TECHNISCHE UNIVERSITEIT DELFT

MASTER OF SCIENCE THESIS IN COMPUTER SCIENCE

Introducing flexibility in
any-start-time safe interval path

planning:
a case study on the Dutch railway network

Eric KEMMEREN

Supervisors:

Prof. Dr. Mathijs DE WEERDT
Ir. Issa HANOU

September 2, 2025

]
TUDelft

Delft University of Technology

Introducing flexibility in any-start-time safe interval
path planning: a case study on the Dutch railway
network

Master’s Thesis in Computer Science

Algorithmics group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Eric Kemmeren

September 2, 2025

Author

Eric Kemmeren

Title
Introducing flexibility in any-start-time safe interval path planning:

a case study on the Dutch railway network

MSc presentation
September 9, 2025

Graduation Committee
Prof. Dr. M. M. De Weerdt Delft University of Technology (chair)

Ir. I. K. Hanou Delft University of Technology
Prof. Dr. R. M. P. Goverde Delft University of Technology

Abstract

During the daily operation of the railway network, ProRail is responsible
for handling delays and planning ad hoc train movements. Train handling
documents aid the traffic controllers in common situations. But when mul-
tiple trains are delayed, and these documents do not apply, they are left to
their own expertise.

In this thesis, we introduce FlexSIPP, an algorithm to plan or replan
agents in an existing multi-agent plan. FlexSIPP builds upon the prior
works of any-start-time safe interval path planning, where the current routes
of the agents are seen as moving obstacles. FlexSIPP loosens this restriction
by introducing flexibility: the ability for an agent to delay its plan while
minimally impacting other agents.

This algorithm is evaluated on the Dutch railway network. By finding
tipping points, that is, the moment it is better to switch the order of two
trains on the track to minimize the delay, we can recreate train handling doc-
uments. We show that FlexSIPP finds the same solutions within a minute
in the case that no other trains are delayed. This implies that FlexSIPP is
also able to aid traffic controllers in the case that other trains are delayed.

v

Preface

With my academic journey at the TU Delft comming to an end, I can look
back at a transformative six years long chapter of my life. With many widely
varying challenges during these years I was able to grow on a personal and
professional level. I would like to thank everyone that was part of that.

Designing and developing an algorithm has challenged me greatly in this
thesis project. Thats why I would like to first of all thank my supervising
professor, Mathijs de Weerdt, for the sparring sessions and continous sup-
port. Even as my explanations were not as clear as they could be. With the
fast responses to my emails and critical questions I was able to push this
thesis further.

Furthermore, I would like to express my gratitude to my daily supervisor
Issa Hanou for guiding me through this project. The weekly meetings helped
me keep on track and maintain perspective on the bigger picture of the
project.

I would also like to thank my contact at ProRail, Wilco Tielman, for
the meetings and supplying me with information about the workings of the
railway network in the Netherlands.

Lastly, I am deeply thankfull for family and friends throughout the du-
ration of my study and this project. Especially for supporting me during
the moments I too busy to do anything else than work on some project and
sleep.

Eric Kemmeren

Delft, The Netherlands
September 2, 2025

vi

Contents

2 Background|

2.1 Path Planning|
[2.2 Railway Infrastructurel

[2.3 Reduction from a railway track to Q5IPP|

[2.4 Train handling documents| . .

3__Related Workl
3.1 Multi-Agent Pathfinding|

[3.2 Mixed Integer Linear Programming.

4 Method

4.1 Creating the Routing Graphl.

|4.2 Blocking Times in a Routing Graphl

4.3 Flexibility] o

4.4 Searching with flexibility]

4.4.1 Additional edge|.o

|4.4.2 Limits on flexibility| .

6__Evaluation

5.1 Data preparation| L.
5.2 TAD Comparison|.

[5.2.1 Schagen to Den Helder|

15.2.2 Bottleneck between Zwolle and Meppell

b.2.3 The Hague to Amsterdam South|

(.3 Runtime evaluationl.

[5.3.2 Number of agents|

5.4 Routing a train from Schiphol to Rotterdam|.

6 D onl

[T Conclusion|

vii

11
13

15
15
16

19
19
21
24
26
27
28

33
33
36
36
39
40
42
42
43
45

47

49

8 Future Works|

|A Sporenplan Railway Networks|

IB Search graph|

viii

51

57

59

Chapter 1

Introduction

In the Netherlands, ProRail is responsible for the daily operation of the
railway network. These responsibilities include handling delays and plan-
ning new train movements. Local traffic controllers handle these operations
between intersections in the railway network. Network traffic controllers co-
ordinate the traffic over large areas (Hansen and Pachl, [2008]). The traffic
controllers are of utmost importance for the full utilization and safety of
the railway network. To aid these traffic controllers in common situations,
there are train handling documents, called TADs (Trein Afhandelings Doc-
umenten in Dutch). These documents specify what actions to take in case
of delays and incidents. These actions can include, but are not limited to,
delaying other trains, skipping a station, or canceling a train. For some
situations, these TADs specify when two trains should swap order on the
track. This is to reduce the oil spill effect that a delayed train can cause,
which causes an increasing number of trains to be delayed.

The downside of these documents is that they are only usable for specific
problems, and do not combine well. Applying multiple of these turnkey
solutions can be infeasible, as they are not made to fit together. To improve
the support of the traffic controllers, we need to look for an approach that
takes into account the current state of the network. When a train is delayed,
it can cause the following train to want to occupy the same part of the track
at the same time. This is called a conflict. We aim to solve this conflict by
supplying the traffic controller with up-to-date information to re-plan the
delayed train for the specific current state of the network, instead of a TAD.

The problem of finding routes for all trains in the railway network can
be seen as a multi-agent pathfinding problem, where each train is an agent
traversing the network. Multi-agent pathfinding is the problem of finding
routes for a group of agents from starting locations to goal locations. Finding
these routes can be computationally expensive (Yu and LaValle,|2013|). After
creating the multi-agent plan, we arrive at the execution phase. During the
execution, agents can be forced to deviate from the plan. Reasoning can

/ Schiphol
L Airport,ﬁ
H1||egﬁi:| 5 @:gf'

/

Noordwijk
aan Zee
Noordwijk uit!

Voorhout ()

Sassenheim
Katwjjk
Rijnsburgl; Oegst-{
Valkenburg 9°°8!

Leiden Centraal

Hoogmade

Boskoop Snijdelwijk
iWaddimween Noord
+)Waddinxveen

Den Haag Centraal

J}w;dmnmu Triangel

's-Gravenzande
Naaldwijk

CCapelle Schollevaar

traal

Maassluis e
Schiedam Ceptfim e 3 Brthpan,aad %Emzﬂg:he;
fl b rdamzaig | den Wssel

Viaardingen

Vulcaanh o

™ ikaanhantn ™ & 8 '. R
(a) ProRail railway map. (b) NS line network.

Figure 1.1: Two depictions of the railway network between Schiphol and
Rotterdam

be that an action takes longer than expected, or a sudden delay occurs.
This is due to the uncertainties of the problem. |Cacchiani et al. (2014)
describe disturbances in our problem of train routing as “relatively small”
perturbations. For example, a train leaves the station later due to the
doors not closing properly. Larger perturbations are described as disruptions
and can include tracks becoming unavailable because of an accident. These
disruptions have a large impact on the routes that trains can take.

One solution for creating a multi-agent plan that can handle small delays
is k-robust planning. In the initial planning phase, it is taken into account
that an agent can be delayed by up to k timesteps while not invalidating
the plan (Atzmon et al., [2018; (Chen et al., 2021). This does sacrifice some
optimality for robustness and is not guaranteed to handle delays greater
than k. For these delays, replanning of all agents is required.

Another approach is finding a new path for the delayed agent using the
existing multi-agent plan. This creates a set of problems called multi-agent
execution delay replanning (MAEDeR) (Hanou et al.,2024). Focusing on the
delayed agent, it is possible to reduce the multi-agent pathfinding problem
to a single-agent problem by treating other agents as moving obstacles. This
allows for the initial planning to be optimal and allows delayed agents to be
replanned efficiently, although not necessarily attaining a global optimum
when a delay occurs. The solution proposed in that line of work uses a
form of safe interval path planning (SIPP). This algorithm identifies time

windows in which a route is available. As an example, take the high-speed
railway line between Schiphol and Rotterdam on the Dutch railway network
shown in Figure When a disruption occurs on this line, there are two
options for the trains that are on this route. Wait for the disruption to
clear, or take the longer and busier route through Leiden and The Hague.
Depending on the departure time of the train and when the disruption will
be cleared, either one of the options can be the best. SIPP encodes the time
window that the route is available efficiently, such that it can apply heuristic
search on it. To model the MAEDeR problem, the other agents are seen as
immovable objects, just like the disruption. Because the planning for these
agents is known, the routes can be marked as unsafe when an agent occupies
the space. Replanning of an agent happens around these unsafe routes. This
method does not take into account the flexibility of other agents. Trains that
normally take the route through Leiden and The Hague can deviate from
their planned timetable slightly without impacting other trains or even their
own departure time at the next station, as the time spent at that station
can be longer than necessary (ProRail VenD VACO, [2016). Delaying these
agents at strategic points allows us to plan a new agent between existing
agents.

In the execution of SIPP, it is expected that the starting time is known.
The search algorithm can easily identify the fastest route to a point. It
assumes that when a new route is found that is slower, that route does
not need to be taken into account. @SIPP (Thomas et al., 2023) removes
this assumption. It will calculate for every possible departure time in the
future what the fastest route is. If during the search a point is already
visited, @SIPP will still use this point if the route to that point is no longer
available due to a later starting time. It still, however, assumes the obstacles
it is planning around are immovable.

In this thesis, we provide an extension to @SIPP that allows us to remove
this assumption and delay the plan of other agents. With this extension to
@SIPP, called FlexSIPP, we take a step closer to finding the optimal plan
for the multi-agent pathfinding problem, from a single-agent perspective.
With this we can also identify tipping points, like the TADs specified, that
tell us when it is best to swap the order of two agents. To determine the
validity of the proposed method, a study will be performed on the Dutch
railway network.

FlexSIPP will be able to delay the plan of other agents by identifying
flexibility in the other agents’ plans. The flexibility can fall under two cate-
gories: buffer time and recovery time. Buffer time is the amount of time an
agent can delay its plan while not conflicting with other trains. Recovery
time is the time delta between the scheduled running time of its route and
the absolute minimum time needed. A delayed agent can decrease its delay
by this amount.

To summarize, in this thesis, we will be answering the following questions:

1.

Does including flexibility in any-start-time safe interval path planning
allow us to find a plan that improves the total cost in a multi-agent
plan?

. Can FlexSIPP identify tipping points when trains need to swap posi-

tions to minimize the total delay?

. Is FlexSIPP able to aid traffic controllers in real-time?

Chapter 2

Background

Before introducing flexibility in any-start-time safe interval path planning,
we first introduce (any-start-time) safe interval path planning. To conduct
the case study on the Dutch railway network, we discuss how signaling works
on the railway, and what work has already been completed to model the
railways as a graph that can be used with any-start-time safe interval path
planning. Lastly, we introduce train handling documents that aid traffic
controllers when conflicts occur.

2.1 Path Planning

Safe Interval Path Planning (SIPP) (Phillips and Likhachev, [2011)) is a way
to navigate around dynamic obstacles. The dynamic obstacles can be any
obstruction of available paths during some part of the search. That can
entail other agents moving around or the closure of a path. Due to these
obstacles, not all paths are always available.

As trains are restricted in their movements to the tracks, we can model
the railway network as a directed graph, with individual nodes and edges
for each direction. Each state in this graph corresponds to a location on the
track. In SIPP, the edges correspond to a safe interval between two locations
in the graph. As an example, we can use the two routes between Schiphol
and Rotterdam. When a disruption occurs on the high-speed line, this route
is not available. Only after the disruption is cleared would an edge be added
between Schiphol and Rotterdam that uses the high-speed line. The detour
through The Hague and Leiden would correspond with a safe interval that
is available, but slower than the high-speed line.

Formally, we can define a SIPP problem as a tuple (G, 9, z,,z,), where
the graph G consists of states S and edges . The state represents a node
in the graph with a location and safe interval, and is defined as s = (x,i) €
S. The edges represent when it is possible to go from the origin state
to the destination state with a unique interval, represented by the tuple

e = (u,v,i) € E. The variable z denotes a location, and the locations x,
and x4 are the origin and goal locations, respectively. For every state and
edge, there is an ¢ = (t,,t.) that denotes the interval from ¢, to ¢, where
the corresponding state or edge is safe. An edge has a nonnegative cost of
0(u,v), implying that an agent taking an edge from u to v at time ¢, will
arrive at t +d(u, v). To optimally solve the SIPP problem, we need to find a
path from x, to x4, through the graph G, minimizing the total cost over the
path. It is also possible to wait in a state s, until the end of the safe interval
associated with that state is reached. This allows for the reduction that it
is always better to be in a state earlier, as any later time can be reached by
waiting. SIPP then only tracks the earliest arrival time in a state, and with

A* search finds the optimal route departing immediately.

In Any-start-time SIPP (@QSIPP) (Thomas et al., 2023), SIPP is aug-
mented to allow for an unknown start time ¢,. It achieves this using arrival
time functions (ATFs). These arrival time functions specify the arrival time
for a given departure time. Now, it is not always better to only track the
earliest arrival time at a state, as search algorithms like A* do. It also de-
pends on when the route that arrives at a location is available. Because of
the uncertainty in ¢, the earliest arrival time at a state can become unreach-
able when starting later. For instance, the train that is deciding to wait for
the disruption to clear on the high-speed line is occupying a platform at
Schiphol. Another train will soon be arriving at that same platform, so it
needs to start moving before the other train arrives.

In @QSIPP, the ATF's are defined as an edge with four parameters: (, «, 8
and A, where ¢ denotes the time the agent can start waiting at the origin
state . This origin state has the safe interval i = (t¥,t¥). The destination
node v has a safe interval of i¥ = (t¥,t’). The variable « is the earliest
possible time the agent can start traversing the edge e = (u,v,i¢), with a
safe interval i¢ = (t¢,tS). To traverse the edge, the agent must be able to
safely depart the starting location, avoid conflicts when traveling, and arrive
at the end of the edge. The variable § is then the latest time the agent can
depart from the origin state, and lastly A is the duration to traverse the

edge e. Equations show the calculations for these four variables.

=t (2.1a)
a =max(ty, t5,t7 — §(u,v)) (2.1b)
B =min(ty, te,t? — 0(u,v)) (2.1c)
A = d(u,v) (2.1d)

Using these variables, we can define the ATF:

o0 t < (e

ae+Ac (e <t < min(ae, Be)
t+A: . <t<p

00 Be <t

f[Cevae,ﬁeaAe](t) = (2.2)

As it is impossible to depart when the edge is not safe, we set an infinite
arrival time for when departing before (or after 5. If the train departs
Schiphol before o and 3, then we need to wait before we can safely depart
at time «, and then the train still needs to traverse the edge. If the train
departs any later than this, it also arrives later if it is following the same
route.

An ATF is defined for every initial edge in the search space. When con-
structing a path, it is possible to combine the ATFs of the edges of the
path to compose the ATF for the path. The ATF is piecewise linear, which
entails that in the intervals defined in Equation the arrival time only
increases linearly. This allows for multiple ATFs to be efficiently combined.
As all edges have a piecewise linear ATF, the path ATF will also be piece-
wise linear. To start the construction of the path ATF, we first use the
insight that a path of a single edge will result in the path ATF and edge
ATF being equal. If we have a path p to some state that has an outgoing
edge e, we can combine the ATF of the path p and edge e into the ATF of
p’. We need to account for the four variables of the ATF when combining
two ATFs. The variable (, is equal to (p, as the earliest time the start of
the path is safe will not change when adding an edge to the path. What
can change is the amount of waiting the agent must and can do along the
path. Forcing the agent to wait longer on the path will increase a, whereas
limiting the amount of time an agent can wait will decrease 8. The duration
A,y is simply the sum of the duration of the path and the edge. Formally,
these insights give us the recursive definition of the equivalent edge.

gp’ = Cp (23&)
ay = maz(ay, e — Ap) (2.3b)
By = min(By, Be — Ap) (2.3¢)
Ay = A, + A, (2.3d)

An example where two ATFs are combined is shown in Figure Ini-
tially, the first ATF of a path is equal to the outgoing ATF at the current
node, thus when going from u to v, f, = f, in the example. When combin-
ing f, and f,, the variables o, and 3, will be offset by the time to reach v,
hence the term A, in Equations and The time the calculated path
is available is the time between (,y and 3,/. This duration can only decrease
when expanding the path further. Only when 3,, becomes smaller than (,,

500 500

400 400
@ | 300 = | 300
: L
£ | 200 £ | 200
Qy
100 100
<p’
0 0 1 | |
U v w
(a) Arrival time functions of the (b) Resulting arrival time func-
two edges (u,v) and (v,w). A is tion of p’ from u to w when
the slope from the starting node combining the ATF's from Figure
to the destination node. @

Figure 2.1: Example of applying the recursive definition of the equivalent
edge to calculate the arrival time function from w to w by combining the
arrival time function encountered on the path.

the path becomes unavailable. It can be that 8, becomes smaller than ayy,
in this instance the agent must depart from the origin between (, and f,,
and will always arrive at the same time at the destination, at o, + A.

Using A* search, the optimal solution can be found. Every time a node
is expanded during the search, the variables are calculated as above. When
a path is found, A* search is repeated to search all possibilities of departing
from the origin node. The reasoning is that we want to calculate a path for
all possible starting times, and a new path could be found from the time
that the initially found path departs from the origin. The search ends when
the agent can not depart from the origin before it becomes unsafe. The
difference with SIPP and @QSIPP is that the former will find the fastest path
immediately, whereas the latter will find the fastest path departing starting
at tg, till the starting state becomes unavailable.

After finding every path from z, to x4, we can combine the arrival time
functions by exploiting their piecewise linearity. In |Thomas et al. (2023),
every combination of combining two arrival time functions is explored. In
this thesis, we explain the concept using one example as shown in Figure
The idea is to combine every ATF into a compound ATF (CATF), such
that we minimize the arrival time for every departure time, where the agent
can take multiple paths depending on the departure time. In the example
in Figure we have the arrival time functions from Figure 2.1b] and we
have also found another path available between (s = 150s and [y = 275s.

B0 gvprg ey 500

z ®
@ o : :
ki £ : :
=1 400 &= 400 ;
o : o :
<X (1 o3 <
300 300
0 100 200 300 0 100 200 300
Departure Time (s) Departure Time (s)
_ _
(a) Arrival time functions of two (b) Combination of the two arrival
paths p; and po, where p; corresponds time functions.

with the ATF in Figure and po
always arrives at 400s

Figure 2.2: Combination of two arrival time functions, resulting in a com-
pound arrival time function (CATF).

From 200s onwards, it becomes faster to use this path. In Figure we
find the resulting compound arrival time function with an extra break point
at the point where the original ATF's intersect.

2.2 Railway Infrastructure

“The main railway infrastructure is fitted with signalling systems, safety and
communication systems for the safe and controlled handling of train traffic.”
(ProRail, 2024). Most systems work by dividing the railway network into
blocks, where only one train is allowed inside a block. To inform the drivers,
ATB and ETCS Level 1 use trackside signals, whereas ETCS Level 2 uses
an interface inside the driver cabin. The maximum allowed speed at that
time is also indicated to the driver through these signals.

Explanation and modeling of the railway infrastructure is extensively dis-
cussed by Hansen and Pachl (2008). Due to the large braking distances of
a train, it is impossible for the train to suddenly stop at a red signal when
going full speed. Distant signals indicate to the driver that a red signal is
coming up such so the speed can be reduced, allowing the train to stop at
the red signal. Using distant signals is called one-block signalling. Two-
block signalling is when the main signal can also indicate if the next signal
is red. In two-block signaling, it is impossible for the next block to suddenly
have a red signal, as it needs to be indicated first. This leads us to conclude
that when a train is traveling in a block, and has passed a green distant

signal, other trains can not enter the block our train is going to enter, as
the distant signal would need to indicate that. The distance between the
signals is called the approach distance, the approach time of the block is
the running time of a train over the approach distance. This is called the
approach time of the block. In the industry, it is said that the train has a
reservation on this block.

Release time
Clearing time

Running time

Occupation time

> Blocking time

Time

Approach time

Sight and reaction time
Setup time

= 0 g o>
Distance

Figure 2.3: Distance time diagram of the blocking time of a train in two-
block signalling adapted from (Goverde et al.| (2013).

To calculate when the next train can enter a block, we can calculate the
blocking time of a train. The blocking time of a block is the time that
an agent reserves a block or is inside of the block. Figure shows the
blocking time. It takes into account when a train driver can first see the
signal, including how fast they can react. During the time the train is in
front of the block we are calculating the blocking time for, it is called the
approach time. The occupation time is when a part of the train is inside
the block. Lastly, the release time is the time it takes for the signal to
update. The size of the blocking time depends on the length of the block
and the train speed. Hansen and Pachl| (2008) also discuss how to calculate
the running time in a block when a train changes speed throughout the
sections.

When signals are close together, as can happen in highly utilized sections

10

in multi-aspect signalling, the braking distance may be larger than the length
of the block. In such cases, a train will reserve multiple blocks in front. The
approach time will then include all blocks from when the train passes the
first signal that it needs to start braking to come to a complete stop.

/

//

.
\

./

—O —O —O —O —O —O
Distance

Figure 2.4: Blocking times of blocks on a track adjacent to each other, called
a blocking time stairway. Two trains are simulated. Adapted from [Pachl
(2020).

Figure [2.4 shows the blocking time on a section of a track with two trains.
Using these blocking times, we can calculate the minimum amount of sep-
aration that is needed on this line for the two trains not to interact with
each other. We achieve this by compressing the blocking staircase diagram
and moving the blocking times of the trains as close together as possible,
such that they never create a conflict. This minimum separation between
the points is called the line headway. This headway is different for trains
following each other and trains going in the opposite direction, but it can
also be different between different types of trains.

2.3 Reduction from a railway track to @QSIPP

To solve the routing of a train in a multi-agent execution delay replanning
problem at stations, [Hanou et al. (2024) proposed a method to construct
a graph from the railway track to run @SIPP on. This reduction starts
with the insight that a train can not turn around suddenly. This leads us
to have two nodes for a single part of the track. One node is the A side,
where trains can only go in one direction, and the other node is the B side,

11

(=)
DO
()
5 ()

(a) A standard switch S in a) Graph of a standard switch,
track, a train can not move di- agents can only move in the di-
rectly from z to y. rection of the arrows.

Figure 2.5: Topology of a switch and corresponding track graph

going in the opposite direction. These nodes are only connected at tracks
where turning around is allowed, for example, at a station. At a switch,
this directed graph generates more nodes. With the assumption that this is
happening at a railway yard, trains travel slowly enough to run ’on sight’.
A train can then wait right in front of the switch when another train passes.
For purposes of @QSIPP, we generate a new unique node for every location
it can wait. The result is a Left and Right node of the switch, as shown in
Figure In the A direction, there is no L and R node as there is no
extra place for a train to wait. In the B direction, it can wait before the
switch coming from Y for a train coming from Z.

When a train can turn around on a piece of track, the A and B sides
will be connected. Now that it is possible to generate a graph from the
railway infrastructure, we need to determine what the safe intervals are for
SIPP. For this we will first show how to generate unsafe intervals that can
be inverted to create safe intervals and the ATF as used in @SIPP.

Unsafe intervals are closely related to blocking times, but use a default
headway for the train separation. This paper uses the headway as the min-
imum amount of time after a train has passed a location till the next train
reaches that location. This is different from the headway as explained in
Section where it includes the running time of the leading train. This
leads to that when a train travels through a node, that node is unsafe for
a new train to enter. Only when the train has fully passed the node and
the headway time has passed can a new train enter. Take X4 as the time
an agent a enters node X. This node has an unsafe interval iy~ starting
from tff‘ and stopping when the train has fully passed the starting point,

12

plus the headway following e;. The time it takes for a train to fully pass
the starting point is determined by the train length A(a) over the velocity
of that train v(X4,a) at the current node. The resulting equation is equal
to Aa)
a
ix, = (XA 654 + - 2.4
ZXA <s] +I/(XA,G)+6f> ()
Node X, also has an unsafe interval, as it resembles the same piece of track
but in the opposite direction of X,. This results in using the crossing head-
way instead of the following headway, other parts are equal.

Aa)

ix, = (t5A 154 + — 2
ZXB <s) bs +I/(XA,CL)

+ €c) (2.5)
When a train turns around, the driver has to walk to the other side of
the train and start up again. The duration of walking the train to the other
side of the train uses the driver’s walking speed w and train length A(a).
Again, for spacing purposes, a new train can only enter this track after the
headway time has passed. This results in the following unsafe interval when
turning around:
Aa)
w

iz, = (54154 + +er) (2.6)

The interval for the opposing node Zpg is exactly equal.

For a switch, consider Figure When a train travels from X to Y, it
passes through node S,;,. For this node, the unsafe interval can be calculated
with Equation For the two opposite nodes Slf2 and SL, only the node
that corresponds with the direction the train is going will have an unsafe
interval, as in Equation In this case, that is node S¥, as a train can wait
at Sf. In the B direction, the node S, always receives the unsafe interval
for the opposite direction as in Equation [2.5

With all the unsafe intervals that can be generated for all other agents
in the multi-agent delay replanning problem, it is possible to invert these
intervals to create safe intervals for the planning agent to use. These same
intervals can be used to create the ATFs with the same approach as/Thomas
et al.| (2023).

2.4 Train handling documents

In the Netherlands, the traffic controllers from ProRail coordinate the move-
ments of the trains. During normal operations, a system called ARI (Au-
tomatische Rijweginstelling in Dutch) sets all the switches and signals in
the correct state, following the timetable. When a delay occurs, the traffic
controllers step in and handle the situation. To aid the traffic controllers,
ProRail and the NS have created documents that specify what actions to
take when certain delays occur. An example of order changes of trains on a

13

Trainseries From Decision point Vtgranges Handling_trainseries

35000 Ledn Gv 7T— 43000,35000
6000 71 Hde 5—10 7000, 6000, 61000, 90000
6000 71 Hde 11—-15 7000, 61000, 6000, 90000
6000 71 Hde 16 — 7000, 61000, 90000, 6000
3000e Sgn Amr 7T— 30000, 3000e

Table 2.1: Example of a train handling document, if a train from the se-
ries “Trainseries” is delayed by “Vtgranges” minutes at the location “De-
cision point”, it needs to follow the order of trains as defined in “Han-
dling_trainseries” at the location “From”.

track is shown in Table To better illustrate how to use such a document,
take the first row of the table. It specifies a rule for a train for the series
35000, that is, a train between Rotterdam and Schiphol, and the green line
in Figure The “0” implies that we look at the odd direction, from
The Hague to Schiphol. If a train from this series has a delay between 7
and 10 minutes, or more than 11 minutes at the station The Hague HS with
abbreviation Gv, it will swap the order with the train from the series 43000
at the station Leiden Centraal. This train is the Sprinter starting at The
Hague Central, to Schiphol Airport as shown with the teal colored line in
Figure

For this TAD, we only show train order changes. A TAD can also specify
short turning or skipping stations. Early turning is when a train does not
finish the whole route to its destination, but turns around at an earlier
station and starts its journey back. Using these simple rules helps the traffic
controllers to efficiently handle delays in a standardized way. In certain
situations, multiple TAD rules may be used at the same time. This does
require more thorough planning from the traffic controller to make sure no
conflict occurs. In this thesis, we will show a method to create these train
handling documents dynamically, taking into account the current situation
on the network. This has the advantage that if multiple TAD rules need to
be used, traffic controllers can be assured that the decisions do not create
conflicts and apply to the current network occupation.

14

Chapter 3

Related Work

This thesis focuses on advising traffic controllers for conflict resolution.
When a conflict occurs, we are interested in finding a valid route for all
trains involved and getting back to the original planned schedule. This re-
quires replanning of a part of the schedule. In this chapter, we discuss the
current state of the art multi-agent pathfinding (MAPF) methods for replan-
ning agents. We first delve into the MAPF literature, where the focus is on
creating an efficient and fast algorithm that produces good results. Then
we discuss literature that is more focused on the real-world train network,
solving the planning of all trains using mixed integer linear programming.

3.1 Multi-Agent Pathfinding

The multi-agent pathfinding problem is defined by having multiple agents
that need to reach their goals without creating conflicts with each other
(Stern et al., 2019). Svancara et al.| (2019) have extended the MAPF prob-
lem by introducing the ability of new agents to appear in the problem. By
introducing these agents, the existing plan is modified to create a plan for
these agents. In their paper, four methods to solve this online MAPF prob-
lem are discussed. The first method is by replanning the new agent around
existing agents. This is similar to the approach of (any-start-time) safe inter-
val path planning as discussed in detail in Section The second method
determines the path for multiple new agents at once, while still avoiding all
other agents. Neither of these methods can change the plans of other agents.
Using them may thus lead to solutions of poor quality. The third method
simply replans all agents in the network. This can give the optimal plan,
but requires longer computation time. It also does not consider the already
computed ongoing plan. The novel approach of this paper is Online Inde-
pendence Detection. This method routes an agent, ignoring every existing
agent in the network. When a conflict occurs, both agents are replanned.
This is repeated until a conflict-free path is found.

15

Although no exact measurements of replanning a single agent were given,
it was used as a baseline for every measurement, as it was “done extremely
quickly and it is always good to have some solution rather than no solu-
tion”. It was found that for densely populated grids, replanning all agents
gave a ten to twenty-two percent improvement in the cost of all paths. For
sparsely populated grids, the improvement was only around one percent.
The single-agent replanning algorithm uses the existing agents as moving
obstacles and plans around them, creating a conflict-free path. By intro-
ducing flexibility in all agents in the single-agent replanning algorithm, it
is possible to change the delay these moving obstacles. This leads to an
unexplored area of research where we are finding a multi-agent path in a
single-agent environment.

3.2 Mixed Integer Linear Programming

There are many different approaches to rescheduling in Railway Networks
(Fang et all [2015). A common method is Mixed Integer Linear Program-
ming (MILP). These models optimize an objective function. Examples of
such an objective function are to minimize the sum of all delays (Rudan
et al.l 2013) or to maximize the robustness of the network. Maximizing ro-
bustness entails finding a timetable in which delays to trains are less likely
to propagate and impact the scheduled times of other trains (Fischetti et al.,
2009)).

Small disturbances can be absorbed by a stable and robust timetable
(Goverde, 2007). For larger delays, one operation that can be applied is
the reordering of trains. [Van den Boom et al. (2011 proposed an MILP
method that optimally reschedules trains to minimize the total delay. They
constrain the model to only allow reorderings at stations where sufficient
infrastructure capacity is available. Later work of Kersbergen et al. (2016)
builds upon this model by extending the set of constraints on the model to
more accurately represent the railway network. In this model, reorderings of
trains are controlled by decision variables. Each combination of two trains
on a track has one control variable that determines the order. Current
operations use TADs to determine the order of two trains on a track. In
these TADs, the amount of delay required to swap positions is given. The
current literature only determines the order on track for a given situation.
To create TADs, we also need information on the amount of delay when it
is better to swap order.

To plan a new train in the railway network, it is important to have an
accurate overview of the current position of the existing trains. Wang et al.
(2025) show the impact of the headway on different driving styles to calcu-
late a train path envelope. These train path envelopes inscribe the train’s
conflict-free trajectory (Quaglietta et al., 2016). As long as the train stays

16

within this envelope, it will not conflict with other trains and will be on
time for its arrival at the next station.

Zhou| (2023) has developed an MILP model that first focuses on finding
a rescheduled plan that is close to the original schedule, and then adds
flexibility in this plan. In this research, the flexibility was used to create a
robust schedule that can handle subsequent delays. This flexibility contains
three components: departure, early arrival, and late arrival flexibility. This
flexibility is closely related to the train path envelopes. The maximum
amount of departure flexibility is equal to the Departure Tolerance Response
driving strategy as described by Wang et al.| (2025), as both depart later
from the station while still being on time at the next stopping point. While
this flexibility is important to create a robust schedule, when the delay of a
train increases such that it does not fit in the train envelope, the schedule
becomes invalid. In this case, a new schedule must be made.

In recent works, |Versluis et al.| (2024) worked out an MILP model that uses
ETCS L2 with trackside train detection. It can take into account different
speed profiles of trains in the network. It uses more advanced signalling
systems such as distance-to-go. This system has signals inside the driver’s
cabin that allow the appropriate signal to be shown when it is needed to
the driver, based on the braking distance of the specific train it is driving.
This allows for the headway to be reduced between trains. Later work
looks at ETCS L2 with onboard train integrity monitoring (Versluis et al.,
2025)). Onboard train integrity monitoring allows for smaller block sizes, as
small as twenty meters. This decreases the headway that trains have on a
straight part of the track. ETCS L2 with trackside train detection is only
used on a few railways in the Netherlands, with plans to convert the whole
railway network slowly. For this thesis, we will be focusing on the NS’54
signalling system, as we are performing a case study on the current state of
the network.

The MILP models discussed all have one factor in common: they replan
all agents, with the constraint that agents are not allowed to depart before
their original departure time. In the MAPF literature, it is shown that
this method is generally slower than single-agent replanning, as it is a much
harder problem (Nebel, 2024).

17

18

Chapter 4

Method

To be able to aid traffic controllers and determine tipping points on the
railway network, we need a close-to-realistic representation of the railway
network in a directed graph. We first introduce this routing graph, which
is based on the track graph by [Hanou et al.| (2024)). Then we determine the
unsafe intervals in the routing graph, using the blocking times theory. In
Section we introduce flexibility into @SIPP. This flexibility allows us to
find more feasible paths in the multi-agent path-finding problem. With this,
we introduce how to determine the amount of flexibility of a train. Lastly,
in Section we show how to use this flexibility by introducing FlexSIPP.

4.1 Creating the Routing Graph

In the model of the railway network of [Hanou et al. (2024)), a node in the
graph represents a physical point on the track. To move to model blocks
in the railway network, a node should represent the location where a block
starts. This is accompanied by a physical signal at this location. The edges
in this new graph correspond with all possible routes the train can take to
the start of the next block. In Figure the railway network of Hoofddorp
is shown, together with the track graph and route graph. Hoofddorp is a
station on the route between Schiphol and Rotterdam. At this station, the
high-speed line in the direction of Rotterdam splits off with one track for
each direction. In the direction of Leiden, there is also one track in each
direction. During disruptions on the high-speed line, this becomes the first
area of interest, as trains leaving normally on two tracks now need to share
one.

The routing graph is again a directed graph. To create this graph, we
can traverse the track graph, starting at every node in the track graph that
is located at the start of the block. By traversing the track graph, storing
what track parts we traverse till we encounter the start of the next block,
denoted by a signal in the same direction as we are traveling, we can create

19

Figure 4.1: Graphs showing the reduction from the railway network to the
route graph at Hoofddorp.

AN

T IR e
1O VaO
o WH)\) ><1/ o
o A o O
X1—0O X0
N
7/ O

(a) Railway network at Hoofddorp, the red box specifies the area that is expanded
further in a track and route graph.

®HEHEHEHEE
()

(¢) Route graph of signals
of Figure [4.1| showing routes
from signal to signal.

(b) Track graph of a part of Figure This graph
is limited to only showing one direction of travel,
moving from the left to the right

20

the edges in the routing graph. Every edge in the routing graph will have
track parts associated with it that the train will travel over if that route is
taken. When two routes share some nodes in the track graph, both routes
will become unavailable if a train takes one of the routes, for the time the
train is in the shared part of the route.

4.2 Blocking Times in a Routing Graph

To calculate the unsafe interval for the blocks in the route graph, we com-
bine the blocking times explained in Section and the intuition from the
reduction to @QSIPP from |[Hanou et al. (2024). In the NS’54 signaling sys-
tem, a train reserves the blocks that it is about to enter. For an upcoming
block, the time at which the reservation is made is the approach time. The
occupation time for a block is the time the train has fully left that block.
The start of the unsafe interval per block is then equal to the moment a train
enters the block k£ blocks in front, minus the setup and reaction time, and
stops when the train has left the block plus the release time. The number &
is set for how many blocks in front are reserved for a train, set by ProRail.
This is dependent on the length of the block and the braking distance. For
a block, the end of the unsafe interval is the end of the occupation time plus
the release time of the signal (Goverde et al., 2013)). For trains traveling
in the opposing direction, this unsafe interval is exactly equal. This is de-
scribed in Equation The parameter ., is equal to the signal setup
time, Csight+reaction is the sight and reaction time of the driver, and ¢, ;...
is equal to the release time of the signal. ¢(z) and A(a) are the lengths of
the block and the train, respectively. With v4,4(2,a) we denote the average
velocity of a train in a block, accounting for acceleration and deceleration.
Lastly, tZ and t? are the beginning and end times of when an agent is inside
a block x, respectively.

. —k
’Lg = <t§ - tsetup - tsightJrreaction? t? + trelease> (41)

To compute this unsafe interval for a block, we can split the unsafe interval
into k 4+ 1 parts, where one part is the occupation time of one block. This
comes from the intuition that the approach time of a block includes the
occupation time for the upcoming k blocks. The calculation for only the
occupation time is shown in These k unsafe intervals can then be
merged, making sure to account for ¢, and t,,s in the final unsafe interval.

P = <t”~“ g 4 L@+ Ma) A("“)> (4.2)

5778 Vavg (2, @)
We calculate the average velocity of a train accounting for the acceleration

time acc(a). It is important to account for the acceleration as trains can
have long acceleration times. When accelerating during a block, there are

21

two possibilities: the train accelerates during the whole duration of the
block, or the train reaches the maximum allowed velocity Ve, (z,a) and
stops accelerating. To know if the train reaches its maximum velocity, we
compare the length of the block ¢(z) with the length of a block that would
be needed to reach vy, (z,a). Equation shows how to calculate this
distance given a constant acceleration.

i = Yman(@:0)” — vo(; a)7 (4.3)

2 - acc(a)

If 0pin is larger than £(z), the train accelerates during the whole block.
We calculate the average velocity by averaging the starting velocity and
the velocity the train reaches at the end of the block. When we do reach
Vmaz(Z,a) during the block, the length of the block over the time to ac-
celerate plus the time at maximum speed is used to calculate the average
velocity.

vo(z,a) + /vo(z,a)? + 2 - acc(a) - £(x)
2

Vavg(l'aa) = E(J))

if loin > €($>

else

Umaz (2, a) —vo(x,a) 0(x) — Lliin,

acc(a) Vmaz (T, @)

(4.4)

Ala) between two consecutive blocks in

Vavg(T,a)
occupation time. To show this, take a train traveling between two consecu-

tive blocks = and x + 1. The occupation time of z is equal to

@3@:<@ﬁ+aw+M®>. (4.5)

Vavg (2, @)

There is always an overlap of

The occupation time in location x 4+ 1 starts the moment the first part
of the train enters the block, that is, the time it takes to travel from the
beginning of z to x 4+ 1. This is simply the length of the block, ¢(x), over
the train speed vg,4(2z,a). It follows that the occupation time of x + 1 is

l l l H+ A
(2 ety = <tf§ n (x) e (z) + ez +1) + (a)> . (46)
Vavg(x, @) Vavg(z + 1, a)
The overlap between the two occupation times is
l A l
ﬁ—ﬁ“:ﬁ+(@+<®—<ﬁ+cw) (4.7)
Vavg (.%', a) Vavg (33: a)
It follows that the overlap between the occupation times of two consecutive
blocks is equal to Va:‘g((ax))

22

Now let us define the operator “|” that combines two overlapping intervals
and returns the interval encompassing the entire duration. Equation
shows how, given two overlapping unsafe intervals iy and i, we calculate
the total interval using the “|” operator.

(€5, te)|(td, 1) = (man(ts, tY), max(te, 7)) (4.8)

The approach time i; for a block z can now be calculated by combining
the occupation times of the previous k blocks. This can be formally defined
as iy = 1y plip_jpl-lip_y = (758270,

We can now define the blocking time for a train using the approach time
and occupation time. The blocking time starts earlier than the approach
time, as defined by the setup time, and the release time determines the
amount of time after the occupation time that the block remains unsafe.
Equation shows how to calculate the blocking time, which is exactly
equal to the length of the unsafe interval at a block, using the approach

time i = (t2%,¢2=1) and occupation time i, = (t2,¢2).

. —k -1
Z; = <t.:§ - tsetup B tsight—l—reaction? tgeU > ’ <t§7 tgeﬁ + trelease> (4 9)

_ [4x—k x
- <ts - tsetup - tsight—i—reaction? te + trelease>

With Equation we have shown that it is possible to calculate the
unsafe interval for a block in parts by splitting it up into the approach time
and the occupation time. In the creation of the route graph, we saw that
a route can consist of multiple nodes of the track graph, and a node in the
track graph can be a part of multiple routes. To correctly calculate the
unsafe intervals of the routes, we calculate the occupation time for every
track part in the track graph. For an occupation time iz of a track part
u, and for a route r of a train, if u € r.trackparts then the route r will
also be unsafe for %Z This allows us, given a train that has a route through
the track graph, to calculate the unsafe intervals for the routes of the route
graph. This method also takes into account sectional releases of routes,
where a route is safe after a train has moved past the switch if that route
uses the other side of the switch.

As an example, we use a train leaving a platform at Hoofddorp on track
W1, going to Schiphol. It uses the route from W; to Ws. The track is
shown in Figure It starts by reserving the upcoming block sections
right before departure, all track parts that are parts of the upcoming k
blocks will have their routes receive an unsafe interval. The route W7, — W,
passes through the nodes 3L,5,8R,11 and W5. The running time when a
train is traveling between these nodes result in a blocking time for the route
Wi — Wy as calculated in Equation For routes that partly intersect
with the route W1 — Wy, like Vi — Xs, are also blocked for the duration

23

2:10 4 —— Train Path
2:00 1+ 1 Blocking Time

1:50 1

. B _ ’_:l_

1:40 N IR S g
€ 1:301 —— = = -J:':#

—————— e | o — ==

£ 1:20 £— T -
é 1:10 _E_'—-_:';._.__._—_,—_,—_.':-:—'_'_ [A _':":
E 1:00 1 - _:'E_z—-——-——,_,__,__.—'-—:":-—-——-— _”=z==
= 050 /= R

0:40 Em———t—"—" i

0:30 7 |

0:20-;_22—_”_;:__-_;—_: i
010 ="
O:OD' T T T T T T T
™~ m — — = = =] o M
= = o = = = > < =
[a) O 0 (6]
= g 5 2 = 33
(L]
Distance

Figure 4.2: Blocking staircase diagram created in the routing graph on a
single route from Rotterdam to The Hague Mariahoeve. X X-axis is showing
stations with platform numbers for stations on the route.

that the intersecting node in the track graph is blocked for. In this case
that is node 5. To conclude, the exact route the train has taken will have
the unsafe interval as in where other routes can also get a part of this
unsafe interval, depending on how much overlap there is with the taken
nodes in the track graph. By applying this blocking time calculation for a
set of train on the route between Rotterdam and The Hague Mariahoeve, we
get a blocking staircase diagram as seen in Figure The track between
Schiedam and Delft Campus is only one track for each direction, thus other
trains driving on a track parallel merge for a bit.

4.3 TFlexibility

By introducing flexibility in the arrival time function we defined in Section
[2.1] we can delay agents and will be certain that no conflict is created by this
action. We look at two types of flexibility. The buffer time and the recovery
time. First, we will formally define the buffer time, to later supplement it
with recovery time.

In this thesis, we define buffer time as the amount of time a train can be

24

delayed before a conflict occurs, including the time it can recover from its
delay. We can calculate this using the blocking staircase diagram. Consider
two trains a and b that share the same block x. That block will have two
unsafe intervals i% = (t2% t2) and ¥ = (2, ¢2"), where b is following a
on the track. At this block, we would be able to delay train a by o gz
until a conflict occurs, known as the local buffer time. If we were to delay
an agent by this amount, there would be no conflict between the two trains.
If no train occupies the same block as train a after a occupies this block,
then we can delay the train indefinitely, and thus the local buffer time is
infinite. The formula for local_bt? is shown in Equation [4.10}

When taking the whole route of an agent into account, the buffer time can
only be as large as the buffer time on the next block of the route, plus the
amount of time an agent can recuperate from its delay. Thus, the amount
of buffer time is limited by the local buffer time and the buffer time of the
next block, plus the recovery time. We can then define the buffer time as in
Equation With this equation, we can calculate the buffer time for an
agent a at a location . The route of an agent is defined as the sequence of
blocks that the agent enters sequentially. next(x) returns the block in the
route after z.

By using a backtracking approach, we can calculate the buffer time for
all agents in O(n * a) time, where n is the number of blocks on a route,
and a is the number of agents. The algorithm starts at the end of a train’s
movements and works backwards to continuously decrease the amount of
buffer time available for those blocks on the route, storing the amount of
buffer time available for the current combination of block and agent.

u 9 4% if there is a train b that follows a
local bt = (4.10)
00 else
local -bt$, if end of route
bts = . (4.11)
min(local bty bt e t(l,)) else

The variable rt%ext(x) in Equation is the amount of recovery time
the agent has in the next block. By infroducing this recovery time, we are
able to delay agents by a larger amount, as they can decrease their delay
and be within the limits of the maximum buffer time at the next block.
The recovery time is the amount of time that can be gained for an agent
by traveling faster than the planned speed. This is typically 7-9% faster
than the initially planned speed (Hansen and Pachl, 2008). Another form of
recovery time is the duration that the train is stationary at a station. The
stop can be shortened to decrease the delay. In this thesis, we define two
types of recovery time. First is the recovery time at a single block for an
agent, rt%, which is how much time the agent can speed up in that block as

25

found in Equation Second is the compound recovery time crt?, which
is the amount of time the agent can make up on its entire route after block
x as found in Equation

dwell timef, — minimum_dwell_time® if a stops at z
Vavg(%,0) Vavg(x,a)-1.08 else
0 if end of route
crty = . . (413)
Ttnemt(x) + crtnemt(x) else

In this thesis, we assume that the impact that using recovery time has on
the blocking staircase diagram, especially increasing the velocity by 7-9%, is
negligible. As the velocity increases, the running time of a train in a block
decreases. But as the minimum braking distance also increases, the total
blocking time could also increase. The blocking time increases if k needs to
increase as the breaking distance becomes larger than the block length. In
other situations, the blocking time decreases.

We can apply the same backtracking approach as when calculating the
buffer time to efficiently calculate the recovery time. With this approach,
the calculation of the recovery time can be performed in linear time in the
number of agents and is also linear in the number of moves these agents
have.

Applying this algorithm to the blocking staircase diagram in Figure
results in the blocking staircase diagram found in Figure [£.3] Notice that
when an agent makes a stop, the delay can be decreased by a large amount,
and the flexibility increases.

4.4 Searching with flexibility

In this section, we discuss the addition to the @QSIPP search algorithm by
Thomas et al.| (2023) to incorporate the flexibility of the moving obstacles.
The introduction of flexibility increases the search space originally found in
@SIPP. Initially, each location in the routing graph adds a safe interval to the
problem, and each agent splits the safe intervals it passes through (Hanou
et all, |2024)). Before, each existing agent would add a single interval to
each state and/or edge it traverses. The introduction of flexibility adds one
more interval per route that the agent passes. While this does increase the
search space, the problem size still scales linearly in the number of locations
and agents. In Section we introduce the additional edge added to
the search graph. Later, in Section [4.4.2] we show the modification to the
search algorithm, where we track the amount of flexibility that is used by
using these additional edges.

26

ggg —— Train Path
10 4 = Blocking Time
2:00 Flexibility
1:50 1 B
E 1:40- - =
é 1:20 +—= e s .
W 1:10‘:.—=-__ e I B ==
ErooF——1 | ————
- 0:50-:—*~_—;~—I~———‘_”_' — —
0:40 &= —— — E— =
030 e = e e
020 F= = — - — _
Cl0 = [—
0:00 ,] T
= SE % oss
= 7 5 2 2 °© 33
Distance

Figure 4.3: Buffer time annotated in a blocking staircase diagram of Figure
[42] The shaded area represents the amount of delay an agent can have
entering that block without impacting other agents.

4.4.1 Additional edge

The usage of the flexibility of other agents has an impact on the arrival time
function. To explain this, we look at the safe intervals of a route between
u and v. In this example, there is another agent that passes through v via
some other route, making it unsafe for the interval i = (150,350). Let us
call this agent b. This agent b splits the safe interval of the state v into
two. The first interval before i%, and the second safe interval after i%. In
@SIPP, a state is represented by a location and a safe interval, as explained
in Section [2.I] The graph that this represents, we call the search graph. In
this search graph, v has two nodes: v; with interval («+—,150) and vo with
interval (350, —). As agent b does not enter wu, it is safe to wait in u for the
entire scenario. An example of this situation is shown in Figure [£.4al Let
us say that agent b has 150 seconds of flexibility in this scenario. By using
this flexibility, it is now possible for agent a to arrive in v before agent b
between timestep 150 and 300. This is shown by the extra striped area in
Figure [4.4D]

This method of creating the safe intervals is repeated for the routing graph
using the blocking staircase diagram that is calculated in Section [4.2] Every

27

500

400
= | 300 ©
o) o)
I £
& | 200 &
100
Buy
0 .
U v U v
(a) One arrival time function departs (b) The striped area shows the im-
before 50s, thus 3 of that ATF is 50s, pact of flexibility, adding more possi-
and one departing after 250s. ble departure times between 50s and

200s by delaying the agent that would
normally occupy that space.

Figure 4.4: Visualization of two arrival time functions for agent a. The blue
area indicates when a movement from w to v is possible.

edge in the routing graph also has an associated safe interval, calculated
using the same method.

Using these safe intervals, the arrival time functions can be calculated. To
include flexibility in these ATFs, we introduce an extra parameter, 4°. This
denotes the maximum amount of flexibility that can be used of agent b by
the ATF. The calculated arrival time functions are the edges in the search
graph, between the split nodes of the routing graph. The nodes of the search
graph encode if the found route is before or after agent b, as going to node
vy is before, and node vy is after the blocking time of agent b. Using the
flexibility of agent b is a new edge in this graph, as shown in Figure By
using the flexibility, we arrive before b in v, thus the edge goes to v;.

4.4.2 Limits on flexibility

If the edge with flexibility is used to go to wvi, it uses between 0 and 150
seconds of flexibility of agent b, depending on the eventual actual departure
time. How much time the agent b can recover from this delay later in its
route is specified by the recovery time. When we explore this extra arrival
time function further, we cannot decrease the delay of agent b more than
the difference in compound recovery time between the current block and the
block where the delay was introduced.

To keep track of the amount of flexibility that is used of other agents

28

Figure 4.5: Search graph of FlexSIPP, the intervals are shown in Figure
Burgundy edges denote the extra added edges by FlexSIPP. V' and W have
two safe intervals, this is represented by two nodes.

during the search, we introduce two variables yfmmp and fyfnaxyp for every
existing agent b that has some flexibility. These variables are included in
the definition of the arrival time function of a path p, as explained in Section
For a single agent b, the variable vfm-n’p tracks the amount of flexibility
used by agent a if agent a departs at time « at a node in the search graph.
This is thus the minimum amount of flexibility that needs to be used to make
this path feasible. Equation shows how to iteratively update 'Yg@m,p for
one agent b during the heuristic search. With the term crtbA, we denote the
amount of time an agent b can recover between the last edge that agent has
used some flexibility and the current edge. The parameter W’Zu'n,p is only
able to decrease by crtbA if the agent is using more flexibility than required
at the current location.

PYerin,p’ = max(wgu'n,p - crtbAv Qp + AP - Be) (414)

With the variable vfmm’p, we track the amount of flexibility needed when
departing at the latest possible time from the origin node, ,. The interval
for how long this path is available, max (5, — o, 0), defines the maximum
amount of flexibility used. We also need to account for the minimum amount
of flexibility used, thus VZm;p,p = max (B, — oy, 0) + ’yfm-mp. If o, is bigger
than f3,, it means that along the route the agent has to wait, and for any
departure time of the path, it will arrive at the same time. In this case,
vf,mx’p will be equal to VSzm,p-

Initially, the variables ’anm,p and qumgcp are equal to 0 for every b € A.

When traversing an edge that uses extra flexibility, is set equal to the

b
Vmin,p
current vf’naLp, and 'yfnaxp is equal to bt%, the maximum amount of flexibility
available at the current edge. For subsequent nodes, we can use Equation
to calculate 7£nm,p- Any time the 3, is decreased, we reduce wfmw’p for

every agent that has used some flexibility by the amount that we reduce .

29

It is no longer possible for an agent to arrive at those nodes at a time when
the original amount of fyfnax,p was required. Equation shows how to
update this flexibility recursively per agent.

’anax,p’ = ’yfnaa:,p - maaz(ﬁp - ﬂp” 0)) (415)

500

Time (s)
Time (s)

u v w u v w

(a) Initial scenario that does not use
any flexibility yet. The planning
agent is slower than the initial agent.
Between u and v there is 1505 of flex-
ibility, and increases to 250s between

(b) When taking the edge with 0 to
150 seconds of flexibility, it extends
how long the edge between v and w
is available by 150 seconds, shown in
turquoise.

v and w.

Figure 4.6: Example of how the usage of flexibility impacts later arrival time
functions

Figure shows a situation where 'an'n,p increases. In the current state,
agent a decides to take the added edge from w to v using between 0 and
150 seconds of flexibility of agent b. The earliest possible arrival time at
v would be the earliest departure time at u plus the duration of the edge
between v and v. This results in an arrival in v at timestep 50 4+ 100 = 150.
To now make the transition to w, we have two options. The turquoise area
shows the edge that does not use any additional flexibility. Without any
usage of flexibility, the safe period to depart would have ended at timestep
100. Since agent b is now delayed by at most 'yzmz’p, the ATF originally
ending at timestep 100, is extended for 150 seconds. Using Equation
we find that we need to use a minimum of 50 seconds of flexibility to be
able to depart and traverse the edge to w. Another option is to use more
flexibility, departing from v after timestep 250. This would require at least
150 seconds of flexibility from b. As agent b is delayed by at most v,liwx,p in
Figure if agent a were to use a route at a later point where agent b is

30

before agent a, the earliest departure time « of the ATF of that route will
be delayed by fyﬁmx’p.

Using the additional edge and keeping track of the amount of flexibility
used during the heuristic search, we allow for moving obstacles to be delayed
by an amount such that it does not impact other agents. This, in turn, allows
for order changes of agents in the resulting plan. This brings the single-agent
replanning approach closer to a multi-agent pathfinding approach.

31

32

Chapter 5

Evaluation

In this chapter, we evaluate the performance of FlexSIPP. By performing a
case study on the Dutch railway network, we show that FlexSIPP can im-
prove on the results of @QSIPP by introducing flexibility in the agents. We
first compare the output of FlexSIPP with the existing train handling docu-
ment (TAD) shown in Figure This allows us to show that FlexSIPP can
identify tipping points when trains need to swap position. Then we evalu-
ate the time complexity of FlexSIPP by evaluating the size of the problem
and the number of agents in the network. Lastly, we evaluate the output
of FlexSIPP by routing a Eurostar train between Schiphol and Rotterdam
when the high-speed line is disrupted. This allows us to evaluate the per-
formance of advising traffic controllers with conflict resolution. First, we
discuss the dataset, consisting of the routing graph and the existing agents,
and we discuss the experimental setup.

5.1 Data preparation

To convert the Dutch railway network into a routing graph as explained
in Section we have gained access to the data from Infra Atlas. The
data contains the location of every piece of infrastructure of and next to the
railway. Every section of track is defined by the two switches at either end,
or a single switch and a bumper if it is the end of a track. Using the locations
of the signals, we can define the routing graph. The resulting graph of the
entire Dutch railway network consists of 9700 nodes with 247600 routes,
giving us an average of 24.5 outgoing routes per node. This is, however,
heavily skewed by shunting yards and unused parts of the railway network.
As there are few signals inside these yards, and many different tracks, the
number of possible routes to take to eventually reach the next signal grows
exponentially. For example, at the shunting yard of Amersfoort, there are
16462 ways to traverse the yard starting from a single signal to the next.
As we are interested in advising the traffic controllers of ProRail in cases

33

of delays or disruptions, in this thesis, we exclude these shunting yards and
focus on the main carriageway. This results in an average of 2.48 outgoing
routes per node, greatly reducing the search space. Figure shows a
histogram of the number of occurrences of the outgoing routes per node for
only the main carriageway. It can be found that the vast majority of the
nodes only have a single route, as would be reasonable to suspect, given
that most signals are on a straight part of the track without any switches
in between. At most, there are 25 options to go from one signal to the next
on the main carriageway at Amsterdam Centraal.

Outgoing routes

6000 -

5000 ~

4000

3000

2000 +

Number of occurrences

°r..___-

1000 +

0 5 10 15 20 25
Number of outgoing routes

Figure 5.1: Histogram of the number of outgoing routes per node on the
main carriageway on the Dutch railway network.

To calculate the blocking times of the trains in the routing graph, Table
shows the assumed parameters for the acceleration, deceleration, and
minimum dwell time for the different types of trains. We further assume that
all trains can reach the maximum speed of the track they are on, accounting
for an 8% increase for calculating the recovery time. Lastly, we use a set
length per train of 140 meters.

When traversing the diverging route of a switch, there are speed restric-
tions depending on the angular ratio of the switch. ProRail is aiming to
standardize and reduce de number of different switches used
. These standard switches with accompanying speed limit can
be found in Table 5.2l For non-standard switches in the railway network,
we use the maximum velocity of the closest ratio of a standardized switch.

For calculating the approach time of a block, we assume that trains only
need to reserve one block in front. Furthermore, we overestimate the setup
time and release time combined to be at least thirty seconds. We use twenty

34

Train Acceleration (m/s?) deceleration (m/s?) minimum dwell time (s)

SNG 1.1 1.1 42
SLT 0.9 1.1 42
VIRM 0.6 1.2 54
ICM 0.7 1.1 54

Table 5.1: Parameters used to calculate the running times of the trains, as
well as the recovery time.

Ratio Maximum Velocity

1:9 40 km/h
1:12 60 km/h
1:15 80 km/h
1:18 80 km/h
1:29 140 km/h

Table 5.2: Speed limit on the diverging track of a switch.

seconds for the release time of a block. We expect to overestimate the
blocking times with these values, but this gives us a more robust plan if one
is found.

A* search, used by FlexSIPP, can use a heuristic to guide the search
into areas of the graph that are more promising. As a heuristic, we use
the time to reach the destination, not considering the safe intervals. This
heuristic never overestimates the cost of reaching the destination, making
it admissible and ensuring that we still always find the fastest path to the
destination.

Initially, we focus on the ATB using trackside signals. This is the most
common system in use in the Netherlands today. Only a few corridors, like
the HSL line and the Betuweroute, are currently fitted with ETCS Level 2.

The train data in the following experiments was gathered from the “Reis-
informatie API”. This API provides the actual and planned arrival and
departure times at all stations on the route of a train. As this uses actual
current timetable data, it was only gathered when there were no disruptions
on the part of the network we sampled data from. This API provides the
departure time at certain platforms for trains in a limited time window.
The route between stops of a train was determined using the shortest path
between the stations.

With this data, we have a routing graph of the Dutch railway network with
an existing multi-agent plan, the railway timetable. This allows us to eval-
uate if we can use FlexSIPP to replan certain agents within this timetable
to find tipping points for TADs, or plan new trains when disruptions occur.

35

The code for this project is available on GitHub (Kemmeren, 2025). This
included the data of the train schedule gathered from the NS API. The code
also includes a method to convert the data from Infra Atlas to the same
format used by Hanou et al.| (2024). The data from Infra Atlas will not be
made available, but a small single-track toy problem is provided.

5.2 TAD Comparison

To determine the accuracy of the results of FlexSIPP, we compare the re-
sults of FlexSIPP with QSIPP and the train handling documents at three
locations. The comparison with @QSIPP shows us the effect if we do not
wish to delay other trains. The locations are based on their complexity and
differentiating features. The first location is the track between Schagen and
Den Helder in North Holland. The railway network between these stations
consists of a single track with two stations in between. At these stations,
there is an additional track such that the trains traveling in opposite direc-
tions can cross. This is a relatively small problem for FlexSIPP to compare
to the train handling document. The second location is between The Hague
and Schiphol. This is a location with more trains and busier stations, which
include sections of the railway that are four tracks wide and sections that
are two tracks wide. The last location is the track between Zwolle and Mep-
pel, which is often described as the bottleneck to and from the north of
the Netherlands. It only consists of two tracks that all trains coming from
and going to the north have to pass through. In Appendix [A] the railway
network of some sections of these locations is shown from [SporenplanOnline
(2025).

5.2.1 Schagen to Den Helder

The train handling document that applies to this area dictates the point
where two trains of the same series, traveling in opposite directions, cross.
There are four options: before entering the one-track-wide section at Scha-
gen, at the first station Anna Paulowna, at the second station Den Helder
Zuid, or at the end of the line, Den Helder. Under circumstances where
there are no delays, the two trains cross at Anna Paulowna. The train han-
dling document specifies that if the train traveling to Den Helder is delayed
more than seven minutes, the crossing takes place at Schagen. This implies
that with a delay of up to six minutes, it delays the train in the opposite
direction at Anna Paulowna.

To test the implementation of FlexSIPP, we will find the arrival time
function of a train if it were to depart at Schagen with a delay. FlexSIPP
finds the shortest route to the destination, set at Den Helder, without stop-
ping at the stations in between. In total, the scenario is run four times,
three on the 21st of July, and one on the 22nd. For simplicity, we focus

36

—T

—— Train Path
0:50 4 1 Blocking Time
Flexibility

— S . e
0:40 A

0:30 I

0:20 1

Time (hh:mm)

0:10 _:‘::'_I—l—.

:::E::t::t:::I::I::t:

0:00

ANA|2 |

SGN|3 -

HDRZ|2

Distance

Figure 5.2: Blocking staircase diagram when replanning the first train from
3000e, including the flexibility that the agents have in this scenario. The
original route of the train to be replanned is shown without blocking times.

on only the first scenario, but all results were within a small margin of 30
seconds the same. Figure [5.2] shows the blocking staircase diagram for this
scenario, which shows that the original crossing place is at Anna Paulowna.
The resulting search graph from this blocking staircase diagram for a train
departing from Schagen at timestep 0 is shown in Appendix

In Figure[5.3] FlexSIPP has found two routes that are faster than @SIPP,
shown by the earlier arrival time for the same departure time. In Table
the tipping points are extracted. To explain these tipping points, we look
at the situation with a delay of around five minutes. FlexSIPP and QSIPP
have both found the same route, which does not delay any other agent. If
we have a delay greater than six minutes, the other train uses the track
between Anna Paulowna and Schagen first. FlexSIPP determined that if we
delay the 30000 train, it will not cause a delay propagation to other trains,
and it can thus safely delay this train. That is why the 3000e train can go
first on this part of the track, delaying the 3057 at Anna Paulowna.

The last column in Table [5.3|shows that if the replanning train has a delay
of 11:37, it will delay the 3057 by 4:33. As the increase in delay is assumed
to be linear, we can conclude that the train handling document is specified

37

31

294 — @SIPP

27 —— FlexSIPP

25 —— Expected Arrival Time
@: 234
S 21+
[=
‘£ 191
o 171
£ 151
= 134
211
< 09 -

07 +

05

034
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Departure time (minute)

Figure 5.3: Arrival time function of a train from the series 3000e departing
from Schagen, travelling towards Den Helder.

Tipping Point Delay Amount
Train Delay Location

3057 Hdrz 03:29 08:01
Ana 11:37 04:33
Sgn 17:18 00:00

Table 5.3: Tipping points generated by FlexSIPP for a train from the series
3000e, the Train column is the train it crosses with. The Delay Location
denotes the location where the trains should cross if the train from the 3000e
series is delayed for up to the amount specified in the Tipping Point column.
The last column denotes the maximum amount of delay the other train will
have if delayed at the delay location.

in a way to not delay the train from the series 30000.

The Tipping Point column shows the absolute last possible point a route
is available. FlexSIPP has determined that it can delay the opposing train
by at least eight minutes. This results in an additional route where the
algorithm determines that the opposing train can wait at a station earlier
than in the normal timetable. The planning train can arrive a few minutes
earlier by using this option, as seen in Figure 5.3l The downside is that this
crossing location results in a large delay for the opposing train at the next
few stations it stops at, but crucially, no oil spill effect.

38

5.2.2 Bottleneck between Zwolle and Meppel

Right after Zwolle, all trains to Leeuwarden and Groningen merge onto a
single track per direction that lasts until after Meppel. We focus on the
interaction between four train series: 6000, 7000, 61000, and 90000. The
6000 and 7000 are intercities, whereas the 61000 and 90000 are sprinters.
We find the tipping points for when a train of the 6000 series is delayed.
Under standard operation, the order on the track is 6000, 7000, 61000, and
lastly the 90000. The train handling document of this location specifies that
when the delay of the 6000 is between 5 and 10 minutes, it swaps order with
the 7000. With a delay of 11 to 15 minutes, it also swaps with the 61000. If
the delay increases to more than 15 minutes, it is the last train in the order.

Figure [5.4] shows the blocking staircase diagram created for this scenario.
In this blocking staircase diagram, the train we are replanning departs from
Zwolle at 52 minutes. It can be seen that many trains follow each other
closely in this corridor.

1:30 —

= =5+
- — Train Path
1:20 | == Blocking Time :E,EF_-EEﬁ
1:10 - Flexibility -

1:00

0:50 1
0:40 1

Time (hh:mm)

0:30 1

0:20 -
0:10 -

0:00

ZL|7
MP|3

Distance

Figure 5.4: Blocking staircase diagram when replanning a train from 6000,
including the flexibility that the agents have in this scenario. The original
route of the train to be replanned is shown without blocking times.

We run FlexSIPP to find the fastest route between Amersfoort Centraal

and Steenwijk, one station before and after the bottleneck. In Figure [5.5
one arrival time function is shown for this route. It shows two intervals

39

where it is faster to delay another train. The first interval is with a delay of
four to six minutes. In this interval, it is quicker to delay a train from the
series 7000. After this interval, FlexSIPP says the order must be swapped.
The second interval is with a delay of ten to thirteen minutes. The train
that is being delayed in this interval is of the series 90000. FlexSIPP did
not find an interval where it is better to delay an agent of the series 61000.

1:03
1:014 — @SIPP
0:591 —— FlexSIPP
5 0:57
5 0:551
E
£ 0:53
£ 0:514
L
2 0:471
E 0:451
= 0:434
£ 0:411
< 0:39 1
0:371
0:351
0:33
o

0O 0 02 03 04 05 06 07 O08 09 10 11 12 13 14 15
Departure time (minute)

Figure 5.5: Arrival time function of a train departing from Amersfoort Cen-
traal, traveling towards Steenwijk.

5.2.3 The Hague to Amsterdam South

The last train series we compare using a train handling document is one of
the series 35000 between The Hague Laan van NOI and Amsterdam South.
The train handling document specifies that a train of the intercity series
35000 swaps order with a train from the series 43000 if its delay is larger
than seven minutes. The track between The Hague and Leiden consists of
two tracks for each direction. After Leiden, it narrows to two tracks in total.
This makes the order in which trains enter the track between Leiden and
Hoofddorp important.

The blocking staircase diagram shown in Figure shows the blocking
time diagram between Leiden and Schiphol. Due to limitations of the NS-
API, the platform that these trains use at Schiphol is incorrect.

The results of FlexSIPP are shown in Figure It shows two intervals
where a faster route is available by delaying another train. Around the six-
minute mark, it delays a train from the series 41000, a sprinter train starting
at Leiden. This train follows the same route as a train from the series 43000.
The same train is delayed with a starting delay between seven and eleven
minutes, but the location where the order is swapped differs. For a smaller
delay, it happens later on the route at Hoofddorp. A larger delay causes the

40

Time (hh:mm)

2:00

1:50 4 —— Train Path
1-:40 {4 —— Blocking Time ——]
S e " e e
1:20 -__':_'_'—:':;_,—_— = |
L —— - ——
1:10 e L ——— —_—
————=
1:00_ :':.—_-:—I B
0:50 A —:'.:._,’:.— -L':__—_ —
0:40 __:,_,_._-—_fi':_——_:::.::':‘_
e e —
0:30 ~ —— —
0:20 A — e
—_——— —— e —— e
0:10 - S ——————ma
—— e
0:00 T T T
a o o~ = =l
= T o =) T
8 A = L 5
-

Distance

Figure 5.6: Blocking staircase diagram when replanning a train from 35000,
including the flexibility that the agents have in this scenario. The original
route of the train to be replanned is shown without blocking times.

—— @SIPP
—— FlexSIPP
—— Expected Arrival Time

00 01

02 03 04 05 06 07 08 09 10 11 12 13 14 15
Departure time (minute)

Figure 5.7: Arrival time function of a train departing from The Hague Laan
van NOI to Amsterdam South.

order swap to take place at Leiden.

41

5.3 Runtime evaluation

It is theorized that the problem size scales linearly with the number of
agents. To verify this, we perform two experiments. The first experiment
determines the influence of the number of blocks of the path that the algo-
rithm is required to plan. The second experiment identifies the connection
between the number of existing agents in the network and the runtime of the
algorithm. As the algorithm builds upon the implementation of A* search,
we expect the worst-case time complexity of FlexSIPP to be equal to that of
A* search, that is O(b%). We consider the branching factor b and the depth
of the solution in the tree d.

5.3.1 Number of blocks

By increasing the number of blocks between the origin and the destination,
we increase the depth of the solution in the tree. We can accomplish this by
iteratively replanning a train from its origin to every station on its route.
This increases the search space for every consecutive station by increasing
the depth at which the solution is found. In this experiment, we replan
a single intercity train on the route from Rotterdam Blaak to Amsterdam
South of the series 35000. It will have to route around 118 other agents that
are simulated for 1 hour after the start of the simulation.

We assume that the maximum branching factor is constant between the
origin and every station on the route. This allows us to compare the trend
in the running time with the expected worst-case time complexity O(b?),
where b is a constant and d scales with the number of blocks.

With the current implementation of @QSIPP and FlexSIPP, the runtime
increases drastically when multiple paths are found. To find the trend in the
number of blocks, we account for this by dividing by the number of paths
found.

Figure shows the average runtime for ten scenarios. We find that with
the number of points used, we can not conclusively say what the tightest
bound is on the time complexity. We do find that FlexSIPP can find a valid
route for a train in under 60 seconds. The outlier seen in Figure [5.8|is when
planning a route to Leiden Centraal. In this instance, the algorithm had
trouble finding a valid path to the specific station platform it was routing
to, which led to exploring ten times the number of nodes as opposed to the
previous station. For stations that are located further, FlexSIPP found a
route that passes through Leiden at a different platform.

42

80

60

40 +

Search Time (s)

20 -

0 10 20 30 40 50 60 70
Average number of blocks

Figure 5.8: The search time of FlexSIPP over the number of blocks of the
path to the destination.

5.3.2 Number of agents

The branching factor is affected by the number of agents in the simulation,
as for every agent that passes through a node in the route graph, the size
of the search space increases. To measure the impact that the number of
agents has, we measure the runtime of the same train of the series 35000 for
a single state of the railway network, taken on July 22nd, 2025. We find a
route from Rotterdam Blaak to The Hague HS. In total, there are 120 trains
in the network. By including one train at a time, we can measure the impact
that that train has on the runtime. For this experiment, we randomly create
ten orderings in which the trains are included from the search.

The results in Figure show a high variance in runtime when including
more agents. To further explore the effect that certain agents have, Figure
shows the distribution of agents sorted by the average impact on the
runtime.

It becomes clear that most agents do not impact the runtime of the algo-
rithm. These agents are trains that are located far away from Rotterdam,
or are running at a completely different time. A few agents do have a high

43

80 +

[=1]
(]
1

Search Time (s)
.
=

20 4

0 20 40 60 80 100 120
Number of agents

(a) Runtime of FlexSIPP over the number of agents from the simulation.

70 —— Search Time
g 40 60 —— Total paths
[
£ 20 50
g 40
£
a o
2 30
E 20
< 20
© _,
g-40 10
—-60 0
0 20 40 60 80 100 0 20 40 60 80 100 120
Percentage of agents Number of agents
(b) Distribution of the impact of includ- (c¢) One single run of including agents
ing an agent from the simulation. from the simulation, annotated with the
total number of paths found to the des-
tination.

Figure 5.9: Results of FlexSIPP when changing the number of agents in-
cluded. Agents are added in a random order, and the experiment is repeated
ten times. The shaded area represents the standard deviation.

impact on the runtime. There are four agents that, when included, increase
the search time by more than ten seconds on average. Three of the four
agents are sprinter trains. As these trains are relatively slow, FlexSIPP
explores more of the search space to check if an order swap is possible.
Furthermore, Figure[5.9b|also shows that including some agents decreases
the runtime of the algorithm. Even though this is counterintuitive, it can

44

be explained using Figure It shows a single run, annotated with the
total number of paths found by FlexSIPP. Because of the implementation of
FlexSIPP, the runtime drastically increases with the number of paths found.
The figure clearly shows that when including some agents, the number of
available paths to the destination decreases, and with that also the search
time.

10

Search Time (s)

0 20 40 60 80 100 120
Number of agents

Figure 5.10: Runtime of FlexSIPP to calculate a single path over the number
of agents excluded from the simulation, with a fitted polynomial function.

By calculating the runtime per path found, we get a representation of
the influence of excluding agents from the search space that is closer to
the theorized influence. Figure shows that relationship. It shows a
polynomial relationship between the search time and the number of agents
excluded.

5.4 Routing a train from Schiphol to Rotterdam

Lastly, we look into the example we have used throughout this thesis, of
finding a route for a Eurostar train between Schiphol and Rotterdam, being
rerouted through The Hague and Leiden.

As this simulation includes every train in the normal timetable, it is diffi-
cult to find a valid route. It follows the same path as trains from the series

45

— @slIPP
—— FlexSIPP

Arrival time (hour:minute)

OO0 oooHRRRRRRRRRR

AR RARRLRUOIMLUOOOCOORHFKHEREN
HFWUNORPWUNOHFWUINOHEFWUO O =
TR M

01 02 03 04 05 06 07 ©08 09 10 11 12 13 14 15
Departure time (minute)

[=]
o

Figure 5.11: Arrival time function for planning a Eurostar train between
Rotterdam and Schiphol.

3500e and 3200e, but without stopping at the stations. This causes the Eu-
rostar train to be stuck behind Sprinter and Intercity trains, finding tipping
points and locations where it can swap order is crucial in finding a feasible
route.

Figure shows the arrival time function gathered from @SIPP and
FlexSIPP. FlexSIPP can find a route that is 35 minutes faster than the
route gotten from QSIPP. It achieves this by swapping orders with trains at
different locations. At Delft, the found route switches order with the other
trains when going onto a single-track wide section per direction. At The
Hague HS, the route uses a track that does not have a station platform,
and the same goes for Leiden Centraal. At these locations, it delays trains
located at the station platforms to find a path.

Further investigation into the route @QSIPP has found shows that the
route is not viable. It waits for every train in the simulation to depart to
find a route that is after every other agent. In real operations, the timetable
is cyclic, and the path would conflict with agents currently not simulated.
This experiment has shown that we can find routes using FlexSIPP that
@SIPP can not find.

46

Chapter 6

Discussion

In this chapter, we discuss the most important results of the experiments.
Some further limitations of the study are also explained. In Section [5.2
we have shown that FlexSIPP finds routes that are comparable with train
handling documents in most situations. By identifying the tipping points,
we can better understand what the consequences are for choosing one path
over another, as the delays for other trains become immediately clear, as
well as the arrival time of the train that is planning a new route. FlexSIPP
achieves this in two parts. First is describing the multi-agent execution delay
replanning problem as a graph we can search on, the second is efficiently
using the flexibility of agents without letting the size of the search space
explode.

Firstly, we look at our multi-step reduction to a search graph. By com-
paring the results of FlexSIPP with the TADs, we have shown that our
reduction from the railway network to the search graph follows the blocking
time theory. This leads us to believe that the routing graph can be used
for any signaling system that uses blocks. We have shown this reduction
for NS64, and ETCS Level 2 Virtual Block also works using blocks that
are usually smaller (European Rail Supply Industry Association) [2025). For
ETCS Level 2 with Hybrid Train Detection, the reduction to the search
graph is also possible. The problem is that with block lengths as small as 20
meters (Versluis et al., [2025), the routing graph becomes much larger than
with the average block length of 1345 meters in the current Dutch railway
network on tracks that still use the NS 54 signaling system. Although the
reduction of the railway network to the route graph is valid, the running
time calculation can be improved by taking into account different driving
strategies as performed by Wang et al.| (2025). This improves the block-
ing time calculation, and with that comes a more accurate buffer time and
recovery time calculation. More accurate running time calculations also re-
duce the discrepancy between the expected arrival time and the arrival time
calculated by @SIPP and FlexSIPP as seen in Figures [5.3] and

47

The second part of FlexSIPP that finds a route in a search graph works
independently of the problem. In this thesis, we have focused on the railway
sector as it is a great example of a problem where many agents need to use
the same space. Comparing this to the multi-agent pathfinding literature,
Svancara et al.| (2019) have shown that using single-agent replanning in
densely populated grids is far from optimal and can be improved upon. In
this work, we take a step closer to multi-agent planning from a single-agent
replanning perspective. By routing a train from Schiphol to Rotterdam in
Section [0.4] we show that FlexSIPP can find more routes by introducing
delays in other agents, instead of seeing them as immovable obstacles and
routing around them. As the number of routes is very limited since the
trains are restricted to the tracks, it is important to be able to find routes
that are otherwise blocked by other agents. In other multi-agent path-
finding settings where agents have a wider range of movements, the difference
between @QSIPP and FlexSIPP becomes less pronounced than in Figure|5.11
Only when two agents need to occupy the same space will FlexSIPP explore
the possibility for the replanning agent to enter this space first.

Furthermore, in Section [5.3] we show that FlexSIPP can efficiently search
in the search graph with the added flexibility. The effect that other agents
have on the search time can be unpredictable. Some agents drastically
increase the search time of FlexSIPP, mostly by increasing the number of
routes that are possible to the destination. As FlexSIPP finds any conflict-
free route, not all of these routes are desirable. In Section for instance,
FlexSIPP has found 21 paths. Of these paths, seven travel in the opposite
direction of the standard travel direction for some part of the route. This is
not desired, but currently, we lack the data to automatically get the travel
direction for every track. And even though it is not desired, it does not
create conflicts with other trains on the track.

Lastly, we discuss a limitation of FlexSIPP. To show the time complex-
ity of FlexSIPP in Figure [5.10, we had to account for the number of paths
found. With the current implementation of FlexSIPP, the runtime drasti-
cally increases with the number of paths found. This is due to the fact that
heuristic search is restarted from the beginning after a path is found. The
large increase in the number of paths found in Figure [5.9¢ can be partly
attributed to planning a slow train in front of a faster train. It first finds a
path using a bit of flexibility, but only available for a bit. It then restarts
using a bit more flexibility of that same train but at a later block. This
is repeated many times. The reason for this restart being implemented, is
pruning paths that are worse than the path found. Using a smarter and
more efficient pruning strategy will help in improving the performance of
FlexSIPP.

48

Chapter 7

Conclusion

Our aim in this thesis is to show that using the flexibility of moving obstacles
in any-start-time safe interval path planning can improve the cost function
in a multi-agent pathfinding problem. In this problem, the other agents
are moving obstacles that we can manipulate and delay by some amount,
specified by their flexibility. This flexibility is defined in such a way that if
the agents are delayed by this amount, they still have a conflict-free route.

The experiments have shown that by exploiting this flexibility, we can ex-
plore more of the search space of the multi-agent problem while viewing the
problem as a single-agent replanning problem. It allows for using heuristic
search to efficiently find a new route for a single agent. The representation
of the additional edge in the search graph that any-start-time safe interval
path planning uses makes sure that the search space does not grow too fast,
and finding a route using flexibility is fast.

By conducting a case study on the Dutch railway network, we have shown
a method to reduce the railway network to a directed graph that can use
blocking time theory to determine the occupation of the network. We have
shown that this representation can be used to plan new trains by determining
the safe intervals between the blocking times of other trains. This allows us
to find conflict-free paths in a busy railway network like the Dutch railway
network. This reduction to a graph can be used to model signalling systems
that use blocks, if accurate runtime and blocking time calculations are used.

To determine the validity of the introduced flexibility in any-start-time
safe interval path planning, we compared the generated tipping points with
the train handling documents. FlexSIPP can determine the same action
and amount of delay specified in these documents, together with the con-
sequences for other agents in the network. As FlexSIPP is able to identify
tipping points automatically and provide the effect that departing before
or after this tipping point has, it can aid traffic controllers during conflict
resolution. We are able to construct TADs dynamically and quickly for the
current situation of the railway network to advise traffic controllers.

49

50

Chapter 8

Future Works

In this chapter, we discuss two directions this research can be taken further.
First is applying the methods discussed in this thesis in relation to the
railway sector. This is partly in the ongoing research into ETCS Level 2, and
partly in the operability of the provided solutions, considering the human
factor in the current day-to-day operations at ProRail. A second direction
this research can be taken is exploring the possibilities of flexibility in other
fields of research.

The current reduction from the railway network to a graph we used is
based on the most common signaling system in use today. Current research
in this sector is looking ahead at the system that will be implemented in the
coming years: ETCS Level 2 with trackside train detection (Versluis et al.,
2024). By implementing a reduction in this new system to a graph with
accurate running times, FlexSIPP will be able to work with this system. A
more difficult approach would be the introduction of ETCS Level 2 with hy-
brid train detection (Versluis et al., 2025). The difficulty is in stepping away
from the blocks that the current network is made out of and implementing
a moving block system. One approach would be going back to the original
reduction to a graph by Hanou et al.| (2024)), and augmenting it such that
overtaking on a long straight part of the track is not possible. Extra care
also needs to be taken with calculating the headway of trains in this situ-
ation. If an accurate reduction is made, the search algorithm of FlexSIPP
will work with this new system.

Improvements in advising traffic controllers can be made by accounting for
the human factor. FlexSIPP currently finds any feasible route by allowing
the agent to change tracks or even run in the opposite direction of travel.
Even though these tracks are feasible, it is unlikely that a traffic controller
will direct a train to use such a route. By investigating the preferences
of traffic controllers and incorporating this, FlexSIPP will be able to create
feasible routes that conform to the quality of solutions that traffic controllers
prefer.

o1

Current state-of-the-art mixed integer linear programming models model
the routes of trains accurately, accounting for driver behaviour. A method
for incorporating this in FlexSIPP is using information from simulators like
FRISO (Middelkoop and Loeve, [2006)). Using blocking times from such an
application will cause the accuracy of FlexSIPP to increase, making sure that
the routes found are actually viable. This would also allow for the creation of
new train handling documents. It also allows for creating turnkey solutions
for traffic controllers in a dynamic setting. This solves the problem that
traffic controllers currently have, where multiple TADs are applied at the
same time. By stacking TADs, it can happen that they are applied in a way
they were not designed for. By generating new TADs dynamically based on
the current situation of the railway network, this problem is solved.

The usage of the flexibility of agents is not limited to the replanning
of trains. In this thesis, we have shown the application of FlexSIPP on
the Dutch railway network. FlexSIPP can be applied to problems where
there exists a plan that needs to be modified. This can include planning
a new agent or replanning an existing agent. Warehouse robot scheduling
(Wang, |2024) is very similar, where the agents are robots picking orders in
a warchouse. When a new order with high priority arrives, FlexSIPP can
be applied to fulfill the order as fast as possible without causing problems
for other robots. In such a problem where there are many agents, but still
room for flexibility in these agents, we expect that FlexSIPP will perform
well in creating a plan for a new or delayed agent.

To quantize the results of FlexSIPP, we can extend the work of [Svancara
et al.|[(2019) discussed in Section By comparing FlexSIPP against re-
planning all agents, it is possible to show the loss in optimality versus the
run time. FlexSIPP will be able to improve the overall goal, while still being
“extremely fast” as single-agent replanning.

52

Bibliography

Atzmon, D., Stern, R., Felner, A., Wagner, G., Bartak, R., and Zhou, N.-F.
(2018). Robust Multi-Agent Path Finding. Proceedings of the Interna-
tional Symposium on Combinatorial Search, 9(1):2-9. Number: 1.

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf,
L., and Wagenaar, J. (2014). An overview of recovery models and algo-
rithms for real-time railway rescheduling. Transportation Research Part
B: Methodological, 63:15-37.

Chen, Z., Harabor, D. D., Li, J., and Stuckey, P. J. (2021). Symmetry Break-
ing for k-Robust Multi-Agent Path Finding. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(14):12267-12274.

European Rail Supply Industry Association (2025). ERTMS Signaling levels.
https://www.ertms.net /ertms-signaling-levels/.

Fang, W., Yang, S., and Yao, X. (2015). A Survey on Problem Models
and Solution Approaches to Rescheduling in Railway Networks. IEEE
Transactions on Intelligent Transportation Systems, 16(6):2997-3016.

Fischetti, M., Salvagnin, D., and Zanette, A. (2009). Fast Approaches to
Improve the Robustness of a Railway Timetable. Transportation Science,
43(3):321-335. Publisher: INFORMS.

Goverde, R. M. P. (2007). Railway timetable stability analysis using max-
plus system theory. Transportation Research Part B: Methodological,
41(2):179-201.

Goverde, R. M. P., Corman, F., and D’Ariano, A. (2013). Railway line
capacity consumption of different railway signalling systems under sched-
uled and disturbed conditions. Journal of Rail Transport Planning €
Management, 3(3):78-94.

Hanou, I. K., Thomas, D. W., Ruml, W., and De Weerdt, M. (2024). Replan-
ning in Advance for Instant Delay Recovery in Multi-Agent Applications:
Rerouting Trains in a Railway Hub. Proceedings of the International Con-
ference on Automated Planning and Scheduling, 34:258-266.

53

Hansen, I. A. and Pachl, J. (2008). Railway timetable and traffic : analysis,
modelling, simulation. EurailPress, Hamburg. Section: 228 p.

Kemmeren, E. (2025). EricKemmeren/delay-replanning-slack.
https://github.com/EricKemmeren/delay-replanning-slack.

Kersbergen, B., Rudan, J., van den Boom, T., and De Schutter, B. (2016).
Towards railway traffic management using switching Max-plus-linear sys-
tems. Discrete Event Dynamic Systems, 26(2):183-223.

Middelkoop, A. D. and Loeve, L. (2006). Simulation of traffic management
with FRISO. In Computers in Railways X, volume 1, pages 501-509,
Prague, Czech Republic. WIT Press. ISSN: 1743-3509, 1746-4498.

Nebel, B. (2024). The computational complexity of multi-agent pathfinding
on directed graphs. Artificial Intelligence, 328:104063.

NS (2025). Spoorkaart 2025. https://nieuws.ns.nl/spoorkaart-2025-hier-te-
downloaden/.

Pachl, J. (2020). Railway Signalling Principles. Technical University Braun-
schweig, Germany.

Phillips, M. and Likhachev, M. (2011). SIPP: Safe interval path planning
for dynamic environments. In 2011 IEEE International Conference on
Robotics and Automation, pages 5628-5635. ISSN: 1050-4729.

ProRail (2024). Network Statement 2025.
https://www.prorail.nl/samenwerken /vervoerders/network-statement.

ProRail (2024). Spoorkaart. https://www.prorail.nl/reizen/spoorkaart.

ProRail VenD VACO (2016). Regels voor het functioneel ontwerp van rail-
infrastructuur.

Quaglietta, E., Pellegrini, P., Goverde, R. M. P., Albrecht, T., Jaekel, B.,
Marliere, G., Rodriguez, J., Dollevoet, T., Ambrogio, B., Carcasole, D.,
Giaroli, M., and Nicholson, G. (2016). The ON-TIME real-time railway
traffic management framework: A proof-of-concept using a scalable stan-
dardised data communication architecture. Transportation Research Part
C: Emerging Technologies, 63:23-50.

Rudan, J., Kersbergen, B., van den Boom, T., and Hangos, K. (2013).
Performance analysis of MILP based model predictive control algorithms

for dynamic railway scheduling. In 2013 FEuropean Control Conference
(ECC), pages 4562-4567.

SporenplanOnline (2025). SporenplanOnline. https://www.sporenplan.nl/.

54

Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H., Walker, T., Li,
J., Atzmon, D., Cohen, L., Kumar, T. K., Bartak, R., and Boyarski,
E. (2019). Multi-Agent Pathfinding: Definitions, Variants, and Bench-
marks. Proceedings of the International Symposium on Combinatorial
Search, 10(1):151-158.

Thomas, D., Shimony, S., Ruml, W., Karpas, E., Shperberg, S., and Coles,
A. (2023). Any-Start-Time Planning for SIPP. Proceedings of the ICAPS-
23 Workshop on Heuristics and Search for Domain-Independent Planning.

Van den Boom, T. J. J., Weiss, N., Leune, W., Goverde, R. M. P., and
De Schutter, B. (2011). A permutation-based algorithm to optimally
reschedule trains in a railway traffic network. IFAC Proceedings Volumes,
44(1):9537-9542.

Versluis, N. D., Pellegrini, P., Quaglietta, E., Goverde, R. M. P., and Ro-
driguez, J. (2024). Conflict Detection and Resolution for Distance-to-Go
Railway Signalling.

Versluis, N. D., Pellegrini, P., Quaglietta, E., Goverde, R. M. P.; and Ro-
driguez, J. (2025). Impact of track discretisation on conflict detection and
resolution under ETCS with onboard train integrity monitoring. Journal
of Rail Transport Planning € Management, 35:100533.

Wang, A. (2024). Intelligent warehouse multi-robot scheduling system based
on improved A* algorithm. In 202/ 3rd Conference on Fully Actuated
System Theory and Applications (FASTA), pages 1305-1310.

Wang, Z., Quaglietta, E., Bartholomeus, M., and Goverde, R. M. P. (2025).
Sensitivity of Train Path Envelopes for Automatic Train Operation. IEEE
Transactions on Intelligent Transportation Systems, pages 1-13.

Yu, J. and LaValle, S. M. (2013). Structure and intractability of optimal
multi-robot path planning on graphs. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, AAAT'13, pages
1443-1449, Bellevue, Washington. AAAI Press.

Zhou, R. (2023). Adding flexibility to the timetable in real-time railway
traffic management. Master’s thesis, TU Delft.

Svancara, J., Vlk, M., Stern, R., Atzmon, D., and Barték, R. (2019). On-
line Multi-Agent Pathfinding. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):7732-7739.

55

56

Appendix A

Sporenplan Railway
Networks

This section shows some of the locations that the train handling documents
are about.

Figure A.1: Sporenplan image from Den Helder, showing two locations in
the single track section where trains can cross.

100674

eSporenplanOnline,~ 7

www.SPORENPLAN.NL www.GLEISPLAN net

Figure A.2: Sporenplan image from Meppel. Only after Meppel do the two
tracks divert. Between Zwolle and Meppel is only two tracks wide.

57

oo >
S S
o X o
=
e o = l o o o,
) VO X O« <>>
H—E— F—E—
= = e = = T s @ O [} s
oun o1
o= = =) =3 oo ©
- R s @«
2t A S @ o>
- — ﬂ% o=) == eSporenplanOnline =
O U @ N\ SporenplenOnline
T} 310 O
[} s

Figure A.3: Sporenplan image from Leiden. From the four incoming tracks
from The Hague (top left), two go to Hoofdorp, and two go to Haarlem.

7|7
¢

/ O

Figure A.4: Railway network at Hoofddorp, the HSL line and line from
Leiden merge going to Schiphol to the right.

58

Appendix B

Search graph

This section shows the search graph of Den Helder that is created from the
blocking time diagram of Figure[5.2] Figure shows a section of the most
common routes to platform 1 of Den Helder. Some nodes are omitted: it
would technically be possible to turn around at another platform, travel
away from Den Helder to turn around again somewhere else, to then finally
go to platform 1 of Den Helder. There are also at most 2 nodes per location,
as the starting node becomes blocked after 30 minutes when the next train
of the same series is at Schagen.

One remark about Figure is that the cyan edges, which denote the
edges without using flexibility, are missing from s{. The reasoning is that
without using flexibility, an agent can’t use this edge.

59

09

e P 0002020
R O=0=0=0=0

Figure B.1: Search graph of FlexSIPP of the scenario of Den Helder, burgundy edges represent edges that use the flexibility
of an agent. Only showing possible routes to platform 1 of Den Helder.

	Introduction
	Background
	Path Planning
	Railway Infrastructure
	Reduction from a railway track to @SIPP
	Train handling documents

	Related Work
	Multi-Agent Pathfinding
	Mixed Integer Linear Programming

	Method
	Creating the Routing Graph
	Blocking Times in a Routing Graph
	Flexibility
	Searching with flexibility
	Additional edge
	Limits on flexibility

	Evaluation
	Data preparation
	TAD Comparison
	Schagen to Den Helder
	Bottleneck between Zwolle and Meppel
	The Hague to Amsterdam South

	Runtime evaluation
	Number of blocks
	Number of agents

	Routing a train from Schiphol to Rotterdam

	Discussion
	Conclusion
	Future Works
	Sporenplan Railway Networks
	Search graph

