vertical lift gates
operated by 124 cylinder [8].

Figures 114 and 115 provide a snapshot of specific SVKO closures. For a compre-
hensive list, consulting original references is recommended.

Figure 114: SVKO closures, part 1 [25]
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Figure 115: SVKO closures, part 2 [25]

Table 25: Dutch to English Translations.

Dutch English
JA YES
— NO
Langd. gesl. tbv C-werk Long closed for C-work
85% open tbv C-werk 85% open for C-work
Late sluiting Late closing
Doorlopend alarm Continuous alarm
Hoog laagwater High low tide
Eindvoorspelling lager Final forecast lower
Zelfde HW als vorige oproep Same high water as previous call
Idem 2de top Same 2nd peak
Idem 3de top Same 3rd peak
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Q Overview of the Hollandsche IJsselkering

Finished in 1958 and located in Zuid-Holland, the Netherlands. In 1977 the second gate
was finished. The gates are lowered by 4 winches. Failure probability per individual
closure is 1 in 200 [13].
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R Overview of the Maeslantkering

Constructed between 1991 and 1997, the Maeslantkering is an automated storm surge
barrier situated in the Nieuwe Waterweg at Hoek van Holland. The barrier boasts
two gates, each 210 m wide, 22 m tall, and 15 m deep. Designed to counter flood
waves reaching up to 5 m above the Normal Amsterdam Level (NAP), it has a failure
probability of 1 in 100 per individual closure. An annual functional or test closure
is executed, with a total of 25 test closures having taken place by the time of this
documentation. Significant storm-induced closures are outlined in Table 26.

Table 26: Notable Closures of the Maeslantkering

Date Level (m above NAP) Details
10 May 1997 - Test closure

3 October 1997 - Test closure
18 September 2004 - Test closure
1 October 2005 - Test closure
7 October 2006 - Test closure

29 September 2007 - Test closure
8 November 2007 2.84 Storm condition closure
20 September 2008 - Test closure
19 September 2009 - Test closure
25 September 2010 - Test closure
24 September 2011 - Test closure
16 September 2012 - Test closure
21 September 2013 - Test closure
28 September 2014 - Test closure
19 September 2015 - Test closure
17 September 2016 - Test closure
9 September 2017 - Test closure
3 January 2018 2.60 Storm conditional closure

15 September 2018 - Test closure
14 September 2019 - Test closure
20 September 2020 - Test closure
12 September 2021 - Test closure
10 September 2022 - Test closure
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S Overview of the Hartelkering

The Hartelkering (HK), completed in 1997 and located in Zuid-Holland, is a storm
surge barrier that is part of the Europoortkering, which also includes the Maeslantk-
ering. The HK features two vertical lift gates in series, spanning widths of 49 and 98
meters. These gates are raised and lowered by lifting cylinders. The system’s failure
probability per individual closure stands at 1 in 100. Over the years, the Hartelker-
ing has undergone an annual Test closure, totaling 25 closures at the time of writing.
Notable storm-induced closures are detailed in Table 27.

Table 27: Notable Closures of the Hartelkering

Date Level (m above NAP) Details
10 May 1997 - Test closure

3 October 1997 - Test closure
18 September 2004 - Test closure
1 October 2005 - Test closure
7 October 2006 - Test closure

29 September 2007 - Test closure
8 November 2007 2.84 Storm condition closure
20 September 2008 - Test closure
19 September 2009 - Test closure
25 September 2010 - Test closure
24 September 2011 - Test closure
16 September 2012 - Test closure
21 September 2013 - Test closure
28 September 2014 - Test closure
19 September 2015 - Test closure
17 September 2016 - Test closure
9 September 2017 - Test closure
3 January 2018 2.60 Storm conditional closure

15 September 2018 - Test closure
14 September 2019 - Test closure
20 September 2020 - Test closure
12 September 2021 - Test closure
10 September 2022 - Test closure
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T Individual Double Degree Thesis Division

Table 28: Division of Thesis and European Credits Allocation

Division Section/Chapter Total European Credits (EC)
Civil Engineering CH2: Current Methods

CH2: Limitations Current Method
CH2: Review of Prior Research
Closure Data Analysis
Closure Data Database Framework
Closure Data Database Code Reposi-
tory

14 EC

Mathematics CH4: Statistical Framework
CH4: Review of Models and Methods
CH4: Simplified Bootstrap Approach
CH4: User Dashboard
Database Model and Statistical Fitting
Codde Repository

16 EC

Common Part CH1: Introduction
CH3: Data Description
CH3: Database structure
CH5: Method Application Framework
CH5: Application Framework Result
CH6: Discussion 26 EC
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