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Abstract

Speed trajectories considerably influence vehicular fuel consumption, particularly on signal-
ized roads. To minimize fuel consumption, sharp acceleration/deceleration maneuvers and
idling events at signalized intersections should be prevented. By taking advantage of the
technological developments in infrastructure-to-vehicle communication, the possibility of re-
ceiving traffic signal phase and timing information in advance is enabled. Although a vast
amount of research has been dedicated to optimal speed trajectory planning, existing meth-
ods may not be adequate in identifying the optimal solution for vehicles driving on signalized
roads. Most studies do not involve queue estimation in the algorithm, which makes it challeng-
ing to deploy these methods in practice. Moreover, research efforts focus on undersaturated
traffic conditions where queues can completely dissolve in a single cycle. Once the network is
oversaturated, residual queues are formed generating traffic fluctuations and complete stops,
significantly reducing the effectiveness of the application.

In this thesis, an optimal control problem is formulated to obtain the optimal speed trajectory,
where traffic induced constraints are taken into account and queue estimation is explicitly
integrated into the control framework. Based on kinematic wave theory, an efficient and ac-
curate procedure to formulate the queue constraints in various traffic conditions is developed.
To facilitate real-time control actions, the constrained optimization problem is solved using
model predictive control. The simulation case studies show the proposed algorithm achieves
vehicular fuel consumption savings as high as 29.15% compared to an existing approach in the
literature. However, the fuel consumption savings are at the expense of an increase in travel
time up to 1.65% compared to the literature approach. The results also indicate the benefits
grow with increasing market penetration rates (MPRs) of controlled vehicles until it levels
off at about 80% MPR. Furthermore, the results demonstrate the proposed algorithm can
deal with stochasticity in traffic behavior. Finally, the thesis highlights the need for future
research to further improve the proposed algorithm.
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Chapter 1

Introduction

As a result of increasing economic activities and a growing population, interrupted and con-
gested traffic flow presents a significant problem on signalized roads. Longer travel times and
idling increase fuel consumption, which in consequence harms the environment due to the
emission of greenhouse gasses (GHG). According to Byrne et al. [1] urban traffic in Germany
in 2018 was accountable for approximately 43% of nitrogen oxides (NOy) emissions and 33%
of carbon monoxide (CO) emissions. Furthermore, as oil consumption grows, the shortage of
fossil energy becomes severe. According to studies, at the current consumption rate oil will be
depleted in roughly 35 years [2]. Hence, it is of great importance to reduce fuel consumption
and emissions. Recently, studies attempted reducing fuel consumption and the emission of
GHG by facilitating drivers with driving behavior instructions [3, 4], variable speed limit con-
trol [5], fuel-optimal vehicle platooning [6] and environmental friendly routing [7]. All these
studies have in common that a vehicle can significantly reduce fuel consumption and GHG
emissions if it follows the provided optimal speed trajectory.

With the rising awareness of the relation between speed, acceleration, deceleration and fuel
consumption, many studies focus on applying optimal speed control to vehicles. For highways,
the relation between speed profiles, fuel consumption and emission rates has been extensively
studied [8]. Highways have no traffic signals that bring traffic to a complete standstill and
therefore have a continuous traffic flow. Consequently, vehicles on highways have no con-
straints on the time interval at which they have to reach a specific location on the road,
which makes it relatively straightforward to create optimal speed algorithms by adjusting the
behavior of drivers.

Novel studies therefore focus on applying optimal speed trajectory control to vehicles driving
on signalized roads. A common objective of these research efforts is to provide drivers with
an optimal speed profile to prevent sharp acceleration/deceleration maneuvers and reduce
idling time, which are the primary causes of high fuel consumption. For instance, American
drivers spend on average a total of 54 hours in congestion and waste 21 gallons of fuel at
a cost of 1080 dollars in wasted fuel per year [9]. A considerable share of this idling time
is spent in front of traffic lights. Poor signal timing is responsible for an estimated 10% of
all delays on urban roads [10]. Advanced traffic signal control mechanisms such as signal
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2 Introduction

synchronization and traffic-actuated signals have been installed at intersections, saving time
and fuel. However, such measures are expensive to implement and maintain [11] and even
with these measures, drivers frequently travel at full speed towards a green light and must
come to a complete stop when the signal turns red. The absence of information about the
traffic signal’s future state increases travel time, fuel consumption and emissions [12]. In an
ideal scenario, the future phase and timing of a traffic signal are known and the driver can
adjust its speed for arrival during a green phase.

1-1 State of the art

Recently, research has been conducted on developing optimal speed planning models based on
standardized traffic signal phase and timing (SPaT) information. With the developments in
infrastructure-to-vehicle (I12V) communication, it is possible to receive the current phase and
timing of traffic signals in advance. Based on this information it is possible to apply speed
control to the vehicle, reducing the likelihood of stopping and idling in front of the red traffic
light. In addition to maximizing the probability of passing a green light, the cost function can
be chosen such that it reduces fuel consumption and emissions. Hence, instead of changing
the design of the timing controller of the traffic signal, optimal speed planning methods can be
designed that take state and input constraints into account while simultaneously minimizing
fuel consumption and/or emission rates.

In this thesis, the focus will be on speed trajectory control of individual vehicles driving on a
single-lane signalized road. Only single-lane roads are considered, where both the upstream
and downstream roads merely consist of one lane. This ensures vehicles do not overtake
their leader and that there is no lane-changing behavior. This assumption is made to prevent
dealing with complex lane-changing characteristics and is reasonable since urban lane changes
have not been extensively studied [13].

Speed trajectory control for individual vehicles is currently addressed using several approaches
like dynamic programming (DP) [14, 15], model predictive control (MPC) [16, 17] or other
optimization-based approaches [18, 19]. While current methods, such as DP, can obtain the
global optimum strategy over the entire driving route, they require complete knowledge of the
traffic conditions in advance [20]. Specifically, DP is based on a time domain and after any
divergence from the optimal strategy, the remaining profile needs to be completely optimized
again. The computation time of DP is therefore extremely dependent on the number of
discretized states. Because of this limitation, such an approach is only used in offline and pre-
trip scenarios under the assumption of free-flow traffic conditions [21]. Alternative methods
for eco-driving decrease their computation time by optimizing over a finite prediction horizon
and repeating the optimization process at every time step like MPC [22].

MPC is a model-based control method that utilizes a dynamic model to predict system be-
havior and repeatedly calculate the optimal control sequence online in a receding horizon
way. MPC is one of the model-based control strategies that is currently attracting research
attention and is widely implemented in a variety of industrial fields [23]. MPC represents
a promising method for speed trajectory control of vehicles in urban areas since: (i) it can
optimize over a combination of objectives like fuel consumption, control effort, emission rates
and travel time of the individual vehicles; (ii) through the receding horizon procedure, MPC

Eline M.C. Schropp Master of Science Thesis



1-2 Scientific gap 3

can work with real-time feedback which makes it robust against uncertainties of the process;
(iii) traffic induced restrictions can be included as MPC can take state and input constraints
into account; (iv) MPC is modular allowing the prediction model to be selected and substi-
tuted based on the trade-off between computational efficiency and accuracy or the control
objectives.

1-2 Scientific gap

Although a vast amount of research has been dedicated to optimal speed trajectory planning,
existing methods may not be adequate in identifying the optimal solution for vehicles driving
on signalized roads. Most studies minimize fuel consumption and reduce idling time by
only considering the constraints imposed by traffic signals. Nonetheless, idling time is also
determined by the vehicle waiting queue and ignoring the spatial and temporal constraints
by other road users could result in suboptimal or even infeasible solutions.

To consider the impact of surrounding traffic, Wang et al. designed a cluster-wise cooperative
eco-driving strategy in a (partially) connected vehicle environment [24, 25|. He et al. [18]
and Wu et al. [26] calculated optimal vehicle trajectories for individual vehicles while taking
vehicle queues into account. However, the studies above assumed that the queuing process
can be detected with on-board sensors, can be predicted based on historical data or is known
in advance. These assumptions are not entirely realistic as the length of the queue changes
over time and can be difficult to detect especially when the penetration rate of connected
vehicles is relatively low. Therefore, without involving queue estimation in the algorithm, it
will be quite challenging to deploy these methods in practice. Yang et al. [27] estimate the
queue length ahead of the controlled vehicle and ensure it arrives at the intersection just as the
last vehicle in the queue is released. However, this research effort focuses on undersaturated
traffic conditions where queues can completely dissolve in a single cycle. Once the network is
oversaturated, residual queues are formed generating traffic fluctuations and complete stops
for the controlled vehicle, significantly reducing the effectiveness of the application.

1-3 Research objective

MPC has shown promising results in the control of vehicles driving on signalized roads and the
computation time has the potential to be fast enough for real-time implementation. Therefore,
the main goal of this thesis is:

To develop a real-time implementable predictive speed control (PSC) strategy for
vehicles proceeding through signalized intersections to reduce fuel consumption while
considering queue constraints.

One of the main challenges lies in the accuracy of estimating queue propagation in real-time
and efficiently integrating the queue constraints into the control framework. Consequently,
the following subquestions are formulated to achieve the main research objective:

1. What is an accurate method to estimate queue propagation in the vicinity of signalized
intersections?

Master of Science Thesis Eline M.C. Schropp



4 Introduction

In principle, one can predict the queuing effect and derive the spatial and temporal
restrictions by using microscopic car-following models or macroscopic traffic flow models.

2. How can the queue constraints be integrated into the control framework such that it
operates in various traffic conditions?
In fact, the effectiveness of the optimal speed profile provided by the PSC strategy
depends heavily on the estimation efficiency and accuracy of signal and traffic conditions.

The unique contribution of this thesis is the use of MPC to provide real-time speed advice for
vehicles driving on a single-lane signalized road taking into account traffic induced constraints
and explicitly involving queue estimation in the algorithm. The developed algorithm is a
general framework and can be used in various traffic conditions, varying from undersaturated
to oversaturated.

1-4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 presents an overview of the
relevant background information and preliminaries regarding traffic flow modelling and speed
trajectory control on signalized roads. In Chapter 3, a vehicle model is developed, which
is then used to identify the optimal problem formulation. The effectiveness of the Eco-PSC
algorithm is evaluated and analyzed by running different simulation case studies in Chapter 4.
Finally, Chapter 5 concludes this thesis together with recommendations for future research.
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Chapter 2

Background and preliminaries

In this chapter, relevant literature and theories are discussed to establish the basis upon
which the rest of this thesis is built. In order to achieve this, fundamental traffic flow theory is
detailed at the beginning of this chapter. Different levels at which traffic is typically described
are discussed by means of the primary variables in Section 2-1. Section 2-2 illustrates the
basic concept of kinematic wave theory. This section further elaborates on how kinematic
wave theory can be deployed to determine the cumulative number of vehicles. Subsequently,
the effects of queues and vehicle spillback on signalized roads are discussed in Section 2-3.
Lastly, the concept of model predictive control (MPC) is introduced in Section 2-4, which is
used as the control framework in this thesis.

2-1 Traffic variables

Different levels of detail can be distinguished to describe the traffic conditions in a network.
On a microscopic level, the characteristics of all individual vehicles are described to represent
the traffic conditions. The main variables in this description are the time headway h, distance
headway or spacing s and individual vehicle speed v [28]. The time headway is defined as
the time it takes for the follower to reach the position of its leader. Similarly, the distance
between the follower and its leader is defined as the spacing. Finally, the individual speed

Table 2-1: Outline of the traffic variables and their relationships, where the brackets specify the

mean.

Microscopic Symbol Unit Macroscopic Symbol  Unit Relation
Time headway h s Flow q veh/h q= %
Spacing s m Density P veh/km p= 1<0T0)0
Individual speed v m/s  Average speed u km/h u = 3.6(v)
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6 Background and preliminaries

of a vehicle is defined as the distance traveled per unit of time. On the macroscopic level,
the variables are aggregated and describe the characteristics of traffic as a whole. The traffic
conditions on this level are described by the variables flow ¢, density p and average speed u
[28]. The flow is specified as the number of vehicles passing a reference point per unit of time.
The density is the number of vehicles per unit of road segment. Lastly, one can define the
average speed of the vehicles in the network. The traffic variables and their relationships are
summarized in Table 2-1.

2-1-1 Three-dimensional representation

A complete macroscopic description of traffic flow can alternatively be described using the
three dimensions: space s, time t and cumulative flow N(s,¢) [29]. The cumulative flow
describes the number of the last vehicle to pass location s before time ¢ and is only applicable
to traffic in one direction. As a result, this function is an integer variable and only grows over
time. Technically speaking, the cumulative flow is a step function that increases with one
every time a vehicle passes. However, for higher flow rates and longer periods, the function
is frequently smoothed into a continuously differentiable function [28]. If N(s,t) is smoothed
and continuously differentiable, the partial derivatives of the cumulative flow with respect to
time and space are the flow and (negative) density functions:

gl 1) = 20000 (2)
pls, 1) = ~2% -0 (2

The negative sign in Eq. (2-2) arises due to the convention that N(s,t) is numbered in
decreasing order in the direction of increasing s, see Figure 2-1. Assuming that the cumulative
flow and its first and second derivatives exist, the identity

>N (s,t)  0°N(s,t)

ds0t  Otds (2:3)
combined with Eq. (2-1) and Eq. (2-2) becomes:

ot s

which is better known as the conservation law. Solutions of the conservation law represent the
evolution of a traffic state over space and time. Generally, the conservation law is expressed
with regard to the cumulative flow [30].

In some circumstances, the difference in cumulative flow between two points in space-time has
a physical meaning. To illustrate, the difference in cumulative flow between the upstream and
downstream link boundary at time t yields the number of vehicles on the link. In Figure 2-1,
the number of vehicles on the link at time ¢3 is equal to the change in cumulative flow over
the green line. Furthermore, the change in cumulative flow over the blue line is equal to
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2-2 Traffic flow models 7

95}

| I I | »
t 0 t3 4

Figure 2-1: Vehicle trajectories, values for the cumulative flow function and change in cumulative
flow between two points in space-time. The green line represents the number of vehicles that
are present on the link at time ¢3. The blue line represents the number of vehicles that have left
the link between t; and t3. The yellow line represents the travel time associated with the fourth
vehicle, i.e. ty — to.

the number of vehicles that have left the link between t; and t3. Lastly, the time difference
between an equal value of the upstream and downstream cumulative flow curve determines
the travel time associated with a specific vehicle number. For example, the travel time for
the vehicle number related to the yellow curve is t4 — to.

2-2 Traffic flow models

When selecting a traffic low model for restriction calculations, it is important to make a
trade-off between model accuracy and complexity. The choice between a microscopic and a
macroscopic model primarily determines the complexity of the traffic flow model. In case
of microscopic models, computer memory presents the limiting factor, as these models have
to store data for all the individual vehicles in the network which significantly increases for
large networks. Macroscopic models are faster in computation time and easily scalable as the
number of variables is independent of the number of vehicles in the network. Consequently,
estimating traffic constraints macroscopically is more useful in practice concerning data avail-
ability, scalability and computational efficiency. This, in addition, offers more possibilities to
deal with non-deterministic factors (e.g. stochasticity in traffic behavior) and later expansion
such as controlling multiple vehicles and traffic-actuated signals.

2-2-1 The LWR-model and kinematic wave theory

The basic concept behind all continuum macroscopic traffic flow models is the conservation
principle derived from fluid theories. Recall that the conservation of vehicles was defined as:

Master of Science Thesis Eline M.C. Schropp



8 Background and preliminaries

»
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Figure 2-2: Triangular shaped continuous concave fundamental diagram with important param-
eters: free-flow speed vy, capacity g., critical density p.,, passing rate r, wave speed w and jam
density p;.

o 00 _

bl - 2-5
at s (2-5)
The kinematic wave theory (KWT), as originally described by Lighthill, Whitham and
Richards [31, 32|, arises from the assumption that in steady-state conditions a relationship

between the flow ¢ and density p exists, i.e.

q=Q(p) (2-6)

This relation is the so-called fundamental diagram (FD) of traffic flow. In general, the flow
is a continuous and concave function of the density.

Figure 2-2 shows a triangular shaped continuous concave FD. The triangular FD is exten-
sively used in traffic state estimation because of its simplicity, theoretical preferable features
and certain empirical evidence [33]. Traffic states on the left-hand side hold for vehicles trav-
elling with free-flow speed vy, whereas traffic states on the right-hand side are congested and
travel with wave speed w. Free-flow states typically travel in the direction of traffic with a
positive wave speed, as the slope of the tangent line is positive for the free-flow branch. In
contrast, congested traffic states travel against the direction of traffic and therefore travel
with a negative wave speed. The maximum flow or capacity g. occurs at critical density per,
while zero flow corresponds to the jam density p; [34]. The passing rate r is the maximum
rate at which the cumulative flow changes over a wave.

Combining the FD with Eq. (2-5) yields the LWR form of the conservation principle:

o 9Qp)
ot 0s

=0 (2-7)
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2-2 Traffic flow models 9

Given initial and boundary conditions the partial differential equation can be solved. Different
boundary conditions generate different traffic states travelling at particular speeds. At some
point, these states may cross one another. Yet, at one point there can only be one unique
traffic state. In consequence, when the characteristics intersect a shockwave is formed where
the wave speed can be determined using the following equation:

w1 = (2'8)

where q1, g2, p1 and po represent the flows and densities of the different traffic states, respec-
tively. Models based on KWT represent vehicle propagation based on a FD of traffic flow.
Furthermore, KW'T can be used to determine the cumulative flow on the boundary of the
link by following the path of the shockwave. Throughout this thesis, homogeneous signalized
roads are considered, this means that the same FD holds for all locations.

2-2-2 Newell’s simplified kinematic wave theory

Newell [35, 36, 37] presented the simplified kinematic wave theory where he simplifies the
procedure of determining the cumulative flow. Newell uses KWT to directly evaluate the
cumulative flow N (s, t) for points in space-time instead of flows or densities. The conventional
LWR-model can hence be rewritten where the cumulative flow is used as the new state
variable:

ON (s,t)
ot

—0N(s,t)
Os

- Q )=0 (2.9)

Newell’s method uses a triangular shaped FD where there are only two characteristic wave
speeds: vy and w. According to Newell, the cumulative flow N(sp,tp) can be calculated
given a boundary B over which the cumulative flow Nj is known and from which a vg-wave
and a w-wave can be drawn to point P [38]. In this particular situation, the minimum of
these two constraints yields N in point P. Figure 2-3 provides an illustration in which Ng is
known over B and where N is estimated for point P. The constraining paths are obtained by
drawing the characteristic wave speeds starting from B. Then, the cumulative flow for point
P can be estimated using:

N(Sp,tp) = min [N(So,tg),N(SL, tl) —+7r- (tp — tl)} (2—10)

where sq is the location of the upstream link boundary, sy, is the location of the downstream
link boundary, r is the passing rate and t; is the time instant defined in Figure 2-3,¢ = 1,2, P.

The considerable benefit of this simplified theory is that the cumulative flow for the full
space-time domain can be estimated without following the precise path of the shockwave [34].
Without evaluation at intermediate times and locations, the solution for N(s,t) can directly
be determined from initial (N (s, )) and boundary conditions (N (sp,t) and N(sr,t)), which
allows for an efficient and accurate procedure.
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10 Background and preliminaries

S
A
S T+ B
Sp 1+ .P
So +
I I — > t
to t, tp

Figure 2-3: Estimation of the cumulative flow N(sp,tp) using Newell's simplified method. The
cumulative flow in point P can be determined by drawing a vy-wave and a w-wave from the
boundary 5 to P.

2-3 Queue and spillback effects on signalized roads

Most studies related to optimal speed trajectory control try to reduce idling time and smooth
acceleration /deceleration maneuvers by only taking constraints induced by traffic signals into
account. However, ignoring the spatial and temporal constraints by and to other road users
could result in suboptimal or even infeasible solutions. Thus regarding surrounding traffic,
there are two types of restrictions that are important to account for, i.e. queues and spillback.

2-3-1 Queue estimation

Queue estimation has already reached substantial research interest in many extensive studies
about queue length estimation [39]. Especially accurate queue length estimation can help
to improve speed trajectory control, which is important to reduce fuel consumption. Queue
profile estimation has recently attracted research attention as such estimation is crucial for
an extensive queue analysis. For example, at a signalized intersection, it can capture the
spatiotemporal progression of the queue [40].

To facilitate real-time speed advice, control actions must be computed quickly [41]. As a
result, tracking traffic densities in each road segment is unnecessary. However, to calculate
the arrival time of the controlled vehicle accordingly, it is important to track the tail of
the waiting queue. For example, the delay triangle is formed by the maximum speed vy,
minimum speed vy, and the red phase length of the traffic signal [42]. The advisory speed of
the vehicle without considering the queue, denoted by vy, is calculated by avoiding the delay
triangle as demonstrated in Figure 2-4(a). However, the advisory speed with consideration
of the queue, denoted by w1, should be smaller than vy to prevent running into the queue as
illustrated in Figure 2-4(b).
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Figure 2-4: Optimal speed trajectory: (a) without considering the vehicle waiting queue, (b)
with consideration of the vehicle waiting queue [18].

Some researchers assume that the controlled vehicle can acquire vehicle queue information
accurately [43], however this may not always be possible in the future as not all vehicles
can be connected [44]. Other studies utilize various queue prediction methods, including the
Intelligent Driver Model [15], the LWR-model [27, 45] and the Shockwave Profile Model [46]
to predict queue movement. As explained in Section 3-2-3, in this thesis queue propagation
will be estimated by predicting the future cumulative flow curves, identifying the restrictive
red periods and using KW'T.

2-3-2 Vehicle spillback

Vehicle spillback remains a frequently observed phenomenon wherein a road cannot accommo-
date all inbound vehicles and the queue extends back [47]. There are two types of spillback,
i.e. downstream and upstream spillback. Downstream spillback is caused by traffic signals.
Consider a signalized road where several links are separated by traffic lights. If there is spill-
back on the most downstream link, then this will constrain the adjacent link. As a result,
fewer vehicles can flow out even though the traffic signal is green. Downstream spillback can
therefore also be regarded as an extension of the vehicle waiting queue and can be incorporated
into queue estimation.

Upstream spillback is caused by vehicles. When implementing signalized intersections in
optimal speed trajectory control, the main issue is how to deal with upstream spillback that
is caused by the controlled vehicle but does not occur without control. Specifically, the
controlled vehicle can create and worsen upstream spillback as a low cruise speed can disrupt
other traffic and may lead to other upstream vehicles being unable to enter the link [25].
Hence, vehicle spillback represents a significant source of congestion and must be managed
differently from queues that are limited to a single link [48, 49].
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2-4 Speed trajectory control

Speed trajectory control gained recent research attention which is primarily due to the im-
provements in infrastructure-to-vehicle (I2V) communication and the standardization of signal
phase and timing (SPaT) information [50]. Moreover, control methods have improved over
time and have become more robust and complex, resulting in higher efficiency. Hence, re-
search on mathematical algorithms to estimate fuel optimal speed profiles for vehicles driving
on signalized roads have vastly been investigated in the literature. These approaches differ
due to their difference in control approach, control requirements, type of vehicles, level of con-
nectivity between the vehicles and level of autonomy of the vehicles regarded in the problem
[51].

2-4-1 Model predictive control

MPC is a model-based control method that utilizes a dynamic model to predict system be-
havior and repeatedly calculate the optimal control sequence online in a receding horizon way.
As shown in Figure 2-5, the receding horizon principle indicates an optimization problem is
solved over a finite prediction horizon P at each control step k£ and only the first input of
the optimal control sequence is implemented [22]. After which, the horizon is shifted by one
time step and the optimization is restarted with new information about the measurements
retrieved from the system. Thus, when a prediction model is available, an optimal control
problem can be formulated that minimizes the objective function under the system dynamics
and constraints. Hence, a general formulation of the optimization problem can be expressed
as follows:

P—1
min J = ) Uak),ulk)) + Vi(z(P)) (2-11a)
k=0
subject to z(0) = xo (2-11Db)
z(k+1) = f(z(k),u(k)), Vk=0,...,P—1 (2-11c)
(x(k),u(k)) €eZ, Yk=0,...,P—1 (2-11d)
z(P) € X¢ (2-11e)

where P is the prediction horizon, zq is the current measured state, Z is the state and input
constraints set, X; is the terminal constraint set and J is the cost. The cost function consists
of two parts, the first term ¢(-) represents the cost of each stage k and the second term V;(-)
represents the cost of the terminal state.

MPC represents a promising method for speed trajectory control of vehicles in urban areas
since it can optimize over a combination of objectives, e.g. fuel consumption levels, emission
rates, control effort and travel time of the individual vehicles. Because of the receding horizon
approach, the latest system measurements are fed back to the controller closing the control
loop, which makes MPC robust against uncertainties of the process. These uncertainties
can be caused by model mismatches in the prediction model, environmental disturbances and
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Figure 2-5: Receding horizon principle used in MPC. At each control step k the sequence of
optimal control inputs is determined over the prediction horizon P. Only the first optimal control
input is implemented and the horizon is shifted by one time step [52].

state estimation error. In addition, traffic imposed restrictions, e.g. traffic lights, speed limits,
safe distance separation, queues and spillback, can be included as MPC can take state and
input constraints into account. Another benefit of MPC is its modular design, allowing one
to select and substitute the prediction model based on the trade-off between computational
efficiency and accuracy or the control objectives [52].

Nevertheless, methods that use a finite prediction horizon make the optimization results
mainly dependent on the horizon length. While a long prediction horizon with reliable data
may result in better performance, it simultaneously requires a considerably longer computa-
tion time. Thus, for real-time computations, a short prediction horizon is preferred. However,
a short horizon typically generates a speed trajectory less optimized for an entire route or
the long-term [53]. Hence, the main challenge for MPC is to achieve adequate long-term op-
timization results with a computation time that is fast enough for real-time implementation.
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Chapter 3

System model and problem
formulation

Urban eco-driving attracted research attention due to the standardization of signal phase
and timing (SPaT) information and the advancements in infrastructure-to-vehicle (I12V) com-
munication [50]. Unlike traffic flow on highways, traffic on signalized roads is dominated
by external events such as traffic signals. Vehicles come to a complete standstill before the
stop line during the red phase of the traffic signal, producing shockwaves within the traffic
stream. These shockwaves lead to vehicle acceleration/deceleration maneuvers and idling
events, which increases fuel consumption [12]. Eco-driving studies, therefore, focus on in-
tersection crossing where they utilize mathematical algorithms to compute fuel and traffic
optimal speed profiles.

This chapter describes the vehicle control system, including the prediction model, the problem
formulation and the operational and technological assumptions to make the problem feasible.
To this extent, the vehicle model is introduced in Section 3-1 and the optimization objectives,
constraints and optimal control problem are detailed in Section 3-2.

3-1 Vehicle model

The lateral movement of a vehicle within a single-lane is restricted by the road geometry.
The responsibility of steering control of a vehicle for lane-keeping is therefore presumed to be
handled perfectly by the driver. Hence, to improve fuel consumption, only the longitudinal
dynamics of the vehicle need to be controlled. Generally, the state equation of a nonlinear
control system at instant ¢ can be expressed as:

@(t) = f(x(t), u(t)) (3-1)

where z € RY and u € RN« are the state and input vector, respectively. For an individual
vehicle entering the link, the state vector z(t) of size N, = 2 is defined as:
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z(t) = [s(¢),0(t)] " (3-2)

where s(t) and v(t) are the position and speed of the controlled vehicle at time ¢, respec-
tively. The relationships between the vehicle’s position s(t), speed v(t) and acceleration a(t)
is represented by simple double integrator:

(1) = F(x(t), u(t)) = [ e ] . [ o ] (3-4)

u(t) = a(t) (3-5)

The vehicle acceleration rate at time ¢ is dependent on the forces acting on the vehicle and is
formulated as:

a(t) = —2—22 (3-6)

where F'(t) is the driving force, R(t) is the resistance force and m is the mass of the vehicle.
The equations for the driving and resistance force are given by:

F(t) = mu(t) (3-7a)
R(t) = ﬁC’DChAfv(t)2 +gm 1560 (c1v(t) + c2) + mgG(t) (3-7b)

where p is the air density at sea level, C'p is the vehicle drag coefficient, C}, is a correction
factor for the altitude and is calculated as 1 — 0.085H where H is the altitude in km, Ay is
the frontal area of the vehicle, g is the gravitational acceleration, G(t) is the roadway grade
at time ¢t and C,., ¢; and ¢y are rolling resistance constants that vary as a function of the road
surface, road condition and vehicle tire type.

Consequently, the state equation in (3-4) can be rewritten as follows where the time depen-
dency is dropped:

v
T,u) = 3.8
few) _mpchhAfUQ _glgﬁ(cw-i-@) —gG+u (3-8)
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3-2 Problem formulation

Existing eco-driving strategies vary with regard to their control method, level of connectivity
between the vehicles, optimization objectives and constraints. The formulated optimization
problems utilized in various studies minimize different objectives like fuel consumption, power
consumption, emissions, travel time, control effort or a combination of these. Furthermore,
with the developments in communication between road infrastructure and vehicles, it is pos-
sible to acquire real-time traffic SPaT information such that the probability of passing a
green light is maximized [54]. Along with the traffic light constraint, other constraints can
be integrated into the optimization framework to account for the legal speed limit, passenger
comfort, safety and the surrounding traffic.

3-2-1 Objective function

Given the energy-oriented nature of this thesis, a logical choice would be to utilize a fuel
consumption model as the cost of the algorithm. Nevertheless, the use of fuel consumption
models within eco-driving studies is twofold. The fuel consumption model is explicitly inte-
grated into the objective function of the optimal control problem [18] or is employed after the
estimation of the fuel-optimal speed profile to determine the savings [54]. For those meth-
ods utilizing a fuel consumption model in their cost function, fuel optimal calculations are
performed simultaneously with the computation of the optimal speed profile. While for the
other approach, the speed trajectories obtained from simulation tools are provided to the fuel
consumption model to evaluate the benefits [50].

Moreover, travel efficiency is of considerable importance in the optimal control problem.
Consider the situation in which a vehicle must traverse a certain distance. The vehicle starts
by transitioning to the optimal speed and then cruise the remaining distance at that speed.
Generally speaking, this is not a satisfying solution; drivers do not travel at 30 km/h on an
arterial road simply because it consumes the least amount of fuel. Most drivers prefer driving
at the legal speed limit if the traffic conditions allow it. One could argue that implementing a
lower speed bound would be a solution. However, if the vehicle begins with a lower speed than
this bound, the optimization problem becomes infeasible. Using a speed restriction on the
final state does not solve the issue either; the vehicle will simply cruise at the optimal speed
before accelerating [55]. One option is to penalize the travel time with a parameter. The
parameter represents a time penalty on the system added to the objective function. Without
a specified travel time, it is calculated such that a specific speed, that minimizes fuel and time
combined, equals the desired value [21]. Another solution is to augment the cost function by
incorporating the vehicle’s desired speed tracking. The appended term tries to minimize the
deviation from the desired speed, typically chosen as the legal speed limit [17].

With the considerations above, the goal of the MPC controller is to improve fuel efficiency
for vehicles proceeding through a signalized intersection while causing no adverse effect on
travel efficiency. Hence, the cost function can be formulated as:

t+T
min/t (mfuel (v(7),a(T)) + (v(T) — vd)Q) -dt (3-9)

a
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18 System model and problem formulation

where t is the current time step, 1" is the prediction horizon over which the optimal control
sequence is determined, el (+) is the fuel consumption rate in 1/s and vy is the desired speed,
set as 13.9 m/s.

Existing fuel consumption models are primarily functions of speed and acceleration (i.e.
vehicle-based), but they are non-convex when considering fuel consumption while idling. This
results in a non-convex function for the fuel consumption rate. By incorporating the vehicle’s
acceleration, the cost becomes convex for positive speeds [56]. For this reason, the weighted
sum of the fuel consumption rate, the vehicle’s desired speed tracking and the vehicle’s ac-
celeration is minimized. Consequently, the objective function can be reformulated as:

a

t+T
min/t (wlmfuel (v(7), a(T)) + wo(v(r) — vq)? + wga(T)Q) dr (3-10)

where wi, we and w3 are weighting terms providing a balance between fuel efficiency, travel
efficiency and comfort, respectively. The importance of the chosen control objectives can vary
depending on the traffic conditions, design decisions or individual vehicles. For example, some
methods may prioritize safe driving, while others lay emphasis on mobility, accepting smaller
spacings and higher risks.

Fuel consumption model

Many papers in the literature approximate the rate of fuel consumption as a function of the
vehicle’s speed and acceleration because obtaining an exact closed-form expression for fuel
consumption is very complex [17]. Furthermore, in the majority of the strategies, the optimal
control will be characterized by bang-bang control, in which the vehicle alternates between
periods of maximum acceleration and gliding with the engine turned off [57]. Implementing
the bang-bang solution in real-life is unrealistic because it is both uncomfortable for the
driver and potentially disruptive to other vehicles in the network. To ensure that the system
does not produce bang-bang control inputs, a second-order model with a positive second-
order parameter is recommended [58]. Consequently, a second-order vehicle-based black-box
fuel consumption model is selected to evaluate the energy implications of the controller as it
provides a good compromise between model simplicity, applicability and accuracy.

The Virginia Tech Comprehensive Power-based Fuel Model (VT-CPFM) is frequently used in
the literature because of its accuracy, simplicity and easy calibration [58]. The type 1 vehicle
model of the VI-CPFM is a second-order vehicle-based black-box fuel consumption model
and is formulated as follows:

(0% « (0% 2
Mfyel (v(t)7a(t)) = { a(O] " lp(t) " 2P(t) ?Eg i 8

where «g, a1 and a9 are the vehicle-specific model coefficients that need to be calibrated and
P(t) is the vehicle power in kW. The power exerted by the vehicle driveline at instant ¢ is
given by:

(3-11)

R(t) +1.04ma(t)
36007,

P(t) = o(t) (3-12)
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where R(t) is the resistance force on the vehicle given by Eq. (3-7b) and 74 is the driveline
efficiency.

3-2-2 Vehicle constraints

The aforementioned objective function (Eq. (3-10)) has the following vehicle constraints when
solving for the optimal speed profile.

Vehicle dynamics constraint The longitudinal dynamics of the vehicle should obey the laws
of physics, which are defined in Eq. (3-8).

Speed constraint For the consideration of feasibility and mobility, the speed constraint can
be expressed as:

0 <v(t) < Vmax (3-13)

where vpax is the maximum allowed speed, which is usually chosen as the legal speed limit.
In this thesis, the speed limit is considered to be 13.9 m/s.

Acceleration constraint To ensure all acceleration solutions are feasible, the acceleration
can be limited to the maximum value provided by the engine power and the deceleration can
be limited by the braking conditions:

Qmin < a(t) < Gmax (3‘14)

The quantities amin and amax denote the maximum deceleration rate (negative value) and
maximum acceleration rate, respectively. In this thesis, the AASHTO-recommended maximal
deceleration rate of -3.4 m/s? is implemented (which is a comfortable deceleration for most
drivers). Moreover, such decelerations are within the ability of the driver to maintain steering
control and stay within the lane while braking on wet surfaces [59]. The maximal acceleration
rate is assumed to be 3 m/s?, which is a conservative estimate of a standard passenger car’s
maximum acceleration capability [12, 17].

3-2-3 Constraints imposed by traffic

In addition to the vehicle constraints, relevant traffic imposed restrictions should be included
when solving for the optimal speed profile. These traffic constraints comprise downstream
supply-related restrictions from traffic signals and other road users. This includes queues and
the green periods that are available for the controlled vehicle.

To achieve this, it is assumed that necessary information about the status of the traffic
signal can be obtained via wireless 12V communication. It is also assumed there is perfect
downstream and upstream passing data till the current time. This data can be collected
using induction loop detectors located at the upstream and downstream link boundaries.
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This way, all inflowing and outflowing vehicles are observed and the cumulative flow curves
at the boundaries till the current time are known. These curves are shared in real-time with
the controlled vehicle when it drives on the link. In this manner, the controlled vehicle also
knows its cumulative flow value.

The future downstream and upstream cumulative flow curves can be estimated using Newell’s
simplified method [34]. In theory, the MPC controller should not change these curves as this
would mean the travel time of the controlled vehicle is increased and/or it causes upstream
spillback that would not have occurred without control. Thereafter, the downstream restric-
tions can be determined based on the future cumulative flow curves, the LWR-model and the
cumulative flow value of the controlled vehicle.

To begin with, the sampling time At, time instant the signal turns green ¢4, time instant
the signal turns red t,, upstream segment L, upper bound restriction of the cumulative flow
Nub, lower bound restriction of the cumulative flow Ny, and cumulative flow value of the
controlled vehicle N, are initialized. Subsequently, a demand and an indicator function are
defined. The demand is specified as the number of vehicles that want to enter the upstream
link boundary between the current time ¢ and the next time step ¢ + At [60]. Hence, the
demand function equals:

D(t) = /t T ) - dr (3-15)

where ¢4(7) is the demand flow.

An indicator is defined associated with the status of the traffic signal between the current
time t and the next time step ¢ + At. Hence, the indicator function equals:

0, If the traffic light is red

Teotor(t) = { 1, If the traffic light is green (3-16)

Then, to include the restrictions several steps should be taken:

Step 1: Retrieve the current cumulative flow values

Retrieve the current cumulative flow values from the induction loop detectors located at the
upstream and downstream link boundaries, i.e. N(so,t) and N(sr,t) respectively.

Step 2: Estimate the future downstream and upstream cumulative flow curves

With the cumulative flow values from Step 1, the traffic signal information and future inflow
information, one can estimate the future downstream and upstream cumulative flow curves
over the entire prediction horizon 7.

The upper bound restriction of the cumulative flow at the downstream link boundary is
obtained by drawing a vy-wave from the upstream boundary to the downstream boundary,
as shown in Figure 3-1a. If a free-flow traffic state is observed at the downstream boundary
at time ¢ 4+ At, then this state must have been emitted from the upstream boundary L/vy
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Figure 3-1: Propagation of a traffic state: (a) free-flow, (b) congested.

time units earlier. Therefore, the traffic conditions at (sp,t + At) and (so,t + At — L/vy)
are identical. The cumulative flow difference between these two points is zero. This means
that the cumulative flow at the downstream link end is a translation of the cumulative flow
at the upstream boundary over L/vy time units. As a result, the upper bound restriction at
the downstream boundary equals:

A

Nub(SL,t—l—At) ZN(S(),t—‘rAt—L/’Uf) (3—17)

The above-mentioned translation states that no vehicle can leave the link downstream until
L/v; time units have passed since entering the link upstream, i.e. the minimal link travel
time must be respected.

The lower bound restriction of the cumulative flow at the downstream link boundary is ob-
tained by determining the intersection outflow. If the signal is red, no vehicles can traverse
the intersection and the discharge rate is zero. If the signal is green, vehicles can proceed
through the intersection and the discharge rate is at capacity ¢.. This means that the inter-
section outflow is related to the traffic signal status defined by Eq. (3-16). Consequently, the
lower bound restriction at the downstream boundary can be formulated as:

Nip(sp,t + At) = N(sp,t) + ge - Leolor(t) - At (3-18)
The number of vehicles that can cross the intersection is either constrained by Eq. (3-17) or

Eq. (3-18). Consequently, the downstream cumulative flow is the flow taking into account
these constraints. This is formulated as:

A

N(sp,t+ At) = min | Nuy(sp, ¢ + At), Nip(sp,t + A)] (3-19)
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The upper bound restriction of the cumulative flow at the upstream link boundary is obtained
by determining the vehicle inflow. The vehicle inflow is related to the demand defined by
Eq. (3-15). Consequently, the upper bound restriction at the upstream boundary can be
formulated as:

A

Nu(s0,t + At) = N(so, ) + D(t) (3-20)

The lower bound restriction of the cumulative flow at the upstream link boundary is obtained
by drawing a w-wave from the downstream boundary to the upstream boundary, as shown in
Figure 3-1b. If a congested traffic state is observed at the upstream boundary at time ¢ + At,
then this state must have been emitted from the downstream boundary —L/w time units
earlier. Therefore, the traffic conditions at (sg,t + At) and (sp,t + At + L/w) are identical.
The cumulative flow difference between these two points is the jam density times the length
of the upstream segment, i.e. p;L. This means that the cumulative flow at the upstream link
end is a translation of the cumulative flow at the downstream boundary over — L /w time units
and p;L vehicle units. As a result, the lower bound restriction at the upstream boundary
equals:

Nip(s0,t + At) = N(sp,t + At + L/w) + p; L (3-21)

The above-mentioned translation states that no vehicle can enter the link upstream until
—L/w time units have passed since the (p;L)"" vehicle has left the link downstream, i.e. an
inflow restriction is induced due to downstream spillback.

The number of vehicles that can enter the link is either constrained by Eq. (3-21) or Eq. (3-20).
Consequently, the upstream cumulative flow is the flow taking into account these constraints.
This is formulated as:

A

N(so,t + At) = min | Ny (so, ¢ + At), N (s0, ¢ + At)] (3-22)

Step 3: Identify the restrictive red periods

With the estimated cumulative flow curves from Step 2 and the cumulative flow value of the
controlled vehicle, one can identify the restrictive red periods.

For this purpose, the restrictive interval is divided into three times: tmin, tmiq and tmax. Here
tmin represents the lower bound, tiq represents an intermediate value and ¢, represents
the upper bound of the restrictive time interval. To find ¢.i,, one should draw a backward
propagating wave with speed w from the current position of the controlled vehicle (s,t) to
the stop line of the intersection, as shown in Figure 3-2a. To find t,,;q, one should draw a
forward propagating wave with speed vy from the current position of the controlled vehicle
(s,t) to the stop line of the intersection, also shown in Figure 3-2a. Finally, with the esti-
mated downstream cumulative flow curves, one knows when the controlled vehicle crosses the
intersection and therefore the maximum time ¢,,,x that is restrictive. Subsequently, one can
make a distinction between potentially and certainly restrictive red periods.
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Figure 3-2: Identifying the restrictive red periods: (a) finding the restrictive time interval, (b)
determining the potentially and certainly restrictive red periods.

Potentially restrictive red periods FEach red period in the time interval [tmin,tmia] is poten-
tially restrictive. To determine which of the potential red periods causes a restriction, Newell’s
method is applied. Recall that Newell’s simplified kinematic wave theory was defined as:

N(sp,tp) = min[N(so,t2), N(sp,t1) + - (tp — t1)] (3-23)

where t; indicates the departing time of the w-wave, to indicates the departing time of the
vp-wave and tp indicates the time of point P.

This equation states that the cumulative flow in point P is either determined by the upstream
boundary (first term on the right-hand side) or the downstream boundary (second term on
the right-hand side). In this scenario, the first term on the right-hand side is the cumulative
flow value of the controlled vehicle N¢,. The second term on the right-hand side indicates the
maximum possible cumulative flow value at point P. Hence, the algorithm should check for
each potential red period if the cumulative vehicle number of the controlled vehicle is smaller
or equal to the maximum possible cumulative vehicle number. To illustrate, for point P; in
Figure 3-2b this looks like:

Ney < N(SL, tg) +7r- (pr1 - tg) (3—24)

If the cumulative flow value of the controlled vehicle is bigger than the right-hand side of
Eq. (3-24), that specific red period is restrictive and the algorithm has to consider a down-
stream constraint (Step 4).

Certainly restrictive red periods Each red period in the time interval [tyid,tmax] is certainly
restrictive. If the waiting queue does not completely dissolve by the end of the current cycle,
a residual queue is formed. The residual queue causes an initial queue to occur at the start of
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Figure 3-3: Trajectories of vehicles and the characteristic wave speed for the formulation of the

downstream supply-related constraints. The dashed black line represents the trajectory without
considering the queue and the dashed green line represents the trajectory considering the queue

the next cycle, which must first clear before the controlled vehicle can cross the intersection.
As a consequence, the next red period is certainly restrictive and the algorithm has to consider

a downstream constraint (Step 4).

Step 4: Formulate the downstream supply-related constraints
For each restrictive red period found in Step 3, a point in the space-time domain is introduced.

What follows is a general explanation of the equations to determine the position of that specific

(3-25a)

point and the formulation of the downstream constraint.
As shown in Figure 3-3, point P represents the spatial and temporal constraint imposed by
(3-25Db)

the presence of the vehicle queue on the signalized road. The queue dissipation time and

location can be calculated with the following formulas:
- N (SLa tg)

N,

At, = cv
r

l=w- At,

The downstream restriction is designed to prevent the controlled vehicle from idling in the

queue. The position of point P indicates the queue would reach its maximum length at time

ty + At., which is located at L —[. Hence, this constraint essentially aims to assure the
Master of Science Thesis
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position of the controlled vehicle at the dissipation time of the queue is not beyond the tail
location of the queue. Consequently, the following downstream supply-related constraint is
formulated for each restrictive red period:

s(ty + Ate) < L—1 (3-26)

3-2-4 Minimum-fuel control problem

The minimum fuel consumption problem is expressed as an optimal control problem. By solv-
ing this problem, the control inputs are obtained that minimize the amount of fuel consumed.
It is assumed the calculated optimal control input can be fed directly to the controlled vehicle
via an advanced cruise control system capable of operating in stop-and-go traffic. With the
foregoing considerations, a general formulation of the optimal control problem can be cast as
follows. Subject to the system dynamics and constraints in Egs. (3-1)-(3-26), minimize the
cost function in (3-10) at each time ¢ with the current measured state x(t) used as the initial
condition.

Note that, the solution to the optimal control problem may be suboptimal as the MPC
controller does not use a multi-start algorithm. A multi-start algorithm should have been used
as the prediction model of the controller is highly nonlinear and the optimization problem,
therefore, becomes non-convex. With a multi-start algorithm, the same optimization problem
is solved multiple times using a different set of initial conditions. This way, the chance of
finding a global solution instead of a local solution increases.
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Chapter 4

Simulation case studies and results

The effectiveness of the predictive speed control (PSC) strategy will be evaluated using sim-
ulations. The simulations will be executed in Simulation of Urban MObility (SUMO) [61].
SUMO is a widely used open source microscopic traffic simulator for modelling and simulat-
ing urban traffic networks. To communicate between SUMO and MATLAB, the TraCI [62]
interface is used. By connecting SUMO and MATLAB the user can: (i) access, modify and
manipulate the traffic network developed in SUMO from MATLAB; (ii) control the dynamics
and movements of the vehicles and navigate them in the traffic network from MATLAB; (iii)
control the traffic actuators from MATLAB; (iv) evaluate, assess, improve and simulate the
performance of the developed control system.

In this chapter, five case studies are conducted based on the simulation set-up in Section 4-1.
The benchmark algorithm to evaluate the performance of the Eco-PSC algorithm is explained
in Section 4-2. Then, three case studies are performed in various traffic conditions to assess
the benefits of the proposed algorithm. Finally, two case studies are executed to investigate
the impact of market penetration rates and stochasticity in traffic behavior on the algorithm
performance.

4-1 Simulation set-up

The network that will be considered in the simulation case studies is shown in Figure 4-1.
A small network is taken into consideration which consists of a single-lane road with one
signalized intersection. The control zone includes both the upstream segment L = 400 meters
and the downstream segment d = 200 meters, since ignoring acceleration behavior after queue
dissipation results in more fuel usage when the vehicle traverses the intersection. The length
of the vehicles regarded in the case studies is 5 meters.

The lane that is connected to the traffic signal will receive green light signals in alternating
phases, such that the vehicles may pass the junction. For the signal phase and timing (SPaT)
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Figure 4-1: Configuration of the signalized intersection considered in the simulations. The
control zone includes both the upstream and downstream segments L and d, respectively.

plan the duration of the green and red indicators are 30 seconds each. It is assumed that neces-
sary information about the status of the traffic signal can be accessed through infrastructure-
to-vehicle (I2V) communication. Furthermore, induction loop detectors are located at the
upstream and downstream link boundaries. This way, all inflowing and outflowing vehicles
are observed and the cumulative flow curves at the boundaries till the current time are known.
These curves are shared in real-time with the controlled vehicle when it drives on the link.
In such manner, the controlled vehicle also knows its cumulative flow value.

Finally, a suitable prediction horizon of T" = 90 seconds is chosen to cover the prediction of
the future cumulative flow curves in various traffic conditions. The control horizon is chosen
to be equal to the prediction horizon. The controlled vehicle receives advisory speeds from
the algorithm, which are updated every second.

4-1-1 Parameter identification

In this subsection, the weights used for fuel efficiency, travel efficiency and comfort, the
input parameters to calibrate the VI-CPFM fuel consumption model and the fundamental
diagram (FD) parameters to calibrate the Eco-PSC algorithm are given.

Weighting terms

In Eq. (3-10), the weights wi, wy and w3 balance the effects of the fuel consumption, speed
deviation and control effort term. A high w; value emphasizes fuel consumption and produces
a speed trajectory with a low speed and a long travel time, which is unsuitable for actual
driving because it obstructs traffic. A large value of wy results in a speed trajectory with
sharp accelerations/decelerations to the desired speed and a short travel time, which is also
not recommended due to its high fuel consumption rate. Lastly, the value of ws encourages
minimal speed change, enhancing driving comfort. As a result, a good trade-off between
fuel efficiency, travel efficiency and comfort is necessary. In this thesis, the decision is made
to emphasize on fuel consumption savings, accepting lower speeds and longer travel times.
Furthermore, since passenger comfort is also incorporated in the acceleration constraint this
is not prioritized. Hence, the following weights that are recommended by Hu et al. [63] are
considered: wy = 20, wy = 0.5 and wg = 1.
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Table 4-1: Parameters of the type 1 vehicle model of VT-CPFM.

Parameter m [kg] Cq[-] Cu[] Ay [m? plkg/m’]  g[m/s?]  G(t) [deg]

Value 1453  0.30 1 2.32 1.23 9.81 0
Parameter C, [-] ¢ [[] ¢ [] N4 [-] ag [-] aq [-] ag [
Value 1.75  0.03  4.58 0.92 592 x 107* 4.95x10~% 1.00 x 1076

VT-CPFM parameters

The vehicle under investigation is a 2010 Honda Accord, which can be modeled as a standard
drive train, an internal combustion engine and a five-speed automated mechanical transmis-
sion. The values of the input parameters for the VI-CPFM model are given in Table 4-1.
Subsequently, the VIT-CPFM MATLAB calibration tool was used to calibrate the vehicle-
specific model coefficients ag, a1 and ag [58]. It is assumed all vehicles in the network are
the type 1 vehicle of the VI-CPFM model.

Fundamental diagram parameters

The triangular shaped FD is described by three parameters: a fixed free-flow speed vy, the
capacity ¢. and the jam density p; [34]. The free-flow speed is the speed of the vehicles at zero
density and is set as vy = 50 km/h. If the traffic signal is green, then the intersection outflow
is at the rate of the capacity. The average driver’s minimum time headway is approximately
1.5-1.8 seconds, so a typical capacity value of 2000 to 2400 veh/h is found [64]. For the jam
density, an estimation can be made based on the length of the vehicles and the distance they
keep at standstill. The length of the vehicles regarded in the simulations is 5 meters and at
standstill the minimum spacing is approximately 2-3 meters, which means the jam density is
125 to 142 [28]. The capacity and jam density are important parameters that define the slope
of the FD branches and therefore influence the wave speed and passing rate. The capacity
and jam density influence on the algorithm performance is summarized in Table 4-2.

To choose a suitable combination of g. and p;, the computed optimal speed trajectory is
compared to the actual speed trajectory of the controlled vehicle for different parameter
combinations in Figure 4-2. From Table 4-2, we can observe that the least amount of fuel is
consumed for the combination g. = 2250 and p; = 125. If we then compare the computed
optimal speed trajectory with the actual speed profile in Figure 4-2a, we see a good fit between
the two curves. However, this parameter combination significantly overestimates the queue.
The second option, considering travel time, is the combination ¢. = 2400 and p; = 142. If we
compare the calculated optimal speed trajectory with the actual speed profile in Figure 4-2b,
we see that this parameter combination significantly underestimates the queue. A balanced
trade-off between fuel consumption and travel time is provided by the combination g. = 2280
and p; = 138. This parameter combination offers an optimal fit between both speed profiles
as depicted in Figure 4-2c. Therefore, in the simulations the capacity and jam density are set
as ¢. = 2280 veh/h and p; = 138 veh/km.
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Table 4-2: Influence of the parameters capacity and jam density on the algorithm performance.

Fuel consumption [ml] Travel time [s]

ge = 2400, p; = 142 67.32 57.00
qc = 2400, p; = 133 66.09 57.07
e = 2400, pj = 125 65.42 57.17
gec = 2250, p; = 142 65.19 57.23
gc = 2250, p; = 133 65.07 57.51
ge = 2250, p; = 125 64.99 57.84
ge = 2117, p; = 142 65.75 58.19
e = 2117, p; = 133 65.66 58.52
ge = 2117, p; = 125 65.57 58.85
ge = 2000, p; = 142 66.33 59.20
gc = 2000, p; = 133 66.26 59.53
ge = 2000, p; = 125 66.20 59.86
15777777777777777777; Umax 1w Umax 157777777777777777777 Umax
Z10 P J (L] A7 op /
3 ,/ : // 3 ,//
&5 55 5|
160 170 180 190 200 210 0 160 170 180 190 200 0 160 170 180 190 200 210
Time [s] Time [s] Time [s]
(a) (b) (c)

Figure 4-2: Speed profiles for different FD parameter combinations where vy is the computed
optimal speed and v, is the actual speed of the controlled vehicle: (a) g. = 2250 and p; = 125,
(b) g. = 2400 and p; = 142, (c) ¢. = 2280 and p; = 138.

4-1-2 Performance measures

The effectiveness of the Eco-PSC algorithm will be evaluated in terms of system performance
and computational efficiency. The system performance will be measured by the fuel consump-
tion (FC) and the travel time (TT) of the controlled vehicle. Besides these absolute values,
the performance of the algorithm is also compared against a baseline policy. A cooperative
adaptive cruise control (CACC) strategy based on eco-driving is chosen as the baseline policy.
The relative change of the PSC strategy with respect to the CACC strategy will be used to
benchmark the system performance. For instance, the relative change in fuel consumption
FC,q is calculated by:

FCpgc — FC
PSC CACC 1409 (4-1)

FC.a =
°l FCcacc
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Where FC(.) denotes the fuel consumption associated with the strategy (-).

In like manner, TT, is defined for the relative change in travel time for the controlled vehicle:
TTpsc — TTcacc

TTe = -1 4-2
: TTcacc 00% (+2)

Here TT(.) denotes the travel time associated with the strategy (-).

Note that throughout the case studies, an increase in travel time will be observed. This can
be explained by the choice of weighting terms used for fuel and travel efficiency. The decision
was made to prioritize fuel efficiency, accepting longer travel times. In addition, the Eco-PSC
algorithm slightly overestimates the tail location of the queue. This can be explained by
the discretization error of the queue constraint. The sampling time determines the trade-off
between accuracy and tractability. A shorter sampling time would reduce the discretization
error but increase the computational burden.

Furthermore, to establish if the Eco-PSC algorithm is real-time implementable, the com-
putation time of the MPC controller will be evaluated. The processor time of the online
optimization step will be used to determine the computational efficiency. If the maximum
processor time CTpax of the online optimization step is less than the sampling interval of the
system, the controller will be real-time implementable. The simulations are performed on an
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz and 16GB RAM. The CPU computation time
of the online optimization step is obtained using the CPU command in MATLAB.

4-1-3 Demand profiles

To evaluate the benefits of the Eco-PSC algorithm, different demand profiles are created with
the route generator in SUMO, where routes are generated based on flow definitions. The
first three cases, i.e. single queue, residual queue and upstream spillback, are developed to
present scenarios for which undersaturated and oversaturated traffic conditions occur in the
network. The demand profiles that have been used in case studies I, II and III are presented
in Figure 4-3. Case study IV has been conducted with a constant demand flow of ¢; = 900
veh/h. Lastly, Case study V has been performed with the demand profile of the single queue
case and a constant demand flow of ¢z = 900 veh/h.

2000 2000 2000
= = =
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21500 .21500 .%1500
2 z 2
2 1000 < 1000 I | 2 1000
e e e
& 5 <
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] o) o}
[a] (=] [a]
0 0 0
0 100 200 300 0 100 200 300 0 100 200 300
Time [s] Time [s] Time [s]
() (b) (c)

Figure 4-3: Demand profiles generated to simulate various traffic scenarios: (a) single queue
case, (b) residual queue case, (c) upstream spillback case.
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Figure 4-4: Traffic state dynamics at a signalized intersection: (a) fundamental diagram with

important parameters and wave speeds, (b) trajectories of vehicles and shockwaves. The dashed
black line represents the trajectory without consideration of the queue and the dashed green line

represents the trajectory with consideration of the queue.

4-2 Benchmark algorithm

The Eco-CACC algorithm designed by Yang et al. [27] is chosen as the baseline strategy. The
algorithm exploits SPaT information obtained via 12V communication and predicts vehicle
In the algorithm, the length of the queue is

queues to compute optimal speed profiles.
estimated using the LWR-model and the dissipation time of the queue is estimated using
SPaT information. What follows is a general explanation of the Eco-CACC algorithm.
Assume that the flow entering the intersection is gy and that the upstream traffic state is A, as
shown in Figure 4-4a. If the traffic signal status is red, no vehicles can traverse the intersection
and the upstream state becomes B. Subsequently, a queuing shockwave is generated that
(4-3)

propagates backward with speed:
q0
wpA =
PO — Py

As soon as the light turns green, the intersection starts to release vehicles at the rate of
(4-4)

the capacity g.. As a result, a backward propagating wave is generated to discharge the
queue upstream of the intersection, as illustrated in Figure 4-4b. The speed of the discharge

qc
Master of Science Thesis

shockwave is calculated as:
w =
Per — Pj
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At time t the controlled vehicle enters the control zone with speed vg. Then, the queue length
upstream of the intersection can be estimated using the following formula:

VftWBA wpA+w

[ Ly )], Ve [t — Lty 4 vealast)] (45)
0, Otherwise

The objective of the Eco-CACC algorithm is to minimize the fuel consumption for vehicles
proceeding though the signalized intersection. The mathematical formulation of the algorithm
can be stated as:

tq
min F(v(r))dr (4-6a)
a1,a2 to
subject to s(to) = so (4-6b)
s(ty) =L+d (4-6¢)
Omin < a1 < Gmax (4‘6d)
0 < a2 < amax (4—66)
Ve = Vg + al(tl — to) (4—6f)
1
vo(ty — to) + §a1(t1 — to)Q +ve(te —t1) =L —1 (4-6g)
l
t2 == tg + E (4—6h)
vf = v+ as(ts — t2) (4-61)
1 .
Uc(tg — tQ) + 5&2(153 — t2)2 + Uf(t4 — tg) =d+1 (4—6_])
vo+ar(t—1ty), to<T<t
v(ar,ap,7) =4 ¢ hhs7<t (4-6k)
Lo Ve +ag (T —tg), to<T<ts
vr, t3 <7 <1y

where F'(-) is the fuel consumption rate computed using the VT-CPFM model (see Section
3-2-1), v, is the cruise speed to the intersection and ¢; is the time instant given the road traffic
condition, ¢ =0,1,...,4.

Egs. (4-6f)-(4-6h) illustrate that the controlled vehicle accelerates to the cruise speed v. and
crosses the intersection when the queue is discharged. Eqs. (4-6i) and (4-6j) demonstrate
that the controlled vehicle accelerates to the legal speed limit. Eq. (4-6k) indicates that given
the traffic state, the speed profile is a function of the acceleration/deceleration rates, i.e. ay
and as.

4-3 Case study | - single queue

In this section, the effectiveness of the Eco-PSC algorithm in undersaturated traffic conditions
where queues can completely dissolve in a single cycle is evaluated. The demand profile of
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Figure 4-5: Vehicle trajectories around the signalized intersection in Case study I: (a) the blue
lines represent the non-controlled vehicles and the red line represents the CACC vehicle, (b) the
blue lines represent the non-controlled vehicles and the green line represents the PSC vehicle.
- - - ‘ - T 15F —
600 [ #1 ax
///
500 | ya
&
T ago [Mersetion s 7 10}
= e E
S - o
Z 300 = 8
& 7 @
200 e St
wop 7 ~ —~Eco-CACC] - - ~Eco-CACC
e ——Eco-PSC ——Eco-PSC
0" : : : - - 0 : : : - -
150 160 170 180 190 200 150 160 170 180 190 200
Time [s] Time [s]
(a) (b)

Figure 4-6: Eco-driving in Case study |: (a) comparison of vehicle trajectories of the controlled
vehicle, (b) comparison of speed profiles of the controlled vehicle.

Figure 4-3a is loaded to the intersection for 300 seconds and the controlled vehicle enters the
network at ¢ = 144 seconds.

Figure 4-5 illustrates the trajectories of all vehicles for the two eco-driving algorithms over
one signal cycle, where the traffic light is located at 400 meters. Figure 4-5a shows the
vehicle trajectories after applying the Eco-CACC algorithm. As can be seen in the figure,
the controlled vehicle cruises towards the traffic signal and just catches the tail of the vehicle
waiting queue. Because of the queue, the vehicle has to slow down and wait for the queue
to be released before it can continue its path. While in Figure 4-5b, the Eco-PSC algorithm
ensures that the vehicle can cruise towards the intersection and catch the tail of the queue
when it is discharged. This way, the vehicle can avoid slowing down ahead of the traffic signal
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and precisely follow the calculated optimal trajectory.

Figure 4-6a compares the trajectories of the controlled vehicle for the two eco-driving algo-
rithms. The trajectory computed by the Eco-PSC algorithm is smoother than the benchmark
algorithm. This can be explained by the fact that the benchmark algorithm underestimates
the tail location of the queue. A possible reason for this inaccurate estimation is that the
queue length is predicted based on the FD, which was calibrated for the PSC method. Hence,
with different values for the capacity and jam density, the performance of the benchmark
algorithm could increase. Nevertheless, the travel time of the vehicle driving with the Eco-
CACC algorithm is slightly shorter. Compared to the benchmark algorithm, the travel time
of the PSC vehicle is increased by 1.14%. The increase in travel time is due to the choice of
weighting terms and the discretization error. For a detailed explanation see Section 4-1-2.

Figure 4-6b compares the speed profiles of the controlled vehicle for the two eco-driving
algorithms. The speed profile computed by the Eco-PSC algorithm is smoother than the
benchmark algorithm. For the benchmark algorithm, the vehicle cruises at a speed of 8.82
m/s and the speed drops due to the underestimation of the queue for approximately 4 seconds.
While being controlled by the Eco-PSC algorithm, the vehicle cruises at 8.15 m/s and does
not crises its speed upstream of the intersection. Furthermore, the fuel consumption levels by
the controlled vehicle are 71.24 ml for the benchmark algorithm and 68.14 ml for the Eco-PSC
algorithm, see Table 4-3. Hence, the Eco-PSC algorithm is the more efficient control method,
reducing the fuel consumption levels by 4.35%.

Besides the controlled vehicle, both algorithms smooth the trajectories of the non-controlled
vehicles (as seen in Figure 4-5). Given that the non-controlled vehicles are driven by the
Krauss car-following model [65] and thus follow the behavior of their leader. This means
that the Eco-PSC algorithm can further minimize the overall fuel consumption around the
intersection. The example above demonstrates that the algorithm reduces the average fuel
consumption levels by 1.12% compared to the benchmark algorithm.

Lastly, it is crucial that the algorithm is simple in order to keep the optimization problem
computationally tractable for real-time execution. SUMO facilitates an option for interactive
online simulation and the proposed algorithm is found to be fast enough to run a vehicle
without causing delays. A maximum computation time of 0.44 seconds per sampling interval
was observed, as presented in Table 4-3.

Table 4-3: Performance evaluation of the Eco-PSC algorithm in terms of fuel consumption,
travel time, maximum computation time and relative change in fuel consumption and travel time
compared to the benchmark algorithm in Case study I. Furthermore, the average fuel consumption
and travel time of the non-controlled vehicles related to the eco-driving strategies, denoted by
NCcacc and NCpgc, are also presented.

Control FC [ml] TT [s] FCia [%0] TTie [%] CTmax [8]

Eco-CACC  71.24 61.62 - - -

Eco-PSC 68.14 62.32 -4.35 +1.14 0.44
NCcacc 77.51 59.34 - - -
NCpsc 76.64 59.63 -1.12 +0.49 -
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4-4 Case study Il - residual queue

In this section, the effectiveness of the Eco-PSC algorithm in oversaturated traffic conditions
where residual queues are formed is evaluated. However, in the design of the Eco-CACC
algorithm, one critical assumption is that queues can dissolve in a single cycle. Hence, one
drawback of the benchmark algorithm is that it fails to provide the optimal speed profile in
oversaturated traffic conditions. To circumvent this problem, in case of an emergency, the
acceleration range can be overruled by the autonomous emergency braking system to ensure
safety. The emergency deceleration (i.e. the maximal physically possible deceleration for the
vehicle) is equal to the default value of -9 m/s? [61]. Now, the demand profile of Figure 4-3b
is loaded to the intersection for 300 seconds and the controlled vehicle enters the network at
t = 177 seconds.

Figure 4-7 illustrates the trajectories of all vehicles for the two eco-driving algorithms over
one and a half cycle length, where the traffic signal is located at 400 meters. Figure 4-7a
shows the vehicle trajectories after implementing the Eco-CACC algorithm. As can be seen
in the figure, the controlled vehicle predicts the tail location of the first queue and adapts its
path. Then, the behavior of the vehicle is similar to the behavior without control. The vehicle
just follows its leader and comes to a complete stop ahead of the traffic signal waiting for
the green light to discharge the second queue. While in Figure 4-7b, the Eco-PSC algorithm
ensures the vehicle can cruise towards the intersection and catch the tail of the second queue
when it is released. This way, the vehicle can prevent coming to a complete stop upstream of
the traffic signal and exactly follow the computed optimal trajectory.

Figure 4-8a compares the trajectories of the controlled vehicle for the two eco-driving al-
gorithms. The trajectory computed by the Eco-PSC algorithm is much smoother than the
benchmark algorithm. In this example, the Eco-CACC algorithm only estimates the tail lo-
cation of the first queue. Because of residual queues, the algorithm cannot avoid incurring a
complete stop, significantly reducing its benefits. Nevertheless, the travel time of the vehicle

#
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Figure 4-7: Vehicle trajectories around the signalized intersection in Case study Il: (a) the blue
lines represent the non-controlled vehicles and the red line represents the CACC vehicle, (b) the
blue lines represent the non-controlled vehicles and the green line represents the PSC vehicle.
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Figure 4-8: Eco-driving in Case study II: (a) comparison of vehicle trajectories of the controlled
vehicle, (b) comparison of speed profiles of the controlled vehicle.

Table 4-4: Performance evaluation of the Eco-PSC algorithm in terms of fuel consumption,
travel time, maximum computation time and relative change in fuel consumption and travel time
compared to the benchmark algorithm in Case study II. Furthermore, the average fuel consumption
and travel time of the non-controlled vehicles related to the eco-driving strategies, denoted by

NCcacc and NCpgc, are also presented.

Control FC [ml] TT [s] FCia [%] TTrel [%0] CTmax [8]
Eco-CACC 112.07 80.88 - - -
Eco-PSC 79.40 81.81 -29.15 +1.15 0.53
NCcacc 86.95  64.97 - . B}
NCpsc 84.67 65.34 -2.62 +0.57 -

driving with the Eco-CACC algorithm is shorter. Compared to the benchmark algorithm,
the travel time of the PSC vehicle is increased by 1.15%. An explanation for the increase in

travel time can be found in Section 4-1-2.

Figure 4-8b compares the speed profiles of the controlled vehicle for the two eco-driving
algorithms. The speed profile computed by the Eco-PSC algorithm is much smoother than
the benchmark algorithm. For the benchmark algorithm, the cruise speed considering the
first queue is 13.68 m/s. Then, since the benchmark algorithm underestimates the queue the
speed drops for approximately 8 seconds. An explanation for this inaccurate estimation is
that the queue length is predicted based on the FD, which was calibrated for the PSC method.
Subsequently, the vehicle stops for 35 seconds as the algorithm does not account for residual
queues. When being controlled by the Fco-PSC algorithm, the vehicle cruises at a speed of
approximately 5.84 m/s and does not stop upstream of the intersection. Nonetheless, the
speed of the vehicle slightly fluctuates as the dynamically changing queue length introduces

some speed changes.
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As presented in Table 4-4, the fuel consumption of the controlled vehicle is 112.07 ml for the
benchmark algorithm and 79.40 ml for the Eco-PSC algorithm. Hence, the Eco-PSC algorithm
is the more efficient control method, with reductions in fuel consumption levels as high as
29.15%. The Eco-PSC algorithm also smooths the trajectories of the non-controlled vehicles
besides the controlled vehicle (as shown in Figure 4-7). As a result, the Eco-PSC algorithm
reduces the average fuel consumption levels by 2.62%. Finally, a maximum computation time
of 0.53 seconds per sampling interval was observed.

4-5 Case study Il - upstream spillback

In this section, the effectiveness of the Eco-PSC algorithm in oversaturated traffic conditions
where the controlled vehicle causes upstream spillback is evaluated. The demand profile of
Figure 4-3c is loaded to the intersection for 300 seconds and the probe vehicle enters the
network at ¢t = 160 seconds.

Figure 4-9 illustrates the trajectories of all vehicles before and after applying the Eco-PSC
algorithm over two signal cycles, where the traffic light is located at 400 meters. In Fig-
ure 4-9a, without control, the probe vehicle merely follows its leader and comes twice to a
complete stop upstream of the intersection waiting for the traffic signal to release the queues.
While in Figure 4-9b, the Eco-PSC algorithm ensures that the vehicle can cruise towards
the intersection and catch the tail of the second queue when it is discharged. This way, the
controlled vehicle can avoid incurring a complete stop ahead of the traffic signal and follow
the calculated trajectory. However, the vehicle causes depart delays on its following vehicles
with an average value of 6.93 seconds.

Figure 4-10 compares the true vehicle inflow with and without control to the desired vehicle
inflow, i.e. the demand. The figure demonstrates the algorithm changes the upstream cu-
mulative flow curves after the controlled vehicle has entered the link. Hence, the controlled
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Figure 4-9: Vehicle trajectories around the signalized intersection in Case study Ill: (a) the blue
lines represent the non-controlled vehicles and the purple line represents the probe vehicle, (b)
the blue lines represent the non-controlled vehicles and the green line represents the PSC vehicle.

Eline M.C. Schropp Master of Science Thesis



4-5 Case study Il - upstream spillback 39

75

~
o
T

Cumulative flow [veh]
(=)}
(&)

[s2]
o
T

——Demand
,,,,,,,,,, No Control
_ Eco-PSC
55 < ‘ ' I
150 160 170 180 190

Time [s]

Figure 4-10: The true vehicle inflow with and without control compared to the desired vehicle
inflow in Case study IlI.
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Figure 4-11: Eco-driving in Case study Ill: (a) comparison of vehicle trajectories of the probe

vehicle, (b) comparison of speed profiles of the probe vehicle.

vehicle causes upstream spillback that does not occur without control. To prevent upstream
spillback, one should involve upstream demand-related constraints into the control framework.

Figure 4-11a compares the trajectories of the probe vehicle before and after applying the Eco-
PSC algorithm. Compared to the trajectory without control, the trajectory is much smoother
when the algorithm is implemented. Nevertheless, the travel time of the vehicle driving with
the algorithm is increased by 0.93%. An explanation for the increase in driving time can be
found in Section 4-1-2. Figure 4-11b compares the speed profiles of the probe vehicle before
and after applying the Eco-PSC algorithm. Without control, the vehicle stops upstream of
the traffic signal for 21 and 26 seconds, respectively. While the controlled vehicle accelerates
to a cruise speed of approximately 4.21 m/s and crosses the intersection without stopping.
Nevertheless, the dynamically changing queue length introduces some speed changes.
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Table 4-5: Performance evaluation of the Eco-PSC algorithm in terms of fuel consumption,
travel time, maximum computation time and relative change in fuel consumption and travel time
compared to the No Control policy in Case study Ill. Furthermore, the average fuel consumption
and travel time of the last non-controlled vehicle is also presented.

Control FC[ml] TT[s] FCra [%] TTrel [%] CTomax [s]
No Control 124.60  102.50 - ; ]
Eco-PSC 9250 10345  -25.76  +0.93 0.64

Last vehiclenc 121.05  96.05 - - -
Last vehiclepgc  124.61  128.34 +2.94 +33.62 -

As presented in Table 4-5, the fuel consumption levels before and after implementing the
algorithm are 124.60 ml and 92.50 ml, respectively. This indicates the algorithm reduces fuel
consumption levels by 25.76%. Furthermore, a maximum computation time of 0.64 seconds
per sampling interval was observed. However, the controlled vehicle causes negative impacts
on its following vehicles as the last vehicle is unable to cross the intersection during the
same green window as planned (as seen in Figure 4-9). Because of the overestimation of
queues, the last vehicle in the figure runs into a red signal and experiences an increase in
fuel consumption and travel time by 2.94% and 33.62%, respectively. In terms of system
performance, the suggested speed profile increases the queue length of the next cycle. As a
result, the controlled vehicle deteriorates the overall system performance. To avoid negative
impacts on following vehicles, one could suggest the controlled vehicle to cross the intersection
before a certain time.

4-6 Case study IV - market penetration rates

In this section, the impact of market penetration rates (MPRs) on the Eco-PSC algorithm
performance is investigated. A constant demand flow of ¢; = 900 veh/h is loaded to the
intersection for 300 seconds and the MPR varies from 0 to 100%. The controlled vehicles for
different MPRs are randomly chosen with the randperm command in MATLAB.

Figure 4-12 shows the average network-wide fuel consumption levels considering different
MPRs. As can be seen in the figure, the benefits grow with increasing MPRs of controlled
vehicles until it levels off at about 80% MPR. At 80% MPR, the average fuel consumption
is reduced by 15.72%. In the simulations, the algorithm smooths the trajectories of the
controlled vehicles, while simultaneously smoothing the movements of some non-controlled
vehicles due to car-following behavior, further reducing the overall fuel consumption levels.
Even at an MPR of 20%, significant benefits are observed. This indicates the proposed
algorithm can be implemented even with low MPRs of controlled vehicles.

Figure 4-13 shows the average network-wide travel times considering different MPRs. With
higher MPRs, the travel time is longer as demonstrated in the figure. At 100% MPR, the
travel time is increased by 1.49%. Nonetheless, this is expected as explained in Section 4-1-2.
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4-7 Case study V - stochastic traffic behavior

In this section, the impact of stochasticity in traffic behavior on the Eco-PSC algorithm
performance is investigated. The stochasticity is added in the form of driver imperfection,
i.e. the non-controlled vehicles deviate from the legal speed limit and do not apply constant
throttle. In this case study, a speed distribution where 95% of the vehicles drive between 80%
and 120% of the legal speed limit is chosen [61].

4-7-1 Single queue

In the first step, the traffic scenario from Case study I is reconsidered. Hence, the demand
profile of Figure 4-3a is loaded to the intersection for 300 seconds and the controlled vehicle
enters the network at ¢ = 144 seconds.

Figure 4-14 illustrates the trajectories of all vehicles for the two eco-driving algorithms over
one cycle length, where the traffic signal is located at 400 meters. A significant difference
compared to Case study I is that the queue length is increased by one vehicle. Figure 4-14a
shows the vehicle trajectories after implementing the Eco-CACC algorithm. Similar to the
first case study, the controlled vehicle slows down to approach the intersection and runs into
the vehicle waiting queue. While in Figure 4-14b, the Eco-PSC algorithm ensures that the
vehicle can cruise towards the traffic signal and just catch the tail of the queue when it is
released.

Figure 4-15a compares the trajectories of the controlled vehicle for the two eco-driving al-
gorithms. As depicted in the figure, the travel time of both vehicles is practically identi-
cal. However, the trajectory is smoother when the Eco-PSC algorithm is implemented as the
benchmark algorithm is unable to accurately estimate the tail location of the queue. Figure 4-
15b compares the speed profiles of the controlled vehicle for the two eco-driving algorithms.
Compared to Case study I, only the cruise speed of the PSC vehicle is lower, i.e. 7.78 m/s.
Because of the receding horizon approach, the Eco-PSC algorithm can deal with uncertainties
and calculate the cruise speed with new information about the measurements. Moreover, the
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Figure 4-14: Vehicle trajectories around the signalized intersection for the single queue scenario in
Case study V: (a) the blue lines represent the non-controlled vehicles and the red line represents
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Figure 4-15: Eco-driving for the single queue scenario in Case study V: (a) comparison of vehicle
trajectories of the controlled vehicle, (b) comparison of speed profiles of the controlled vehicle.

speed of the CACC vehicle drops sharply for approximately 7 seconds due to the inaccurate
estimation of the queue. For the Eco-PSC algorithm the speed slightly changes, although
this is minimal because of the overestimation of the queue. Nevertheless, after 190 seconds
the driver imperfection of the preceding vehicle introduces frequent speed changes for both
algorithms.

As presented in Table 4-6, the fuel consumption of the controlled vehicle is 82.09 ml for
the benchmark algorithm and 75.90 ml for the Eco-PSC algorithm. Hence, the Eco-PSC
algorithm is the more efficient control method, reducing the fuel consumption levels by 7.54%.
In addition, the Eco-PSC algorithm smooths the trajectories of the non-controlled vehicles
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Table 4-6: Performance evaluation of the Eco-PSC algorithm in terms of fuel consumption,
travel time, maximum computation time and relative change in fuel consumption and travel time
compared to the benchmark algorithm for the single queue scenario in Case study V. Furthermore,
the average fuel consumption and travel time of the non-controlled vehicles related to the eco-
driving strategies, denoted by NCcacc and NCpgc, are also presented.

Control FC [ml] TT [s] FCia [%] TTrel [%0] CTmax [8]
Eco-CACC  82.09 65.71 - - -

Eco-PSC 75.90  65.69 -7.54 -0.03 0.45
NCcacc 93.96  64.80 - i }
NCpsc 91.46  64.77 -2.66 -0.05 -

(as seen in Figure 4-14). The example above demonstrates that the algorithm reduces the
average fuel consumption by 2.66%. Lastly, a maximum computation time of 0.45 seconds
per sampling interval was observed.

4-7-2 Running into a red light

Secondly, consider the scenario where the controlled vehicle is the last vehicle that can traverse
the intersection during the current green phase in perfect driving conditions. Then due to
driver imperfection of the preceding vehicle, the controlled vehicle suddenly runs into a red
signal and has to wait for the next green window to proceed through the intersection. In
this scenario, a constant demand flow of g = 900 veh/h is loaded to the intersection for 300
seconds and the controlled vehicle enters the network at ¢ = 116 seconds.

Figure 4-16 illustrates the trajectories of all vehicles for the two eco-driving algorithms over
one signal cycle, where the traffic light is located at 400 meters. Figure 4-16a shows the
vehicle trajectories after implementing the Eco-CACC algorithm. As can be seen in the
figure, the controlled vehicle cruises towards the intersection and runs into the red traffic
light. Consequently, the vehicle has to come to a complete stop and idle in front of the signal
before it can continue its path. While in Figure 4-16b, the Eco-PSC algorithm adjusts its
trajectory once the MPC controller predicts the vehicle can no longer cross the intersection
during the current green phase. This way, the vehicle can prevent idling upstream of the
traffic signal.

Figure 4-17a compares the trajectories of the controlled vehicle for the two eco-driving al-
gorithms. The trajectory is slightly smoother when the Eco-PSC algorithm is implemented.
Nevertheless, the travel time of the vehicle driving with the Eco-CACC algorithm is shorter.
Compared to the benchmark algorithm, the travel time of the PSC vehicle is increased by
1.65%. Figure 4-17b compares the speed profiles of the controlled vehicle for the two eco-
driving algorithms. As can be seen in the figure, both algorithms accelerate to cruise speed.
After 141 seconds the speed of the CACC vehicle fluctuates due to driver imperfection of the
preceding vehicle. Subsequently, the CACC vehicle runs into the red traffic light and comes
to a complete stop for 28 seconds. The Eco-PSC algorithm exhibits indecisive behavior as it
is uncertain if the vehicle can cross the intersection during the current green phase. Then,

Master of Science Thesis Eline M.C. Schropp



44 Simulation case studies and results

Position [m]

600 1 600 1
500 r 500
400 | E 400
=
L
300 ¢ = 3001
o]
a
200 1 200
100 | —NC 100} —NC
——Eco-CACC ——Eco-PSC
0 - : ' 0°- - : :
120 140 160 180 200 220 120 140 160 180 200 220
Time [s] Time [s]
(a) (b)

Figure 4-16: Vehicle trajectories around the signalized intersection for the red light scenario in
Case study V: (a) the blue lines represent the non-controlled vehicles and the red line represents
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Figure 4-17: Eco-driving for the red light scenario in Case study V: (a) comparison of vehicle
trajectories of the controlled vehicle, (b) comparison of speed profiles of the controlled vehicle.

at t = 145 seconds the algorithm estimates the vehicle can no longer cross the intersection
during the current green window and adjusts the cruise speed to 0.50 m/s. However, this
speed is below the speed of a pedestrian (i.e. 1.24 m/s [66]) and therefore the vehicle can be
considered stopped. To prevent indecisive behavior, one could set a speed threshold value to
define when the traffic state switches from free-flow to congested. This way, the algorithm
can adjust the cruise speed accordingly.

As presented in Table 4-7, the fuel consumption of the controlled vehicle is 97.24 ml for
the benchmark algorithm and 96.29 ml for the Eco-PSC algorithm. This means that in
this example, the benefits of the Eco-PSC algorithm for the controlled vehicle are negligible.
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Table 4-7: Performance evaluation of the Eco-PSC algorithm in terms of fuel consumption,
travel time, maximum computation time and relative change in fuel consumption and travel time
compared to the benchmark algorithm for the red light scenario in Case study V. Furthermore, the
average fuel consumption and travel time of the non-controlled vehicles related to the eco-driving
strategies, denoted by NCcacc and NCpgc, are also presented.

Control FC [ml] TT [s] FCia [%] TTie [%] CTmax [8]

Eco-CACC  97.24 81.35 - - -
Eco-PSC 96.29 82.69 -0.98 +1.65 0.47

NCcace 114.75  66.36 - _ _
NCpsc 112.32  67.52  -2.12 +1.75 -

Nevertheless, the PSC vehicle exerts a positive influence on its following vehicles, since the
average fuel consumption levels are decreased by 2.12%. Finally, a maximum computation
time of 0.47 seconds per sampling interval was observed.
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Chapter 5

Conclusions and future work

This thesis designed a predictive speed control (PSC) strategy to reduce the fuel consumption
of vehicles proceeding through signalized intersections. The algorithm utilizes signal phase
and timing (SPaT) information obtained through infrastructure-to-vehicle (12V) communica-
tion and real-time passing data collected using induction loop detectors to compute optimal
speed profiles. The algorithm estimates traffic imposed constraints based on traffic signal in-
formation, cumulative flow curves and the LWR-model. Microscopic traffic simulations have
been run in SUMO with realistic traffic inputs, such as signal timing and demand profiles.
Various case studies have been conducted to evaluate the effectiveness of the developed Eco-
PSC algorithm. This chapter presents the key conclusions of the simulation results in Section
5-1 and includes further discussion on future work in Section 5-2.

5-1 Conclusions

The main goal of this thesis was defined as follows:

To develop a real-time implementable PSC strategy for vehicles proceeding through
signalized intersections to reduce fuel consumption while considering queue con-
straints.

To accomplish the main research objective, two subquestions were formulated. These ques-
tions will be answered first:

1. What is an accurate method to estimate queue propagation in the vicinity of signalized
intersections?

Many traffic flow models can be applied to estimate the queuing effect and derive the
spatial and temporal constraints. The LWR is a kinematic wave model that describes
traffic dynamics on roads. The theory of kinematic waves combines the conservation
of vehicles principle together with a fundamental diagram of traffic low. Newell uses
kinematic wave theory to directly evaluate the cumulative flow for points in space-time.
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The benefit of this method is that the cumulative flow for the full space-time domain can
be estimated from initial and boundary conditions without evaluation at intermediate
locations and times. Based on Newell’s simplified method, an efficient and accurate
procedure to estimate the future cumulative flow curves and identify the restrictive red
periods is developed. Thereafter, the spatial and temporal restrictions for the controlled
vehicle can be determined based on the future cumulative flow curves, the LWR-model
and the cumulative flow value of the controlled vehicle.

2. How can the queue constraints be integrated into the control framework such that it
operates in various traffic conditions?

The estimation accuracy and efficiency of traffic and signal conditions are critical for
the effectiveness of the optimal speed profile provided by the PSC strategy. Residual
queues caused by oversaturated demand flows generate traffic fluctuations and complete
stops for the controlled vehicle. To counteract this problem, the proposed algorithm
introduces a point in the space-time domain for each restrictive red period. This point
represents the spatial and temporal constraint imposed by the presence of the queue on
the signalized road. To avoid idling in the queue, the controlled vehicle should not pass
the location of this point before the dissipation time of the queue.

In the first case study, the proposed algorithm was compared to the benchmark algorithm
in undersaturated conditions where queues can completely dissolve in a single cycle. This
case study showed the proposed algorithm can more accurately estimate the tail location of
the queue. This results in a reduction in fuel consumption by 4.35%, although the travel
time is increased by 1.14%. In the second case study, the proposed algorithm was compared
to the benchmark algorithm in oversaturated conditions where residual queues are formed.
Due to the impact of residual queues, the benchmark algorithm does not operate efficiently.
In contrast, the Eco-PSC algorithm identifies the restrictive red periods and introduces a
constraint for each queue. This way, the Eco-PSC algorithm can achieve a reduction in fuel
consumption as high as 29.15%. However, this fuel consumption saving is at the expense
of an increase in driving time by 1.15%. In the third case study, the proposed algorithm
causes upstream spillback that does not occur without control. The controlled vehicle causes
depart delays on its following vehicles with an average value of 6.93 seconds. Moreover, the
suggested speed trajectory causes negative impacts on following vehicles in terms of additional
fuel consumption and travel time.

In the fourth case study, the impact of market penetration rates (MPRs) on the proposed
algorithm performance was investigated. This case study showed that the benefits grew with
increasing MPRs of controlled vehicles until it leveled off at about 80% MPR. At an MPR
of 80%, fuel consumption savings of 15.72% were achieved. However, higher MPRs also lead
to an increase in travel time by 1.49% at 100% MPR. In the last case study, the impact of
stochastic traffic behavior on the proposed algorithm performance was investigated. Because
of the receding horizon approach, the Eco-PSC algorithm is relatively robust to uncertainties
and can calculate the cruise speed with new information about the measurements. In the
first part of this case study, the proposed algorithm was able to accurately calculate the
tail location of the queue and achieve a fuel consumption saving of 7.54%, while causing no
adverse effect on the travel time. In the second part of this case study, the benefits of the
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proposed algorithm compared to the benchmark algorithm were negligible for the controlled
vehicle.

In conclusion, the proposed algorithm can accurately estimate queue propagation and operate
in various traffic conditions. In addition, the proposed algorithm smooths the trajectories
of the non-controlled vehicles due to car-following behavior, which further reduces the fuel
consumption levels in the network. Furthermore, the maximum computation time found in
the various case studies was less than the sampling interval of the system, which makes the
MPC controller real-time implementable. However, the control framework should be further
improved in order to realize the Eco-PSC algorithm.

5-2 Recommendations for future work

Based on the simulation results, several directions for future research can be recommended
to improve the Eco-PSC algorithm.

Improvements to the framework The primary recommendation would be to further improve
the control framework. Here, some suggestions are summarized:

Set a speed threshold value to prevent indecisive behavior.

Utilize a multi-start algorithm to increase the chance of finding a global solution.

Integrate a constraint to avoid negative impacts on following vehicles.

Include upstream demand-related constraints to prevent additional upstream spillback.

Note that in the latter, the term additional is used as the MPC controller should prevent
upstream spillback that is caused by the controlled vehicle but would not have occurred
otherwise. The developed method is particularly suitable for including upstream restrictions
in contrast to other methods like the benchmark algorithm. The upstream queue length
and discharge time can be calculated in a similar manner as the downstream supply-related
constraints but viewed from the perspective of the upstream link boundary. For this, one
should draw a w-wave every time a new vehicle enters the link after the controlled vehicle and
determine if additional upstream spillback would occur, see Figure 5-1. In case of additional
upstream spillback, the controlled vehicle is suggested to drive at a relatively faster departure
speed to allow more upstream vehicles to enter the link.

Traffic signal and future inflow information Traffic signal information was in this thesis
included via a fixed and known signal timing. Extensions could be to implement traffic-
actuated signals and take the stochastic nature of traffic signal timing into account, where
the probability of a green light is predicted based on the current phase and the average signal
timing data [67]. Moreover, the phase transition can be extended by including the amber
phase in addition to the red and green phases, which would make the simulations closer to
reality. Furthermore, in the simulation case studies, perfect knowledge of the future demand
was assumed, i.e. we know when other upstream vehicles enter the link. Nevertheless, one
can also introduce an uncertainty in the demand, where the demand can be described by a
probability density function.
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Figure 5-1: Trajectories of shockwaves and the controlled vehicle for the formulation of the
upstream demand-related constraints. The dashed black line represents the trajectory without
consideration of additional upstream spillback and the dashed green line represents the trajectory
with consideration of additional upstream spillback.

Performance on larger and more realistic traffic networks The algorithm minimizes fuel
consumption levels of vehicles traversing a single intersection, limiting its application on ar-
terial roads with multiple consecutive signalized intersections. Hence, larger networks with
two, four or eight intersections should be implemented to expand the feasibility of the al-
gorithm. Moreover, only single-lane roads were considered to prevent dealing with complex
lane-changing behavior. However, a more realistic intersection layout comprises links where
the roads upstream and downstream of the intersection consist of more than one lane. Thus,
it would be intriguing to see how the system performance and computational complexity
change by considering multi-lane roads and multiple consecutive intersections in the opti-

mization logic.

Human and wireless communication factors The effectiveness of eco-driving strategies
is deeply related to the behavioral adjustment of the driver to the cruise control system.
If drivers refuse to comply with the provided speed advice, the advantage of the applica-
tion diminishes. Hence, the driver’s compliance with the system, which depends on situa-
tional factors, acceptance, personal traits and trust [50], remains a critical factor for realizing
the benefits of eco-driving algorithms. Furthermore, the effects of wireless communication,
e.g. communication delay, transmission range and packet loss, on the algorithm performance

should be further analyzed.
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List of Acronyms

PSC predictive speed control

SPaT signal phase and timing

12V infrastructure-to-vehicle

KWT kinematic wave theory

FD fundamental diagram

VT-CPFM Virginia Tech Comprehensive Power-based Fuel Model
MPC model predictive control

SUMO Simulation of Urban MObility

CACC cooperative adaptive cruise control

Master of Science Thesis

Glossary

Eline M.C. Schropp






	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	State of the art
	Scientific gap
	Research objective
	Thesis outline

	Background and preliminaries
	Traffic variables
	Three-dimensional representation

	Traffic flow models
	The LWR-model and kinematic wave theory
	Newell's simplified kinematic wave theory

	Queue and spillback effects on signalized roads
	Queue estimation
	Vehicle spillback

	Speed trajectory control
	Model predictive control


	System model and problem formulation
	Vehicle model
	Problem formulation
	Objective function
	Vehicle constraints
	Constraints imposed by traffic
	Minimum-fuel control problem


	Simulation case studies and results
	Simulation set-up
	Parameter identification
	Performance measures
	Demand profiles

	Benchmark algorithm
	Case study I - single queue
	Case study II - residual queue
	Case study III - upstream spillback
	Case study IV - market penetration rates
	Case study V - stochastic traffic behavior
	Single queue
	Running into a red light


	Conclusions and future work
	Conclusions
	Recommendations for future work


	Appendices
	Back Matter
	Bibliography
	Glossary
	List of Acronyms



