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Abstract

For several years, the dynamics of cerebrospinal fluid (CSF) in the subarachnoid and perivascular space
(SAS and PVS) have been a topic of controversy. Both the SAS and PVS are part of the glymphatic
system, a network of CSF-filled regions crucial to waste disposal in the brain. The CSF in this system
transports the waste, which is why fluid dynamics are a point of interest when trying to promote brain
clearance and keep neurodegeneration at bay. The reason why CSF-dynamics remain unclear, originates
in the difficulty to image and visualize them with adequate blood suppression and resolution to ensure that
the motion observed is not coming from slow blood flow. For this purpose, a high resolution, CSF-specific
magnetic resonance imaging sequence (CSF-STREAM) has been developed, for which a DTI-like metric
called CSF-mobility has been derived to quantify fluid dynamics. CSF-mobility is a metric describing
the amount of movement that CSF undergoes within a voxel, as a function of intra-voxel dephasing
due to bipolar gradients. The metric is derived from the eigenvalues from the tensor information in
each voxel (volumetric / 3D pixel) that describes this dephasing along different axes. The orientation
of CSF-mobility can also be retrieved from CSF-STREAM data, but has not been characterized yet in
detail. This report analyzes the eigenvector orientations of the CSF-mobility tensor in various CSF-
filled spaces that are wrapped aronund blood vessels: the subarachnoid space (SAS) around the middle
cerebral artery (MCA) and PVS around arteries in the basal ganglia and centrum semiovale (CSO). In
a first experiment, the assessment of local alignment of the SAS and PVS vector field is described. In
a second experiment, the first eigenvector (e1) orientation of each voxel within the SAS and PVS is
compared to the local vessel orientation. Three metrics, describing the orientation of the principal CSF-
mobility orientation compared to the vessel orientation, are derived: Daxial, Dradial and Dspiral. For
each parameter, variations in orientation over the cardiac cycle are analyzed and compared to a random
binned signal in order to assess the influence of cardiac pulsatility on each parameter. Results show a clear
preference for axial orientations in the SAS, with significant differences when comparing to a negative
control ROI(p < 0.001), suggesting a difference in orientation patterns or displacement speeds between
ROIs. The PVS ROIs indicate only small variations in orientation values from the negative control,
with the basal ganglia ROI showing a significant difference from the negative control (p < 0.05), but not
the CSO ROI. For all ROIs, the influence of cardiac pulsatility on the three parameters is significant
when comparing to the random binned signal (p < 0.05). Further research on combinations with scalar
field approaches and secondary and tertiary eigenvectors and values are advised to further assess what
could cause certain directional patterns and reveal more underlying information about the CSF-mobility
tensor. Also, data acquisition with multiple b-values could better characterize any possible variations in
displacement speeds in different CSF-filled regions.
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Chapter 1

Introduction

The brain is the most energy-consuming organ of the human body [1]. When a cell consumes energy,
waste is produced that needs to be disposed of. In the rest of the body, the disposal of waste products
is regulated by the lymph vessel network, which takes up waste and transports it to the kidneys [2].
However, the brain does not contain any lymph vessels, which begs the question: If the metabolic rate
of the brain is so high, how does it dispose of its waste?
The cerebral vasculature has some features that differ from the vasculature of the rest of the body.

One feature that teaches us about waste disposal in the brain is the perivascular space (PVS). As the
name suggest, this is a space that surrounds the vasculature, with its inner wall being the blood vessel
and the outer wall consisting of the astrocytic endfeet that have wrapped themselves around the vessels
(see Figure 1.1).

Figure 1.1: The PVS around an artery penetrating the brain parenchyma. Note that two vessels are
shown, one with an enlarged PVS, which is often linked to neurodegeneration [3].

PVS are filled with cerebrospinal fluid (CSF), of which recent articles have suggested that it is in
constant exchange with the interstitial fluid (ISF) [4]. The interstitium is the space between (brain)
cells and is filled with fluids, metabolites and waste products. This knowledge bolsters the thought that
the PVS take up the metabolites produced in cells through exchange with the ISF and might in fact be
the lymphatic system of the brain. In 2012, Iliff et al. has called this the glymphatic system. The
astrocytic endfeet that comprise the outer wall of the PVS are part of glia cells, hence the name [5].
Impaired functioning of the glymphatic system has been linked to a number of neurodegenerative

diseases and thus a better understanding of this system might result in helpful tools for prevention or
treatment of such diseases. This brings us to question the dynamics of CSF inside the PVS: How do
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solutes get transported through these channels? On this question, there are three schools of thought:
The glymphatic model [5], the intramural periarterial drainage (IPAD) pathway [6] and the mixing
model [7, 8]. These theories disagree on a multitude of subjects such as the location of the pathway,
direction of the CSF-motion, the differences between flow and diffusion and how those concepts
contribute to the transport of waste (see Figure 1.2). Furthermore, the IPAD model proposes that
vasomotion is the main driving force for solute transport, while cardiac pulsatility is thought to be the
main driving force for the glymphatic model [9].
The transport of molecules is an essential link in many physiological and pathological processes of the

brain. Since neurodegeneration has been linked to such transport processes in the PVS, several papers
have been written on flow and diffusion in the PVS [10, 11]. For most experimental studies, invasive
techniques were applied and often conclusions were drawn in humans based on animal models. For
instance, Mestre et al. have injected mice with fluorescent microspheres and tracked their displacement
via two-photon microscopy [12] and Iliff et al. have used contrast enhanced MRI to visualize the
perivascular pathway in rat models [13]. However, using a tracer can alter the dynamics of the medium
that it is injected in. As such, findings from tracer-research might not be as insightful for the real
dynamics of the PVS as one would hope. Secondly, it is always preferred to confirm findings in animal
models with similar findings in humans. Because of this, non-invasive MRI is used to research PVS in
humans as well (see also Section 3), but there is a challenge in doing so: Since the PVS is surrounding
the blood vessel, a high spatial resolution is needed to disentangle signals from both compartments.
Also, to be sure that the measured signal pertains to CSF from the PVS and not slow blood flow, an
ultra-long echo time (TE) is warranted to make sure that the blood signal has fully decayed and that
the signal we measure is from CSF only. However, phase-contrast MRI, which is the standard for flow
analysis in blood vessels, is unfeasible due to its increased susceptibility to artefacts when using a long
TE. Therefore, analysis of the PVS with an ultra-long TE is done using a technique similar to diffusion
tensor imaging (DTI) [14].
For this purpose, a non-invasive, high-resolution (0.45 mm isotropic) and CSF-specific MRI sequence

has been developed by Hirschler et al. to characterize CSF-mobility throughout the entire human
brain [15]. This sequence is called the CSF-STREAM sequence. CSF-mobility is a DTI-like parameter
that is sensitive to slow flow or back-and-forth motion (more details in Section 2.2 and 3). This was
achieved with an accelerated 7 Tesla MRI, by exploiting the magnetic properties of CSF
(T2-preparation and an ultra long TE) and introducing motion sensitizing gradients to probe
CSF-mobility along various axes. In this sequence, the bulk of signal within each voxel is attributed to
the presence of CSF. The more CSF is within a voxel, the higher the signal-to-noise ratio (SNR), which
is directly related to the reliability of the principal direction of diffusion e1 [16]. In the study by
Hirschler et al. that analyses CSF-mobility within the PVS, it has been shown that the sequence can
provide a pulsatile CSF-mobility signal that indicates that the sequence can detect physiological effects
in PVS. These findings were compared to findings on CSF in the subarachnoid space (SAS) in order to
differentiate between both anatomies.
So far, there has not been any research on the directionality of CSF-mobility in the PVS, nor in the

SAS. As such, the goal of this study is twofold: (1) To assess the directionality of CSF-mobility within
the PVS and SAS and (2) to provide a physiological basis of such parameters by studying the influence
of cardiac pulsatility, one of the driving forces for CSF-mediated brain clearance.
The main findings of the report describe a method for the comparison of the CSF-mobility vectors

within the PVS and SAS to a centerline fitted through vessels that are surrounded by said SAS or PVS.
This method provides insight into the patterns behind fluid dynamics of CSF-filled spaces and clear
differences are reported between the SAS and PVS. The parameters that were derived to describe
CSF-mobility with respect to vessel orientation all demonstrate a clear pulsatile pattern that is
significantly influenced by cardiac pulsatility, which contributes to other findings in literature.
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Figure 1.2: Different theories for cerebral waste pathways. The brain parenchyma is depicted as white.
A: The glymphatic model, which assumes flow in the subarachnoid space (SAS) as well as in the PVS
around the vasculature penetrating the parenchyma. Flow in the PVS is assumed to follow the same
direction as the blood (arterial inflow, venous outflow). B: The IPAD assumes that waste is disposed
of through a different channel than the PVS, namely inside the vessel wall (the intramural passage). C:
The mixing model assumes flow in the SAS, but no flow in the PVS at parenchyma level. Diffusion is
seen as the main driving force for solute movement there and thus inflow and outflow of solutes can occur
within the same channel [8].
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Chapter 2

Background

This chapter provides an explanation to the fundamentals behind the MRI sequence that is employed in
this study, which are only a small part of the fundamentals of MRI as a whole. Specifically, the
influence of echo time on the acquired signal and the concept of dephasing and its various causes will be
elucidated.

2.1 The influence of echo time on signal decay

In MRI, the signal that is measured is excited by applying radio-frequency pulses to proton spins. After
applying the RF pulse, a signal that was originally oriented in the longitudinal plane of the magnetic
field, is flipped to the transversal plane. There is only a limited time that one can detect the transverse
signal before it decays (relaxes) to negligible amounts. Each tissue or fluid has its own decay time
constants, called T1 and T2. The T1 constant describes the time it takes for longitudinal part of the
signal to recover to 100 ∗ (1− e−1) ≈ 63% of its original signal. The T2 constant describes the time it
takes for the transverse part of the signal of a certain tissue or fluid to reduce to approximately 37% of
its original signal strength. The relation between the measured signal, called M⊥ and this decay time is
given as follows:

M⊥(t) = M⊥(t = 0)e−t/T2 (2.1)

When attempting to discern different tissues or fluids, discrepancies in T1 and T2 can be exploited. For
this study, T2-weighting is applied to maximize signal differences in tissues based on their T2 times.
Appropriately deciding when to measure the signal (this point in time is called the echo time, or TE)
can make it so that differences in signal between different tissues or fluids, and thus the image contrast,
are maximized [17].
In our case, the goal is slightly different, since we do not necessarily try to maximize the differences

between CSF and blood. The aim of our sequence is to null the blood and tissue signal in order to make
sure that the signal we measure solely originates from CSF. T2 times for arterial blood and CSF are 68
ms and 1 s, respectively, at 7 Tesla [18, 19]. When modelling the decay of the signal over time, using
these decay constants, we can see how both signals differ from one another (Figure 2.1). For the
CSF-STREAM sequence that has been applied in the study by Hirschler et al. [15], a TE of 495 ms was
applied. For both blood and CSF, signal magnitude at this time can be calculated by the following
equations:

M⊥,blood(TE) = M⊥,blood(t = 0)e−TE/T2blood (2.2)

M⊥,CSF (TE) = M⊥,CSF (t = 0)e−TE/T2CSF (2.3)

As seen in Figure 2.1, at this point in time the blood signal has been nulled, whereas approximately
63% of the CSF signal is still available.
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Figure 2.1: M ⊥ decay for blood and CSF over varying TE. The dotted line represents the time TE=495
ms and the subsequent amount of signal CSF still present.

2.2 Phase and dephasing

In order to understand diffusion weighting in MRI, the concepts of phase and dephasing of proton spins
need to be elucidated. When a magnetic field gradient is applied, the amount of magnetic field strength
that a spin is subjected to is dependent on the position of the spin compared to the gradient axis.
Consider the following Figure 2.2:

Figure 2.2: Differences in phase for stationary and moving water [20].

In this figure, a positive and negative magnetic gradient following each other is illustrated. This is
called a bipolar gradient. Two different groups of spins are represented: One group of static spins (top
row) and a group of moving spins (bottom row). When spins remain static, the phase accumulated
during the positive gradient lobe is fully refocused by the second, negative gradient lobe. This
altogether leads to no phase accumulation by static spins at the end of the application of the gradients.
In the bottom row, the red spin is moving upwards, while the green spin moves to the right. The
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gradient axis spans from left to right, so in terms of subjected field strength, the red spin experiences no
difference between the positive and negative lobe. On the contrary, for the green spin, it is seen that the
amount of phase accumulated during the first lobe is not the exact opposite of the amount of phase
from the second lobe. When talking about phase, one can recognize the amount of phase that a single
spin has accumulated, but also the total phase of multiple spins. In the static spin case, both are the
same, since all spins are oriented the same after the bipolar gradient. In the moving spin case, both
spins have accumulated a different amount of phase. This causes a discrepancy between the phase of
both individual spins. Adding the vectors of both spins together will result in a vector with a
magnitude that is smaller than a vector that is the result of adding two vectors with the same
orientation. This specific cause for loss in magnitude is called dephasing. [17, 20]
Now consider the next figure, Figure 2.3:

Figure 2.3: Different behavior of spins under the influence of a bipolar gradient. In this case, both
gradients have the same polarity, but spins are flipped by the 180◦-pulse, which has the same result [21].

In this figure, three different situations with multiple spins are shown. The top row contains
stationary spins, the middle row contains spins that flow along the gradient axis coherently and the
bottom row contains spins that move incoherently through space. Note that in this figure, both
gradient lobes are positive, but there is a 180 degree pulse in between. This has essentially the same
effect as the gradient lobes in the first image, which is why the second lobe can also be seen as the
”negative” lobe of the two. During the positive lobe, a similar phenomenon occurs for all three
situations: Each spin accumulates phase based on their position compared to the gradient axis, which
causes them to dephase from one another. At this point, the net vector of all spins in all situations will
be equally small. During the second lobe, the phase of the static spins will get refocused again. This
causes the resulting net vector to have no phase and the same magnitude as before; after the whole
sequence, there is no remnant phase and no dephasing (in the image, the phase is 180 degrees, but this
is because of the 180 pulse in between both lobes). In the plug flow case, the spins to not get refocused
and accumulate the same phase, which is proportional to their velocity/displacement. This results in all
the vectors pointing in the same direction, so the magnitude of the net vector is of the same magnitude
as before the sequence, but the net vector direction is different. This means that, for this group of
spins, there is phase accrual, but no dephasing. For the bottom row, representing spins in diffusion,
there is not only a difference in net phase between before and after the bipolar gradient, but also a
difference in the net phase between each spin. This provides both phase and dephasing.
In MRI, the net phase of a signal is proportional to the speed of displacement of a medium, while

dephasing, or signal attenuation, is used to determine the incoherence of motion. Note that incoherent
motion can occur in different forms, which is illustrated further by Figure 2.4.
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Figure 2.4: Ellipsoids representing various diffusion tensors (DT) under the influence of different fluid
dynamics [22].

Figure 2.4 displays different flow profiles and their subsequent diffusion profiles, illustrated as 3D
ellipsoid. In the leftmost image, coherent flow or plug flow is shown, which constitutes no variations in
the diffusion profile as there is no axis along which there is more dephasing than another. However,
when looking at the laminar flow profile and the pseudorandom flow profiles, it is illustrated how
dephasing influences the diffusion profile, elongating the ellipsoid along the axes where dephasing is
most prevalent. However, apart from flow profiles, another example of incoherent motion is diffusion,
which is why dephasing is used as a discriminating parameter for diffusion weighted scans. For each
scan, one can determine the diffusion weighting and the displacement speeds it is sensitive for. The
parameters for these concepts are the b-value and the velocity encoding, or Venc. The b-value
determines for what kind of incoherence the scan is sensitive to; for low b-values, the scan is more
sensitive for incoherent flow, while for high b-values, the scan is more sensitive to diffusion. For the
Venc, a high Venc is sensitive to high displacement speeds and a low Venc is sensitive to low displacement
speeds [22, 23]. Relating all this to the SAS and PVS, the CSF-STREAM sequence also has a certain
b-value and Venc. These have been chosen in such a way that there is signal attenuation visible in both
the SAS and PVS so that it is certain that signal with a physiological origin is measured. As a
consequence, the b-value is set at 13 s/mm2, which makes the sequence sensitive to dephasing from
both incoherent flow and diffusion (for reference, diffusion weighted scans usually have a b-value of
> 800 s/mm2). The Venc is set at 5 mm/s which makes it so that the phase accumulation that, in turn,
causes this dephasing is highest around those speeds. Because the signal attenuation in the sequence is
a result from both diffusion and incoherent flow, the metric for the amount of dephasing in this
(CSF-specific) sequence is called CSF-mobility, meaning an intermediate between both phenomena [24].

10



Chapter 3

Related Work

The glymphatic hypothesis poses that perivascular fluid movement is driven by bulk flow, while more
recent papers have proposed that fast dispersion of CSF tracers in the PVS can be accounted for by
mechanical pulsations (i.e. mixing) and thus does not require bulk flow [4, 7]. However, fluid movement
in the PVS is yet to be described, because no current technique can measure CSF flow in the PVS.
In a study by Wen et al. on human participants, a diffusion-weighted imaging (DWI) scan with

b = 150 s/mm2 was applied [25]. This method can not assess flow, but provides insight into the fluid
dynamics CSF by acquiring information on the dephasing of of CSF signal during different MPGs in
three perpendicular directions (x,y and z). Assessment of the signal along the cardiac cycle was done
for grey matter (GM), white matter (WM) and CSF that surrounds pial arteries. They report a clear
pulsatility in rythm with the cardiac cycle in the CSF-voxel, while seeing no pulsatility in the WM or
GM. It should be noted that no suppression of the blood signal was done, so measured signal could have
some contribution of (pulsatile) blood signal. Lastly. they mention a lack of resolution for assessing
penetrating arteries as these are usually around 0.5-1 mm thick.
Bito et al. conducted another non-invasive diffusion-weighted study on human participants [22]. In

this study, both a high (1000 s/mm2) and a low (100 s/mm2) b-value were applied in order to assess
the contribution of diffusion and slow flow to the received signal. From the maps created using the low
b-value (DTL) and the high b-value (DTH), they computed mean diffusivity (MD) and fractional
anisotropy (FA) for both b-values. Six different ROI’s were recognized for assessment, one of which with
a low MD and FA, used as control, and five with a high MD and FA, of which one was the SAS around
the MCA. Comparison of the (DTL) and (DTH) indicate a higher MD value for (DTL) in some ROI’s
including the SAS around the MCA. Although they do not interpret that finding in the discussion, it
hints at a higher contribution of slow flow in that region. The differences in MD and FA for (DTL) and
(DTH) can be seen in Figure 3.1. However, like the paper from Wen et al., the influence of blood signal
on the measurements has to be taken into account and is also mentioned as one of the main limitations.
They report that influence of blood signal could contribute to the higher MD and FA around the MCA.
The technique that is used in this study is based on a sequence that was first proposed by Harrison et

al. [14]. This sequence can effectively null blood signal by applying an ultra long TE, of which the
details are also described in Chapter 2. In the study by Harisson te al., an intermediate
b-value-technique (with b = 107 s/mm2) was applied to a rat brain in order to assess CSF-mobility.
They reported the most severe attenuation in signal in the SAS around the MCA when applying a
motion sensitising gradient which was aligned with the vessel direction, indicating a preference for axial
orientation of CSF-mobility in that space. They also reported a clear increase in CSF-mobility during
systole and decrease during diastole, indicating the influence of cardiac pulsations. Harrison et al
proposed the first non-invasive technique to measure displacements in the SAS around the MCA
without interference of blood signal. [14].
In the aformentioned studies, no PVS around penetrating arteries into the parenchyma have been

analyzed and only one study nulls the blood signal. The reason for this is that the resolution required
for this has not been reached for this specific technique. In the dataset that is used for this study, a
resolution of 0.45 mm isotropic was reached, which is adequate for imaging penetrating arteries. This is
possible due to the use of a 7T MRI scanner (Wen et al. and Bito et al. used 3T, Harrison et al. used a
9.4T animal scanner) and the use of a turbo spin echo (TSE) readout as opposed to the faster single
shot echo-planar imaging (ssEPI) readout. Because the TSE readout takes more time, compressed
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sensing is applied to speed up the acquisition process and minimize motion artefacts due to participant
discomfort. A b-value of 13 s/mm2 was applied, as this setting showed signal attenuation in both the
SAS and the PVS. Combining the improvements in resolution with the blood nulling from the ultra
long TE can thus measure CSF-signal in the penetrating PVS more accurately [24]. Furthermore,
directionality of the CSF-mobility tensor has only been assessed using scalar values like MD and FA; no
three-dimensional assessment comparing the signal to the vessel orientation has been done.

Figure 3.1: Multislice images of MD (A) and FA (B) in the brain. MD of DTL is visualized using two
colorbars. 0− 20 · 10−9m2/s is used for the upper row and 0− 6 · 10−9m2/s is used for the lower row, as
described in the bottom portion of the figure. When comparing the highest and the second-highest row,
the sensitivity to slow-flow rather than diffusion for the MCA region is illustrated [22].
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Chapter 4

Dataset description

This retrospective study was conducted on CSF-STREAM (CSF-Selective T2-prepared Readout with
Acceleration and Mobility-encoding) data of 11 healthy participants (age: 35±14 years, 8 females, 3
males). One CSF-STREAM dataset consists in seven scans: one non-motion sensitized scan and 6
motion-sensitized scans. The readout was a turbo-spin-echo (TSE)-readout with an echo-time (TE) of
495 ms for the CSF isolation. With this sequence, a resolution of 0.45 mm isotropic was reached. For
each participant, the cardiac rhythm was monitored with a finger clip during data acquisition so that
each part of the acquired signal could be assigned to one of six cardiac phases. Every dataset per
participant was reconstructed twice: Once with retrospective binning towards the cardiac cycle and a
second time to random cycles as a negative control. This resulted in six cardiac bins (as there are six
cardiac phases) and six random bins. Note that both six-phase datasets are thus derived from the same
data. Having derived the amount of signal attenuation along the axes of each of the MPGs, one can
construct a tensor containing the CSF-mobility along six equidistant axes. Analysis of the tensor data
was done using the first eigenvector e1 and the first eigenvalue λ1 derived from the tensor, which was
calculated from the values corresponding to the six MPGs. The first eigenvector of each tensor provides
the main orientation of the tensor, i.e. the most dominant CSF-mobility direction, while the eigenvalue
provides information on the magnitude of CSF-mobility in that direction. For both the preliminary
analysis in Chapter 5 as well as the CSF-mobility directional analysis in Chapter 6, the vectors (called

V⃗ (i, j, k), in image processing, indices (i, j, k) are typically used for describing the xyz-coordinates of a
voxel) that are analyzed are computed as follows:

V⃗ (i, j, k) = λ1(i, j, k) · e1(i, j, k) (4.1)

For Chapter 5 and 6, three different ROIs are assessed. A slice of the b0-image of the three ROIs
used Chapter 5 are shown in Figure 4.1. The largest ROI is on the left: the SAS around the MCA. The
other two ROIs are the PVS around arteries in the basal ganglia (middle) and in the centrum semiovale
(CSO). As will also be explained in the respective chapter, all the datapoints within the ROI will be
analyzed.
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(a) SAS around the MCA. (b) PVS in basal ganglia. (c) PVS in the centrum semiovale.

Figure 4.1: Example locations of the ROIs in representative individuals.

For the experiment in Chapter 6, the same ROIs will be used, but one more ROI is added. This last
ROI is a slab of dark brain tissue, which is meant as a control to assess fluid dynamics in regions with
low CSF and no clear vessel orientation. The description of this fourth ROI and the motivation for its
addition is given in the respective chapter.
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Chapter 5

Preliminary experiment: Assessing
local alignment of the CSF-mobility
tensor

In this chapter, the first experiment of the thesis is described. There is not yet any understanding of the
vector orientations inside the vessels or in the brain tissue, or how these vectors compare to one
another. Therefore, the goal of this experiment is to evaluate how well CSF-mobility vectors are aligned
to their neighbours and to compare alignment in CSF-filled regions to alignement in brain tissue, where
the concentration of CSF is lower. In doing so, one can assess the CSF-mobility vector fields of different
sections of the brain to see whether there is any coherence in orientation and to compare between the
different ROIs. This provides a first exploration of the dataset that can be used to decide on how to
proceed towards more extensive CSF-mobility analysis.

5.1 Methods

The purpose of this first experiment is to analyze each vector V⃗ (i, j, k) within a three-dimensional space

and compare with its neighbours. The aim is to propagate V⃗ (i, j, k) from the voxel origin in the positive

and negative direction in order to find the two neighbouring voxels that V⃗ (i, j, k) is pointing at. The
orientation of the vectors in these neighbouring voxels are then compared to the orientation of the
central vector by doing a dot-product.. These can be any 2 opposing voxels in a 3x3x3 space
surrounding the central vector. In order to find to which two voxels V⃗ (i, j, k) is pointing to. The

coordinates of those voxels need to be defined in terms of the origin of V⃗ (i, j, k) and its orientation. For
this purpose, three shifting values (a, b, c) which depend on the orientation of the normalized vector

V⃗ (i, j, k), which is e⃗1(i, j, k) are defined: If e1,x(i, j, k) > sin(π8 ), a = 1 and if e1,x(i, j, k) < sin(−π
8 ),

a = −1. This value of π
8 is chosen as this is the angle at which the e1 vector would point exactly at the

point where two corners of a voxel meet (see leftmost image in Figure 5.1). If none of these
requirements are met, the shifting value is set to zero. The same is done for values b and c by assessing
e1,y(i, j, k) and e1,z(i, j, k), respectively. This defines the indices of the neighbouring voxel in the
positive vector direction as (i+ a, j + b, k + c). For the negative vector direction, the sign is flipped so
that the indices are (i− a, j − b, k − c). The orientations of both opposing vectors are compared with
the orientation of the central vector to get a scalar value P (i, j, k) that is assigned to the central vectors

voxel. A high value P (i, j, k) means that the vector V⃗ (i, j, k) of the center voxel is highly parallel to its

neighbours V⃗ (i+ a, j + b, k + c) and V⃗ (i− a, j − b, k − c). This value is computed for the original e1λ1

vectors, shown in Equation 5.1, as well as for normalized vectors e1, shown in Equation 5.2 (· indicates
the dot-product between vectors):

P (i, j, k) = |V⃗ (i, j, k) · V⃗ (i+ a, j + b, k + c)|+ |V⃗ (i, j, k) · V⃗ (i− a, j − b, k − c)| (5.1)

P (i, j, k)norm = |e⃗1(i, j, k) · e⃗1(i+ a, j + b, k + c)|+ |e⃗1(i, j, k) · e⃗1(i− a, j − b, k − c)| (5.2)
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Figure 5.1: Schematic of the preliminary image analysis method in a 2D example. V⃗ (i − a, j − b) and

V⃗ (i + a, j + b) are highlighted in red and the central voxel to which the value P (i, j) will be assigned
is highlighted in green (P (i, j, k) in a 3D example). The left and middle image show the differences in
orientation between low (left) and high (middle) local alignment values. The rightmost image indicates
the how the orientation of the central vector is related to the shifting values, with an example for e1,y,
which determines shifting value b.

A schematic overview of how to find V⃗ (i+ a, j + b, k + c) and V⃗ (i− a, j − b, k − c) in a 2D space can
be seen in Figure 5.1. The computation is applied to each vector in a pre-defined three-dimensional
space. Voxels on the edge of the space are not computed. A three dimensional scalar field is created
with these values and compared to the b0-image of the DTI sequence. If the corresponding vector e⃗1 or
e⃗1λ1 of some voxel is aligned with neighbouring vectors V⃗ (i+ a, j + b, k + c) and V⃗ (i− a, j − b, k − c), a
relatively high value is assigned to that voxel. When high local alignment values coincide with high
CSF-values in the b0-image, the case can be made that there is some degree of homogeneity in the
vector field of the CSF around the vessel. Furthermore, under the assumption that the vectors in the
CSF-filled vessels have a similar orientation, a certain amount of contrast is expected between the
P (i, j, k) values within the PVS or SAS and outside, in regions containing little CSF.The comparison
between both methods (local alignment values for the normalized and unnormalized vectors) can
provide insight into the occurrence of alignment: Is local alignment of vectors related to the magnitude
of the CSF-mobility, or can regions with low λ1 also exhibit high amounts of alignment? This can be
seen in the results, in Section 5.1.

5.2 Results

In order to check the performance of the processing method that has been described, this method has
been applied to a simulated 2D vector field. This vector field has some randomly oriented vectors with
a magnitude of 0.05 and some vectors with magnitude 1 that have been manually oriented so that they
form a line moving diagonally through the image. Halfway through, the vector line rotates 90 degrees in
two steps, as can be seen in Figure 5.2. The example illustrates the difference in performance for
straight and curved segments. In the curved segment, we can see that any vector following a curve
(some PVS or SAS sections might be curved as well) will also be less aligned with its neighbours and
thus give a low value for P (i, j, k). Furthermore, we can see that there are some high values placed
randomly around the voxels containing large vectors. This is because here, the randomly oriented,
smaller vectors have shifting values that select the larger vectors as their neighbours. The magnitude of
the large vector in combination with good alignment constitute relatively high values distributed
randomly along the line of large vectors.
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(a) A simulated 2D vector field (b) Simulated 2D vector field with
alignment values overlayed

(c) Second image, zoomed in to
highlight corner performance

Figure 5.2: The local alignment method from Equation 5.1 performs well on straight segments, but not
on corners

(a) Subarachnoid space around
the MCA

(b) PVS in basal ganglia (c) PVS in the centrum semiovale

(d) P (i, j, k) (e) P (i, j, k) (f) P (i, j, k)

(g) P (i, j, k)norm (h) P (i, j, k)norm (i) P (i, j, k)norm

Figure 5.3: The three ROIs and their local alignment images. (a,b,c): Selected ROIs shown on the
b0-image. (d,e,f): Degree of local alignment of CSF-mobility vectors (λ1e1). (g,h,i): Degree of local
alignment of normalized CSF-mobility vectors (e− 1).
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Figure 5.3 shows the results of the degree of alignment of CSF-mobility vectors with their neighbors
in three ROIs. This analysis has been done for only one participant per ROI. The vector fields that
were analyzed originated from the dataset of the first cardiac phase. For all columns, the values in the
second row, meaning local alignment of the unnormalized CSF-mobility vector, are highest in the SAS
and values in the PVS are rather low compared to this, indicating a difference in either vector length or
alignment, or a combination of both. For the third row, we can see that high values are present in all
ROIs (by chance, some randomly oriented vectors can be aligned well). When looking at the images
from the MCA, vectors in the SAS around the MCA present high values, indicating a high degree of
local alignment. The differences between Subfigure 5.3d and 5.3g indicate the influence of e1 and λ1 on
local alignment values and show that there are some regions that have a high local alignment. Results
of the PVS in the basal ganglia and the CSO tell a different story: Both the directionality and the
vector magnitude do not constitute sufficient contrast with the CSF-sparse regions. However, a darker
part in the middle left of Subfigure 5.3f indicates a significantly lower vector magnitude in this
CSF-filled region than its surroundings, since this drop in signal is not seen in Subfigure 5.3i.

5.3 Discussion

The results from the local alignment assessment indicate a high degree of alignment in the SAS, while
no alignment is demonstrated in the PVS ROIs. These findings could be explained by more laminar
flow profile in the SAS and more turbulence in the PVS. Another explanation could be the influence of
noise in these regions, as PVS ROIs are thinner than the SAS. Furthermore, the angle of directional
change in the smaller segments could possibly be too steep, performing in a similar way as the example
in Figure 5.2. However, that does not explain the low signal in straighter parts of the segmentations.
Note that this method is only sensitive to parallel vectors that are in line with each other. Vectors that
are parallel, but ordered sideways of one another and not along, do not get assigned high values.
Overall, this method indicates a clear difference in alignment between SAS and PVS, but it is too

limited for any profound conclusions on the dynamics of PVS. Going forward, comparing the
CSF-mobility vector orientation to the vessel orientation located within the CSF-filled space, instead of
comparing CSF-mobility vectors to each other, could provide more insight. This is because the
influence of (potentially noisy) neighbouring vectors would then not perturb the assigned values.
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Chapter 6

Assessing CSF-mobility orientation
with respect to vessel orientation

This chapter describes the main experiment of the thesis: Analyzing the orientation differences of
CSF-mobility vectors in the SAS and PVS with respect to the orientation of the vessel located within
the CSF-filled spaces. For this purpose, we envision three characteristic directions of CSF-mobility:
Axial (along the longitudinal vessel axis, see top of Figure 6.1), radial (moving in an outward from the
longitudinal vessel axis, see middle of Figure c6.1) and spiral (swirling or spiraling around the vessel
axis, see bottom of Figure 6.1). Figure 6.1 represents a cross-sectional view of the characteristic motion
of all three directions in the PVS. The aim of this experiment is to express the e1 orientation of each
voxel in terms of these three characteristic directions. The ROIs that are to be analyzed are the same as
in the first experiment, but one more ROI is added. This fourth ROI is a single slice of brain tissue that
contains a low concentration of CSF. Specifics on the ROIs and the mathematical definitions of these
directions will be given in in Section 6.1.

Figure 6.1: From top to bottom: Axial, radial and spiral CSF-mobility in the PVS. The red part signifies
blood and the light blue CSF. Note that in smaller vessels such as in the basal ganglia and CSO, the
diameter of the blood segment is so small that it is not visible.

The reason for defining these three parameters is to compare the direction e1 of each CSF-mobility
vector to the local vessel orientation. Metrics for axial and spiral CSF-mobility could provide insight
into the freedom of movement along the vessel walls, possibly indicating transport of fluids from the
larger CSF-filled spaces to smaller PVS. Radial CSF-mobility can be influenced by radial movement in
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Figure 6.2: Visualization pipeline for analysis of the CSF-mobility vectors. Images from ITK-SNAP (Step
1), 3D Slicer (Step 2), MATLAB (Step 3) and Paraview (Step 4) are incorporated in the figure. Each of
the steps is also explained in detail in Section 6.1.

the vessel such as cardiac pulsations or vasomotion, or possibly interaction between the PVS and the
parenchyma.

6.1 Methods

The following section describes how the directionality of each e⃗1 is compared to local vessel orientation.
The approach for assessment of CSF-mobility vector orientation in SAS and PVS can be divided up
into 4 steps:

1. The identification and segmentation of each ROI, based on anatomy. Doing so makes it possible
to differentiate between CSF-mobility characteristics of the SAS, the PVS around different
vasculature, and regions containing low amounts of CSF.

2. The fitting of a centerline through each vessel. This part is crucial to acquiring information on
local vessel orientation.

3. Creating a CSF mask which will identify the voxels containing information that is relevant to the
research question and exclude voxels that are not.

4. Directionality assessment of the CSF-mobility vector compared to the vessel orientation.

A visualization of the process can be found in Figure 6.2. In the following sections, each of these steps
will be explained in detail.

ROI identification and segmentation

For each participant, the same regions as used in Chapter 5 were selected for further assessment,
together with a region of darker brain tissue that did not contain any visible PVS. This darker brain
tissue region is intended to be used as a negative control in which there are no anatomical borders
visible that might produce an average preferential direction. To perform the ROI identification and
segmentation, the b0-image of each participant was loaded into ITK-SNAP (version 3.8.0). For the
MCA, the black region of blood within the vessel was selected manually. This is the region that is
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Figure 6.3: Schematic of the MCA [26].

encompassed by the CSF in the SAS. The full segmentation stretched from the point where the internal
carotid artery (ICA) branches into the MCA to the point where the MCA bifurcates into its superior
and inferior parts (see Figure 6.3). For the PVS in the centrum semi ovale (CSO) and basal ganglia, the
CSF signal of the vessel was selected manually through slices for as long as it was visible. Care was
taken to choose a long PVS so that the amount of available datapoints would be maximized. Lastly, a
brain-tissue ROI (from now denoted as ”tissue”) containing little CSF (defined as low signal intensity
on the b0-image by a threshold of < 60) was selected within each participant for comparison. The
motivation for including such an ROI is to be able to compare ROIs where the vessel geometry implies
a clear orientation preference (vasculature around which the SAS and PVS are located) to an ROI with
no apparent preference (no visible vasculature). For this ROI, a single slab of voxels (meaning from one
axial slice) from a dark region in the b0-image was chosen. This ROI was selected in the upper middle
region of the left hemisphere. Care was taken to make sure every tissue ROI was roughly the same size.
Examples of the ROIs in the anatomical context are found in Figure 6.4.

(a) Segmentation of the
blood in the MCA (axial)

(b) Segmentation of the
PVS in the basal ganglia
(saggital)

(c) Segmentation of the
PVS in the CSO (saggital)

(d) Segmentation of the
dark tissue slab (axial)

Figure 6.4: The 4 ROIs within each participant to be analyzed. The highlighted red part is the same as
the segmentation from which the CSF-mask is created: In the leftmost image in Figure 6.6, the geometry
is the same as the geometry of the MCA in this figure.

Centerline fitting

In order to compare each CSF-mobility vector with the vessel orientation, (for each cross-sectional
segment, this is the vector perpendicular to the cross-section plane), a centerline is fitted through each
vessel. To achieve this, each segmentation that was made in ITK-SNAP was imported into 3D Slicer
(Version 5.2.2), in order to fit a centerline through the segmentation. For this, the ”Extract Centerline”
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(a) Centerline through the MCA (b) Centerline through basal gan-
glia PVS vessel

(c) Centerline through a CSO
PVS vessel

Figure 6.5: The three regions of interest, with a scale for reference. Note that the segmentation for (a)
is based on the blood, while the segmentation for (b) and (c) is based on the CSF signal.

tool from the Vascular Modeling Toolkit was used. In figure 6.5, screenshots of the different
segmentations with their corresponding centerline can be seen. Note that these pictures are not of the
same scale. Each centerline was saved as an OBJ-file. In order to make the saved OBJ-files useable in
the MATLAB environment, the coordinates points within the file were scaled to the right resolution
and rotated to the right frame of reference. Each of the centerlines was plotted within the b0-image and
checked to make sure that the affine transformations were done correctly. Tangents for each centerline
coordinate were created by subtracting the current position coordinates from the next position
coordinates and saved.

Creating a CSF mask

For each ROI, the voxels that are classified as either SAS or PVS surrounding the chosen vessel need to
be identified as such. These voxels all need to meet two criteria: The signal in the b0-image needs to be
sufficiently high to ensure the ROI contains only CSF-signal and the voxels need to be part of either the
SAS or the PVS surrounding the vessel. For the SAS around the MCA, as seen in Figure 6.4, the blood
compartment in the vessel is visible, while in the PVS, the vessel diameter is so small that no blood
compartment is visible. This fact makes the steps for defining an SAS mask inherently different from
the steps for defining a PVS mask. Both masks were created in MATLAB (version 2019b), based on the
segmentations from ITK-SNAP. This mask is applied to all CSF-mobility vectors to be analyzed. For
the subarachnoid space around the MCA, the segmentation, which is a binary image, was dilated with a
spherical element that had a diameter of 11 voxels. Then, the original segmentation was subtracted
from the image and the subsequent mask was applied to the b0-image, so that the blood from the MCA
is not included in the mask, but the CSF in the SAS surrounding the blood is. This 3D mask was then
thresholded so that only voxels above a grey value of 80 were kept. For the PVS, the same steps were
taken, but there was no subtraction as the segmentation made in ITK-SNAP was drawn based on
CSF-filled regions. Also, the dilation for the PVS was done with a spherical element that had a
diameter of 3 voxels. See Figure 6.6 for a graphical explanation.

CSF-mobility vector orientation assessment

Once the list of coordinates that were included in each ROI was created based on the CSF-mask, each
datapoint corresponding to those coordinates was linked to the centerline tangent closest to that point
(denoted as v⃗tang). For computing the tangent, the following equation was applied:

v⃗tang(k) = c⃗(k + 1)− c⃗(k) (6.1)

Where c⃗(k) is the coordinate vector for interpolated point k on the centerline and k is the number that
denotes which point on the centerline is being considered, as the centerline consists of discrete points in
3D-space. For each coordinate, the orientation of the CSF-mobility vector (in this section also denoted

as V⃗ (i, j, k)) was compared to the orientation of the centerline tangent that it was linked to. Three
different parameters were computed: Axial CSF-mobility (Daxial), radial CSF-mobility (Dradial) and
spiral CSF-mobility (Dspiral). For all three parameters, explanation with formulas will now follow, but
for a more graphical illustration of all the vectors involved, see Figure 6.7. On the left side of the figure,
it is shown how V⃗ (i, j, k) is decomposed into v⃗axial, v⃗radial and v⃗spiral. Note that each of these three
vectors is perpendicular to one another and try to compare their orientation to the more intuitive image

22



(a) Image processing steps for the SAS around the MCA

(b) Image processing steps for the perivascular space

Figure 6.6: How the CSF-mask was created

Figure 6.7: Schematic drawing of an example vector V⃗ (i, j, k) on (left) or beneath (right) a plane per-
pendicular to v⃗tang. Note the difference in orientation between v⃗diff and v⃗radial in the example on the
right.
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of the three directions of CSF-mobility shown at the beginning of this chapter in Figure 6.1. For
convenience, a coordinate system has been chosen for which the following equations hold:

v⃗axial = V⃗ (i, j, k) ∗ ẑ (6.2)

v⃗radial = V⃗ (i, j, k) ∗ x̂ (6.3)

v⃗spiral = V⃗ (i, j, k) ∗ ŷ (6.4)

Where ∗ denotes element-wise multiplication of both vectors. x̂, ŷ and ẑ are unit vectors with
magnitude 1 pointing in line with the axis they are named after.
The first parameter, Axial CSF-mobility, is defined as a measure for how parallel V⃗ (i, j, k) is to the

closest centerline tangent and can be computed by using Equation 6.5.

Daxial =

∣∣∣∣∣ V⃗ (i, j, k)

||V⃗ (i, j, k)||
· v⃗tang
||v⃗tang||

∣∣∣∣∣ (6.5)

In this equation, v⃗tang has already been defined and V⃗ (i, j, k) is the CSF-mobility vector equal to
λ1e1. Normalizing both vectors by dividing them by their own magnitude produces two vectors that
both have a magnitude of 1. Doing the dot-product between both vectors then gives us a measure,
ranging from 0 to 1, for how parallel the measured CSF-vector is to the closest point on the tangent line.
The second parameter, radial CSF-mobility is defined as how parallel the orientation of e1 is to the

surface normal of the closest point on the vessel wall, assuming the vessel is a perfect cylinder with
orientation v⃗tang). In order to understand the Equation that is used to derive this parameter, we first
need to define two other vectors. The first is the difference vector v⃗diff (which is normalized) between

the position of the tangent line (denoted as v⃗t) and the position of vector V⃗ (i, j, k) (denoted as v⃗m):

v⃗diff =
v⃗m − v⃗t

||v⃗m − v⃗t||
(6.6)

Using this difference vector, one can define v⃗cross:

v⃗cross =
v⃗tang × v⃗diff

||v⃗tang × v⃗diff ||
(6.7)

Figure 6.7 visualizes how v⃗diff points in the same direction as v⃗radial and how v⃗cross points in the same
direction as v⃗spiral. In order to compute radial CSF-mobility measure Dradial, we can now apply the
Equation 6.8:

Dradial =

∣∣∣∣∣ V⃗ (i, j, k)

||V⃗ (i, j, k)||
· v⃗cross × v⃗tang
||v⃗cross × v⃗tang||

∣∣∣∣∣ (6.8)

In this equation, we do not use v⃗diff , but the cross product between v⃗tang and v⃗cross. The reason for
this will be explained in the next section, but for now it should be clear that, for the example on the
left hand side of Figure 6.7, this notation works just as well as using the difference vector.
Lastly, for spiral CSF-mobility, denoted as Dspiral, we use Equation 6.9:

Dspiral =

∣∣∣∣∣ V⃗ (i, j, k)

||V⃗ (i, j, k)||
· v⃗cross
||v⃗cross||

∣∣∣∣∣ (6.9)

Spiral CSF-mobility is defined as how perpendicular V⃗ (i, j, k) is to the two former axial and radial
CSF-mobility directions. For a more intuitive description, this measure can also be defined as how
tangential V⃗ (i, j, k) is to the to the circle that is drawn in Figure 6.7.

Now the difference between the left and right side of Figure 6.7 will be addressed. As mentioned
before, each datapoint is linked to the closest tangent line point and evaluated accordingly. This means
that, for some datapoints, the orientation of v⃗diff is not perfectly perpendicular to the orientation of
v⃗tang. This can be seen on the right-hand side of the figure. If v⃗diff was used in this situation to
directly compute Dradial, a measure that still contains an axial component would be obtained, because
it is not perfectly perpendicular to the axial direction. In order to circumvent this, v⃗diff was replaced
by v⃗cross × v⃗tang. In doing so, the method can be used for both situations.
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All vectors are normalized so that the derived parameters pertain solely to the directionality of the
signal and not the CSF-mobility magnitude. All parameters are defined as absolutes because the sign of
the measured vector is trivial; CSF-mobility is measured along an axis, but not in the positive or
negative direction. For each voxel a check was done to make sure that the following equation holds:

D2
axial +D2

radial +D2
spiral = 1 (6.10)

Also, each segmented vector field was converted to Paraview (Version 5.11.0) for visualization purposes.
Scalar values Daxial, Dradial and Dspiral were colorcoded so enable visual checks. All parameters were
derived for all 11 participants in all four ROIs for 12 datasets (one dataset for each of the six cardiac
phases and one dataset for each of the six random bins). For the dark tissue ROI, the whole slab was
treated as one large vessel cross-section. All values in this ROI are linked to a single tangent line which
is oriented perpendicularly to the slab. Apart from that, parameters are computed in the same way as
for the three vessel ROIs.

Additional reduction of the MCA ROI

Both the ROI for the basal ganglia and the CSO are assumed to be segmentations without any
bifurcations, since no bifurcations can be seen on the b0-image. For the MCA ROI, bifurcations at the
medial and lateral part of the ROI can be present. These bifurcations can alter the directionality of the
signal in such a way that the results are perturbed: CSF-mobility vectors e1 might point away from the
vessel centerline and thus get a high radial value, while they could be well axially aligned with another
centerline running through the bifurcating vessel. For this reason, small sections of the ROI at the distal
and lateral part that show bifurcations have been removed. This was done manually for each ROI.

Comparison between cardiac and random binned signal

In order to provide some physiological basis for the directional parameters derived in section 6.1,
variations in the directional parameters over the cardiac cycle were tracked and compared to the
random binned cycle. A sinusoid was fitted to each cardiac binned and random binned time signal per
voxel, where the amplitude and phase of the sinusoid were the fitted parameters. The R2 was used as a
measure for the goodness of fit for the change in signal. The amplitude of the signal was also recorded
for analysis. For each voxel of which the goodness of fit was below 0.5, the amplitude was set to zero, as
otherwise the amplitudes for bad fits will become unrealistically high. Comparisons between cardiac
gated and random signals were assessed for both goodness of fit and signal amplitude.

Statistical analysis

Having done analyses on the CSF-mobility orientation in different ROIs and the pulsatility of all three
CSF-mobility parameters, several outcomes can be recognized:

1. average Daxial for all 4 ROIs, taken from the cardiac binned dataset.

2. average Dradial for all 4 ROIs, taken from the cardiac binned dataset.

3. average Dspiral for all 4 ROIs, taken from the cardiac binned dataset.

4. Goodness of Fit for the change in Daxial for all 4 ROIs across cardiac and random bins.

5. Goodness of Fit for the change in Dradial for all 4 ROIs across cardiac and random bins.

6. Goodness of Fit for the change in Dspiral for all 4 ROIs across cardiac and random bins.

7. Signal amplitude for the change in Daxial for all 4 ROIs across cardiac and random bins.

8. Signal amplitude for the change in Dradial for all 4 ROIs across cardiac and random bins.

9. Signal amplitude for the change in Dspiral for all 4 ROIs across cardiac and random bins.
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For each subset, a Friedman test was done. For the Friedman test, the null hypothesis is that there are
no significant differences between any of the groups in the dataset. If the null hypothesis is rejected (at
p < 0.05), meaning that there was at least one group significantly different from another group within
the subset, a Wilcoxon signed-rank test was applied to that dataset as well. This signed-rank test will
compare each group with the other groups within the dataset to determine which are significantly
different from each other. This means that for points 1, 2 and 3 on the list, the signed-rank test will be
done six times for each point in order to find the p-value for differences between the ROIs. For points
4-9, signed-rank tests will be done between each cardiac and random binned ROI, so within each ROI,
to assess whether we see any significant difference in pulsatility and amplitude when comparing both
binning strategies (that means four signed-rank tests per parameter). Lastly, to see whether there are
any variations in pulsatility and amplitude between ROIs, differences between the cardiac datasets of
each ROI will also be assessed, providing six more signed-rank tests.

6.2 Results

The three parameters derived in section 6.1 will now be presented for all four ROIs. Results will be
assessed qualitatively using images of the 3D vector field segmentations from Paraview and
quantitatively as well.

6.2.1 Qualitative assessment shows occurrence of homogeneous regions
within the SAS

The 3D representations of each ROI were used to check whether the directional CSF-mobility parameter
values (values for Daxial, Dradial and Dspiral) of each vector corresponded to their orientation with
respect to the centerline. These 3D representations for the larger anatomy, the SAS around the MCA,
can be seen Figure 6.8. The colorcodings demonstrate the axial, radial and spiral distribution of the
CSF-mobility vectors along the vessel. Most vectors are aligned to the centerline, hence the high axial
values in the figure. This is the case for most vectors, but some express a radial or spiral preference. At
first, it might seem like the radial and spiral parameters are just the opposite of the axial parameter.
However, this is not the case. The differences between radial and spiral can be seen in Figure 6.9. Note
how the encircled vectors closest to the chosen viewpoint, pointing outward from the vessel are assigned
high radial values, while vectors that circle around the centerline, are assigned high spiral values.
Because of Equation 6.10, vectors that demonstrate low values for both images are oriented along the
vessel centerline and thus have a high axial value. In Figure 6.8, large regions containing homogeneously
high values for axial and spiral CSF-mobility can be seen. Subfigure C shows the occurrence of high
spiral values in the right part of the ROI, where the yellow lines tend to cross over from the top part of
the vessel to the lower part (encompassed with a circle). This phenomenon shows up in multiple
participants, of which two are compared in Figure 6.10. The occurrence of homogeneous regions with
high axial or spiral values is in accordance with the expected axes of freedom that a hollow cylinder
constitutes (freedom to move along the vessel and around, e.g. in the axial and spiral direction).

Figure 6.8: Colorcoded 3D representations of the e1λ1 vector field of the SAS around the MCA. A is
colorcoded according to the axial CSF-mobility, B is colorcoded according to the radial CSF-mobility
and C is colorcoded according to the spiral CSF-mobility.
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(a) Radial colorcoding (b) Spiral colorcoding

Figure 6.9: Comparison between radial and spiral CSF-mobility orientations in an MCA ROI

(a) High axial values on the upper and lower part
of the ROI

(b) High spiral values for the middle part of the
ROI, crossing over from top to bottom

(c) A similar image as 6.10a for a different partici-
pant (axial colorcoding)

(d) A similar image as 6.10b for a different partici-
pant (spiral colorcoding)

Figure 6.10: Illustration of homogeneous regions occurring similarly in multiple participants (centerline
is removed for clarity).

6.2.2 Qualitative assessment of the PVS shows ambiguous results

The 3D representations of the basal ganglia and CSO ROI of one of the participants can be seen in
Figures 6.11a and 6.11b. The orientations in the PVS seem more random than in the SAS. However,
both PVS ROIs describe similar trends in orientation, with some regions showing systematically low
axial values. This can be seen in Figure 6.11b, where a multitude of lines from PVS in the CSO seem
oriented perpendicularly to the centerline. A similar trend can be seen in PVS in the basal ganglia from
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another participant in Figure 6.12. When looking at the radial and spiral values for those regions, there
does not seem to be a clear preference for either. This could make quantitative assessment a challenge.

(a) CSF-mobility values in the PVS in the basal ganglia

(b) CSF-mobility values in the PVS in the CSO

Figure 6.11: Colorcoded 3D representations of the e1λ1 vector field of the PVS in the basal ganglia
(6.11a) and around a penetrating vessel in the CSO (6.11b). A describes axial CSF-mobility, B describes
radial CSF-mobility and C describes spiral CSF-mobility.

(a) High incidence of low axial values
in the basal ganglia PVS

(b) Radial colorcoding (c) Spiral colorcoding

(d) High incidence of low axial val-
ues in the PVS in the CSO

(e) Radial colorcoding (f) Spiral colorcoding

Figure 6.12: Illustration of regions with low axial values and how those seem to be divided into high
radial and high spiral values (centerline is removed for clarity).

6.2.3 Quantitative assessment of directional CSF-mobility per ROI

Average CSF-mobility values or each parameter have been derived for each participant, each ROI and
each cardiac phase, cardiac and random. Differences between ROIs for the different parameters are
shown in Figure 6.9 and Table 6.1. The p-values for the signed-rank test for each of the parameters are
given in Table6.2. The Friedman test was significant for all three subsets (p < 0.01), meaning that, for
all three subsets, at least one group is significantly different from another.
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(a) Daxial (b) Dradial (c) Dspiral

Figure 6.13: Directional mobility differences between ROIs

The differences between the MCA and the other ROIs are quite clear. The largest difference is in
parameter Daxial: For the MCA, the average Daxial is 0.6684, while for the closest other ROI, Daxial is
0.5179. Note that Equation 6.10 still holds for these parameters: a high average axial value will almost
always lower the average radial and spiral values of an ROI. Significant differences between groups were
found when comparing the SAS ROI to all others for all parameters (p < 0.001 for all values).
Furthermore, measurements in the basal ganglia ROI are significantly different from the dark tissue
ROI for all parameters.

Basal Ganglia MCA CSO Tissue
Axial 0.5179 +/- 0.0625 0.6684 +/- 0.0421 0.4731 +/- 0.0677 0.4703 +/- 0.0453
Radial 0.4822 +/- 0.032 0.3690 +/- 0.0404 0.5246 +/- 0.0439 0.5099 +/- 0.0267
Spiral 0.4913 +/- 0.0379 0.4189 +/- 0.0400 0.4925 +/- 0.0418 0.5128 +/- 0.0282

Table 6.1: Average CSF-mobility values (CI=95%) for each ROI.

Axial Basal Ganglia MCA CSO Tissue
Basal Ganglia <0.001 0.1016 0.0420
MCA <0.001 <0.001 <0.001
CSO 0.1016 <0.001 1
Tissue 0.0420 <0.001 1
Radial Basal Ganglia MCA CSO Tissue
Basal Ganglia <0.001 0.0186 0.0322
MCA <0.001 <0.001 <0.01
CSO 0.0186 <0.001 0.3652
Tissue 0.0322 <0.001 0.3652
Spiral Basal Ganglia MCA CSO Tissue
Basal Ganglia <0.001 0.5195 0.0137
MCA <0.001 <0.001 <0.001
CSO 0.5195 <0.001 0.2061
Tissue 0.0137 <0.001 0.2061

Table 6.2: P-values for the signed-rank test for all Daxial, Dradial and Dspiral

6.2.4 Comparison between cardiac and random binned signal

On the left side of Figure 6.14, the differences in goodness of fit for the sinusoids fitted on the cardiac
and random binned signals for all ROIs as described in section 6.1 are illustrated. In Figure 6.14, the
goodness of fit of all cardiac binned groups is systematically at least 0.1 higher than their random
binned counter parts (see also Table 6.3). These findings are also demonstrated by the p-values for the
signed-rank test in Table 6.4. In this table, the p-values for comparison between cardiac and random
binned signal are given and they all indicate a significant difference (p < 0.05). In Table 6.5, the
p-values for differences between the cardiac goodness of fit for each ROI can be seen. In this table, the
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most notable finding is that the p-value for difference between the MCA and tissue ROI is significant,
(p¡0.003 for all three parameters), while comparisons between tissue, basal ganglia and CSO are all
insignificant. Since variations in either axial, radial or spiral values all constitute a change in
orientation, all subfigures from the left column from Figure 6.14 look similar. This similarity indicates
that orientation changes typically occur over multiple axes, because otherwise one boxplot would have
looked different from the others. The boxplots for amplitude differences between ROIs are seen on the
right side. Just as with the goodness of fit values, the amplitudes of the cardiac binned group are
systematically higher than their random binned counterparts. Note that, as described in Section 6.1,
voxels with a low goodness of fit (< 0.5) have had their amplitude set to 0. This means that ROIs that
have a worse fit, on average, will get a lower amplitude. This should be kept in mind when assessing the
differences in amplitudes. P-values of those differences are shown in Table 6.8 and show that all
differences between cardiac and random binned are significant (p < 0.05), but this should be
approached with some scepticisim because ROIs with a worse fit, meaning the random binned ROIs,
have their amplitude values set to zero more often than the cardiac binned ROIs. Table 6.6 describes
the average values for the amplitude of the fit. In this table, it is indicated that the tissue ROI has the
highest amplitudes, then the MCA, then the CSO and then the basal ganglia
((0.0383 + /− 0.0096), (0.0240 + /− 0.0042), (0.0207 + /− 0.0070) and (0.0153 + /− 0.0081) for the
axial cardiac values, respectively). Lastly, Table 6.7 provides p-statistics for the signed-rank test
between ROIs for the cardiac binned signal amplitude.
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(a) Goodness of fit for axial CSF-mobility (b) Amplitude for fit for axial CSF-mobility

(c) Goodness of fit for radial CSF-mobility (d) Amplitude for fit for radial CSF-mobility

(e) Goodness of fit for spiral CSF-mobility (f) Amplitude for fit for spiral CSF-mobility

Figure 6.14: Averages for voxel-wise sinusoidal fits for each ROI for each parameter (axial, radial and
spiral).
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Basal Ganglia (C) MCA (C) CSO (C) Tissue (C)
Axial 0.5082+/-0.0764 0.5616+/-0.0507 0.5268+/-0.0431 0.5055+/-0.0172
Radial 0.5037+/-0.0653 0.5799+/-0.0309 0.5022+/-0.1342 0.5044+/-0.0237
Spiral 0.5136+/-0.0755 0.5757+/-0.0293 0.5317+/-0.0447 0.5042+/-0.0286

Basal Ganglia (R) MCA (R) CSO (R) Tissue (R)
Axial 0.3959+/-0.0800 0.3941+/-0.0309 0.3805+/-0.0559 0.3687+/-0.0187
Radial 0.3934+/-0.0528 0.3987+/-0.0216 0.3823+/-0.0365 0.3698+/-0.0170
Spiral 0.4018+/-0.0635 0.3880+/-0.0231 0.3830+/-0.0518 0.3713+/-0.0194

Table 6.3: Average goodness of fit for each parameter for each ROI (n=11) (CI=95%). (C): Cardiac
binned data. (R): Random binned data.

Basal Ganglia MCA CSO Tissue
Axial 0.0186 <0.001 <0.001 <0.001
Radial <0.001 <0.001 <0.001 <0.001
Spiral 0.0137 <0.001 <0.001 <0.001

Table 6.4: Signed-rank test for goodness of fit for the sinusoid fitted to the CSF-mobility signal. Each
value signifies the p-value for the difference between the cardiac and random gated signal for each ROI
and for each parameter (n=11).

Axial Basal Ganglia MCA CSO Tissue
Basal Ganglia 0.0674 0.3652 0.8984
MCA 0.0674 0.1748 0.0029
CSO 0.3652 0.1748 0.2402
Tissue 0.8984 0.0029 0.2402
Radial Basal Ganglia MCA CSO Tissue
Basal Ganglia 0.0049 0.7646 0.8311
MCA 0.0049 0.0137 <0.001
CSO 0.7646 0.0137 0.2061
Tissue 0.8311 <0.001 0.2061
Spiral Basal Ganglia MCA CSO Tissue
Basal Ganglia 0.0244 0.3203 0.7646
MCA 0.0244 0.0244 <0.001
CSO 0.3203 0.0244 0.1016
Tissue 0.7646 <0.001 0.1016

Table 6.5: P-values for the signed rank test between each cardiac ROI for goodness of fit for each
parameter (n=11).
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Basal Ganglia (C) MCA (C) CSO (C) Tissue (C)
Axial 0.0153+/- 0.0081 0.0240+/-0.0042 0.0207+/-0.0070 0.0383+/-0.0096
Radial 0.0150+/-0.0072 0.0259+/-0.0040 0.0217+/-0.0077 0.0371+/-0.0091
Spiral 0.0160+/-0.0082 0.0267+/-0.0039 0.0193+/-0.0075 0.0379+/-0.0096

Basal Ganglia (R) MCA (R) CSO (R) Tissue (R)
Axial 0.0088+/-0.0041 0.0105+/-0.0021 0.0124+/-0.0071 0.0203+/-0.0039
Radial 0.0093+/-0.0020 0.0111+/-0.0018 0.0116+/-0.0045 0.0206+/-0.0038
Spiral 0.0090+/-0.0032 0.0112+/-0.0023 0.0112+/-0.0058 0.0202+/-0.0035

Table 6.6: Average Amplitudes for each parameter for each ROI (n=11) (CI=95%). (C): Cardiac binned
data. (R): Random binned data (n=11).

Basal Ganglia MCA CSO Tissue
Axial 0.0137 <0.001 <0.001 <0.001
Radial 0.0186 <0.001 <0.001 <0.001
Spiral 0.0186 <0.001 0.0020 <0.001

Table 6.7: Signed-rank test for amplitude for the sinusoid fitted to the CSF-mobility signal. Each value
signifies the p-value for the difference between the cardiac and random gated signal for each ROI and for
each parameter (n=11).

Axial Basal Ganglia MCA CSO Tissue
Basal Ganglia 0.0098 0.0244 <0.001
MCA 0.0098 0.2061 <0.001
CSO 0.0244 0.2061 <0.001
Tissue <0.001 <0.001 <0.001
Radial Basal Ganglia MCA CSO Tissue
Basal Ganglia <0.001 0.0322 <0.001
MCA <0.001 0.1748 0.0020
CSO 0.0322 0.1748 <0.001
Tissue <0.001 0.0020 <0.001
Spiral Basal Ganglia MCA CSO Tissue
Basal Ganglia <0.001 0.1748 <0.001
MCA <0.001 0.0137 <0.001
CSO 0.1748 0.0137 <0.001
Tissue <0.001 <0.001 <0.001

Table 6.8: P-values for the signed rank test between each cardiac ROI for amplitude for each parameter
(n=11).
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6.3 Discussion

This study provided an assessment of the e1 orientation of CSF-mobility with respect to vessel
orientation. Large homogeneous regions with similarly high values for axial and spiral CSF-mobility are
easily recognizable in the SAS ROI. This is congruent with the axes of freedom for the geometry of a
hollow cylinder (space to move around in a longitudinal, but also in a swirling fashion). For PVS around
the smaller cerebral vessels, it is more difficult to see any trends. Some sections of PVS indicate a high
incidence of low axial values, but this is not as prevalent in quantitative measurements. Quantitatively,
there is a clear preference for axial orientation in the SAS and p-statistics for the directional differences
between the basal ganglia ROI and the dark tissue ROI are also significant. Sinusoidal fits for all three
parameters over all ROIs indicate a change in orientation that is congruent with the cardiac rhythm.
Amplitudes for each sinusoidal fit over the cardiac binned signal also indicate variations that seem to
correlate with vessel size since the largest vessel ROI also has the highest amplitudes. The fact that a
significant increase in goodness of fit for cardiac binning compared to random binning has been observed
demonstrates the influence of cardiac pulsations on the directionality of fluid dynamics in the CSF.
Sinusoidal fits for the darker tissues also indicate that the pulsatility of the signal persists in regions
with relative low signal-to-noise ratio (SNR) and hint at a possibly stronger influence of noise on the
amplitude of the fit. A more in-depth analysis of the aforementioned findings and others will now follow.

6.3.1 Directional CSF-mobility differences between ROIs

There is a clear high incidence of axially oriented CSF-mobility in the SAS around the MCA. This is
significantly different from the tissue ROI (0.4703 +/- 0.0453) and the other smaller vessel ROIs(0.5179
+/- 0.0625 for the basal ganglia, 0.4731 +/- 0.0677 for the CSO) as shown in Figure 6.13 and Table 6.1.
The axial preference is in accordance with the findings from Harrison et al. in a study where the loss of
signal within the MCA was measured under the influence of different MPG’s (see Figure 6.15) [14].
Their findings namely indicate that the CSF-mobility orientations in the MCA are roughly aligned with
the vessel orientation, so their dataset would constitute similar high axial values.

Figure 6.15: A DTI experiment in SAS in a rat brain. A: The signal loss for three orthogonal MPG’s
compared to the b0-image (the rightmost MPG is through-plane). B: Signal loss when comparing MPG’s
perpendicular and parallel to the vessel orientation [14].
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The fact that we do not see such a high incidence of axial CSF-mobility in the smaller PVS could be
explained by several causes. What is clear from Figure 6.13 and Table 6.1 is that the smaller PVS have
much more similarities with the CSF-mobility profile of the tissue ROI than with the profile of the SAS.
Since the basal ganglia and CSO ROIs have more voxels bordering darker regions, it could be that these
border voxels include more noisy signal and thus constitute a more noisy result compared to the MCA
ROI (at least, the amount of CSF-signal in the PVS is lower than in the SAS around the MCA). A way
to check for this would be to erode the CSF-mask for the MCA from the inside out to get a mask that
includes only border voxels and compare with previous results, or to check the relation between
greyvalues and each mobility parameter. Another reason for the noise-like behavior in the smaller vessel
ROIs could be that the displacement velocities are out of range for the chosen b-value. If that were the
case and assuming that the displacement velocities are too low (more in the diffusion-like range), it
would reinforce the theory on PVS dynamics as explained in the mixing model: flow in the SAS and
mixing in the PVS. Assuming that mean displacement in the PVS is lower than in the SAS, a new scan
with higher b-values could provide more insight.

6.3.2 Relating the motion-sensitizing gradient strength sensitivity to
directional CSF-mobility

The measured values for each CSF-mobility parameter are dependent on the range of speeds for which
the MRI sequence is sensitive. Gathering information on the range of displacement speeds in the SAS
and PVS could prove useful for this: If we measure low axial values, is this because there is not much
displacement in that direction, or because the displacement is outside of the sensitivity range? When
looking at the literature for physiological phenomena that might cause motion in the PVS, we can
recognize cardiac pulsatility through the vessel as a cause for radial displacement, influencing fluid
dynamics in the perivascular space [27]. In our case, the chosen motion-sensitizing gradient is sensitive
to displacement speeds around 5mm/s. Assessment of the derivative of the radius change of cerebral
vessels throughout the cardiac cycle could provide the information needed to identify the range of radial
displacement speeds and relate that to the Venc that was used. In a different article, Asgari et al. have
created a model of flow speeds in the arterial PVS where they measure peak velocities of 276µm/s [7].
If the velocities in this model are similar to the real velocities in the arterial PVS, the applied
motion-sensitizing gradient would be too high to measure displacement in the PVS, which could explain
why there is no clear preferential direction for the PVS ROIs.

6.3.3 Reliability of Daxial, Dradial and Dspiral

The spiral values for each ROI were the least conclusive. The p-values in Table 6.2 report some
significance, but these should be approached with some scepticism. This is because of the following
limitation: Spiral and radial values are highly influenced by their position relative to the centerline,
while axial values are mostly influenced by their orientation relative to the centerline. In larger
CSF-filled spaces such as the SAS, this is not an issue because we have large vessel diameters and voxels
close to the centerline are not included in the mask as these are voxels only containing blood. However,
in PVS, where the vessel diameter is often just one voxel, the differentiation between radial and spiral
values is not as distinct and small deviations in the centerline positioning can have implications for the
radial-spiral relation of a vessel. Small deviations in the centerline positioning can occur due to strong
curves in the ROI. An example of how the distance between the centerline and the vector point
influences this can be seen in Figure 6.16. Scans with a higher resolution or zero-filling of the k-space
could have a positive influence on the centerline fitting and thus make differentiation between radial
and spiral values more reliable. Otherwise, combining both radial and spiral values to a single metric
that measures how perpendicular each vector is to the centerline could also circumvent this issue.

6.3.4 Differences in qualitative and quantitative assessment

The incidence of large regions with similar values for one of the parameters is evident in some examples
of the SAS and the PVS (as shown in Figures 6.10 and 6.12). However, such incidence is not reflected in
the quantitative analyses, meaning that figures such as Figure 6.13 do not convey any of this behavior.
This might be explained by the fact that the reported quantitative values are averaged over a large ROI
that contains different orientations along the vessel. Although visual checks on the vector field as
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Figure 6.16: Illustration of different centerline positions. The centerline is going through-plane. Left
side illustrates the situation for PVS. On this side, a shift in the centerline positioning will cause a large
change in Dradial and Dspiral. On the right side, which illustrates this situation for the SAS, the shift in
centerline positioning will cause a smaller change in Dradial and Dspiral.

portrayed in Paraview already reflect a clear pattern with large, homogeneous, axial and spiral regions,
it might be interesting to attempt to visualize this quantitatively as well. For this reason, it could be
interesting to combine the CSF-mobility parameters Daxial, Dradial and Dspiral with other readily
available scalar values from the CSF-STREAM dataset. Comparing the incidence of high values in one
of the three directions with scalar values like FA, MD and eigenvalues and vectors could provide a
better understanding for how these patterns come about.

6.3.5 Amplitude of CSF-mobility orientation change with cardiac and
random cycle across ROIs

The most prominent finding in the amplitude values of Daxial, Dradial and Dspiral for each ROI is that
the amplitudes for the noise ROI are significantly higher than other ROIs. Explanations for this high
amplitude could be explained by the influence of noise in this ROI. As the amount of signal in the
b0-image decreases, the reliability of the e1 orientation also decreases [16]. This could make a signal less
stable and thus exhibit larger e1 angle changes, especially since the current analysis was done on
normalized vectors. DTI research on skeletal muscle has also indicated that reliability of e1 is influenced
weakly by FA and strongly by λ2 · λ3 relation [28]. Moreover, low SNR in combination with variations
in T2 can have strong implications for FA and λ3 values for T2-weighted scans [29]. Further research on
the variations in T2 for darker tissue could provide some insight into the reliability of e1 orientation
under the influence of λ2 · λ3 relation. Influence of FA on the signal could also be assessed in a rather
simple manner. For instance, voxels that have a more isotropic profile typically have eigenvalues that
are close to each other. Since the eigenvalues correspond to the eigenvectors, which are all oriented
perpendicularly to each other, small changes in λ1, λ2 and λ3 could change the hierarchy and thus flip
the orientation of the e1 vector with 90 degrees. Voxel-wise assessment of relatively large orientational
changes, cross-referencing with the FA of that same voxel, could provide insight into the influence of FA
for the amplitude of changes in orientation.
When comparing the amplitudes of PVS and SAS, we can see a significantly higher amplitude in the

SAS, which is in accordance with findings from Hirschler et al. [24]. They reported a larger amplitude
in the sinusoidal fit for CSF-mobility, which is more closely related to variations in eigenvalues than
eigenvectors. Combining findings from this study and ours, one could argue that there is a correlation
between the magnitudes of CSF-mobility (λ) and the directional variations (e1).
This study assesses amplitude changes in the context of orientation. The orientational amplitudes

that have been measured do not rise above 0.05. Since each of the measures is a dot-product between
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two vectors, the maximum difference in orientation between the two vectors is 90 degrees. When
considering the most exaggerated version of this signal, we could have an e1 vector that changes from 1
to 0 over the whole cardiac cycle. This would mean a difference between the minimum and maximum of
90 degrees and thus an amplitude of 45 degrees (assuming that the average is oriented at 45 degrees
from the tangent orientation as well). Multiplying this with a rough estimate of the maximum in
measured amplitudes, we get 0.05 ∗ 45 = 2.25 degrees change. This indicates how small the orientational
changes we measure are. It could be interesting to combine these changes with changes in λ1 i.e.
analyze the unnormalized vectors.

6.3.6 Limitations

This study has assessed the directionality of the CSF-mobility with respect to vessel orientation. This
means that no inferences can be made on the magnitudes of CSF-mobility. Also, no assessment of the
influence of noise (ROI outside of the brain) has been done, meaning that here is no information on
SNR and its influence on variations in orientation. Lastly, the chosen b-value for this sequence is chosen
as an aggregate so that the sequence can measure signal attenuation due to dephasing in the SAS as
well as the PVS. This makes it so that the CSF-mobility measurements in both regions are more
reliable, but the b-value itself might not be ideal for the dynamic properties of the PVS.
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Chapter 7

Conclusion

Directionality assessment of CSF-mobility in the PVS is proven to be a topic of interest for the field of
CSF-mediated brain clearance. Comparison of the CSF-mobility orientation to vessel orientation and
decomposition into axial, radial and spiral values has proven to be useful for qualitative analysis, mostly
in the SAS, where one can discern a clear pattern of the fluid dynamics in multiple participants.
Quantitative analysis indicates similarities between PVS ROIs that require further research into the the
influence of signal strength, resolution and the b-value. Besides these possible confounding factors,
dissimilarities measured between SAS and PVS can contribute to the discussion on perivascular fluid
dynamics, and the variations of the measured signal over the cardiac phase indicate a physiological
basis for the provided framework. The significant differences measured between cardiac and random
binned signal provide strong evidence for the role of cardiac pulsations as a driving force for brain
clearance. Further research is required for more profound conclusions. The combination of Daxial,
Dradial and Dspiral with scalar values such as FA, MD, λ1, but also secondary and tertiary eigenvalues
and vectors could provide more insight.
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