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1
Abstract

The interest in carbonate lithologies has risen in the last few decades, due to discoveries of giant and
supergiant carbonate reservoirs. While studying the properties of this lithology, the existence of cave
systems at great depths was highlighted, since their presence can lead to drilling related problems, as
well as change the flow direction of fluids in the subsurface. The possibility of predicting their orien-
tations, dimensions and mechanical stability in the subsurface would therefore be of great help in the
hydrocarbon business, which is why in this study, thanks to data provided by a Lidar laser scanner, a
dimensional analysis of caves’ conduits related to their position within the karst system is performed.
The origin of caves can be hypogenic or epigenic and they can present different patterns of distribution
of conduits. When deformation events cause the generation of orthogonal sets of joints in the rock
layers and fractures intersect with each other and with bedding planes, the fluid flow in the subsurface
becomes channelized into these features. The combination of this and speleogenetic processes leads
to the development of maze caves, whose conduits’ dimensions vary within a system as a consequence
of differences of continuity and connectivity along a fracture network. Variations in the shapes of caves’
conduits can be observed as well, depending on the supply of sediment and the position relative to the
water table during dissolution. Mechanical deformation of karst systems can be simulated by using
the linear elastic deformation mathematical model. In this way it is possible to study the influence that
mechanical properties such as Young’s modulus and Poisson’s ratio have on the mechanical stability
of caves in the subsurface.

Keywords: Carbonate reservoirs, speleogenesis, maze caves, mechanical deformation
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2
Introduction

Speleogenesis is the process of formation of cave systems that develop through the flow of fluids along fractures
such as joints (Audra and Palmer, 2015). The dominant speleogenetic domains are two:(1) the hypogenic domain
consisting of aggressive fluids, usually acid because enriched in CO2 or H2S, reaching the cave-forming zone from
depth, and (2) the epigenic domain, with water recharge coming from the surface, where the carbonic acid present
in the soil and in the atmosphere dissolves into water (Klimchouk, 2012).
Speleogenesis takes place mainly in carbonate rocks, even if karstic systems can be found to be developed in sili-
ciclastic rocks (Vasconcelos et al., 2013) and in evaporite rocks (Palmer, 2011). The general interest in carbonate
rocks grew in the last decades, after that many discoveries highlighted the presence of some of the world’s largest
hydrocarbon fields in this lithology. Carbonate reservoirs drew attention not only for the significant quantities of
hydrocarbons, but also because of their hydraulic properties that can allow to obtain good flow rates (Ehrenberg
and Nadeau, 2005).
The rising attention for these reservoirs highlighted the presence of cave systems at great depths (Tian et al., 2016;
Ardakani et al., 2013), that can lead to drilling and production related troubles since they can cause well collapse
and form thief zones, where circulating fluids get lost. However not only negative sides are related to karsts, in
fact they can significantly increase the fluid flow in carbonate reservoirs.
Even if at first caves found deep in the subsurface were considered as paleokarsts developed at shallow depths
by epigenic processes and then brought to great depths during their geological history, it became clear that this
situation applied only to a minimum part of them. Hypogene speleogenesis is the leading process in the majority
of cases and therefore an understanding of the mechanisms and conditions involved is crucial in order to make
predictions about the properties and the distribution of these features (Klimchouk, 2012).
The aim of this study is to provide geometrical and dimensional data useful to formulate new prediction models
for cave systems in the subsurface, since there are a lot of uncertainties related to the forecast of the size and the
position of karst systems at great depths. Data are obtained through cross sections analysis of conduits belonging
to three different caves, namely Lapinha, Marota and Lapa do Bode. They are located in the Irecê basin, in the
northern part of the São Francisco Craton which hosts the Una Group where multiple cave systems are developed
in a mainly carbonate lithology. Several studies that investigated the influence of tectonic structures on the devel-
opment of cave systems had been located in this area, demonstrating how speleogenesis is closely related and
influenced by tectonic events (Ennes-Silva et al., 2016; Pontes et al., 2020; Klimchouk et al., 2016; Silva et al.,
2017; Klimchouk and Ford, 2000).
The second goal is to perform an analysis of the influence that these features have on reservoirs’ mechanical prop-
erties, considering that their impact on carbonate reservoirs qualities is still unclear. The main challenge faced
in order to reach this goal is to find a software that can simulate the mechanical stability of a cave system in the
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subsurface. The simulation therefore has to take into account the lithostatic pressure generated by the overlying
rock layers, but also the influence that an internal flow will have on the cave’s stability. Due to difficulties in the
simulation, this goal can be only partially achieved, as completely realistic conditions are difficult to model.
Furthermore, the calculation of geometrical and dimensional parameters is based on the extraction of caves’ con-
duits cross sections from point clouds. One point cloud for each of the caves that has been investigated is available,
thanks to the data collection performed in Brazil through a portable laser scanner that allowed to obtain 3D point
clouds. The parameters obtained in this way may help to develop a prediction model, which would be an important
step since cave features are too small to be clearly distinguished in a seismic section. Their dimension is in fact
smaller than the resolution of seismic surveys, which is usually around 10-15 meters at shallow depths, while it is
around 20-30 meters at great depths (Kallweit and Wood, 1982). Well data cannot be used as well for their detec-
tion, since the heterogeneity and the sizes involved are too large. A new technique based on the identification of
amplitude anomalies in seismic surveys aims to highlight the presence of karst features in the subsurface (Basso
et al., 2018), however more research is needed in order to have a clear understanding on this subject.
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3
Geological setting

The study area is located in northern part of the state of Bahia, Brazil, in the northern part of the São Francisco
Craton and more precisely inside the Irecê Basin, where the succession has been well studied. Here the Una
Group, which was formed during the Neoproterozoic, presents a thickness of at least 1.2 km in the Irecê area. This
Group is considered to be correlative with the Bambuì Group located in the São Francisco Basin, that together
with the Irecê Basin are considered to be the residuum of an extended carbonate platform that during the Neo-
Proterozoic/Early Paleozoic covered more than 300000 km2 of the São Francisco Craton . At the basal part of the
Una Group a glacial unit is present, overlaid by a thick carbonate sequence (Misi and Veizer, 1998).

Within the Irecê Basin, the glacial unit, called Bebedouro Formation, is represented by deposits such as di-
amictites and tillites and, when present, is in angular unconformity with the underlying Mesoproterozoic, Paleo-
proterozoic and Archean units. The overlying formation, the Salitre Formation, is where the caves we investigated
formed and it is composed by limestones, dolostones and grainstones which were deposited on a tidal flat environ-
ment. The carbonate sequence is or in unconformity with the glaciogenic sequence, or it can be directly in contact
with the metamorphosed siliciclastic Mesoproterozoic basement. The basement, represented by the Chapada
Diamantina Group, consists of quartzites, metasiltstones, conglomereates and sericiteschists. On the top of the
succession a Paleogene-Quaternary cover lies, composed by the Caatinga limestones or by unconsolidated soil
derived mainly by the erosion of the Salitre Formation (Borges et al., 2016). A stratigraphic column of the area is
presented at figure 3.1.
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Figure 3.1: Stratigraphic column of the succession present in the Irecê Basin. From Montes et al., 1985

Around 1.0 Ga in the São Francisco paleocontinent an important glacial event occurred, during which the
glaciers started to move from West to East and the Bebedouro Formation was deposited. After the consequent
deglaciation between 750 and 650 Ma, when also the Brasiliano Orogeny started, the São Francisco Craton sub-
sided and a general sea level rise occurred, creating the environment suitable for the development of a carbonate
platform, which is today represented by the Salitre Formation (Ennes-Silva et al., 2016) dated at 514 ± 33 Ma
with a Pb-Pb isochron and rock magnetic and paleomagnetic data (Trindade et al., 2004). During the Brasiliano
orogeny, the position of the Irecê Basin close to the edges of the Craton, caused the movement of the Craton to
interact with a fold belt located in the northern part, the Riacho do Pontal fold belt (figure 3.2). This interaction
had as a consequence the formation of brittle-ductile structures such as thrust faults and folds with NNE-SSW and
E-W strike and southward vergence for what concerns the folds. These structures are more deformed the more
we go towards the North and they can be observed on figure 3.2 (Trindade et al., 2004; Ennes-Silva et al., 2016;
Borges et al., 2016).
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Figure 3.2: A map of the Irecê Basin where the general structural setting can be observed. Modified from Redivo et al., 2019.
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4
Speleogenesis

Before discussing the data obtained, the processes that lead to the formation of caves are presented in order
to understand which are the most important influencing factors that affect speleogenesis. The focus will be in
particular on carbonate speleogenesis and on the development of maze caves, specific caves characterized by
complex patterns of conduits that are repeatedly connected forming perpendicular or almost perpendicular angles
on a plan view.

4.1. Conduits Enlargement Mechanisms
We can start from a broad definition of speleogenesis by citing Andreychouk (1991), who stated that a karst is a
”system of processes and phenomena developing and occurring underground and at the Earth’s surface as a result
of the interaction (dissolution, transport, and deposition of matter) of natural waters with rocks that are soluble in
the given situation.” (Andreychouk et al., 2009). One of the fundamental factors that lead to the formation of cave
systems is thus the presence of a groundwater flow that grants the removal of dissolved material since, in order
to keep dissolving the material, water needs to be undersaturated in the solute.
Caves can develop in many different settings, but there are two main domains that can be identified: the epigenic
and the hypogenic domains. Epigenic caves are closely related to a water flow coming from the surface, while
hypogenic caves owe their formation to a rising flow from below into a cave forming zone into artesian or confined
conditions, with a recharge independent from the overlying layers (Klimchouk, 2007). Mazes can develop in both
epigene and hypogene settings; in epigene conditions they form thanks to diffuse infiltration of water through an
impermeable insoluble layer or thanks to sinking streams that allow to have a water flow. In hypogene conditions
instead, they form with the cooperation of sources of deep aggressiveness or through a process that involves
meteoric water rising in the distal downflow part of large flow systems and reaching soluble layers within two per-
meable insoluble layers (transverse hypogenic cave origin). In this last process the insoluble layers are supposed
to limit the flow and to allow the fissures to enlarge homogeneously.
Three distinctive patterns of maze caves can be recognized: network caves, that form preferably where a set of
intersecting fractures is present, spongework caves, that generate where intergranular porosity is available and
anastomotic caves, that develop especially along bedding-planes or low angle faults (figure 4.1). The focus here
will be on network mazes, since the caves that we are going to analyze are a result of dissolutional processes of
highly fractured zones.

During the earlier stages of development the flow from a recharge point to a discharge point occurs along
fractures and fissures, which with the passing of time (104 - 105 yr) will enlarge and become cave conduits. A
slow and uniform dissolution can start the development of a long passage, but not all of the joints will evolve into
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Figure 4.1: Maze caves possible patterns. a) network cave; b) anastomotic cave; c) spongework cave. From Palmer, 2011.

cave conduits. There are in fact preferential evolutional patterns in the subsurface, depending from the fact that
the shortest routes with highest discharge and CO2 content are favoured on the others. The evolution of a conduit
usually faces a first stage in which the enlargement rate is proportional to the discharge and a second stage in
which it depends only on kinetics, that starts when the flow inside the opening makes the transition from laminar
to turbulent regime (Palmer, 1991). When different fracture sets intersect each other, the conduits will follow this
pattern and therefore form features called nodes. The nodes connect different conduits and hence may cause
different flows to interact with each other.

4.2. Structural Influence
Since the dissolutional development of caves is strongly related to the presence and the direction of joints, it is
clear how the structural regional geology plays an important role in speleogenesis. Fracture corridors condition
the pathways of fluid flow and therefore of karst systems, but the most favourable setting for cave passages
development result to be at the intersections between bedding planes and fractures. Fault damage zones and
fold hinges are usually related to highly fractured areas, which is why in these settings it is more likely to find
hydraulically connected fracture networks where cave conduits can form (Ennes-Silva et al., 2016; Pontes et al.,
2020). Structural analysis at the scale of karst systems may therefore give important information about their
orientation.

4.3. Hydrogeological and Chemical Mechanisms
An understanding of the hydrogeology of the upper crust is fundamental, since a change in the hydrogeological
setting conditions speleogenesis. This applies especially to hypogene karst, where a comprehension of the hy-
drodynamic of the upper crust and of the processes that may alter the fluids in the subsurface is crucial. The first
step is to distinguish the types of fluids present in the subsurface and to recognize what is their source. There
are exogenic fluids, composed by meteoric water and connate water (present in the pores of the rock at the mo-
ment of its formation) and endogenic fluids, generated during metamorphism (metamorphic fluids) and during the
crystallization of magma (juvenile or magmatic fluids). These fluids can also easily mix, especially in deep parts
of basins, generating the so-called formation waters.
Chemical reactions as well must be considered since they are the driving processes that control dissolution in
the subsurface. An important influence in the speleogenesis is the transverse flow between different aquifers and
strata, that in the subsurface can bring to mix waters with different chemistry, gas content and temperature. The
main chemical compounds and mechanisms that bring to dissolution and chemical aggressiveness, especially in
deep settings, are the followings. (1) Carbonic acid, that acts both in epigenic and hypogenic speleogenesis. In the
former case the CO2 source comes from meteoric water that, while infiltrating, carries the carbon dioxide absorbed
by soil and atmosphere, while in the latter the CO2 sources are metamorphism, devolatilization reactions, thermal
degradation and oxidation of organic matter (Audra and Palmer, 2015; Klimchouk, 2012). When CO2 mixes with
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water, carbonic acid is generated as following

CO2 +H2O −−−→ H2CO3 ⋅ {1}

When carbonic acid makes contact with limestone it causes it to dissolve according to the reaction

H2CO3 + CaCO3 −−−→ Ca(HCO3)2 ⋅ {2}

(2) Dissolution by cooling thermal water along the rising paths of thermal water, since the solubility of calcite
increases with decreasing temperatures. Near the surface however the solubility of carbonates decreases, as well
as the CO2 concentration, causing calcite precipitation. (3) Sulfuric acid and hydrogen sulfide, with the first one
formed from oxidation of hydrogen sulfide or of iron sulfides and the second one coming from depth as a result
of microbial and thermal reduction when organic carbon is present (Palmer, 2013). (4) Mixing corrosion, caused
by the mix of waters with different contents of carbon dioxide, hydrogen sulfide or salts that can increase the
dissolution of carbonates. (5) Organic acids, that form especially when organic matter maturation occurs, causing
the release of CO2 and H2S. (6) Dissolution of evaporites and in mixed carbonate/sulfate strata, with no acidic
source necessarily required in the latter case (Klimchouk, 2012).

All the processes and mechanisms explained above are summarized in figure 4.2.

Figure 4.2: Schematic representation of the hydrogeologic settings and chemical processes that may bring to the formation of a
cave system. Here several symbols are present and need to be defined: ES=epigene speleogenesis; HS=hypogene

speleogenesis; EH+ and EH- are redox conditions respectively oxidizing and reducing; blue arrows indicate meteoric water
flow, while red arrows indicate basinal flow. Undulated black arrows represent gas inputs. Modified from Klimchouk, 2012.

.
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5
Methodology

The goal of 2019’s field work was to map seven caves in total, namely Calisto, Ioiô, Lapa do Bode, Lapinha,
Lapinha de Iramaia, Marota and Torrinha (figure 5.1).

Figure 5.1: Map view of the study area. Each of the indicators represent one of the mapped caves.

The data acquired consist of seven different point clouds, one for each cave, that are 3D representations of
these. Since the main focus is on maze caves, only the ones where this pattern can be recognized are studied,
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being Lapinha, Lapa do bode and Marota (figure 5.2).

(a) Lapinha cave plan view (b) Lapa do bode cave plan view

(c) Marota cave plan view

Figure 5.2: Plan views of the caves, where it is possible to recognize a network maze pattern in each of the caves.

Through an analysis of the conduits’ shapes and of the orientation of the passages, what we want to achieve is
to recognize patterns of variation of the dimensions of the conduits related to their position inside the cave system.
Once this is determined, it is possible to make calculations regarding the dissolved volumes in the subsurface
related to karst systems. In the end an investigation about the mechanical properties of these features at the
variation of the material’s properties is performed, even if the conditions of the simulations do not satisfactorily
recreate subsurface conditions. Anyways, conclusions regarding the influence that physical properties of the
material surrounding a cave have on the deformation of the rock, can still be drawn.

5.1. Data acquisition
Data acquisition was performed through a ZEB-REVO RT portable laser scanner, developed by geoSLAM, which
is able to provide accurate 3D point clouds of the areas in which the user is walking. This is made possible by
a 2D scanner and an inertial measurement unit which can rotate thanks to a motor drive. It is this motion that
gives the third dimension, through which 3D data can be generated. 43200 points are registered every second,
with a scan range noise of ±30 mm. The device, thanks to its lightness (it weighs in fact only five kilograms),
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is easily maneuverable, which makes it very suitable for caves scanning purposes compared to the traditional
terrestrial laser scanners. In order to collect point clouds as accurate as possible, geoSLAM suggests to not
perform acquisitions that last more than 30 minutes and, for every acquisition, to create and close a loop while
walking, in order to reduce any data drift. This means that for the biggest caves many surveys are required in
order to map the entire area of interest.

5.2. Alignment and Denoising
Since for every cave many acquisitions were necessary, the 3D point clouds need to be aligned in order to create
a unique point cloud for each cave. The free license software CloudCompare allows to do this after loading in it the
.laz file of each point cloud. The first step is to manually align the clouds and then, using the sections that are in
common between each cloud, to extract a matrix through which it is possible to automatically align the point clouds.
This generates a single point cloud for each cave. The size of the cloud plays an important role, since the bigger
the file we work with, the longer are the computational times required to extract data from it. In order to reduce the
size it is possible to apply a noise reduction, which consists in creating a filtered point cloud in which outliers and
noisy points are removed. This can be done with the tool ’Statistical Outlier Removal’ in CloudCompare or with
the ’pcdenoise’ command in Matlab. In both cases an algorithm calculates first the mean of the average distance
to neighbors of all points and then, by specifying a threshold of average distance of a point to its nearest neighbor,
the outliers are identified and removed. In our case a value of 10 was chosen for the calculation of the mean of the
average distance to neighbors for each point and a value of 3 was chosen as a threshold of average distance of
each point to its closest neighbour. Here it is suggested to apply the denoising preferably through CloudCompare
than through Matlab, since the computational times are way shorter. For instance, if we consider the smallest
sized point cloud between the ones we are analyzing, which is the pointcloud of Lapinha cave (1.89 GB size), the
denoising through cloudcompare takes approssimatively 11:35 minutes, while the denoising through matlab takes
35:15 minutes, which is more than three times longer. The size of the point clouds after the denoising process are
listed in table 5.1.

Cave’s Name Number of Points .PLY File Size
Lapinha 62.936.757 1.87 GB
Lapa do Bode 135.574.841 2.14 GB
Marota 162.908.388 3.21 GB

Table 5.1: Caves’ files dimensions.

5.3. Skeletonization
In order to obtain the data we want, it is necessary to draw a skeleton for each cave. A skeleton is a set of 1D
curves used for simplify 2D and 3D objects and to make it easy to process and visualize data. The ideal skeleton
has to show five main qualities: (1) the topology of the object has to be well represented, which in our case means
that it has to have the same number of conduits and nodes. (2) It has to be one dimensional and as simple as
possible. (3) It must extend along the center of the object, meaning that in our case, for instance thinking about a
conduit, the distance from the side walls has to be the same. (4) It has to maintain the geometry of the object. (5)
It has to recover the original object (Saha et al., 2017).
At the beginning an attempt to automatically extract the skeleton from each cave was tried, however due to results
that were not satisfactory a manual approach has been used. This involves the manual drawing of the skeleton
through the software QGIS, which gives a shapefile of it as a result. In order to import into this software a point
cloud, it is necessary to convert it into a textfile through CloudCompare. The size of the textfile plays an important
role on the proper operation of the QGIS software, since files that are too big cause it to crash. The size can
be easily reduced by subsampling the point cloud in CloudCompare where, since we are now only interested in
recognizing the shape of the cave from a plan view, a random subsampling can be applied. This consists into
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choosing the number of points that we want to keep and random sample them from the point cloud, which can be
the original one or the denoised one. The skeletons obtained in this way are displayed in figure 5.3.

(a) Marota’s skeleton

(b) Lapinha’s skeleton

(c) Lapa do Bode’s skeleton

Figure 5.3: This figure displays the skeletons of the three caves in the QGIS software. The orange lines represent the
skeletons, while the points are a representation of the random subsampled point clouds imported.

5.4. Cross Sections Analysis
The cross sections extraction and analysis is the fundamental step that allows to obtain our desired data. The
base thinking behind this process is that multiple cross sections for every cave’s conduit have to be extracted in
order to obtain data from them like the width and the height distribution of a conduit along its length. As it is shown
in the appendix-B, on average a conduit’s shape can resemble an ellipse and therefore this curve can be fitted to
all the cross sections in order to calculate their area. Other geometrical parameters are obtained such as width
(difference between the largest and the smallest x values, oriented horizontally) and height (difference between
the largest and the smallest y values, oriented vertically).
From figure 5.3 it can be noticed that the conduits can intersect each other creating nodes. The shape analysis of
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these complex features is beyond the scope of this thesis project, thus cross sections are extracted only along the
segments between nodes every 1.5 meters. When a conduit is intersected by multiple nodes, in correspondence of
these no data will be extracted, instead the measurements will be executed on the conduit’s segments separately
and eventually grouped in order to represent the hole conduit. In addition, since conduits that are too short are
considered not useful for the extraction of information, all the conduits shorter than 2 meters have not been taken
into account. As can be seen also from figure 5.3 not all the extremities of the skeletons coincide perfectly with
the ends of the conduits and this is due to the fact that in these areas the point clouds tend to be noisy and not
very dense of points. Measurements at the edges would therefore give inaccurate results, which is why it was
decided to stop the extension of the skeletons whenever the results started to be unsatisfactory. Anyway the
measurements of the total length of the conduits takes into account their whole length observable from the point
cloud and not only the skeleton.
A more detailed explanation of the mechanisms that brings to the extraction of the cross sections trough the
software Matlab is necessary in order to understand the process step by step. A flowchart of the code is also
available at figure 5.4, while in the appendix-C other flowcharts are displayed to ease the understanding of the
functions that are within the code.
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Figure 5.4: Visual representation of how the code works through a flowchart. Blue ovals represent the starting points of the
code or of a loop, green parallelograms represent inputs, yellow rectangles represent actions or calculations, red rhombuses

represent decisions and turquoise rectangles represent alternatives.
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Once a denoised point cloud of a cave and the shapefile of its skeleton are available, we can load them into
Matlab. After this a detection of the degree of the skeleton’s nodes is applied. These don’t have to be confused
with the cave’s intersection nodes, instead they have to be understood as features corresponding to the linkages of
the segments deriving from the drawing of the skeleton. These are divided into M, I, Y, X nodes, where an M node
is defined as a node where only one segment ends, an I node as a node between two segments, an Y node as a
node where three segments meet and an X node is defined as a node where four segments meet. An example of
nodes and their degrees is given at figure 5.5.

Figure 5.5: This figure shows various nodes and their degrees, represented by the numbers within the nodes.

Considering that we are interested into studying the shape of the conduits and not the shape of the nodes
where the conduits meet, only the segments linked by I-M and I-I nodes are studied. 3rd and 4th degree nodes are
usually sorrounded by 2nd degree nodes because in this way, since only I-I and I-M linked segments are taken into
account, the cross sections extraction is limited to the conduits.
After defining which are the segments we are interested in, within each of these we define equally spaced points
(we decided to take 1.5 meters as the distance) from which to extract the cross sections. Regions of interest
around each of these points define the xyz coordinates of the slices of point cloud from which the shape of the
conduits will be studied. For each of the points, the regions of interest are oriented perpendicular to the segment
where the point is, with a thickness of 20 cm in the parallel direction and a width of 80 meters in the perpendicular
direction. Planes and their orientations are defined, where all the points of each slice will be projected on. This will
give 2D representations of the conduits’ shapes, that are easier to study respect to the original 3D slices. A loop is
therefore started, working in the following way. For the first point defined within the first segment, the coordinates
of its region of interest are taken and every point of the point cloud is checked whether it is inside or outside the
region of interest. In the case in which a point falls inside this region, it is kept into a smaller point cloud (slice),
otherwise it is skipped. Once the slice is obtained, all the points are projected on the corresponding plane. At
this point, on the 2D representation of the conduit’s shape just obtained, there is a verification whether the feature
centred on the skeleton’s segment is separated from other features by empty spaces. If that is the case, the other
uncentered features are removed since they would represent other conduits on the sides. An explanatory example
is given at figure 5.6. The presence of unwanted features can occur also along the vertical dimension, however
the removal of these has been considered too challenging and time consuming in order to be implemented during
this project. Therefore the height measurements may have more inaccuracies than the width ones. This may give
an idea of how this code can be improved in the future.
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Figure 5.6: This image gives an example of the uncentered features removal. For instance if we imagine that the black spot on
the segment number 14 is the point from where the cross section will be extracted and that the red rectangle is the region of
interest related to it (imagine a z- value range as well), it is clear that not only the conduit centered on the segment 14 will be
taken into account, but the ones centered on the segments 9, 31 and on the one to the left of 31 will be taken into account as

well. This is why these features need to be removed.

Once the isolated centered cross section is obtained, an ellipse can be fitted to it and the parameters stored.
The error on the ellipse interpolation is calculated and normalized by the number of points, which doesn’t give the
perfect measure of the deviation, but at least allows to clearly spot badly interpolated ellipses, that usually have
interpolation errors greater than values of 0.1-0.15. The process goes on by repeating the same steps for all the
points within a segment and, once this is done, another segment is examined till when all the selected segments
are studied. The final results can have very different shapes and dimensions as from appendix-B, but an example
from Lapinha cave is given at figure 5.7.
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Figure 5.7: Example of a cross section extracted from segment 28 of Lapinha’s skeleton. The interpolated ellipse can be seen.

5.5. Conduits Orientation
The dissolutional development of the karst systems is influenced by the study area’s structural geology. By visually
representing the conduits orientation, it is possible to gather information about the stress fields of the area, since
the distribution of fracture systems influences the direction of conduits development. The software QGIS allows to
generate rose diagrams by using the caves’ skeletons as inputs (Tveite, 2015–2020), which are the most suitable
diagrams for this purpose. Here the length of the sectors are weighted to the length of the skeleton’s segments
and therefore they nicely show the circular distribution of the main development directions.

5.6. Volumetric Calculations
The ellipses interpolated on the cross sections can be used to approximate the cross sectional area of a conduit.
If this is combined with the distance between the points where the sections are extracted along a whole conduit, its
volume can be calculated with some approximations. For instance when a node is encountered it is assumed that
the conduit’s shape does not vary through it, as well as for the volume calculation of the part between the extremity
of the skeleton and the real end of the conduit, the average of the conduit area is used for the calculation.
When using CloudCompare there is the possibility to show a box that contains the loaded point cloud. The box’s
dimensions are based on the maximum and minimum x, y and z values, thus a calculation of its volume gives the
volume of bedrock interested by the karst system development. By comparing this volume with the cave’s volume,
it is possible to obtain the dissolved percentage in the subsurface. The rose diagrams previously generated give
the main directions of cave development, hence these directions can be combined with the volumetric calculations
in order to verify the main patterns of bedrock dissolution. The data obtained in this way can be used in order to
formulate hypothesis about the presence in the subsurface of preferential flow directions.

5.7. Mechanical Stability Analysis
The presence of cave systems at depths even greater than 5 kilometers leads us to wonder how these features
can maintain stability even if subjected to large lithostatic pressures (0.01∼0.2 GPa). If we assume that the deep
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karst systems are filled with flowing fluid generating internal pressure, the stability will not depend only on the
lithostatic pressure, but on the effective pressure calculated as:

𝑃eff = 𝑃lit − 𝑃f (5.1)

where Peff represents the effective pressure, Plit the lithostatic pressure and Pf the fluid pressure.
The pressure here defined develops stress (𝜎) acting on the walls of the caves, that consequently generates strain
(𝜖) influencing their stability. The most used mathematical model for studying the mechanical deformation of solid
objects is linear elasticity, which is based on the assumptions that within the body infinitesimal strains are present
and that a linear relationship between stress and strain holds. In a 3D body the stress tensor can be defined as a
function of the strain tensor as following:

𝜎 = 2𝜇𝜖 + 𝜆𝑡𝑟(𝜖)𝐼 (5.2)

where 𝜎 represents the stress tensor, 𝜇 and 𝜆 represents respectively the second and the first Lame’s parameters,
𝜖 represents the strain tensor, tr represents the trace operator and I represents the identity tensor.
The equations involved in this mathematical model are solved through the Finite Element Method (FEM), in partic-
ular thanks to the free license software FEniCS Project that enables the automated solution of Partial Differential
Equations (PDEs). Before being able to simulate the mechanical stability into FEniCS, a 3D tetrahedral mesh
representing the cave system and its surrounding rock matrix has to be generated. For this purpose Lapa do Bode
cave was chosen, since it is the one that shows the most developed maze pattern. In order to recreate the con-
ditions that are found in the subsurface, the rock matrix should surround the cave from the sides, the top and the
bottom, however the modeling of this configuration fails during the simulation, forcing us to simulate the situation
in which the rock matrix is only on the sides in the horizontal direction. This limitation obviously drive the results
away from realistic ones. The more realistic model however can still be constructed and used as a starting point
for future simulations, therefore the steps needed to generate it are presented. The first step is to obtain an .stl
file representing a triangular mesh of the cave through the free license software MeshLab (figure 5.8) and then by
loading this into the free license software Gmsh.

When in Gmsh a .geo file can be created where it is possible to build the bounding box that will represent the
rock matrix. Since in FEniCS it is necessary to assign different properties to the cave itself and to the surrounding
matrix, within the .geo file two different volumes have to be defined, which in this case are called ’cave’ and ’matrix’.
Another necessary step is to determine the boundaries of the mesh, in order to apply boundary conditions later
in FEniCS. Six boundaries are specified, being ’bottom’, ’top’, ’west’, ’east’, ’north’ and ’south’ and through the
command ’3D’ the tetrahedral mesh is finally obtained (figure 5.9) and saved as an .msh file.

Figure 5.8: This figure shows the triangular mesh of Lapa do Bode cave obtained in MeshLab.
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Figure 5.9: This figure shows the tetrahedral mesh of Lapa do Bode cave placed in between a top and a bottom layer, obtained
in Gmsh.

As it can be seen from the figure, the middle layer where the cave is placed is in between of a top and a bottom
layer. In these two layers, even if the cave’s contours can be distinguished, the volumes related to the shape of
the cave are grouped into the ’matrix’ volume in order to represent the overlying and underlying rock layers.
As already mentioned the simulation of this model doesn’t succeed, therefore the model at figure 5.10 is used in
order to obtain results.

Figure 5.10: This figure shows the tetrahedral mesh of Lapa do Bode cave obtained in Gmsh.

Once the .msh file is acquired it is possible to convert it into three different .xml files to be loaded into FEniCS in
order to run the mechanical stability simulations. It is important to explain that the ’cave’ volume previously defined
is considered as a void space in the simulation, while for the ’matrix’ volume two parameters have to be defined,
being 𝜈 and 𝐸. These represent respectively the Poisson’s ratio and the Young’s modulus of the rock matrix, which
define the Lame’s parameters as:

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈) (5.3)

and
𝜇 = 𝐸

2(1 + 𝜈 . (5.4)

Likely 𝜈 and 𝐸 values for carbonates are respectively 0.3 and 6 GPa (Madhubabu et al., 2016).
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For this first mechanical stability analysis, the boundary conditions applied assign a value of 𝜆 and 𝜇 to the cave
volume and a value of and null 𝜇 to the matrix volume. In addition the stress is always applied vertically on the
cave and the most eastern and western sides of the box cannot accommodate deformation in the y-direction, while
the other sides are free to move. These boundary conditions don’t recreate perfectly plausible natural conditions
and should therefore be changed for future simulations.
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6
Results

The code for the cross sections extraction was run in Matlab for Lapinha, Lapa do Bode and Marota caves. The
results obtained show that conduits dimensions, especially width, stay within ranges that differ for each conduit.
That is why dimensional data will not be presented together indiscriminately, on the contrary they will be grouped
into different series correspondent to different conduits. Within this section the most meaningful sets of data are
displayed on plots, while plots containing all of the data can be found at appendix-E. Another interesting aspect
deducible from the results is the relationship between the orientation of the conduits and the orientation of the joints
observed in the areas, as well as a preferential dissolutional direction emerging from the volumeteric calculations.

6.1. Computationl Times and Accuracy
The results and the computational times vary between the three caves because of the different sizes and the
different environments of formation. On table 6.1 the computational times, the total number of segments, the
number of segments investigated and the number of conduits is given.

Cave’s Name Total Segments Studied Segments Number of Con-
duits

Computational
Time

Lapinha 75 32 9 247s
Lapa do Bode 322 97 40 532s
Marota 199 69 19 1109s

Table 6.1: Computational times required by the code to run and number of segments and conduits of each cave.

Before presenting the results, it must be specified that the quality of these is related to the assumptions that
were made and to the quality of the point clouds which, even after denoising processes, present noise in the
data. Therefore errors in the measurements of width and height of conduits occur, as well as inaccuracies in the
volumetric measures since an ellipse is not the perfect interpolation of every cross section. Within the code a
variable named ’error_interpolation’ gives the interpolation error of the ellipse normalized by the number of points.
In order to visualize these inaccuracies, at figure 6.1 there is an example of a good interpolation in a non-noisy
cross section and other less accurate cases. The examples come from the Lapa do Bode cave and their position is
also highlighted. In order to show the quality of the cross section extraction, at figure 6.2 the same slices manually
extracted with CloudCompare are displayed in order to compare the automatic method with the manual method
used in some of last year’s master thesis projects.
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Figure 6.1: This figure shows 4 cross sections extraction examples from the Lapa do Bode cave. The cross section extracted
from segment 23 shows a good interpolated ellipse, while the ones from segments 13 and 30 are not perfectly approximated by

the ellipses. The example at segment 21 shows a noisy cross section. R = interpolation error.

(a) Segment 23 cross section. (b) Segment 13 cross section.

(c) Segment 20 cross section. (d) Segment 21 cross section.

Figure 6.2: Cross sections manually extracted from CloudCompare correspondent to the ones at figure 6.1.

Another problem in the dimensions acquisition could lie on how width and height are interpreted. In fact instead
of the differences between the maximum and the minimum x and y values, which is a good approximation in most

26



of the cases, width and height may be seen as the maximum distances found between the two walls respectively
in the horizontal and in the vertical direction. This applies especially in the cases in which a cross section can be
interpolated by an obliquely oriented ellipse (appendix B). In addition, the sediment depositing on the floor of the
conduits in many cases alter the real visible height by filling the bottom part (Farrant and Smart, 2011), therefore
this must be taken into account when observing the values and the distribution of the height measurements.
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6.2. Lapinha

Lapinha cave, whose name can be translated from portoguese as ”Small Cave”, is a water-table maze cave that
formed in phreatic conditions. Two broad anticlines were recognized at its location: a small one with the axis
oriented N-S and a larger one with the axis oriented E-W. Along the axis of these anticlines, fracture corridors
have been observed. From a plan view 10 conduits can be identified (figure 6.3), however the most eastern
conduit can be ignored since its shapes are derived from a ceiling collapse and not by water flow alone. At first
glance a main N-S E-W orientation of the conduits is already visible.

Figure 6.3: Lapinha’s skeleton showing the numbers assigned to the different conduits.

6.2.1. Conduits Orientation

The skeleton that was obtained at figure 5.3b can be used to obtain a rose diagram that shows themain orientations
of the conduits, as at figure 6.4. From the 75 segments that build up the skeleton, the resulting main orientations
are NNW-SSE (32%) and ENE-WSW (40%).
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Figure 6.4: Rose diagram generated from Lapinha’s skeleton. The orientation of the anticlines’ axes is shown in red.

Folds are usually associated with a compressional tectonic phase, however in order to accomodate the defor-
mation, the layers that bend can generate tensional structures such as joints. These usually form in the outer part
of the arc described by a fold with an orientation parallel to that of the fold’s axis. Since the main orientation of the
conduits is NNW-SSE and WSW-ENE and the axis of the folds are oriented N-S and E-W, we can assume that
the conduits follow the main directions of development of joints.

6.2.2. Dimensions Analysis

Lapinha’s dimensional data were extracted from 171 different cross sections along 9 conduits. Width and height
are measured from WSW towards ENE and from NNW towards SSE (figures 6.5 and 6.6) in order to visualize the
conduits’ dimensions along the two main directions of development of the fracture corridors.

Figure 6.5: WSW-ENE plots of conduit’s width vs distance along the conduit(left) and conduit’s height vs distance along the
conduit(right). On the legend the numbers of Lapinha’s conduits are listed.
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Figure 6.6: NNW-SSE plots of conduit’s width vs distance along the conduit(left) and conduit’s height vs distance along the
conduit(right). On the legend the numbers of Lapinha’s conduits are listed.

From the two couples of plots one of the first observations that can be made is that conduit’s dimensions are not
always similar to each other, but sometimes differ of several meters. By observing the single conduits separately,
it is possible to recognize that dimensions lie within constant ranges often interrupted by increases or decreases
in the values. These changes can be gradual, as for the case of conduit 7 for instance, or improvise as for conduit
3. It is worth to notice that abrupt changes often happen after that nodes are encountered, which can be identified
by intervals in which data are absent.
The distribution of the sizes of the cross sections is highlighted at figure 6.7, where all the interpolated ellipses are
plotted along Lapinha’s skeleton together with a visual representation through colours of conduits’ width previously
plotted.

Figure 6.7: Lapinha caves’s skeleton showing the ellipses interpolated on the cross sections(left) and the widths values
visualized through a colour scale(right).

From figure 6.7 it looks even more clear how the conduits have different dimensions between each other and
that within a single conduit the width range can stay constant, as well as vary gradually or abruptly after a node.
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In addition a zone with bigger dimensions can be identified at the center of the charts, more precisely for values
between -30 and 20 on the horizontal axis and values between -110 and -70 on the vertical axis.

6.2.3. Volumetric Calculations
Lapinha cave’s volume is 3513 m3, with 2068 m3 extended in the NNW-SSE direction and 1445 m3 in the ENE-
WSW direction. The box obtained through CloudCompare (figure 6.8) has a volume of 71688 m3, thus only the
4.90% of the total bedrock volume is dissolved, confirming the fact that just a minimal part of the fractures present
in the subsurface eventually develop into cave passages. Since a 2.88% is dissolved in the NNW-SSE direction
and a 2.02% in the ENE-WSW direction, the first can be considered the preferential direction of dissolution in this
area.

Figure 6.8: Lapinha’s bounding box obtained from CloudCompare.

6.3. Marota
Marota cave is for some aspects similar to Lapinha. It is in fact a water-table maze cave that owes its formation to
water flowing horizontally in phreatic conditions, as well as it presents fracture corridors locally related to anticlines,
along which the conduits develop. 19 conduits form Marota cave (figure 6.9), which look for the most part oriented
N-S and E-W.

Figure 6.9: Marota’s skeleton (northern part on the left and southern part on the right) showing the numbers assigned to the
different conduits.
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6.3.1. Conduits Orientation

Through the skeleton obtained at figure 5.3a the rose diagram shown at figure 6.10 can be built. The main orien-
tations that emerge, extracted from 199 segments, are NNW-SSE (25%) and ENE-WSW (24%), which reflect the
orientations of the fracture corridors observed inside the cave.

Figure 6.10: Rose diagram generated from Marota’s skeleton.

6.3.2. Dimensions Analysis

The dimensional data obtained for Marota cave were acquired from 496 cross sections along 19 conduits. Width
and height are measured from NNW towards SSE and from WSW towards ENE (figures 6.11 and 6.12).

Figure 6.11: NNW-SSE plots of conduit’s width vs distance along the conduit(left) and conduit’s height vs distance along the
conduit(right). On the legend the numbers of Marota’s conduits are listed.
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Figure 6.12: WSW-ENE plots of conduit’s width vs distance along the conduit(left) and conduit’s height vs distance along the
conduit(right). On the legend the numbers of Marota’s conduits are listed.

Marota cave’s conduits are much longer than Lapinha’s ones, in fact a bigger dataset is available. Even if
the data coming from the NNW-SSE oriented passages look noisy, it is still possible to make some observations.
Firstly it can be noticed that different conduits have often different dimensions ranges. In addition the longest
conduits show us nicely that within a conduit several changes from rising dimensions to decreasing ones occur,
and these often coincide with empty intervals in the datasets, i.e. cave’s nodes.
At figures 6.13 and 6.14 it is possible to observe the distribution of the ellipses interpolated on the cross sections
and a representation of the conduits’ width previously plotted through colours that confirm the behaviours described
above.

Figure 6.13: Marota’s skeleton (northern part on the left and southern part on the right) with the interpolated ellipses plotted.
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Figure 6.14: Marota’s skeleton (northern part on the left and southern part on the right) where the width values are visualized
following a colour scale.

The observation of the longest conduits is fundamental in order to notice the dimensions changes of conduits
after they are interrupted by nodes. In many cases in fact the conduits maintain fairly constant values of width in
the areas between two nodes, while once encountered one of these features the dimensions change.

6.3.3. Volumetric Calculations
The calculated volume for Marota cave is 38916 m3, with 24432 m3 elongated in the NNW-SSE direction and
14484 m3 in the ENE-WSW direction. The boxes that surround Marota’s south and north sides (figure 6.15) have
a volume of 1517652 m3, therefore the dissolved percentage is barely the 2.56% of the total bedrock volume,
highlighting that caves systems, when present, compose a minimal part of the subsurface. Within this 2.56%, a
1.61% is dissolved towards the NNW-SSE direction and a 0.95% in the ENE-WSW direction, making the first the
main direction of dissolution.

Figure 6.15: Marota cave’s bounding boxes obtained through CloudCompare.
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6.4. Lapa do Bode

Lapa do Bode, which literally means ”Cave of the Goat”, is a maze cave whose formation processes are still
unclear. The most supported hypothesis sees it as a floodwater maze cave, meaning that its formation is related
to the floodings of the close by river. These events occasionally furnish acidic water that flows horizontally in
phreatic conditions into the cave. The water source in Lapa do Bode therefore is episodic, while in Marota and
Lapinha it is continuous. In addition to this a general dip orientation of the area towards NW was observed. Lapa
do Bode, even if smaller in size than Marota, counts 40 conduits with numerous closed loops, making it a nice
example of network maze cave. From figure 6.16 at a first sight the conduits showNW-SE and SW-NE orientations.

Figure 6.16: Lapa do Bode’s skeleton showing the numbers assigned to the different conduits.

6.4.1. Conduits Orientation

From the skeleton showed at figure 5.3c, the rose diagram at figure 6.17 is obtained, showing that the conduits
are mainly oriented NW-SE and NE-SW.
As it can be observed form the rose diagram and the dimension of the sectors, the conduits tend to develop more
in the NW-SE direction than on the NE-SW one, following the general dip direction.
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Figure 6.17: Rose diagram generated from Lapa do Bode’s skeleton.

6.4.2. Dimensions Analysis
In order to obtain Lapa do Bode’s dimensional data 309 cross sections from 40 conduits were analyzed. The
plots obtained at figures 6.18 and 6.19 are the results of a dimensional analysis performed in NW-SE and SW-NE
directions.

Figure 6.18: NW-SE plots of conduit’s width vs distance along the conduit(left) and conduit’s height vs distance along the
conduit(right). On the legend the numbers of Lapa do Bode’s conduits are listed.

Figure 6.19: SW-NE plots of conduit’s width vs distance along the conduit(left) and conduit’s height vs distance along the
conduit(right). On the legend the numbers of Lapa do Bode’s conduits are listed.
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Lapa do Bode’s number of conduits is large compared to the previous two caves, with lengths comparable to
Lapinha’s. The maximum values on the horizontal axis of the four plots highlights what was already clear from the
rose diagram, which is that NW-SE oriented passages are more developed than those oriented SW-NE. Within
the dataset it is still possible to recognize the behaviours already described for Lapinha and Marota’s dimensional
data. The conduits’ in fact can show different dimensional ranges between them, as well as gradual or improvise
increases and decreases in width and height.
Since the number of conduits is considerable, the plots may result unclear, which is why at figure 6.20 a visual
representation of the conduits’ dimensions is given.

Figure 6.20: Lapa do Bode cave’s skeleton showing the ellipses interpolated on the cross sections(left) and the widths’ values
visualized through a colour scale(right).

It is possible to observe that the NW-SE oriented conduits share similar width values between them on the left
part of the graph (around 5 meters), however by considering the side of the graph to the right of the horizontal axis
values of -30, several changes and substantial width differences are present. SW-NE oriented conduits show a
different behaviour, since their dimensions vary across all of the interested area.

6.4.3. Volumetric Calculations

The total volume of Lapa do Bode cave is 15008 m3, with 9004 m3 expanded in the NW-SE direction and 6004 m3

in the NE-SW direction. The volume of Lapa do Bode’s bounding box is 375905 m3 and therefore the dissolved
percentage is just the 3.99%, confirming that not all the joints form cave passages, but preferential dissolutional
patterns exist. 2.35% of the volume is dissolved in the NW-SE direction, while 1.64% is dissolved in the NE-SW
direction, making the first the preferential direction of dissolutional development.
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Figure 6.21: Lapa do Bode cave’s bounding box.

6.5. Mechanical Stability Analysis
The results of the simulations obtained through FEniCS show how the particle displacement, and therefore the
deformation, reacts to changes of the two main influencing parameters previously identified, 𝜈 and 𝐸. There is
the possibility to display the distribution of the stress applied, as well as the distribution of the displacement of the
particles (u) over the area of interest. Since the stress applied on Lapa do Bode is the same in every simulation
(figure 6.22), the maps of the displacements are shown in order to observe the different mechanical behaviours in
the different cases listed at table 6.2.

Simulation
n°

𝐸[GPa] 𝜈

1 6 0.3
2 2 0.3
3 16 0.3
4 6 0.2
5 6 0.4

Table 6.2: List of the simulated cases with the corresponding Young’s moduli and Poisson’s ratios.

Figure 6.22: Plan view representation of the stress distribution over the area of interest.
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Figure 6.23: Plan view representation of the particles’ displacement distribution over the area of interest of case 1.

Figure 6.24: Plan view representation of the particles’ displacement distribution over the area of interest of case 2.

Figure 6.25: Plan view representation of the particles’ displacement distribution over the area of interest of case 3.

The first three cases are characterized by the same Poisson’s ratio values, but different Young’s moduli. Since
𝐸 is defined as the ratio between the stress and the axial strain, this parameter can be seen as a measurement of
the stiffness of the material. In particular high values define a material less keen to axial deformation when subject
to stress, respect to a material with low 𝐸 values.
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Figure 6.26: Plan view representation of the particles’ displacement distribution over the area of interest of case 4.

Figure 6.27: Plan view representation of the particles’ displacement distribution over the area of interest of case 5.

The last two cases aim to show how materials with different Poisson’s ratios react to stress, maintaining the
same 𝐸 value. Poisson’s ratio gives a measurement of how much a material expands in the direction transversal
to stress, since it is the ratio between the transversal and the axial strain caused by a stress field. With smaller
Poisson’s ratios therefore the axial deformation is larger.

6.6. Conduits Orientation Discussion
The orientation analysis executed highlights a general NNW-SSEWSW-ENE pattern of direction of development of
the conduits (figure 6.28). The combination of this with the information obtained from the structural features present
in the study areas, such as N-S and E-W oriented folds, confirms the relationship between regional deformational
events and the development of fracture corridors that influence fluid flow patterns in the subsurface and therefore
the formation of karst systems (Ennes-Silva et al., 2016).
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Figure 6.28: Study area’s map with highlighted the positions of the three caves that have been studied. Next to each cave the
respective rose diagram is plotted.

The fact that the two main orientations of elongation of the conduits are perpendicular to each other, indicates
that the cave systems evolved from orthogonal sets of fractures, in particular joints since in order to allow an initial
fluid flow in the subsurface an aperture has to be present. Perpendicular sets of joints can only form if the minimum
principal stress (𝜎3) rotates of 90°, implying that one of the two fracture sets is created prior to the other one. The
rotation occurs in two cases: if the first fracture set causes stress release in its vicinity or if a rotation of the regional
or local stress field takes place. Both cases may cause the development of a second fracture set perpendicular
to the first one, but with different characteristics. In the first case in fact, the mode I fractures start from a joint of
the first set and terminates its extension as soon as another joint is encountered, while in the second case the
new fracture set can crosscut the previously formed one (Li and Ji, 2020). Since joints can form in the proximity
of folds, this is a further demonstration of the relationship between regional deformation and caves development
(N.E et al., 1999). In addition, the recognition of terminating and crosscutting geometries on a plan view can give
us information about the chronology of development of the fracture sets. Lapinha and Marota’s conduits always
crosscut each other, therefore it is not possible to divide the younger from the older set, however Lapa do Bode,
in the northwestern part, presents NE-SW oriented conduits that abut on NW-SE oriented conduits. At least in
this part of the cave system, it is possible to assume that the NW-SE oriented fracture corridors are older than the
NE-SW ones.

6.7. Dimensions Analysis Discussion
The geometry analysis shows the variation of dimensions along the passages. By taking a close look at the width
values plotted along the skeletons through colours, it is possible to notice differences in the dimensions between
different conduits, as well as it emerges that along the conduits the dimensions often vary after encountering a
node. Since the direction of development of cave passages follow the orientation of fracture corridors, higher
general dimensions may be the result of the connection between different joints sets. Jourde et al. state that fluid
flows are not equally distributed on all the fractures, but focus where fractures intersect each other or bedding
planes, channelizing the flow. In addition, due to variations of the local stress fields, pipes can open at the inter-
section between fractures or fractures and bedding planes, relating the variations of conduits’ dimensions to the
presence of these intersections, since the more fractures intersect each other, the bigger the dimensions of the
pipe are. Simplified graphs presenting conduits belonging to the same cave but with substantial differences in the
dimensions are displayed at figure 6.29.
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Figure 6.29: Six simplified graphs from each of the caves showing the differences in dimensions that can occur in a karst
system. Width and height values are displayed respectively in the left and in the right side of the figure. The legends give the

numbers of the conduits taken as examples.

As it can be noticed in these examples, dimensions differences between different conduits span from a couple
of meters up to 10 meters in the most extreme cases.
The variation of dimensions within a conduit instead, for which four examples are given at figure 6.30, can be
explained if we assume that local changes in the stress field, lack of continuity of fracture sets and connectivity
variations within the complete network condition the hydraulical efficiency of a fracture corridor, especially in the
vicinity of nodes (Jourde et al., 2002).
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Figure 6.30: This figure shows four examples of conduits’ width changes happening in the proximity of nodes. The examples
come, in clockwise order from the top left image, from the southern part of Lapinha, the northern part of Marota, the

south-eastern part of Lapa do Bode and the central-western part of Lapa do Bode.

In addition to variations of the dimensions within the same conduit or different ones, variations in the shapes of
conduits can be observed as well. Different shapes can be found in the appendix B, as well as at figure 6.31, where
cross sections along different conduits are shown. The first difference to be expected is between sub-vertical and
sub-horizontal shapes, since in the early stages of dissolution when joints of different sets intersect each other a
sub-vertical pipe is generated, whereas when a sub-vertical joint intersects a flat bedding plane, sub-horizontal
pipes develop (Jourde et al., 2002). If the dissolution continues homogeneously with time, these two are the
shapes that have to be expected.
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Figure 6.31: This figure shows the variation of conduit’s shapes within the three caves analyzed. On the first row there are
examples from Lapinha, on the second there are examples from Lapa do Bode and on the third one there are examples from

Marota.
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Sub-vertical and sub-horizontal elongated cross sections can be recognized in figure 6.31, especially in Lap-
inha, however different shapes are present as well. These derive from different factors influencing the direction of
dissolution within a conduit during time. Cross sections with a flat ceiling usually indicate that the overlying layer
acts as a seal for fluid flow, while when top notches can be distinguished, sediment infill in the bottom part of the
section in a phreatic environment forces the flow to erode upward. The sediment accumulation in addition, causes
also some concave shapes that can be observed at the floor of few cross sections. When the passages are in
vadose conditions instead, they tend to enlarge laterally, sometimes creating stair-like shapes if fluctuations of the
water-table level occur.

6.8. Volumetric Calculations Discussion
From the volumetric calculations the first thing that clearly emerges is that, even in areas interested by speleoge-
netic processes, the dissolved percentage over the entire affected bedrock volume doesn’t exceed the 5%. This
makes karst systems exceptional features of the subsurface, fact due to the highly selective speleogenetic pro-
cesses that allow only a minimal part of joints to develop into traversable sized passages. Another consideration
regarding the local patterns of fluid flow can be done, by observing that the dissolved percentage in the NNW-
SSE/NW-SE direction always exceeds the one in the ENE-WSW/NE-SW. From the calculations in fact 35465 m3

result dissolved in the first direction, while 21933 m3 in the second direction, making the NNW-SSE/NW-SE orien-
tated conduits to account for the 61.8% of the total caves’ volume. This difference can suggest that at the time of
formation of the karst systems here studied, a preferential flow path oriented in the NNW-SSE/NW-SE direction
was present across the study area.

6.9. Mechanical Stability Discussion
The deformation results of the cases listed at table 6.2 are not supposed to be the final point of amechanical stability
analysis, on the contrary they should be considered as a starting point for future studies where consequences of
changes in the mechanical properties of materials can be observed.
Thanks to the legend displayed in each of the figures from figure 6.23 to 6.27, it is possible to notice the mechanical
behaviours of materials with different properties. As already stated, likely 𝐸 and 𝜈 values for carbonates are
respectively 6 GPa and 0.3, thus figure 6.23 can be considered the standard case. For softer materials, such as
the ones recreated for cases 2 and 4, the displacement magnitude increases since more strain is accommodated,
while for stiffer materials, such as the ones at cases 3 and 5, the displacement of the particles is less considerable
since the stress applied causes less deformation.
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7
Conclusions and Recommendations

7.1. Conclusions
The study of Lapinha, Lapa do Bode and Marota caves gives useful dimensional data from different sized cave
systems. The three 3D point clouds obtained thanks to a Lidar laser scanner in the state of Bahia, Brazil, are in-
struments that allow quick and easy data extraction. Thanks to the Matlab code developed in this study in fact, it is
possible to obtain hundreds of conduits’ cross sections in few minutes and, as far as a 3D point cloud is available,
the method can be applied to any cave. The parameters obtained in this way, such as width, height and area of the
ellipse interpolated on a cross section, allow to study the variations of the dimensions between different conduits
and study the volumes of cave systems.
The rose diagrams showing the main orientations of elongation of the conduits, that coincide with the orientation
of deformation structures such as E-W and N-S oriented folds formed in the Irecê Basin during the Brasiliano
Orogeny, prove the close relationship between regional structural geology and speleogenesis. The perpendicu-
larity between the conduits suggests that the cave systems developed from orthogonal sets of joints, generated in
different periods of regional or local deformation.
Variability of dimensions along the conduits and between the conduits, is justified by the characteristics that frac-
ture corridors can assume, that highly influence the dissolutional processes in the subsurface, especially in the
early stages. Fractures intersections in fact tend to channelize the fluid flow, thus higher densities of fractures
intersecting each other cause the development of bigger conduits. In addition changes in the continuity and con-
nectivity within these networks alter locally the hydraulic conductivity of the fracture corridors and consequently
theur dissolution.
Intersections between joints of different sets or between joints and bedding planes initially condition the shape of
a conduit’s cross section, that can assume sub-horizontal or sub-vertical shapes. The presence of top and lateral
notches or peculiar shapes of the floor instead develop in the mature phases of dissolution, when sediment supply
and level of water table change the preferential direction of dissolution.
The mechanical stability analysis demonstrated that simulations through the software FEniCS are feasible and that
the results are reliable, since for higher values of 𝐸 the deformation of the material decreases, while for smaller 𝜈
values it increases, as expected.

7.2. Recommendations
Many recommendations can be made regarding the cross sections analysis. First of all the Matlab code can
be improved in the noise reduction, making sure that the cross sections are isolated and don’t present isolated
clusters of points around it. These in fact can alter the height and width measurements, that could also be changed
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if there is the necessity to calculate width and height as the maximum distance between lateral and vertical walls
respectively in the horizontal and in the vertical direction. This would be especially useful in the cases of obliquely
developed passages.
In the study the ellipse was considered as a good approximation from where to derive the area of a cross section,
however in order to be more accurate a more complex curve can be interpolated.
In addition, since the intersections between bedding planes and fractures favour the most the cave passages
development, a future combined stratigraphical and structural study may give additional information useful for the
prediction of the preferential directions of conduits development during the initial stages of formation.
The simulations run in FEniCS can obviously be highly increased, since it would be interesting to apply more
reliable boundary conditions and study the mechanical stability of cave systems overlain and underlain by rock
layers at great depths.
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A
Automatic Skeletonization

In the ’Methodology’ chapter, it is described how a first attempt to automatically extract cave skeletons failed. The
method consisted into export, thanks to CloudCompare, the denoised point cloud as a .ply file, which can then be
loaded in Matlab. Here, the point cloud is projected on the xy plane by giving a constant z-value to every point, in
order to obtain a cross section. After that a .jpg of the section and a binarized image of it is created. The source
image and the binarized image are used as inputs in a matlab function which gives, as outputs, the skeleton of
the cave and a vectorized version of the skeleton(a polyline). The vectorized version can be used in order to
convert the polyline into a shape file, that can be analyzed and studied in Matlab or QGIS. The skeleton obtained
in this way, however, doesn’t suit our purposes since it is not made by singular segments for each branch, but by
a multitude of segments. After a careful analysis of the problem we realized that in order to fix the algorithm that
generates the skeleton and makes it suitable for our purposes too much time is needed. Nevertheless this can
give an idea about a possible new project to be developed.
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B
Cross sections examples

The following figures show cross sections examples extracted from Lapinha, Lapa do Bode and Marota caves.
The interpolated ellipses and the interpolation errors (R) are shown too, in order to give an idea about the accuracy
of the data.

B.0.1. Lapinha’s Cross Sections

Figure B.1: Cross sections extracted from Lapinha’s segments 6 (left) and 8 (right).

Figure B.2: Cross sections extracted from Lapinha’s segments 10 (left) and 14 (right).
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Figure B.3: Cross sections extracted from Lapinha’s segments 14 (left) and 23 (right).

Figure B.4: Cross sections extracted from Lapinha’s segments 27 (left) and 31 (right).

B.0.2. Lapa do Bode’s Cross Sections

Figure B.5: Cross sections extracted from Lapa do Bodes’s segments 8 (left) and 13 (right).
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Figure B.6: Cross sections extracted from Lapa do Bodes’s segments 17 (left) and 18 (right).

Figure B.7: Cross sections extracted from Lapa do Bodes’s segments 30 (left) and 40 (right).

Figure B.8: Cross sections extracted from Lapa do Bodes’s segments 47 (left) and 52 (right).

Figure B.9: Cross sections extracted from Lapa do Bodes’s segments 54 (left) and 69 (right).
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Figure B.10: Cross sections extracted from Lapa do Bodes’s segments 77 (left) and 97 (right).

B.0.3. Marota’s Cross Sections

Figure B.11: Cross sections extracted from Marota’s segments 9 (left) and 16 (right).

Figure B.12: Cross sections extracted from Marota’s segments 18 (left) and 25 (right).
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Figure B.13: Cross sections extracted from Marota’s segments 25 (left) and 27 (right).

Figure B.14: Cross sections extracted from Marota’s segments 31 (left) and 41 (right).

Figure B.15: Cross sections extracted from Marota’s segments 45 (left) and 52 (right).

Figure B.16: Cross sections extracted from Marota’s segments 56 (left) and 58 (right).
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Figure B.17: Cross sections extracted from Marota’s segments 62 (left) and 64 (right).

Figure B.18: Cross sections extracted from Marota’s segments 65 (left) and 66 (right).
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C
Functions Flowcharts

Three flowcharts for the three different functions present within the code are shown. Blue ovals represent start-
ing points of a code or of a loop, green parallelograms represent inputs, yellow rectangles represent actions or
calculations, red rhombuses represent decisions and turquoise rectangles represent alternatives.
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Figure C.1: Function SEGM.
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Figure C.2: Function ROI
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Figure C.3: Function PROJ
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D
Caves’ skeletons

The followings are the skeletons of Lapinha, Lapa do Bode and Marota. Red dots represent 1st degree nodes,
yellow dots represent 2nd degree nodes, green dots represent 3rd degree nodes and blue dots represent 4th degree
nodes.

Figure D.1: This figure shows the skeleton of Lapinha cave, with its nodes’ degrees.
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Figure D.2: This figure shows the skeleton of Lapa do bode cave, with its nodes’ degrees.
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Figure D.3: This figure shows the skeleton of Marota cave, with its nodes’ degrees.

(a) Marota’s northern side skeleton, with its nodes’ degrees. (b) Marota’s southern side skeleton, with its nodes’ degrees.

Figure D.4: Detail of northern and southern sides of marota’s skeleton.
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E
Complete Dimensional Plots

Figure E.1: Lapinha WSW-ENE plots of branch width vs distance along the branch(left) and branch height vs distance along
the branch(right). On the legend the numbers of Lapa do Bode’s conduits are listed.

Figure E.2: Lapinha NNW-SSE plots of branch width vs distance along the branch(left) and branch height vs distance along the
branch(right). On the legend the numbers of Lapa do Bode’s conduits are listed.
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Figure E.3: Lapa do Bode NW-SE plots of branch width vs distance along the branch(left) and branch height vs distance along
the branch(right). On the legend the numbers of Lapa do Bode’s conduits are listed.

Figure E.4: Lapa do Bode SW-NE plots of branch width vs distance along the branch(left) and branch height vs distance along
the branch(right). On the legend the numbers of Lapa do Bode’s conduits are listed.

Figure E.5: Marota NNW-SSE plots of branch width vs distance along the branch(left) and branch height vs distance along the
branch(right). On the legend the numbers of Lapa do Bode’s conduits are listed.
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Figure E.6: Marota WSW-ENE plots of branch width vs distance along the branch(left) and branch height vs distance along the
branch(right). On the legend the numbers of Lapa do Bode’s conduits are listed.
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F
Code

F.1. Main Code

1

2 c l c
3 c lo se a l l
4 c l ea r a l l
5

6 t i c
7

8 %% Load the pointcloud and i t s ske leton by converting the skeleton ' s s h a p e f i l e into data
9 %the function Shape_to_data was provided by Rahul Prabhakaran.
10 B = shaperead ( ' your_skeleton.shp ' ) ;
11 [F, xmin , xmax, ymin , ymax] = Shape_to_Data(B) ;
12 E = pcread ( 'YOUR_CAVE.ply ' ) ;
13

14 %% Highlight the skeleton ' s nodes and ident i f y the I M Y X topo log i ca l r e l a t i onsh ip s ...
between the segments

15 % from Rahul Prabhakaran (2017)
16 disp ( s t r cat ( 'No of Segments : ' , num2str ( length (F) ) ) )
17 disp ( s t r cat ( ' Shapef i l e Entries : ' , num2str ( length (B) ) ) )
18 [ EndNodes ,XY] = create_GraphEdges (F, xmin , ymin) ;
19

20 G1=graph () ;
21 f o r i =1: length (EndNodes)
22 G1 = addedge (G1, EndNodes{ i ,1}{1 ,1} ,EndNodes{ i ,1}{1 ,2}) ;
23 end
24

25 % calcu lat ing degree of nodes
26 D1 = degree (G1) ;
27 % extract ing M_nodes
28 [ M_nodes_idx ,¬] = f ind (D1( : , 1 )==1); %red
29 M_nodes=XY(M_nodes_idx , : ) ;
30 % extract ing I_nodes
31 [ I_nodes_idx ,¬] = f ind (D1( : , 1 )==2); %yellow
32 I_nodes=XY(I_nodes_idx , : ) ;
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33 % extract ing Y_nodes
34 [ Y_nodes_idx ,¬] = f ind (D1( : , 1 )==3); %green
35 Y_nodes=XY(Y_nodes_idx , : ) ;
36 % extract ing X_nodes
37 [ X_nodes_idx ,¬] = f ind (D1( : , 1 )==4); %blue
38 X_nodes=XY(X_nodes_idx , : ) ;
39

40 A1 = adjacency (G1) ;
41

42 %% I s o l a t e the segments that we are inte res ted in studying , which are the segments ...
l inked by I M, I I nodes.

43

44 [ segm_check , length_segm_M , length_segm_I , length_segm_Y , length_segm_X ] = SEGM (F, ...
M_nodes, I_nodes , Y_nodes , X_nodes) ;

45

46 f i gu re (1)
47 gplot (A1,XY, 'k ' )
48 pbaspect ( [ 1 1 1 ] )
49 axis equal
50 xtickformat ( '%g m' )
51 ytickformat ( '%g m' )
52 hold on
53 grid on
54 scat te r ( I_nodes ( : , 1 ) , I_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , 'y ' ) ;
55 hold on
56 scat te r (Y_nodes ( : , 1 ) ,Y_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , ' g ' ) ;
57 hold on
58 scat te r (M_nodes( : , 1 ) ,M_nodes( : , 2 ) , 'd ' , ' f i l l e d ' , ' r ' ) ;
59 hold on
60 scat te r (X_nodes ( : , 1 ) ,X_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , 'b ' ) ;
61 hold on
62 f o r i i = 1: length (segm_check ( : , 1) )
63 t = text (segm_check( i i , 1) + (segm_check( i i , 3) segm_check( i i , 1) ) /2 , ...

segm_check( i i , 2) + (segm_check( i i , 4) segm_check( i i , 2) ) /2 , num2str ( i i ) ) ;
64 t .Color = [1 0 1 ] ;
65 end
66

67

68 %% Obtain the parameters needed to f ind the cross sec t ions of the cave along
69 % the segments we are inte re s ted in every _s
70 % Define a z in te rva l in which the pointcloud i s located
71 min_z = 40;
72 max_z = +40;
73

74 % Define the width and the length of the subregion
75 width_large = 80; % width of search window _|_ to segment
76 eps i lon = 1; % addit ional distance
77 width_small = 0 .20 ; % length ” slab ” | | to segment
78

79 [ Ui , Vi , le ft_corner , right_corner , P_1, ns l i c e s , section_points , l_segment , P_1i , ...
dist_points ] = ROI (segm_check , width_large , epsi lon , width_small , min_z , max_z) ;

80

81 %find the parameters use fu l fo r pro ject ing the subpointclouds
82 [R, Q_1, normal , angle_deg ] = PROJ (Ui , left_corner , P_1, Vi , width_large , epsi lon , ...

max_z) ;
83

84 %use the fo l lowing 24 l i n e s and keep commented the orient_idx l i n e i f you want
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85 %to i s o l a t e the v e r t i c a l segments , otherwise comment the fo l lowing 3 l i n e s
86 %to i s o l a t e the hor izonta l segments
87

88 %find the v e r t i c a l segments indexes
89 % orient_idx_c = find ( angle_deg 25) ;
90 % orient_idx_a = find ( angle_deg 155 & angle_deg 180) ;
91 % orient_idx = [ orient_idx_c orient_idx_a ] ;
92 %
93 % %find the hor izonta l segments indexes
94 % %orient_idx = find ( angle_deg 65 & angle_deg 115) ;
95 %
96 % %r i d e f i n e a l l the use fu l parameters to be used in the fo r loop
97 % rows_three = zeros ( length ( orient_idx ) ∗3 , 1) ;
98 % rows_two = zeros ( length ( orient_idx ) ∗2 , 1) ;
99 % for i = 1: length ( orient_idx )
100 % rows_three ( [ i ∗3 2 i ∗3 1 i ∗3 ] ) = [ orient_idx ( i )∗3 2 orient_idx ( i )∗3 1 orient_idx ( i ) ∗ 3 ] ;
101 % rows_two ( [ i ∗2 1 i ∗2 ] ) = [ orient_idx ( i )∗2 1 orient_idx ( i ) ∗ 2 ] ;
102 % end
103 % Ui = Ui ( : , orient_idx ) ;
104 % Q_1 = Q_1( rows_three , : ) ;
105 % normal = normal ( rows_three ) ;
106 % R = R( : , rows_two) ;
107 % section_points = section_points (rows_two , : ) ;
108 % left_corner = left_corner ( rows_three , : ) ;
109 % right_corner = right_corner ( rows_three , : ) ;
110

111 toc
112 t i c
113 %% Apply the subsumpling and pro j e c t i on . Once the project ion i s avai lable , an e l l i p s e ...

i s f i t t e d .
114 pointcloud = E.Location ;
115 %take 1 point every 3 of the pointcloud in order to decrease i t s s i z e and
116 %the computational times
117 pointcloud = pointcloud ( 1 : 3 : length ( pointcloud ) , : ) ;
118 rot_pointcloud = pointcloud ;
119

120 section_points_s = [ ] ;
121 Q_1_s = [ ] ;
122 normal_s = zeros (3 , 1) ;
123 R_loop = zeros (2 , 2) ;
124 rot_pointcloud_s = zeros ( length ( pointcloud ( : , 1) ) , 3) ;
125 rot_left_corner = [ ] ;
126 rot_right_corner = [ ] ;
127 a_segm = [ ] ;
128 b_segm = [ ] ;
129 error_interpolation_segm = [ ] ;
130 ell ipse_segm = [ ] ;
131 ver_line_segm = [ ] ;
132 horz_line_segm = [ ] ;
133 xwidth_segm = [ ] ;
134 yheight_segm = [ ] ;
135 dimension_segm_w = [ ] ;
136

137 f o r i = 1: length (Ui)
138 %for i = [ x ] %to analyze s p e c i f i c segments
139 a_segm = zeros (1 , n s l i c e s (1 , i ) ) ;
140 b_segm = zeros (1 , n s l i c e s (1 , i ) ) ;
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141 xwidth_segm = zeros (1 , n s l i c e s (1 , i ) ) ;
142 yheight_segm = zeros (1 , n s l i c e s (1 , i ) ) ;
143 error_interpolation_segm = zeros (1 , n s l i c e s (1 , i ) ) ;
144 ell ipse_segm = zeros ( n s l i c e s (1 , i ) ∗2 , 100) ;
145 ver_line_segm = zeros ( n s l i c e s (1 , i ) ∗2 , 2) ;
146 horz_line_segm = zeros ( n s l i c e s (1 , i ) ∗2 , 2) ;
147 dimension_segm_w = zeros ( n s l i c e s (1 , i ) , 4) ;
148 Q_1_s = Q_1( [ i ∗3 2 i ∗3 1 i ∗3 ] , 1 : n s l i c e s (1 , i ) ) ;
149 normal_s = normal ( [ i ∗3 2 i ∗3 1 i ∗3 ] , 1) ;
150 R_loop = R( : , [ i ∗2 1 i ∗2 ] ) ;
151 section_points_s = section_points ( [ i ∗2 1 i ∗2 ] , 1 : n s l i c e s (1 , i ) + 1) ;
152 P_1i_s = P_1i ( : , i ) ;
153

154 % Only rotat ing x and y coordinates , s ince we assume segments
155 % are constant in z d i r ec t ion ! ! !
156 rot_pointcloud_s ( : , 1 :2) = rot_pointcloud ( : , 1 :2) ∗ R_loop ' ;
157 rot_left_corner = left_corner ( [ i ∗3 2 i ∗3 1 i ∗3 ] , 1 : n s l i c e s (1 , i ) ) ;
158 rot_left_corner (1 :2 , : ) = R_loop ∗ rot_left_corner ( [ 1 2 ] , : ) ;
159 rot_right_corner = right_corner ( [ i ∗3 2 i ∗3 1 i ∗3 ] , 1 : n s l i c e s (1 , i ) ) ;
160 rot_right_corner (1 :2 , : ) = R_loop ∗ rot_right_corner ( [ 1 2 ] , : ) ;
161

162 f o r i i = 1: length (Q_1_s(1 , : ) )
163 %for i i = x %to analyze a s p e c i f i c s l i c e
164 % Extract sub pointcloud :
165 bool_section = (( rot_pointcloud_s ( : , 1) rot_left_corner (1 , i i ) & rot_pointcloud_s ( : , ...

1) rot_right_corner (1 , i i ) ) & . . .
166 ( rot_pointcloud_s ( : , 2) rot_left_corner (2 , i i ) & rot_pointcloud_s ( : , ...

2) rot_right_corner (2 , i i ) ) & . . .
167 ( rot_pointcloud_s ( : , 3) rot_left_corner (3 , i i ) & rot_pointcloud_s ( : , ...

3) rot_right_corner (3 , i i ) ) ) ;
168

169 % Rotate back :
170 sub_pointcloud = pointcloud ( bool_section , : ) ;
171 %uncomment i f yuo want to show the subsumpled pointcloud
172 % f igure ()
173 % plot3 ( sub_pointcloud ( : , 1) , sub_pointcloud ( : , 2) , sub_pointcloud ( : , 3) , ' . ' , . . .
174 % ' color ' , [ 0 , 0 , 0 ] , 'LineWidth ' , 1)
175 % axis equal
176 num_sub_pts = s i z e ( sub_pointcloud , 1) ;
177 % Perform project ion of a l l sub points on plane :
178 projected_points = sub_pointcloud ( sub_pointcloud ones (num_sub_pts , 1) ∗ Q_1_s( : , ...

i i ) ' ) ∗ normal_s . ∗ ( ones (num_sub_pts , 1) ∗ normal_s ' ) ;
179 % Rotate the subpointcloud :
180 sub_pointcloud = sub_pointcloud ( : , 1 :2) ∗ R_loop ' ;
181

182 %We want to i s o l a t e the subpointcloud re lated to the branch of the cave we
183 %are analyzing , and not take into account the nearby branches.
184 % Final bin i s simply the x coordinate of rotated sub point cloud :
185 distr_points_x_axis = sub_pointcloud ( : , 1) ;
186 % Center the segment c lo se to x axis 0 value
187 center_segm = R_loop(1 , : ) ∗ section_points_s ( : , i i ) ;
188 distr_points_x_axis = distr_points_x_axis center_segm ;
189 %f igure (5) %to show the histogram
190 %histogram ( distr_points_x_axis , 'NumBins ' , 20)
191 % Group into bins :
192 % Want to bin every X meter > size_bin = X
193 size_bin = 1;
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194 nbins = round ( width_large ∗ 3 / size_bin ) ;
195 [ count , edges , bin ] = histcounts ( distr_points_x_axis , nbins ) ;
196 %count the number of values in each bins
197 over_bin = 1e10 ;
198 count ( count < 1) = over_bin ;
199 bin_count = [ count ; 1 : nbins ] ;
200 bin_mdpt = ( edges (1 :end 1) + edges (2 :end ) ) /2;
201 %find the index of the bin c l o s e r to the 0 value on the x axis of the
202 %histogram
203 idx = min( abs (bin_mdpt) ) ;
204 index = f ind ( abs (bin_mdpt) == idx ) ;
205 index = index (1 , 1) ;
206

207 %Find the r ight and l e f t l i m i t s were the subpointcloud re lated to our
208 %segment ends. The l i m i t s are def ined by a minimum number of values found
209 %in a bin .
210 sp l i t_r ight = count (1 , index : nbins ) ;
211 f o r i i i = 1 : ( nbins index )+1
212 i f sp l i t_r ight ( i i i ) == over_bin
213 sp l i t_r ight ( i i i ) = 1;
214

215 e l s e
216 sp l i t_r ight ( i i i ) = 0;
217

218 end
219

220 i f max( sp l i t_r ight ) == 0
221 sp l i t_r ight ( length ( sp l i t_r ight ) + 1) = 1;
222

223 end
224 end
225 l imit_right = f ind ( spl i t_right , 1 , ' f i r s t ' ) ;
226 l imit_right = index + limit_right 2 ;
227

228 s p l i t _ l e f t = count (1 , 1 : index 1) ;
229 f o r i i i = 1: index 1
230 i f s p l i t _ l e f t ( i i i ) == over_bin
231 s p l i t _ l e f t ( i i i ) = 1;
232

233 e l s e
234 s p l i t _ l e f t ( i i i ) = 0;
235 end
236

237 i f max( s p l i t _ l e f t ) == 0
238 s p l i t _ l e f t (1 , 1) = 1;
239

240 end
241 end
242 l im i t_ le f t = f ind ( s p l i t_ l e f t , 1 , ' l a s t ' ) ;
243 l im i t_ le f t = l imi t_ le f t + 1;
244

245 count_treshold = count ( : , l im i t_ le f t : l imit_right ) ;
246 right_edge = edges ( : , l imit_right + 1) ;
247 left_edge = edges ( : , l im i t_ le f t 1) ;
248 d i s t r = ( distr_points_x_axis left_edge ) & ( distr_points_x_axis right_edge ) ;
249

250 %Parameters ca l cu lat ion
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251 rot_projected_points = projected_points ;
252 rot_projected_points ( : , 1 :2) = rot_projected_points ( : , 1 :2) ∗ R_loop ' ;
253 l ocpo ints = rot_projected_points ( d i s t r , [ 1 , 3 ] ) ;
254 locpoints_old = locpo ints ;
255 xwidth = max( locpoints_old ( : , 1) ) min( locpoints_old ( : , 1) ) ;
256 yheight = max( locpoints_old ( : , 2) ) min( locpoints_old ( : , 2) ) ;
257 num_pts = s i z e ( locpoints , 1) ;
258 mean_x = mean( locpo ints ( : , 1) ) ;
259 mean_y = mean( locpo ints ( : , 2) ) ;
260 l ocpo ints ( : , 1) = locpo ints ( : , 1) mean_x;
261 l ocpo ints ( : , 2) = locpo ints ( : , 2) mean_y;
262 % Fit e l l i p s e to data :
263 % General equation :
264 % A∗x^2 + B∗x∗y + C∗y^2 + D∗x + E∗y + F = 0
265 % A∗x^2 + B∗x∗y + C∗y^2 + D∗x + E∗y = F (assume F = 1)
266 A = [ locpo ints ( : , 1) . ^2 , locpo ints ( : , 1) . ∗ locpo ints ( : , 2) , locpo ints ( : , 2) . ^2 , ...

l ocpo ints ( : , 1) , locpo ints ( : , 2) ] ;
267 coef = (A' ∗ A) \ (A' ∗ ( ones (num_pts , 1) ) ) ;
268 [ a , b , c , d , e ] = deal ( coef (1) , coe f (2) , coe f (3) , coe f (4) , coe f (5) ) ;
269 % I n i t i a l i z e
270 orientat ion_tolerance = 1e 3;
271 % remove the or ientat ion from the e l l i p s e
272 i f ( min( abs (b/a) , abs (b/c ) ) > orientat ion_tolerance )
273

274 orientation_rad = 1/2 ∗ atan ( b/(c a) ) ;
275 cos_phi = cos ( orientation_rad ) ;
276 sin_phi = s in ( orientation_rad ) ;
277 [ a , b , c , d , e ] = deal ( . . .
278 a∗cos_phi^2 b∗cos_phi∗sin_phi + c∗sin_phi ^2 , . . .
279 0 , . . .
280 a∗sin_phi^2 + b∗cos_phi∗sin_phi + c∗cos_phi ^2 , . . .
281 d∗cos_phi e∗sin_phi , . . .
282 d∗sin_phi + e∗cos_phi ) ;
283 [mean_x,mean_y] = deal ( . . .
284 cos_phi∗mean_x sin_phi∗mean_y, . . .
285 sin_phi∗mean_x + cos_phi∗mean_y ) ;
286 e l s e
287 orientation_rad = 0;
288 cos_phi = cos ( orientation_rad ) ;
289 sin_phi = s in ( orientation_rad ) ;
290 end
291 % check i f conic equation represents an e l l i p s e
292 t e s t = a∗c ;
293 switch (1)
294 case ( test >0) , status = ' ' ;
295 case ( t e s t==0) , status = ' Parabola found ' ; %warning ( ' f i t _ e l l i p s e : Did not locate an ...

e l l i p s e ' ) ;
296 case ( test <0) , status = ' Hyperbola found ' ; %warning ( ' f i t _ e l l i p s e : Did not locate an ...

e l l i p s e ' ) ;
297 end
298 % i f we found an e l l i p s e return it ' s data
299 i f ( t e s t > 0)
300

301 % make sure c o e f f i c i e n t s are pos i t ive as required
302 i f (a<0) , [ a , c , d , e ] = deal ( a, c , d, e ) ; end
303

304
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305 % f i n a l e l l i p s e parameters
306 X0 = mean_x d/2/a ;
307 Y0 = mean_y e/2/c ;
308 F_ell ipse = 1 + (d^2) /(4∗a) + ( e^2) /(4∗ c ) ;
309 [ a , b ] = deal ( sqrt ( F_ell ipse /a ) , sqrt ( F_ell ipse /c ) ) ;
310 long_axis = 2∗max(a , b) ;
311 short_axis = 2∗min(a , b) ;
312 error_interpolat ion = sum(( a ∗ locpo ints ( : , 1) . ^2 + b ∗ ( locpo ints ( : , ...

1) . ∗ locpo ints ( : , 2) ) + . . .
313 c ∗ locpo ints ( : , 2) . ^2 + d ∗ locpo ints ( : , 1) + e ∗ locpo ints ( : , 2) 1) . ^2) ; ...

%ca l cu la te the e l l i p s e interpo lat ion error
314 error_interpolat ion = sqrt ( error_interpolat ion )/num_pts ;
315 % rotate the axes backwards to f ind the center point of the o r i g i n a l TILTED e l l i p s e
316 R_ellipse = [ cos_phi sin_phi ; sin_phi cos_phi ] ;
317

318 e l s e
319

320 a = NaN;
321 b = NaN;
322 X0 = NaN;
323 Y0 = NaN;
324 long_axis = NaN;
325 short_axis = NaN;
326 error_interpolat ion = NaN;
327 R_ellipse = NaN;
328

329 end
330

331 %store the parameters
332 a_segm(1 , i i ) = a ;
333 a_s(sum( n s l i c e s ( 1 : ( i 1)) )+1 : sum( n s l i c e s (1 : i ) ) ) = a_segm ;
334 b_segm(1 , i i ) = b ;
335 b_s(sum( n s l i c e s ( 1 : ( i 1)) )+1 : sum( n s l i c e s (1 : i ) ) ) = b_segm;
336 error_interpolation_segm (1 , i i ) = error_interpolat ion ;
337 error_interpolation_s (sum( n s l i c e s ( 1 : ( i 1)) )+1 : sum( n s l i c e s (1 : i ) ) ) = ...

error_interpolation_segm ;
338 xwidth_segm(1 , i i ) = xwidth ;
339 xwidth_s(sum( n s l i c e s ( 1 : ( i 1)) )+1 : sum( n s l i c e s (1 : i ) ) ) = xwidth_segm ;
340 yheight_segm (1 , i i ) = yheight ;
341 yheight_s (sum( n s l i c e s ( 1 : ( i 1)) )+1 : sum( n s l i c e s (1 : i ) ) ) = yheight_segm ;
342 % the axes
343 ver_line = [ [X0, X0 ] ; Y0+b∗[ 1 , 1 ] ] ;
344 horz_line = [ X0+a∗[ 1 , 1 ] ; [Y0, Y0] ] ;
345 new_ver_line = R_ellipse ∗ ver_line ;
346 new_horz_line = R_ellipse ∗ horz_line ;
347 % the e l l i p s e
348 theta_r = l inspace (0 ,2∗ pi ) ;
349 segm_c = [ ( ( section_points_s (1 , i i +1) + section_points_s (1 , i i ) ) /2) ...

( ( section_points_s (2 , i i +1) + section_points_s (2 , i i ) ) /2) ] ;
350 X0_loop = segm_c(1 , 1) ;
351 Y0_loop = segm_c(1 , 2) ;
352 rot = R_ellipse ∗ [ a∗cos ( theta_r ) ; b∗ s in ( theta_r ) ] ;
353 ell ipse_xr_plan = X0_loop + rot (1 , : ) ;
354 ell ipse_yr_plan = Y0_loop + rot (2 , : ) ;
355 rotated_ell ipse_plan = [ ell ipse_xr_plan ; ell ipse_yr_plan ] ;
356 ver_line_c = [ ( ( new_ver_line (1 , 1) + new_ver_line (1 , 2) ) /2) (( new_ver_line (2 , 1) + ...

new_ver_line (2 , 2) ) /2) ] ;
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357 horz_line_c = [ ( ( new_horz_line (1 , 1) + new_horz_line (1 , 2) ) /2) (( new_horz_line (2 , 1) + ...
new_horz_line (2 , 2) ) /2) ] ;

358 cent_ver_line (1 , : ) = (X0_loop ver_line_c (1 , 1) ) + new_ver_line (1 , : ) ;
359 cent_ver_line (2 , : ) = (Y0_loop ver_line_c (1 , 2) ) + new_ver_line (2 , : ) ;
360 cent_horz_line (1 , : ) = (X0_loop horz_line_c (1 , 1) ) + new_horz_line (1 , : ) ;
361 cent_horz_line (2 , : ) = (Y0_loop horz_line_c (1 , 2) ) + new_horz_line (2 , : ) ;
362 dimension_segm_w (1 : n s l i c e s (1 , i ) , [1 2 ] ) = section_points_s ( : , 1 : n s l i c e s (1 , i ) ) ' ;
363 dimension_segm_w (1 : n s l i c e s (1 , i ) , [3 4 ] ) = section_points_s ( : , 2 : ( n s l i c e s (1 , i )+1)) ' ;
364

365 % %plot the cross sec t ions and the e l l i p s e interpo lated
366 % f igure ()
367 % plot ( locpoints_old ( : , 1) , locpoints_old ( : , 2) , 'o ' , ' color ' , [ 0 , 0 , 0 ] , 'LineWidth ' , ...

1 , ' MarkerSize ' , 5)
368 % hold on
369 % plot ( new_ver_line ( 1 , : ) , new_ver_line ( 2 , : ) , ' r ' ) ;
370 % plot ( new_horz_line ( 1 , : ) , new_horz_line ( 2 , : ) , ' r ' ) ;
371 % plot ( rotated_el l ipse ( 1 , : ) , rotated_el l ipse ( 2 , : ) , ' r ' ) ;
372 % axis equal
373 % xtickformat ('%g m' )
374 % ytickformat ('%g m' )
375 % hold o f f
376

377 %store the e l l i p s e s and the axis to plot
378 ell ipse_segm ( [ i i ∗2 1 i i ∗2 ] , : ) = rotated_ell ipse_plan ;
379 e l l ipse_plan ((sum( n s l i c e s ( 1 : ( i 1)) )+1)∗2 1 : sum( n s l i c e s (1 : i ) ) ∗2 , : ) = ellipse_segm ;
380 ver_line_segm ( [ i i ∗2 1 i i ∗2 ] , : ) = cent_ver_line ;
381 ver_line_plan ((sum( n s l i c e s ( 1 : ( i 1)) )+1)∗2 1 : sum( n s l i c e s (1 : i ) ) ∗2 , : ) = ver_line_segm ;
382 horz_line_segm ( [ i i ∗2 1 i i ∗2 ] , : ) = cent_horz_line ;
383 horz_line_plan ((sum( n s l i c e s ( 1 : ( i 1)) )+1)∗2 1 : sum( n s l i c e s (1 : i ) ) ∗2 , : ) = horz_line_segm ;
384 dimension_plan ((sum( n s l i c e s ( 1 : ( i 1)) )+1 : sum( n s l i c e s (1 : i ) ) ) , : ) = dimension_segm_w ;
385 %to store data
386 Mwidth{ i } = xwidth_segm ;
387 Mheight{ i } = yheight_segm ;
388 Ma{ i } = a_segm ;
389 Mb{ i } = b_segm;
390 end
391 end
392 toc
393

394 %uncomment to plot the e l l i p s e s d i s t r ibut ion on the skeleton
395 dimension_plan ( : , 5) = xwidth_s ;
396 width_limit_up = sort ( dimension_plan ( : , 5) ) ;
397 width_limit_down = width_limit_up (8) ;
398 width_limit_up = width_limit_up ( length ( width_limit_up ) 8) ;
399

400 f i gu re ()
401 gplot (A1,XY, 'k ' )
402 pbaspect ( [ 1 1 1 ] )
403 axis equal
404 xtickformat ( '%g m' )
405 ytickformat ( '%g m' )
406 hold on
407 grid on
408 scat te r ( I_nodes ( : , 1 ) , I_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , 'y ' ) ;
409 hold on
410 scat te r (Y_nodes ( : , 1 ) ,Y_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , ' g ' ) ;
411 hold on
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412 scat te r (M_nodes( : , 1 ) ,M_nodes( : , 2 ) , 'd ' , ' f i l l e d ' , ' r ' ) ;
413 hold on
414 scat te r (X_nodes ( : , 1 ) ,X_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , 'b ' ) ;
415 hold on
416 f o r i = 1: length ( n s l i c e s )
417 f o r i i = (sum( n s l i c e s ( 1 : ( i 1)) )+1 : sum( n s l i c e s (1 : i ) ) )
418 i f dimension_plan ( i i , 5) width_limit_up
419 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [0 0 0 ] , ...

' LineWidth ' , 2)
420 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...

( width_limit_up width_limit_down) ∗(9/10) ) & dimension_plan ( i i , 5) <width_limit_up
421 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [0 0 1 ] , ...

' LineWidth ' , 2)
422 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...

( width_limit_up width_limit_down) ∗(8/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(9/10) )

423 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [0 0 .5 1 ] , ...
' LineWidth ' , 2)

424 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...
( width_limit_up width_limit_down) ∗(7/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(8/10) )

425 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [0 1 1 ] , ...
' LineWidth ' , 2)

426 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...
( width_limit_up width_limit_down) ∗(6/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(7/10) )

427 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [0 1 0 .5 ] , ...
' LineWidth ' , 2)

428 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...
( width_limit_up width_limit_down) ∗(5/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(6/10) )

429 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [0 1 0 ] , ...
' LineWidth ' , 2)

430 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...
( width_limit_up width_limit_down) ∗(4/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(5/10) )

431 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [0 .5 1 0 ] , ...
' LineWidth ' , 2)

432 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...
( width_limit_up width_limit_down) ∗(3/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(4/10) )

433 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [1 1 0 ] , ...
' LineWidth ' , 2)

434 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...
( width_limit_up width_limit_down) ∗(2/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(3/10) )

435 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [1 0 .5 0 ] , ...
' LineWidth ' , 2)

436 e l s e i f dimension_plan ( i i , 5) (width_limit_down + ...
( width_limit_up width_limit_down) ∗(1/10) ) & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(2/10) )

437 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [1 0 0 ] , ...
' LineWidth ' , 2)

438 e l s e i f dimension_plan ( i i , 5) width_limit_down & dimension_plan ( i i , 5) ...
<(width_limit_down + ( width_limit_up width_limit_down) ∗(1/10) )

439 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [1 0 0 .5 ] , ...
' LineWidth ' , 2)
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440 e l s e i f dimension_plan ( i i , 5) width_limit_down
441 plot ( dimension_plan ( i i , [1 3 ] ) , dimension_plan ( i i , [2 4 ] ) , ' co lor ' , [1 0 1 ] , ...

' LineWidth ' , 2)
442 end
443

444 end
445 end
446

447

448 f i gu re ()
449 gplot (A1,XY, 'k ' )
450 pbaspect ( [ 1 1 1 ] )
451 axis equal
452 xtickformat ( '%g m' )
453 ytickformat ( '%g m' )
454 hold on
455 grid on
456 scat te r ( I_nodes ( : , 1 ) , I_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , 'y ' ) ;
457 hold on
458 scat te r (Y_nodes ( : , 1 ) ,Y_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , ' g ' ) ;
459 hold on
460 scat te r (M_nodes( : , 1 ) ,M_nodes( : , 2 ) , 'd ' , ' f i l l e d ' , ' r ' ) ;
461 hold on
462 scat te r (X_nodes ( : , 1 ) ,X_nodes ( : , 2 ) , 'd ' , ' f i l l e d ' , 'b ' ) ;
463 hold on
464 f o r i = 1:sum( n s l i c e s )
465 plot ( e l l ipse_plan ( i ∗2 1, : ) , e l l ipse_plan ( i ∗2 , : ) ) ;
466 %uncomment to show the long and short axis of the
467 %e l l i p s e s
468 plot ( ver_line_plan ( i ∗2 1, : ) , ver_line_plan ( i ∗2 , : ) ) ;
469 plot ( horz_line_plan ( i ∗2 1, : ) , horz_line_plan ( i ∗2 , : ) ) ;
470 end
471

472 %in order to extract the e l l i p s e s parameters of a s p e c i f i c segment
473 %uncomment the fo l lowing l i n e s spec i fy ing the segment number. I f the f i r s t
474 %segment ' s parameters have to be extracted , leave only 'segment_number '
475 %ins ide the brackets .
476

477 % segment_number = x ;
478 % a_s = a_s(sum( n s l i c e s ( 1 : ( segment_number 1) ) )+1:sum( n s l i c e s (1 : segment_number) ) ) ;
479 % b_s = b_s(sum( n s l i c e s ( 1 : ( segment_number 1) ) )+1:sum( n s l i c e s (1 : segment_number) ) ) ;
480 % X0_s = X0_s(sum( n s l i c e s ( 1 : ( segment_number 1) ) )+1:sum( n s l i c e s (1 : segment_number) ) ) ;
481 % Y0_s = Y0_s(sum( n s l i c e s ( 1 : ( segment_number 1) ) )+1:sum( n s l i c e s (1 : segment_number) ) ) ;
482 % long_axis_s = long_axis_s (sum( n s l i c e s ( 1 : ( segment_number ...

1) ) )+1:sum( n s l i c e s (1 : segment_number) ) ) ;
483 % short_axis_s = short_axis_s (sum( n s l i c e s ( 1 : ( segment_number ...

1) ) )+1:sum( n s l i c e s (1 : segment_number) ) ) ;
484 % error_interpolation_s = error_interpolation_s (sum( n s l i c e s ( 1 : ( segment_number ...

1) ) )+1:sum( n s l i c e s (1 : segment_number) ) ) ;
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F.2. Function ROI

1 function [ Ui , Vi , le ft_corner , right_corner , P_1, ns l i c e s , section_points , l_segment , ...
P_1i , dist_points ] = ROI (segm_check , width_large , epsi lon , width_small , min_z , ...
max_z)

2 %% With th i s function i t i s poss ib l e to obtain a l l the parameters that we
3 %need for the pointcloud subsampling , as wel l as i t d iv ides equal ly and
4 %simmetrical ly a l l the segments we are inte res ted in
5 %%
6 f o r i = 1: length (segm_check)
7 segment_i ( i , [1 2 ] ) = segm_check( i , [1 2 ] ) ;
8 segment_i ( i , [3 4 ] ) = segm_check( i , [3 4 ] ) ;
9 % Sort from xmin to xmax:
10 i f segment_i ( i , 3) > segment_i ( i , 1)
11 x1_i ( i ) = segment_i ( i , 1) ;
12 y1_i ( i ) = segment_i ( i , 2) ;
13 x2_i ( i ) = segment_i ( i , 3) ;
14 y2_i ( i ) = segment_i ( i , 4) ;
15 e l s e
16 x1_i ( i ) = segment_i ( i , 3) ;
17 y1_i ( i ) = segment_i ( i , 4) ;
18 x2_i ( i ) = segment_i ( i , 1) ;
19 y2_i ( i ) = segment_i ( i , 2) ;
20 end
21

22 % For s impl i c i ty store l e f t and r ight points of segment :
23 P_1i = [ x1_i ' , y1_i ' ] ' ;
24 P_2i = [ x2_i ' , y2_i ' ] ' ;
25 end
26 Ui = zeros (2 , length (P_1i) ) ;
27 %UU = P_2i P_1i ;
28

29 % Find vector p a r a l l e l to l i n e | |
30 f o r i i = 1: length (P_1i)
31 UU = P_2i P_1i ;
32 Ui ( : , i i ) = UU( : , i i ) . / norm(UU( : , i i ) ) ; % unit vector
33 end
34

35 % I f A i s s ingular , that x and y are on the l i n e .
36 % Therefore , f ind determinant of A and rewrite fo r a∗x + b∗y + c = 0
37 a i = y1_i y2_i ;
38 bi = x2_i x1_i ;
39 c i = x1_i.∗y2_i x2_i.∗y1_i ;
40 Vi = zeros (2 , length (P_1i) ) ;
41

42 %Vp = [ ai ' , bi ' ] ' ;
43 % Find vector perpendicular to l i n e _|_
44 f o r i i = 1: length (P_1i)
45 Vp = [ ai ' , bi ' ] ' ;
46 Vi ( : , i i ) = Vp( : , i i ) . / norm(Vp( : , i i ) ) ; % unit vector
47 end
48

49 %% Divide each segment every _s
50 %since we want the points of the s l i c e s equal ly and symmetrically spaced
51 %ins ide a segment we def ine t and fact
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52 l_segment = ((P_2i(1 , : ) P_1i(1 , : ) ) . ^2 + (P_2i(2 , : ) P_1i(2 , : ) ) . ^2) . ^ (1/2) ;
53 _s = 1 .5 ; %[m]
54 t = (rem( l_segment , _s) / 2) . / l_segment ;
55

56 n s l i c e s = f l o o r ( l_segment/ _s) ;
57 point_t = P_1i + t . ∗ UU;
58 UU = UU( : ) ;
59

60 f o r i i = 1 : length ( segment_i )
61 s l i c e s ( i i , 1 : n s l i c e s ( : , i i ) ) = 1 : n s l i c e s ( : , i i ) ;
62 end
63

64 f ac t = zeros ( length ( segment_i ) , length ( s l i c e s (1 , : ) ) ) ;
65 eq_points = zeros ( length ( point_t ) , length ( s l i c e s (1 , : ) ) ) ;
66 f o r i i = 1 : length ( segment_i )
67 f ac t ( i i , : ) = s l i c e s ( i i , : ) /l_segment ( : , i i ) ;
68 end
69

70 dist_points = ((P_1i(1 , : ) point_t (1 , : ) ) . ^2 + (P_1i(2 , : ) point_t (2 , : ) ) . ^2) . ^ ...
(1/2) ;

71 point_t = point_t ( : ) ;
72 % [ rr , cc ] = f ind (¬f ac t ) ;
73 % z = [ rr , cc ] ;
74 i i = 1 : length ( segment_i ) ;
75 i i i = l inspace (1 , length ( point_t ) 1 , length ( l_segment ) ) ;
76 eq_points ( i i i , : ) = point_t ( i i i , 1) + _s ∗ fact ( i i , : ) . ∗ UU( i i i , 1) ;
77 eq_points ( i i i +1, : ) = point_t ( i i i +1, 1) + _s ∗ fact ( i i , : ) . ∗ UU( i i i +1, 1) ;
78

79 section_points = [ point_t , eq_points ] ;
80

81 f o r i i = l inspace (1 , length ( section_points ( : , 1) ) 1, length ( section_points ( : , 1) ) /2)
82 f o r i = 1 : ( length ( section_points (1 , : ) ) 1)
83 i f section_points ( [ i i i i +1] , 1 + i ) == section_points ( [ i i i i +1] , 1)
84 section_points ( [ i i i i +1] , i +1) = NaN;
85 end
86 end
87 end
88

89 %now that we have a l l the points we can f ind the s tar t ing and the ending
90 %point of each s l i c e
91 x1 = section_points ( l inspace (1 , length ( section_points ( : , 1) ) 1 , length ( n s l i c e s ) ) , : ) ;
92 y1 = section_points ( l inspace (2 , length ( section_points ( : , 1) ) , length ( n s l i c e s ) ) , : ) ;
93 f o r i = 1: length (segm_check)
94 x1( i , n s l i c e s (1 , i )+1) = NaN;
95 y1( i , n s l i c e s (1 , i )+1) = NaN;
96 end
97

98 x2 = section_points ( l inspace (1 , length ( section_points ( : , 1) ) 1 , length ( n s l i c e s ) ) , : ) ;
99 y2 = section_points ( l inspace (2 , length ( section_points ( : , 1) ) , length ( n s l i c e s ) ) , : ) ;
100 x2 ( : , 1) = NaN;
101 y2 ( : , 1) = NaN;
102

103 P_1 = zeros ( length ( section_points ( : , 1) ) , length (x1 (1 , : ) ) ) ;
104 P_1( l inspace (1 , length ( section_points ( : , 1) ) 1 , length ( n s l i c e s ) ) , : ) = x1 ;
105 P_1( l inspace (2 , length ( section_points ( : , 1) ) , length ( n s l i c e s ) ) , : ) = y1 ;
106 P_1 = P_1( : , 1 : length ( s l i c e s (1 , : ) ) ) ;
107
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108 P_2 = zeros ( length ( section_points ( : , 1) ) , length (x1 (1 , : ) ) ) ;
109 P_2( l inspace (1 , length ( section_points ( : , 1) ) 1 , length ( n s l i c e s ) ) , : ) = x2 ;
110 P_2( l inspace (2 , length ( section_points ( : , 1) ) , length ( n s l i c e s ) ) , : ) = y2 ;
111 P_2 = P_2( : , 2 : length ( s l i c e s (1 , : ) ) + 1) ;
112

113 x1 = x1 ( : , 1 : length ( s l i c e s (1 , : ) ) ) ;
114 y1 = y1 ( : , 1 : length ( s l i c e s (1 , : ) ) ) ;
115 x2 = x2 ( : , 2 : length ( s l i c e s (1 , : ) ) + 1) ;
116 y2 = y2 ( : , 2 : length ( s l i c e s (1 , : ) ) + 1) ;
117

118 %%
119 rows = [1 2 ; [1 2 ] + [2 2 ] . ∗( l inspace (1 , length ( n s l i c e s ) 1, length ( n s l i c e s ) 1) ' ) ] ;
120 % Find l e f t corner of region of i n t e r e s t :
121 l e f t_corner = zeros ( length (P_1( : , 1) ) ∗ 1 .5 , length (P_1(1 , : ) ) ) ;
122 P_VUl = zeros ( length (P_1( : , 1) ) , length (P_1(1 , : ) ) ) ;
123 V_Ul = zeros (2 , length ( n s l i c e s ) ) ;
124 f o r i i = 1: length ( n s l i c e s )
125 V_Ul( : , i i ) = Vi ( : , i i ) . ∗ ( width_large + eps i lon ) Ui ( : , i i ) . ∗ width_small ;
126 end
127

128

129 f o r i = 1: length ( n s l i c e s )
130

131 P_VUl( rows ( i , : ) , : ) = P_1( rows ( i , : ) , : ) + V_Ul( : , i ) ;
132 end
133

134 l e f t_corner ( [ 1 2 ; [1 2 ] + [3 3 ] . ∗( l inspace (1 , length ( n s l i c e s ) 1, ...
length ( n s l i c e s ) 1) ' ) ] ' , : ) = P_VUl;

135 l e f t_corner ( l inspace (3 , length ( le ft_corner ) , length ( n s l i c e s ) ) , : ) = min_z ;
136

137 % Find r ight corner of region of i n t e r e s t :
138 right_corner = zeros ( length (P_1( : , 1) ) ∗ 1 .5 , length (P_1(1 , : ) ) ) ;
139 P_VUr = zeros ( length (P_1( : , 1) ) , length (P_1(1 , : ) ) ) ;
140 V_Ur = zeros (2 , length ( n s l i c e s ) ) ;
141 f o r i i = 1: length ( n s l i c e s )
142 V_Ur( : , i i ) = Vi ( : , i i ) . ∗ ( width_large + eps i lon ) + Ui ( : , i i ) . ∗ width_small ;
143 end
144

145 f o r i = 1: length ( n s l i c e s )
146

147 P_VUr( rows ( i , : ) , : ) = P_1( rows ( i , : ) , : ) + V_Ur( : , i ) ;
148 end
149 right_corner ( [ 1 2 ; [1 2 ] + [3 3 ] . ∗( l inspace (1 , length ( n s l i c e s ) 1, ...

length ( n s l i c e s ) 1) ' ) ] ' , : ) = P_VUr;
150 right_corner ( l inspace (3 , length ( right_corner ) , length ( n s l i c e s ) ) , : ) = max_z;

F.3. Function SEGM

1 function [ segm_check , length_segm_M , length_segm_I , length_segm_Y , length_segm_X ] = ...
SEGM (F, M_nodes, I_nodes , Y_nodes , X_nodes)

2 %% This function al lows to i s o l a t e only the the segments we want to study , which are ...
the segments l inked by I M, I I nodes.

3 %%
4 F_r = round (F ∗ 10^4) /10^4;
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5 M_nodes = round (M_nodes ∗ 10^4) /10^4;
6 I_nodes = round ( I_nodes ∗ 10^4) /10^4;
7 Y_nodes = round (Y_nodes ∗ 10^4) /10^4;
8 X_nodes = round (X_nodes ∗ 10^4) /10^4;
9

10 %Find the indexes of M, I , Y, X nodes
11 F_M_idx12 = f ind ( ismember(F_r( : , [1 2 ] ) , M_nodes, ' rows ' ) ) ;
12 F_I_idx12 = f ind ( ismember(F_r( : , [1 2 ] ) , I_nodes , ' rows ' ) ) ;
13 F_Y_idx12 = f ind ( ismember(F_r( : , [1 2 ] ) , Y_nodes , ' rows ' ) ) ;
14 F_X_idx12 = f ind ( ismember(F_r( : , [1 2 ] ) , X_nodes , ' rows ' ) ) ;
15

16 F_M_idx34 = f ind ( ismember(F_r( : , [3 4 ] ) , M_nodes, ' rows ' ) ) ;
17 F_I_idx34 = f ind ( ismember(F_r( : , [3 4 ] ) , I_nodes , ' rows ' ) ) ;
18 F_Y_idx34 = f ind ( ismember(F_r( : , [3 4 ] ) , Y_nodes , ' rows ' ) ) ;
19 F_X_idx34 = f ind ( ismember(F_r( : , [3 4 ] ) , X_nodes , ' rows ' ) ) ;
20

21 %find the length of a l l the segments l inked by M, I , Y or X nodes
22

23 M_col = unique ( vertcat (F_M_idx12, F_M_idx34) ) ;
24 I_col = unique ( vertcat (F_I_idx12 , F_I_idx34) ) ;
25 Y_col = unique ( vertcat (F_Y_idx12, F_Y_idx34) ) ;
26 X_col = unique ( vertcat (F_X_idx12, F_X_idx34) ) ;
27

28 length_segm_M = ((F( [ M_col ] , 3) F( [ M_col ] , 1) ) . ^2 + (F( [ M_col ] , 4) F( [ M_col ] , ...
2) ) . ^2) . ^ (1/2) ;

29 length_segm_I = ((F( [ I_col ] , 3) F( [ I_col ] , 1) ) . ^2 + (F( [ I_col ] , 4) F( [ I_col ] , ...
2) ) . ^2) . ^ (1/2) ;

30 length_segm_Y = ((F( [ Y_col ] , 3) F( [ Y_col ] , 1) ) . ^2 + (F( [ Y_col ] , 4) F( [ Y_col ] , ...
2) ) . ^2) . ^ (1/2) ;

31 length_segm_X = ((F( [ X_col ] , 3) F( [ X_col ] , 1) ) . ^2 + (F( [ X_col ] , 4) F( [ X_col ] , ...
2) ) . ^2) . ^ (1/2) ;

32 %create a matrix with the degrees of the nodes
33 length_segm_M ( : , 2) = 1;
34 length_segm_I ( : , 2) = 2;
35 length_segm_Y ( : , 2) = 3;
36 length_segm_X ( : , 2) = 4;
37

38 F_r( [F_M_idx12] ' , [1 2 ] ) = 1;
39 F_r( [F_M_idx34] ' , [3 4 ] ) = 1;
40 F_r( [ F_I_idx12 ] ' , [1 2 ] ) = 1;
41 F_r( [ F_I_idx34 ] ' , [3 4 ] ) = 1;
42 F_r( [ F_Y_idx12 ] ' , [1 2 ] ) = 0;
43 F_r( [ F_Y_idx34 ] ' , [3 4 ] ) = 0;
44 F_r( [ F_X_idx12 ] ' , [1 2 ] ) = 0;
45 F_r( [ F_X_idx34 ] ' , [3 4 ] ) = 0;
46

47 check = a l l (F_r( : , [1 2 3 4 ] ) , 2) ;
48

49 % Create a matrix with the segments that we want to analyze
50 F_1 = F( : , 1) ;
51 F_2 = F( : , 2) ;
52 F_3 = F( : , 3) ;
53 F_4 = F( : , 4) ;
54 segm_check ( : , 1) = F_1( l o g i c a l ( check ) , : ) ;
55 segm_check ( : , 2) = F_2( l o g i c a l ( check ) , : ) ;
56 segm_check ( : , 3) = F_3( l o g i c a l ( check ) , : ) ;
57 segm_check ( : , 4) = F_4( l o g i c a l ( check ) , : ) ;
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F.4. Function PROJ

1 function [R, Q_1, normal , angle_deg ] = PROJ (Ui , left_corner , P_1, Vi , width_large , ...
epsi lon , max_z)

2 %% With th i s function we can ca l cu la te parameters use fu l fo r the subpointclouds ...
pro ject ions

3 % First f ind pr inc ip l e coordinate to rotate to , in th i s case we
4 % rotate w . r . t . y_axis vector [0 , 1 ] ' :
5 % REASON: We are searching wide in the x d i rec t ion ( f i r s t coordinate ) , so
6 % we want to or ient the pointcloud and search box w. r . t y a x i s .
7 ref_vec = [0 , 1 ] ' ;
8 ref_vec = ref_vec / norm( ref_vec ) ; % unit vector
9

10 % Calculate angle between | | and re fe rence vector :
11 angle = zeros (1 , length (Ui) ) ;
12 f o r i = 1: length (Ui)
13 angle ( : , i ) = acos ( ref_vec ' ∗ Ui ( : , i ) ) ;
14 angle_deg = angle ∗ 180 / pi ;
15 end
16

17 R( : , [1 2 ; [1 2 ] + [2 2 ] . ∗( l inspace (1 , length (Ui) 1, length (Ui) 1) ' ) ] ) = [ cos ( angle ) , ...
s in ( angle ) ;

18 s in ( angle ) , cos ( angle ) ] ;
19

20 % Find plane on which to project :
21 Q_1 = zeros ( s i z e ( le f t_corner ) ) ;
22 Q_2 = zeros ( s i z e ( le f t_corner ) ) ;
23 Q_3 = zeros ( s i z e ( le f t_corner ) ) ;
24 rows = [1 2 ; [1 2 ] + [2 2 ] . ∗( l inspace (1 , length (Ui) 1, length (Ui) 1) ' ) ] ;
25 rows_b = [1 2 ; [1 2 ] + [3 3 ] . ∗( l inspace (1 , length (Ui) 1, length (Ui) 1) ' ) ] ;
26

27 f o r i = 1: length (Ui)
28

29 Q_1(rows_b( i , : ) , : ) = P_1( rows ( i , : ) , : ) + Vi ( : , i ) ∗ ( width_large + eps i lon ) ;
30 Q_2(rows_b( i , : ) , : ) = P_1( rows ( i , : ) , : ) ;
31 Q_3(rows_b( i , : ) , : ) = Q_1(rows_b( i , : ) , : ) ;
32 Q_3( l inspace (3 , length ( le ft_corner ) , length ( le ft_corner ) /3) , : ) = max_z;
33

34 end
35

36 % Get normal to f ind the plane
37 normal = zeros ( length ( le ft_corner ) , 1) ;
38 r_1 = l inspace (1 , length ( le ft_corner ) 2 , length (Ui) ) ;
39 r_2 = l inspace (2 , length ( le ft_corner ) 1 , length (Ui) ) ;
40 r_3 = l inspace (3 , length ( le ft_corner ) , length (Ui) ) ;
41 normal (r_1) = (Q_2(r_2 , 1) Q_1(r_2 , 1) ) . ∗(Q_3(r_3 , 1) Q_1(r_3 , 1) ) (Q_2(r_3 , 1) ...

Q_1(r_3 , 1) ) . ∗(Q_3(r_2 , 1) Q_1(r_2 , 1) ) ;
42 normal (r_2) = (Q_2(r_3 , 1) Q_1(r_3 , 1) ) . ∗(Q_3(r_1 , 1) Q_1(r_1 , 1) ) (Q_2(r_1 , 1) ...

Q_1(r_1 , 1) ) . ∗(Q_3(r_3 , 1) Q_1(r_3 , 1) ) ;
43 normal (r_3) = (Q_2(r_1 , 1) Q_1(r_1 , 1) ) . ∗(Q_3(r_2 , 1) Q_1(r_2 , 1) ) (Q_2(r_2 , 1) ...

Q_1(r_2 , 1) ) . ∗(Q_3(r_1 , 1) Q_1(r_1 , 1) ) ;
44 f o r i = 1: length ( angle )
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45 normal ( [ i ∗3 2 i ∗3 1 i ∗3 ] , 1) = normal ( [ i ∗3 2 i ∗3 1 i ∗3 ] ) . / norm( normal ( [ i ∗3 2 i ∗3 1 ...
i ∗3 ] ) ) ; % unit vector

46 end
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