
Counting Sequences, Gray Codes
and Lexicodes



Counting Sequences, Gray Codes and Lexicodes

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op maandag 22 mei 2006 om 10.00 uur

door

I Nengah SUPARTA

Master of Science in Mathematics
Bandung Institute of Technology,

Bandung - Indonesia

geboren te Buleleng, Bali - Indonesië
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1
Preliminaries

1.1 Introduction

This thesis contains two main topics: Counting sequences and Gray codes, and Lex-
icodes. The discussion of the first topic is referred to as the first part of this thesis.
The second part contains the remaining topic.

Counting sequences have applications in logic-circuits. Sometimes it is desirable
to have a counting sequence such that the number of bit changes from one codeword
to its successor is as large as possible, for example when testing a physical circuit
for reliable behavior in worst-case conditions (see e.g. [32, Exercise 67, p. 35]). In
particular, balanced counting sequences are of considerable interest in combinatorial
logic circuits.

Binary Gray codes which constitute a special type of counting sequences is a well-
known topic. Although this type of code has been named after its inventor Frank
Gray from Bell Laboratories, the code itself actually was demonstrated already by
the French engineer Émile Baudot in 1878 in a telegraph device(cf. [26]). Among all
kinds of Gray codes, the binary reflected Gray code, also known as the standard Gray
code, is the best known(cf. [59, 86]). This code was a patented invention due to Gray
in 1953, and was used to reduce the coding errors in a pulse code communication
system [23]. Its name was a tribute to its inventor.

The usefulness of the binary reflected Gray code and its widespread appearance
are undisputed, for instance in algebraic coding theory (cf. [84]), in the design of
combinatorial algorithms (cf. [59]), while its optimality with respect to various ap-
plications has proved itself frequently(cf. [2]). For certain applications however,
sometimes additional properties of Gray codes are requested. For instance, when
designing experiments, or when designing and testing electrical circuits and informa-
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4 Preliminaries

tion systems, balanced Gray codes are needed(cf. [3, 39, 41, 42, 87, 88]), whereas
applications of the N-ary n-cube can be found in the design of several concurrent
computers including the Ametek 2020, the J-Machine, the Mosaic, the iWarp, and
the Cray T3D(see [6] and references therein). This constitutes one reason why the
topic of N -ary Gray codes is interesting. Moreover, if Q is a power of a prime, Q-ary
Gray codes also have applications in determining the weight distribution of a linear
code(see [24]).

There are still many other types of Gray codes depending on their application(cf.
e.g. [21, 22, 41]). For a more extended survey on Gray codes we refer to [61].

As commencement of the first part, we shall introduce in this chapter some basic
definitions and notations with respect to counting sequences, and in particular to Gray
codes. For introductory remarks to the second part we refer to the introductions of
Chapters 6 and 7.

1.2 Binary counting sequences

Let O(n|p) be a sequence of p distinct binary n-tuples. We call p the period of O(n|p).
If p = 2n, we call the sequence O(n|p) a counting sequence of length n, or shortly a
counting sequence n, and we denote it by O(n) (cf. [60]). In Figure 1.1 we show two
examples of counting sequences of length 4. In the sequel, binary n-tuples will be
called codewords of length n. Codewords in a sequence will be denoted by boldface
letters like g, h, x, y, v, or w. Furthermore, we shall index codewords in O(n|p)
from 0 until p− 1. So, the j-th codeword in the sequence O(n|p) will be denoted for
instance by xj, 0 ≤ j < p. Bit positions will be counted from 1 until n going from
right to left. For example, the j-th codeword in a sequence O(n|p), with respect to
its components, is written as xj = xjn · · · xj2xj1. If we consider the sequence O(n|p)
as a closed or a cyclic sequence, then we identify the codeword of index p and the
one of index 0. As usual, the Hamming distance between two codewords x and y of
the same length, denoted by dH(x,y), is defined to be the number of bit positions
where they differ. A counting sequence O(n) of length n which has the property that
any two successive codewords in the list, including the last and the first codeword,
have the same Hamming distance is called uniform. The list shown in Fig. 1.1.a is
an example of a uniform counting sequence of length 4 and Hamming distance 1.

The number of changes in bit position i, 1 ≤ i ≤ n, in a binary counting sequence
O(n|p), denoted by TCO(n|p)(i), is called the transition count of bit position i in the
list of O(n|p). The transition count distribution TCO(n|p) = (TCO(n|p)(1), TCO(n|p)(2),
..., TCO(n|p)(n)) of a sequence O(n|p) is called the transition count spectrum of O(n|p).
A sequence satisfying the condition that |TCO(n|p)(i) − TCO(n|p)(j)| ≤ 2 is called a
balanced sequence, and it is called totally balanced if |TCO(n|p)(i) − TCO(n|p)(j)| = 0,
for every 1 ≤ i, j ≤ n.

It should be mentioned that occasionally authors prefer to consider the distribu-

tion (
TCO(n|p)(1)

2n ,
TCO(n|p)(2)

2n , ...,
TCO(n|p)(n)

2n ) instead of TCO(n|p), which is referred to as
the bit error probabilities of O(n|p) (see e.g. [41, 64]).



1.2 Binary counting sequences 5

0000 1100 0000 0110
0001 1101 1111 1001
0011 1111 0001 0111
0010 1110 1110 1000
0110 1010 0011 0101
0111 1011 1100 1010
0101 1001 0010 0100
0100 1000 1101 1011

a. b.

Figure 1.1: a. A uniform counting sequence 4; b. a maximum counting sequence 4.

Let xi = xin · · · xi2xi1 be the i-th codeword of O(n|p) and let si := {j|x(i−1)j 6=
xij}. For every i, 1 ≤ i ≤ p, si is called the transition from the codeword xi−1 to
xi. The transition sequence SO(n|p) of a sequence O(n|p) is an ordered sequence of
transitions si for all i, 1 ≤ i ≤ p−1. If we are dealing with a cyclic counting sequence,
the transition sequence of the cyclic counting sequence can be completed with the
transition sp of the last and the first codeword of the sequence. This last transition
is occasionally called the closing transition of the transition sequence. The transition
sequence of a cyclic sequence which is completed with its closing transition is called
the complete transition sequence, or occasionally, just the transition sequence. A
non-complete transition sequence is simply called non-complete transition sequence.

In Figure 1.1 sequence a. has complete transition sequence

{1}, {2}, {1}, {3}, {1}, {2}, {1}, {4}, {1}, {2}, {1}, {3}, {1}, {2}, {1}, {4},
whereas sequence b. has complete transition sequence

{1, 2, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {1, 2, 4},
{1, 2, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {1, 2, 4}.

We shall omit the curly brackets in the transition sequence, when its components are
all singleton sets. Counting sequences which have a transition sequence the compo-
nents of which are all singleton sets are called Gray codes. If the closing transition is
also a singleton, we speak of a cyclic Gray code.

Very often, especially for binary Gray codes, the transition sequence of a count-
ing sequence is a compact tool for studying properties of the sequence (see e.g.
[21, 22, 39, 46]). For instance, the transition count of bit position i in a counting
sequence is equal to the number of occurrences of the integer i in the transition se-
quence of the counting sequence. The construction of special Gray codes is often based
on the structure of their transition sequences (see e.g. [3, 20, 58, 60, 66, 70, 77]). For
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constructing single-error-correcting unit-distance counting codes, Kautz in [29] ma-
nipulates the transition sequences of binary standard Gray codes. In [24], the transi-
tion sequences of q-ary Gray codes constitute a basis for an algorithm for generating
the (Hamming) weight distribution of an arbitrary linear error correcting code over
GF (q).

The average distance dA of a sequence O(n|p) is the average Hamming distance
between the p pairs of successive codewords. Here, the successor of xp−1 is x0. It
follows immediately that the following relation exists between the average Hamming
distance and the transition counts in any O(n|p)

n∑
i=1

TCO(n|p)(i) = p · dA. (1.1)

The following theorem was proved in [60]. Here, we shall give a slightly different
proof.

Theorem 1.2.1. The average distance dA of a counting sequence O(n), n > 1, is
bounded according to 1 ≤ dA ≤ n− 1

2
.

Proof. It is clear that the lower bound is sharp, since for a cyclic Gray code dA is
equal to 1. Again, it is clear that for every two n-bit codewords x and y, we have
d(x,y) ≤ n, and the equality occurs only if x and y are complementary codewords.
It is obvious that there are precisely 2n−1 pairs of complementary codewords of length
n. Any other pair of codewords has a mutual distance of at most n − 1. Hence, in
any counting sequence of length n we shall have

1 ≤ dA ≤ n2n−1 + (n− 1)2n−1

2n
= n− 1

2
.

Later we shall see that for every length n, a closed sequence of length n having
average Hamming distance n − 1

2
exists. Such a sequence will be called a maximum

counting sequence or shortly maximum sequence (cf. [60]). So, the upper bound of
dA is also sharp.

1.3 Binary Gray codes

It is well known that uniform counting sequences exist in which any two successive
codewords have Hamming distance 1, including the first and the last codeword. These
special counting sequences are called cyclic Gray codes(cf. Section 1.2). From now
on, any binary sequence of length n with period p, 1 ≤ p ≤ 2n, and such that any two
successive codewords in the sequence have Hamming distance 1, will be called a Gray
sequence. We call a Gray sequence cyclic, if also the last codeword of the sequence
differs in only one bit from the first codeword.
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The binary reflected Gray code, also known as the standard Gray code is the best
known Gray code (cf. [59, 86]). A characteristic property of the binary standard
Gray code is that the second half of the list of codewords can be obtained from the
first half by reflection, i.e. by writing the first half upside down and replacing the
front zero by one. This property leads to the name of binary reflected Gray code.
More formally, a binary reflected Gray code of length n + 1 can be obtained from the
binary reflected Gray code of length n according to the following rules. Let Gref (n)
be the binary reflected Gray code of length n. Then, the list of the binary reflected
Gray code Gref (n + 1) of length n + 1 is obtained by listing all codewords of Gref (n)
and adding a prefix 0 to each codeword, followed by reflecting the list of Gref (n)
with an additional prefix 1 in front of each codeword. For instance, Gref (1) = 0, 1,
Gref (2) = 00, 01, 11, 10, and Gref (3) = 000, 001, 011, 010, 110, 111, 101, 100.

Many researchers have studied binary Gray codes because of a wide range of
applications such as circuit testing, experimental designs and signal processing and
communication systems (see e.g. [2, 28, 31, 34, 36, 50, 56]), or just for interesting
mathematical properties (see e.g. [12, 27, 33]).

In the sequel, when discussing binary Gray codes, we shall simplify some notations.
For example, the complete transition sequence of a cyclic Gray code of length n will
be denoted by S̄(n), and the notation S(n) will be reserved for the corresponding non-
complete transition sequence. Furthermore, the addition between binary codewords
in GF (2)n will be denoted by the symbol ⊕.

1.4 N-ary Gray codes

A well-known generalization of binary Gray codes is an N-ary Gray code, N > 0, of
length n. This is an ordered list of all Nn codewords of length n over the set of integers
{0, 1, 2, ..., N − 1}, such that each codeword differs from the previous one in exactly
one bit position. One applies such codes in analogue-to-digital conversion of data,
where the adjacency property of successive codewords reduces both the likelihood and
the effect of errors [10]. The natural number N is called the radix of the Gray code
(cf. [15]). As usual, if the last codeword of the list differs in one position from the first
codeword, one speaks of cyclic N -ary Gray code. In this case, the Hamming distance
of any codeword to its two immediate neighbors in the list is equal to one, where the
list is considered to be a cyclic list. More specifically, in a cyclic list one can require
that if xi is the i-th codeword in the list and xi+1 the (i+1)-st codeword, then one
either has xi+1j = xij +1 or xi+1j = xij−1, mod N , for all values of i, 0 ≤ i ≤ Nn−1
and all values of j, 1 ≤ j ≤ n. Such a code is defined as a minimal-change N -ary
Gray code. One also could say that codewords which are neighbors in this list are at
Lee distance 1 from each other(cf. [35],[53, p. 1750]). In this thesis, the term N -ary
Gray code applies to this type of cyclic codes.

The list distance of two codewords xi and xj, denoted by dL(xi,xj), in an N -ary
Gray code of length n is defined to be the absolute value of the difference of i and j.
So,
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dL(xi,xj) = |j − i|. (1.2)

In eq. (1.2) the list of codewords is considered to be linear, i.e. non-cyclic. But in
practice, we are quite frequently dealing with a cyclic list. In that case the above def-
inition is not convenient. Therefore, it is natural to introduce the cyclic list distance
for a cyclic list, which is defined as

D(xi,xj) = min{|j − i|, Nn − |j − i|}. (1.3)

(cf. also [57]). Throughout this thesis, the terms list and Gray code are interchange-
able, and the list of codewords will be written occasionally as a matrix the rows of
which are the codewords.

1.4.1 N-ary reflected Gray codes

A well-known N -ary Gray code, generalizing the binary reflected Gray code, is the

000 000 122 200
001 001 121 201
011 002 120 202
010 012 110 212
110 011 111 211
111 010 112 210
101 020 102 220
100 021 101 221

022 100 222

a. b.

Figure 1.2: a. Binary reflected Gray code of length 3; b. Ternary reflected Gray code
of length 3.

N -ary reflected Gray code Gref (n,N) of length n, which is recursively defined as
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Gref (n,N) =




0 Gref (n− 1, N)
1 Gref (n− 1, N)R

2 Gref (n− 1, N)
...

...
N − 1 Gref (n− 1, N)∗




(1.4)

Gref (1, N) =




0
1
2
...

N − 2




where Gref (n − 1, N)R stands for the list Gref (n − 1, N) in reversed ordered. The
symbol * in the last row of the matrix Gref (n,N) stands for R only when N is even,
otherwise it should be deleted (cf. [15]).

The code Gref (n,N) is also called the standard N-ary Gray code. In Fig. 1.2:
a. and b. we show the lists of the binary and of the ternary reflected Gray code of
length 3. As we can see, the 3-bit binary reflected Gray code is cyclic, whereas the
ternary one is not. Theorem 1.4.1 formulates this property in general.

The following theorem is obvious(cf. [15]).

Theorem 1.4.1. For every n > 1, the N-ary reflected Gray code Gref (n,N) of length
n is cyclic if N is even, and it is non-cyclic otherwise.
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2
Separability in N-ary Gray Codes

In this chapter we shall discuss the so-called separability problem for several types
of N -ary Gray codes. This problem roughly deals with the relationship between the
Hamming distance between any two codewords and their list distance, expressed by
the separability function of the code. We shall derive upper and lower bounds for
these functions and compare them with respect to their separability power. In this
context we shall introduce a near optimal binary Gray code the separability of which
is almost optimal.

2.1 The separability of the N-ary reflected Gray

code Gref(n,N)

In a Gray code, or in any ordered code, a question of theoretical as well as of practical
relevance is the following. If two codewords in a code differ in m positions, how far
are they separated from each other in the list of codewords? The larger this list
distance of the code, the smaller the number of bit errors will be when transmitting
codewords by means of analog signals (cf. [86]). Stated more precisely, when we index
the codewords in the list from 0 until 2n − 1, and if two codewords xi and xj have
Hamming distance dH(xi,xj) = m, can we find an integral-valued bounding function
b such that the list distance satisfies dL(xi,xj) ≥ b(m), for 1 ≤ m ≤ n? Of course,
the most interesting bounding function is a function giving sharp lower bounds for all
values of m, i.e. such that for every m-value there exists at least one pair of codewords
with list distance b(m). The question of finding this uniquely determined function
is called the separability problem (cf. [90, 86]). We shall use the term separability
function for a function b - occasionally written as b(m) - yielding sharp lower bounds
for 1 ≤ m ≤ n. In [90] Yuen solved the separability problem for the binary reflected
Gray code. The separability function in this case appears to be d2m

3
e. The derivation

11
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of this expression is accomplished by making use of the index system of the reflected
Gray code, i.e. the relationship between a codeword gi and its index i, 0 ≤ i ≤ 2n−1
(cf. e.g. [59]). Along similar lines, Cavior in [9] derived a sharp upper bound for the
list distance in this code, being 2n − d2m

3
e, 1 ≤ m ≤ n. In both papers the list of

codewords is interpreted as a linear (non-cyclic) list, which implies that dL(xi,xj) is
defined as |i− j|. Now, it is well known that the reflected Gray code is a cyclic Gray
code(see Section 1.2). With respect to this notion the results of Yuen and Cavior can
be combined in the following implication

dH(xi,xj) = m → D(xi,xj) ≥ d2
m

3
e. (2.1)

We call this implication the separability property of the standard binary Gray code.
In the next we shall derive a more general separability property which holds for
N -ary reflected Gray codes, N ≥ 2. Although an index system for this code is
known (cf. [18]), it will appear that such a system is not needed to prove the result.
Throughout this thesis, the terms list and Gray code (which is represented by that
list) are interchangeable. The columns of this list are numbered from right to left
by 1, 2, . . . , n. Furthermore, as already announced in Section 1.4, we shall also use
matrix notation for these lists where the rows of a matrix represent the codewords of
the list.

2.1.1 Equivalence of ordered codes

Let Vn,N denote the set of all cyclic minimal-change N -ary Gray codes of length n.
Let G be some code in Vn,N . We shall introduce a number of transformations mapping
G to some other (possibly the same) element of Vn,N :

(i) if a is a permutation of the integers 1, 2, . . . , n, then aG is the code of length n
obtained by permuting the columns of G according to a;

(ii) if b is the cyclic permutation (0, 1, 2, . . . , N−1), then biG is the code of length n
obtained by permuting the integers in the i-th column according to b, for some
i ∈ {1, 2, . . . , n};

(iii) if c is equal to the permutation (0, N − 1)(1, N − 2) . . . (N−2
2

, N
2
), for N even,

or equal to the permutation (0, N − 1)(1, N − 2) . . . (N−3
2

, N+1
2

), for N odd, and
N > 2, then ciG is the code of length n obtained by permuting the integers in
the i-th column according to c, for some i ∈ {1, 2, . . . , n} (cf. [20] and also [10,
Ch. 2]).

It will be clear that all these transformations define mappings of Vn,N onto itself, and
also that these transformations generate a group of order n!(2N)n. We remark that
the subgroup generated by the transformations (ii) is isomorphic to the translation
group G → G+v,v ∈ {0, 1, . . . , N − 1}n. Furthermore, applying transformation (iii)
to column n in case of Gref (n,N), yields the reversed code Gref (n,N)R for N even.
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Whereas for N odd, applying transformation (iii) to all columns of Gref (n,N) also
yields Gref (n,N)R.

Definition 2.1.1. Minimal-change Gray codes which can be transformed into each
other by applying one or more of the transformations (i) - (iii) are called equivalent
codes.

The relevance of this definition will become clear from the following proposition.

Proposition 2.1.1. Equivalent codes satisfy the same separability property.

The proof is immediate by observing that Hamming distances and list distances
are not effected by the transformations (i) - (iii).

2.1.2 Contractions of ordered codes

Let G be some code in Vn,N . Take two k-strings a := a1a2 . . . ak ∈ {0, 1, . . . , N − 1}k,
and i := i1i2 . . . ik, with 1 ≤ i1 < i2 < · · · < ik ≤ n, for some fixed k-value, 1 ≤ k ≤ n.
The string a will be called a bit pattern and i a position vector. We now consider the
sublist of G consisting of all codewords which have aj on position ij, for 1 ≤ j ≤ k.
Leaving out the common bit pattern a from these codewords provides us with an
ordered code of codeword length n− k. We call this code the contraction of G with
respect to the pair (a, i), and we write G(a, i). In particular, we can contract the
standard N -ary Gray code Gref (n,N) with respect to some pair (a, i). The resulting
code will be denoted by Gref (n,N ; a, i).

Proposition 2.1.2. Let Gref (n,N) be the N-ary reflected Gray code, of length n > 1.
Then for any pair (a, i), the contraction Gref (n,N ; a, i) is a Gray code equivalent to
the reflected Gray code Gref (n− k,N) of length n− k.

Proof. We shall only give the proof for the case N is even, and omit the proof for N
odd, which is completely similar.

Since N is even, Gref (n,N) is cyclic. We shall prove the Proposition by applying
mathematical induction to n.
(i) The statement is true for n = 2, as can be verified by inspection.
(ii) Assume the statement holds for all codeword lengths less than n. Consider the
sublist of all codewords of Gref (n,N) containing pattern a on position i. If ik = n, this
sublist is either part of a sublist akGref (n − 1, N) or of a sublist akGref (n− 1, N)R.
In the first case the code Gref (n − k, N ; a, i) can be considered as the contraction
Gref (n − 1, N ; a′, i′), with a′ = a1a2 . . . ak−1 and i′ = i1i2 . . . ik−1. By the induction
assumption, this last code is equivalent to Gref (n− 1− k + 1, N) = Gref (n− k, N).
In the second case we proceed similarly, making use of the equivalence of Gref (n −
k,N) and Gref (n − k, N)R (cf. the remark prior to Definition 2.1.1). If ik 6= n, the
contraction process yields a code of type
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Gref (n,N ; a, i) =




0 Gref (n− 1, N, a, i)
1 Gref (n− 1, N, a, i)R

2 Gref (n− 1, N, a, i)
...

...
N − 1 Gref (n− 1, N, a, i)R




. (2.2)

Again by the induction assumption Gref (n−1, N ; a, i) is equivalent to the reflected
code Gref (n − 1 − k,N). Applying Definition (2.1.1) shows that Gref (n,N ; a, i) is
equivalent to Gref (n− k, N).

2.1.3 The separability function of the N-ary reflected Gray
code

We are ready now to prove our main results of Section 2.1. We start with radix N is
even.

Theorem 2.1.3. Let Gref (n,N) be the N-ary reflected Gray code of length n, and
let N be even. If the Hamming distance between two codewords g and h satisfies
dH(g,h) = m, then the list distance between g and h satisfies D(g,h) ≥ d Nm

N2−1
e.

Moreover, this lower bound is sharp for all m-values with 1 ≤ m ≤ n.

Proof. We prove the Theorem in two steps.
A. First we take m = n. In addition to the statement of the Theorem we shall also
prove that there is a pair of codewords at minimum distance, such that the shortest
path connecting them in the list Gref (n,N) contains the first codeword as well as the
last codeword of the list (1.4). For n = 1 and n = 2 all above statements are trivial.
Assume all these statements are true for all values less than n > 2. Let g and h be
two codewords with dH(g,h) = n. If we write g = gngn−1v and h = hnhn−1w, it
follows that gn 6= hn, gn−1 6= hn−1 and dH(v,w) = n− 2. From (3) it follows that v
and w can be considered as codewords of Gref (n − 2, N) or of Gref (n − 2, N)R. It
also follows that g and h are separated from each other by at least a number p(≥ 1)
of complete blocks Gref (n − 2, N) or Gref (n − 2, N)R of size Nn−2. So D(g,h) is
equal to pNn−2 plus a term due to the positions of v and w in their respective blocks
Gref (n− 2, N) or Gref (n− 2, N)R. It will be obvious that D(g,h) is minimal if both
contributions can be minimized simultaneously. This is indeed possible by taking
p = 1 and by selecting codewords v and w, which are both in a block Gref (n− 2, N)
or both in a block Gref (n− 2, N)R for odd p-values, as described in the beginning of
this proof. Due to the induction assumptions D(g,h) is minimal for this choice of v
and w and its value is equal to

Nn−2 + d Nn−2

N2 − 1
e = d Nn

N2 − 1
e.
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Therefore, the Theorem also holds for n. In particular we can take g = 0 and
h = c1c1c · · · , with c = N − 1, showing that also the additional induction require-
ment(cf. the first lines of the proof) is satisfied again. By the principle of mathemat-
ical induction the Theorem has been proved now for the case m = n.

B. If m < n, then g and h are equal in k := n − m positions, indicated by some
position vector i = i1i2 · · · ik. The corresponding values of the coordinates will be
given by a = a1a2 · · · ak. Now, we consider the contraction Gref (n, N ; a, i). Let v and
w be the codewords in this contraction which correspond to g and h respectively.
So, we have dH(v,w) = m. Since Gref (n,N ; a, i) is equivalent to Gref (m, N), it
follows, by Proposition 2.1.1 and part A of this proof, that D(v,w) ≥ d Nm

N2−1
e in the

contracted code. Hence, we have a fortiori the same inequality for D(g,h), since
in Gref (n,N) the codewords corresponding to codewords of Gref (n,N ; a, i) will, in
general, be interlaced by codewords which have no counterpart in Gref (n,N ; a, i).
Finally, one can easily prove that this bound is sharp by applying mathematical
induction to n ≥ m, and using part A for the case n = m.

Corollary 2.1.4. (Y uen, Cavior) The separability function of the standard binary
Gray code is equal to d2m

3
e.

As is known from Theorem 1.4.1 the N -ary reflected Gray code of length n > 1 is
not cyclic for odd values of radix N . Hence, we use the non-cyclic list distance when
dealing with the separability of these codes, and formulate the following theorem.

Theorem 2.1.5. Let Gref (n,N) be the N-ary reflected Gray code of length n, and
let N be odd. If the Hamming distance between two codewords g and h satisfies
dH(g,h) = m ≥ 1, then the list distance between g and h satisfies dL(g,h) ≥ Nm−2 +
1. Moreover, this bound is sharp for all m-values with 1 ≤ m ≤ n.

Proof. For m = 1 the Theorem is trivial. For m ≥ 2, we shall distinguish two cases:
m = n and m < n, and present a proof for the case m = n. The case m < n can be
dealt with by a same procedure as we used for case B of Theorem 2.1.3.
Let us take m = n ≥ 2. We rewrite the reflected Gray code in the following way.

Gref (n,N) =




0 0 Gref (n− 2, N)
0 1 Gref (n− 2, N)R

...
...

...
0 N − 1 Gref (n− 2, N)
1 N − 1 Gref (n− 2, N)R

1 N − 2 Gref (n− 2, N)
...

...
...

1 0 Gref (n− 2, N)R

...
...

...
N − 1 0 Gref (n− 2, N)

...
...

...
N − 1 N − 1 Gref (n− 2, N)




, (2.3)
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with

Gref (1, N) =




0
1
2
...

N − 1




.

Furthermore, we write g = gngn−1v and h = hnhn−1w. In order that g and h have
Hamming distance m = n, we must have gn 6= hn and gn−1 6= hn−1 . This occurs when
these codewords are separated by at least one block Gref (n−2, N) or Gref (n−2, N)R,
both of which have size Nn−2. Hence, the list distance of the codewords g and h is
at least Nn−2 + 1. For detecting how close these two codewords are, let us consider
the following arbitrary triple of consecutive blocks in eq. (2.3)

i− 1 j + (−1)i Gref (n− 2, N)∗

i− 1 j Gref (n− 2, N)∗∗

i j Gref (n− 2, N)∗

where 0 ≤ i, j ≤ N − 1. The symbol * (resp. **) stands for R if i is odd (resp. i is
even), otherwise it should be deleted. Since N is odd, the Hamming distance between
the first and the last codeword of G(n− 2, N), or of G(n− 2, N)R, is equal to n− 2.
Thus, the last codeword of block i−1 j +(−1)i G(n−2, N)∗ and the first codeword
of block i j G(n − 2, N)∗ have Hamming distance n. Furthermore, it is clear that
these codewords have a list distance which is exactly equal to Nn−2 + 1. This last
statement also indicates that the lower bound is sharp.

2.2 On a class of cyclic N-ary Gray code GN

According to Theorem 1.4.1, it is known that the N -ary reflected Gray codes are
cyclic only when N is even, otherwise they are non-cyclic. In this section we are
concerned with the construction of a class of N -ary Gray codes which are always
cyclic, i.e. for all values of radix N .

We introduce a recursive procedure for generating such codes. We should mention
that our procedure for constructing these cyclic Gray codes differs only slightly from
the procedure introduced by Sharma and Khanna in [63]. Our procedure however, is
simpler and more efficient in terms of the codeword length.

Moreover, we shall focus on equivalence classes of all n-bit N -ary words with
respect to their weight modulo N . More in particular, we arrange all elements in
a class such that the ordering satisfies a minimal-change property. As is shown in
[74] for the binary case, the ordered list of elements of a class all having the same
weight modulo N , is said to satisfy the minimal-change property if any two successive
codewords differ in precisely two bit positions. Any such list which satisfies this type
of minimal-change is also referred to as Gray code, or better as a constant-weight
Gray code.
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Further study of these codes enhances the separability problem and the ranking
problem or index system problem(shortly index problem), i.e the problem of the rela-
tionship between a codeword and its index in the code list. A solution of the index
problem of an ordered code will help us to determine the position of a given word
or vice versa, to determine the codeword on a given position, without generating the
whole list.

2.2.1 A recursive construction of Sharma and Khanna

Let L(n,N) be the naturally ordered list of N -ary numbers of length n. Sharma and
Khanna in [63] presented a bijective mapping converting the codewords of L(n,N)
onto the codewords of an N -ary Gray code with codeword length n, denoted by GN(n).
Let anan−1 . . . a1 be a word of length n in the N -ary number system representing
the value

∑n
i=1 aiN

i−1. The codeword gngn−1 . . . g1 in the N -ary Gray code GN(n)
generated by this mapping is defined as

{
gn = an,
gi = ai − ai+1( mod N ), for i = 1, 2, . . . , n− 1.

(2.4)

Conversely, we have
{

an = gn,
ai = gi + ai+1, ( mod N ), for i = 1, 2, . . . , n− 1.

(2.5)

Bose, Broeg, Kwon, and Ashir in [6] proved that the resulting Gray codes produced
by applying (2.4) are always cyclic. We notice that the construction of N -ary Gray
codes using (2.4) can also be found in [5]. Further observation concerning how many
distinct Gray codes could be produced by repeatedly applying the mapping in (2.4)
can be seen in [38, 40]. We discuss below an alternative construction, also introduced
by Sharma and Khanna in [63], to generate the same codes.

In the next, the transpose of the matrix A will be denoted by AT . It can easily
be seen that (2.4) produces GN(1) = (0 1 · · · N − 1)T . Let

GN(1)[i] = (N − i N − i + 1 · · · N − i− 1)T (2.6)

be obtained by shifting cyclically the elements of GN(1) over i places to the right.
Notice that GN(1)[i] is the N -ary Gray code of length 1 with the first entry N − i.
We have that GN(1)[0] = GN(1) = (0 1 · · · N − 1)T . Then GN(2) is constructed as
follows

GN(2) =




0 GN(1)[0]

1 GN(1)[1]

...
...

N − 1 GN(1)[N−1]


 . (2.7)

To extend this procedure for obtaining GN(n) in general, the following notations are
introduced. First we define
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GN(n)[0] = GN(n) =




g0(n)
g1(n)

...
gNn−1(n)


 . (2.8)

where gi(n) is the i-th codeword of length n of GN(n), whereas g0(n) is the all-zero
codeword of length n, and

GN(n)[k] =




g0(n : k)
g1(n : k)

...
gNn−1(n : k)


 . (2.9)

Here, we define

gi(n : k) = gi(n) + kgNn−1(n)(mod N), (2.10)

where the product of a codeword with an integer k ≤ N − 1, is considered to be the
componentwise multiplication of two elements of ZN = {0, 1, . . . , N − 1}, the set of
integers modulo N . In terms of the above notation GN(n + 1) is constructed in the
following manner:

GN(n + 1) =




0 GN(n)[0]

1 GN(n)[1]

...
...

N − 1 GN(n)[N−1]


 . (2.11)

In [63] Sharma and Khanna remark that GN(n)[k], as defined by (2.9) and (2.10),
is identical with an ordinary cyclic shift of the elements of GN(n) over k positions
when n = 1. In general, when n = l(l ≥ 1), GN(l) has N blocks of length N l−1

each. The list GN(l)[k] is the list obtained by cyclically shifting blocks over k block
positions, and by simultaneously carrying out k cyclic shifts within each block. It
follows that for generating a code of codeword length n + 1, this procedure involves
N(Nn−1)

N−1
cyclic shifts to blocks in the code of codeword length n. So, the number of

shifts increases exponentially as function of n.

2.2.2 An efficient procedure to construct GN(n)

Let us make a further observation especially with respect to relation (2.10). Observe
that

gNn−1(n : N − 1) = gNn−1(n) + (N − 1)gNn−1(n) = 0( mod N),
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for every n ≥ 1. So, the last codeword of GN(n)[N−1] is equal to the all-zero codeword
of length n. It implies that the last codeword of GN(n + 1), as defined in (2.11), is a
codeword with zeros in the first n bits from the right, and with N−1 in the (n+1)-th
bit. Because of this fact, calculations in (2.10) will not affect the first n columns of
GN(n + 1) when calculating GN(n + 1)[k] for all k, 0 ≤ k ≤ N − 1. What actually
takes place in (2.10) is merely the addition of the number k(N − 1) ≡ N − k (mod
N) to every bit in the last column of GN(n) when generating GN(n)[k].
Furthermore, let p be the cyclic permutation (0 N −1 · · · 1), and let piG be the code
obtained by applying the permutation p to the i-th column of code G, and let pk stand
for applying k times permutation p. We can easily see that GN(n)[k] = pk

nGN(n).
In the next, we shall write by GN(n)k for pk

nGN(n). Based on this observation we
introduce a slightly different procedure to obtain the same codes as defined in (2.11).
We define

GN(n + 1) =




0 GN(n)0

1 GN(n)1

...
...

N − 1 GN(n)N−1


 , (2.12)

with

GN(1)0 = GN(1) = (0 1 · · · N − 1)T .

To produce the code of length n + 1, our method only requires N − 1 cyclic
permutations p = (0 N − 1 · · · 1) to the n-th column of the previous code of length
n. Notice that the last codeword of GN(n)k is the same as the first codeword of
GN(n)k+1, 0 ≤ k < N − 1. Since GN(n)k is a Gray code for each k, 0 ≤ k ≤ N − 1,
GN(n + 1) is also a Gray code. Moreover, it is also obvious that the first codeword
of GN(n)0 and the last codeword of GN(n)N−1 are all-zero codewords. Therefore, the
first and the last codewords of GN(n + 1) have Hamming distance and Lee distance
1, like all other pairs of successive codewords. It follows that the code GN(n + 1) is
a cyclic code.

Example 2.2.1. Let n = 3, and N = 3. It is clear that G3(1)0 = (012)T , G3(1)1 =
(201)T , and G3(1)2 = (120)T . From (2.12) it follows that

G3(2)0 =




0 0
0 1
0 2
1 2
1 0
1 1
2 1
2 2
2 0




, G3(2)1 =




2 0
2 1
2 2
0 2
0 0
0 1
1 1
1 2
1 0




, G3(2)2 =




1 0
1 1
1 2
2 2
2 0
2 1
0 1
0 2
0 0




.
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Finally we obtain

G3(3) =




0 0 0
0 0 1
0 0 2
0 1 2
0 1 0
0 1 1
0 2 1
0 2 2
0 2 0
1 2 0
1 2 1
1 2 2
1 0 2
1 0 0
1 0 1
1 1 1
1 1 2
1 1 0
2 1 0
2 1 1
2 1 2
2 2 2
2 2 0
2 2 1
2 0 1
2 0 2
2 0 0




Remark Applying the procedure for radix N = 2 yields the binary reflected Gray
code. However, for N > 2, the code GN(n) produced by this procedure is not equiv-
alent to the N -ary reflected Gray code.

2.2.3 Constant weight codes

Let b be some element of ZN := {0, 1, . . . , N − 1}. The weight of b, denoted by wt(b),
is defined as its value as integer of N. According to this definition, wt(0) = 0 and
wt(N−1) = N−1. By (ZN)n we shall denote the set of all vectors of length n over ZN .
The concept of weight associated with elements of ZN will be extended to the elements
of (ZN)n. The weight of a vector b ∈ (ZN)n, denoted by wt(b), is defined as the sum
of the weights of its n components, modulo N . Thus, if b = bnbn−1 . . . b1 ∈ (ZN)n,
then wt(b) =

∑n
i−1 bi( mod N) (cf. [63]).

Throughout this thesis, a code the codewords of which have a constant weight
w will be called a constant w-weight code. Below we shall see how one can obtain a
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constant w-weight code as a subcode of CN(n) which also satisfies a minimal-cange
property.

Let us consider the sequence w,w+N,w+2N, . . . , w+(Nn−1−1)N of Nn−1 integers
in natural increasing order. When generating the constant w-weight code CN(w; n)
of length n, Sharma and Khanna in [63] applied (2.4) to the N -ary representation of
integers in the sequence. Here we define for all w, 0 ≤ w ≤ N − 1, a procedure for
generating the same code as follows.

CN(w; 1) = w, for all w, for n = 1, (2.13)

and

CN(w; n) = CN(0; n)N−w, for n > 1, (2.14)

with

CN(0; n) =




0 CN(0; n− 1)
1 CN(N − 1; n− 1)
...

...
N − 1 CN(1; n− 1)


 , (2.15)

By applying induction to n and taking into account eqs. (2.12) and (2.13)-(2.15),
we can show that CN(w; n) is a subcode (sublist) of GN(n). That CN(w; n) satisfies
minimal-change property is shown by Corollary 2.2.3 below.

Example 2.2.2. Let N = 3, and n = 3. We have C3(0; 1) = 0, C3(1; 1) = 1,
C3(2; 1) = 2;

C3(0; 2) =




0 0
1 2
2 1


 , C3(1; 2) =




1 0
2 2
0 1


 , C3(2; 2) =




2 0
0 2
1 1


 ;

and

C3(0; 3) =




0 0 0
0 1 2
0 2 1
1 2 0
1 0 2
1 1 1
2 1 0
2 2 2
2 0 1




, C3(1; 3) =




1 0 0
1 1 2
1 2 1
2 2 0
2 0 2
2 1 1
0 1 0
0 2 2
0 0 1




, C3(2; 3) =




2 0 0
2 1 2
2 2 1
1 0 2
0 0 2
0 1 1
1 1 0
1 2 2
1 0 1




.
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In Example 2.2.2 we can observe that columns n, n − 1, . . . , 2 of C3(w; n) con-
stitute the N -ary cyclic Gray code G3(n). The following Theorem states that this
phenomenon is true in general.

Theorem 2.2.1. The constant weight code CN(0; n + 1), defined by (2.13) - (2.15),
can be written as

CN(0; n + 1) =




g0 a0

g1 a1
...

...
gNn−1 aNn−1


 ,

where gi is the i-th codeword of GN(n), and with numbers ai satisfying
∑n

j−1 gij +ai =
0 (mod N), for 0 ≤ i ≤ Nn − 1.

Proof. We prove the Theorem using induction to n.

1. By inspecting Example 2.2.2, we can establish that the Theorem is true for n
= 1, 2 and 3.

2. Assume that the Theorem is true for all codeword lengths less than n. It means
that

CN(0; k + 1) =




g0 b0

g1 b1
...

...
gNn−1 bNn−1


 =


GN(k)

b0

b1
...

bNn−1


 ,

where gi is the i-th codeword of GN(k) for all k < n, and with numbers bi

satisfying
∑k

j−1 gij + bi = 0 (mod N), for 0 ≤ i ≤ Nk−1. From (2.14) it follows
that

CN(l; k + 1) = CN(0; k + 1)N−l =


GN(k)

b0

b1
...

bNn−1




N−l

=


GN(k)N−l

b0

b1
...

bNn−1


 ,

for all l, 0 ≤ l ≤ N − 1. If we put k = n − 1 in the last equation, we have
the following relation

∑n−1
j=1 gij + bi = l (mod N), for 0 ≤ i ≤ Nn−1 − 1 and

0 ≤ l ≤ N − 1. Then we obtain
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CN(l; n + 1) =




0 CN(0; n)
1 CN(N − 1; n)
2 CN(N − 2; n)
...

...
N − 1 CN(1; n)




( by (2.15))

=




0 CN(0; n)
1 CN(0; n)1

2 CN(0; n)2

...
...

N − 1 CN(0; n)N−1




( by (2.14))

=




b0

0 GN(n− 1)0 ...
bNn−1−1

b0

1 GN(n− 1)1 ...
bNn−1−1

...
...

...
b0

N − 1 GN(n− 1)N−1 ...
bNn−1−1




( by assumption ).

Finally, from (2.12) we may conclude that the Theorem is true.

Next, applying (2.14), Theorem 2.2.1 can be generalized for all w, 0 ≤ w ≤ N − 1,
as follows,

Corollary 2.2.2. The constant weight code CN(w; n + 1), defined by (2.13) - (2.15),
can be written as

CN(w; n + 1) =




g0 a0

g1 a1
...

...
gNn−1 aNn−1


 ,

where gi is the i-th codeword of GN(n)N−w, and with numbers ai satisfying
∑n

j=1 gij +
ai = w (mod N), for all w, 0 ≤ w ≤ N − 1 and for all i, 0 ≤ i ≤ Nn − 1.

Now, we can use Corollary 2.2.2 as an alternative definition of CN(w; n + 1). Fur-
thermore, from Theorem 2.2.1 and Corollary 2.2.2 we have the following results.

Corollary 2.2.3. For all i, 0 ≤ i < Nn−1 − 1, dH(gi,gi+1) = 2, for all gi,gi+1 ∈
CN(w; n). Moreover, the Hamming distance of the last codeword and the first code-
word in the list is equal to 2.
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Notice that the cyclic permutation b introduced in Subsection 2.1.1, is the inverse of
the permutation p. So, we can immediately infer that GN(n)l is equivalent to GN(n).
Now, let Wn,N denote the set of the constant weight, modulo N , codes of length n. We
shall extend the transformations a and b in Subsection 2.1.1 to the elements of Wn,N .
It is also clear that these transformations define mappings of Wn,N onto itself. The
transformation c will also define a mapping of Wn,N onto itself, if the transformation
is applied simultaneously to all columns of a code in Wn,N . As a consequence of
Definition 2.1.1 we have

Proposition 2.2.4. For all v, w ∈ {0, 1, . . . , N−1}, the codes CN(v; n) and CN(w; n)
are equivalent.

The proof of Proposition 2.2.4 is immediate from Definition 2.1.1 and the con-
struction in eqs. (2.13)-(2.15).

Now, let a be a bit pattern a1a2 . . . ak ∈ {0, 1, . . . , N − 1}k, and let i be a position
vector i1i2 . . . ik with 1 ≤ i1 < i2 < . . . < ik ≤ n (see Subsection 2.1.2 or [63,
79]). Let G(n) be some ordered code of codeword length n, and let G(n; a, i) be
an n-bit Gray code obtained from G(n) by restricting ourselves to the sublist of
codewords containing pattern a on the positions indicated by i, followed by deleting
these positions. This process provides us with an ordered code of codeword length
n − k. We shall call the code G(n; a, i) the contraction of G(n) with respect to the
pair (a, i). We now have the following Proposition.

Proposition 2.2.5. For any bit pattern a and any position vector i, both of length
k, the contraction GN(n; a, i) is a cyclic Gray code equivalent to the cyclic Gray code
GN(n− k).

Proof. We shall prove the Proposition by applying mathematical induction to n.
By inspection we can verify that the statement is true for n = 2. Now, assume
the Proposition holds for all codeword lengths less than n. The assumption has as
consequence that for all m, 1 ≤ m < n, GN(m; a, i)l is equivalent to GN(m− k)l, for
1 ≤ k ≤ m, and 0 ≤ l ≤ N − 1.
Consider the subcode of GN(n) containing pattern a on position i. If ik = n, such a
subcode is part of a subcode anGN(n− 1)l for some l, 0 ≤ l ≤ N − 1. Therefore, the
code GN(n; a, i) can be considered as the contraction of GN(n − 1; a, i)l for some l,
0 ≤ l ≤ N −1, with a = a1a2 . . . ak−1 and i = i1i2 . . . ik−1. According to the induction
assumption, we have that GN(n; a, i) is equivalent to GN(n − k)l. By making use
of the equivalence of GN(n − k)l and GN(n − k) as remarked earlier in this section,
we infer that GN(n; a, i) is equivalent to the cyclic code GN(n − k). If ik 6= n, the
contraction yields a code of type

GN(n; a, i) =




0 GN(n− 1; a, i)0

1 GN(n− 1; a, i)1

...
...

N − 1 GN(n− 1; a, i)N−1


 ,
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Again by the induction assumption, GN(n − 1; a, i)l is equivalent to GN(n − k − 1)l

for all l, 0 ≤ l ≤ N − 1. Because of (2.12), we conclude that GN(n; a, i) is equivalent
to GN(n− k).

2.2.4 The separability function for GN(n) and CN(w; n)

Observe that applying transformation (i), (ii) or (iii) to G preserves the Hamming
distance as well as the list distance in G. It implies that these transformations preserve
the separability property of G. So, we have the following Proposition which was also
stated in [79].

Proposition 2.2.6. Equivalent codes satisfy the same separability property.

An immediate simple result following from Propositions 2.2.4 and 2.2.6 is the
following.

Corollary 2.2.7. For all v, w ∈ {0, 1, . . . , N−1}, the constant weight codes CN(v; n)
and CN(w; n) have the same separability.

The following theorem solves the separability problem of the cyclic Gray code
GN(n) introduced in Subsection 2.2.2.

Theorem 2.2.8. Let GN(n) be the cyclic Gray code produced by construction (2.12).
If the Hamming distance between two codewords g and h satisfies dH(g,h) = m, then
the list distance of these codewords satisfies D(g,h) ≥ d Nm

N2−1
e.

Proof. Let us again consider the code GN(n) defined in Section 3. The complete proof
will be accomplished in two steps.

1. Let m = n and let codewords g and h in GN(n) have a Hamming distance
m = n. Let also g = gngn−1v and h = hnhn−1w, where v and w are in GN(n−2)l

and GN(n− 2)l′ respectively, for some l and l′, with 0 ≤ l, l′ ≤ N − 1. In order
that gn 6= hn and gn−1 6= hn−1, codewords beginning with gngn−1 and hnhn−1

respectively, are separated by at least one block of type GN(n − 2)l of size
Nn−2. Let v = vn−2vn−3x and w = wn−2wn−3y with x and y in GN(n − 4)s

and GN(n − 4)s respectively, for some s and s′, 0 ≤ s, s′ ≤ N − 1. By similar
arguments as above, we infer that if vn−2 6= wn−2 and vn−3 6= wn−3, codewords in
GN(n − 2)l beginning with vn−2vn−3 and wn−2wn−3 respectively, are separated
by at least one block of type GN(n − 4)s of size Nn−4 . Continuing in this
way, we finally infer that codewords g and h at Hamming distance m = n,
must be separated at least by a series of blocks of size Nn−2, Nn−4, . . . , N( or 1)
if n odd (or n even). Thus, the list distance of g and h is at least equal to
Nn−2 + Nn−4 + . . . + N ξ + 1, where ξ = 1 or 0, which is equal to d Nn

N2−1
e.

2. Assume that m < n. Let g and h differ in m positions. Thus, g and h have
k = n −m bits in common, indicated by a position vector i = i1i2 . . . ik. The
corresponding values of the coordinates will be given by a = a1a2 . . . ak. Now,
we consider the contraction GN(n; a, i). Let v and w be the codewords in this
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contraction corresponding to the codewords g and h respectively. So, we have
dH(v,w) = m. Since GN(n; a, i) is equivalent to GN(m), by Proposition 2.2.6
and part 1 of this proof, we infer that the list distance of v and w satisfies
D(v,w) ≥ d Nm

N2−1
e in the contracted code. In GN(n) therefore, we certainly

have also D(g,h) ≥ d Nm

N2−1
e.

From the proof of part 1 it also follows that for n = m the lower bound is sharp.
For n ≥ m this property can then easily be proved by induction to n. We shall give
now an alternative proof, based on the index system of GN(n).

Theorem 2.2.9. For all 0 < m ≤ n, there exists at least one pair of codewords in
GN(n) with Hamming distance m and list distance equal to d Nm

N2−1
e.

Proof. Let B = N − 1 and M = B − 1. Let gi = 0 . . . 01B0 . . . 0 with 1 as the m-th
coordinate and gj = 0 . . . 0MB1B1 . . . 1B with M as the (m− 1)-st coordinate. It is
obvious that the Hamming distance of gi and gj satisfies dH(gi,gj) = m. Using eqs.
(2.5), we have that the indices of gi and gj in the related N -ary number system are i =
0 . . . 010 . . . 0 and j = 0 . . . 0MBMB . . . MB, if m is even, or j = 0 . . . 0MBM . . . BM,
if m is odd. Here, we shall only proceed for m is even, and leave the m is odd case
to the reader. The list distance D(gi,gj) is equal to

|i− j| = |Nm−1 − (MNm−2 + BNm−3 + . . . + MN + B)|
= |B(Nm−2 + Nm−3 + . . . N + 1) + 1− (MNm−2 + BNm−3 + . . . + MN + B)|
= |(Nm−2 + Nm−4 + . . . N + 1) + 1|
= d Nm

N2 − 1
e.

So, the Theorem has been proved.

The above Theorem indicates that the lower bound d Nm

N2−1
e is a sharp bound

for all m, 1 ≤ m ≤ n. Therefore, this lower bound is the separability function of
GN(n). Since GN(n)l and GN(n) are equivalent, according to Proposition 2.2.6 the
separability function of GN(n)l, 0 ≤ l ≤ N − 1, is the same as the one of GN(n). As
remarked in Section 3, the cyclic Gray code G2(n) is the standard binary Gray code.
So, we have the following Corollary

Corollary 2.2.10 (Yuen [90], Cavior [9]). The separability function of the binary
reflected Gray code G2(n) is equal to d2m

3
e with 1 ≤ m ≤ n.

The separability function for CN(w; n) now immediately follows from Theorem
2.2.8 and Theorem 2.2.9.

Theorem 2.2.11. For all m, 1 < m ≤ n, the list distance of codewords gi and gj in

CN(w; n) with Hamming distance dH(gi,gj) = m, satisfies D(gi,gj) ≥ dNm−1

N2−1
e, for

all w, 0 ≤ w ≤ N − 1. Moreover, this lower bound is sharp for all relevant m-values.
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We remark that the case m = 1 is not relevant for the formulation of Theorem
2.2.11, since different codewords of a constant equivalent weight code always differ in
at least two positions.

2.2.5 Index system of CN(w; n)

Equations (2.4) and (2.5) are actually the solution of the index problem of GN(n).
Since we have Theorem 2.2.1 and Corollary 2.2.2, the index system of CN(w; n) can
be derived immediately.
Let gi = gin . . . gi2gi1 be the i-th codeword of CN(w; n). From Corollary 2.2.2 we infer
that the codeword gin . . . gi2 has the same index i in GN(n− 1)N−w. Using (2.5), we
can immediately determine the index of gi by calculating the index of gin . . . gi2 in
GN(n− 1)N−w or of γingi(n−1) . . . gi2 in GN(n− 1) with γin = gin − w.

Example 2.2.3. The index of the codeword 2301 in C4(2; 4) has the same index as
the codeword 230 in G4(3)4−2 = G4(3)2. This codeword is equal to the codeword 030
in G4(3). Using (2.5), the index of the codeword 030 has quaternary representation
033 which stands for the value 3.4 + 3 = 15. So, the codeword 2301 in C4(2; 4) has
index 15.

Conversely, if the index of a codeword in CN(w; n) is given, say i, we first determine
the codeword with the same index i in GN(n − 1). Using (2.4) the codeword can
immediately be obtained, say gi = gin . . . gi2. The corresponding codeword in GN(n−
1)N−w is γingi(n−1) . . . gi2, with γin = gin + w (mod N). Hence, the corresponding
codeword in CN(w; n) is γingi(n−1) . . . gi2gi1 with gi1 = w − (γin + gi(n−1) + . . . + gi2)
= −(gin + gi(n−1) + . . . + gi2) (mod N). We now have completely solved the index
problem of CN(w; n) for 0 ≤ w ≤ N − 1.

Example 2.2.4. Let us determine the codeword in C5(3; 4) with index 45. This index
number has 5-ary representation 140. Using (2.4), we have that the codeword in G5(3)
with this index is equal to 131. The corresponding codeword in G5(3)5−3 = G5(3)2 is
431. In order that the codeword 431s is in C5(3; 4), we must have s = −(1 + 3 + 1)
(mod 5) = 0. Thus the codeword with index 45 in C5(3; 4) is the codeword 4310.

2.3 A binary Gray code with high separability ca-

pacity

In this section we shall only consider binary Gray codes.
From Corollary 2.1.4 we know that if gi and gj are two codewords in the reflected

Gray code of length n with indices i and j respectively. Then we have

dH(gi,gi) = m → D(gi,gj) ≥ d2
m

3
e. (2.16)

This implication is called the separability property of the binary reflected Gray
code. As for the separability capacity of Gray codes, one can pose the natural ques-
tion of the existence of Gray codes with a better separability capacity.
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Problem 2.3.1. Does there exist a Gray code and a bound b(m), such that if dH(gi,gj)
= m then D(gi,gj) > b(m) ≥ d2m

3
e for all m-values with 2 < m ≤ n?

A weaker version of the above requirement yields the following problem.

Problem 2.3.2. Does there exist a Gray code and a bound b(m), such that if dH(gi,gj)
= m, then D(gi,gj) ≥ b(m) ≥ d2m

3
e, 2 ≤ m ≤ n, whereas at least for one m-value

D(gi,gj) > d2m

3
e, for all pairs gi and gj with dH(gi,gj) = m?

Park and Bose in [52] constructed a new class of Gray codes and proved that this
class of codes has the following separability properties

dH(gi,gi) = m → D(gi,gj) ≥



d 4

15
2me, if m is odd,

d 7
15

2me, if m is even.
(2.17)

We can see immediately that this class of Gray codes has a better separability capacity
than the standard Gray codes if m even and > 4, whereas for m odd and > 4, their
separability is worse.

In this section we are concerned with Gray codes which have a better separability
capacity than the reflected Gray codes. We shall introduce another class of such Gray
codes in Section 2.3.1, which are constructed by using a modification of the transition
sequence of the reflected Gray code. As for these transition sequences, in this section
we shall use the following notations:

1. T n stands for the non-complete transition sequence of the reflected Gray code
of length n;

2. Tn stands for the sequence which is obtained from T n by interchanging the
integers n− 1 and n;

3. T 1 = T1 = 1 and T 0 = T0 = empty.

Notice that the transition sequence Tn is equal to T n−2, n, T n−2, n− 1, T n−2, n, T n−2,
for n ≥ 2.

It is well known that

T 1 = 1,

T n = T n−1nT n−1, n > 1.

For instance we have T 2 = 1, 2, 1, T 3 = 1, 2, 1, 3, 1, 2, 1, and T 4 = 1, 2, 1, 3, 1, 2, 1,
4, 1, 2, 1, 3, 1, 2, 1.

The remaining part of this section will be organized as follows. The construction
of a class of Gray codes, the so-called nearly optimal Gray codes, is discussed in
Subsection 2.3.1. We prove an optimality property of this class of Gray codes in
2.3.2. In 2.3.3 we discuss the index system of the Gray codes constructed in 2.3.1.
Finally, some conclusions are described in 2.3.4.
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2.3.1 Construction of nearly optimal Gray codes

This subsection is devoted to Problem 2.3.2 raised in the previous section. It is
obvious that there is no bound b as required such that b(m) > d2m

3
e for m = 1

and m = 2. Our conjecture is that neither functions b can be constructed such that
b(m) > d2m

3
e for m = 3. To discuss b-values for m ≥ 4, we introduce the notion of

nearly optimal. We start with the following definition.

Definition 2.3.1. We call a cyclic Gray code of length n nearly optimal (with respect
to the separation property) if it satisfies the following requirements:

1. There exists an integer m0, 0 < m0 ≤ n, such that for 0 < m < m0 and
0 ≤ i, j ≤ 2n − 1, dH(gi,gj) = m implies D(gi,gj) ≥ d2m

3
e; and

2. There exists some integer m1, m0 ≤ m1 ≤ n such that if dH(gi,gj) = m1, then
there exists an integer b(m1) such that D(gi,gj) ≥ b(m1) > d2m1

3
e.

We shall show in the next that for any integer n ≥ 4, a nearly optimal Gray code
for m0 = n, can be constructed.

Construction 2.1.

Start from a codeword (usually the zero codeword) of length n ≥ 4. Generate the
next 2n − 1 codewords using the sequence

T (n) := T n−2, n− 1, Tn−2, n, T n−2, n− 1, Tn−2, n

Notice that the sequence T (n) in Construction 2.1 is a slight modification of the tran-
sition sequence of the binary standard Gray codes. In this case, the integers n − 2
and n− 3 are interchanged after each occurrence of the integer n− 1.
We shall prove later that T (n) is the complete transition sequence of a cyclic Gray
code for every n ≥ 1.

Example 2.3.1. We know that T 2 = 1, 2, 1 and T2 = 2, 1, 2. Therefore we obtain
T (4) = 1, 2, 1, 3, 2, 1, 2, 4, 1, 2, 1, 3, 2, 1, 2, 4. The resulting Gray code is listed in Figure
2.1.

We can verify that for every pair of codewords gi and gj, with dH(gi,gj) = m,
1 ≤ m ≤ 4, we have that D(gi,gj) ≥ d2m

3
e. Furthermore, we also have that

D(gi,gj) = 8 > d24

3
e, for every pair of codewords with Hamming distance 4.

Using Construction 2.1 we obtain that the transition sequence of the new Gray
code of length five is T (5) = T 3, 4, T3, 5, T

3, 4, T3 =

1, 2, 1, 3, 1, 2, 1, 4, 1, 3, 1, 2, 1, 3, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 3, 1, 2, 1, 3, 1.

Each pair of complementary codewords in this code has list distance at least
d25

3
e + 22 > d25

3
e. Again by inspection we can verify that the code generated by
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0000 1111

0001 1110

0011 1100

0010 1101

0110 1001

0100 1011

0101 1010

0111 1000

Figure 2.1: Example of a 4-bit nearly optimal Gray code

transition sequence T (5) is also a Gray code satisfying the requirements 1 and 2 of
Definition 2.3.1 for all relevant m-values. The question now is, whether the resulting
Gray codes are also nearly optimal for all lengths n ≥ 4.

First we shall prove that T (n) really constitutes a transition sequence of an n-bit
cyclic Gray code. To this end, we refer to the following lemma which is due to Gilbert
in [20, Section 2].

Let Qn be the n-dimensional cube, or shortly n-cube, i.e. the graph the vertices
of which are binary strings of length n, while the edges are all pairs of vertices which
differ in exactly one position. The reflected Gray code Gref (n) of length n is a
Hamiltonian cycle in Qn.

Lemma 2.3.1. An L-tuple T = a1, a2, . . . , aL, ai ∈ {1, 2, . . . , n} is the transition
sequence of a cycle in Qn if and only if every non-empty subsequence of length less
than L contains at least one digit an odd number of times while T itself contains every
digit an even number of times.

According to Lemma 2.3.1, establishing that T (n) is a transition sequence of a
cyclic Gray code of length n, comes down to showing that every subsequence of T (n)
of length 1, 2, . . . , or 2n− 1 contains at least one digit an odd number of times, while
the complete sequence itself contains every digit an even number of times.

Theorem 2.3.2. The sequence T (n) in Construction 2.1 is a transition sequence of
a cyclic Gray code of length n.

Proof. Consider the complete sequence T (n) = T n−2, n−1, T n−2, n, T n−2, n−1, T n−2, n,
produced by the Construction 2.1. It is obvious that every subsequence of length 1
contains one digit an odd number of times and the sequence T (n) itself contains every
digit an even number of times. The proof is completed by showing that each subse-
quence S of T n−2 of length more than two contains at least one digit an odd number
of times. Notice that Tn−2 = T n−4, n− 2, T n−4, n− 3, T n−4, n− 2, T n−4.
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Since T n−4 is a subsequence of the transition sequence of the binary reflected Gray
code, any S which is a subsequence of T n−4 contains some digits an odd number of
times. Now, let S not be a subsequence of T n−4. Thus, S contains integer n − 2 or
n− 3. If S contains n− 3, then S contains at least the integer n− 3 an odd number
of times, otherwise S contains the integer n− 2 an odd number of times.

2.3.2 A proof of near-optimality

Let n ≥ 4 and consider the transition sequences T n and T (n) described below.

1.
T n := T n−4, n− 3, T n−4, n− 2, T n−4, n− 3, T n−4, n− 1,

T n−4,n− 3, T n−4,n− 2, T n−4,n− 3, T n−4, n,
T n−4, n− 3, T n−4, n− 2, T n−4, n− 3, T n−4, n− 1,
T n−4,n− 3, T n−4,n− 2, T n−4,n− 3, T n−4,

2.
T (n) := T n−4, n− 3, T n−4, n− 2, T n−4, n− 3, T n−4, n− 1,

T n−4,n− 2, T n−4,n− 3, T n−4,n− 2, T n−4, n,
T n−4, n− 3, T n−4, n− 2, T n−4, n− 3, T n−4, n− 1,
T n−4,n− 2, T n−4,n− 3, T n−4,n− 2, T n−4.

We shall show that the code produced by Construction 2.1 is nearly optimal with
m0 = n. We distinguish two cases: m ≤ n− 1, and m = n.

Case 1. Let us consider the Hamming distance m ≤ n− 1. Since each T n−4 contains
n− 4 distinct integers, we are able to determine a shortest subsequence S containing
m distinct integers an odd number of times in the subsequence T n−4, n− i, T n−4, n−
j, T n−4, n − k, T n−4, of T (n) for i, j, k = 0, 1, 2 or 3 and i, j, k all different. Fur-
thermore, in T n the shortest subsequence of type S is contained in the subsequence
T n−4, n − 2, T n−4, n − 3, T n−4, n, T n−4, or in T n−4, n, T n−4, n − 3, T n−4, n − 2, T n−4,
which really has the same pattern and also the same length as the subsequence
T n−4, n − i, T n−4, n − j, T n−4, n − k, T n−4. Hence, using Yuen’s lower bound, we
conclude that the length of the subsequence S is at least d2m

3
e.

Case 2. Let m = n. To compose a subsequence S containing m = n distinct integers
an odd number of times, we need a subsequence either of type

T n−4, n− 3, T n−4, n− 2, T n−4, n− 3, T n−4, n− 1,
T n−4, n− 2, T n−4, n− 3, T n−4, n− 2, T n−4, n, T n−4,

or
T n−4, n− 1, T n−4, n− 2, T n−4, n− 3, T n−4, n− 2,
T n−4, n, T n−4, n− 3, T n−4, n− 2, T n−4, n− 3, T n−4,

or
T n−4, n, T n−4, n− 3, T n−4, n− 2, T n−4, n− 3,
T n−4, n− 1, T n−4, n− 2, T n−4, n− 3, T n−4, n− 2, T n−4.
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Notice that to produce a subsequence S in T n, we need a subsequence either of
type

T n−4, n− 3, T n−4, n− 1, T n−4, n− 3, T n−4, n− 2,
T n−4, n− 3, T n−4, n, T n−4,

or
T n−4, n, T n−4, n− 3, T n−4, n− 2, T n−4, n− 3,
T n−4, n− 1, T n−4, n− 3, T n−4.

So, a sequence in T (n) needed to produce such a sequence S, has a greater length
than a similar sequence in T n. The difference in length is equal to the length of the
subsequence of type n − i, T n−4, n − j, T n−4, which equals 2 · 2n−4 = 2n−3. Since we
know that the length of a subsequence in T n containing m distinct integers an odd
number of times is at least equal to d2n

3
e, the length of the subsequence S is at least

d2n

3
e+ 2n−3.

In the sequel, a Gray code of length n constructed by using Construction 2.1
will be denoted by Gnop(n). So, we have proven the main result formulated in the
following theorem.

Theorem 2.3.3. For all n ≥ 4, the Gray code Gnop(n) of length n is nearly optimal.
Moreover, the list distance of complementary codewords in Gnop(n) is at least d2n

3
e+

2n−3.

One immediate consequence is the following corollary.

Corollary 2.3.4. The Gray code Gnop(4) of length 4 has optimal separability capacity.

Proof. Suppose that a Gray code Ḡ(4) of length 4 exists such that for all x,y,v,w
in Ḡ(4) d(v,w) = 4 implies D(v,w) = 8, and d(x,y) = 3 implies D(x,y) > 3.
Consider the zero codeword x0 = 0000. It follows that x8 = 1111. The codewords
which have Hamming distance 3 to x0 are a1 = 0111, a2 = 1011, a3 = 1101, and
a4 = 1110. Evidently, there exist two ai’s which have list distance 5 to 0000, and the
other two aj’s have list distance 7 to 0000. Let aij be a vector of length 4 such that
d(ai, aij) = 1 = d(aij, aj), for i, j ∈ {1, 2, 3, 4}. Then we can see that d(aij, akl) = 4,
where i, j, k, l ∈ {1, 2, 3, 4} and {i, j}∩{k, l} = ∅. Assume that x5 = ai and x11 = ak.
This implies x7 = aj and x9 = al. Thus we have x6 = aij and x10 = xkl. But
D(x6,x10) = D(aij, akl) = 4 < 8. This contradicts the assumption that any two
complementary codewords in Ḡ(4) have list distance 8. So, Gray codes of length 4
where complementary codewords are at list distance 8, have the property that there
exist at least two codewords with Hamming distance 3 and list distance 3. This
implies that Gnop(4) has optimal separability capacity.

2.3.3 Index system

Of course, interchanging the positions of the integers n−3 and n−2 in the transition
sequence of a Gray code of length n will influence the (n − 3)-rd and (n − 2)-nd
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bits of codewords in the Gray code. Since the transition sequence of Gnop(n) is
related to the transition sequence of the corresponding Gref (n), there must exist a
close relationship between them. For an arbitrary value n ≥ 4, we can observe that
the difference between T n and T (n) merely concerns the order of occurrence of the
integers n−2 and n−3. By observing the occurrences of these integers, we infer that
differences come in whenever one of the following conditions holds.

1. The integers n − 3 and n − 2 have equal parity and the integer n − 1 has odd
parity;

2. The integers n − 3 and n − 2 have different parity and the integer n has odd
parity.

Equivalently, we can conclude that differences occur as soon as one of the following
conditions holds.

1. The (n− 3)-rd and the (n− 2)-nd bit are the same and the (n− 1)-st bit is 1;

2. The (n− 3)-rd and the (n− 2)-nd bit are different and the n-th bit is 1.

In case 1 as well as in case 2, the conversion of some nearly optimal Gray codeword
into the corresponding reflected Gray codeword is accomplished merely by adding the
codeword 00110 . . . 0, since the difference is caused by the interchanging of the integers
n − 3 and n − 2. Thus, if w is a codeword in a nearly optimal Gray code and if g
is the corresponding codeword in the related reflected Gray code, then we have the
following relation

g =





w ⊕ 00110 . . . 0, if w satisfies condition 1 or 2,

w, otherwise,
(2.18)

or, vice versa,

w =





g ⊕ 00110 . . . 0, if w satisfies condition 1 or 2,

g, otherwise.
(2.19)

For example, the converted codewords of 01001010 and 100101101 are 01111010
and 101001101 respectively. Now, we are ready to determine the one - one correspon-
dence between nearly optimal codewords and their indices. To do this, we need the
well-known bijective mapping between codewords and indices for the binary reflected
Gray code(see e.g. [15, 18, 63, 38, 90]).

Let gi = gingin−1 . . . gi1 be a codeword in the reflected Gray code with index i,
and let the binary representation of i be inin−1 . . . i1. The mapping and its inverse are
as follows
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gij =

{
in, j = n
ij ⊕ ij+1, 1 ≤ j < n

(2.20)

ij =

{
gin, j = n
gij ⊕ ij+1, 1 ≤ j < n.

(2.21)

Now, we have a one-one correspondence between the indices i(g) of codewords
g, in Gref (n) and indices i(w) of codewords w, in the related Gray code Gnop(n) as
follows,

i(w) = i(g), (2.22)

whenever w and g satisfy the conditions (2.18) or (2.19).

Example 2.3.2. To determine the index of the codeword g = 010100 in Gray code
Gnop(6) of length 6 we carry out the following procedure. First, convert g to its
counterpart in the reflected Gray codeword. Since g does not satisfy condition 1 or
2, we have g =w = 010100. Thus i(w) = i(g) = 011000, which stands for the value
24 + 23 = 24.

Example 2.3.3. Now let us determine the codeword w of Gnop(6) with index i = 37.
First, we calculate g37. The binary representation of 37 is 100101, so g37 = 110111.
Notice that g37 satisfies condition 2, and hence w37 = g37 ⊕ 001100 = 111011.

2.3.4 Conclusion

In Subsection 2.3.1, we presented Construction 2.1 for producing a nearly optimal
code with m0 = n. An interesting question is whether it is possible to find the
smallest value m0 which is less than n. However, our conjecture is that such an
m0-value does not exist.



3
Transition Count Spectra of Gray

Codes

Throughout this chapter we shall only deal with binary Gray codes. A necessary
condition for the existence of Gray codes with respect to a given transition count
spectrum is proved. Moreover, a sufficient condition is conjectured for the existence
of Gray codes with a given transition count spectrum. A proof is given for the
existence of so-called balanced Gary codes, i.e. Gray codes which have a transition
count spectrum which is as uniform as possible. The proof is more straightforward
than the one of Bhat and Savage in [3] and leads to a simple construction of balanced
Gray codes. Moreover, our construction can yield balanced Gray codes which can not
be produced by using Bhat and Savage’s method in [3], nor by using Bakos’ method
in [1]. A simple constructive proof for the existence of exponentially balanced Gray
codes is also derived. This proof is much simpler than an earlier proof presented in
[77]. All these proofs are based on the Gray construction in [32, Theorem D] which
is an independent reformulation of the Gray construction of Bakos in [1].

3.1 Introduction

The usefulness of the binary reflected Gray code and its widespread appearance are
undisputed, while its optimality with respect to various applications has proved itself
frequently(cf. [2]). For certain applications however, sometimes additional proper-
ties of Gray codes are requested. A codacon spectrograph for instance, uses Gray
codes with large minimum run length, which is the distance between two successive
changes of the same bit(cf. [21]). In experimental design, one is interested in Gray
codes which possess balanced distribution of changes(see e.g. [39, 41, 42, 87]). For
an extended survey we refer to [61].

35
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Let TCn(i) be the transition count of integer i. With respect to the list of code-
words, TCn(i) refers to the number of times bits in column i change from 0 to 1 or
from 1 to 0. If G(n) is a cyclic code, then it will be clear that TCn(i), 1 ≤ i ≤ n,
is even and moreover, that

∑n
i=1 TCn(i) = 2n. The reflected Gray code Gref (n) of

length n has the following transition counts

TCn(i) =

{
2n−i, if 1 ≤ i ≤ n− 1,
2, if i = n.

(3.1)

A necessary condition for the existence of Gray codes w.r.t. its transition count
spectrum is formulated in the following theorem.

Theorem 3.1.1. Let (c1, c2, . . . , cn) be the transition count spectrum of a cyclic Gray
code G(n) of length n which is ordered in non-decreasing way, i.e. ci ≤ ci+1, for all
i, 1 ≤ i ≤ n− 1. Then, one has

∑k
i=1 ci ≥ 2k, for all k, 1 ≤ k ≤ n.

For a very short proof of the Theorem we refer to [32, p. 85]. Here, we shall give
a more detailed proof, which actually is an extended version of the proof in [32]

Proof. Let G(n) be a cyclic Gray code with transition count spectrum TCn and with
complete transition sequence S̄(n) := s1, s2, ..., s2n . Suppose that there exist integers

k such that
∑k

i=1
ci < 2k, and that K is the largest k satisfying this inequality. Then

K < n, otherwise G(n) is not a Gray code. Let L := n − K. It is obvious that∑K

i=1
ci = 2n −∑L

j=1
cK+j. Now consider the list of codewords of G(n).

Since TCn(n) = cn, there are cn pairs of consecutive codewords in G(n) which differ in
bit position n (the first n− 1 bits are the same). Assume that Il := {i ∈ [2n]|si = l},
∀l ∈ [n]. Notice that cl = |Il|, ∀l ∈ [n]. We take the following steps.

For codeword xi with index i in G(n) we write xi = xinx
1
i . Then for all i ∈ In,

we have that x1
i−1 = x1

i . Remove all cn codewords xi, i ∈ In from G(n). It is easy to
see that for all i 6= j, i, j ∈ In, one has x1

i 6= x1
j , otherwise we would have xj = xi

or xi−1. Then leave out the n-th bit from the 2n − cn remaining codewords, and call
the resulting list G1(n− 1). We emphasize that we shall keep the original indices for
the punctured codewords in G1(n − 1). Notice that all distinct codewords of length
n− 1 are in G1(n− 1).

We follow the same procedure for the list G1(n − 1) of length n − 1. Let x1
i =

xin−1x
2
i , for every codeword x1

i of index i in G1(n − 1). Remove all cn−1 codewords
x1

i , ∀i ∈ In−1, from G1(n− 1). Again we infer that x2
i 6= x2

j , for all i, j ∈ In−1, i 6= j.
The number of the remaining codewords is equal to 2n − cn − cn−1. Call G2(n − 2)
the list consisting of these codewords after removing the bits in position n − 1. We
conclude that 2n − cn − cn−1 ≥ 2n−2, since G2(n− 2) should contain all 2n−2 distinct
codewords.

Repeating the same procedure L times, we arrive at the list GL(n − L) which
contains at least 2n−L codewords and exactly 2n−L of these codewords are distinct.

However, the number of remaining codewords is equal to 2n−∑L

j=1
cK+j =

∑K

i=1
ci <
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2K = 2n−L, and so,
∑k

i=1
ci ≥ 2k, which contradicts the assumption in the beginning

of our proof.

An obvious corollary of Theorem 3.1.1 is the following

Corollary 3.1.2. d2i

i
e ≤ ci ≤ 2n−2i−1

n+1−i
for all i, 1 ≤ i ≤ n.

Proof. The lower bound for ci is trivial. The maximal value of ci will be reached
when

∑i−1
j=1 cj reaches its minimum 2i−1. We conclude that the maximal value of ci

equals 2n−2i−1

n+1−i
.

We can extend Theorem 3.1.1 to the non-cyclic case as follows.

Theorem 3.1.3. Let (c1, c2, . . . , cn) be the transition count spectrum of a non-cyclic
Gray code G(n) of length n which is ordered in non-decreasing way. Then, one has∑k

i=1 ci ≥ 2k − 1, for all k, 1 ≤ k ≤ n.

A sufficient condition for the existence of cyclic Gray codes w.r.t. the transition
count spectrum is conjectured by Evdokimov [16] and Knuth [32] as follows.

Conjecture 3.1.4. [Evdokimov, Knuth] Let
∑n

i=1 ci = 2n where ci ≤ ci+1, 1 ≤
i ≤ n − 1, and cj is even for all j, 1 ≤ j ≤ n. If

∑k
i=1 ci ≥ 2k, for all k, 1 ≤

k < n, then there exists a Gray code of length n which has transition count spectrum
(c1, c2, . . . , cn).

The second problem posed by Bhat and Savage in [3, Section 4] also corresponds
to Conjecture 3.1.4.

It seems that the Gray construction introduced by Ludman and Sampson in [42]
might be used to construct Gray codes with required transition count spectra. Unfor-
tunately the validity of the construction is not proved yet for large codeword length
n.

In the following sections we focus on balanced and on exponentially balanced
Gray codes, including totally balanced Gray codes. All these discussions are based on
Bakos’ Gray construction in [1], which is independently reformulated in [32, Theorem
D].

3.2 Balanced Gray codes

In this section we introduce a straightforward technique to prove the existence of bal-
anced Gray codes. This technique gives rise to a simple procedure for the construc-
tion of such codes, which can be applied under weaker conditions than the methods
of Bakos [1], Bhat and Savage [3], and of Robinson and Cohn [60].

Let G(n) be a Gray code of length n, and let TCn := (TCn(1), TCn(2), ..., TCn(n))
be its transition count spectrum. As is defined in Chapter 1, an n-bit Gray code with
transition counts satisfying |TCn(i) − TCn(j)| ≤ 2 for every 1 ≤ i, j ≤ n, is called
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a balanced code, and it is called a totally balanced code if TCn(i) = TCn(j) for all i
and j. Since

∑n
i=1 TCn(i) = 2n, a necessary condition for a Gray code to be totally

balanced is that n is equal to a power of 2. We can easily verify that the reflected
Gray codes of length 1, 2 and 3 are balanced and, moreover, those of length 1 and
2 are totally balanced. However, for n ≥ 4 the reflected Gray code Gref (n) is not
balanced.

Because of the importance of balanced Gray codes (cf. [3, 39, 41, 42, 87, 88]),
for instance for designing experiments or for designing and testing electrical circuits
and information systems, there is a considerable interest in this type of Gray codes.
Recently, Liu and Schrack in [39] introduced a heuristic construction to construct
balanced Gray codes. This method is applicable in cases when the codeword length
n is rather small, just like the methods introduced in [41, 42, 87]. A similar remark
can be made with respect to the construction of Wagner and West in [88] for totally
balanced Gray codes.

Two more constructions for balanced Gray codes, in [1, 60], are worthwhile to be
mentioned. These two constructions are of advantage for producing balanced Gray
codes for large values of the codeword length. In [60] the claim was made - but not
completely proved - that balanced Gray codes exist for every codeword length n ≥ 1.
For obtaining a balanced Gray code of length n, Robinson and Cohn’s approach in
[60] requires a special sequence of integers taken from the transition sequence of an
(n− 2)-bit balanced Gray code. Bhat and Savage in [3] proved that such a sequence
always exists, thus completing the proof of Robinson and Cohn for the existence
of balanced Gray codes for all values of n ≥ 1. A similar but shorter proof which
is introduced by Knuth in [32, p. 15 and p. 85] is due to Robinson and Cohn in
[60]. Actually, this result was already proved by Bakos in [1] in the context of truth
functions, and unnoticed by other authors of articles on the subject of balanced or
uniform Gray codes. In [72, 77] we combined the approaches of Robinson and Cohn
in [60] and of Bakos in [1] to obtain a straightforward technique for the construction
of balanced Gray codes.

Although Bakos’ Gray construction in [1] and the one of Robinson and Cohn in
[60] look quite similar, the first construction can be carried out under weaker require-
ments. In this section we focus on the construction of balanced Gray codes based
on [32, Theorem D] which constitutes a reformulation of Bakos’ Gray construction.
We slightly modify and extend our technique introduced in [72] to adjust it to this
construction. Our modified technique gives rise to a simple procedure for the con-
struction of balanced Gray codes for any codeword length n ≥ 4.

The remaining part of this section is organized as follows. In Subsection 3.2.1,
we discuss a Gray construction which is a variation of Bakos’ method. A slight
modification of the technique introduced in [72] for balancing Gray codes, is discussed
in Subsection 3.2.2. In Subsection 3.2.3, we summarize the discussion of Subsection
3.2.2 to derive a simple procedure for the construction of balanced Gray codes. At the
end of that Section we present some examples to illustrate our method. We emphasize
that the codes produced in Examples 3.2.5 and 3.2.6 cannot be constructed by the
methods discussed in [1, 3, 60], while the construction itself is simpler and more
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straightforward than the method in [1]. Some remarks concerning two questions
posed by Bhat and Savage in [3, Section 4] are discussed in Subsection 3.2.4.

3.2.1 A Gray code construction

In this Chapter the word subsequence (of some sequence S) stands for what sometimes
is called a contiguous or consecutive subsequence, i.e. all elements of this subsequence
are consecutive in S. Let S̄(n) be the complete transition sequence of a Gray code
of codeword length n, and let u be a subsequence of S̄(n) which may be empty. We
denote by uR the sequence obtained from u by reversing its order. For instance, if
u = 1, 3, 2, 4, 1, then uR = 1, 4, 2, 3, 1. For the sake of efficiency, if n is a positive
integer, then the set {1, 2, . . . , n} is frequently denoted by [n].

The following lemma is introduced in [69]. For the sake of simplicity, in this lemma
we shall write abxi instead of aibixi. So, ab in abxi and ab in abxj, i 6= j do not have
to be the same.

Lemma 3.2.1. Let y1,y2, ...,ym be m codewords of length n, with yi = abxi for all
1 ≤ i ≤ m, and ab ∈ {00, 01, 11, 10}, and let si ∈ [n] be the transition between yi−1

and yi, 2 ≤ i ≤ m. Let u := s1, s2, . . . , um−1, then the codewords corresponding to
the transition sequence u, n−1, uR, n, u, or u, n, uR, n−1, u, have the form cdx where
x ∈ {x1,x2, ...,xm} and cd ∈ {00, 01, 11, 10}.
Proof. Let us consider the transition sequence u, n − 1, uR, n, u. Starting at y1, it
is clear that the leftmost u in this transition sequence generates codewords abx1,
abx2, ..., abxm, with ab ∈ {00, 01, 11, 10}. When the transition n− 1 occurs, the next
generated codeword is a(b⊕ 1)xm. Here, ⊕ means addition modulo 2 without carry.
So, a(b ⊕ 1) is also in {00, 01, 11, 10}. The sequence uR then generates codewords
a(b⊕1)xm−1, a(b⊕1)xm−2, ..., a(b⊕1)x1. The next codeword generated by transition
n is (a⊕1)(b⊕1)x1. Again it is clear that (a⊕1)(b⊕1) ∈ {00, 01, 11, 10}. Furthermore,
the last transition sequence u will generate codewords (a ⊕ 1)(b ⊕ 1)x2, (a ⊕ 1)(b ⊕
1)x3, ..., (a⊕ 1)(b⊕ 1)xm. Thus, the codewords generated by the transition sequence
u, n− 1, uR, n, u are

abx1, ..., abxm, a(b⊕ 1)xm, a(b⊕ 1)xm−1, ..., a(b⊕ 1)x1,

(a⊕ 1)(b⊕ 1)x1, (a⊕ 1)(b⊕ 1)x2, ..., (a⊕ 1)(b⊕ 1)xm.

Using the same arguments, the codewords generated by the transition sequence
u, n, uR, n− 1, u are

abx1, ..., abxm, (a⊕ 1)bxm, (a⊕ 1)bxm−1, ..., (a⊕ 1)bx1,

(a⊕ 1)(b⊕ 1)x1, (a⊕ 1)(b⊕ 1)x2, ..., (a⊕ 1)(b⊕ 1)xm.

The Lemma has been proved now.

The following theorem is from [32, Theorem D] which is a reformulation of Bakos’
Theorem in [1]. The differences in notation and the opposite parity of l compared
with the formulation in [32] are due to our convention with respect to the labelling
of bit positions and the indexing of codewords as introduced in Chapter 1.
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Theorem 3.2.2. Let S̄(n − 2) := u0, sj1 , u1, sj2 , ..., ul−1, sjl
, ul, s2n be the transition

sequence of an (n − 2)-bit Gray code, where each uk is a possibly empty sequence of
transitions, and l is even. Then the sequence

u0, sj0 , u1, ..., sjl
, ul, n− 1,

uR
l , n, ul, n− 1, uR

l , sjl
,

uR
l−1, n− 1, ul−1, n, uR

l−1, sjl−1
,

...
uR

1 , n− 1, u1, n, uR
1 , sj1 ,

uR
0 , n, u0, n− 1, uR

0 , n,

is the transition sequence of an n-bit Gray code.

Proof. A proof of the Theorem can be accomplished using Lemma 3.2.1.

For a complete proof we refer to [32, p. 14].

Example 3.2.1. Consider the complete transition sequence S̄(3) = 1 , 2, 1, 3, 1,
2, 1, 3, of the 3-bit reflected Gray code. Take u0 = 1, sj1 = 2, u1 = 1, 3, 1, sj2 = 2,
and u2 = 1. Applying construction in Theorem 3.2.2 we obtain a 5-bit Gray code
with the complete transition sequence

1, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 2, 1, 5, 1, 4, 1, 5.

In the sequel, the sequence of transitions sj1 , sj2 , ..., sjl
, in Theorem 3.2.2 will be

denoted by T . Thus, the length of the sequence T is equal to l. We emphasize that
the sequence T does not include the closing transition s2n of S̄(n), as is evident from
the notation in Theorem 3.2.2. Hence, we also say that S(n) which is defined by the
sequence S̄(n) in the Theorem constitutes the basis of the construction in Theorem
3.2.2.

One can easily derive that the Gray code of length n constructed by applying
Theorem 3.2.2, has transition count spectrum (TCn(1), TCn(2), ..., TCn(n)), with

TCn(i) :=





l + 2, if i = n− 1, n,
4TCn−2(i)− 2b(i), if i ∈ {1, ..., n}\{s2n−2},
4(TCn−2(i)− 1)− 2b(i), if i = s2n−2 .

(3.2)

where b(i) is the number of times the integer i occurs in the sequence T . Notice that
the sum of all b(i), 1 ≤ i ≤ n− 2, is equal to l, the length of T .

It should be mentioned here that the Gray code constructions in [32, Theorem
D], and in [72, 77], which are an extended version of the construction in [60], are
all modified versions of Bakos’ Gray construction in [1]. Bakos proved his results
in quite a different context, and his work was unnoticed for long by authors of ar-
ticles in the field of ordered codes1. Furthermore, we remark that an extension of

1We are indebted to prof. dr. A.A. Evdokimov for drawing our attention to Bakos’ contribution
to this topic.
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[32, Theorem D] which holds for the opposite parity of l, was introduced in [32, Exer-
cise 50] and was also proved in [67, Construction 1] (See Theorem 4.2.3 in Chapter 4.).

The list (p1, p2, ..., pm), m > 0, is called an m-partition of the integer 2n, if pi is
a positive integer for all i, 1 ≤ i ≤ m, p1 ≤ p2 ≤ · · · ≤ pm, and

∑m
i=1 pi = 2n. An

m-partition of 2n will be denoted by Pm(2n). If pi is even for all i, 1 ≤ i ≤ m, the
partition Pm(2n) = (p1, p2, ..., pm) is called an even m-partition of 2n, and it is called
balanced if for every i, j, 1 ≤ i, j ≤ n, we have |pi − pj| ≤ 2.

Theorem 3.2.3. Let S̄(n− 2) be the transition sequence of an (n− 2)-bit Gray code
G(n−2), with transition counts TCn−2(i), 1 ≤ i ≤ n−2, where TCn(i) ≤ TCn(i+1),
1 ≤ i ≤ n− 3. Let furthermore Pn(2n) = (p1, p2, ..., pn) be an even n-partition of 2n.
Applying Theorem 3.2.2 yields an n-bit Gray code with transition count spectrum
Pn(2n) = (p1, p2, ..., pn) if and only if

(i) pk = pk+1 for some k ∈ [n− 1];
(ii) 2TCn−2(i) ≤ pi ≤ 4TCn−2(i) for every i ∈ [k − 1];

2TCn−2(i) ≤ pi+2 ≤ 4TCn−2(i) for every i, k ≤ i ≤ n− 2;
(iii) there is at least one i0 ∈ [n−2] such that either pi0 ≤ 4(TCn−2(i0)−1), i0 ∈ [k−1]

or pi0+2 ≤ 4(TCn−2(i0)− 1), k ≤ i0 ≤ n− 2.

Proof. We start by proving the only-if-part of the Theorem. Let G(n) be the n-bit
Gray code which has transition count spectrum Pn(2n) = (p1, p2, ..., pn). According
to (3.2), the transition counts TCn(n) and TCn(n−1) are equal. It implies pk = pk+1

for k = n− 1 ∈ [n− 1]. Since 0 ≤ b(i) ≤ TCn−2(i), for all i, 1 ≤ i ≤ n− 2, it is easy
to see that (3.2) implies (ii). Now, let j = s2n−2(the closing transition of S̄(n − 2)).
Since Theorem 3.2.2 only uses the subsequence S(n − 2) defined by S̄(n − 2), the
number of integers j occurring in S(n− 2) is equal to TCn−2(j)− 1. Hence, equality
(3.2) implies (iii) of the Theorem.
Now, we prove the if-part of the Theorem. For all i ∈ [n− 2]\{i0}, we define

b(i) =





4TCn−2(i)−pi

2
, i ∈ [k − 1],

4TCn−2(i)−pi+2

2
, k ≤ i ≤ n− 2,

(3.3)

where the numbers pi are from the given partition Pn(2n). For i0 we define

b(i0) =





4(TCn−2(i0)−1)−pi0

2
, if i0 ∈ [k − 1],

4(TCn−2(i0)−1)−pi0+2

2
, if k ≤ i0 ≤ n− 2.

(3.4)

From (ii) and (iii) it follows that 0 ≤ b(i) ≤ TCn−2(i) for all i, 1 ≤ i ≤ n− 2. From
(3.3) and (3.4) we obtain
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n−2∑
i=1

b(i) =
k−1∑

i=1,i 6=i0

4TCn−2(i)− pi +
n−2∑

i=k

4TCn−2(i)− pi+2

+4(TCn−2(i0)− 1)− pi0 , (3.5)

if i0 ∈ [k − 1], or

n−2∑
i=1

b(i) =
k−1∑
i=1

4TCn−2(i)− pi +
n−2∑

i=k,i 6=i0

4TCn−2(i)− pi+2

+4(TCn−2(i0)− 1)− pi0+2, (3.6)

if k ≤ i0 ≤ n − 2. It is easy to check that (3.5) as well as (3.6) implies
∑n−2

i=1 b(i) =
pk − 2. Let l be an integer in [2n−2] such that sl = i0 in S̄(n− 2). Shift S̄(n− 2) over
l positions to the left, in cyclic sense. The resulting transition sequence S̄(n− 2)l has
i0 as its closing transition. Now consider the transition sequence S(n − 2) which is
defined from the new transition sequence S̄(n− 2) := S̄(n− 2)l. Take a sequence T
consisting of b(i) integers i in S(n− 2), for all i, 1 ≤ i ≤ n− 2, and apply Theorem
3.2.2. Then the resulting Gray code G(n) of length n will have transition count
spectrum (p1, p2, ..., pn).

Example 3.2.2. The transition count spectrum of Gref (2) is (2, 2). Theorem 3.2.3
guarantees that Gray codes of length 4 exist with the following transition count
spectra.

(2, 2, 4, 8), (2, 4, 4, 6), (4, 4, 4, 4).

Example 3.2.3. We know that the transition count spectrum of Gref (3) is equal to
(2, 2, 4). Due to Theorem 3.2.3, we can conclude that Gray codes of length 5 with
the following transition count spectra exist:

(2, 2, 4, 8, 16), (2, 4, 4, 6, 16), (4, 4, 4, 4, 16), (2, 4, 4, 8, 14), (2, 4, 6, 6, 14),
(4, 4, 4, 6, 14), (2, 2, 8, 8, 12), (4, 4, 4, 8, 12), (4, 4, 6, 6, 12), (2, 4, 8, 8, 10),
(4, 4, 6, 8, 10), (4, 6, 6, 6, 10), (4, 4, 8, 8, 8), (4, 6, 6, 8, 8), (6, 6, 6, 6, 8).

It is obvious that any cyclic Gray code of length 3 has transition count spectrum
(2, 2, 4). Therefore, we may conclude that Theorem 3.2.2 can not be applied to
produce any Gray code of length 5 with transition count spectrum (2, 2, 6, 6, 16) since
the requirement (iii) can not be satisfied. Neither do Gray codes with transition
count spectrum (2, 4, 6, 8, 12) because of Condition (i).

Example 3.2.4 (Balanced Gray codes). We can easily verify with Theorem 3.2.3
that, starting from balanced Gray codes of length 2 and 3, balanced Gray codes of
length n, 2 ≤ n ≤ 10, exist with the following transition count spectra:

(2, 2), (6, 6, 6, 6, 8), (32, 32, 32, 32, 32, 32, 32, 32),
(2, 2, 4), (10, 10, 10, 10, 12, 12), (56, 56, 56, 56, 56, 58, 58, 58, 58),

(4, 4, 4, 4), (18, 18, 18, 18, 18, 18, 20), (102, 102, 102, 102, 102, 102, 102, 102, 104, 104).
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Examples 3.2.5 and 3.2.6 in Section 3.2.3 give the details for the construction of
balanced Gray codes of length 9 and 10 starting from balanced Gray codes of length
7 and 8, respectively.

3.2.2 A proof for the existence of balanced Gray codes

Bakos’ method in [1], for establishing the existence of a balanced Gray code for any
codeword length n ≥ 1, is based on a graphical approach. Here, we shall introduce a
proof for the same statement using an algebraic approach.

In the next, a partition Pm(2n) = (p1, p2, ..., pm) of 2n, which was defined in the
previous section, will be called a balanced even m-partition if it satisfies both pi is
even and |pi− pj| ≤ 2, for all 1 ≤ i, j ≤ m. First, we shall show that a balanced even
n-partition of the integer 2n, for every n ≥ 1, exists.

Let 2n = qn + r, 0 ≤ r < n. We distinguish between the cases q is even and q is
odd.
Case I. q is even. This implies r is even. We define a set Q ⊆ [n− 2] which consists
of the last r

2
elements of [n− 2], and define the integers pi, 1 ≤ i ≤ n, according to

pi :=





q, i ∈ [n]\Q,

q + 2, i ∈ Q.
(3.7)

Remark 3.2.1. If n is a power of two, then the value of r is zero. This implies that
the value of pi is equal to q for all i, 1 ≤ i ≤ n.

Case II. q is odd. Now, the integer n + r is even. Here, we define Q ⊆ [n− 2] which
consists of the last n+r

2
elements of [n− 2], and define

pi :=





q − 1, i ∈ [n]\Q,

q + 1, i ∈ Q.
(3.8)

It is easy to verify in each case that
∑n

i=1 pi = 2n and that |pi − pj| ≤ 2 for every
1 ≤ i, j ≤ n. Thus, the partition (p1, p2, ..., pn) is really a balanced even n-partition
of 2n. Moreover, one can easily verify that a balanced even n-partition of the integer
2n is unique, or equivalently, if (p, ..., p︸ ︷︷ ︸

k

, p + 2, ..., p + 2︸ ︷︷ ︸
n−k

) is a balanced even n-partition

of 2n, then p and k are uniquely determined. This implies that a balanced Gray code
of length n must have a transition count spectrum (p1, p2, ..., pn), 1 ≤ i ≤ n, where
pi is defined by (3.7) or (3.8), and hence we have that b2n

n
c−1 ≤ pi ≤ b2n

n
c+2, for all i.
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Lemma 3.2.4. If x = b2n−2

n−2
c and y = b2n

n
c, then

(i) 4(x−2)−(y+2)
2

> 0, for all n ≥ 9;

(ii) 4(x+2)−(y−1)
2

< (x− 1), for all n ≥ 11.

Proof. We shall only prove part (i) of the Lemma, and omit the similar proof of part
(ii). Since x = b2n−2

n−2
c and y = b2n

n
c, we have that

x ≤ 2n−2

n− 2
< x + 1 and y ≤ 2n

n
< y + 1.

This implies

4(x− 2)− (y + 2) = 4(x + 1)− y − 14 > 4
2n−2

n− 2
− 2n

n
− 14

=
2n+1

n(n− 2)
− 14 > 0,

for all n ≥ 9.

Lemma 3.2.5. If there exists a balanced Gray code G(n− 2) of length n− 2, n ≥ 11,
then there also exists a balanced Gray code G(n) of length n.

Proof. Let (TCn−2(1), TCn−2(2), ..., TCn−2(n− 2)) be the transition count spectrum
of a balanced Gray code G(n−2) of length n−2, and let (p1, p2, ..., pn) be a balanced
even partition of the integer 2n, n ≥ 11. By considering (3.7) and (3.8), it will be
clear that there is some k, 1 ≤ k ≤ n−1, such that pk = pk+1. So, part (i) of Theorem
3.2.3 is satisfied. Furthermore, we have

b 2n−2

n− 2
c − 1 ≤ TCn−2(i) ≤ b 2n−2

n− 2
c+ 2, (3.9)

for all i ∈ [n− 2], and

b2
n

n
c − 1 ≤ pj ≤ b2

n

n
c+ 2, (3.10)

for all j ∈ [n].

We shall show that 0 ≤ 4TCn−2(i)−pj

2
≤ TCn−2(i), for all i ∈ [n − 2] and j ∈ [n], and

hence, that part (ii) of Theorem 3.2.3 holds.
From (3.9) and (3.10) we obtain for all i ∈ [n− 2] and j ∈ [n] that

4(b 2n−2

n− 2
c − 1)− (b2

n

n
c+ 2) ≤ 4TCn−2(i)− pj ≤ 4(b 2n−2

n− 2
c+ 2)− (b2

n

n
c − 1).
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Due to Lemma 3.2.4, we can immediately conclude that 0 ≤ 4TCn−2(i)−pj

2
≤ TCn−2(i),

for all i ∈ [n− 2] and j ∈ [n].
More in particular, for every n ≥ 11, part (i) of Lemma 3.2.4 implies that 0 <
4(TCn−2(i)−1)−pj

2
, for all i ∈ [n−2] and j ∈ [n]. Thus, part (iii) of Theorem 3.2.3 holds.

From Theorem 3.2.3 we conclude that a balanced Gray code of length n ≥ 11 exists
which has a transition count spectrum (p1, p2, ..., pn).

It is clear that Gref (1) is a totally balanced Gray code. Example 3.2.4 shows that
balanced Gray codes of length n, 2 ≤ n ≤ 10, exist. Therefore, because of Lemma
3.2.5 and Remark 3.2.1, we have proved now the following theorem.

Theorem 3.2.6 (Bakos, Robinson-Cohn, Bhat-Savage). For all n ≥ 1, there
exists a balanced Gray code of length n, and if n is a power of 2, there exists a totally
balanced Gray code of length n.

The following theorem was stated in [77, Theorem 4].

Theorem 3.2.7. Let G(n) be a balanced Gray code. Then, G(n) is totally balanced
if and only if n is a power of 2.

Proof. If G(n) is a totally balanced Gray code, then for every bit position i, 1 ≤ i ≤ n,
TCn(i) = 2n

n
. Because TCn(i) is an integer for every i, n must be a power of 2.

Conversely, let (p1, p2, . . . , pn) be the transition count spectrum of G(n). Remark
that pi is even for all i, 1 ≤ i ≤ n, and moreover that |pj − pi| ≤ 2, 1 ≤ i, j ≤ n. Let
i be some fixed index value. Suppose that there are l transition counts pj such that
pj − pi = 2, with 1 ≤ l < n = 2k. By summation over all j-values, 1 ≤ j ≤ n, we
obtain npi + 2l = 2n, and hence l = 2n−1 − n

2
pi = 2n−1 − 2k−1pi = 2k−1(2n−k − pi).

Since 1 ≤ l < 2k, we obtain

1 ≤ 2k−1(2n−k − pi) < 2k or
1

2k−1
≤ 2n−k − pi < 2.

The number 2n−k − pi must be an integer, and hence 2n−k − pi = 1. It implies that
pi = 2n−k− 1 is an odd integer. This violates the fact that pi is even. Hence, we may
conclude that pi = pj, for all i and j. So, G(n) is totally balanced.

3.2.3 A procedure for constructing balanced Gray codes

In this subsection we shall introduce a procedure which exploits Theorem 3.2.2 and
Theorem 3.2.3 to construct a balanced Gray code of length n. Our procedure starts
with a balanced Gray code of length n− 2.

Assume we have a balanced Gray code G(n− 2) of length n− 2, with transition
counts TCn−2(i), 1 ≤ i ≤ n − 2. Let S̄(n − 2), n ≥ 4, be the transition sequence
of G(n − 2). We know that the transition count spectrum of a balanced Gray code
G(n) of length n must be equal to an even balanced n-partition (p1, p2, ..., pn) of
the integer 2n, where pi, 1 ≤ i ≤ n, can be calculated using (3.7) or (3.8). Since
we remarked already that such an n-partition is unique up to permutations of the
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integers pi, 1 ≤ i ≤ n, we may assume, without loss of generality, that pn−1 = pn, for
n > 2. Next, we define

b(i) :=





4TCn−2(i)−pi

2
, 1 ≤ i ≤ n− 2, i 6= s2n−2 ,

4(TCn−2(i)−1)−pi

2
, i = s2n−2 .

(3.11)

Remark 2 For all n ≥ 11, Lemma 3.2.4 guarantees that 0 ≤ b(i) ≤ TCn(i), for all i,
1 ≤ i ≤ n. Moreover, by inspection we can verify that such integers b(i) can also be
realized for all n, 4 ≤ n ≤ 10 (cf. Example 3.2.4). Hence, our procedure will be valid
for all n ≥ 4, and is formulated as follows

Construction 3.1

1. Determine a balanced even n-partition (p1, p2, ..., pn) of the integer 2n using
(3.7) or (3.8). If pn > pn−1, permute the integers pn−2 and pn such that in
the resulting composition pn−1 = pn(in this new composition we have that
p1 = p2 = · · · = pn−3 < pn−2 and pn−1 = pn).

2. Calculate b(i) for all i ∈ [n− 2], using (3.11).

3. Define the sequence T consisting of b(i) integers i, i ∈ [n−2], in S(n−2) which
is defined by S̄(n− 2)k for some k ∈ [2n−2].

4. Apply Theorem 3.2.2, using sequence T defined at step 3.

We shall present some examples how to construct a balanced Gray code of higher
dimension from some given balanced Gray code of lower dimension, using Construc-
tion 3.1. Examples 3.2.5 and 3.2.6 will give the details of the construction of balanced
Gray codes of length 9 and 10 in Example 3.2.4, from balanced Gray codes of length
7 and 8, respectively.

Example 3.2.5. Assume that we want to construct a balanced Gray code of length 9.
We start with a balanced Gray code G(7) of length 7 with transition count spectrum
(18, 18, 18, 18, 20, 18, 18), and with transition sequence

S̄(7) = 2, 1, 3, 1, 2, 1, 3, 4, 3, 5, 3, 4, 3, 1, 4, 5, 2, 1, 5, 1, 4, 1, 3, 4, 5, 1, 2, 5, 2, 4, 2, 6,
2, 4, 2, 5, 2, 1, 5, 4, 3, 7, 3, 4, 5, 1, 2, 5, 2, 4, 2, 6, 2, 4, 2, 5, 2, 1, 5, 4, 3, 1, 4, 6,
4, 7, 4, 1, 5, 7, 5, 6, 5, 1, 6, 7, 2, 5, 7, 5, 6, 5, 4, 6, 7, 1, 3, 7, 3, 6, 3, 4, 3, 5, 6, 5,
3, 7, 3, 5, 3, 7, 6, 4, 6, 7, 3, 7, 6, 1, 6, 7, 2, 7, 6, 1, 6, 7, 3, 7, 6, 1, 6, 7, 2, 7, 6, 7.

We see that a balanced even n-partition of the integer 29 is (56, 56, 56, 56, 56, 58, 58,
58, 58). This partition can be calculated using (3.7) since 29 = 9 ·56+8. Using (3.11)
we may take b(1) = · · · = b(4) = 8, b(5) = 12, b(6) = 7, and b(7) = 5. So, the length
of sequence T is equal to 4 ·8+12+7+5 = 56. Let T consist of the first 8 occurrences
of each of the integers 1, 2, 3, and 4, the first 12 occurrences of the integer 5, the first
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7 occurrences of the integer 6, and the first 5 occurrences of the integer 7 in S(7). By
applying Construction 1 with this sequence T as basis, we obtain a balanced Gray
code of length 9 with transition count spectrum (56, 56, 56, 56, 56, 58, 58, 58, 58), and
with transition sequence

S̄(9) = 2, 1, 3, 1, 2, 1, 3, 4, 3, 5, 3, 4, 3, 1, 4, 5, 2, 1, 5, 1, 4, 1, 3, 4, 5, 1, 2, 5, 2, 4, 2, 6,
2, 4, 2, 5, 2, 1, 5, 4, 3, 7, 3, 4, 5, 1, 2, 5, 2, 4, 2, 6, 2, 4, 2, 5, 2, 1, 5, 4, 3, 1, 4, 6,
4, 7, 4, 1, 5, 7, 5, 6, 5, 1, 6, 7, 2, 5, 7, 5, 6, 5, 4, 6, 7, 1, 3, 7, 3, 6, 3, 4, 3, 5, 6, 5,
3, 7, 3, 5, 3, 7, 6, 4, 6, 7, 3, 7, 6, 1, 6, 7, 2, 7, 6, 1, 6, 7, 3, 7, 6, 1, 6, 7, 2, 7, 6, 8,
6, 7, 2, 7, 6, 1, 6, 7, 3, 7, 6, 1, 6, 7, 2, 7, 6, 1, 6, 7, 3, 7, 6, 4, 6, 7, 3, 5, 3, 7, 3, 5,
6, 5, 3, 4, 3, 6, 3, 7, 3, 1, 7, 9, 7, 1, 3, 7, 3, 6, 3, 4, 3, 5, 6, 5, 3, 7, 3, 5, 3, 7, 6, 4,
6, 7, 3, 7, 6, 1, 6, 7, 2, 7, 6, 1, 6, 7, 3, 7, 6, 1, 6, 7, 2, 7, 6, 8, 6, 7, 2, 7, 6, 1, 6, 7,
3, 7, 6, 1, 6, 7, 2, 7, 6, 1, 6, 7, 3, 7, 6, 4, 6, 7, 3, 5, 3, 7, 3, 5, 6, 5, 3, 4, 3, 6, 3, 7,
3, 1, 7, 6, 4, 5, 8, 5, 4, 9, 4, 5, 6, 5, 9, 5, 8, 5, 7, 5, 2, 8, 2, 5, 9, 5, 2, 7, 9, 8, 6, 1,
5, 8, 5, 1, 9, 1, 5, 6, 5, 9, 5, 8, 5, 7, 8, 9, 5, 1, 4, 9, 4, 1, 8, 1, 4, 7, 4, 8, 4, 9, 4, 6,
4, 1, 3, 4, 9, 4, 3, 1, 4, 8, 4, 1, 3, 4, 5, 1, 2, 8, 2, 1, 9, 1, 2, 5, 2, 4, 2, 9, 2, 4, 2, 8,
2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 5, 2, 1, 9, 1, 2, 8, 2, 1, 5, 4, 8, 4, 9, 4, 3, 9,
8, 7, 8, 9, 3, 9, 8, 4, 8, 9, 5, 1, 2, 9, 2, 1, 8, 1, 2, 5, 8, 9, 2, 9, 8, 4, 8, 9, 2, 9, 8, 6,
8, 9, 2, 9, 8, 4, 8, 9, 2, 9, 8, 5, 8, 9, 2, 9, 8, 1, 8, 9, 5, 9, 8, 4, 8, 9, 3, 9, 8, 1, 8, 9,
4, 9, 8, 1, 8, 9, 5, 9, 8, 1, 8, 9, 2, 9, 8, 5, 8, 9, 4, 9, 8, 1, 8, 9, 3, 9, 8, 4, 8, 9, 3, 9,
8, 5, 8, 9, 3, 9, 8, 4, 8, 9, 3, 9, 8, 1, 8, 9, 2, 9, 8, 1, 8, 9, 3, 9, 8, 1, 8, 9, 2, 9, 8, 9.

Example 3.2.6. A balanced Gray code of length 8 with the following transition
sequence S̄(8) is totally balanced with transition count spectrum (32, 32, 32, 32, 32,
32, 32, 32).

S̄(8) = 1, 2, 1, 3, 4, 3, 1, 2, 3, 2, 4, 2, 1, 4, 3, 5, 3, 4, 1, 2, 4, 6, 4, 2, 1, 4, 3, 5, 3, 4, 1, 2,
4, 2, 3, 5, 3, 6, 3, 2, 6, 5, 1, 5, 6, 3, 4, 6, 4, 5, 4, 3, 5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 7,
5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 3, 4, 5, 4, 6, 4, 3, 6, 5, 1, 8, 1, 5, 6, 3, 4, 6, 4, 5, 4, 3,
5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 7, 5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 3, 4, 5, 4, 6, 4, 3, 6, 5,
1, 5, 6, 2, 3, 7, 3, 2, 6, 8, 6, 2, 3, 6, 3, 8, 3, 7, 3, 5, 7, 8, 3, 2, 4, 2, 1, 8, 1, 2, 4, 2,
7, 2, 4, 2, 1, 4, 7, 8, 3, 8, 7, 5, 7, 8, 3, 8, 7, 4, 1, 2, 7, 2, 1, 8, 1, 2, 4, 8, 7, 6, 7, 8,
4, 2, 1, 8, 1, 2, 7, 2, 1, 4, 7, 8, 3, 8, 7, 5, 7, 8, 3, 8, 7, 4, 7, 8, 1, 8, 7, 2, 7, 8, 4, 8,
7, 2, 7, 8, 3, 8, 7, 2, 7, 8, 1, 8, 7, 3, 7, 8, 4, 8, 7, 3, 7, 8, 1, 8, 7, 2, 7, 8, 1, 8, 7, 8.

Since 210 = 10 · 102+4, according to (3.7) the even balanced 10-partition of 210 is
equal to (102, 102, 102, 102, 102, 102, 102, 102, 104, 104). By applying (3.11), we may
take b(1) = · · · = b(7) = 13, and b(8) = 11. Here, the sequence T has length 102.
Assume that T is chosen such that it consists of the first 13 occurrences in S(8) of
each of the integers 1, ..., 7 and of the first 11 occurrences of the integer 8 in S(8). By
using this sequence T as the basis of Theorem 3.2.2, we obtain a Gray code of length
10 with the following transition sequence S̄(10). The letter a in S̄(10) stands for 10.
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S̄(10) = 1, 2, 1, 3, 4, 3, 1, 2, 3, 2, 4, 2, 1, 4, 3, 5, 3, 4, 1, 2, 4, 6, 4, 2, 1, 4, 3, 5, 3, 4, 1, 2,
4, 2, 3, 5, 3, 6, 3, 2, 6, 5, 1, 5, 6, 3, 4, 6, 4, 5, 4, 3, 5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 7,
5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 3, 4, 5, 4, 6, 4, 3, 6, 5, 1, 8, 1, 5, 6, 3, 4, 6, 4, 5, 4, 3,
5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 7, 5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 3, 4, 5, 4, 6, 4, 3, 6, 5,
1, 5, 6, 2, 3, 7, 3, 2, 6, 8, 6, 2, 3, 6, 3, 8, 3, 7, 3, 5, 7, 8, 3, 2, 4, 2, 1, 8, 1, 2, 4, 2,
7, 2, 4, 2, 1, 4, 7, 8, 3, 8, 7, 5, 7, 8, 3, 8, 7, 4, 1, 2, 7, 2, 1, 8, 1, 2, 4, 8, 7, 6, 7, 8,
4, 2, 1, 8, 1, 2, 7, 2, 1, 4, 7, 8, 3, 8, 7, 5, 7, 8, 3, 8, 7, 4, 7, 8, 1, 8, 7, 2, 7, 8, 4, 8,
7, 2, 7, 8, 3, 8, 7, 2, 7, 8, 1, 8, 7, 3, 7, 8, 4, 8, 7, 3, 7, 8, 1, 8, 7, 2, 7, 8, 1, 8, 7, 9,
7, 8, 1, 8, 7, 2, 7, 8, 1, 8, 7, 3, 7, 8, 4, 8, 7, 3, 7, 8, 1, 8, 7, 2, 7, 8, 3, 8, 7, 2, 7, 8,
4, 8, 7, 2, 7, 8, 1, 8, 7, 4, 7, 8, 3, 8, 7, 5, 7, 8, 3, 8, 7, 4, 1, 2, 7, 2, 1, 8, 1, 2, 4, 8,
a, 8, 4, 2, 1, 8, 1, 2, 7, 2, 1, 4, 7, 8, 3, 8, 7, 5, 7, 8, 3, 8, 7, 4, 7, 8, 1, 8, 7, 2, 7, 8,
4, 8, 7, 2, 7, 8, 3, 8, 7, 2, 7, 8, 1, 8, 7, 3, 7, 8, 4, 8, 7, 3, 7, 8, 1, 8, 7, 2, 7, 8, 1, 8,
7, 9, 7, 8, 1, 8, 7, 2, 7, 8, 1, 8, 7, 3, 7, 8, 4, 8, 7, 3, 7, 8, 1, 8, 7, 2, 7, 8, 3, 8, 7, 2,
7, 8, 4, 8, 7, 2, 7, 8, 1, 8, 7, 4, 7, 8, 3, 8, 7, 5, 7, 8, 3, 8, 7, 4, 1, 2, 7, 2, 1, 8, 1, 2,
4, 8, 7, 6, 9, 6, a, 6, 7, a, 9, 8, 4, 2, 1, 9, 1, 2, 4, a, 4, 2, 1, 8, 1, 2, a, 2, 1, 9, 1, 2,
7, 2, 1, 4, 9, 4, 1, 2, a, 2, 1, 4, 7, a, 9, 8, 3, 9, 3, a, 3, 8, a, 9, 7, 5, 9, 5, a, 5, 7, a,
9, 8, 3, 9, 3, a, 3, 8, a, 9, 7, 4, 1, 2, 4, 2, 9, 2, 4, 2, 1, 4, a, 4, 1, 2, 4, 2, 7, 2, 4, 2,
1, a, 1, 2, 4, 2, 9, 2, 4, 2, 1, 8, 1, 2, 4, 2, 3, 9, 3, 2, 4, 2, 1, a, 1, 2, 4, 2, 3, 8, a, 9,
7, 5, 3, 9, 3, 5, a, 5, 3, 7, 3, a, 3, 9, 3, 8, 3, 6, 3, 2, 6, 9, 6, 2, 3, 6, 3, a, 3, 6, 3, 2,
6, 8, 6, 2, 3, a, 3, 2, 6, 9, 6, 2, 3, 7, 3, 2, 6, 5, 1, 5, 6, 3, 4, 6, 4, 5, 4, 3, 5, 6, 1, 6,
5, 9, 5, 6, 1, 6, 5, 3, 4, 5, 4, 6, 4, 3, 6, 5, 1, 5, 6, 2, 3, a, 3, 2, 6, 5, 1, 5, 6, 3, 4, 6,
4, 5, 4, 3, 5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, a, 5, 6, 1, 6, 5, 9, 5, 6, 1, 6, 5, 7, 5, 6, 1, 6,
5, 9, 5, 6, 1, 6, 5, a, 5, 6, 1, 6, 5, 2, 5, 6, 1, 6, 5, 3, 4, 5, 4, 6, 4, 3, 6, 5, 1, a, 1, 5,
6, 3, 4, 6, 4, 5, 4, 3, 5, 6, 1, 6, 5, 9, 5, 6, 1, 6, 5, 3, 4, 5, 4, 6, 4, 3, 6, 5, 1, 8, 9, a,
1, 5, 6, 3, 4, 6, 4, 5, a, 5, 4, 6, 4, 3, 6, 5, 9, 5, 6, 3, 4, 6, 4, 5, 4, 9, a, 3, 5, a, 5, 9,
5, 6, 9, a, 1, a, 9, 6, 9, a, 5, a, 9, 2, 9, a, 5, a, 9, 6, 9, a, 1, a, 9, 6, 9, a, 5, a, 9, 7,
9, a, 5, a, 9, 6, 9, a, 1, a, 9, 6, 9, a, 5, a, 9, 2, 9, a, 5, a, 9, 6, 9, a, 1, a, 9, 6, 9, a,
5, a, 9, 3, 9, a, 4, a, 9, 5, 9, a, 4, a, 9, 6, 9, a, 4, a, 9, 3, 9, a, 6, a, 9, 5, 9, a, 1, a,
9, 5, 9, a, 6, a, 9, 2, 9, a, 3, a, 9, 6, 9, a, 3, a, 9, 5, 9, a, 3, a, 9, 2, 9, a, 4, a, 9, 2,
9, a, 1, a, 9, 4, 9, a, 3, a, 9, 5, 9, a, 3, a, 9, 4, 9, a, 1, a, 9, 2, 9, a, 4, a, 9, 6, 9, a,
4, a, 9, 2, 9, a, 1, a, 9, 4, 9, a, 3, a, 9, 5, 9, a, 3, a, 9, 4, 9, a, 1, a, 9, 2, 9, a, 4, a,
9, 2, 9, a, 3, a, 9, 2, 9, a, 1, a, 9, 3, 9, a, 4, a, 9, 3, 9, a, 1, a, 9, 2, 9, a, 1, a, 9, a.

We can verify that the generated Gray code G(10) of length 10 has transition
count spectrum (102, 102, 102, 102, 102, 102, 102, 102, 104, 104), and therefore, it is a
balanced code. We emphasize that these balanced Gray codes of length 9 and 10
can not be constructed using Bakos’ method nor Robinson-Cohn nor Bhat-Savage
methods, since their constructions require that the pair of integers si1 , si2 and also
the pair sil−1

, sil are consecutive in S̄(n).
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3.2.4 Concluding remarks

Let 2n = qn+r, 0 ≤ r < n. If r is even, according to (3.7) a balanced Gray code with
transition count spectrum (q, ..., q︸ ︷︷ ︸

n− r
2

, q + 2, ..., q + 2︸ ︷︷ ︸
r
2

), exists. In particular, if r = 2, a

balanced Gray code with transition count spectrum (q, ..., q︸ ︷︷ ︸
n−1

, q + 2) exists. Let G(n)

be a balanced Gray code with this transition count spectrum and with transition
sequence S̄(n). Let i0 be the integer in [n] which has transition count equal to q + 2
in S̄(n). Assume that the transition sk = i0. Shift S̄(n) cyclicly over k positions to
the left. Now, the new transition sequence S̄(n) := S̄(n)k has the integer i0 as its
closing transition. The non-complete transition sequence defined by the last transition
sequence S̄(n) will generate a Gray code with transition counts satisfying the property
that |TCn(i)− TCn(j)| ≤ 1, for all i, j ∈ [n]. So, we proved the following theorem.

Theorem 3.2.8. Let 2n = qn + r, 0 ≤ r < n. If r = 0 or r = 2, then a Gray code
of length n exists with transition counts TCn(i), i ∈ [n], satisfying the property that
|TCn(i)− TCn(j)| ≤ 1, for all i, j ∈ [n].

It is obvious that every integer n which is a two power satisfies the property that
2n = qn + 0, for some q. Below we shall show that every prime p > 2 satisfies
the property that 2p = pq + 2, for some q. However, there are also integers n0, for
instance 341, 561, 645, which are not prime, but which do have the property that
2n0 = qn0 +2, for some q. These three numbers satisfy the conditions required by the
following lemma due to Dodunekov [14]2.

The smallest exponent e > 0 for which be ≡ 1(mod n), where b and n are given
positive integers, is called the multiplicative order of b modulo n.

Lemma 3.2.9. Let s be the multiplicative order of 2 modulo n. If n ≡ 1(mod s),
then 2n ≡ 2(mod n).

Proof. Let 2s = x · n + 1 and n = y · s + 1, for some positive integers x and y. We
have that

2n = 2y·s+1 = 2 · 2y·s = 2(x · n + 1)y = 2z · n + 2

for some integer z.

We now immediately have the following theorem.

Theorem 3.2.10. Let s be the multiplicative order of 2(mod n). If n ≡ 1(mod s),
then there exists a Gray code of length n with transition counts TCn(i), i ∈ [n], such
that |TCn(i)− TCn(j)| ≤ 1, for all i, j ∈ [n].

Below we shall show that the multiplicative order of 2 modulo p is equal to p− 1,
if p is an odd prime number. To this end, we need the following well-known result.

2The author is indebted to prof. dr. S.M. Dodunekov, Bulgarian Academy of Sciences, for
drawing his attention to this result, which generalizes the original lemma where n was equal to an
odd prime.
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Lemma 3.2.11 (Fermat Theorem). If p is a prime, then for every positive integer
a which is not a multiple of p, we have that ap−1 ≡ 1 (mod p).

Now we are ready to proof the following lemma.

Lemma 3.2.12. Let p be an odd prime number. Then the multiplicative order of 2
modulo p is equal to p− 1.

Proof. In particular, Fermat Theorem says that for every prime p > 2 we have that
2p−1 ≡ 1(mod p). Assume that there exists an l, 0 ≤ l ≤ p− 1 such that 2l ≡ 1(mod
p). Let k + l = p− 1. Now we have

2p−1 = 2k+l = 2k(p · q + 1) = 2k · q · p + 2k,

for some q. From the statement in the first line of this proof, it follows that 2k = 1.
Hence, k = 0, l = p− 1 and the Lemma is proved.

An immediate consequence of Theorems 3.2.8 and 3.2.10 and of Lemmas 3.2.9 and
3.2.12 is the following corollary.

Corollary 3.2.13. If n is a two power or an odd prime, then a Gray code of length
n exists, such that the transition counts TCn(i), i ∈ [n], corresponding to its non-
complete transition sequence satisfies the property that |TCn(i)−TCn(j)| ≤ 1, for all
i, j ∈ [n].

In [3, Section 4] Bhat and Savage posed the following question.

Is it possible, for all n, to construct a Gray code which has the property that for
any bit positions i and j, |TCn(i)− TCn(j)| ≤ 1?

Theorem 3.2.8 provides us with a partial answer to this problem.
Because Theorem 3.2.3 can be used to determine which Gray codes w.r.t. their

transition count spectra certainly exist by applying Theorem 3.2.2 to a given Gray
code, Theorem 3.2.3 provides us with a partial answer to Conjecture 3.1.4.

The conditions to apply Theorem 3.2.2 are less strict than those for the method
of Robinson and Cohn in [60]. The latter method requires that the first two elements
as well as the last two elements of the sequence T which constitutes the basis of that
method, must be consecutive in the original transition sequence of the given Gray
code. More in particular, the sequence T obtained in step 3 of Construction 3.1 can
be applied directly in Theorem 3.2.2, without additional stipulations as required by
the construction of Robinson and Cohn in [60].

3.3 Exponentially balanced Gray codes

The transition counts of a Gray code can be called exponentially close if they are all
the same power of two, or are all equal to two consecutive powers of two. We call
a Gray code with this property an exponentially balanced Gray code (cf. [77]), as a
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generalization of (totally) balanced Gray codes. Thus, for an exponentially balanced
Gray code G(n) one has that the transition count of every bit position i, 1 ≤ i ≤ n,
is equal to 2e(i) for some positive integer e(i), and |e(i)− e(j)| ≤ 1, 1 ≤ i, j ≤ n.

Example 3.3.1. The reflected Gray codes of length 1, 2 and 3 are examples of expo-
nentially balanced codes since these codes have transition count spectra (21), (21, 21),
and (21, 21, 22), respectively. A totally balanced Gray code of length 4 has transition
count spectrum (22, 22, 22, 22), and hence the code is also exponentially balanced(cf.
Example 3.2.2).

In [88], Wagner and West conjectured that exponentially balanced Gray codes
exist for all length n. By extending the method of Robinson and Cohn for the con-
struction of Gray codes in [60], van Zanten and Suparta in [77] proved the conjecture
of Wagner and West in positive sense. In the following we present a proof based
on Bakos’ construction of Gray codes which was formulated in Theorem 3.2.2. This
proof is much simpler than the one given in [77].

3.3.1 A simple proof for the existence of exponentially bal-
anced Gray codes

As mentioned just in the beginning of this section, the existence of exponentially
balanced Gray codes was a longstanding conjecture of Wagner and West in [88]. In
[77] we introduced a technique how to construct exponentially balanced Gray codes by
applying the Robinson-Cohn Gray code construction [60], thus proving the conjecture
of Wagner and West,

Theorem 3.3.1. For every n ≥ 1, there exists an n-bit exponentially balanced Gray
code, and if n is a power of two, there exists an n-bit totally balanced Gray code.

Here, we shall present a proof using Theorem 3.2.2. The proof is constructive like
the proof in [77], but much simpler.

Proof. We accomplish the proof using the principle of mathematical induction. It is
obvious that Gray codes of length 1, 2, and 3 are exponentially balanced. Assume
that an exponentially balanced Gray code G(n) of length n ≥ 3 exists with transition
count spectrum

(TCn(1), TCn(2), ..., TCn(n)) := (2v, ..., 2v

︸ ︷︷ ︸
k

, 2v+1, ..., 2v+1

︸ ︷︷ ︸
n−k

), (3.12)

for some k with 0 ≤ k < n. We distinguish two cases: n− k > 1 and n− k = 1.

Case I. n− k > 1. This case implies that TCn(n− 1) = TCn(n) = 2v+1. Let S̄(n) be
the transition sequence of G(n), and let i be some integer in {0, 1, ..., 2n−1} such that
the closing transition of S̄(n)i is the integer n. Take a sequence T from the cyclically
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shifted transition sequence S̄(n) := S̄(n)i with length l := 2v+2 − 2, consisting of
2v+1 − 2 occurrences of integer n and all 2v+1 occurrences of integer n − 1. Here,
b(1) = · · · = b(n−2) = 0, b(n−1) = 2v+1, and b(n) = 2v+1−2. Apply Theorem 3.2.2
using this sequence T . Then we obtain a Gray code of length n + 2 with transition
counts satisfying the following (cf. eq. (3.2))

TCn+2(i) :=





2v+2, for all i ∈ {1, ..., n + 2}\{k + 1, ..., n− 2},

2v+3, for all i ∈ {k + 1, ..., n− 2}.

Thus, the resulting Gray code of length n+2 is exponentially balanced with transition
count spectrum (2v+2, . . . , 2v+2

︸ ︷︷ ︸
k+4

, 2v+3, · · · , 2v+3

︸ ︷︷ ︸
n−k−2

).

Notice that if n − k = 2 or equivalently n + 2 = 2n−v (a power of two), the
resulting (n + 2)-bit Gray code is totally balanced with transition count spectrum
(2v+2, 2v+2, ..., 2v+2).

Case II. n− k = 1. The transition count spectrum (3.12) now becomes

(TCn(1), TCn(2), ..., TCn(n)) := (2v, . . . , 2v

︸ ︷︷ ︸
n−1

, 2v+1). (3.13)

Here, the transition count of integer n is equal to 2v+1. Again we assume that n is
the closing transition of S̄(n)i, for some integer i, 0 ≤ i ≤ 2n − 1. Take a sequence
T from S̄(n) := S̄(n)i consisting of only 2v+1 − 2 occurrences of integer n, and then
apply Theorem 3.2.2. The resulting Gray code of length n + 2 will have transition
counts

TCn+2(i) :=





2v+1, if i = n + 1, n + 2,

2v+2, if i ∈ {1, ..., n}.

Again the resulting Gray code of length n + 2 is exponentially balanced with transi-
tion count spectrum (2v+1, 2v+1, 2v+2, . . . , 2v+2

︸ ︷︷ ︸
n

).

We see that in each case the produced Gray code is exponentially balanced. Since
exponentially balanced Gray codes of length 1, 2, and 3 exist, the Theorem is proved
now by the principle of mathematical induction.

Next we shall show an example how we exploit the proof of Theorem 3.3.1 for con-
structing an exponentially balanced Gray code from another exponentially balanced
Gray code of smaller length.
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Example 3.3.2. Consider an exponentially balanced Gray code of length 5 with
transition count spectrum (22, 22, 23, 23, 23), and with transition sequence S̄(5)

1, 4, 5, 3, 5, 4, 2, 4, 5, 3, 5, 4, 1, 4, 5, 3, 5, 4, 2, 4, 3, 5, 3, 4, 2, 3, 1, 3, 2, 3, 1, 5.

Assume that we want to construct an exponentially balanced Gray code of length
7 based on the exponentially balanced Gray code of length 5. According to the
transition count spectrum and to the transition sequence of the Gray code, we can see
that we are in Case II of the proof of Theorem 3.3.1, and that the transition sequence
of S̄(5) already has the integer 5 as closing transition. Take b(1) = b(2) = b(3) = 0,
b(4) = 23 = 8, and b(5) = 23 − 2 = 6. Thus, the sequence T has length 8 + 6 = 14.
Furthermore, we may take the first eight integers 4 and the first six integers 5 in
S̄(5) as elements of the sequence T . Applying Theorem 3.2.2 yields a Gray code with
transition sequence S̄(7)

1, 4, 5, 3, 5, 4, 2, 4, 5, 3, 5, 4, 1, 4, 5, 3, 5, 4, 2, 4, 3, 5, 3, 4, 2, 3, 1, 3, 2, 3, 1, 6,
1, 3, 2, 3, 1, 3, 2, 7, 2, 3, 1, 3, 2, 3, 1, 6, 1, 3, 2, 3, 1, 3, 2, 4, 3, 5, 3, 6, 3, 5, 3, 7,
3, 5, 3, 4, 2, 7, 2, 6, 2, 4, 6, 7, 5, 3, 7, 3, 6, 3, 5, 6, 7, 4, 1, 7, 1, 6, 1, 4, 6, 7, 5, 3,
7, 3, 6, 3, 5, 6, 7, 4, 2, 7, 2, 6, 2, 4, 6, 7, 5, 3, 7, 3, 6, 3, 5, 6, 7, 4, 1, 7, 1, 6, 1, 7.

It is easy to verify that the produced Gray code is exponentially balanced with tran-
sition count spectrum (24, 24, 25, 24, 24, 24, 24).
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4
More Binary Gray Codes with Special

Properties

This chapter consists of two sections. In the first section we discuss a method for
the construction of Gray codes with maximum crossover Hamming distance. For n
even, this type of Gray codes is also called complementary Gray codes in [32]. Two
codewords in a Gray code G(n) of length n are said to crossover each other in a cyclic
n-bit Gray code if their distance in the list is equal to 2n−1. If any two crossover
codewords in a cyclic n-bit Gray code have the same Hamming distance k and if
this Hamming distance is maximal for fixed n, the code is called a Gray code with
maximum crossover Hamming distance (MCHD) k. We introduce a simple technique
for constructing a class of Gray codes with this property. We also derive conversion
rules between codewords and their indices in the list(index problem), and we solve
the separability problem for this type of Gray codes.

The second part of this chapter addresses a problem of Wilmer and Ernst in [89]
about a construction of an n-bit Gray code which induces the undirected complete
graph Kn. For every n > 0 we introduce a technique how to construct Gray codes
G(n) which induce complete graphs Kn. This technique is also developed by applying
the Gray construction formulated as Theorem 3.2.2 in Chapter 3. At the end of this
section we state a thusfar unsolved problem about the existence of Gray codes which
induce directed complete graphs.

4.1 A class of Gray codes with MCHD

Because of certain applications [8, 41, 64] and also for the sake of mathematical inter-
est [18, 20, 30, 87, 80, 79], Gray codes have been designed to satisfy some additional
requirements. Some examples of constraints considered are: restricting where bits

55
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can change [8], restricting to the case that any two complementary codewords are at
list distance equal to the length of the Gray code [30], or that such codewords are
at maximal list distance [41], or requiring the same number of changes for each bit
[41, 64, 87].

In this section, the term Gray codes stands for cyclic Gray codes. As already
defined in Chapter 1, the cyclic list distance of two codewords xi and xj, denoted by
D(xi,xj), is equal to

D(xi,xj) := min{|j − i|, 2n − |j − i|}.

The codewords xi and xj are said to crossover each other in the Gray code G(n),
if their list distance D(xi,xj) = 2n−1. If crossover codewords in a Gray code all have
the same Hamming distance k, then one says that the Gray code is with crossover
Hamming distance k. If k is maximal with respect to this property (for fixed n), then
one says that the Gray code is with maximum crossover Hamming distance(MCHD)
(See Figure 4.1 for an example). In this section we consider this type of Gray codes.

The existence of Gray codes with MCHD was proven by Knuth in [32]. The
proof is based on the existence of monotone Gray codes, i.e. Gray codes in which
consecutive pairs of codewords of weights i, i + 1 precede those of weights j, j + 1
for all i < j ≤ n, which was demonstrated by Savage and Winkler in [62]. Here, the
weight of a codeword is equal to the number of non-zero bits in the codeword. It is
evident from [32] that Gray codes with MCHD can be constructed from monotone
Gray codes. However, the construction of a monotone Gray code itself in [62] is not
straightforward. Ludman in [41] presents a technique for generating Gray codes with
MCHD, but his technique is rather cumbersome when applying it for large values
of the code length n. In this paper we propose a simple construction which can be
applied easily for any Gray code length.

The following lemma is obvious.

Lemma 4.1.1. Let g and h be two complementary codewords in a Gray code of length
n. Then their list distance, D(g,h), is equal to 2l − 1 if n is odd, and equal to 2l if
n is even, for some l, 1 ≤ l ≤ 2n−2.

Lemma 4.1.1 implies that the maximal list distance that can be attained by a pair
of n-bit complementary codewords is equal to 2n−1 − 1 for n odd, and equal to 2n−1

for n even. Consequently, the maximal possible value of k for which a Gray code
G(n) with MCHD of k can exist is equal to n if n even, and equal to n− 1 if n odd.

4.1.1 Construction rules

Like in Chapter 3, let T n be the non-complete transition sequence of the reflected
Gray code of length n. It is well known that the sequence T n, n is the complete tran-
sition sequence of the n-bit reflected Gray code. Our technique for constructing an
n-bit Gray code with MCHD is based on the transition sequence T n, and is defined
by the following rules.
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Figure 4.1: A Gray code of length 4 with MCHD

Construction 4.1

1. TS(n) := T n, n, if n = 1, 2, 3.

2. For n ≥ 4 define:

(a)

U(n− 1) := T n−2, n− 1, T n−4,n− 2, T n−4,n− 3, T n−4,n− 2,
T n−6,n− 4, T n−6,n− 5, T n−6,n− 4, . . . ,2,1,2,

for n even, and

U(u− 1) := T n−2, n− 1, T n−4,n− 2, T n−4,n− 3, T n−4,n− 2,
T n−6,n− 4, T n−6,n− 5, T n−6,n− 4, . . . , 1,3, 1,2, 1,3, 1,

for n odd.

(b) TS(n) := U(n− 1), n, U(n− 1), n.

Notice that the sequence U(n − 1) is obtained from the non-complete transition
sequence T n−1 of the reflected Gray code of length n − 1 by interchanging the pairs
of integers n− 2 and n− 3, of integers n− 4 and n− 5, etc. after the occurrence of
the integer n− 1.

Example 4.1.1.

TS(4) = T 2, 3,2,1,2, 4, T 2, 3,2,1,2, 4
= 1, 2, 1, 3,2,1,2, 4, 1, 2, 1, 3,2,1,2, 4,
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and
TS(5) = 1, 2, 1, 3, 1, 2, 1, 4, 1,3, 1,2, 1,3, 1, 5,

1, 2, 1, 3, 1, 2, 1, 4, 1,3, 1,2, 1,3, 1, 5.

The lists of codewords of the Gray codes G(4) and G(5) with transition sequences
S4 and S5 are shown in Fig.4.2.a and in Fig.4.2.b, respectively.

0000 1111 00000 01100 11110 10010
0001 1110 00001 01101 11111 10011
0011 1100 00011 01001 11101 10111
0010 1101 00010 01000 11100 10110
0110 1001 00110 01010 11000 10100
0100 1011 00111 01011 11001 10101
0101 1010 00101 01111 11011 10001
0111 1000 00100 01110 11010 10000

a. b.

Figure 4.2:

We observe that the list distance between any two complementary codewords is
equal to 23 = 8, if n = 4(Fig.4.2.a), and equal to 24 − 1 = 15, if n = 5 (Fig.4.2.b).
According to Lemma 4.1.1, we conclude that these two Gray codes are with MCHD
4. Below, we shall show that each Gray code which has a transition sequence TS(n)
obtained by using the Construction 4.1, is a Gray code with MCHD of n, if n is even,
and of n− 1, if n is odd.

Referring to Lemma 2.3.1 in Chapter 2, we can immediately prove the following
lemma.

Lemma 4.1.2. Every non-empty subsequence S of the sequence U(n − 1) in Con-
struction 4.1 contains at least one integer which occurs an odd number of times.

Proof. Let S be a non-empty subsequence of U(n− 1). Consider the sequence T n−k,
the non-complete transition sequence of the reflected Gray code of length n − k, for
k ∈ {1, 2, . . . , n − 1}. Any non-empty subsequence of T n−k will contain at least one
integer which occurs an odd number of times. Hence, if S is a subsequence of T n−k,
then S contains at least one integer which occurs an odd number of times. Now
assume that S is not a subsequence of T n−k for any k ∈ {1, 2, . . . , n − 1}. Assume
that the largest integer contained in S is equal to n−k, for some k ∈ {1, 2, . . . , n−1}.
It is clear that if k = n − 1, S is a singleton and therefore, contains the integer 1
an odd number of times. If k = 1, then S will contain at least the integer n − 1 an
odd number of times. Now assume k = 2l for some l. According to the pattern of
U(n−1), if n−2l occurs an even number of times, then at least the integer n−2l−1
occurs an odd number of times. Finally, if the largest integer contained in S is equal
to n− 2m− 1 for some m, then it is obvious, due to the pattern of U(n− 1), that S
at least contains the integer n− 2m− 1 an odd number of times.
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Due to Lemmas 4.1.2 and 2.3.1, the following Lemma can immediately be proved.

Lemma 4.1.3. For every n, the sequence TS(n) obtained by applying Construction
4.1, is a transition sequence of a cyclic Gray code.

Moreover, the Gray code having TS(n) as its transition sequence is really with
MCHD, as is formulated below.

Lemma 4.1.4. The list distance of any two complementary codewords in a Gray code
of length n which has TS(n) as its transition sequence is equal to 2n−1 if n is even,
and equal to 2n−1 − 1 if n is odd.

Proof. Assume that S is a subsequence of TS(n) which constitutes a transition se-
quence from a codeword to its complement. It implies that S contains n distinct
integers which occur an odd number of times. Therefore, S contains all transition
numbers, including n − 1 and n. We also know that for all k, 1 ≤ k ≤ n, T k only
contains the integer k an odd number of times. Based on these observations, the
sequence S will be equivalent to the sequence

T n−2, n− 1, T n−4, n− 2, T n−4, n− 3, T n−4, n− 2, T n−6, n− 4, T n−6, n− 5, T n−6, n− 4,
..., 2, 1, 2, n

for n even, and to

T n−2, n− 1, T n−4, n− 2, T n−4, n− 3, T n−4, n− 2, T n−6, n− 4, T n−6, n− 5, T n−6, n− 4,
..., 1, 3, 1, 2, 1, 3, 1, n,

for n odd,
when omitting the front integer 1 from T n−2, and up to cyclic shifting.

The length of these subsequences equals 2n−1 and 2n−1 − 1 respectively. Because
of Lemma 4.1.1, this is the maximal list distance which can be attained.

Since we know that any pair of consecutive codewords in a Gray code differ in
only one bit, one can easily derive the following theorem from Lemma 4.1.4.

Theorem 4.1.5. The Gray code G(n) which has transition sequence TS(n) is with
MCHD of value n if n is even, and of value n− 1 if n is odd.

4.1.2 Index system of a Gray code with MCHD

In this section, a Gray code with MCHD is referred to as a Gray code having
TS(n) as its transition sequence. Since a Gray code with MCHD is obtained by
modifying the transition sequence of the reflected Gray code, we may expect that the
index system of these Gray codes (i.e. the rules to convert a codeword xi to its index
i and vice versa) are also closely related.
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Let xc (resp. xc) be the complement of the bit x (resp. the vector x). Let
g be a codeword in the reflected Gray code of length n with n even, and let h be
its counterpart in the Gray code with MCHD. We have the following conversion rules.

1. h = 00a, if and only if g = 00a;

2. h = 01 11..11︸ ︷︷ ︸
2k

xyb, if and only if g =





01 00..00︸ ︷︷ ︸
2k

xyb if x 6= y

01 00..00︸ ︷︷ ︸
2k

xcycb if x = y = 0
, where k

is the largest integer satisfying this condition;

3. h = 11a, if and only if g = 11ac; and

4. h = 1000..00︸ ︷︷ ︸
2k

xyc, if and only if g =





10 00..00︸ ︷︷ ︸
2k

xycc if x = y = 1

10 00..00︸ ︷︷ ︸
2k

xcyccc if x 6= y
, where k

is the largest integer satisfying this condition.

For n odd, the conversion is accomplished by applying the same procedure for the
first (n− 1) bits from the left and by keeping the last bit fixed.

The above convention rules can be understood by observing the transition se-
quence TS(n) which we use to construct Gray code Gnop(n). For instance, codewords
of Gref (n) and their counterpart in Gnop(n) will remain the same before passing
through the first integer n− 1 in TS(n). In this case we have rule 1.

When we have passed the first integer n−1, the differences between codewords in
Gnop(n) and their counterpart in Gref (n) depend on whether we have passed or not
the pairs of integers n − 2 and n − 3, n − 4 and n − 5, etc. In this case we have to
apply the second rule.

If we passed the integer n but did not yet pass the second integer n− 1, it implies
that all pairs of integers n − 2 and n − 3, n − 4 and n − 5, etc. have interchanged.
So, the parities of the occurrences of all integers in TS(n) and in T n, n are different.
This is the case rule 3 applies to.

If both the first integer n and the second integer n − 1 have been passed, the
differences between codewords in Gnop(n) and their counterpart in Gref (n) depend
on whether we have passed or not the pairs of integers n − 2 and n − 3, n − 4 and
n− 5, etc. Now rule 4 applies.

We remind the reader of the conversion rules between g = gngn−1...g1 in the n-bit
reflected Gray code and its index i, written as i = inin−1...i1, in binary representa-
tion(see Subsection 2.3.3):

gn = in, gk = ik+1 ⊕ ik for k = 1, 2, ..., n− 1, (4.1)
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in = gn, ik = gk ⊕ ik+1 for k = 1, 2, ..., n− 1. (4.2)

Example 4.1.2. Let us determine the codeword with index 12 in the 4-bit Gray code
with MCHD. The binary representation of 12 is 1100. Using (4.1), we find that the
codeword g = 1010 has index 12 in the 4-bit reflected Gray code. This codeword g is
of type 4, hence its counterpart h is equal to 1001. So, the codeword with index 12
in the 4-bit Gray code with MCHD is equal to 1001.

Example 4.1.3. Assume that we want to obtain the index of h = 01110 in the 5-bit
Gray code with MCHD. This codeword is of type 2. So, g = 01000. By using (4.2),
we have that the binary representation of g is equal to 01111, which stands for the
value of 15. Hence, the index of h = 01110 is equal to 15.

4.1.3 Separability

As has been mentioned before, the list distance of any pair of complementary code-
words in the n-bit Gray code with MCHD is equal to 2n−1 if n is even, and equal to
2n−1 − 1 if n is odd. It is clear that the minimum distance of any pair of codewords
with Hamming distance m = 1 or 2, is equal to 1 and 2 respectively. The following
theorem gives the separability function for all other values of m, 2 < m < n.

Theorem 4.1.6. If the codewords g and h have Hamming distance m, 2 < m < n,
in the n-bit Gray code having TS(n) as its transition sequence, then their list distance
D(g,h) satisfies

(i) if n is odd, then D(g,h) ≥



d2m

3
e if m odd,

2m−2 + 2 if m even,

(ii) if n is even, then D(g,h) ≥



d2m

3
e if m even,

2m−2 + 1 if m odd.

To prove the Theorem we need the following lemma.

Lemma 4.1.7. Let T n be the non-complete transition sequence of the standard Gray
code, and let p and m be such that n ≥ p ≥ m > 1.

(i) If V (p,m− 1) := p, 1, . . . , m− 1 is a subsequence of T n such that m− 1 is the
first such integer to the right of p, then V (p, m−1) contains precisely m distinct
integers 1, 2, . . . , m − 1, p, and m − 2, m − 1 and p are the only integers which
occur an odd number of times.

(ii) If V (p,m − 1,m − 3, . . . ,m − 2k − 1 = 1 or 2) := p, 1, . . . , m − 1, 1, . . . , m −
3, 1 . . . , m − 2k − 1, is a subsequence of T n such that m − i is the first such
integer to the right of m− i+2 for all relevant values of i, then V (p,m−1, m−
3, . . . , m− 2k − 1) contains precisely m distinct integers 1, 2, . . . , m− 1, p, and
all these integers occur an odd number of times.
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(iii) V (p,m−1,m−3, . . . , m−2k−1) is a shortest subsequence satisfying the property
in (ii), and its length is d2m

3
e.

Proof. (i) It is obvious by the structure of T n and by the definition of V (p,m− 1)
that this subsequence contains 1, 2, . . . , m− 1, p and no other integers. It is also
obvious that p and m − 1 occur just once. Moreover, since between any two
integers m − 2 there occurs at least one integer greater than m − 2, we also
have that m− 2 occurs just once. It follows that V (p,m− 1) has the structure
V (p,m−1) = p, Tm−3,m−2, Tm−3,m−1. Since Tm−3 occurs twice, all integers
less than m− 2 occur an even number of times.

(ii) This property follows by building up V (p,m − 1,m − 3, . . . ,m − 2k − 1) as a
concatenation of V (p,m − 1),V (m − 1, m − 3),. . . , V (m − 2k + 1,m − 2k − 1)
and omitting double integers m− 1,m− 3 . . . ,m− 2k + 1.

(iii) From the structure of V (p,m− 1,m− 3, . . . , m− 2k − 1) as a concatenation of
the various subsequences V (a, b), we infer that its length is equal to

(2m−2 + 2m−4 + · · ·+ 1) + 1 =
2m − 1

3
=

2m + 2

3

for even values of m, while for odd values of m the length is

(2m−2 + 2m−4 + · · ·+ 2) + 1 = 2
2m−1 − 1

3
=

2m + 1

3
.

If there were a shortest subsequence with the same property, we should have a
violation of the separability theorem for the standard Gray code.

Now we are ready to prove Theorem 4.1.6.

Proof. We shall only prove the Theorem for the case that n is odd, and omit case n
even since it is similar. Let us consider the transition sequence TS(n), n > 3, and
an integer m, 2 < m < n. Comparing the constructions of TS(n) and of T n, n, we
can see that the differences occur in elements which tend to the integer n after the
occurrences of the integer n− 1.
Let V ′(p,m − 1) := m − 1, 1, . . . , 1, p, 1 < m ≤ p ≤ n, be the subsequence of TS(n)
such that m − 1 is the first such integer to the left of p. We can see that if b is an
odd integer, 1 < b < n− 1, then after the occurrences of the integer n− 1 in TS(n),
we have a subsequence b, T b−2, b− 1, T b−2, b. For the sake of clearness, we replace the
first b by b1 and the second b by b2. Now we have that V ′(p,m− 1) = V (p,m− 1)R

if p 6= b2, for all p < n− 2, where R stands for reversed order.
Let V ′(p,m− 1,m− 3, . . . , m− 2k− 1 = 1 or 2) := m− 2k− 1, . . . , 1,m− 3, 1, . . . , 1,
m − 1, 1 . . . , 1, p, be a subsequence of TS(n) such that m − i is the first such in-
teger to the left of m − i + 2 for all relevant values of i. Then, we also have that
V ′(p,m− 1,m− 3, . . . , m− 2k− 1 = 1 or 2) = V (p,m− 1,m− 3, . . . , m− 2k− 1 = 1
or 2)R, if p 6= b2, for all p < n− 2.
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Now consider the subsequence V (b2,m − 1,m − 3, . . . , m − 2k − 1). Assume that
b2 = n − 2. If m = n − 2 then V (n − 2,m − 1,m − 3, . . . , n − 2k − 1) contains
m + 1 distinct integers 1, 2, ..., n− 3, n− 2 and the integer n. But only 5 integers n,
n−2, n−3, n−4 and 1 occur an odd number of times. The length of this subsequence
is equal to 2 · |T n−4| + |V (n− 3, n− 5, n− 7, ..., 2)|+ 2 = 2 · (2n−4 − 1)+d2n−3

3
e +2,

which is greater than d25

3
e for all n > 5. Here, |S| stands for the length of a sequence

S.

The case b2 = n − 2 with m < n − 2 can be dealt with similarly as the general case
b2 < n− 2 with m < b2, as follows.

Consider a subsequence V (b2,m − 1,m − 3, . . . , n − 2k − 1). The sequence V (p =
b2,m−1,m−3, . . . , n−2k−1) might be different from V (p, m−1,m−3, . . . , n−2k−1)
in the cases m = b2 − 1 and m = b2 − 2. First assume that m = b2 − 1. Notice
that the integer b2 − 2 appears prior to the integer b2 − 3. Here, the positions of
the integers b2 − 2 and b2 − 3 are interchanged compared to their positions in T n.
It implies that the sequence V (b2,m − 1,m − 3, . . . , n − 2k − 1) does not contain
the integer b2 − 3, and hence this sequence only contains m − 1 = b2 − 2 integers
1, 2, . . . , m − 3,m − 1, and b2. The length of this sequence is equal to |T b2−4| +
|T b2−5|+· · ·+|T 3|+|T 1| + |b2, b2−2, b2−4, . . . , 3|= 2b2−4−1+2b2−5−1+· · ·+22−1+1

+ b2−1
2

=2b2−3 − (b2 − 3) + b2−1
2

, which is at least equal to d2b2−2

3
e(the minimum list

distance in T n for any two codewords with Hamming distance m− 1 = b2 − 2).

Secondly, assume that m = b2− 2. The sequence V (b2,m− 1,m− 3, . . . , m− 2k− 1)
contains m + 1 integers 1, 2, . . . , m = b2 − 2, together with the integer b2, but the
integer m− 2 = b2 − 4 occurs an even number of times. The length of this sequence
is equal to 2 · |T b2−4| + |T b2−6| + |T b2−8| + · · · + |T 3| + |T 1| + |b2, b2 − 2, b2 − 3, b2 −
5, b2 − 7, . . . , 4, 2| = 2b2−4 − 1 + 2b2−4 − 1+2b2−6 − 1+2b2−8 − 1+· · ·+8+2 + b2−3

2
=

2b2−4 − 1+2
3
(2b2−3 − (b2 − 4))+2 + b2−3

2
= 2b2−4 + 2b2−2

3
+ 8−b2

3
, which is greater than

d2b2−2

3
e for all relevant values of b2.

The case p = n − 1 in the subsequences V (p,m − 1,m − 3, . . . , m − 2k − 1) and
V ′(p, m − 1,m − 3, . . . , m − 2k − 1) can be dealt with by a similar procedure as
we used for case p = b2, since the integer n − 1 can be considered as b2 w.r.t. the
occurrences of integers following b2.

We see that in any of the above cases, we have that the length of the resulting
subsequences which contain exactly m integers an odd number of times is at least
d2m

3
e. However, the following observation shows that for m even there exists a shorter

subsequence containing exactly m distinct integers which occur an odd number of
times. The subsequence is constructed as follows.

Consider the concatenated subsequence 1, V ′(n, m − 2) with 1 < m < n and m
even. This sequence will contain m distinct integers and all these integers occur
an odd number of times. The length of this sequence is equal to 2 · |Tm−3| + 4(=
|1, n, m− 2,m− 1|) = 2 · (2m−3 − 1) + 4 = 2m−2 + 2.

Remark The separability function b(m) for the reflected binary Gray code, is equal
to d2m

3
e, for all values of m (cf. [80, 79] and also Section 2.1.3 of this thesis). So,

we see that the additional structure of MCHD is at the expense of the separability
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power, since d2m

3
e ≥ 2m−2 + 2, for m > 3.

4.2 A construction of Gray codes inducing com-

plete graphs

The graph GG(n) induced by a Gray code G(n) has vertex set {1, 2, ..., n} and edge
set {{si, si+1} : 1 ≤ i ≤ 2n − 2}, where si is the transition between codewords xi−1

and xi of G(n). The vertices of GG(n) correspond to bit positions, and vertices i and
j are adjacent when bit positions i and j flip consecutively when running through
the list G(n). We emphasize here that the graph GG(n) is considered as an undirected
simple graph, i.e. if a consecutive pair {u, v} occurs more than once in the transition
sequence S(n) or in the complete transition sequence S̄(n), there is only one edge
joining vertices u and v in GG(n). If G(n) is cyclic, the cyclic graph ḠG(n) induced
by G(n) is the graph GG(n) completed with the edges {s2n−1, s2n} and {s2n , s1} which
may be already contained in GG(n). The graphs GG(n) and also ḠG(n) induced by the
binary reflected Gray code of length n is the star Sn with central vertex 1 and edges
{1, i} for all i ∈ {2, . . . , n}. In this section we shall mainly deal with cyclic graphs
ḠG(n) which are identical to the complete graph Kn.

If a Gray code G induces a graph G with transition sequence S, then we also say
that the transition sequence S induces the graph G. A Gray code is called a G-code
(with a G-transition sequence), if it induces a subgraph of G with the same number
of vertices (cf. [8]).
A graph G is called completely Gray if there is a G-transition sequence of a Gray
code starting from any vertex of G. It is obvious that a cyclic Gray code induces a
completely Gray graph. A graph G is Gray connected if for every pair of vertices u
and v there exists a G-transition sequence of a Gray code starting at u and ending
at v. A binary reflected Gray code is an example of a Gray code inducing a graph
which is completely Gray as well as Gray connected.

The following two facts were proved in [8].

Theorem 4.2.1. For any two leaves u and v of the star Sn, there exists a cyclic
Sn-transition sequence of a Gray code of length n which starts at u and ends at v if
and only if u 6= v.

Since the complete graph Kn contains the star Sn as a spanning tree, the following
fact is an immediate consequence of Theorem 4.2.1.

Corollary 4.2.2. The complete graph Kn is Gray connected.

We remark here that when a graph is Gray connected it does not imply that this
graph is induced by some Gray code. Let us take the complete graph K3. It is easy
to verify that K3 is Gray connected, but there is no Gray code which induces K3(the
”connecting Gray codes” induce a subgraph of K3, but not K3 itself).
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A Gray code G(n) inducing the complete graph Kn is characterized by the con-
secutiveness of integers i and j, for all 1 ≤ i, j ≤ n, at least once in the transition
sequence S(n). For instance, a cyclic Gray code of length 4, having transition sequence
S̄(4) = 1, 2, 1, 3, 4, 3, 1, 2, 3, 2, 4, 2, 1, 4, 3, 4, will induce the complete graph K4, and a
cyclic Gray code of length 5, having transition sequence

S̄(5) := 1, 2, 3, 4, 5, 1, 5, 2, 3, 5, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 1, 5, 3, 4, 1, 5, 2, 5, 3, 4, 1, 3,

induces K5, as one can immediately verify by observing that any pair {i, j} occurs as
a pair of consecutive integers i and j at least once, for 1 ≤ i 6= j ≤ 4.

As remarked in [89], the largest Gray code known to induce a complete graph is
a Gray code of length 8 appearing in [87]. With respect to complete graphs induced
by Gray codes, Wilmer and Ernst in [89] posed the following problem.

Problem 4.2.1. Construct an n-bit Gray code which induces the complete graph Kn,
for all n ≥ 1.

In this section we shall mainly deal with Problem 4.2.1. We introduce a technique
for the construction of Gray codes inducing complete graphs. This technique is based
on extended versions of the Gray construction due to Bakos [1], and also to Robinson
and Cohn [60] who independently developed a related technique. We also refer to
[72, 77], where we used a similar technique for the construction of totally balanced
and exponentially balanced Gray codes. An extended construction was formulated
earlier as Theorem 3.2.2, and another one will be formulated as Theorem 4.2.3 in Sub-
section 4.2.1 below. In Subsection 4.2.2 we discuss a technique how to make use of
this extended construction to produce Gray codes inducing complete graphs. At the
end of Subsection 4.2.2, we construct a Gray code of length 9 which induces the com-
plete graph K9, thus demonstrating our technique for the first unknown case n = 9.
Finally, in Subsection 4.2.3 we suggest a related problem for further investigation.

4.2.1 Another extension of Bakos’ Gray construction

The following extended Gray construction of Bakos’ method, formulated as Theorem
4.2.3, holds for odd length of l. Our technique described in Subsection 4.2.2 for build-
ing Gray codes inducing complete graphs, is based on Theorem 3.2.2 and on Theorem
4.2.3. This technique is recursive, i.e. for constructing an n-bit Gray code inducing
Kn it starts from an (n− 2)-bit Gray code inducing Kn−2.

Theorem 4.2.3. Let S̄(n − 2) := u0, sj1 , u1, sj2 , ..., ul−1, sjl
, ul, s2n be the transition

sequence of an (n − 2)-bit Gray code, where each uk is a possibly empty sequence of
transitions, and l is odd. Then the sequence
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u0, sj0 , u1, ..., sjl
, ul, n− 1,

uR
l , n, ul, n− 1, uR

l , sjl
,

uR
l−1, n− 1, ul−1, n, uR

l−1, sjl−1
,

...
uR

1 , n, u1, n− 1, uR
1 , sj1 ,

uR
0 , n− 1, u0, n, uR

0 , n− 1,

is the transition sequence of an n-bit Gray code.

Proof. Again the proof is immediate from Lemma 3.2.1 of Chapter 3.

Notice that Gray constructions of Theorem 3.2.2 and of Theorem 4.2.3 has the
following important property with respect to our needs in this section. If transitions
sji

and sji+1
in the sequence T := sj0 , sj1 , . . . , sjl

sandwich a single transition i in the
transition sequence S̄(n − 2), then in the transition sequence S̄(n) of the resulting
Gray code the integers i and n − 1 as well as the integers i and n are consecutive.
For example let us consider a Gray code of length 3 with transition sequence S̄(3) =
1,2, 1,3,1, 2, 1, 3. Assume that we set the sequence T := sj1 , sj2 , sj3 = 2, 3, 1 (bold
faces in S̄(3)). On this choice of the sequence T , an integer 1 is sandwiched by sj1 = 2
and sj2 = 3. Applying Theorem 4.2.3, the resulted Gray code will have the transition
sequence S̄(5) = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 5, 2, 1, 4, 1, 2, 1, 4, 5, 3, 1 , 5, 1 , 4, 1 , 2, 1, 4, 1, 5, 1, 4.
We see that the integer 1 (italic faces in S̄(5)) is consecutive with the integers 4 and
5.

4.2.2 Constructing Gray codes which induce
complete graphs

The following lemma says that if we have a complete transition sequence S̄(n) in-
ducing the complete graph Kn, then we can find some k such that in S̄(n) := S̄(n)k,
the new transition sequence S(n) still has the property that for every pair {i, j},
1 ≤ i 6= j ≤ n, there is at least one location in S(n) where i and j are consecutive
elements. We shall speak of a consecutive pair {i, j}.
Lemma 4.2.4. Let the complete transition sequence S̄(n), n ≥ 5, induce the complete
graph Kn. There exists some k, 1 ≤ k ≤ 2n, such that the (non-complete) transition
sequence S(n) defined by S̄(n) := S̄(n)k, contains at least one consecutive pair {i, j},
for all i, j ∈ [n] with i 6= j.

Proof. Assume we have ki integers i ∈ [n] in S̄(n). Since S̄(n) generates Kn, every
integer i ∈ [n] must be consecutive at least once to all integers in [n]\{i} in S̄(n).
This implies that ki ≥ dn−1

2
e for every i ∈ [n]. We index each integer i ∈ [n] in S̄(n)

from 1 to ki. Let ail and bil be a pair of transitions in S̄(n) squeezing the integer
il, 1 ≤ l ≤ ki. First, let us consider the integer 1. Take n1 ≤ n − 1 subsequences
a1l

, 1l, b1l
of length 3 such that

⋃
j∈I1

{a1j
, b1j

} = [n]\[1], where I1 is some subset of [k1]
with cardinality n1. Let S1 be the concatenated sequence of these n1 subsequences
a1l

, 1l, b1l
where the order of its elements is the same as in S̄(n), i.e. x precedes y in
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S1 if and only if x precedes y in S̄(n). Notice that it is possible that b1j
and a1j+1

are the same transitions in S̄(n), for some j ∈ I1. So, the length of the sequence S1

is less than or equal to 3n1 ≤ 3(n− 1). Moreover, the sequence S1 has the property
that the integer 1 is consecutive to every integer in [n]\[1].
Next, consider the integer 2. Notice that the integer 2 is already known to be con-
secutive to the integer 1 in S1. Take n2 ≤ n − 2 subsequences a2l

, 2l, b2l
such that⋃

j∈I2
{a2j

, b2j
} = [n]\[2], where I2 is some subset of [k2] with cardinality n2. Let S2 be

the concatenated sequence of these n2 subsequences a2l
, 2l, b2l

where its elements are
again ordered as they are in S̄(n). Notice again that it is possible that the integers
b2j

and a2j+1
are the same transitions in S̄(n), for some j ∈ I2. So, the length of

the sequence S2 is less than or equal to 3n2 ≤ 3(n − 2). Let the sequence S1,2 be
the sequence which consisting of the elements of S1 and S2, where the order of these
elements is the same as in S̄(n). By the construction of S1 and S2, it is clear that
the integers 1 and 2 are consecutive to all other integers in [n] in the sequence S1,2.
Since it is also possible that air and ajs or bix and bjy are the same transitions in S̄(n)
for some r, x ∈ ki and some s, y ∈ kj, the length of the sequence S1,2 is less than or
equal to the sum of the lengths of S1 and S2. If we continue this process until the
integer n − 1, then we obtain a sequence S1,2,...,n−1 consisting of S1, S2, ..., Sn−1 with
the property that the integers 1, 2, ..., n − 2 and n − 1 are consecutive to all other
integers from [n]. We emphasize that the elements in S1,2,...,n−1 are ordered in the
same way as in S̄(n). The length of the sequence S1,2,...,n−1 is less than or equal to

3n1 + 3n2 + · · ·+ 3.2 + 3 ≤ 3(n− 1) + 3(n− 2) + · · ·+ 3.2 + 3

=
3

2
n(n− 1)

< 2n − 1 (=the length of S(n)),

for all n ≥ 5. Hence, there exists at least one transition, say sk, in S̄(n) which is
not in S1,2,...,n−1. For our convenience we rename S̄(n)k by S̄(n). Now the closing
transition of S̄(n) is sk, and hence the non-complete transition sequence S(n) defined
by this S̄(n) will contain S1,2,...,n−1, and therefore S(n) has the property that for all
i 6= j ∈ [n], the pair {i, j} occurs at least once in S(n) as a pair of consecutive
transitions.

Now we are ready to introduce Construction 4.2. Since there is no Gray code G(3)
which induces the complete graph K3, our technique can only be applied to codeword
length n ≥ 4.
As is stated right after Theorem 3.2.2, we use the notation T for the sequence con-
sisting of all l transitions si1 , si2 , ..., sil in Theorem 4.2.3.

Let G(n − 2), n ≥ 6, be a Gray code inducing Kn−2, which has transition sequence
S̄(n− 2).

Construction 4.2

1. Shift in cyclic sense, if necessary, the transitions sequence S̄(n − 2) such that
S(n− 2) satisfies the condition in Lemma 4.2.4.
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2. Mark n− 2 transitions 1, 2, ..., n− 2 in S(n− 2)\{s1, s2n−1}.
3. Define T to be the sequence consisting of all transitions in S(n − 2) squeezing

the marked transitions of Step 2. Put an additional element s1 at the front of
T , if the first transition is unequal to s1.

4. Apply Theorem 3.2.2 or Theorem 4.2.3 using this sequence T .

Example 4.2.1. Consider again a Gray code of length 4 inducing the complete graph
K4 with transition sequence S̄(4) := 1, 2, 1, 3, 4, 3, 1, 2, 3, 2, 4, 2, 1, 4, 3, 4. It is easy
to see that the corresponding transition sequence S4 satisfies already the condition
described in Lemma 4.2.4. We now mark the transitions s2 = 2, s4 = 3, s7 = 1, s11 = 4
in S4\{s1, s24−1}. The sequence T will consist of the transitions s1, s3, s5, s6, s8, s10,
and s12 in S4. Then, by applying Theorem 4.2.3, since |T | is odd, with this sequence
T, we obtain a 6-bit Gray code with transition sequence

S̄(6) := 1, 2, 1, 3, 4, 3, 1, 2, 3, 2, 4, 2, 1, 4, 3, 5, 3, 4, 1, 6, 1, 4, 3, 5, 3, 4, 1, 2, 4, 5, 4, 6,

4, 2, 3, 6, 3, 5, 3, 2, 1, 5, 1, 6, 1, 3, 6, 5, 4, 3, 5, 3, 6, 3, 1, 2, 6, 2, 5, 2, 1, 5, 6, 5.

One can easily verify that the transition sequence S̄(6) induces the complete graph
K6, by observing that each pair {i, j} occurs at least once as a consecutive pair, for
all i 6= j, 1 ≤ i, j ≤ 6.

Next we consider a Gray code G(5) with transition sequence.

S̄(5) := 1, 2, 3, 4, 5, 1, 5, 2, 3, 5, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 1, 5, 3, 4, 1, 5, 2, 5, 3, 4, 1, 3.

One can verify that this transition sequence induces the complete graph K5, and
moreover that the transition sequence S5 has the property described in Lemma 4.2.4.
Now we mark 5 non-consecutive transitions s2 = 2, s4 = 4, s6 = 1, s9 = 3, and s22 = 5
in S̄(5). The sequence T will consist of transitions s1, s3, s5, s7, s8, s10, s21, and s23

in S(5). Using this sequence T in Theorem 3.2.2, Step 4 of Construction 4.2 now
produces the following transition sequence.

S̄(7) := 1, 2, 3, 4, 5, 1, 5, 2, 3, 5, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 1, 5, 3, 4, 1, 5, 2, 5, 3, 4, 1, 6,

1, 4, 3, 5, 2, 5, 1, 4, 7, 4, 1, 5, 2, 5, 3, 4, 1, 6, 1, 4, 3, 5, 2, 5, 1, 4, 3, 5, 6, 5, 7, 5,

1, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 7, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 6, 3, 2, 3, 4, 1, 4, 3, 2, 4,

2, 5, 3, 6, 3, 7, 3, 2, 7, 6, 5, 1, 6, 1, 7, 1, 5, 4, 7, 4, 6, 4, 3, 2, 6, 2, 7, 2, 1, 7, 6, 7.

Again, one can easily verify that S̄(7) induces the complete graph K7.

Theorem 4.2.5. A Gray code G(n) resulting from Construction 4.1 induces the com-
plete graph Kn.

Proof. First we remark that Steps 1 and 2 of Construction 4.2 are valid, because of
Lemma 4.2.4. The transition sequence S̄(n−2) induces, by assumption, the complete
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graph Kn−2, i.e. every pair {i, j} of bit positions i and j, 1 ≤ i, j ≤ n − 2, occurs
at least once as a consecutive pair in S̄(n− 2). Step 1 of Construction 4.2 says that
this last property is preserved in the transition sequence S(n− 2). This implies that
the property is also preserved in the transition sequence S̄(n)(See Theorem 3.2.2 and
Theorem 4.2.3), and hence, for every 1 ≤ i, j ≤ n− 2, the pair {i, j} occurs at least
once as consecutive pair in S̄(n).
Since, for every i in [n−2], we can select ai and bi in T such that ai, i, bi is consecutive
in S(n−2), by Theorem 3.2.2 or Theorem 4.2.3, we have in the new transition sequence
S̄(n), a subsequence ai, i, n−1, i, n, i, bi or ai, i, n, i, n−1, i, bi indicating that for every
i ∈ [n − 2] there are consecutive pairs {i, n − 1} and {i, n} in S̄(n). The choice of
transition s1 at the front of T , implies u0 = ∅, hence there is also a consecutive pair
of integers n − 1 and n in S(n)(See again Theorem 3.2.2 and Theorem 4.2.3). So,
S̄(n) has the property that for every i 6= j ∈ [n], the pair {i, j} occurs at least once
as a consecutive pair in S̄(n), and therefore induces the complete graph Kn.

As mentioned before, there is no Gray code of length 3 which induces the complete
graph K3. However, the Gray codes of length 1 and 2 do induce the complete graphs
K1 and K2, respectively. Since Construction 4.2 works for n ≥ 6, and since it is known
from Example 4.2.1 that there are Gray codes of length 4 and 5 which induce the
complete graphs K4 and K5, respectively, we have proved now the following theorem.

Theorem 4.2.6. For every n ≥ 1, n 6= 3, there exists a Gray code of length n which
induces the complete graph Kn.

From Example 4.2.1 we have a 7-bit Gray code inducing the complete graph K7

with transition sequence

S̄(7) := 1, 2, 3, 4, 5, 1, 5, 2, 3, 5, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 1, 5, 3, 4, 1, 5, 2, 5, 3, 4, 1, 6,

1, 4, 3, 5, 2, 5, 1, 4, 7, 4, 1, 5, 2, 5, 3, 4, 1, 6, 1, 4, 3, 5, 2, 5, 1, 4, 3, 5, 6, 5, 7, 5,

1, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 7, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 6, 3, 2, 3, 4, 1, 4, 3, 2, 4,

2, 5, 3, 6, 3, 7, 3, 2, 7, 6, 5, 1, 6, 1, 7, 1, 5, 4, 7, 4, 6, 4, 3, 2, 6, 2, 7, 2, 1, 7, 6, 7.

To apply Construction 4.2, we introduce a sequence T consisting of transitions

s1, s3, s5, s7, s8, s10, s21, s23, s31, s33, s40, s42.
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The resulting transition sequence is

S̄(9) := 1, 2, 3, 4, 5, 1, 5, 2, 3, 5, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 1, 5, 3, 4, 1, 5, 2, 5, 3, 4, 1, 6,

1, 4, 3, 5, 2, 5, 1, 4, 7, 4, 1, 5, 2, 5, 3, 4, 1, 6, 1, 4, 3, 5, 2, 5, 1, 4, 3, 5, 6, 5, 7, 5,

1, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 7, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 6, 3, 2, 3, 4, 1, 4, 3, 2, 4,

2, 5, 3, 6, 3, 7, 3, 2, 7, 6, 5, 1, 6, 1, 7, 1, 5, 4, 7, 4, 6, 4, 3, 2, 6, 2, 7, 2, 1, 7, 6, 8,

6, 7, 1, 2, 7, 2, 6, 2, 3, 4, 6, 4, 7, 4, 5, 1, 7, 1, 6, 1, 5, 6, 7, 2, 3, 7, 3, 6, 3, 5, 2, 4,

2, 3, 4, 1, 4, 3, 2, 3, 6, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 7, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 1, 5,

7, 5, 6, 5, 3, 4, 1, 5, 2, 5, 3, 4, 1, 6, 1, 4, 3, 5, 2, 5, 1, 9, 1, 5, 2, 5, 3, 4, 1, 6, 1, 4,

3, 5, 2, 5, 1, 4, 3, 5, 6, 5, 7, 5, 1, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 7, 2, 4, 2, 3, 4, 1, 4, 3,

2, 3, 6, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 5, 3, 6, 3, 7, 3, 2, 7, 6, 5, 1, 6, 1, 7, 1, 5, 4, 7, 4,

6, 4, 3, 2, 6, 2, 7, 2, 1, 7, 6, 8, 6, 7, 1, 2, 7, 2, 6, 2, 3, 4, 6, 4, 7, 4, 5, 1, 7, 1, 6, 1,

5, 6, 7, 2, 3, 7, 3, 6, 3, 5, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 6, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 7,

2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 1, 5, 7, 5, 6, 5, 3, 4, 1, 5, 2, 5, 3, 4, 1, 6, 1, 4, 3, 5, 2, 5,

1, 4, 7, 8, 7, 9, 7, 4, 1, 5, 2, 5, 3, 4, 9, 4, 3, 5, 2, 5, 1, 8, 1, 5, 2, 5, 3, 4, 1, 6, 8, 6,

9, 6, 1, 4, 3, 5, 2, 5, 1, 4, 9, 4, 1, 5, 2, 5, 3, 4, 8, 4, 3, 5, 2, 5, 1, 4, 3, 5, 8, 5, 9, 5,

1, 3, 2, 3, 4, 1, 4, 3, 2, 4, 2, 9, 2, 4, 2, 3, 4, 1, 4, 3, 2, 3, 8, 3, 2, 3, 4, 1, 4, 3, 2, 4,

2, 5, 3, 8, 3, 9, 3, 2, 9, 8, 5, 1, 8, 1, 9, 1, 5, 4, 9, 4, 8, 4, 3, 2, 8, 2, 9, 2, 1, 9, 8, 9.

Because of Theorem 4.2.5 we may conclude that this transition sequence S̄(9)
induces the complete graph K9, as can also easily be verified.

4.2.3 Conclusions

In the previous section we introduced a recursive technique how to construct a Gray
code inducing a complete graph. Furthermore, we showed that for every n 6= 3 an
n-bit Gray code exists which induces the complete graph Kn, and hence we solved
Problem 4.2.1 of Wilmer and Ernst in [89].
As for digraphs, Wilmer and Ernst in [89] also proved the existence of a Gray code
of any length n ≥ 6, the graph of which contains no bi-directional edges. This gives
rise to the following problem.

Problem 4.1 Does there exist an n-bit Gray code, for every n ≥ 6, which induces
the complete graph Kn, and which has no bi-directional edges?

We remark that the extended Gray construction described in Subsection 4.2.1
can not be used to construct Gray codes specified in Problem 4.1, since the resulting
sequence will contain subsequences of type u, n−1, uR, n, u and of type u, n, uR, n−1, u
which take care that the induced graphs contain bi-directional edges {i, n − 1} and
{i, n} and also {j, n− 1} and {j, n}, where i and j are the first and last transition in
u, respectively.



5
Balanced Maximum Counting

Sequences and Uniform Counting
Sequences

We discuss some specific counting sequences which are called maximum counting
sequences and uniform counting sequences. We introduce a number of constructions
for these types of counting sequences. Some of the constructions have the advantage
of producing maximum counting sequences and uniform counting sequences which
are balanced as well. These constructions enable us to settle a few conjectures of
Robinson and Cohn [60] in positive sense.

5.1 Maximum counting sequences

Sometimes one needs a counting sequence such that the number of bit changes from a
codeword to its successor is as large as possible, for example when testing a physical
circuit for reliable behavior in worst-case conditions (see e.g. [32, Exercise 67, p. 35]
or [60]). As is discussed in Chapter 1, a sequence which satisfies this criterium is
called a maximum counting sequence, i.e. a counting sequence O(n) with average
Hamming distance dA = n − 1

2
(cf. Theorem 1.2.1). The counting sequence listed in

Figure 5.1, is an example of a maximum counting sequence of length 4.

We can observe that the Hamming distance between two successive codewords is
alternating between three and four. It implies that the average Hamming distance of
this sequence is equal to (3.8+4.8)/16 = 4− 1

2
= 31

2
which proves the sequence to be

a maximum counting sequence. In general, a maximum counting sequence of length
n > 1 has the property that Hamming distance between two successive codewords
is alternating between n and n − 1. Thus, it is easy to understand that any two

71
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0000 0110
1111 1001
0001 0111
1110 1000
0011 0101
1100 1010
0010 0100
1101 1011

Figure 5.1: A maximum counting sequence of length 4.

codewords sandwiching another codeword will have Hamming distance exactly one.
Hence we have the following theorem.

Theorem 5.1.1 (Robinson-Cohn [60]). A maximum counting sequence consists of
two interlaced cyclic Gray sequences such that every other pair of successive codewords
are each other’s complement.

One immediate corollary of Theorem 5.1.1 is the following.

Corollary 5.1.2. The two interlaced cyclic Gray sequences in a maximum counting
sequence have the same transition sequence.

Proof. Let x0,x1,x2,x3, . . . ,x2n−2,x2n−1 be a maximum counting sequence. Then,
according to Theorem 5.1.1, the sequences x0,x2,x4, . . . ,x2n−2 and x1,x3,x5, . . . ,x2n−1

form cyclic Gray sequences. Without loss of generality, let xi ⊕ xi+1 = 1 for even
values of i (hence |xi+1 ⊕ xi+2| = n − 1 and xi+2 ⊕ xi+3 = 1). Consider any four
consecutive codewords xi,xi+1,xi+2,xi+3, in the maximum counting sequence, where
indices are modulo 2n and i is even. Assume that xi and xi+2 differ in bit position j.
So, xi+1 j = xi+2 j. Since, xi+2 ⊕ xi+3 = 1, xi+3 j = xi+2 j ⊕ 1 6= xi+1 j.

As was defined in Chapter 1, a counting sequence of codeword length n is called
balanced, if it satisfies |TCO(n)(i)−TCO(n)(j)| ≤ 2, and it is said to be totally balanced
if |TCO(n)(i)−TCO(n)(j)| = 0, for every 1 ≤ i, j ≤ n (cf. [60]). The following sequence,
shown in Figure 5.2, is an example of a balanced maximum counting sequence of
length 5 with transition count spectrum (28, 30, 30, 28, 28).

Robinson and Cohn in [60] introduced a simple construction for producing maxi-
mum counting sequences. For constructing a maximum counting sequence of length
n, they start with a cyclic Gray code of length n − 1, and then add prefix zero to
each codeword. The construction is continued by inserting the complement of each
extended codeword right after the codeword itself. The resulting sequence is a max-
imum counting sequence of length n. However, it will be clear that the resulting
maximum counting sequence is not balanced, except for n = 2 and 3. This is because
the transition count of the n-th bit is always equal to 2n, and therefore, there is at
least one bit position which has transition count at most 2n − 4 due to the defining
equation of dA
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M5

00000 01100
11111 10011
00001 01101
11110 10010
00011 01111
11100 10000
00010 01110
11101 10001
00110 01010
11001 10101
10110 11010
01001 00101
10100 11000
01011 00111
00100 01000
11011 10111

Figure 5.2: A 5-bit balanced maximum counting sequence.

n∑
i

TCO(n)(i) = 2ndA,

which is satisfied by any counting sequence.

Furthermore, Robinson and Cohn claim that all maximum counting sequences of
length 2, 3, and 4 have a form which corresponds to their construction. It implies
that there is some bit position in any sequence of length n the transition count of
which is equal to 2n, for 2 ≤ n ≤ 4. Due to the above equality, we may conclude
that there is no balanced maximum counting sequence of length four. This can also
be verified by inspection.

Conjecture 5.1.3 (Robinson-Cohn [60]). For every n > 1, n 6= 4, a balanced
maximum counting sequence exists.

In the remaining part of this section we introduce two constructions for obtaining
maximum counting sequences. One of these is a recursive method, while the other is
inspired by Theorem 5.1.1, and will be explicitly formulated as Theorem 5.1.5 below.
This last construction has the advantage that the constructed maximum counting
sequences are balanced as well.
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We start with our first construction. To this end, we introduce some special no-
tation. If L is an ordered list, [ab]L stands for a list obtained by putting prefix a to
each codeword of L having an even index and prefix b otherwise.

For example, let L := 00, 01, 11, 10. Then we obtain

[01]L := 000, 101, 011, 110;
[10]L := 100, 001, 111, 010;
[01]LR := 010, 111, 001, 100.

Furthermore, the list obtained from the list L by complementing each codeword of L
will be denoted by LC . In the above example we have

LC := 11, 10, 00, 01, and
([10]L)CR := (([10]L)C)R = 101, 000, 110, 011.

Construction 5.1

Let Mn−1 be a maximum counting sequence of length n− 1. Then the sequence

Mn := [01]Mn−1, [10]MRC
n−1,

is a maximum counting sequence of length n.

Example 5.1.1. Applying Construction 5.1 to the maximum sequence M3 provides
us with a maximum sequence M4.

M3 M4

000 0000 1010
111 1111 0101
001 0001 1011
110 1110 0100
011 0011 1001
100 1100 0110
010 0010 1000
101 1101 0111

It is easy to understand, that Construction 5.1 in general really produces a maximum
counting sequence Mn if the sequence Mn−1 is a maximum counting sequence. Let
cn(i), 1 ≤ i ≤ n, be the transition count of the integer i in a counting sequence n. An
obvious property of Mn which is constructed using Construction 5.1, is formulated as
the following theorem.
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Theorem 5.1.4. Let Mn−1 be a maximum counting sequence with transition count
spectrum

(cn−1(1), cn−1(2) . . . , cn−1(i), . . . , cn−1(n− 1)),

and let i be the unique position where the last and the first codeword in Mn−1 have
equal components. Then the resulting maximum counting sequence Mn has transition
count spectrum

(2cn(1), 2cn(2), . . . , 2cn−1(i) + 2, . . . , 2cn(n− 1), cn(n) = 2n − 2).

From Example 5.1.1, we know that the transition count spectrum of M3 is (8, 6,
6). The zero bit of the last codeword of M3 is in position 2, and therefore we have
that the transition count spectrum of M4 is (14, 16 14, 12). Indeed, this sequence has
the maximal averaged Hamming distance 31

2
.

A Gray sequence of length n with period 2n−1 such that no two codewords are
complements of each other will be called a half Gray sequence of length n. Because
of Corollary 5.1.2, the following statement seems to be obvious. If we have a cyclic
balanced Gray sequence of length n with period 2n−1 such that no two codewords are
complements of each other, then by inserting complement right after each codeword
of the given Gray sequence, we obtain a balanced maximum sequence of length n. In
the next, the transition sequence of a cyclic Gray sequence of length n with period
2n−1 satisfying the requirement that no two codewords are complementary to each
other, will be denoted by Sh(n). The sequence M5 of Figure 5.2 yields an example
of this notion. The boldfaced codewords in M5 constitute a cyclic balanced Gray
sequence with transition sequence Sh(5) = 1, 2, 1, 3, 5, 2, 5, 4, 1, 2, 1, 3, 5, 2, 5, 4. In the
next, a cyclic Gray sequence generated by a transition sequence Sh(n) is occasionally
called a cyclic half Gray sequence or a half Gray cycle of length n.

Theorem 5.1.5. Let a0, a1, . . . , a2n−1−1, be an n-bit balanced half Gray cycle of length
n such that ai ⊕ aj 6= 1 for every 0 ≤ i, j < 2n−1. Then the sequence M :=
a0,b0, a1,b1, . . . , a2n−1−1,b2n−1−1 with ai ⊕ bi = 1, 0 ≤ i < 2n−1, is a balanced
maximum counting sequence of length n. Furthermore, if the list a0, a1, . . . , a2n−1−1,
has transition count spectrum (c(1), c(2), ..., c(n)), then the transition count spectrum
of M is (2n − c(1), 2n − c(2), ..., 2n − c(n)).

Proof. It will be clear that the period of M is equal to 2n. It is also obvious that M is a
maximum counting sequence by construction. Since a0, a1, . . . , a2n−1−1 is assumed to
be balanced, |c(i)−c(j)| ≤ 2 for all 1 ≤ i, j ≤ n. Let Sh(n) be the transition sequence
of the n-bit Gray cycle. Consider codewords ai−1 and ai which differ in position si.
Then it is easy to see that bi−1 and ai are equal in position si. Since the occurrence
of each si in Sh(n) decreases the transition count of M in the column si by one, the
total transition count of bit position si will be equal to tcn(si) := 2n − c(si). The
assumption that |c(i)− c(j)| ≤ 2, 1 ≤ i, j ≤ n, implies that |tcn(i)− tcn(j)| ≤ 2.

The problem now is to determine half Gray cycles Gh(n) of length n and of period
2n−1 as mentioned in Theorem 5.1.5 or to obtain sequences Sh(n) for certain values
of n. The following subsection will solve this problem.
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5.1.1 A construction of Gray sequences

For the sake of clearness, a Gray sequence of length n and of period p will be denoted
by G(n|p). Let SG(n|p) be the complete transition sequence of a Gray sequence G(n|p).
Let u be a subsequence of SO(n|p) which may be empty and let uR be the sequence
obtained from u by reversing its order.

The following theorem formulates a construction of Gray sequence from a Gray
sequence of smaller length. This Gray sequence construction is a generalization of the
Gray code construction formulated in Theorem 3.2.2. We also emphasize here that
the construction can be adjusted easily such that it holds for l is odd.

Theorem 5.1.6. Let SG(n−2|p) := u0, sj1 , u1, sj2 , u2, , . . . , sjl
, ul, sp be the complete

transition sequence of an (n − 2)-bit cyclic Gray sequence, where each ui is a pos-
sibly empty sequence of transitions, and where l is even. Then the sequence

S := u0, sj1 , u1, sj2 , u2, . . . , sjl
, ul, n− 1,

uR
l , n, ul, n− 1, uR

l , sjl
,

uR
l−1, n− 1, ul−1, n, uR

l−1, sjl−1
,

...
uR

1 , n− 1, u1, n, uR
1 , sj1 ,

uR
0 , n, u0, n− 1, uR

0 , n,

is the complete transition sequence of an n-bit cyclic Gray sequence of period 4p.

Notice that if p = 2n−2, the Theorem will be the same as Theorem 3.2.2. Therefore,
we may infer that a proof of the Theorem can be completed using Lemma 3.2.1.

Example 5.1.2. SG(3|6) = 1, 2, 3, 1, 2, 3 is the complete transition sequence of a 3-
bit cyclic Gray sequence 000, 001, 011, 111, 110, 100. Take u0 = 1, sj1 = 2, u1 = ∅,
sj2 = 3, and u2 = 1, 2. Then the resulting sequence S is equal to 1, 2, 3, 1, 2, 4, 2, 1,
5, 1, 2, 4, 2, 1, 3, 4, 5, 2, 1, 5, 1, 4, 1, 5.

As we did w.r.t. Theorem 3.2.2, we shall denote the sequence sj1 , sj2 , . . . , sjl
, in

Theorem 5.1.6 by T . Thus the length of sequence T is equal to l. Notice again that
sequence T does not include the closing transition sp.

If we assume that G(n − 2|p) and G(n|4p) in Theorem 5.1.6 start from the zero
codeword, then it is obvious that the list of the first p codewords of G(n|4p) is equal to
00G(n− 2|p), where 00G(n− 2|p) stands for the sequence G(n− 2|p) the codewords
of which have prefix 00. Now, let G(n|4p) be equal to the concatenated sequence
00G(n− 2|p), G(n|3p). The following corollary is obvious.

Corollary 5.1.7. For every x ∈ G(n|3p) one has that x = aby, for some y ∈
G(n− 2|p), with ab ∈ {01, 11, 10}.

A Gray sequence G(n|2n−1) of length n and of period 2n−1 satisfying the property
that no two codewords in G(n|2n−1) are complements of each other will be called a
half Gray sequence. Let G(n) be a cyclic Gray code of length n. Then the sequence



5.1 Maximum counting sequences 77

0G(n) is a cyclic half Gray sequence of length n + 1. Hence, we can conclude that
a cyclic half Gray sequence of length n exists for every n ≥ 1. Theorem 5.1.8 shows
that a cyclic half Gray sequence of length n can also be constructed from an existing
half Gray sequence of length n− 2 using Theorem 5.1.6.

For the simplicity, a cyclic half Gray sequence of length n will be denoted by
Gh(n) and the transition sequence which generates Gh(n) will be denoted by Sh(n).
Furthermore, 1n will stand for the n-bit codeword all components of which are 1.

Theorem 5.1.8. Let Gh(n−2) be a cyclic half Gray sequence with transition sequence
Sh(n− 2). Then the list L of codeword length n generated when using Theorem 5.1.6
with Sh(n− 2) as basis of the construction, is a cyclic half Gray sequence.

Proof. The sequence L is a Gray sequence as is guaranteed by Theorem 5.1.6. We just
need to show that every pair of codewords in L are not complements of each other. Let
x1 and x2 be two different codewords in L. According to Corollary 5.1.7, we have that
x1 = aby1 and x2 = cdy2, for some y1,y2 ∈ Gh(n− 2), with ab, cd ∈ {00, 01, 11, 10}.
Since x1 ⊕ x2 6= 1n−2, we conclude that y1 ⊕ y2 6= 1n.

We close this section by showing some examples where Theorem 5.1.6 is applied to
construct cyclic half Gray sequences of length n from cyclic Gray sequences of length
n− 2.

Example 5.1.3. Let us consider Sh(5) = 1, 2, 1, 3, 5, 2, 5, 4, 1, 2, 1, 3, 5, 2, 5, 4 which
corresponds to the list shown in Figure 2.a. The transition count spectrum of the
cyclic half Gray sequence generated by Sh(5) is (4, 4, 2, 2, 4). Shift Sh(5) cyclicly to
the form

4, 1, 2, 1, 3, 5, 2, 5, 4, 1, 2, 1, 3, 5, 2, 5.

Choose the sequence T consisting of the underlined transitions. Apply Theorem 5.1.6
to obtain the following complete transition sequence of a cyclic half Gray sequence of
length 7 with period 26

4, 1, 2, 1, 3, 5, 2, 5, 4, 1, 2, 1, 3, 5, 2, 6, 2, 5, 3, 1, 7, 1, 3, 5, 2, 6, 2, 5, 3, 1, 2, 6,
7, 1, 4, 7, 4, 6, 4, 5, 6, 7, 2, 7, 6, 5, 3, 6, 3, 7, 3, 1, 7, 6, 2, 6, 7, 1, 4, 7, 4, 6, 4, 7.

One can verify by inspection that this sequence is really an Sh(7). Also by inspection,
we find that the cyclic half Gray sequence generated by Sh(7) has transition count
spectrum (10, 10, 8, 8, 8, 10, 10).
If we want to construct an Sh(9) from this Sh(7) we can do so by defining a sequence T
of length 28 as basis of the construction of Theorem 5.1.6 which consists of six integers
1, 2 and 6 each, two integers 3, 4, and 5 each, and four integers 7. For instance, we can
choose the underlined integers in Sh(7) for the sequence T . The resulting Sh(9) will
generate a cyclic half Gray sequence of length 9 which has transition count spectrum
(28, 28, 28, 28, 28, 28, 28, 30, 30).
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Example 5.1.4. The cyclic half Gray sequence which is shown in Figure 2.b. has
transition sequence

Sh(6) = 1, 6, 2, 3, 5, 3, 4, 6, 5, 4, 1, 3, 1, 4, 1, 3, 5, 6, 4, 3, 5, 4, 2, 1, 2, 3, 2, 1, 2, 4, 2, 6,

and transition count spectrum (6, 6, 6, 6, 4, 4).
Shift the sequence Sh(6) cyclicly, such that an integer having transition count 6 is the
closing transition. For example, we write Sh(6) as the sequence

6, 2, 3, 5, 3, 4, 6, 5, 4, 1, 3, 1, 4, 1, 3, 5, 6, 4, 3, 5, 4, 2, 1, 2, 3, 2, 1, 2, 4, 2, 6, 1,

with 1 as its closing transition. Select two integers 1, and four integers 2, 3, and 4
each, to be elements of the sequence T . Hence, the length of T is 14. By applying
Theorem 5.1.6, we have that the resulting sequence is an Sh(8) with transition count
spectrum (16,16,16,16,16,16,16,16).

5.1.2 Constructing balanced cyclic half Gray sequences

In this section we shall show that a balanced cyclic half Gray sequence of length n
exists for every n > 1, n 6= 4.
It is clear that the sequences 0, 0G(1), and 0G(2) are examples of balanced cyclic
half Gray sequences of codeword length 1, 2 and 3, respectively. Later on we shall
show that balanced cyclic half Gray sequences of length 4 do not exist. Furthermore,
Figures 5.3.a. and 5.3.b. show that balanced cyclic half Gray sequences of length 5
and of length 6 exist.

First let us turn to Theorem 5.1.6. Further observation shows that in the transition
sequence S constructed in Theorem 5.1.6 we have

TCG(n|4p)(i) :=





l + 2, if i = n− 1, n,

4TCG(n−2|p)(i)− 2b(i), if 1 ≤ i ≤ n− 2 and i 6= sp,

4(TCG(n−2|p)(sp)− 1)− 2b(sp), if i = sp,

(5.1)

where b(i) is the cardinality of the set {k|sjk
= i}. Notice that for each i, b(i)

is equal to the number of times that the integer i occurs in the sequence T . This
implies that the sum of b(i) over all i, 1 ≤ i ≤ n−2, is equal to l, the cardinality of T .

If we know the number of integers i, 1 ≤ i ≤ n, which must occur in a complete
transition sequence Sh(n) of a cyclic half Gray sequence Gh(n) such that Gh(n) is
balanced, then because of (5.1), the choice of the integers b(i) can be planned. This
can rather easily be accomplished by observing n-partitions of the integer 2n−1, n > 1,
i.e. partitions (p1, p2, . . . , pn), with pi > 0 for 1 ≤ i ≤ n, and p1 ≤ p2 ≤ . . . ≤ pn,
such that

∑n
j=1 pj = 2n−1. The partition (p1, p2, . . . , pn) is called a balanced even

n-partition of the integer 2n−1, if pi is even for every i, 1 ≤ i ≤ n, and |pi − pj| ≤ 2,
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00000 000000 001010
00001 000001 011010
00011 100001 111010
00010 100011 110010
00110 100111 110110
10110 110111 100110
10100 110011 101110
00100 111011 101100
01100 011011 101101
01101 001011 101111
01111 000011 101011
01110 000010 101001
01010 000110 101000
11010 000111 101010
11000 001111 100010
01000 001110 100000

a. b.

Figure 5.3: a. A 5-bit balanced cyclic half Gray sequence, b. a 6-bit balanced cyclic
half Gray sequence.

for all 1 ≤ i, j ≤ n. It is clear that balanced even n-partitions of the integer 2n−1

do not exist for n = 1, 2, 3. However, for every n > 3 there exists a unique balanced
even n-partition of 2n−1. This is a consequence of the following lemma dealing with
balanced partitions, i.e. the various parts of the partitions differ at most 1. The proof
is straightforward.

Lemma 5.1.9. Let m,n ∈ Z+ with m ≥ n, and let a ∈ {0, 1, . . . , n−1} be the unique
integer determined by m+a

n
∈ Z+. Then

(bm + 0

n
c, bm + 1

n
c, . . . , bm + n− 1

n
c)

is a unique balanced n-partition of m, consisting of a integers m+a
n
− 1 and n − a

integers m+a
n

.

It follows immediately that

(cn(1), cn(2), . . . , cn(n)),

cn(i) = 2b2n−2+i−1
n

c, 1 ≤ i ≤ n,



 (5.2)

is a unique balanced even n-partition of 2n−1 for n > 3.
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We are now ready to prove that there exists a balanced cyclic half Gray sequence
Gh(n) for n > 4. Assume that there is such a sequence for some fixed value n > 4.
Because of the uniqueness of the partition (5.2), the transition count spectrum of this
Gh(n) must be equivalent to (5.2), up to a permutation of bit positions. Now, by
applying the construction of Theorem 3.2.2, we want to construct a balanced cyclic
half Gray sequence Gh(n + 2) with a transition count spectrum which is, up to a
permutation of the bit positions, equivalent to

(cn+2(1), cn+2(2), . . . , cn+2(n + 2)),

cn+2(i) = 2b2n+i−1
n+2

c, 1 ≤ i ≤ n + 2.



 (5.3)

Since the construction described in Theorem 3.2.2 always yields transition count
spectra such that the last two numbers are equal, we distinguish between case (i)
cn+2(n + 2) = cn+2(n + 1) and case (ii) cn+2(n + 2) > cn+2(n + 1). In case (ii) we
interchange cn+2(n + 2) and cn+2(n), and consider the distribution (cn+2(1), cn+2(2),
. . . , cn+2(n + 2), cn+2(n + 1), cn+2(n)). In this distribution the last two numbers
are equal. Furthermore, if necessary, we shift in both cases the complete transition
sequence Sh(n) cyclicly such that the integer n becomes its closing transition. In order
to construct Sh(n+2) with a transition count spectrum equivalent to (cn+2(1), cn+2(2),
. . . , cn+2(n + 2)) by using Theorem 3.2.2 with Sh(n) as basis of the construction, we
have to chose b(i) integers i in Sh(n), where b(i) is defined as

b(i) =





4cn(i)−cn+2(i)
2

, 1 ≤ i < n,

4(cn(i)−1)−cn+2(i)
2

, i = n,

(5.4)

where n = s2n−1 is the closing transition of Sh(n) (cf. eq. (5.1)). The condition
to make such a choice possible is that 0 ≤ b(i) ≤ cn(i) for all 1 ≤ i ≤ n − 1, and
0 ≤ b(n) ≤ cn(n)− 1.
Using the expressions for cn(i) and cn+2(i) in (5.2) and (5.3), we can easily see that
in cases (i) and (ii) for 1 ≤ i ≤ n− 1 and n ≥ 5, one has

b(i) = 4b2
n−2 + i− 1

n
c − b2

n + i− 1

n + 2
c ≥ 0, (5.5)

b(n) ≥ 4b2n−2+n−1
n

c − 2− b2n+n+2−1
n+2

c

= 4b2n−2−1
n

c − b2n−1
n+2

c+ 1 ≥ 0,

(5.6)

where the > sign in the first inequality of (5.6) holds in case (i) and the = sign in
case (ii). On the other hand, we also have for 1 ≤ i ≤ n− 1 and for all n ≥ 5 in both
cases
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b(i) = 4b2
n−2 + i− 1

n
c − b2

n + i− 1

n + 2
c ≤ 2b2

n−2 + i− 1

n
c = cn(i), (5.7)

b(n) ≤ 4b2n−2+n−1
n

c − 2− b2n+n−1
n+2

c

≤ 2b2n−2+n−1
n

c − 1 = cn(n)− 1,

(5.8)

where the < sign in the first inequality of (5.8) only holds in case (ii).
From Eqs. (5.5)-(5.8) and from the fact that the construction of Theorem 3.2.2

does not produce complementary codewords when starting from an Sh(n) (see sub-
section 5.1.1), it now follows that we can chose b(i) integers i from the sequence
Sh(n), 1 ≤ i ≤ n, and hence there exists a sequence Sh(n + 2) as soon as we have a
sequence Sh(n). Since we know already that there exist sequences Sh(5) and Sh(6)
(Fig. 5.3), we may conclude by applying mathematical induction that the following
theorem holds.

Theorem 5.1.10. A balanced cyclic half Gray sequence Gh(n) exists for every n ≥ 5.

The maximum sequences M2 = 00, 11, 01, 10 and M3 in Example 5.1.1 are both
balanced. So, due to the above observation, we have the following theorem which
proves the Robinson-Cohn conjecture in [60], formulated as Conjecture 5.1.3 in this
section.

Theorem 5.1.11. An n-bit balanced maximum counting sequence exists for every
n > 1, n 6= 4.

5.2 Uniform counting sequences

Let O(n) be a counting sequence of length n(cf. Section 1.2) with transition sequence
S̄O(n)(n) = s1, s2, . . . , s2n . If for every i ∈ {1, 2, . . . , 2n} we have that |si| = t, for
some t ∈ {1, 2, . . . , n− 1}, we call the sequence O(n) a uniform counting sequence. A
uniform counting sequence of length n with |si| = t is frequently called (n, t)-counting
sequence or, shortly an (n, t)-sequence. Uniform counting sequences have applications
in many areas such as testing and fault diagnosis in combinational logic circuits (cf.
[25, 60]). The notion of uniform counting sequence generalizes the notion of cyclic
Gray code where any two successive codewords differ in precisely one bit position. It
is easy to understand that a uniform sequence exists only for odd values of t. This is
because the parity of the weight of successive codewords remains the same for even
t(see e.g. [32, p. 35] and [60]).

The counting sequence shown in Figure 5.2 is a balanced uniform counting se-
quence of length 4 with transition sequence equal to

S̄(4, 3) = {1, 2, 3}, {2, 3, 4}, {1, 2, 3, }, {1, 3, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3}, {2, 3, 4},
{1, 3, 4}, {2, 3, 4}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 4},
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0000 1100
0111 0001
1001 1111
1110 0100
0011 1010
1000 1101
0101 0110
0010 1011.

Figure 5.4: A (4, 3)-sequence

and with transition count spectrum TC(4,3) = (12, 12, 12, 12).
With respect to this structure Robinson and Cohn in [60] defined a realizable pair

as a pair of integers (n, t) with 1 ≤ t < n and t odd, and they made the following
conjecture.

Conjecture 5.2.1 (Robinson-Cohn [60]). For every realizable pair of n and t,
2 ≤ t < n, a balanced (n, t)-sequence exists.

Of course, (n, 1)-sequences exist for all n ≥ 1, since these are identical to cyclic
Gray codes.

Robinson and Cohn in [60] gave a method for the construction of uniform count-
ing sequences based on linear codes. They arrange the codewords of a linear code
[n, k, t]-code such that each pair of successive codewords have minimum distance t, by
making use of a minimum weight basis and by a normal Gray code G(k) for the enu-
meration of all linear combinations of the basis codewords. To obtain all codewords
of length n, this arrangement is followed by its cosets which are also built up in such
a way that the uniformity with respect to the Hamming distance between any two
successive codewords is maintained (cf. also [81, 84, 82], where the same principle is
applied). This construction however, does not guarantee that the resulting sequences
are balanced sequences.

Knuth in [32, p. 88] also introduced a non-recursive technique for obtaining uni-
form counting sequences of length n. Using Knuth’s method, a uniform counting
sequence of length n is obtained the words of which are the images of a special map-
ping defined on the ordinary binary number system of length n. But again, the
resulting uniform counting sequences are not balanced.

In this section we introduce two constructions (Construction 5.2 and Construction
5.3 on the next pages) for obtaining uniform sequences. One of these can be applied
for any realizable pair of codeword length n and Hamming distance t, whereas the
second one only works for some realizable pairs of n and t. The resulting uniform
sequences produced by the first construction are far from being balanced, but the
simplicity of the construction is of considerable interest. The second construction can
produce balanced uniform sequences whenever n is a prime or a power of two. Before
coming to the formulation of the constructions, we first discuss a special uniform
counting sequence which could be called an anti-Gray code, i.e. a (2m, 2m − 1)-
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sequence. The following construction was introduced by Robinson and Cohn in [60].

Construction 5.2(Robinson and Cohn [60])

1. Start with a cyclic Gray code G(2m) of length 2m,

2. Construct the sequence U(2m) by complementing every other codeword.

The resulting sequence U(2m) is a (2m, 2m− 1)-sequence.

Example 5.2.1. Let us consider the standard Gray code G(4) of length 4. Construc-
tion 5.2 will produce U(4) as listed below. The boldface words in U(4) are obtained
by complementing their counterparts in G(4). Vice versa, G(n) can be obtained from
U(n) in precisely the same way by complementing every other codeword.

G(4) ↔ U(4)

0000 1100 0000 1100
0001 1101 1110 0010
0011 1111 0011 1111
0010 1110 ↔ 1101 0001
0110 1010 0110 1010
0111 1011 1000 0100
0101 1001 0101 1001
0100 1000 1011 0111

We formulate a construction equivalent to Construction 5.2 using a different ter-
minology. We define the so-called anti-transition sequence AS(2m) of a (2m, 2m−1)-
sequence to be equal to the transition sequence S̄(2m) of the corresponding cyclic
Gray code of length 2m, the elements of which indicate the bit positions which do
not change. The formulation is described as the following Construction 5.2′.

Construction 5.2′

1. Take a transition sequence S̄(2m) of a Gray code of length 2m, m ≥ 1,

2. Start with the zero codeword of length 2m, and apply S̄(2m) as an anti-
transition sequence AS(2m) to produce a complete sequence of codewords U(2m).

As an example let us consider Example 5.2.1. The transition sequence of G(4) in
Example 5.2.1 is

S̄(4) = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4.

If we construct a sequence starting from the zero codeword 0000 and apply AS(4) :=
S̄(4), then again we obtain the same sequence U(4) as in Example 5.2.1.
We now study the transition counts of the resulting sequence U(2m) using Construc-
tion 5.2′. It is clear that the cyclic sequence 0 1 0 1 0 1 . . . 0 1 of period 2n has 2n

bit changes. It is also obvious that in a cyclic sequence there is an even number of
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bit changes. This is equivalent to the fact that each integer in a transition sequence
S̄(n) occurs an even number of times. In a uniform counting sequence of codeword
length n with anti-transition sequence AS(n), the occurrence of a transition i means
that when going to the next codeword in the list, the only bit which is maintained
is the bit in position i. Let Ab(i) be the number of integers i which occur in the
anti-transition sequence AS(n). So, the transition count of bit position i in the anti
Gray code, i.e. the number of times that the bit in position i changes, will be equal to
2n−Ab(i). Notice that Ab(i) is equal to TCn(i) in S̄(n). From this observation, it will
be clear now that if we have a balanced Gray code of length n = 2m with transition
sequence S̄(n), then by taking AS(n) := S̄(n) we obtain an (n, n− 1)-sequence with
|cn(i)− cn(j)| ≤ 2, where cn(i) = 2n−Ab(i) is the transition count of the integer i in
AS(n). Since for every n ≥ 1, a balanced Gray code of length n exists, we have the
following theorem.

Theorem 5.2.2. For every m ≥ 1, there exists a balanced uniform (2m, 2m − 1)-
sequence, and if m is a power of two, there exists a totally balanced uniform (2m, 2m−
1)-sequence.

Instead of Conjecture 5.2.1 the remaining (weaker) conjecture can be formulated
as follows

Conjecture 5.2.3. For every realizable pair (n, t), 3 ≤ t < n− 1, a balanced (n, t)-
sequence exists.

The following is an obvious property of a (2m, 2m− 1)-sequence, m ≥ 1.

Theorem 5.2.4. Every two codewords sandwiching another codeword in a (2m, 2m−
1)-sequence have Hamming distance 2.

Proof. Let x and y be two codewords in the (2m, 2m − 1)-sequence sandwiching
codeword w. Let i be the bit position where the only components of x and w are
equal and let j be the bit position where the only component of w and y are equal.
Since x and y are different codewords, i 6= j. It is clear that the bits of x and y are
the same at the positions [2m]\{i, j} and differ otherwise. So, the Hamming distance
between x and y is 2.

Now we describe a construction for an (n, t)-sequence for every pair of relevant
values of n and t.

Construction 5.3

1. Let U(n, 2m− 1) := x0,x1,x2, . . . ,x2n−1 be an (n, 2m− 1)-sequence, n ≥ 2m.

2. Take a codeword z such that d(x2n−1, z) = 2m− 2.

3. Let the sequence V (n, 2m − 1) := y0,y1,y2, . . . ,y2n−1, where yi = xi ⊕ z ⊕
x2n−1}, for all i ∈ {0, 1, . . . , 2n − 1}.
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4. U := 0x0, 1y0, 1y1, 0x1, 0x2, 1y2, 1y3, 0x3, . . . , 0x2n−2, 1y2n−2, 1y2n−1, 0x2n−1.

It is obvious that U is an (n + 1, 2m− 1)-sequence.

Example 5.2.2. In this example we produce U(5, 3) starting from U(4, 3).

U(4, 3) V (4, 3) U(5, 3)

0000 0011 00000 01100
1110 1101 10011 11111
0011 0000 11101 10001
1101 1110 01110 00010
0110 0101 00011 01111
1000 1011 10000 11100
0101 0110 11110 10010
1011 1000 −→ 01101 00001
1100 1111 00110 01010
0010 0001 10101 11001
1111 1100 11011 10111
0001 0010 01000 00100
1010 1001 00101 01001
0100 0111 10110 11010
1001 1010 11000 10100
0111 ← x2n−1 0100 ← z 01011 00111

Theorem 5.2.5. For any positive integer m and for n > 2m, Construction 5.3 can
be used to construct an (n, 2m− 1)-sequence.

Proof. The proof of the Theorem follows from the existence of a (2m, 2m−1)-sequence
for every positive integer m.

In fact, if we start with an n − 2-bit uniform counting sequence, Theorem 5.1.6
and Theorem 4.2.3 can be used to construct uniform counting sequences by replacing
integers n − 1 and n by the sets {n − 1} ∪ I and {n} ∪ I respectively, where I is a
subset of [n− 2] which contains t− 1 elements.

5.2.1 An alternative construction for (n, t)-sequences

We noticed already that none of the mentioned constructions for constructing uni-
form counting sequences guarantees the production of balanced uniform sequences. In
this subsection we shall introduce an alternative construction for obtaining uniform
counting sequences which has the advantage that in some cases it enables us to pro-
duce balanced uniform counting sequences. To this end, we first need to discuss the
concept of – what we call – regular distribution, and which will be the subject of the
following subsection.
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5.2.1.1 Regular distribution

In this subsection we consider ordered multi-sets of two integers a and b. We call
such sets distributions of a and b. A special distribution is

D0 = (a, ..., a︸ ︷︷ ︸
ka

, b, ..., b︸ ︷︷ ︸
kb

) (5.9)

which contains ka integers a followed by kb integers b. For possible applications we
consider a distribution D as a cyclic list, i.e. the first integer in D is the successor of
the last integer, and we require the integers a and b to be arranged as ”regularly” as
possible. To this end we introduce the notion of t-block. A t-block Γ in a distribution
D consists of t consecutive elements of D, with t ≤ |D|.
Example 5.2.3. Let D be the distribution (a, b, b, b, a, a, b, a). With respect to D,
we have that Γ1 = a, b, b and Γ2 = b, b, a are 3-blocks, while Γ3 = b, b, a, a and Γ4 =
a, b, a, a are 4-blocks.

Definition 5.2.1. If D is a distribution of the integers a and b, then D is called
regular if for any two t-blocks the numbers of integers b in these blocks (and hence
also the numbers of integers a) differ at most by 1, for any fixed value of t, 1 ≤ t ≤ |D|.
Example 5.2.4. The distribution D = (a, b, a, b, a, b, b, a, b, a, b, b) is clearly regular.
The distribution D = (a, b, b, a, b, b, a, b, a, b, a, b) is not regular, since it contains 5-
blocks b, b, a, b, b and a, b, a, b, a which contain 4 and 2 integers, respectively.

It appears that any distribution D of integers a and b can be rearranged such that it
is regular. Such an arrangement can be obtained by carrying out the following recur-
sive procedure. We start with a distribution (5.9) with ka integers a and kb integers b.

Construction 5.4
1. Define m1 = ka and m̄1 = kb, and introduce m1 blocks B1 = a and m̄1 blocks
B̄1 = b.

2. Introduce a series of new blocks Bi+1 and B̄i+1, i > 0, in the following way. If
mi ≥ m̄i, then define mi+1 = mi − m̄i and m̄i+1 = m̄i. Introduce mi+1 blocks
Bi+1 = Bi and m̄i+1 blocks B̄i+1 = BiB̄i.
If mi < m̄i, then define mi+1 = mi and m̄i+1 = m̄i −mi. Introduce mi+1 blocks
Bi+1 = B̄iBi and m̄i+1 blocks B̄i+1 = B̄i.
Repeat this process until for some k one has either m̄k = 0 or mk = 0.

3. Define the resulting distribution as

D = (Bk, . . . ,Bk︸ ︷︷ ︸
mk

)

or
D = (B̄k, . . . , B̄k︸ ︷︷ ︸

m̄k

).
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Example 5.2.5. Start with distribution (5.9) with ka = 10 and kb = 7. The various
steps carried out when applying Construction 5.4 deliver the following results.
1. m1 = 10, m̄1 = 7,
B1 = a, B̄1 = b;

2. m2 = 3, m̄2 = 7,
B2 = a, B̄2 = a, b;

3. m3 = 3, m̄3 = 4,
B3 = a, b, a, B̄3 = a, b;

4. m4 = 3, m̄4 = 1,
B4 = a, b, a, b, a, B̄4 = a, b;

5. m5 = 2, m̄5 = 1,
B5 = a, b, a, b, a, B̄5 = a, b, a, b, a, a, b;

6. m6 = 1, m̄6 = 1,
B6 = a, b, a, b, a, B̄6 = a, b, a, b, a, a, b, a, b, a, a, b;

7. m7 = 0, m̄7 = 1,
B̄7 = a, b, a, b, a, a, b, a, b, a, a, b, a, b, a, b, a;

8. D = B̄7

We shall now prove that Construction 5.4 always leads to a regular distribution.

Lemma 5.2.6. For the intermediate states of Construction 5.4 the following relations
hold for all i with 1 < i ≤ k:

(i) (a) B̄i = Bi, . . . ,Bi︸ ︷︷ ︸
≥1

,Bl
i, if |B̄i| > |Bi|;

(b) Bi = B̄i, . . . , B̄i︸ ︷︷ ︸
≥1

, B̄l
i, if |Bi| > |B̄i|,

where Bl
i(6= ∅,Bi) is a left subblock of Bi := Bl

i,Br
i , and likewise B̄l

i(6= ∅, B̄i) is a
left subblock of B̄i := B̄l

i, B̄r
i ;

(ii) (a) Bl
i = Br

i , . . . ,Br
i︸ ︷︷ ︸

≥1

,Br
i
l, if |Bl

i| > |Br
i | > 1;

(b) Br
i = Bl

i, . . . ,Bl
i︸ ︷︷ ︸

≥1

,Bl
i
l
, if |Br

i | > |Bl
i| > 1,

and similar relations for B̄l
i and B̄r

i .

Proof. (i) For i = 2 this certainty is true. Assume that it is true for some i, 1 <
i < k. If mi ≥ m̄i, the construction yields Bi+1 = Bi and B̄i+1 = Bi, B̄i. Hence,

B̄i+1 = Bi,Bi, . . . ,Bi,Bl
i = Bi+1,Bi+1, . . . ,Bi+1,Bl

i+1,

in case (a), and

B̄i+1 = Bi, B̄i = Bi+1, B̄i = Bi+1,Bl
i = Bi+1,Bl

i+1,

in case (b). If mi < m̄i, we can argue similarly. So, relations (a) and (b) hold
for all i, 1 < i ≤ k.
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(ii) Let |Bl
i| > |Br

i |. From the proof of (i) we know that Bl
i = Bj and Br

i = B̄j or
Bl

i = B̄j and Br
i = Bj, for some j < i. We consider, without restriction of the

generality, the first possibility. Then we can write by applying the results in (i)

Bl
i = Bj = B̄j, . . . , B̄j, B̄l

j = Br
i , . . . ,Br

i , (Br
i )

l.

All other cases can be proved similarly.

Lemma 5.2.7. Any distribution D of integers a and b can be rearranged such that it
is regular.

Proof. We shall prove the Lemma by mathematical induction, showing that after
having carried out step 2 of Construction 5.4 for the i-th time, we have a regular
distribution

Di = (Bi,Bi, . . . ,Bi)

of size mi|Bi|, as well as a regular distribution

D̄i = (B̄i, B̄i, . . . , B̄i)

of size m̄i|B̄i|, for all values i with 1 ≤ i ≤ k.
For i = 1 and i = 2 this property is trivially true. Assume that the property is

true for all values less than or equal to some i, 1 < i < k. This induction assumption
implies that after iteration i we have the following regular distributions, written
schematically and omitting indices i and i− 1.

· · · p B̄ p B̄ p B̄ p B̄ p · · · p B̄ p B̄ p · · · (i)

· · · p B p B p B p B p · · · p B p B p · · · (ii)

Here, B stands for Bi and B̄ for B̄i, and we consider the sequences in (i) and (ii) as
being cyclic sequences.
In order to prove the regularity of Di+1, and D̄i+1, we only have to show that the
following cyclic sequence represents a regular distribution

· · · p B p B̄ p B p B̄ p · · · p B p B̄ p · · · (iii)

Because of the periodicity of (iii), we can restrict ourselves to the comparison of
two t-blocks for t-values satisfying 0 < t < |B|+ |B̄|.

Let |B| < |B̄|. Applying Lemma 5.2.6 (i)(a), we can write for (iii)

· · · p B p · · · p B p Bl
p B p B p · · · p B p B p Bl

p · · · (iv)

The induction assumption also implies that the following picture represents a
regular distribution
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· · · p B p Bl
p B p Bl

p · · · p B p Bl
p · · · (v)

Here, we applied the regularity for some j < i. So, for t ≤ |B| the two t-blocks
satisfy the regularity condition.
For |B| < t < |B| + |B̄| = p · |B| + |Bl|, we have the following typical situations for
the t-blocks(for reasons of simplicity we take p = 2)

· · · p B p B p Bl
p B p B p · · · (vi)...≺ t Â

...

· · · p B p B p Bl
p B p B p · · · (vii)...≺ t Â

...

· · · p B p B p Bl
p B p B p · · · (viii)...≺ t Â

...

· · · p B p B p Bl
p B p B p · · · (ix)...≺ t Â

...

· · · p B p B p Bl
p B p B p · · · (x)...≺ t Â

...

If the two t-blocks are both of one of the types (vi)-(ix), we can remove a complete
|B|-block from both blocks either from the left end or from the right end, reducing
the t-blocks to (t− |B|)-blocks, which satisfy the regularity condition because of (v).
If both t-blocks are of type (x), we remove from both the complete Bl-block, reducing
the situation to the regularity of (ii). If one of the t-blocks is of type (x) and the other
one of type (vii) or (viii), we remove from both blocks their intersection, yielding
reduced blocks which satisfy the regularity condition because of (v).
The only remaining case is that one t-block is of type (x) and the other one of type
(vi) or type (ix). We rewrite (x) as

· · · p B p B p Bl
p Bl

p Br
p B p · · · (xi)...≺s Â

...
......≺ t Â
...

It follows from Lemma 5.2.6 (ii) that in all cases (|Bl| > |Br| and |Br| > |Bl|),
the subsequence right after the first Bl-block starts with Br possibly apart from the
last element of Br. Since s ≥ 1, this implies that the t-block starts at the left hand
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side with a block of size |B| the contents of which is precisely equal to the contents
of B itself. Removing this block and removing a complete B-block from (vi)(or from
(ix)) reduces the two t-blocks to (t − |B|)-blocks which are part of (ii) and which
satisfy the regularity condition by our induction assumption. Hence, the original two
t-blocks satisfy this condition as well. So, we proved in all cases that the regularity
condition also holds right after the (i + 1)-st iteration. Therefore, the Lemma holds
for 1 < i ≤ k.

By carefully observing the iteration steps when carrying out Construction 5.4, one
will notice that the process of determining the successive values mi and m̄i, 1 ≤ i ≤ k,
is rather close to the computation of the remainders in the successive iterations of
Euclid’s algorithm, when determining the greatest common divisor of ka and kb.
Based on this observation we present the following algorithm, which is equivalent to
Construction 5.4, but which takes less iteration steps. We assume w.r.t. that ka ≥ kb.

Construction 5.4′

1. Define m1 = ka, m̄1 = kb, and determine the pair of integers (q1, r1) by the relations
m1 = q1m̄1 + r1, 0 ≤ r1 < m̄1. Introduce m1 blocks B1 = a and m̄1 blocks B̄1 = b.

2. Repeat the following process for i = 1, . . . , l, where l is such that rl = 0.
Define mi+1 = m̄i, m̄i+1 = ri, and determine the pair of integers (qi+1, ri+1) by
the relations mi+1 = qi+1 · m̄i+1 + ri+1, 0 ≤ ri+1 < m̄i+1. Introduce mi+1 blocks
Bi+1 = Bi, B̄i,Bi, . . . ,Bi︸ ︷︷ ︸

qi−1

and m̄i+1 blocks B̄i+1 = Bi.

3. Define ml+1 = m̄l and introduce Bl+1 = Bl, B̄l,Bl, . . . ,Bl︸ ︷︷ ︸
ql−1

.

4. D = (Bl+1, . . . ,Bl+1︸ ︷︷ ︸
ml+1

).

The reader should be aware of the fact that the blocks in Construction 5.4′ are
different from the blocks in Construction 5.4.

Example 5.2.6. Start with the distribution (5.9) with ka = 51 and kb = 15. The
various steps carried out when applying Construction 5.4′ yield the following results:

1. m1 = 51, m̄1 = 15, q1 = 3, r1 = 6,
B1 = a, B̄1 = b;

2. m2 = 15, m̄2 = 6, q2 = 2, r2 = 3,
B2 = a, b, a, a, B̄2 = a;

3. m3 = 6, m̄3 = 3, q3 = 2, r3 = 0,
B3 = a, b, a, a, a, a, b, a, a, B̄3 = a, b, a, a;

4. m4 = 3,
B4 = a, b, a, a, a, a, b, a, a, a, b, a, a, a, b, a, a, a, a, b, a, a;

5. D = (B4,B4,B4).

It will be obvious that in general the resulting regular distribution is periodic
with periodicity ml+1 being the greatest common divisor of ka and kb. A proof that
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Constructions 5.4 and 5.4′ are equivalent is rather easy, and is omitted.
We can verify that if we define Bi+1 = Bi, . . . ,Bi︸ ︷︷ ︸

qi

, B̄i instead of Bi+1 = Bi, B̄i,Bi, . . . ,Bi︸ ︷︷ ︸
qi−1

in Construction 5.4′, then the resulting distribution is also regular.

An immediate consequence of Lemma 5.2.7 is the following.

Corollary 5.2.8. If |b−a| = 2 in Lemma 5.2.7, then the absolute value of the differ-
ence between the sums of the components of any two t-blocks in a regular distribution
is at most 2.

5.2.1.2 A construction of uniform counting sequences based on transition
sequences of Gray codes

Let us consider Lemma 2.3.1 again in Subsection 2.3.1 which is due to Gilbert [20].
Below we shall formulate another characterization of such a sequence S to be a transi-
tion sequence of a cyclic Gray code. The relevance of this characterization will appear
in Subsection 5.2.1.3.

Consider a sequence S = s1, s2, ..., s2n , si ∈ [n] for every i ∈ [2n]. We define

Si := s1, ..., si, 1 ≤ i ≤ 2n, and S0 = ∅; (5.10)

O(Si) := {x ∈ [n]|x occurs an odd number of times in Si}. (5.11)

Let A and B be two sets and let −· stand for the symmetric difference of two sets,
i.e. x ∈ A −·B if and only if either x ∈ A, x /∈ B or x /∈ A, x ∈ B. The next lemma is
obvious.

Lemma 5.2.9. Let u, v, w be sequences consisting of integers from [n] such that v is
equal to the concatenated sequence w, u. Then we have that O(u) = O(v) −· O(w).

For practical cases, the following theorem can be of advantage to determine
whether a sequence is a transition sequence of a cyclic Gray code or not.

Theorem 5.2.10. The sequence S = s1, s2, ..., s2n is a transition sequence of a cyclic
Gray code of length n if and only if O(Si) 6= O(Sj) for all 1 ≤ i 6= j ≤ 2n, and
O(S2n) = ∅.
Proof. First let S be a transition sequence of a cyclic Gray code of length n. So, we
immediately have that O(S2n) = ∅. Now, take two arbitrary distinct integers i and j,
0 ≤ i < j ≤ 2n, and consider the sequences Si and Sj. Let u = Sj − Si = si+1, ..., sj.
Here, the sequence Sj is equal to the concatenated sequence Si, u. It is clear that u
is not the empty sequence. If we have that O(Si) = O(Sj), based on Lemma 5.2.9 we
obtain that O(u) = ∅, which contradicts the fact that S is a transition sequence of a
Gray code. So, it must be the contrary, i.e. that O(Sj) 6= O(Si).
Now, let O(Si) 6= O(Sj), for every 0 ≤ i 6= j ≤ 2n, and suppose that S is not a
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transition sequence of a cyclic Gray code. Due to Lemma 2.3.1, there exists at least
one non-empty proper subsequence u of S such that O(u) = ∅. Let u = si+1, ..., sj,
where 0 ≤ i < j ≤ 2n. We have that u = Sj − Si. Again according to Lemma 5.2.9,
since O(u) = ∅, we obtain that O(Sj) = O(Si) which contradicts the assumption that
O(Sj) 6= O(Si) for every 1 ≤ i 6= j ≤ 2n.

It should be remarked here that the condition in Theorem 5.2.10 is equivalent to
saying that O(u) 6= ∅ for all proper subsequences of S̄(n).

For a fixed positive integer n, let σ be the cycle (1 2 · · · n). We notice here that
for every element a of this cycle σ, and for every integer i ≡ j(mod n) we have

a + i :=

{
a + j, 1 ≤ a + j ≤ n,
a + j − n, otherwise.

Next we define for every element a of σ the integer a(i) = a + i, for every integer i.
For instance, with respect to the cycle σ = (1 2 3 4 5), one has 3(1) = 3 + 1 = 4,
4(3) = 4 + 3− 5 = 2, 3(−1) = 3 + 4− 5 = 2, and 2(−3) = 2 + 2 = 4. For each m, t, with
0 < m ≤ t < n, we define a mapping Φm|t from the set [n] into the power set 2n of n,
which maps every integer a ∈ [n] to Φm|t(a):= {a, a(m), a(m+1), ..., a(m+t−2)}.
Let us consider the above cycle σ. We have for example Φ1|3(2) = {2, 3, 4},
Φ3|3(2) = {2, 5, 1}, etc.
Below we introduce a heuristic construction for uniform sequences which is based on
transition sequences of Gray codes.

Construction 5.5
Let (n, t) be a fixed realizable pair of integers which have a greatest common divi-

sor gcd(n, t) equal to m. Let S̄(n) = s1, s2, ..., s2n be the transition sequence of a Gray
code G(n). Start with an n-bit codeword (usually the zero codeword). Apply the se-
quence S̄(n, t) = Φm|t(s1), Φm|t(s2), ..., Φm|t(s2n) to generate the next 2n−1 codewords.

Example 5.2.7. Consider the transition sequence of a balanced Gray code of length
n = 5,

S̄(5) = 2, 1, 3, 1, 2, 1, 3, 4, 3, 5, 3, 4, 3, 1, 4, 5, 2, 1, 5, 1, 4, 1, 3, 4, 5, 1, 2, 5, 2, 4, 2, 5

and t = 3. Here, gcd(n, t) = 1. Then we have that S̄(5, 3)=

{2, 3, 4}, {1, 2, 3}, {3, 4, 5}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3}, {3, 4, 5}, {4, 5, 1}, {3, 4, 5},
{5, 1, 2}, {3, 4, 5}, {4, 5, 1}, {3, 4, 5}, {1, 2, 3}, {4, 5, 1}, {5, 1, 2}, {2, 3, 4}, {1, 2, 3},
{5, 1, 2}, {1, 2, 3}, {4, 5, 1}, {1, 2, 3}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2}, {1, 2, 3}, {2, 3, 4},
{5, 1, 2}, {2, 3, 4}, {4, 5, 1}, {2, 3, 4}, {5, 1, 2}.

The sequence of codewords of length 5 constructed by using this transition sequence
S̄(5, 3) is a balanced (5, 3)-sequence with transition count spectrum (18, 18, 20, 20,
20) and is presented in Fig. 5.5 We shall prove this in the next section.
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00000 00101

01110 01011

01001 01100

10101 11111

10010 11000

11100 00001

11011 00110

00111 11010

11110 00011

00010 10000

10001 10111

01101 11001

10100 01010

01000 00100

01111 11101

10110 10011.

Figure 5.5: The list of a balanced (5, 3)−sequence.

For the sake of convenience, in the next we shall characterize the set O(Si) of
(5.11) as a cycle of length n, shortly n-cycle, as follows.

Let O(Si)={i1, i2, . . . , il}, with 1 ≤ l ≤ n, and 1 ≤ i1 ≤ i2 ≤ · · · ≤ il ≤ n. We
express O(Si) as the following cycle

(1e · · · (i1 − 1)e i1o (i1 + 1)e · · · (il − 1)e ilo (il + 1)e · · ·ne).

The notation jo(resp. je) in the expression means that the integer j occurs an
odd(resp. even) number of times in Si. For example, let us consider the complete
transition sequence S̄(4)=1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4 of the binary reflected
Gray code of length 4. We take S6 = 1, 2, 1, 3, 1, 2, and hence, O(S6) = {1, 3}. In
terms of cycles we write O(S6) = (1o 2e 3o 4e).

5.2.1.3 Construction of balanced (n, t)-sequences with gcd(n, t) = 1

In this subsection we shall discuss the special case of Construction 5.5 when m = 1 or
equivalently, when n and t are co-prime. If gcd(n, t) = 1, Φ1|t(a):= {a, a(1), a(2), ..., a(t−1)}.
Example 5.2.7 is an example of this case. The following observation shows that if
m = 1, Construction 5.5 will produce an (n, t)-sequence.

For the sake of simplicity we shall write Si for the sequence S̄(n)i, and write ΦSi

for the sequence S̄(n, t)i.
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Since gcd(n, t) = 1, one can find integers a and b such that bn− at = 1. Suppose
that there is some i, 1 ≤ i ≤ 2n, such that O(ΦSi) = ∅. We claim that any t-block
in O(Si) has an even number of integers with index o. Suppose that there is some
t-block which has an odd number of integers with index o. Say this t-block is equal
to(leaving out the indices e and o)

k, k + 1, . . . , k + t− 1.

Consider the parity of the number of integers k+t−1 in ΦSi. Since each integer in the
above t-block contributes to the number of integers k + t− 1 in ΦSi, and since there
are no other integers in Si doing so, the odd number of integers which have index
o yields that the parity of k + t − 1 is odd. This contradicts the assumption that
O(ΦSi) = ∅. It now follows immediately, that when starting from a fixed position in
O(Si), all successive t-blocks have the same pattern with respect to the indices o and
e. We shall show that in fact there are no indices o at all in O(Si).
Consider a sequence of b identical n-cycles O(Si). Then, starting from the rightmost
integer n, mark off to the left, a t-blocks. We may conclude now that there is exactly
one integer, that is the leftmost integer 1 of the b n-cycles, which is not covered by
these a t-blocks. Since each t-block must have the same pattern w.r.t the indices
o and e, the index of the integer 1 must be the same as the index of the integer
n, since O(Si), which is of length n, is considered to be a cyclic sequence. Then,
shift O(Si) cyclicly over one position to the left. So, apart from indices e and o,
O(Si) = (2, 3, ..., n, 1). As mentioned before, the indices of the integers n and 1 are
equal. Again, we sequence b identical n-cycles of O(Si) = (2, 3, ..., n, 1) and mark
off a t-blocks to the left, starting from the rightmost integer 1. Because of the same
argument, we conclude that the index of the integer 2 is the same as the index of
the integer 1. Now we have that the indices of the integers n, 1, and 2 are the same.
We repeat this process n − 1 times, and we conclude that all integers in O(Si) have
the same index. Since we proved already that each t-block contains an even number
of integers with index o, and since t is an odd integer, all these indices must be e.
This can happen only if i = 2n, since Si is a subsequence of the transition sequence
of a Gray code. Now, if Si is a real subsequence of S̄(n), then it contains at least
one integer occurring an odd number of times in Si, and so ΦSi also contains at least
one integer occurring an odd number of times. The above arguments also hold for
any proper subsequence u of S̄(n), when applying the remark right after the proof of
Theorem 5.2.10. Hence, we may conclude that O(Φu) 6= ∅ for all proper subsequences
u of S̄(n). This observation proves the following theorem.

Theorem 5.2.11. If gcd(n, t) = 1, Construction 5.5 will produce an (n, t)-sequence.

Consider a balanced Gray code G of length n with transition count spectrum
TCn = (TCn(1), TCn(2), ..., TCn(n)). Furthermore, consider a uniform counting
sequence produced by applying Construction 5.5 for m = 1, with transition count
spectrum TC(n,t) = (TC(n,t)(1), TC(n,t)(2), ..., TC(n,t)(n)). Because of the mapping
Φ1|t, we have that
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TC(n,t)(i) = TCn(i) + TCn(i(−1)) + TCn(i(−2)) + · · ·+ TCn(i(−(t−1))). (5.12)

Since TCn is the transition count spectrum of a balanced Gray code G, it only
contains integers a and b := a+2; with a = b2n

n
c. Due to Lemma 5.2.7, we can permute

these integers such that they constitute a regular distribution. This distribution can
be considered as the transition count spectrum of a Gray code G′ which is equivalent
to G. Actually, G′ can be obtained from G by a similar permutation of the columns
of G. It now follows from (5.12) and Corollary 5.2.8 that the integers TC(n,t)(i),
1 ≤ i ≤ n, differ by at most 2, and so we have the following main theorem of this
section.

Theorem 5.2.12. For every integer n and odd t, 1 ≤ t ≤ n− 1, with gcd(n, t) = 1,
there exists a balanced (n, t)-sequence.

5.2.2 Computer results

By computer calculations we checked that for certain n-values, Construction 5.5 pro-
duces (n, t)-sequences for all t, t ≤ n − 1, with gcd(n, t) > 1. For instance, we were
able to construct (6, 3), (9, 3), (12, 3), (15, 3), (20, 3), (10, 5), (15, 5), (20, 5), (14, 7)
and (21, 7)-sequences. Moreover, by adjusting the distribution of the transition count
spectra, we can construct balanced (9, 3), (15, 3), (15, 5), and (21, 7)-sequences.
We firmly believe that Construction 5.5 will produce an (n, t)-sequence for every pair
of n and t, 1 ≤ t ≤ n− 1.

Lemma 5.2.13. For every positive integer k, one has

23k

= 3k · q + (3k − 1),

for some integer q.

Proof. We prove this Lemma by induction to k. It is obvious that the Lemma is true
for k = 1, 2, 3. Assume now that the Lemma is true for k ≥ 3. So, we have that
23k

= 3k · s + (3k − 1), for some integer s. Then we have

23k+1
= 23k·3

= (3k · s + (3k − 1))3

= (3k · s)3 + 3(3k · s)2(3k − 1) + 3(3k · s)(3k − 1)2 + (3k − 1)3

= (3k · s)3 + 3(3k · s)2(3k − 1) + 3(3k · s)(3k − 1)2 + 33k − 3(32k)+
(3 · 3k − 1).

We see that the first four terms on the right hand side are divisible by 3k+1, for all
k ≥ 1. Hence, we have 23k+1

= 3k+1.q+(3k+1−1), for some q. Because of the principle
of mathematical induction we have proved the Lemma now.



96 Balanced Maximum Counting Sequences and Uniform Counting Sequences

Since a balanced even n-partition of 2n exists for every n (see in particular eq. (3.7)),
Lemma 5.2.13 implies that a transition count spectrum of a balanced Gray code of
length 3k, for some non-negative integer k, can be arranged as (a, b, a, b, ..., a, b, a),
with b = a + 2. Hence, if Construction 5.5 produces a (3k, t)-sequence, then we have
from Corollary 5.2.8, that the resulting sequence will be balanced when starting from
a balanced Gray code with transition count spectrum ordered as (a, b, a, b, ..., a, b, a).

Remark By using Construction 5.5 for the construction of uniform counting se-
quences, we can determine the transition count spectrum of the resulting counting
sequence by using the transition count spectrum of the Gray code which we use as
basis of the construction. Since for any distribution (p1, p2, ..., pn), with

∑n
i=1 pi = 2n,

pi is even for every i ∈ [n], and |pi − pj| ≤ 2, i, j ∈ [n], a balanced Gray code exists
with transition count spectrum (p1, p2, ..., pn), we expect to be able to produce ”ap-
proximately balanced” or balanced uniform counting sequences for every n and odd
t < n.



PART TWO

LINEAR q-ARY LEXICODES
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6
On the Construction of Linear q-ary

Lexicodes

Let V be a list of all vectors of GF (q)n, lexicographically ordered with respect to
some basis. Algorithms which search list V from top to bottom, any time selecting a
codeword which satisfies some criterion, are called greedy algorithms and the resulting
set of codewords is called a lexicode or greedy code. In this thesis we stick to the term
lexicode. If q = 2, then such a lexicode turns out to be linear, for many selection
criteria. In this chapter we present a greedy algorithm for the construction of a
large class of linear q-ary lexicodes which generalizes the algorithms of several other
papers and puts these into a wider framework. By applying this method, one can
produce linear lexicodes which cannot be constructed by previous algorithms, because
the characteristics or the underlying field of the codes do not meet the conditions of
those algorithms.

6.1 Introduction

Let ei = enen−1 . . . e1, 1 ≤ i ≤ n, be the i-th unity standard vector in a vector
space GF (q)n, where q is a power of a prime number, i.e. ei is equal to one and
ej is zero for all j 6= i. Originally [12, 13, 37], binary lexicodes were defined in the
following way. Let B = (e1, e2, . . . , en) be the ordered standard basis of the vector
space V := GF (2)n. With respect to this ordered basis one defines lexicographically
ordered lists Vi = x1,x2, . . . ,x2i recursively by

V0 = 0, Vi = Vi−1, ei + Vi−1, 1 ≤ i ≤ n.

According to this definition the list Vi consists of the list Vi−1, followed by the list
obtained by adding ei to all vectors of Vi−1 in the same order in which these vectors
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occur in Vi−1.
In the resulting lexicographically ordered list V (= Vn) all binary n-tuples occur in
normal lexicographic order, i.e. arranged according to increasing values of these tu-
ples when interpreted as binary numbers. With respect to this order the inequality
x < y means that x occurs before y in the list Vn. Conway in [12], Conway and
Sloane in [13] and Levenstein in [37] developed a greedy algorithm to produce binary
codes with minimum distance d, which can be formulated in the following recursive
way:

Choose the next vector x of the list V whose distance vector x + y with respect to
each previously chosen vector y satisfies the property that its Hamming weight ||x+y||
is at least equal to d.

The resulting lexicode has the surprising property of being linear, and hence can
be characterized as an [n, k, d]-code if the dimension of the lexicode is equal to k ≥ 1.
This result has been generalized in various ways. In [13] Conway and Sloane extended
their own theory to codes over fields GF (22l

), l ∈ N, (sometimes called Fermat fields
[83]), with a proof for linearity embedded in the context of the theory of impartial
games. Moreover, they also proved linearity when a more general type of selection
criterion is used in the greedy algorithm, i.e. a criterion imposed by so-called turning
sets. In [7] Brualdi and Pless discussed another generalization of binary lexicodes.
Their starting point is again a list of all binary vectors of length n, but now ordered
lexicographically with respect to an arbitrary ordered basis (called B-ordering) in-
stead of the standard basis. The resulting codes, with minimum distance at least d,
also turn out to be linear. The proof is accomplished by showing that there exists a
homomorphism defined on V and mapping into the set of non-negative integers, such
that its kernel is the constructed lexicode. So, this homomorphism defines the parity
check matrix of the code as well.
Of particular interest in the paper of Brualdi and Pless is the application of triangular
bases. Using a computer program for carrying out their greedy algorithm, they found,
at least in the cases they considered, that lexicodes based on this type of basis have
a dimension either equal to or one less than the dimension of the best codes known.
In particular, a Gray basis of the vector space V gave almost always rise to optimal
codes (with respect to the dimension) for the cases the algorithm was applied to in
[7].
Fon-Der-Flaass [19] proved, applying the method of Brualdi and Pless, that binary
lexicodes are linear for any family of turning sets as selection criterion, and for any
ordered basis, thus generalizing both the results in [7] and [13]. Monroe in [49] ap-
plied and generalized the parity check approach of [7] to construct quaternary codes,
which in several cases turned out to be larger than the codes known thus far for the
same parameter sets.
Van Zanten, in [83, 85], further generalized all previous results for a wide class of
selection properties P . More precisely, P : V 7−→ {true, false} is a Boolean-valued
function depending on one variable. The only requirement such a criterion P [.] has
to satisfy is that it is fixed and is not changed dynamically during the course of the
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algorithm, and that all vectors of V can be tested as to whether they satisfy P or
not. A vector x ∈ V is selected if and only if P [x+y] is true for all previously chosen
vectors y. It was proven in [83, 85] that any binary lexicode is linear for any such
selection criterion and for any ordered basis. It was also proven that if P is a so-called
multiplicative property on V , i.e. if ”P [x] is true” implies ”P [αx] is true for all α 6= 0
of the underlying field”, then the lexicode constructed by the greedy algorithm is
linear for any such selection criterion P , and for any binary basis of GF (22l

)n. All
proofs in [83, 85] are of a purely (linear) algebraic nature. Essential in these proofs is
that the elements of the field GF (22l

)n are ordered in a special (canonical) way (cf.
[83]).

Trachtenberg in [75] generalized the original notion of lexicodes having a certain
minimal distance in two different ways. In the first place he introduced an algorithm
which is initialized with a linear [n, k, d]-code C (seed code) which replaces the trivial
code 0 in the usual algorithms. Next, the algorithm adds in greedy way the lexico-
graphically earliest vector whose distance is at least d with respect to the span of C
and the previously added vectors. This type of construction could be incorporated
in the theory of B-ordering of GF (2)n in [4, 7, 83], by taking an ordered basis B
of GF (2)n the first k vectors of which span C. A second generalization in [75] is
the replacement of the heuristic ”lexicographically earliest” by some other generating
function, giving rise to other families of codes.

Bonn in [4] also generalizes the algorithms as presented in [7] and [13]. He searches
a list of all vectors over GF (q) of length n which even need not to be ordered in some
specific way. As soon as a vector a is found satisfying d(a,y) ≥ d for all previously
found vectors y, this a is added to the lexicode as well as all its multiples and dis-
tance vectors a − y with respect to all previously found y. Here, d(a,y) stands for
the Hamming distance in GF (q)n. Obviously, the resulting lexicode is forced to be
linear for all finite fields GF (q) with a basis constituted by the selected vectors a,
and it can be proven to have a minimum distance at least d.
In this chapter we introduce the following generalization of Bonn’s algorithm. After
having started by selecting the zero vector, a lexicographically ordered list of all vec-
tors over GF (q) of length n is searched from top to bottom. As soon as a vector a
is found such that a + y satisfies some criterion P for all previously found vectors
y, this a is added to the lexicode as a new basis vector, together with all vectors of
the list which are generated by this new basis vector and the vectors already in the
code. Only then the process of searching the list is continued. Like in [4] it is obvious
again that the resulting lexicode C is linear. Furthermore, it can be proven easily
(cf. Section 6.2), that if the selection criterion P is multiplicative (cf. the definition
given before in this Introduction), P not only holds for the vectors a + y, but for all
vectors c ∈ C. So, we can say that the lexicode C possesses property P . The class of
multiplicative selection criteria is rather large, as will be demonstrated by a number
of examples in Sections 6.3, 6.4, and 6.5. One special example is the criterion P [x]
is true if and only if the Hamming weight of x, denoted by ||x|| in this chapter, is at
least d. It will be clear that the resulting q-ary lexicodes are precisely the codes dealt
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with in [4]. So, in this sense the algorithm of this chapter is a generalization of Bonn’s
algorithm. Furthermore, it will be shown in Section 6.2 that lexicodes constructed by
applying our algorithm in binary cases are identical to the codes produced by the al-
gorithm developed in [83], when using the same parameter values. As a consequence,
we have as our main theorem, that lexicodes arising from the new algorithm are linear
for any ordered basis, for any finite field and for any multiplicative property P , thus
generalizing all previous results.

In Section 6.3, a number of special cases are briefly discussed. Some of these spe-
cial cases were also mentioned in [83, 85], but only for the binary field. In Section 6.4,
a number of examples are presented for the ternary field, with various choices for the
selection criterion P . One of these examples shows that our algorithm, when applied
to GF (3)8 with selection criterion “P [x] is true if and only if ||x|| ≥ 3,” produces a
linear ternary [8, 5, 3]3-code, contrary to the algorithm in [13], which delivers a non-
linear code in this case consisting of 198 codewords (cf. [13, p. 341]). Another special
case, which was not dealt with in previous publications, is obtained by defining “P [x]
is true if and only if x.x = 0”. Here, x.x stands for the scalar product of vector x
with itself. The algorithm then produces self-orthogonal, and occasionally self-dual
codes, over fields of characteristic unequal to 2. This case is discussed in Section 6.5.

Finally, we emphasize once more that unlike in the original search algorithms
[7, 13, 12, 19, 37, 49, 83, 85], the property of being linear does not come as a surprise
anymore, due to construction rule 3 of our new Algorithm 6.1 (cf. Section 6.2), just
as in [4]. The surprising part of this linearity now seems to be that the rule of taking
all linear combinations as soon as a new basis vector is found, can be left out from
our algorithm for fields of type GF (22l

), l ≥ 0, at the expense of testing now, for all
x ∈ V , the condition P [x + y] for all previously found y. In this sense the original
algorithms are modified versions of Algorithm 6.1. At the end of Section 6.3, right
after Corollary 6.3.2, it will be made clear that these modified algorithms produce the
same lexicodes -in the relevant cases -as Algorithm 6.1 itself, be it that the number
of tests these algorithms have to carry out is much larger.
A second remark, already made by Bonn in [4], is that a lexicographic ordering of
the vectors of V (= GF (q)n) is not really necessary in order to construct linear codes.
Any complete list of the qn vectors of V will give rise to linear codes when submitted
to the algorithm of Section 6.2, contrary to the algorithms in [7, 13, 12, 19, 37, 83, 85]
where the lexicographic order is essential (cf. [83]). Nevertheless, our algorithm is
based on a lexicographically ordered list V , since it simplifies the execution of rule 3
(cf. Section 6.2). Due to this order one can skip a major part of the sublist Vi, every
time a new basis vector ai is found, in the process of searching for a next basis vector
of the code to be constructed.
Summarizing this Introduction, one could say that the new algorithm, which combines
the features of the algorithms in [4] and [83], makes it possible to produce new types
of linear lexicodes, and is of help to put several greedy algorithms into a general
context. As for our notation, we shall not make any distinction between vectors and
words. Therefore, there are no commas between successive components of a vector,
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and neither do we put brackets at the front and at the back.

6.2 Construction of q-ary linear lexicodes

Let q be a power of a prime number p and let GF (q) be the finite field with q elements.
We shall identify, in some way or another, the elements of GF (q) with those of the
set {0, 1, . . . , q − 1}, and assume that 0 < 1 < . . . < q − 1. For q = p we shall apply
the usual addition and multiplication rules mod p. For q = pr, r > 1, we do not
specify these rules at the moment. Now, let V := GF (q)n, and consider V as a vector
space over the field GF (q), spanned by some basis B. If we order the n basis vectors
in some way we speak of the ordered basis B = (b1,b2, . . . ,bn). With respect to this
ordered basis we construct lexicographically ordered lists Vi = x1,x2, . . . ,xqi in the
following recursive way

V0 := 0,

(6.1)

Vi := Vi−1,bi + Vi−1, 2bi + Vi−1, . . . , (q − 1)bi + Vi−1, 1 ≤ i ≤ n,

(cf. the definition of the lexicographically ordered list of GF (2)n in Section 6.1).
Apart from the order of the vectors, V is identical with Vn. From now on, we shall
not distinguish between the n-dimensional vector space V and the lexicographically
ordered list Vn of its vectors.

Assume that P denotes some property or criterion which is used to test whether
or not a vector in V is selected. With respect to the chosen basis B, and also with
respect to this property P , we shall formulate a recursive greedy algorithm for the
construction of a linear code. If some vector x satisfies property P , we shall express
this by writing P [x] is true, or briefly by P [x]. In this chapter we assume that P is
a so-called multiplicative property, i.e. P [x] implies P [αx] for all non-zero elements
α ∈ GF (q) (cf. [83]). Many relevant properties like ||x|| ≥ d, or ||x|| is even in the
binary case, or more generally ||x|| belongs to some prescribed weight spectrum, or
x satisfies some set of turning rules, belong to this class (cf. Section 6.3).
We now formulate our greedy algorithm to produce ordered lists of codewords Ci,
0 ≤ i ≤ n.

Algorithm 6.1

1. C0 := 0; i := 1;

2. select the first vector ai in Vi\Vi−1 such that P [ai + c] for all c in Ci−1;

3. if such an ai exists, then Ci := Ci−1, ai + Ci−1, 2ai + Ci−1, . . . , (q − 1)ai + Ci−1,
otherwise Ci := Ci−1;

4. i := i + 1; return to 2.
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It is obvious that the code Ci, 0 < i ≤ n, is identical with the set of all linear
combinations of l(≤ i) selected vectors ai1 , ai2 , . . . , ail . So, the linearity of the lexi-
code C := Cn is trivially satisfied. More precisely, B = (ai1 , ai2 , . . . , ail) constitutes
a basis for Ci. This code Ci is not necessarily different from Ci−1, since not every
sublist Vi will yield a vector ai satisfying the property as formulated in rule 2. A
question which might come up is the following: Could it be that there exists a vector
x ∈ Vi\Vi−1, with P [x + c] for all c ∈ Ci, and x /∈ Ci? Or, in other words, would it
be possible that the algorithm ”misses” a codeword x when skipping the remaining
part of Vi after execution of rule 3? The following theorem guarantees that such a
vector x does not exist.

Theorem 6.2.1. Let ai ∈ Vi be such that P [ai + c] for all c ∈ Ci−1, for i ≥ 1. Then,
every x ∈ Vi\Vi−1 satisfying P [x + c] for all c ∈ Ci, is in Ci.

Proof. We proceed by induction to i. We only consider i-values for which a basis
vector ai exists.
(i) Let j > 0 be the first index such that P [aj], i.e. aj(= ai1) is the first vector selected
by Algorithm 6.1, and hence C0 = C1 = · · · = Cj−1 = 0, Cj = 0, aj, 2aj, . . . , (q−1)aj.
Let x ∈ Vj\Vj−1 be a vector such that P [x+αaj] for all α ∈ GF (q). Since x ∈ Vj\Vj−1,
we can write x = βaj + v, for some β 6= 0 and for some v ∈ Vj−1. If v = 0, it follows
immediately that x ∈ Cj. If v 6= 0, we take α = −β which yields P [v]. However, this
contradicts the assumption about j.
(ii) Let ai ∈ Vi, i > j, be a selected vector such that P [ai+c] for all c ∈ Ci−1. Assume
that the Theorem holds for all relevant index values less than i. Let x ∈ Vi\Vi−1

satisfy P [x + c] for all c ∈ Ci. Since x ∈ Vi\Vi−1, we can write x = βai + v, for some
β 6= 0 and some v ∈ Vi−1. If we take c = −βai + c′, it follows that P [v + c′], for all
c′ ∈ Ci−1. Because of the induction assumption we may conclude that v ∈ Ci−1, and
hence x ∈ Ci.

Theorem 6.2.1 justifies that as soon as we have found a vector ai ∈ Vi satisfying
rule 2 of Algorithm 6.1, and after having extended the list of codewords by rule 3,
we can continue the selection procedure by searching the sublist Vi+1\Vi. So, by
applying the algorithm as formulated in the beginning of this Section, we produce a
nested sequence of ordered codes

0 = C0 ⊆ C1 ⊆ · · · ⊆ Cn = C. (6.2)

For each i, 0 < i ≤ n, we have that either dim(Ci) = dim(Ci−1) or dim(Ci) =
dim(Ci−1) + 1 (cf. also [83]). Since the lexicode C depends on the basis B and on
the property P , we denote this code occasionally by C(B, P ).
Let k be the dimension of C. In the remaining part of this chapter we shall denote
the k basis vectors of C by a1, a2, . . . , ak instead of ai1 , ai2 , . . . , aik for reasons of
convenience. The indices of the corresponding lists of codewords will also be redefined,
and so from now on Ci is the lexicographically ordered list of codewords defined by
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(a1, a2, . . . , ai) for 1 ≤ i ≤ k.
From the construction of C we have for all vectors of the form ai + c, 1 ≤ i ≤ k,
c ∈ Ci−1, that P [ai + c]. If we take a multiplicative property P as selection criterion,
it can be proved very easily that P holds for all non-zero vectors of the code. Thus,
we arrive at our main theorem.

Theorem 6.2.2. For any basis B of GF (q)n and for any multiplicative selection
criterion P , the lexicode C(B, P ) is linear, and P [x] holds for each codeword x 6= 0.

Proof. The linearity of the code follows trivially from its construction, as was already
remarked in Section 6.1. Since P [ai + c], for all c ∈ Ci−1, we also have P [αai + αc]
for all α ∈ GF (q), α 6= 0, and for all c ∈ Ci−1, due to the assumption that P is a
multiplicative property. Equivalently, P [αai + c] for all c ∈ Ci−1, since Ci−1 is linear.
Applying this result for i = 1, 2, . . . , k, respectively, yields that P [x] is true for any
codeword x 6= 0, since the vectors a1, a2, . . . , ak constitute a basis for C(B, P ).

6.3 Special cases

In this section we deal with some special cases of Theorem 6.2.2, and the resulting
conclusions will be presented as corollaries to that theorem. All of these constitute
generalizations of the results presented in [83] for the binary case. As usual, we define
the Hamming weight ||x||, or just the weight, of a vector x ∈ GF (q)n as the number
of components xi which are unequal to 0. We start by introducing a set of Hamming
weights

S = {d0, d1, d2, . . .}, (6.3)

with d0 < d1 < d2 < . . . ≤ n, which we call a designed weight spectrum (cf. [83]).
Here, the selection criterion we use is that the weight of the vector ai + c is in S for
all c ∈ Ci−1. The resulting lexicode is denoted by C(B; S). More generally, let us
consider partitioned codewords. Let

n = n1 + n2 + · · ·+ nl, (6.4)

with nj ∈ Z+, 1 ≤ j ≤ l, be a certain partition of n1. We define the partitioned
codeword x ∈ V with respect to the partition n as

x(n) ≡ x(n1,n2,...,nl) := x1x2 . . .xl, (6.5)

where each part xj consists of nj consecutive components of x. Furthermore, we
introduce designed weight spectra

Sj = {dj
0, d

j
1, d

j
2, . . .}, (6.6)

1For conventional reasons we use the word ”partition”, though ”composition” would be a better
term.
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with (d0 =)dj
0 < dj

1 < dj
2 . . . ≤ nj, for 1 ≤ j ≤ l. Applying our greedy algorithm, the

vector ai will be chosen if and only if the distance vector aj
i + cj ∈ Sj, for 1 ≤ j ≤ l,

and for all vectors c in Ci−1. We denote the resulting lexicode by C(B; (n), (S)),
where (n) stands for the partition (6.4) and (S) for the ordered sequence of weight
spectra (6.6). We shall say that ||ai +c|| is in (S). The following corollary generalizes
Corollary 6.3.1 in [83], where it is stated for the binary case.

Corollary 6.3.1. The lexicode C(B; (n), (S)) is linear with respect to an arbitrary
basis B, for any partition (n), and for any choice of the designed weight spectra (S)
= (S1, S2, . . . , Sj).

The proof is immediate by observing that the selection criterion P is multiplicative
in this case.

If we take the trivial partition, i.e. n1 = n, and if we take the weight spectrum
S = {d|d ≥ d0}, we obtain Bonn’s result in [4].

Another consequence of Theorem 6.2.2 which is related to Corollary 6.3.1, is ob-
tained by considering the notion of turning sets as defined in [13]. A turning set is
a set of indices of the vectors x ∈ GF (q)n. Let Γ be a family of turning sets. As in
[13], the selection criterion P is that the set of indices of the non-zero components of
the vector a + c is not a member of Γ. Since this criterion is also multiplicative we
have immediately the following result which generalizes similar results for the binary
case dealt with in [13, 19].

Corollary 6.3.2. The lexicode C(B; Γ) is linear with respect to any basis B and for
any family Γ of turning sets, and each codeword x meets the rules prescribed by Γ.

We remark that for those cases when the greedy algorithms of [7, 13, 19, 83]
produce linear lexicodes, i.e. for binary vector spaces or, more generally, for vector
spaces over GF (22l

), it can easily be proved that these lexicodes are identical to the
lexicodes produced by Algorithm 6.1. The proof is almost immediate, if one realizes
that both types of lexicodes are spanned by the same basis vectors a1, a2, . . . , ak. For
details we refer to [78].

Example 6.3.1. A special case of Corollary 6.3.1 is obtained by taking a weight
spectrum S = {d|d ≤ m}, i.e. by requiring an upper bound for the distance between
codewords. In the binary case, codes with codeword length n, maximum distance m
and dimension k, are called (linear) anticodes, and are used for the construction of
”normal” linear codes having a minimum distance (cf. [17, 43]). More precisely, if
we denote such an anticode by [n, k, m]a, the construction described in [17, 43] gives
rise to a linear [2k − 1− n, k, 2k−1 −m]-code.
We can apply Algorithm 6.1 to produce binary linear anticodes. We take the following
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basis for GF (2)12.

b1 = 011100110000
b2 = 000000000100
b3 = 111111000001
b4 = 111110101010
b5 = 110100111100
b6 = 001001101010
b7 = 101111111101
b8 = 111110101000
b9 = 111010010110
b10 = 011101010111
b11 = 111110110111
b12 = 101111101011.

By a computer program we find the basis

a1 = 011100110000
a2 = 000000000100
a3 = 111111000001
a4 = 110100111100
a5 = 100110010111
a6 = 010100111101
a7 = 100110011110.

spanning a linear anticode of dimension 7. By the construction mentioned above, this
anticode gives rise to a [115, 7, 56]-code. According to the table of Brouwer in [53, p.
321], this is an optimal code in the sense that it has a maximal d-value with respect
to [115, 7, d]-codes.

6.4 Examples of linear ternary lexicodes

In this section we present a number of examples of linear ternary lexicodes produced
by Algorithm 6.1, which demonstrate that Theorem 6.2.2 and its corollaries give
rise to results that cannot be obtained by previous algorithms as referred to in the
Introduction.

Example 6.4.1. Conway and Sloane in [13, p. 341] present an example of a ternary
lexicode of codeword length 8 and minimum distance 3, obtained by applying their
algorithm to GF (3)8 listed in lexicographic order with respect to the standard basis.
The resulting lexicode appears to consist of 198 codewords, and hence is clearly not
linear. Applying Algorithm 6.1 yields a lexicode with 243 codewords (cf. [78]) which
is linear by Corollary 6.3.1. The basis vectors of this code, as produced by the



108 On the Construction of Linear q-ary Lexicodes

algorithm, are

a1 = 00000111
a2 = 00001012
a3 = 00110001
a4 = 01010002
a5 = 10010010.

Example 6.4.2. Now we list the words of GF (3)8 lexicographically with respect to
the ordered triangular basis

b1 = 00000002
b2 = 00000020
b3 = 00000211
b4 = 00001210
b5 = 00011011
b6 = 00212221
b7 = 02102211
b8 = 21011112.

As selection criterion we take ”P [x] is true if and only if ||x|| is in the spectrum
S = {3, 6}”. Applying Algorithm 6.1 yields a linear ternary code (cf. Corollary 6.3.1)
of dimension 4, with basis vectors

a1 = 00000211
a2 = 00001202
a3 = 02110211
a4 = 21011110.

Example 6.4.3. Again we apply Algorithm 6.1 of Section 6.2 to GF (3)8, now listed
in standard lexicographic order (cf. Example 6.4.1). Let x = x8x7x6x5x4x3x2x1 be a
vector in GF (3)8. This time we take as selection criterion ”P [x] is true if and only
if ||x|| ≥ 3 and wt(x) = 0”, where wt(x) =

∑8
i=1 xi mod 3. It will be clear that

this property P is multiplicative on GF (3)8, and hence the resulting lexicode will be
linear, and all its codewords will satisfy P according to Theorem 6.2.2. In fact, we
obtain a code of dimension 5 generated by the basis vectors of the following triangular
basis

a1 = 00000111
a2 = 00011001
a3 = 00101010
a4 = 01001022
a5 = 10002012.

If we use the same criterion P [x], but now applied to GF (3)8 lexicographically
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ordered with respect to the basis

b1 = 01010112
b2 = 00200022
b3 = 00200020
b4 = 00002211
b5 = 00020022
b6 = 22202202
b7 = 01010102
b8 = 00000212,

we obtain a code of dimension 4, spanned by the basis vectors

a1 = 01010112
a2 = 00200202
a3 = 01212000
a4 = 22102101.

These two examples demonstrate that the dimension may increase when taking a
triangular basis, like in the binary case [7]. We remark that the selection criterion in
this example, i.e. the requirement wt(x) = 0, cannot be expressed in terms of turning
sets (cf. [13] and the end of Section 6.3).

Example 6.4.4. In this example we order the words of GF (3)8 lexicographically
with respect to the Gray basis (cf. [7])

b1 = 00000001
b2 = 00000011
b3 = 00000110
b4 = 00001100
b5 = 00011000
b6 = 00110000
b7 = 01100000
b8 = 11000000.

The words of GF (3)8 are partitioned according to x = x1x2, where both x1 and x2

have length 4. As selection criterion P we take ”P [x] is true if and only if ||x1|| ≥ 1
and ||x2|| ≥ 2”. Algorithm 6.1 now produces a linear lexicode of dimension 3 spanned
by the basis vectors

a1 = 00011001
a2 = 00110011
a3 = 01100110.

Since P is multiplicative, all non-zero codewords satisfy the required property by
Corollary 6.3.1.
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Example 6.4.5. Here, we order GF (3)8 lexicographically with respect to the basis

b1 = 00000001
b2 = 00000011
b3 = 00000111
b4 = 00001110
b5 = 00011100
b6 = 00111000
b7 = 01110000
b8 = 11100000.

Furthermore, we partition the words of GF (3)8 as described in Example 6.4.4. Ap-
plying Algorithm 6.1 with selection criterion ”P [x] is true if and only if ||x1|| ≥ 2 and
wt(x2) = 0” provides us with a linear lexicode of dimension 3 generated by the basis
vectors

a1 = 00111002
a2 = 01121101
a3 = 11100000.

Since P is multiplicative, it follows from Theorem 6.2.2 that all non-zero codewords
of this code satisfy the above condition.

6.5 Self-orthogonal codes

Finally, we consider an application of Theorem 6.2.2, the binary version of which is
discussed in [47], but which has no counterpart in [83, 85]. Let x.y :=

∑n
i=1 xiyi

denote the dot product of vectors x,y ∈ GF (q)n. Let C be a linear code over GF (q)
and let

C⊥ = {x ∈ GF (q)n|x.c = 0 for all c ∈ C}. (6.7)

The linear code C⊥ is called the dual or the orthogonal code of C. A code C is
self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥. We shall discuss how to construct
self-orthogonal lexicodes by applying Algorithm 6.1. The selection criterion P in this
case is defined as ”P [x] is true if and only if x.x = 0”. This property P is clearly
multiplicative. So, according to Theorem 6.2.2 we have for all vectors z in the lexicode
C that z.z = 0. Hence, for all x,y ∈ C we have (x + y).(x + y) = 0, x.x = 0 and
y.y = 0. For vector spaces over a field of characteristic unequal to 2 these equalities
imply x.y = 0. This gives rise to the following result, as another special case of
Theorem 6.2.2.

Corollary 6.5.1. Let V be a vector space over a finite field of characteristic unequal
to 2, and let P be the criterion such that P [x] is true if and only if x.x = 0. Then
the lexicode C(B, P ) is a maximal self-orthogonal code for any basis B.
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Proof. It was already pointed out that the resulting lexicode is self-orthogonal. As a
consequence of Theorem 6.2.1 it is even maximal self-orthogonal, i.e. the code is not
contained in a larger self-orthogonal code (cf. [44]).

Remark 6.5.1.
(i) From [55, Theorem 1] it follows that the dimension of the lexicode C(B, P ) of

Corollary 6.5.1 is equal to n
2
, and hence this code is self-dual, whenever n is even

and (−1)
n
2 is a square in GF (q). In all other cases the dimension of C(B, P ) is

equal to n
2
− 1 for n even and to (n−1)

2
for n odd.

(ii) When applying rule 2 of Algorithm 6.1 in the case of Corollary 6.5.1, it suffices
to test P [x + 0] and P [x + aj], 1 ≤ j < i, since these conditions imply P [x + c]
for all c ∈ Ci−1.

(iii) Results similar to Corollary 6.5.1 would follow by applying a criterion P defined
as P [x] is true if and only if x.x? = 0, where x? stands for some fixed, but
otherwise arbitrary conjugate of x with respect to GF (q).

Example 6.5.1. A maximal self-orthogonal lexicode is produced by Algorithm 6.1
with the selection criterion P as described in Corollary 6.5.1, with parameters q = 3,
n = 4, and with respect to the ordered Gray basis in GF (3)4, i.e. the basis consisting
of the vectors 0001, 0011, 0110, 1100. The list of codewords is as follows.

0000 1102 2201
0111 1210 2012
0222 1021 2120.

Since n is a multiple of 4 (cf. Remark 6.5.1 (i)) this code is self-dual and is denoted
by ξ4 [44]. If we consider the case q = 3, n = 7, with respect to the ordered Gray
basis with vectors 0000001, 0000011, 0000110, 0001100, 0011000, 0110000, 1100000,
our algorithm produces a maximal self-orthogonal code with list

0000000 1111021 2222012
0000111 1111102 2222120
0000222 1111210 2222201
0001102 1112120 2220111
0001210 1112201 2220222
0001021 1112012 2220000
0002201 1110222 2221210
0002012 1110000 2221021
0002120 1110111 2221102

This code is not self-dual, e.g. because the word 1200000, which is orthogonal to
the code, is not in the code. This also follows from the fact that the word length is
not a multiple of 4, which is a necessary condition for a ternary code to be self-dual
(cf. [44]) and from Remark 6.5.1 (i)). A criterion like ”P [x] is true if and only if
x.x = 0 and ||x|| ≥ d” is also multiplicative. The resulting code however, although
self-orthogonal, is not necessarily maximal self-orthogonal. Applying this P to the
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case q = 3, n = 8 and d = 6, with respect to the standard basis, yields the following
ternary self-orthogonal code C with minimum distance 6.

00000000
00111111
00222222
11001122
11112200
11220011
22002211
22110022
22221100

Obviously this code is not self-dual, since its dimension is less than n
2
(= 4). One

could say that the code is a maximal self-orthogonal ternary code of length 8 and
minimum distance 6 in the sense that it is not contained in a larger self-orthogonal
code with the same parameter values according to Theorem 6.2.1. However, C is
not maximal self-orthogonal in absolute sense, since C ′ := span(C, 01200001) is a
self-orthogonal code, with minimum distance 3, containing C.

We emphasize here that Corollary 6.5.1 is no longer valid for finite fields of char-
acteristic equal to 2. This is shown by the following counterexamples.

Example 6.5.2. We list the words of GF (2)3 lexicographically with respect to the
standard basis, and we apply the selection property P [x] is true if and only if x.x = 0.
The resulting lexicode is spanned by the basis vectors a1 = 011 and a2 = 101. It is
clear that these two basis vectors are not orthogonal to each other, hence the resulting
lexicode is not a self-orthogonal code.

Example 6.5.3. Let GF (4) be the field with elements 0, 1, ω and ω + 1, where ω is
defined by ω2 + ω + 1 = 0. The canonical order (cf. [83]) is obtained by identifying
2 ≡ ω and 3 ≡ ω + 1. We list the words of GF (4)3 lexicographically with respect to
the ordered triangular basis

b1 = 001
b2 = 032
b3 = 201

By applying the selection criterion P of Example 5.4, we obtain a lexicode with
basis vectors a1 = 033 and a2 = 202. Again we have that a1.a2 = 1 6= 0, hence the
resulting lexicode is not a self-orthogonal code.



7
Self-Orthogonal Ternary Lexicodes

Some interesting properties of self-orthogonal ternary lexicodes are derived. We for-
mulate a characterization for self-orthogonal ternary lexicodes which cannot be a
subcode of a corresponding lexicode. We also derive self-orthogonal [n, 3, d]-codes,
with d = 3(3k), 3(3k + 1) or 3(3k + 2), k ≥ 1, which can be used as seed codes when
applying a self-orthogonal greedy algorithm.

7.1 Introduction

Let x = xnxn−1 · · · x1 be a vector of length n and let x · x =
∑n

i=1 xi · xi. The
property P [x] if and only if x · x = 0, is obviously multiplicative in V . Therefore the
resulting lexicodes are linear by Theorem 6.2.2. As mentioned in Chapter 6, if the
underlying field has characteristic unequal to 2, we obtain x · y = 0 for all x,y ∈ C,
when applying Algorithm 6.1. This means that C is a self-orthogonal code. In the
sequel, if Algorithm 6.1 operates with the property P [x] if and only if x · x = 0, and
if the characteristic of the underlying field is unequal to 2, then the algorithm will be
called an orthogonal greedy algorithm. The term self-orthogonal (self-dual) lexicode
will mean that this lexicode is produced by using the orthogonal greedy algorithm.

Definition 7.1.1. Basis B = (b1,b2, . . . ,bn) is called a triangular basis, if the basis
vector bi, has a non-zero component in the i-th coordinate and zero components in all
coordinates left from i, for 1 ≤ i ≤ n. If in a triangular basis the vectors have only
0 and 1 as components, the basis will be called a (0-1)-triangular basis. The standard
basis is an example of a (0-1)-triangular basis.

From now on, we shall restrict ourselves to the ternary case, i.e. q = 3. We start
the discussion with the following lemma.

113
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Lemma 7.1.1. For any triangular basis, the lexicode of length 4 produced by the
orthogonal greedy algorithm is a self-dual code.

Proof. The first vector selected by the orthogonal greedy algorithm is a vector which
has the form 0x3x2x1, where x3, x2, x1 are all non-zero. So, the lexicode C3 is repre-
sented by the list

0 0 0 0
0 x3 x2 x1

0 2x3 2x2 2x1

The first selected vector will now be y4y3y2y1, y4 6= 0, which is orthogonal to C3.
Since this vector is also orthogonal to itself, due to the selection criterion P , the string
y3y2y1 must have weight 2. Now, according to the second part of Theorem 6.2.2, each
of the next six vectors which are produced by the orthogonal greedy algorithm is also
orthogonal to itself, and hence, all these vectors have weight three. More precisely,
these six vectors all have a non-zero component on the fourth position from the right,
and there is only one zero component among the first three components. This implies
that there is no vector in V \C4 of weight 1, 2, or 3, which is orthogonal to C4.
Next, it can be proved that no vector of weight 4 is orthogonal to C4 (cf. [78]). Thus
we can conclude that C4 = C⊥

4 , or equivalently, that C4 is self-dual.

The following theorem is a slight generalization of [78, Theorem 6.2.2].

Theorem 7.1.2. For n = 4k, k ∈ Z+, and for any triangular basis, the lexicode
produced by the orthogonal greedy algorithm is a self-dual [n, n

2
] code.

Proof. The proof is based on Lemma 7.1.1 and is similar to the proof of Theorem
6.2.2 presented in [78].

Definition 7.1.2. Let M be an nxn-matrix. Let B be a triangular ordered basis
where the length of the basis vectors is a multiple of n. Consider B as a matrix the
rows of which are these basis vectors in the same order. If the matrix B is equal to




0 · · · 0 0 M
0 · · · 0 M ?
0 · · · M ? ?
...

...
...

...
...

M · · · ? ? ?




,

where “?” is any nxn-matrix, we call the basis B (or equivalently, the matrix B)
M-self-similar with period n.

Example 7.1.1. Consider the ordered triangular basis B with basis vectors 0000001,
000011, 000101, 001001, 011101, 101101. The rows of the matrix



7.1 Introduction 115

B =




0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 0 0 1
0 1 1 1 0 1
1 0 1 1 0 1




are equal to these basis vectors in the same order. It is clear that this matrix has

two sub-matrices




0 0 1
0 1 1
1 0 1


 along its minor diagonal. So, the triangular basis B

is




0 0 1
0 1 1
1 0 1


-self-similar with period 3.

Definition 7.1.3. Let Ci, 1 ≤ i ≤ l, be a linear code of dimension ki, respectively.
Let Gi be the generator matrix of Ci, 1 ≤ i ≤ l, and let G be the matrix

G =




0 · · · 0 0 G1

0 · · · 0 G2 G′
1

0 · · · G3 G′
2 G′

1
...

...
...

...
Gl · · · G′

3 G′
2 G′

1




,

where G′
i is a matrix the rows of which are codewords of Ci, 1 ≤ i ≤ l. The code C

which has generator matrix G is called the direct product C1⊗C2⊗ · · · ⊗Cl, and has
dimension k1 + k2 + · · ·+ kl.

Now, we have the following corollary which was proved for the binary case in [47].

Corollary 7.1.3. If the orthogonal greedy algorithm produces a self-dual [n, n
2
] lexi-

code C with respect to some triangular basis B, then the lexicode of length mn produced
by the orthogonal greedy algorithm with respect to some B-self-similar triangular basis
is a self-dual [mn, mn

2
] code which is equal to the direct product of m copies of C.

The proof is immediate due to Theorem 7.1.2.

Example 7.1.2. The orthogonal greedy algorithm will produce a self-dual [4, 2] code
C, when it is applied to the ordered basis B = (0001, 0012, 0110, 1201). This code C
is spanned by basis vectors 0111 and 1201. The ordered basis (00000001,00000012,
00000110, 00001201, 00011001, 00120111, 01101102, 12010021) is B-self-similar. Ac-
cording to Corollary 7.1.3, the self-dual lexicode of length 8 produced by the orthog-
onal greedy algorithm with respect to this basis is a self-dual [8, 4] code. The code is
a direct product of 2 copies of the code C. Actually, this code is spanned by basis
vectors 00000111, 00001201, 01112102 and 12010000.



116 Self-Orthogonal Ternary Lexicodes

7.2 Self-orthogonal ternary lexicodes with pre-

scribed minimum distance

It will be clear that all weights in a ternary self-dual code are in the set of {3, 6, 9, . . .}.
In particular, self-orthogonal lexicodes have minimum distance 3l, l = 1, 2, . . .. Next,
we shall discuss self-orthogonal lexicodes with prescribed minimum distance d. In
this case we apply the property P defined as ”P [x] is true if and only if x · x = 0
and ||x|| ≥ d”. Here, the orthogonal greedy algorithm is extended with a minimum
distance requirement. It is obvious that this property P is again multiplicative on V .
For reasons of convenience we shall call Algorithm 6.1 equipped with this criterion,
Algorithm 7.1.

Algorithm 7.1

1. Let d ≥ 3 be fixed and let C0 := 0; i := 1;

2. select the first vector ai in Vi\Vi−1 such that (ai + c) · (ai + c) = 0 and that
||ai + c|| ≥ d, for all c in Ci−1;

3. if such an ai exists, then Ci := Ci−1, ai + Ci−1, 2ai + Ci−1, . . . , (q − 1)ai + Ci−1,
otherwise Ci := Ci−1;

4. i := i + 1; return to 2.

We have the following theorem.

Theorem 7.2.1. Let d = 3k − ε, with k ≥ 1 and ε = 1 or 2. Then a ternary self-
orthogonal lexicode of minimum distance d is equal to the one of minimum distance
3k.

Proof. The proof follows from the fact that each codeword in a ternary self-orthogonal
code has a weight equal to a multiple of 3.

Example 7.2.1. If the orthogonal greedy algorithm is applied for parameter values
n = 12, d = 6, and if B is equal to the standard basis, the resulting lexicode is
generated by the generator matrix

G =




0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 0 0 1 1 2 2
0 0 0 1 0 1 0 1 0 2 1 2
0 0 1 0 0 1 0 1 2 0 2 1
0 1 0 0 0 1 0 2 1 2 0 1
1 0 0 0 0 1 0 2 2 1 1 0




.

The lexicode generated by this matrix is a ternary self-dual extremal code (see [53,
p. 270]), and is known to be unique (cf. [54, p. 168]). Now, according to Theorem
7.2.1, the same lexicode will be produced whenever the algorithm is applied for d = 4
or d = 5.
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For some small relevant values of n, computer calculations show that if Algorithm
7.1 produces a self-dual code with respect to some triangular basis, then for an arbi-
trary triangular basis Algorithm 7.1 also produces a self-dual code of the same length
and minimum distance. These observations lead us to the following conjecture.

Conjecture 7.2.2. If for some relevant values of n and d, Algorithm 7.1 produces a
self-dual code for some triangular basis, then it produces for any arbitrary triangular
basis a self-dual code with the same parameter values for n and d.

Theorem 7.2.3. If Algorithm 7.1 produces a self-dual [n, n
2
, d] code for a triangular

basis B, then the lexicode of length mn produced by Algorithm 7.1 with respect to a
B-self-similar triangular basis is a self-dual [mn, mn

2
, d] code.

Proof. Let us denote the original self-dual [n, n
2
, d] lexicode by C. It is necessary that

n is a multiple of 4. We proceed by induction to m. For m = 1 the theorem is
trivially true. Assume that the theorem is true for each k, 1 ≤ k ≤ m − 1, for some
fixed m ≥ 1. So, we have a self-dual [(m− 1)n, (m−1)n

2
, d] lexicode. Let us denote this

code by (m − 1)C. Since (m − 1)C is a self-dual code, any additional vector added
to (m − 1)C by the algorithm is identical to some element of (m − 1)C in the first
(m−1)n positions from the right. Because of Corollary 7.1.3, the next q

n
2 codewords,

when restricted to the leftmost n positions, will be self-dual vectors and will have
minimum distance d.

It follows that if d = 6 and if B is the standard basis, Algorithm 7.1 will produce
self-dual lexicodes when the codeword length n is a multiple of 12. This result is due
to Example 7.2.1 and Theorem 7.2.3.

We conclude that the following extremal self-dual lexicodes are produced by Al-
gorithm 7.1 with prescribed minimum distance:

[4, 2, 3], [8, 4, 3], [12, 6, 6].

We assume that Algorithm 7.1 will produce extremal self-dual lexicodes for any
relevant value of the minimum distance d. More precisely, we have the following
conjecture.

Conjecture 7.2.4. For every relevant value of d, and for any triangular basis, Al-
gorithm 7.1 will produce extremal self-dual lexicodes with minimum distance d.

In the next, Algorithm 6.1 equipped with the selection criterion P [x] if and only if
||x|| ≥ d, for some d ≥ 1, will shortly be called Algorithm 6.1. The lexicodes produced
by Algorithm 6.1 are simply called lexicodes. Self-orthogonal lexicodes are the codes
produced by the self-orthogonal greedy algorithm. Notice that Algorithm 7.1 is the
self-orthogonal greedy algorithm extended with the requirement ||x|| ≥ d. So, if it is
not mentioned specifically, the term self-orthogonal(self-dual) lexicode with minimum
distance d implies that it is produced by Algorithm 7.1. We verified by computer
calculations that Algorithm 6.1 also produces the same lexicode of Example 7.2.1 for
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parameter values n = 12 and d = 6. So, the self-orthogonal lexicode produced by
Algorithm 7.1 in Example 7.2.1, is a subcode of the lexicode with these parameter
values. Since the lexicode is indeed a self-dual code, we can easily observe that for any
relevant value of n with minimum distance 6, self-orthogonal lexicodes are subcodes
of lexicodes. More generally, we pose the following conjecture.

Conjecture 7.2.5. In the ternary case, for a (0-1)-triangular basis and for minimum
distance d ≡ 0 or 6( mod 9), the self-orthogonal lexicode produced by Algorithm 7.1
is a subcode of the generated lexicode for the same parameter values.

Notice that for a minimum distance not equal to 0 or 6 mod 9, Conjecture 7.2.5
is not always true, as is illustrated by the next three examples.

Example 7.2.2. When the lexicographic list is ordered with respect to the standard
basis, the ternary lexicode C of length 7 and minimum distance 3 appears to have
the basis vectors 0000111, 0001012, 0110001, and 10100002, whereas the ternary
self-orthogonal lexicode Co with the same parameter values is generated by basis
vectors 0000111, 0001012, and 1110000. The basis vector 0110001 of C is at Hamming
distance 2 from the basis vector 1110000 of Co. This implies that the vector 1110000
of Co is rejected as member of C. So, the self-orthogonal lexicode Co is not a subcode
of the lexicode C.

Example 7.2.3. When the lexicographic list is ordered with respect to the ordered
basis (0000001, 0000011, 0000111, 0001111, 0011111, 0111110, 1111100), the lexicode
C of length 7 and minimum distance 3, obtained by applying Algorithm 6.1, has
basis vectors 0000111, 0001120, 0111110, and 1122211, whereas the self-orthogonal
lexicode Co produced by Algorithm 7.1, for the same parameter values, has basis
vectors 0000111, 0001120, and 1111120. It is clear that basis vector 1111120 of Co

and basis vector 0111110 of C have Hamming distance 2. Hence, the vector 1111120
does not belong to the code C. Thus, Co is not a subcode of C.

In both examples we see that the third basis vector of Co is rejected by Algorithm
6.1, because of its counterpart in the lexicode C. However, the following example
shows that the above phenomenon does not always occur. It shows that a length 7
self-orthogonal lexicode with minimum distance 3 can be a subcode of the related
lexicode, for some appropriate basis.

Example 7.2.4. Let GF (3)7 be lexicographically ordered with respect to the fol-
lowing basis vectors 0000001, 00000011, 0000101, 0001010, 0010101, 0110110, and
1010110. The resulting lexicode C produced by Algorithm 6.1 with P [x] if and only
if d ≥ 3, is generated by basis vectors 0000112, 0001011, 0110110, and 1010111. On
the other hand, the related self-orthogonal lexicode Co, produced by Algorithm 7.1, is
generated by the basis vectors 0000112, 0001011, and 1120221. Here, the basis vector
1120221 is equal to the linear combination of the basis vectors 0110110 and 1010111
in the lexicode. Since the subcode C2 ⊂ Co spanned by the first two basis vectors is
a subcode of the lexicode C, it is obvious that span(1120221, C2) is again in C.
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From the above examples, it follows that we cannot say whether or not a self-
orthogonal lexicode of length 7 with minimum distance 3 is a subcode of the cor-
responding lexicode. For n ≥ 8 the situation is different as the next theorem will
show.

Before proving this theorem, we remark that column permutations and permuta-
tions of the non-zero elements of the field will not affect the mutual Hamming distance
and the orthogonality of codewords.

Theorem 7.2.6. For code length at least 8, minimum distance 3, and with respect
to a triangular basis, a self-orthogonal lexicode produced by Algorithm 7.1 cannot be
a subcode of the corresponding lexicode produced by Algorithm 6.1.

Proof. We shall denote the lexicode of dimension i by Ci, and the self-orthogonal
lexicode of dimension j, produced by Algorithm 7.1, by Co

j , j ≤ i. For a (0-1)-
triangular basis, it is easy to see that the first codeword selected by the greedy
algorithm is the codeword a1 = 0000011a1

1 of weight 3. So, the intermediate lexicode
C1 has list

00000000
0000011a1

1

0000022a1
1
′

with a1
1
′
= 2a1

1. Due to the previous remark, without loss of generality, we can take
for C1 the list

00000000
00000111
00000222

So, we assume that a1 = 00000111, and hence a1
′ = 00000222. Let x = 00000x3x2x1.

If ||x|| = 3, then it follows immediately that d(x, C1) ≤ 1. Assume now that ||x|| = 2.
If the two non-zero digits of x3x2x1 are the same, then it is clear that d(x, C1) = 1.
If the two non-zero digits are different, like in x = 00000102 for instance, then x is
at Hamming distance 2 from C1.

Let ρ(v) = d(v, C), for every v ∈ V (see the definition right before Lemma
7.2.7). For the code C1, we may conclude that max{ρ(v)|v = 00000v3v2v1} = 2,
and that the vector x = 0000x3x2x1 with x3x2x1 ∈ {012, 021, 102, 120, 201, 210}, is
the only vector which is at Hamming distance 2 from C1. This implies that the
next selected vector a2 = 000a2

4a
2
3a

2
2a

2
1 is a vector of weight 3 with a2

4 6= 0 and
a2

3a
2
2a

2
1 ∈ {012, 021, 102, 120, 201, 210}. Whatever the string a2

3a
2
2a

2
1 is, the next six

codewords will consist of the codewords 0000a2
4a1, 0000a2

4a2, 0000a2
4a3, 0000a2

4a4,
0000a2

4a5, 0000a2
4a6, with ai ∈ {012, 021, 102, 120, 201, 210}. Without loss of general-

ity, by applying some column permutations if necessary, we may assume C2 to be the
list
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00000000
00000111
00000222
00001012
00001120
00001201
00002021
00002102
00002210

Of course, a2 is orthogonal to itself and a2 is also orthogonal to C1. It implies
that C2 = span(a2, C1) is self-orthogonal. Without considering the zero columns (the
first four columns from the left), C2 is even self-dual. Notice that Algorithm 7.1 will
also select the vector a2 as the second basis vector. At this point, the lexicode and
the self-orthogonal lexicode are indeed the same. For the sake of convenience, we
sometimes consider codewords in C2 as strings of length 4, when counting from right
to left.

For the code C2, we can verify that max{ρ(b)|b = b4b3b2b1} = 1. So, Algorithm
6.1 will select as next basis vector for C3 a vector a3 = 00a3

6a
3
5a

3
4a

3
3a

3
2a

3
1 with a3

6 6= 0,
a3

5 6= 0 and d(a3
4a

3
3a

3
2a

3
1, C2) = 1. Thus, C3 = span(a3, C2). Again, we can easily

see that a3 = 0011a3
4a

3
3a

3
2a

3
1 with d(0000a3

4a
3
3a

3
2a

3
1, C2) = 1. The possibilities for the

weight of the vector a3 are 3, 4, 5, and 6, since the string a3
4a

3
3a

3
2a

3
1 is possibly equal

to 0001, 0011, 0122, or 1111. Since C2 is a self-dual code, apart from the first four
zero-columns from the left, Algorithm 7.1 will not select a basis vector which has the
same pattern as the vector a3 = 00a3

6a
3
5a

3
4a

3
3a

3
2a

3
1, since this vector is not orthogonal to

C2. Instead, it will select a vector of the form u = 011uc, for some c ∈ C2, u 6= 0, as
the next basis vector for Co

3 . If u = 1, i.e. u = 0111c, we obtain 0 < d(a3, 0111c) < 3
for some c ∈ C2. At this point, we conclude that the self-orthogonal lexicode which
is equal to Co

3 = span(u, C2) is not a subcode of the related lexicode C3. What
happens if u = 2? We can easily verify that d(u, C3) = 3 in that case. Could the
vector u be selected as next basis vector of the lexicode? To satisfy the designed
minimum distance requirement, Algorithm 6.1 must select a basis vector for C4 of
type a4 = 01a4

6a
4
5a

4
4a

4
3a

4
2a

4
1, with a4

6 6= a4
5 and d(0000a4

4a
4
3a

4
2a

4
1, C2) = 1. Let c′ be a

codeword in C2 such that d(a4
4a

4
3a

4
2a

4
1, c

′) = 1, and let c′′ be also a codeword in C2

such that u′ = 0112c′ = u+0000c′′. It is clear that u′ ∈ Co
3 . If a4

6 = 1 and a4
5 = 2 (or

a4
6 = 2 and a4

5 = 1), then d(a4,u′) = 2. It implies that u′ is rejected as a codeword of
the lexicode, hence Co

3 is not a subcode of C3. Assume that a4
6a

4
5 ∈ {01, 02, 10, 20}.

If we take some codeword w = αa4 + βa3, α, β ∈ {1, 2}, then we have for any
a4

6a
4
5 ∈ {01, 02, 10, 20}, and for some α, β ∈ {1, 2}, that w = 0w712w4w3w2w1 with

w7 6= 0 and with d(0000w4w3w2w1, C2) ≥ 1. So, d(w,u) < 3. If 0 < d(w,u) < 3, we
conclude that the self-orthogonal lexicode cannot be the subcode of the corresponding
lexicode.

Next we shall also show that if d(u, C4) = 0, i.e. if a4 = 0101a4
4a

4
3a

4
2a

4
1 with α = 1

and β = 1, or a4 = 0120a4
4a

4
3a

4
2a

4
1 with α = 1 and β = 2, then the self-orthogonal
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lexicode cannot be the subcode of the corresponding lexicode either.
Assume that the case d(u, C4) = 0 occurs, for some α, β ∈ {1, 2}. In other

words, we can say that a4 = 0101a4
4a

4
3a

4
2a

4
1 or a4 = 0120a4

4a
4
3a

4
2a

4
1. Notice that

the first four components of C4 from the left will constitute strings 0000, 0011,
0022, 0101, 0112, 0120, 0202, 0210, 0221, if a4 = 0101a4

4a
4
3a

4
2a

4
1, and strings 0011,

0022,0120,0101,0112,0210,0221,0202, if a4 = 0120a4
4a

4
3a

4
2a

4
1. Since d(w,u) = 0 for

some α, β ∈ {1, 2}, the strings 0000,0112 and 0221 are followed by all c ∈ C2, and the
others, i.e. the strings 0011,0022,0101,0120,0202, and 0210, are followed by strings g
which are not in C2, and some of these g’s satisfy the property d(g, C2) = 1.

Next, we shall examine the type of the next basis vector - say z - which will be
selected by Algorithm 7.1. Since this vector must be orthogonal to all previously
selected codewords, and also must have a distance at least 3 to those codewords, it
follows that the first four positions of the selected vector from the right constitute a
string in C2, and the remaining part of the vector has weight 3, and is orthogonal to
both 0112 and 0221. We can verify that this vector must be equal to one of the vectors
1011c, 1101c, 1022c, 1202c, 1120c or 1210c with c ∈ C2. It appears that any linear
combination of these vectors and 0112c will produce vectors having patterns x120c
and x210c, with x 6= 0 and c ∈ C2. So, d(1120c, 0120g) = 2 or d(1210c, 0210g) = 2
for some c ∈ C2. In this case, the vector 1120c or 1210c is rejected to be an element
of C4. Thus, in any case we proved that Co

3 = span(u, C2) or Co
4 = span(z, Co

3) can
not be a subcode of C4.

If d ≡ 0(mod 9), d ≡ 3(mod 9) and d ≡ 6(mod 9), we can also consider d =
3(3k), d = 3(3k + 1), and d = 3(3k + 2), k ≥ 1 respectively. In the next three
theorems we establish the first three basis vectors of self-orthogonal lexicodes for these
d-values. The relevance of these theorems lies in minimizing the time complexity of
the implementation of Algorithm 7.1. We need the following lemma to complete the
proof of these theorems. This lemma and its proof are presented in [51]. The proof of
this Lemma is referred to when proving Theorem 7.2.8, Theorem 7.2.9, and Theorem
7.2.10.

For some code C, we define for every v ∈ V , ρ(v) = d(v, C). The maximum value
of ρ(v) for all v ∈ V , is called the covering radius of the code C

Lemma 7.2.7. [51, Lemma1.3.2] The covering radius of a q-ary [n, 1, n] repetition
code is b q−1

q
nc.

Proof. Let C denote the q-ary [n, 1, n] repetition code. So, C = {0n, 1n, . . . , (q− 1)n},
where in is the n-vector with all of its components equal to i. Let x = xnxn−1 · · ·x1 be
a vector in GF (q)n such that each element of GF (q) occurs bn

q
c times as a coordinate

of x. So, qbn
q
c positions of x are filled. Let the n− qbn

q
c remaining positions of x be

filled with the elements of GF (q) such that the numbers of the digits 0, 1, . . . , (q− 1)
differ at most one. By this condition, the occurrence of any element of GF (q) in x is
at most dn

q
e times. So, the vector x agrees with every element of C in at most dn

q
e

positions, implying that the distance of x to C is equal to n− dn
q
e = b q−1

q
nc. This is

the maximum distance a vector in GF (q)n can have to C.
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We shall frequently omit the first zero components when writing vectors explicitly.
For example, the vector 00001111 will be written as 1111.

Theorem 7.2.8. If d = 3(3k), k ≥ 1, and if the basis is a triangular ordered basis,
then the first three basis vectors that will be selected by Algorithm 7.1 are equal to
a1 = 1d, a2 = 13k03k13k23k, and a3 = 1kz12k.

Proof. Here, we denote the self-orthogonal lexicode of dimension i by Co
i and the i-th

basis vector of Co
i by ai. We write d = 3δ with δ = 3k, k ≥ 0. The first basis vector

of Co
1 that will be selected by Algorithm 7.1 is the vector a1 = 1d = 1δ1δ1δ. This

vector is also selected by Algorithm 6.1 as the first basis vector. According to Lemma
7.2.7, the next selected vector, is the vector a2 = 1δaδbδcδ, where the numbers of 0’s,
1’s and 2’s in the string aδbδcδ are equal (See the proof of Lemma 7.2.7). Without
loss of generality we may consider a2 as the vector 1δ0δ1δ2δ. One can verify that the
vector 1δ0δ1δ2δ + c is orthogonal to itself for all previous codewords c in Co

1 . The
list of this code has the following form

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1
0 · · · 0 2 · · · 2 2 · · · 2 2 · · · 2
1 · · · 1 0 · · · 0 1 · · · 1 2 · · · 2
1 · · · 1 1 · · · 1 2 · · · 2 0 · · · 0
1 · · · 1 2 · · · 2 0 · · · 0 1 · · · 1
2 · · · 2 0 · · · 0 2 · · · 2 1 · · · 1
2 · · · 2 1 · · · 1 0 · · · 0 2 · · · 2
2 · · · 2 2 · · · 2 1 · · · 1 0 · · · 0

Let us denote the next selected vector by 1Mxδoδpδqδ. Again, due to Lemma 7.2.7,
we can infer that the vector xδoδpδqδ which contains digits 0, 1, and 2 in a balanced
way, i.e. the differences between the numbers of digits 0, 1 and 2, respectively, are at
most one, has a distance to Co

2 equal to the covering radius of Co
2 . Without loss of

generality, the vector 1Mxδoδpδqδ can be written as

M︷ ︸︸ ︷
1 · · · 1

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

. (7.1)

By adding vector (7.1) to all previously generated codewords, we have that all next
18 codewords will have the same weight 8k+ M. To satisfy the minimum distance
requirement, we have that M= 9k − 8k = k. With this value of M, the 18 codewords
will be orthogonal to themselves, and hence Algorithm 7.1 may also select a vector
of the same type with (7.1) as a3. Of course, Algorithm 7.1 may also select a vector
which has a pattern different from (7.1), but still with the value of M equal to k.
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Theorem 7.2.9. If d = 3(3k + 1), k ≥ 1, and if the basis is a triangular ordered
basis, then Algorithm 7.1 will select the first three basis vectors equal to a1 = 1d,
a2 = 13k+103k+113k+123k+1, and a3 = 1Mz12k+4 with M≥ k + 2.

Proof. As before, we denote the self-orthogonal lexicode of dimension i by Co
i and

the i-th basis vector of Co
i by ai. We write d = 3δ with δ = (3k + 1), k ≥ 0. Like

in the proof of Theorem 7.2.8, let a1 = 1d = 1δ1δ1δ and a2 = 1δaδbδcδ, where the
numbers of 0’s, 1’s and 2’s in the string aδbδcδ are equal. Assume again the list of
Co

2 = span(a1, a2) to be of the following form

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1
0 · · · 0 2 · · · 2 2 · · · 2 2 · · · 2
1 · · · 1 0 · · · 0 1 · · · 1 2 · · · 2
1 · · · 1 1 · · · 1 2 · · · 2 0 · · · 0
1 · · · 1 2 · · · 2 0 · · · 0 1 · · · 1
2 · · · 2 0 · · · 0 2 · · · 2 1 · · · 1
2 · · · 2 1 · · · 1 0 · · · 0 2 · · · 2
2 · · · 2 2 · · · 2 1 · · · 1 0 · · · 0

The vector 1Mxδoδpδqδ, where xδ, oδ, pδ, and qδ contain digits 0, 1, and 2 in a
balanced way, will have maximum distance to Co

2 . Without loss of generality, the
vector 1Mxδoδpδqδ can be written as

M︷ ︸︸ ︷
1 · · · 1

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

r

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

s

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

t

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

u . (7.2)

with k = (d−1)/3, r, s, t, u ∈ 0, 1, 2. By adding vector (7.2) to all previously generated
codewords, we have that all next 18 codewords will have the same weight 8k+ M, apart
from the columns which contain the digits r, s, t, and u.

Let us next consider these columns of Co
2 containing the digits r, s, t, and u.

The digits of each codeword of Co
2 associated to these columns generate a vector

of length 4. Let W be the set containing all these vectors. It will be clear that
W = {0000, 0111, 0222, 1012, 1120, 1201, 2021, 2102, 2210}. As remarked in the proof
of Theorem 7.2.6, we shall have max{ρ(v)|v vector of length 4} = 1 for the set W . It
implies that the maximum distance vector (7.2) can have to Co

2 is equal to 8k+1+ M.
This occurs when rstu is not in W. To meet the minimum distance requirement, we
must have

M= d− 8k − 1 = 3(3k + 1)− 8k − 1 = k + 2.
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Moreover, one can verify that for every vector y of length 4 which is not in W , there
exists some vector w ∈ W such that ||y + w|| = 1, 2, 3, and 4. It follows that the
weights of the next 18 codewords, produced by adding vector (7.2) and its multiples
to all codewords of Co

2 , are equal to d = 3(3k +1), d+1, d+2, or d+3. Since not all
these codewords are orthogonal to themselves, this type of vector will not be selected
by Algorithm 7.1 as the next basis vector for Co

3 . If for this effective length, a vector
exists satisfying the property prescribed by Algorithm 7.1, the algorithm will select a
vector of a type different from (7.2). We finally may conclude that the selected vector
is of the form a3 = 1Mz12k+4 with M≥ k + 2.

Theorem 7.2.10. If d = 3(3k + 2), k ≥ 1, and if the basis is a triangular ordered
basis, then Algorithm 7.1 will select the first three basis vectors equal to a1 = 1d,
a2 = 13k+203k+213k+223k+2, and a3 = 1Mz12k+8 with M≥ k + 1.

Proof. Here again, we denote the self-orthogonal lexicode of dimension i by Co
i and

the i-th basis vector of Co
i by ai. We write d = 3δ with δ = (3k + 2), k ≥ 0. The first

vector basis of Co
1 that will be selected by Algorithm 7.1, is the vector 1d = 1δ1δ1δ.

So, a1 is equal to 1d. According to Lemma 7.2.7, the vector of type 1δaδbδcδ, where
the numbers of 0’s, 1’s and 2’s in the string aδbδcδ are equal, has maximum distance
to Co

2 . Without loss of generality, we may assume this vector to be 1δ01δ2δ. Since
the vector 1δ0δ1δ2δ + c is orthogonal to itself for all previous codewords c in Co

1 , the
vector 1δ0δ1δ2δ will be selected as a2. We may assume again that Co

2 is the following
list

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

δ︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1
0 · · · 0 2 · · · 2 2 · · · 2 2 · · · 2
1 · · · 1 0 · · · 0 1 · · · 1 2 · · · 2
1 · · · 1 1 · · · 1 2 · · · 2 0 · · · 0
1 · · · 1 2 · · · 2 0 · · · 0 1 · · · 1
2 · · · 2 0 · · · 0 2 · · · 2 1 · · · 1
2 · · · 2 1 · · · 1 0 · · · 0 2 · · · 2
2 · · · 2 2 · · · 2 1 · · · 1 0 · · · 0

We denote the next selected vector by 1Mxδoδpδqδ. This vector will have maximum
distance to Co

2 if xδ, oδ, pδ, and qδ contain digits 0, 1, and 2 in a balanced way, i.e.
if the differences between the numbers of digits 0, 1 and 2 are at most one (See again
the proof of Lemma 7.2.7). Without loss of generality, the vector 1Mxδoδpδqδ can be
written as

M︷ ︸︸ ︷
1 · · · 1

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

00

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

11

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

22

δ︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

k

1 · · · 1︸ ︷︷ ︸
k

2 · · · 2︸ ︷︷ ︸
k

01, (7.3)
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with k = (δ−2)/3. By adding the vector (7.3) to all previously generated codewords,
we have that all next 18 codewords will have weight 8k + 5+ M and 8k + 6+ M. To
meet the minimum distance condition we must have that M= 9k +6−8k−5 = k +1.
It is clear that not all corresponding vectors are orthogonal to itself, hence Algorithm
7.1 will not select this type of vector as a3. If some vector exists with this effective
length, which satisfies the selection criterion, then Algorithm 7.1 will select a type of
vector different from (7.3). It implies that the vector a3 = 1Mz12k+8 which is selected
by Algorithm 7.1 will satisfy the condition that M≥ k + 1.

Remark 7.2.1. We emphasize again that the relevance of Theorems 7.2.8, 7.2.10
and 7.2.9 lies in a possible implementation of Algorithm 7.1 in a computer program.
This knowledge can be used to make a ”jumping-loop” from the effective length d to
length d + d

3
, and from length d + d

3
to length d + d

3
+ M, for some M.
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Appendix A

The list of an 8-bit ternary self-dual lexicode

00000000
00000111
00000222
00001102
00001210
00001021
00002201
00002012
00002120
01111021
01111102
01111210
01112120
01112201
01112012
01110222
01110000
01110111
02222012
02222120
02222201
02220111
02220222
02220000
02221210
02221021
02221102

11022012
11022120
11022201
11020111
11020222
11020000
11021210
11021021
11021102
12100000
12100111
12100222
12101102
12101210
12101021
12102201
12102012
12102120
10211021
10211102
10211210
10212120
10212201
10212012
10210222
10210000
10210111

22011021
22011102
22011210
22012120
22012201
22012012
22010222
22010000
22010111
20122012
20122120
20122201
20120111
20120222
20120000
20121210
20121021
20121102
21200000
21200111
21200222
21201102
21201210
21201021
21202201
21202012
21202120

127
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Appendix B

The lists of G4(3), G4(3)2, and C4(2; 4)

G4(3) G4(3)2 C4(2; 4)

000 220
001 221
002 222
003 223
013 233
010 230
011 231
012 232
022 202
023 203
020 200
021 201
031 211
032 212
033 213
030 210
130 310
131 311
132 312
133 313
103 323
100 320
101 321
102 322
112 332
113 333
110 330
111 331
121 301
122 302
123 303
120 300

200 020
201 021
202 022
203 023
213 033
210 030
211 031
212 032
222 002
223 003
220 000
221 001
231 011
232 012
233 013
230 010
330 110
331 111
332 112
333 113
303 123
300 120
301 121
302 122
312 132
313 133
310 130
311 131
321 101
322 102
323 103
320 100

2000 0200
2013 0213
2022 0222
2031 0231
2130 0330
2103 0303
2112 0312
2121 0321
2220 0020
2233 0033
2202 0002
2211 0011
2310 0110
2323 0123
2332 0132
2301 0101
3300 1100
3313 1113
3322 1122
3331 1131
3030 1230
3003 1203
3012 1212
3021 1221
3120 1320
3133 1333
3102 1302
3111 1311
3210 1010
3223 1023
3232 1032
3201 1001

129



130



Appendix C

The lists of G5(3), G5(3)2, and C5(3; 4)

G5(3) G5(3)2 C5(3; 4)

000 140 230 320 410
001 141 231 321 411
002 142 232 322 412
003 143 233 323 413
004 144 234 324 414
014 104 244 334 424
010 100 240 330 420
011 101 241 331 421
012 102 242 332 422
013 103 243 333 423
023 113 203 343 433
024 114 204 344 434
020 110 200 340 430
021 111 201 341 431
022 112 202 342 432
032 122 212 302 442
033 123 213 303 443
034 124 214 304 444
030 120 210 300 440
031 121 211 301 441
041 131 221 311 401
042 132 222 312 402
043 133 223 313 403
044 134 224 314 404
040 130 220 310 400

300 440 030 120 210
301 441 031 121 211
302 442 032 122 212
303 443 033 123 213
304 444 034 124 214
314 404 044 134 224
310 400 040 130 220
311 401 041 131 221
312 402 042 132 222
313 403 043 133 223
323 413 003 143 233
324 414 004 144 234
320 410 000 140 230
321 411 001 141 231
322 412 002 142 232
332 422 012 102 242
333 423 013 103 243
334 424 014 104 244
330 420 010 100 240
331 421 011 101 241
341 431 021 111 201
342 432 022 112 202
343 433 023 113 203
344 434 024 114 204
340 430 020 110 200

3000 4400 0300 1200 2100
3014 4414 0314 1214 2114
3023 4423 0323 1223 2123
3032 4432 0332 1232 2132
3041 4441 0341 1241 2141
3140 4040 0440 1340 2240
3104 4004 0404 1304 2204
3113 4013 0413 1313 2213
3122 4022 0422 1322 2222
3131 4031 0431 1331 2231
3230 4130 0030 1430 2330
3244 4144 0044 1444 2344
3203 4103 0003 1403 2303
3212 4112 0012 1412 2312
3221 4121 0021 1421 2321
3320 4220 0120 1020 2420
3334 4234 0134 1034 2434
3343 4243 0143 1043 2443
3302 4202 0102 1002 2402
3311 4211 0111 1011 2411
3410 4310 0210 1110 2010
3424 4324 0224 1124 2024
3433 4333 0233 1133 2033
3442 4342 0242 1142 2042
3401 4301 0201 1101 2001
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Summary

The topics which we discuss in this thesis can be categorized as part of the theory
of ordered codes. These topics can roughly be subdivided into two classes: Counting
sequences and Gray codes on the one hand, and Lexicodes on the other. The discus-
sion of the first topic is referred to as the first part of this thesis. The second part of
the thesis contains the remaining topic.

Generally a counting sequence is a list of (all) 2n binary n-tuples(or binary words
of length n). Counting sequences have applications in logic-circuits. Two types of
special counting sequences constitute the main issue of our study in Part I. The
first type deals with counting sequences having the property that the number of bit
changes from one codeword to its successor is as large as possible. In our thesis, this
kind of counting sequence is called maximum counting sequence. An instance where
maximum counting sequences are applied is the testing of physical circuits for reliable
behavior in worst-case conditions (see e.g. [32, Exercise 67, p. 35]). The second
interesting type of counting sequence we study, is called uniform counting sequence,
i.e. a counting sequence having the property that all pairs of successive words in
the sequence have the same Hamming distance. Among these two types of counting
sequences, balanced counting sequences are of considerable interest in combinatorial
logic-circuits. The discussion of maximum and uniform counting sequences mainly
takes place in Chapter 5.

Binary Gray codes which constitute a special type of uniform counting sequence is
a well-known topic. In this type of counting sequence any two successive codewords
differ in precisely one bit, i.e. their Hamming distance is 1. Among all kinds of Gray
codes, the binary reflected Gray code, also known as the standard Gray code, is the
best known(cf. [59, 86]). This code was a patented invention due to Frank Gray in
1953, and was used to reduce the coding errors in a pulse code communication system
[23]. The code itself however, was demonstrated already in 1878 as an application in
a telegraph device by the French engineer Émile Baudot(cf. [26]).

Although the binary reflected Gray code has found its widespread applications,
for instance in algebraic coding theory (cf. [84]), in the design of combinatorial al-
gorithms (cf. [59]), and is even found to be optimal with respect to various other
applications(cf. [2]), sometimes Gray codes with additional properties are requested
for special applications. For instance, when designing experiments, or when design-
ing and testing electrical circuits and information systems, balanced Gray codes are
needed(cf. [3, 39, 41, 42, 87, 88]). Moreover, applications of the N-ary n-cube can
be found in the design of several concurrent computers including the Ametek 2020,
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the J-Machine, the Mosaic, the iWarp, and the Cray T3D(see [6] and references),
which asks for N -ary Gray codes. This constitutes one reason why the topic of N -ary
Gray codes is interesting. Moreover, if Q is a power of a prime, Q-ary Gray codes
also have applications when determining the weight distribution of a linear code(see
[24]). There are still many other types of Gray codes, depending on their applica-
tions(cf. e.g. [21, 22, 41]). For a more extended survey on Gray codes we refer to
[61]. Of course, apart from their various widespread applications, Gray codes and
their generalizations are also worthwhile to be studied in their own right, being nice
mathematical structures with elegant properties.

Chapters 2, 3, and 4 of this thesis are dedicated to some special types of Gray
codes. Chapter 2 mainly deals with the separability property of codes. In a Gray
code, or in any ordered code, a question of theoretical as well as of practical relevance
is the following. If two codewords in a code differ in m positions, how far are they
separated from each other in the list of codewords? The larger this list distance in the
code, the smaller the number of bit errors will be when transmitting codewords by
means of analog signals (cf. [86]). In this chapter we derive the separability function
of the N-ary reflected Gray code. We also introduce a slightly simpler construction
for the related cyclic N-ary Gray code which was defined by Sharma and Khanna in
[63]. The separability problem for this type of cyclic Gray codes is solved as well.
Furthermore, we study a certain class of so-called constant weight Gray codes, and
introduce a simple construction to obtain such codes, which appear to be subcodes of
the aforementioned cyclic Gray codes with respect to the list order. The separability
and the index problem or ranking problem(the relationship between a codeword and
its index in the list) of all these codes are solved as well.
Moreover, we introduce in Chapter 2 a class of binary Gray codes having a separabil-
ity capacity higher than that of the standard Gray codes, and we derive a formulism
for its index system.

Chapter 3 focuses the discussion on the transition count spectra of Gray codes.
Balanced and exponentially balanced Gray codes are major issues in this chapter. We
develop a technique how to construct balanced Gray codes based on Bakos’ Gray
construction in [1]. By applying this technique, we can produce balanced Gray codes
which can not be achieved by the methods of Robinson-Cohn [60], Bhat-Savage[3], or
even by Bakos’ method itself [1]. Furthermore, we prove a long standing conjecture
of Wagner and West about the existence of exponentially balanced Gray codes.

More binary Gray codes with special properties are studied in Chapter 4. A
class of Gray codes with maximum crossover Hamming distance(MCHD-codes) is
constructed. This type of Gray codes is of considerable interest when dealing with
communication systems using multi phase shift-keyed(MPSK) signals(see [41, 64]).
The separability function and the index system of these codes are derived. Moreover,
we introduce a method to construct Gray codes which induce complete graphs, and
hence solve an open problem posed by Wilmer and Ernst in [89].
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Chapter 6 is devoted to lexicodes, also known by the term greedy codes. Let V be
a list of all vectors of GF (q)n, lexicograpyically ordered with respect to some basis.
Algorithms which search list V from top to bottom, any time selecting a codeword
which satisfies some criterion, are called greedy algorithms and the resulting ordered
set of codewords is called a lexicode. When q = 2, such a lexicode turns out to be
linear for a wide variety of selection criteria. In this chapter we present a greedy
algorithm for the construction of a large family of linear q-ary lexicodes which gener-
alizes the algorithms of several other papers and puts these into a wider framework.
By applying this new method, one can produce linear lexicodes which cannot be con-
structed by previous algorithms, because the characteristics or the underlying field of
the codes do not meet the conditions of those algorithms.

Chapter 7 focuses on self-orthogonal ternary lexicodes. We derive some interesting
properties of these lexicodes, and formulate a characterization for a self-orthogonal
ternary lexicode which cannot be a subcode of a corresponding lexicode. Finally, we
derive self-orthogonal [n, 3, d]-codes, with d = 3(3k), 3(3k + 1) or 3(3k + 2), k ≥ 1,
which can be used as seed codes when applying a self-orthogonal greedy algorithm.
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Samenvatting

De onderwerpen die in dit proefschrift aan de orde komen kunnen geclassificeerd wor-
den als behorende tot de theorie van de geordende codes. Deze onderwerpen kunnen
ruwweg worden onderverdeeld in twee klassen: Telrijen en Gray codes enerzijds en
Lexicodes anderzijds. De bespreking van het eerste onderwerp zal als het eerste deel
van dit proefschrift aangeduid worden. Het tweede deel van het proefschrift bevat
het andere onderwerp.

In het algemeen is een telrij een lijst van (alle) 2n binaire n-tallen(ofwel binaire
woorden van lengte n). Telrijen worden toegepast in logische-circuit schakelingen.
Twee speciale typen telrijen vormen het hoofdonderwerp van onze studie in Deel
I. Het eerste type telrij heeft de eigenschap dat het aantal bits die veranderen als
men van een codewoord naar de opvolger ervan overgaat, zo groot mogelijk is. In
dit proefschrift wordt dit type telrij een maximale telrij genoemd. Een voorbeeld
waar maximale telrijen worden toegepast is het testen van circuits voor betrouwbaar
gedrag in het allerslechtste geval (zie bijv. [32, Exercise 67, p. 35]). Het tweede
interessante type telrijen die we bestuderen, zijn de uniforme telrijen, d.w.z. telrijen
die de eigenschap hebben dat alle paren opeenvolgende woorden dezelfde Hamming
afstand hebben. Wat deze twee typen telrijen betreft, zijn de gebalanceerde telrijen
van groot belang in combinatorische logische circuits. Maximale en uniforme telrijen
worden voornamelijk in Hoofdstuk 5 besproken.

Binaire Gray codes, die een bijzonder soort uniforme telrij vormen, is een zeer be-
kend research onderwerp. In dit type verschillen elke twee opeenvogende codewoorden
in precies één bit, d.w.z. hun Hamming afstand is 1. Van alle soorten Gray codes is
de binair gespiegelde Gray code, ook bekend als de standarard Gray code, de meest
bekende(zie [59, 86]). Deze code was een gepatenteerde uitvinding van Frank Gray
in 1953, en werd gebruikt om het aantal coderingsfouten in een pulsecode systeem te
verminderen. De code zelf werd echter al gedemonstreerd in 1878, als een toepassing
in een telegraaf-installatie, door de Franse ingenieur Émile Baudot(zie [26]).

Ofschoon de binair gespiegelde Gray code een wijdverbreid toepassingsgebied
heeft, zoals in de algebraische coderingstheorie (zie [84]), bij het ontwerpen van
combinatorische algoritmen (zie [59]), en zelfs optimaal is bevonden met betrekking
tot verscheidene andere toepassingen (zie [2]), zijn er soms Gray codes met extra
eigenschappen vereist voor specifieke toepassingen. Bijvoorbeeld heeft men gebal-
anceerde Gray codes nodig bij het ontwerpen en testen van elektrische circuits en
informatiesystemen(zie [3, 39, 41, 42, 87, 88]). Bovendien kan men toepassingen van
de n-dimensionale kubus waarbij de hoekpunten in het N -tallig getalstelsel zijn uitge-
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drukt, terugvinden in de ontwerpen van verscheidene parallelle computers waaronder
de Ametek 2020, de J-machine, de Mosaic, de iWarp en de Cray T3D(zie [6] en de
referenties aldaar), die N -aire Gray codes vereisen. Dit verklaart voor een flink deel
het belang van deze N -aire codes. Stelt bovendien Q een priemmacht voor, dan kun-
nen Q-aire Gray codes toegepast worden bij het bepalen van de gewichtsverdeling
van een lineaire code(zie [24]). Er zijn nog vele andere typen Gray codes, afhankelijk
van hun toegepassingen. Voor een uitgebreider overzicht van Gray codes verwijzen
we naar [61]. Natuurlijk zijn Gray codes, behalve om hun gevarieerde en wijdver-
spreide toepassingen, het bestuderen ook waard louter vanwege zichzelf, omdat ze
mooie mathematische strukturen voorstellen met elegante eigenschappen.

De Hoofdstukken 2, 3, and 4 van dit proefschrift zijn gewijd aan enkele bijzondere
typen Gray codes. Het grootste gedeelte van Hoofdstuk 2 gaat over de separabiliteits
eigenschap van codes. Ten aanzien van een Gray code, of van elke andere geordende
code, is de volgende vraag zowel van theoretisch alsook van praktisch belang. Wan-
neer twee codewoorden van een code in m posities verschillen, hoe ver liggen ze dan uit
elkaar in de lijst van codewoorden? Hoe groter deze lijstafstand in de code, hoe kleiner
het aantal bitfouten zal zijn wanneer men codewoorden door middel van analoogsig-
nalen verstuurt(zie [86]). In dit hoofdstuk leiden we de separabiliteitsfunctie of voor
de N-aire gespiegelde Gray code. We voeren ook een iets eenvoudiger constructie
in voor de verwante cyclische N -aire Gray code die in [63] werd gedefinieerd door
Sharma en Khanna. Tevens wordt het separabiliteitsprobleem voor dit type cyclische
Gray codes opgelost.

Voorts bestuderen we een zekere klasse van zogenaamde constant-gewicht Gray
codes en introduceren een eenvoudige constructie voor het verkrijgen van zulke codes,
die subcodes blijken te zijn van de eerder genoemde Gray codes met betrekking tot de
lijstorde. Het separabiliteitsprobleem (het verband tussen een codewoord en zijn in-
dex in de lijst) voor al deze codes wordt eveneens behandeld. Bovendien introduceren
we in Hoofdstuk 2 een klasse van binaire Gray codes die een hogere separabiliteit
hebben dan de standaard Gray codes en we leiden een formalisme af voor hun in-
dexsysteem.

Hoofdstuk 3 concentreert zich op de overgangsspectra van Gray codes. Gebal-
anceerde en exponentieel gebalanceerde Gray codes zijn belangrijke onderwerpen in dit
hoofdstuk. We ontwikkelen een methode om gebalanceerde Gray codes te construeren
die gebaseerd is op de Gray constructie van Bakos in [1]. Met deze methode kunnen
we Gray codes produceren die niet voortgebracht kunnen worden met de methoden
van Robinson-Cohn [60], Bhat-Savage [3], en zelfs niet met de methode van Bakos
zelf [1]. Verder bewijzen we een oud vermoeden van Wagner en West betreffende het
bestaan van exponentieel gebalanceerde Gray codes.

Nog meer binaire Gray codes met speciale eigenschappen worden bestudeerd in
Hoofdstuk 4. Er wordt een klasse van Gray codes geconstrueerd met maximale di-
ametrale Hamming afstand(MCHD-codes). Dit type Gray codes in van groot belang
wanneer men te doen heeft met communicatiesystemen die zogenaamde MPSK(multi
phase shift-keyed) signalen gebruiken(zie [41, 64]). De separabiliteitsfunctie en het in-
dexsysteem van deze codes worden bepaald. Bovendien introduceren we een methode
voor de constructie van Gray codes die volledige grafen genereren en lossen daarmee
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een open probleem op van Wilmer en Ernst in [89].

Hoofdstuk 6 is gewijd aan lexicodes, ook bekend onder de naam gulzige codes.
Laat V een lijst zijn van alle vektoren van GF (q)n die lexicografisch is geordend
ten opzichte van een of andere basis. Algoritmen die lijst V doorzoeken van boven
naar beneden en die elke keer een codewoord selekteren dat aan een of ander kriterium
voldoet, worden gulzige algoritmen genoemd en de resulterende geordende verzameling
codewoorden heet een lexicode. Als q = 2, dan blijkt zo’n lexicode lineair te zijn
voor een grote klasse van selectiecriteria. In dit hoofdstuk presenteren we een gulzige
algoritme voor de constructie van een grote familie van lineaire q-aire lexicodes die een
generalisatie is van de algoritmen uit diverse andere publicaties en die deze binnen
een breder kader plaatst. Met behulp van deze nieuwe methode kan men lineaire
lexicodes produceren die niet met vorige algoritmen geconstrueerd konden worden,
omdat ofwel de karakteristieken van deze codes ofwel het getallenlichaan wat aan deze
codes ten grondslag ligt, niet voldoen aan de voorwaarden van die constructies.

In Hoofdstuk 7 wordt de aandacht gevestigd op zelforthogonale ternaire lexicodes.
We leiden een aantal interessante eigenschappen af voor deze lexicodes en we for-
muleren een karakterisering van een zelforthogonale ternaire lexicode die niet een
subcode kan zijn van een bijbehorende lexicode. Tenslotte construeren we zelforthog-
onale [n, 3, d]-codes met d = 3(3k), 3(3k + 1) of 3(3k + 2), k ≥ 1, die gebruikt kunnen
worden als basiscodes bij het toepassen van gulzige algoritmen voor de constructie
van nieuwe zelforthogonale lexicodes.
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Ringkasan

Topik-topik yang dibahas dalam thesis ini dapat digolongkan sebagai bagian dari
teori tentang kode terurut. Secara garis besar topik-topik tersebut digolongkan dalam
dua bagian: bagian pertama menyangkut barisan-barisan penghitung dan kode-kode
Gray, sedangkan bagian lainnya mengenai lexicodes. Pembahasan topik pertama dike-
mas pada bagian pertama dari thesis ini, sedangkan bagian kedua dari thesis mem-
bahas topik sisanya.

Secara umum sebuah barisan penghitung adalah lis dari semua 2n n-tuple biner
(kata-kata biner dengan panjang n). Salah satu kegunaan dari barisan-barisan penghi-
tung dapat ditemukan pada sirkuit-sirkuit logika. Dari berbagai barisan penghi-
tung, pada thesis ini utamanya akan dibahas dua jenis barisan penghitung. Jenis
yang pertama adalah barisan penghitung yang mempunyai sifat bahwa setiap dua
kata berurutan di lis mempunyai perbedaan bit semaksimal mungkin. Pada thesis
ini barisan penghitung jenis ini disebut barisan penghitung maksimum. Pengujian
sirkuit-sirkuit fisik untuk kelakuan yang dapat dipercaya dalam kondisi-kondisi ka-
sus terburuk adalah salah satu contoh dimana barisan penghitung maksimum itu
digunakan(lihat misalnya [32, Exercise 67, p. 35]). Barisan penghitung lainnya di-
namakan barisan penghitung seragam, yakni barisan penghitung yang bersifat bahwa
semua pasangan dari kata-kata berurutan di lis mempunyai jarak Hamming sama.
Diantara dua jenis barisan penghitung tersebut tadi, barisan penghitung seimbang
layak dipertimbangkan karena kegunaannya dalam sirkuit-sirkuit logika kombinatorik.
Pembahasan mengenai dua topik ini utamanya diletakan dalam Bab 5.

Kode Gray biner yang merupakan salah satu jenis khusus dari barisan penghi-
tung seragam adalah topik yang sangat dikenal. Diantara kode-kode Gray, kode
Gray tercermin biner, yang juga diketahui sebagai kode Gray baku, adalah yang pal-
ing dikenal(lihat [59, 86]). Kode ini dipatenkan oleh Frank Gray pada Tahun 1953,
yang digunakan untuk menurunkan galat penyandian dalam sistim komunikasi kode
berpulsa(lihat [26]). Akan tetapi kode itu sendiri telah didemonstrasikan penerapan-
nya di Tahun 1878 pada peralatan telegraf oleh insinyur Perancis Émile Baudot(lihat
[26]).

Walaupun kode Gray tercermin biner telah menemukan bidang terapannya se-
cara luas, sebagai contoh pada teori kode aljabar(lihat [84]), pada perancangan dari
algoritma-algoritma kombinatorik(lihat [59]), dan bahkan diketahui optimal berkaitan
dengan berbagai aplikasi lainnya(lihat [2]), terkadang kode-kode Gray yang dilengkapi
dengan sifat tambahan sangat dibutuhkan untuk terapan-terapan khusus. Seba-
gai contohnya, ketikan merancang percobaan-percobaan, atau ketika merancang dan
menguji sirkuit-sirkuit listrik dan sistim-sistim informasi, kode-kode Gray seimbang
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sangat dibutuhkan(lihat [3, 39, 41, 42, 87, 88]). Lebih jauh lagi, aplikasi dari n-kubus
N-er dapat ditemukan pada rancangan dari beberapa komputer sistem beriringan
(paralel) yang meliputi Ametek 2020, J-Machine, Mosaic, iWarp, dan Cray T3D(lihat
[6] dan rujukannya). Ini merupakan alasan mengapa topik kode-kode Gray N -er
menjadi menarik. Apabila Q adalah bilangan prima berpangkat, kode-kode Gray
Q-er juga mempunyai terapan dalam menentukan distribusi bobot dari suatu kode
linier(lihat [24]). Masih banyak lagi jenis dari kode Gray, bergantung dari bidang
dimana dia digunakan(lihat e.g. [21, 22, 41]). Untuk yang tertarik mengetahui lebih
mendalam tentang kode Gray kami rujuk pada [61]. Tapi terlepas dari berbagai jenis
dan luasnya terapan dari kode Gray, kode Gray dan perumumannya sangat layak
untuk dipelajari karena struktur matematikanya yang mengandung sifat-sifat yang
menarik.

Bab 2, 3 dan 4 dari thesis ini diabdikan untuk membahas beberapa jenis khusus
dari kode Gray. Bab 2 utamanya berkaitan dengan sifat keterpisahan dari kode.
Pada sebuah kode Gray, atau pada sembarang kode terurut, pertanyaan yang bersifat
teori maupun praktis yang relevan adalah sebagai berikut. Jika dua kata dalam
sebuah kode berbeda pada m posisi, seberapa jauhkah mereka terpisah satu dengan
lainnya di lis? Semakin jauh jarak lisnya, akan semakin kecil galat bitnya ketika
kata-kata yang ditransmisikan menggunakan sinyal-sinyal analog(lihat [86]). Pada
bab ini kita turunkan fungsi keterpisahan dari kode-kode Gray tercermin N -er. Kita
juga perkenalkan suatu bangun yang sedikit lebih sederhana untuk mendapatkan
kode Gray N-er siklik yang terkait dengan kode siklik yg dibangun oleh Sharma dan
Khanna[63]. Masalah keterpisahan dari kode siklik jenis ini dipecahkan. Selanjutnya
kita mempelajari sebuah kelas yg disebut kode Gray bobot tetap, dan memperkenalkan
sebuah cara sederhana untuk mendapatkan kode tersebut. Dalam kaitannya dengan
urutan, kode Gray bobot tetap yang diperoleh merupakan kodebagian dari kode siklik
yang disebutkan sebelumnya. Masalah keterpisahan dan perankingan dari semua
kode tersebut juga dipecahkan.
Selanjutnya, kita perkenalkan pada Bab 2 sebuah kelas dari kode-kode Gray biner
dengan kapasitas pemisahnya lebih tinggi dari pada kapasitas yang dimiliki kode Gray
baku, dan kita juga turunkan formulasi untuk sistim pengindekkannya.

Bab 3 berfokus pada pembahasan spektrum hitungan transisi dari kode-kode Gray.
Kode Gray seimbang dan kode Gray seimbang eksponen merupakan isu mayor dari
bab ini. Kita kembangkan sebuah tehnik bagaimana membangun kode-kode Gray
seimbang berdasarkan pada tehniknya Bakos membangun kode Gray[1]. Dengan
menggunakan tehnik itu kita dapat membangun kode Gray seimbang yang tidak
bisa dihasilkan oleh metode Robinson-Cohn[60], Bhat-Savage[3], atau bahkan oleh
metode Bakos sendiri[1]. Selebihnya, kita buktikan terkaan lama oleh Wagner dan
West tentang adanya kode-kode Gray seimbang eksponen.

Kode-kode Gray biner lainnya yang mempunyai sifat-sifat khusus dibahas pada
Bab 4. Sebuah kelas kode-kode Gray dengan jarak Hamming bersebrangan maksimum
dibangun. Jenis kode-kode Gray ini menarik untuk dibicarakan terkait dengan sistem-
sistem komunikasi yang menggunakan sinyal-sinyal multi fase shift-keyed(MPSK)(lihat
[41, 64]). Sifat keterpisahan dan sistim pengindek dari kode-kode ini diturunkan.
Lebih jauh, kita perkenalkan sebuah metode untuk membangun kode-kode Gray yang
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menginduksi grafik-grafik lengkap, dan oleh karena itu memecahkan masalah terbuka
yang disuguhkan oleh Wilmer dan Ernst[89].

Bab 6 diabdikan untuk pembahasan lexicodes, yang juga diketahui sebagai kode-
kode rakus. Misalkan V sebuah lis dari semua vektor di GF (q)n, yang terurut secara
leksikografi sesuai dengan suatu basis. Algoritma yg mencari dari atas lis sampai ke
bawah kata-kata yang memenuhi kriteria yang ditetapkan sebelumnya disebut algo-
ritma rakus, dan himpunan kata yang dihasilkan disebut sebuah lexicode. Apabila
q = 2, lexicode yang dihasilkan adalah linier untuk banyak jenis kriteria yang diten-
tukan. Pada bab ini kita sajikan algoritma rakus untuk membangun sebuah kelas yang
luas dari lexicodes q-er linier yang memperumum algoritma-algoritma dari beberapa
paper dan meletakkannya kedalam kerangka kerja yang lebih luas. Dengan mener-
apkan metode baru ini, seseorang dapat menghasilkan lexicodes yang tidak dapat
dihasilkan menggunakan algoritma-algoritma sebelumnya, karena karakteristik atau
medan yang disandari tidak memenuhi syarat-syarat algoritma-algoritma tersebut.

Bab 7 berfokus pada lexicodes self-orthogonal terner. Kita turunkan beberapa
sifat menarik dari lexicodes ini, dan merumuskan sebuah karakterisasi untuk sebuah
lexicode self-orthogonal terner sehingga tidak dapat merupakan kodebagian dari lex-
icode terkait. Lebih jauh, kita turunkan kode-kode self-orthogonal [n, 3, d], dengan
d = 3(3k), d = 3(3k + 1) atau d = 3(3k + 2), 1 ≤ k, yang dapat digunakan sebagai
kode-kode inti ketika menerapkan suatu algoritma rakus self-orthogonal.
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