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S U M M A RY

2D materials are promising high-performance sheet-like nanomaterials with unique
properties. Liquid-phase exfoliation (LPE) is a scalable and cost-effective process to
produce 2D materials on large scales. However, the product of LPE is highly polydis-
persed. An efficient procedure to fractionate 2D materials is the liquid cascade cen-
trifugation (LCC), which is currently done by trial and error. Moreover, 2D materials
are easily deformed when processed in liquids because of their low bending rigidities.
To exploit the unique properties of 2D materials, it is essential to control the sizes and
morphologies of the nanosheets.

To provide insights for the rational design of the LCC procedure and the under-
standing of deformation of nanosheets in the shear flow, this thesis tackles two rele-
vant fluid dynamics problems: (i) sedimentation of polydisperse suspensions, and (ii)
buckling of flexible particles in the shear flow, both in the Stokes flow regime. The
approaches adopted in this thesis are mainly numerical, including Stokesian dynam-
ics and boundary integral method, which are efficient methods to simulate particle
dynamics in Stokes flow. Moreover, collaborations with experimentalists have been
established during this thesis. The code developed has been used to answer practical
questions (e.g. see chapter 5).

The objective of understanding sedimentation of polydisperse suspensions is to be
able to analyze the liquid cascade centrifugation of polydisperse systems and to de-
sign centrifugation procedures with theoretical guidelines for particle size fractiona-
tion. In chapter 3, a one-dimensional sedimentation model is used to predict the time
evolution of the volume fraction distribution of each size class for a polydisperse size
distribution. Assuming the suspension to be dilute, the settling velocity of each size
class is calculated by the corresponding Stokes velocity, neglecting hydrodynamic
interactions. Using this model, the outcomes of the centrifugation procedure includ-
ing the purity and yield are analyzed. Moreover, an optimized procedure is proposed
based on the analysis. This work establishes a theoretical framework for analyzing and
rationally designing the centrifugation procedures. In chapter 4, the effect of hydro-
dynamic interactions on the particle settling velocities of polydisperse suspensions
is studied. Settling velocity statistics for dilute suspensions of polydisperse spheres
are generated from Stokesian dynamics simulations. Both the average velocities and
the velocity fluctuations of each size class are analyzed. Moreover, the validaties of
existing polydisperse hindered settling models are examined by comparing model pre-
dictions with our numerical results. It is found that current models fail to predict the
settling velocities of small size classes in a polydisperse size distribution. Potential

ix
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model improvements are discussed. This is the first work where velocity statistics of
each size class in a widely polydisperse system are reported in the literature. In chap-
ter 5, the implications of the widely used experimental procedure based on pipetting
a suspension drop in a settling tank to measure the single particle Stokes velocity are
discussed. This is a collaborative work with experimentalists from Deltares who con-
ducted the experiments. The developed Stokesian dynamics code is used to illustrate
the effect of hydrodynamic interactions in this experimental procedure. We found that
the particle Stokes velocities are overestimated by a large margin in measurements
following this experimental procedure.

For the second problem, we want to understand what is the criterion for a flexible
sheet to buckle in the shear flow, and how hydrodynamic interactions change this cri-
terion for a pair of sheets. In chapter 6, both experiments and simulations are carried
out to answer these questions. The simulations are done by me using the boundary in-
tegral method, and the experiments are done by a collaborator using thin Mylar sheets
in a shear cell. The criterion for a single sheet to buckle based on the competition
between the viscous force from the shear flow and the elastic response of the sheet is
characterized, with a good match between experiments and simulations. Surprisingly,
a pair of sheets bend under a much lower shear rate compared to that for a single sheet
given the same material properties. This is attributed to the hydrodynamic interac-
tions between the sheets which exert lateral loads on the sheets. This is the first study
where the buckling threshold for a pair of flexible particles in the shear flow is mea-
sured in the literature. Our study suggests that the deformation of flexible sheets in a
shear suspension may not only depend on the mechanical and geometric properties of
the sheets, but also on the microstructure of the suspension (e.g. sheet orientation and
pair-sheet distance).

Overall, this thesis contributes to the understanding of particle dynamics in Stokes
flow, including the settling of polydisperse suspensions and buckling of flexible sheets
in the shear flow, utilizing the theories and numerical approaches of microhydrody-
namics. Results of this thesis can be used to optimize the procedures of liquid pro-
cessing of 2D nanomaterials and in other relevant applications.
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SA M E N VAT T I NG

2D-materialen zijn veelbelovende, hoogwaardige nanomaterialen in de vorm van
platen met unieke eigenschappen. Vloeistoffase-exfoliatie (Engels: liquid-phase ex-
foliation, LPE) is een schaalbare en kosteneffectieve methode om 2D-materialen op
grote schaal te produceren. Het product van LPE is echter sterk polydispers. Een ef-
ficiënte methode om 2D-materialen te fractioneren is vloeistofcascade-centrifugatie
(Engels: liquid cascade centrifugation, LCC), die momenteel wordt uitgevoerd door
middel van vallen en opstaan. Bovendien vervormen 2D-materialen gemakkelijk tij-
dens verwerking in vloeistoffen vanwege hun lage buigstijfheid. Om de unieke eigen-
schappen van 2D-materialen te benutten, is het essentieel om de grootte en morfologie
van de nanoplaten te controleren.

Om inzicht te geven in het rationeel ontwerp van de LCC-procedure en in het be-
grijpen van de vervorming van nanobladen in een schuifstroming, dit proefschrift be-
handelt twee relevante problemen uit de stromingsleer: (i) sedimentatie van polydis-
perse suspensies, en (ii) het knikken van flexibele deeltjes in een schuifstroom, beide
in het Stokes-stroomregime. De aanpak in dit proefschrift is voornamelijk numeriek,
waaronder Stokesian dynamics en de boundary integral method, die efficiënte metho-
den zijn om de dynamica van deeltjes in Stokes-stromen te simuleren. Daarnaast zijn
samenwerkingen met experimentele onderzoekers opgezet tijdens dit onderzoek. De
ontwikkelde code is gebruikt om praktische vragen te beantwoorden (bijvoorbeeld in
hoofdstuk 5).

Het doel van het begrijpen van sedimentatie van polydisperse suspensies is om
de vloeistofcascade-centrifugatie van polydisperse systemen te analyseren en cen-
trifugeerprocedures te ontwerpen met theoretische richtlijnen voor de fractionering
van deeltjesgroottes. In hoofdstuk 3 wordt een eendimensionaal sedimentatiemodel
gebruikt om de tijdsevolutie van de volumefractieverdeling van elke grootteklasse te
voorspellen voor een polydisperse grootteverdeling. Aangenomen dat de suspensie
verdund is, wordt de zinksnelheid van elke grootteklasse berekend met behulp van de
overeenkomstige Stokes-snelheid, waarbij hydrodynamische interacties worden ge-
negeerd. Met dit model worden de uitkomsten van de centrifugeerprocedure, inclusief
de zuiverheid en opbrengst, geanalyseerd. Bovendien wordt een geoptimaliseerde
procedure voorgesteld op basis van de analyse. Dit werk vormt een theoretisch kader
voor het analyseren en rationeel ontwerpen van centrifugeerprocedures. In hoofdstuk
4 wordt het effect van hydrodynamische interacties op de deeltjeszinksnelheden
van polydisperse suspensies bestudeerd. Zinksnelheidsstatistieken voor verdunde
suspensies van polydisperse bollen worden gegenereerd met Stokesian dynamics

xi
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simulaties. Zowel de gemiddelde snelheden als de snelheidsfluctuaties van elke
grootteklasse worden geanalyseerd. Daarnaast wordt de geldigheid van bestaande
modellen voor polydisperse gehinderde sedimentatie onderzocht door modelvoor-
spellingen te vergelijken met onze numerieke resultaten. Er wordt vastgesteld
dat huidige modellen falen in het voorspellen van de zinksnelheden van kleine
grootteklassen in een polydisperse grootteverdeling. Mogelijke verbeteringen aan
modellen worden besproken. Dit is het eerste werk waarin snelheidsstatistieken van
elke grootteklasse in een breed polydispers systeem worden gerapporteerd in de
literatuur. In hoofdstuk 5 worden de implicaties besproken van de veelgebruikte
experimentele methode waarbij een druppel suspensie wordt gepipetteerd in een
sedimentatietank om de Stokes-snelheid van individuele deeltjes te meten. Dit is een
samenwerkings met experimentele onderzoekers van Deltares, die de experimenten
hebben uitgevoerd. De ontwikkelde Stokesian dynamics code wordt gebruikt om het
effect van hydrodynamische interacties in deze experimentele methode te illustreren.
We ontdekten dat de Stokes-snelheden van deeltjes aanzienlijk worden overschat bij
metingen die deze methode volgen.

Voor het tweede probleem willen we begrijpen wat het criterium is voor een flexi-
bele plaat om te knikken in een schuifstroom, en hoe hydrodynamische interacties dit
criterium veranderen voor een paar platen. In hoofdstuk 6 worden zowel experimenten
als simulaties uitgevoerd om deze vragen te beantwoorden. De simulaties zijn door mij
uitgevoerd met behulp van de boundary integral method, en de experimenten zijn uit-
gevoerd door een samenwerkingspartner met behulp van dunne Mylar-platen in een
schuifcel. Het criterium voor een enkele plaat om te knikken, gebaseerd op de com-
petitie tussen de viskeuze kracht van de schuifstroom en de elastische respons van de
plaat, is gekarakteriseerd, met een goede overeenkomst tussen experimenten en simu-
laties. Verrassend genoeg buigen een paar platen bij een veel lagere schuifsnelheid dan
een enkele plaat met dezelfde materiaaleigenschappen. Dit wordt toegeschreven aan
de hydrodynamische interacties tussen de platen, die zijdelingse krachten uitoefenen
op de platen. Dit is de eerste studie waarin de knikdrempel voor een paar flexibele
deeltjes in een schuifstroom wordt gemeten in de literatuur. Onze studie suggereert
dat de vervorming van flexibele platen in een schuifsuspensie niet alleen afhankelijk
kan zijn van de mechanische en geometrische eigenschappen van de platen, maar ook
van de microstructuur van de suspensie (bijvoorbeeld de oriëntatie van de platen en
de afstand tussen de platen).

Over het geheel genomen draagt dit proefschrift bij aan het begrip van deeltjesdy-
namica in Stokes-stroom, inclusief de sedimentatie van polydisperse suspensies en
het knikken van flexibele platen in schuifstroom, met gebruikmaking van de theo-
rieën en numerieke methoden van microhydrodynamica. De resultaten van dit proef-
schrift kunnen worden gebruikt om de procedures voor vloeistofverwerking van 2D-
nanomaterialen te optimaliseren en in andere relevante toepassingen.
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I N T RO D U C T I O N

Two-dimensional materials are promising high-performance materials due to their
unique properties. Liquid-phase exfoliation is an effective way to produce them in
large amounts. However, the products of liquid-phase exfoliation are highly polydis-
persed, which hinders their applications. Moreover, due to their high flexibility, two-
dimensional materials are easily deformed during liquid-phase exfoliation. This thesis
provides insights for the size fractionation of polydisperse particles and the deforma-
tion of flexible particles in the shear flow. In this chapter, the background of liquid
processing of two-dimensional materials is introduced, where the research questions
are identified. The objectives and outline of this thesis are also provided.

3
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Figure 1.1: A high-shear mixer with mixing head in a beaker of graphene dispersion and a
close-up view of the mixing head. Reproduced from [4].

1.1 Background

1.1.1 Liquid processing of nanosheets

Two-dimensional (2D) materials (e.g. graphene, MoS2, WS2, BN) are crystalline
materials consisting of single- or few-layer atoms, which are sheet-like particles with
lateral length around O(1 µm) and thickness around O(1 nm). They are promising
high-performance materials due to their unique electrical, optical, mechanical, chem-
ical and thermal properties [1]. For example, graphene could be useful in over 40 major
application areas such as composites, energy storage, thermal management, sensors
and coatings [2]. Many of these applications will require few-layer graphene flakes
(< 10 layers) in large multi-tonne quantities. Production of graphene has increased
from 14 tonnes in 2009 to nearly 120 tonnes in 2015, and is nearly 1200 tonnes in
2019 [3].

One effective way to produce large amount of graphene flakes is by liquid-phase
exfoliation (LPE) [1]. The most common techniques to undertake exfoliation in liq-
uid are ultrasonication, ball milling, shear-mixing, electrochemical exfoliation, wet-jet
milling and microfluidization. One of the apparatuses used in LPE is shown in figure
1.1. In LPE, microparticles of graphite are suspended in a liquid solvent, and the re-
sulting colloidal dispersion is subject to energetic mixing. At a critical value of the
local shear rate, layers of graphene are removed from the mother graphite particles.
The micro-mechanics in LPE has been previously studied, and two models are de-
veloped: a sliding model for relatively rigid nanosheets [5] and a peeling model for
graphene sheets which are able to bend [6, 7]. The product of LPE is a mixture of
plate-like particles having different thicknesses and lateral lengths suspended in a liq-
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Figure 1.2: AFM images of two graphene dispersions. (a) and (c) show a non-centrifuged
dispersion. (b) and (d) show a centrifuged dispersion. The labelled flakes in (c) and (d) in
blue, red, green and white colors are flakes with 1-5, 6-10, 11-20 and more than 20 layers,
respetively. Reproduced from [10].

uid solvent. The lateral dimension of graphene flakes produced by LPE is from a few
tens of nanometers to a few micrometers, and the thickness varies from monolayer to
more than ten layers. Before being put to applications, the product of LPE should be
fractionated by their sizes since specific applications require certain size ranges.

Besides polydispersity, another two properties of graphene nanosheets which will
influence their qualities (e.g. shape of the flakes) when being produced by LPE and
transport properties (e.g. viscosity of the suspension) when being transported in liq-
uids are anisotropy and flexibility . Graphene nanosheets are highly anisotropic with
aspect ratio of O(1000) since their lateral sizes are about 1 µm and thicknesses are
about 1 nm. It was found that due to surface slip, Jeffery orbit might be suppressed
and a graphane nanosheet might attain a stable orientation in shear flow [8]. Graphene
has very high Young’s modulus and very low bending stiffness [9], so out-of-plane
bending might happen and influence the morphology of graphene nanosheets in shear
flows.

1.1.2 Size distribution of nanosheets produced by LPE

The nanosheets produced by LPE are polydisperse, as can be seen from the AFM
images of a graphene dispersion shown in figure 1.2 (a) and (c). There are many flakes
with more than 10 layers, which are graphite, and they can be removed by centrifuga-
tion (see figure 1.2 (c) and (d)).

The characterization of lateral size and thickness of nanosheets produced by LPE
is shown in figure 1.3. From figure 1.3 (a) and (c), it is seen that both the lateral size
and thickness follow approximately log-normal distributions. The slopes of the dotted

[ May 6, 2025 at 10:45 – classicthesis]
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Figure 1.3: Lateral size (a) and thickness (c) distributions of nanosheets produced by LPE
after pre-centrifugation. Correlations between standard deviations and mean values of lateral
size (b) and thickness (d) of nanosheets under different centrifugation strengths. Reproduced
from [11].

lines in figure 1.3 (b) and (d) are 0.46 and 0.59, respectively, which means the standard
deviation of lateral size with aspect to mean lateral size is ∆L/ < L >∼ 0.46, and the
standard deviation of thickness (i.e. number of layers) with respect to mean thickness
is ∆N/ < N >∼ 0.59.

Log-normal distributions are almost universal when the particle size distribution
is the result of repetitive break-up processes [12]. For example, growth and division
processes of cells could lead to a log-normal cell size distribution [13]. Log-mormal
approximations are used to model the size distributions of aerosols due to their Brow-
nian coagulation [14, 15]. The size distribution of cohesive sediment in the river also
can be fitted well by a log-normal distribution because of flocculation [16–18].

1.1.3 Fractionation of nanosheets by centrifugation

The broad size distributions of the nanosheets produced by LPE hamper their appli-
cations, since most applications need controlled nanosheet sizes. For example, large
nanosheets are suitable for mechanical reinforcement [20], whereas small ones are
preferred for catalysis [21]. For the inks used for printed optoelectronic devices, they
have to be monolayer nanosheets enriched [22], whereas the dispersions after LPE
contain very low amount of monolayer nanosheets as seen from the previous section
(typically lower than 10%). Moreover, after size selection, the graphene produced
from LPE can form networks with increasing electrical conductivity as the lateral
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Figure 1.4: Electrical conductivity versus graphene nanosheet lateral size for graphene pro-
duced by LPE. Reproduced from [19].

Figure 1.5: Schematic description of liquid cascade centrifugation process. Reproduced from
[11].

size of the graphene nanosheets decreases, as shown in figure 1.4 [19]. In general,
rather monodisperse dispersions containing nanosheets with specific lateral size and
thickness (i.e. number of layers) are needed for different applications, with the size
depending on the application. Thus, the nanosheets produced from LPE need to be
fractionated.

A widely used procedure to fractionate nanosheets is the liquid cascade centrifuga-
tion (LCC) [11, 19, 23, 24]. The process of LCC is sketched in figure 1.5. In LCC, the
sedimented layer is removed from the supernatant after being centrifuged for a spec-
ified time at a certain g-force in one step, then the supernatant is centrifuged again;
the process is then repeated. The average size of the sedimented layer decreases as
more steps of centrifugation are carried out. Apart from nanosheets, centrifugation
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is also broadly used for the fractionation of nanoparticles with other shapes [25–27].
Despite its wide use, there is currently no theoretical guidelines for LCC. The oper-
ating conditions (e.g. g-force, centrifugation time, number of steps) are completely
determined by trial and error. Thus, the outcome of LCC is very difficult to predict
and the procedure is hard to optimize.

Centrifugation is essentially a sedimentation process. The principle of centrifuga-
tion for particle fractionation is the differential settling (i.e. for particles with the same
density, larger ones settle faster and smaller ones settle slower). To model centrifuga-
tion, it is important to know the average settling velocity of certain particle class at the
given condition (e.g. g-force, concentration, etc). While, this turns out to be difficult
due to the long-range hydrodynamic interactions between particles.

Based on the Stokes drag law, the settling velocity of a spherical particle with radius
a and density ρp in a centrifugal field with equivalent g-force ge is

us =
2(ρp − ρf)gea

2

9µ
, (1.1)

where ρf and µ are fluid density and viscosity, respectively. The particle Reynolds
number during centrifugation is

Rep =
ρfu

sa

µ
. (1.2)

The Peclet number is

Pe =
aus

D
, (1.3)

where D is the diffusion coefficient.
Take ρp = 2500 kg/m3 (e.g. the density of graphene), a = 1 µm, and water as

the fluid, values of the typical parameters in centrifugation are listed in table 1.1. It is
seen that the centrifugation happens in Stokes flow regime and translational Brownian
motion can be neglected because of the large centrifugal force.

1.1.4 Flexibility influences the shapes of nanosheets in flows

2D nanosheets have large Young’s moduli and low bending rigidities [1, 29], which
makes them nearly inextensible but highly flexible. During the liquid processing of
these nanosheets, they can be highly deformed because of the energetic shear mixing.
For example, fig.1.6 shows that after LPE, some of the graphene nanosheets are folded.
It is important to understand and control how these nanosheets are deformed in the
flow because the material properties (e.g. electron mobility) highly depend on the
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Table 1.1: Values of typical parameters in centrifugation [11, 19, 23, 24].

Parameter Value
Concentration 10− 100 mg/mL

Volume fraction 0.004− 0.04

Equivalent g-force 100g− 10000g

Settling velocity 0.33− 33 mm/s

Reynolds number 3.3× 10−4 − 3.3× 10−2

Peclet number 1.5× 103 − 1.5× 105

Figure 1.6: Transmission electron microscopy images of deformed graphene nanosheets after
liquid phase exfoliation. Reproduced from [28].

nanosheet morphology [30], and certain shapes of the nanosheets are required in some
applications (e.g. soft robotics and wearable sensing) [31].

Because the fluid-structure interaction happens at the micro-scale, currently there is
no experiment which observes the deformation dynamics of a single nanosheet in the
flow. Apart from understanding how a single sheet deforms in the flow, it is also very
practical to understand how the inter-particle interactions alter the deformation of the
nanosheets in the flow, as they tend to stack in the dispersion and the hydrodynamic
interaction is long-ranged in Stokes flow.

1.2 Motivation

This thesis is particularly motivated by the fluid dynamics problems encountered
during the liquid processing of 2D material nanosheets, where either polydispersity
or flexibility of the nanosheets is the core of the problem. However, the findings in
this thesis can also be generalized for other multiphase flow systems involving poly-
disperse or flexible particles, as described in the following.
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Particles suspended in flowing fluids are ubiquitous in both natural and industrial
applications, and play an important role in various processes. In nature, particles are
involved in phenomena like the formation of clouds, transport of sediment, etc. In in-
dustry, they are critical in fields like pharmaceuticals, food production, and material
science, where they influence the product properties, stability, and performance. Un-
derstanding the behavior of particles, particularly their sorting and transport, is key
to optimizing processes and developing advanced technologies in both environmental
and engineering contexts.

Due to the variability in the processes generating the particles (e.g. grinding, crys-
tallization, milling) and the stochastic nature of the natural forces exerted on the parti-
cles (e.g. erosion, weathering, biological activities), particulate systems are typically
polydisperse with wide size distributions or consisting multiple components. For in-
stance, figure 1.7 shows several examples of polydisperse particle systems at different
length scales. These polydisperse particle systems usually need to be sorted by size
(also referred to as size fractionation) or by other properties to acquire desired size
ranges, shapes, or compositions, depending on the specific application. For example,
in pharmaceutical applications, the size of the drug particle crucially influences its
bioavailability in the patient’s body and the efficacy of its delivery, as smaller particles
are easier to be dissolved and overcome biological barriers [32, 33]. By controlling
the sizes of drug-loaded nanoparticles, it is possible to achieve precision therapeutics
[34]. In material science, the mechanical properties, thermal and electrical conduc-
tivities of composite materials depend crucially on the shape and size distributions
of the filler particles [35–37]. Moreover, re-usable materials can be recycled via the
fractionation of particulate wastes, for instance in the recycling of battery materials
[38] and plastics [39], contributing to a circular economy and sustainable future. Pop-
ular fractionation techniques include sieving, sedimentation and centrifugation, froth
flotation, magnetic separation, filtration, etc. Understanding and optimizing these pro-
cesses will lead to higher purity of the fractionated samples and better designs of
products which can be more efficiently recycled. This thesis aims to establish fluid
dynamics fundamentals of sedimentation or centrifugation for the sorting by size.

Another property of particles which enriches their dynamics and promotes their ap-
plications is their flexibility. Flexible particles can deform under external forces like
compression or shear forces which can be produced by non-uniform flows. Several
examples of flexible particles are shown in figure 1.8. The ability of flexible particles
to adapt to different environments and conditions is utilized in various applications.
For instance, biological cells such as red blood cells are highly flexible, enabling them
to pass through narrow capillaries without rupturing [41]. Soft hydrogels are biocom-
patiable and responsive to external stimuli like temperature and pH, making them
suitable for drug delivery and tissue engineering [42]. Microorganisms rely on the
interaction between their flexible flagella and the surrounding fluid to swim [43]. In
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(a)

(b)

(c)

(d)

Figure 1.7: Examples of polydisperse particles: (a) transmission electron microscopy image
of gold nanoparticles (reproduced from [25]); (b) optical microscope image of a polydisperse
emulsion (reproduced from [40]); (c) sand grains with varying sizes (source: pixabay.com);
(d) black mass a mixture of anode and cathode particles; the black mass is the main output of
shredding of spent Li-ion batteries (source: elcanindustries.com).
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Figure 1.8: Examples of flexible particles: (a) red blood cells (source: en.wikipedia.org); (b) a
buckled flexible hexagonal sheet in a simple shear flow (reproduced from [44]); (c) sediment-
ing flexible fibers interacting with an obstacle in a viscous liquid (reproduced from [45]); (d)
a folded flexible rectangular sheet during sedimenting in a viscous liquid (reproduced from
[46]).

these applications, it is essential to understand how flexible particles react to external
stimuli, e.g. how they deform under external forces or when immersed in fluid flows.
This thesis focuses on flexible particles immersed in fluid flows.

1.3 Thesis objectives and outline

Objectives

The goal of this thesis is to study the fluid dynamics of graphene in liquids using
numerical simulations. The objectives of this thesis are two: (1) understanding the
sedimentation of polydisperse suspensions in the Stokes regime, and (2) investigating
the deformation dynamics of flexible sheets in shear flow, still under condition of
low Reynolds numbers. The first objective contributes to the rational design of liquid
cascade centrifugation procedure, and the second one contributes to the control of
the morphologies of nanosheets in liquids. These objectives are addressed through
numerical simulations carried out with a Stokesian dynamics method and a simplified
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boundary integral method, and through the theoretical analysis of experiments carried
out by collaborators. The numerical methods adopted and theoretical analysis done in
this thesis are based on the theories of microhydrodynamics, and some fundamentals
of microhydrodynamics are provided in chapter 2 to make the thesis self-contained
thus. For the first objective, we want to understand:

• What are the optimal parameters to obtain a relatively monodisperse suspension
starting from a polydisperse suspension through a liquid cascade centrifugation
process? (chapter 3)

To answer this question, we theoretically analyze the centrifugation of a polydis-
perse suspension using a one-dimensional sedimentation model. In this model, we
neglect the hydrodynamic interactions between particles and assume each size class
settles with the corresponding Stokes velocity, aiming at extremely dilute suspensions.

• How to predict the average settling velocity of each size class in a dilute settling
polydisperse suspension? (chapter 4)

To model the sedimentation of a polydisperse suspension, it is crucial to accurately
predict the settling velocity of each size class. Towards this goal, we carried out dis-
crete particle simulations using Stokesian dynamics to quantify the settling velocity
statistics in polydisperse suspensions with broad size distributions. We also compare
our results with predictions of existing hindered settling function models. Here, we
study the sedimentation of spheres although the work is motivated by centrifugation
of nanosheets. The reason is that we consider dilute systems and since the particles
are far from each other, the hydrodynamic interaction has weak dependence on the
particle shape and they can be treated approximately as point forces at the first or-
der. Sedimentation of bidisperse suspensions and polydisperse suspensions with small
polydispersities has been studied in the literature, but there is no study of polydisperse
suspensions with wide continuous size distributions where the velocity of each size
class is characterized, as pointed out in chapter 4.

• What are the implications of the widely used experimental procedure based on
pipetting a suspension drop in a vertical tank to measure the single particle
Stokes velocity? (chapter 5)

To quantify the hindered settling function from the experiments, it is important to
accurately measure the single particle Stokes velocity. We collaborate with researchers
from Deltares to show the limitations of this widely used experimental procedure (i.e.
pipetting a suspension drop in a vertical tank to measure the single particle Stokes
velocity) using both experiments and simulations.
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For the first objective, dynamics of dilute suspensions of polydisperse spheres is
studied. Since the suspension is dilute, the particles are far from each other and the
hydrodynamic interactions have weak dependence on the particle shape. While for
the second objective, we want to study the deformation of a pair of closely positioned
flexible particles at the particle scale. To mimic the situation of nanosheets immersed
in liquids, we use thin sheets with sizes of centi-meters immersed in glycerol in the
experiments so that three-dimensional and time-dependent dynamics of the sheets can
be measured and the local flow around the sheets is in the Stokes regime. Specifically,
for the second objective, we want to understand:

• What is the threshold above which a flexible sheet will deform in the shear flow?
(chapter 6)

• How does this threshold change due to hydrodynamic interactions in the shear
flow? (chapter 6)

We address these questions by the combination of experiments and simulations.
Experiments are done using Mylar sheets in a shear cell. Simulations are carried out
using a simplified boundary integral method.

Outline

The remainder of this thesis is structured as follows. In chapter 2 some fundamen-
tals of microhydrodynamics related to this thesis and the numerical methods used
in this thesis are introduced. Chapter 3 presents a theoretical analysis and optimiza-
tion of the liquid cascade centrifugation. Chapter 4 investigates the hindered settling
of log-normally distributed Stokesian suspensions. Chapter 5 presents an analysis of
the hydrodynamic interactions which lead to the particle settling velocity enhance-
ment. Chapter 6 investigates the deformation of flexible sheets in the shear flow. Main
conclusions of this thesis are summarized and recommendations of future research
directions are presented in chapter 7.
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2
F U N DA M E N TA L S O F M I C RO H Y D RO DY NA M I C S

Microhydrodynamics describes the particle dynamics in Stokes flow, which covers
the topics studied in this thesis. In this chapter, a brief overview of some fundamentals
of microhydrodynamics is provided, which lays the foundation of the analysis in the
following chapters. The numerical methods used in this thesis including boundary
integral method and Stokesian dynamics method are introduced at the end of this
chapter.

21

[ May 6, 2025 at 10:45 – classicthesis]



22 fundamentals of microhydrodynamics

ch
ap

te
r

2

2.1 Introduction

Microhydrodynamics is a subject which covers the studies of the motions of small
objects whose sizes are typically at nano- or micro-meter scales in viscous fluids. For
example, sedimentation and rheological properties of colloidal suspensions, swim-
ming of microorganisms like bacteria and algae, and diffusion of macromolecules are
its research topics, to name a few. This chapter provides a brief overview of some fun-
damentals of microhydrodynamics as a foundation for the following chapters. More
complete descriptions of theories of microhydrodynamics are referred to the relevant
books [1, 2].

Governing equations

Since the flow around the particles happens at a small length scale, the Reynolds
number is typically small, and the flow can be described by the Stokes equations:

∇ · u = 0, (2.1)

−∇p+ µ∇2u + f = 0, (2.2)

where u and p are the velocity and pressure of the flow, respectively, µ is the viscosity,
and f is the force per unit volume on the fluid.

At these microscales, inertia of particles can be neglected. Their motions are gov-
erned by the following force balance equation:

Fh + Fe = 0, (2.3)

where Fh and Fe are the hydrodynamic and external forces on the particle.

2.2 Point force and other singularities

The primary singularity in Stokes flow is the Stokeslet which describes the flow
induced by a point force in an unbounded domain. When f = Fδ(r) in equation 2.2,
the solutions of the velocity and pressure fields are:

u(r) = G(r) · F =

(
I

8πµr
+

rr
8πµr3

)
· F, (2.4)

p(r) =
( r
4πr3

)
· F, (2.5)
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where F is the vector of the point force, δ(r) is the Dirac delta function, r = |r| is the
distance from the point force, and I is the unity tensor. In equation 2.4, G(r) is called
the Oseen-Burgers tensor representing how the flow decays away from the point force.
Note that the flow diverges at the location of the point force (r = 0).

To avoid the divergence from the Stokeslet solutions which is problematic in nu-
merical analysis, Cortez [3] proposed the method of regularized Stokeslets. In this
method, the point force is smeared over a small blob so that the resulting flow is finite
everywhere. The smear of the point force is done by replacing the Dirac delta func-
tion with a blob or cutoff function ϕϵ(r) which is radially symmetric and satisfies∫
ϕϵ(r)dr = 1. One of such blob functions is:

ϕϵ(r) =
15ϵ4

8π (r2 + ϵ2)
7/2

, (2.6)

where ϵ is a regularization parameter controlling the spread of the blob function. For
ϵ → 0, ϕϵ(r) → δ(r). The flow of this regularized Stokeslet is:

uϵ(r) = Gϵ(r) · F =

(
I(r2 + 2ϵ2)

8πµ (r2 + ϵ2)
3/2

+
rr

8πµ (r2 + ϵ2)
3/2

)
· F, (2.7)

pϵ(r) =

(
r

4π (r2 + ϵ2)
3/2

)
· F, (2.8)

where Gϵ(r) is the regularized green’s function. Examples of the streamlines of a
Stokeslet and a regularized Stokeslet are shown in figure 2.1. The streamlines are
more smooth at the point force location (i.e. the origin) in the regularized Stokeslet
case than those in the Stokeslet case. The idea of spreading a point force over a small
region is also used in the force coupling method [4] for simulations of low Reynolds
number suspensions.

Since the Stokes equations are linear, other singularity solutions can be derived
by differentiating the solution of the Stokeslet. For example, flows caused by force
dipoles, quadrupoles and other higher-order force multipoles. A force dipole can be
decomposed into a symmetric part named as a stresslet and an antisymmetric part
named as a rotlet. A stresslet induces a pure straining flow and a rotlet induces a
rotation flow. These singularity solutions can be superposed to construct the solutions
of different kinds of Stokes flow problems, which is the principle of the singularity
method [5]. The accuracy of this method depends on the choices of the types and
the positions of the singularities. The densities of the singularities can be determined
by satisfying the boundary conditions. This method has been applied to develop the
slender-body theory [6], calculate the flow fields of moving bodies in Stokes flows [5],
and model swimmers in fluids [7, 8], for example.
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(a) (b)

Figure 2.1: Streamlines of (a) a Stokeslet and (b) a regularized Stokeslet with ϵ = 0.5 for a
point force as F = (0, 1, 0).

2.3 Integral representation and multipole expansion

For a rigid particle immersed in a Stokes flow, the disturbance flow induced by this
particle can be expressed as:

u(x) − u∞(x) =
∫
Sp

G(x − y) · (−σ · n)(y)dS(y), (2.9)

where u∞ is the background flow without the particle, x is a position in the flow, y
is a position on the particle surface Sp, G is the Oseen-Burgers tensor, σ = −pI +
µ
(
∇u +∇uT

)
is the stress tensor of the fluid, and n is the outward unit normal vector

on the particle surface. This integral representation means that the disturbance flow
of a rigid particle is the superposition of flows induced by a collection of point forces
distributed over the particle surface with density −σ · ndS.

The integral in equation 2.9 is called the single layer potential. It requires the surface
force distribution to be known to calculate the velocity field. For deformable particles,
there is another integral needed in the integral representation of the flow field, which
is called the double layer potential. It requires the surface velocity distribution. When
the condition that

∫
Sp

u(y) · n(y)dS = 0 is met, the double layer potential can be
neglected. This condition holds for rigid particles, flexible yet inextensible particles
with conserved volumes [9], etc. For particles with surface slip velocities, the double
layer potential cannot be neglected [10, 11].

[ May 6, 2025 at 10:45 – classicthesis]



chapter
2

2.4 numerical methods 25

The integral representation (equation 2.9) can be expanded with respect to the center
of the particle xc, which is:

u(x) − u∞(x) = G(x − xc) ·
∫
Sp

(−σ · n)(y)dS(y)

+∇yG(x − y)|y=xc ·
∫
Sp

(y − xc)(−σ · n)(y)dS(y) + · · ·

= −G(x − xc) · F −∇yG(x − y)|y=xc · M + · · · ,

(2.10)

where F is the force exerted on the particle by the fluid (i.e. monopole), and M is the
first moment of the force density on the particle surface (i.e. dipole). Other higher-
order force multipoles are omitted here. From equation 2.10, it is also seen that the
higher the order of the multipole, the faster the flow it induces decays. Thus more
and more multipoles should be included when x gets closer to the particle surface in
equation 2.10. This multipole expansion can be used to approximate the flow field
induced by a particle at different levels of accuracy.

2.4 Numerical methods

In this section, the two numerical methods used in this thesis for Stokes flow simu-
lations (i.e. boundary integral method and Stokesian dynamics) are introduced.

Boundary integral method

The boundary integral method exploits the integral representation shown in equa-
tion 2.9. For a solid particle immersed in a Stokes flow, the surface of the particle
can be discretized into small elements δS. Taking a point xi on the particle surface,
equation 2.9 can be writtien as the following discretized form:

u(xi) = u∞(xi) −
∑
j

G(xi − xj) ·σ · n(xj)δSj, (2.11)

where xj is the position of element δSj on the particle surface. Here the surface force
σ · n is assumed to be constant over each small element.

For a resistance problem where the velocity of the particle is known and the force on
the particle needs to be calculated, the left hand side of equation 2.11 is known and
the surface force on each element can be calculated. Then, the hydrodynamic force
and torque on the particle can be calculated as:

F =
∑
j

σ · n(xj)δSj, (2.12)
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and

T =
∑
j

(xj − xc)×
(
σ · n(xj)

)
δSj. (2.13)

For a mobility problem where the force and torque on the particle are known and the
velocity needs to be calculated, another set of equations of the kinematic constraints
are needed, which are:

u(xi) = U +ω× (xi − xc), (2.14)

for a solid body motion with translational velocity U and rotational velocity ω of the
particle. By coupling equations 2.11, 2.12, 2.13 and 2.14, the surface force of each
element and the velocities of the particle can be calculated.

The advantage of boundary integral method over directly solving the Stokes equa-
tions using finite difference or finite volume methods is that only the boundary needs
to be meshed instead of the whole domain being discretized, reducing the computation
from a three dimensional problem to a two dimensional problem. Boundary integral
method has been used for simulations of emulsions [12, 13], droplet interactions [14,
15], suspensions [16], dynamics of micro-swimmers [17, 18], fluid-structure interac-
tions at micro-scales including capsules [19], red blood cells [20], and elastic sheets
[21], etc.

Stokesian dynamics

Stokesian dynamics is a discrete particle simulation method to study the suspen-
sion dynamics in Stokes flow [22]. Each particle is represented by force multipoles
as shown in equation 2.10. Usually only force, torque and stresslet are considered.
The linear relation between the velocities of the particles and force multipoles of the
particles is:(

U − U∞
−E∞

)
= M ·

(
F

S

)
, (2.15)

where U is the velocities (including translational and rotational) of all particles, U∞
is the velocities of the undisturbed flow at particle centers, E∞ is the strain rate of
the flow, F includes the forces and torques on the particles, S is the stresslets of the
particles, and M is the grand mobility matrix representing the multi-body hydrody-
namic interactions. This mobility matrix can be constructed using the Rotne-Prager-
Yamakawa formula [23–26], which depends on the relative positions between particles
and sizes of particles.
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To include near-field lubrication between particles, the resistance formulation
should be used, which is:(

F

S

)
= R ·

(
U − U∞
−E∞

)
, (2.16)

where R is the grand resistance matrix and is formulated as:

R = M−1 + R2b − R∞
2b. (2.17)

Here, R2b is constructed using the exact two-sphere resistance solutions [27, 28],
and R∞

2b composes of the inverse matrices of the two-sphere mobility matrices. From
equation 2.17, it is seen that the grand resistance mobility matrix includes the far-field
many-body hydrodynamic interactions (M−1) and the near-field lubrication (R2b −

R∞
2b).
More detailed descriptions of Stokesian dynamics can be found in the references [22,

29, 30]. Since its invention, faster versions of Stokesian dynamics have been proposed,
like accelerated Stokesian dynamics [31] and fast Stokesian dynamics [32]. Brownian
motion can also be easily incorporated into the framework of Stokesian dynamics to
study colloidal suspensions [33]. Arbitrarily shaped particles such as macromolecules
can also be studied using Stokesian dynamics by modelling the particle as a rigid
composite of spherical beads [34].
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3
A NA LYS I S A N D O P T I M I Z AT I O N O F A
M U LT I CA S CA D E M E T H O D

In this chapter, a one-dimensional model is used to study the multicascade centrifu-
gation of polydisperse suspensions to isolate certain size range from an initial size
distribution. Assuming the suspension to be very dilute, the settling velocity of each
size class is calculated by using the corresponding Stokes velocity. An optimized pro-
cedure based on a trade-off between the yield and the amount of impurity desired is
proposed. Practical applications of the theoretical analysis are demonstrated through
the fractionation of spherical metallic nanoparticles and the fractionation of graphene.

This chapter is based on the article:
H. Li et al. “Analysis and optimization of a multicascade method for the size fractionation
of poly-dispersed particle systems via sedimentation or centrifugation.” In: (To be submitted),
arXiv:2303.05257.
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Figure 3.1: Sketches of settling particles under the balance of body force (Fb) and Stokes
drag (Fd) in (a) band sedimentation and (b) homogeneous sedimentation.

3.1 Introduction

Dispersed liquid-solid and liquid-liquid systems are liquids containing suspended
solid or liquid particles. Examples of such systems are cell broths, protein solutions,
nanomaterial suspensions and emulsions [1, 2]. A very common technique to separate
the dispersed and continuum phases in these systems is the application of a gravita-
tional or centrifugal field. If the densities of the dispersed and continuous phases are
different, the applied field will drive the translation of the dispersed phase with re-
spect to the continuum phase, so that the dispersed phase can be removed from the
fluid [3, 4]. Decanters, centrifuges, ultra-centrifuges and gravity settlers, are examples
of separation units that work based on this method.

In addition to separate particulate materials from the liquid, sedimentation and cen-
trifugation can also be used to fractionate particles in size classes, or to make the
particle size distribution more monodisperse. This is a crucial outcome, as the per-
formance of colloidal materials and nanomaterials is extremely dependent on particle
size and obtaining particles with controlled polydispersity has practical and econom-
ical advantages. For example, the cost of many nanomaterials depends markedly on
how monodispersed the sample is, and in fact for applications demanding high purity
fractionation is necessarily applied to samples provided by suppliers. There are of
course many methods for particle fractionation, for example field-flow fractionation
[5], hydrodynamic chromatography [6] and filtration [7], but centrifugation and sedi-
mentation are unique in their ability to handle large or coarse samples and are quick
and easy to apply.

The method through which size fractionation can be obtained by sedimentation or
centrifugation is a multistep method called, in the context of centrifugation, differen-
tial or multicascade centrifugation. The method consists in removing the sedimented
layer from the supernatant after a specified centrifugation time, then the supernatant is
centrifuged again. The process is then repeated several times until it is expected, based
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on some criteria, that the fractionated sample contains only particles of a given size in-
terval, and no others. The decision for the centrifugation parameters, for instance cen-
trifugation time and speed, is typically based on trial and error, or following literature
protocols that are often themselves based on empirical observations. The question that
this paper would like to address is whether this choice can be made rationally based on
a mathematical model that provides the particle size distributions in the supernatant
and sedimented layer at any given time. This mathematical model will furnish also the
amount of impurities. When deciding for example the centrifugation times to isolate a
certain interval of the initial size distribution, one indeed must account for the fact that
there is a link between the centrifugation time and the amount of impurities obtained.
For example, for any choice of centrifugation time, some fine particles will sediment
at the bottom of the centrifugation vial together with the coarser particles, so the pel-
let at the bottom will be a mixture of mainly coarse particles with a subset of small
particles which we term impurities. Determining the amount of impurities requires
information about the initial size distribution and the calculation of how this size dis-
tribution evolves in time in the supernatant and in the sedimented layer. The current
paper analyses mathematically this evolution for two cases as sketched in Fig.3.1: ho-
mogeneous sedimentation, in which the particles are mixed throughout the vial [8, 9],
and band sedimentation, in which the particles are initially deposited in a small slab
at the top of the clear fluid [10–12]. We will see that band sedimentation holds signif-
icant promise for size fractionation. From a mathematical point of view, developing
a centrifugation protocol is similar to developing an algorithm, i.e. a step-by-step se-
quence of instructions to obtain a certain quantifiable outcome. This paper lays the
basis for a rational, step-by-step algorithm to size fractionate a dilute polydispersed
suspension of particles for the case in which the initial size distribution is known. The
idea is that, to isolate a certain interval of this size distribution, we can eliminate the
tails of the probability distribution in successive steps (see Fig.3.2 for an illustration
of the concept). In reality the “cut” will not be sharp, so it is important to quantify the
amount of impurities (error) made in each step.

The main assumption of the paper is that the suspension is dilute. If the suspension
is not dilute, the calculation of the time dependence of the particle size distribution
can not be done exactly. Furthermore, the dilute case enables to establish a theoretical
framework that is useful both for practical initial calculations and for further theoreti-
cal work. We further assume the initial particle size distribution follows a log-normal.
This assumption is not very restrictive. Log-normal distributions are almost universal
when the particle size distribution is the result of repetitive break-up processes [13]
(for example, the size of the nanosheets produced by liquid-phase exfoliation follows
a log-normal distribution [8, 10]). Log-normal distribution is also widely used to de-
scribe particle size because it fits well for the measured distributions of many types
of particles [14] (e.g. aerosols [15], ultrafine metal particles [16], soil particles [17])
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Figure 3.2: Ideal case of the isolation of certain size range by successive steps. Frequency
distributions (a) initially, (b) after first step and (c) after second step.

and the number, weight and area distributions of the particles are all log-normal with
same standard deviation [18].

A review of mathematical models of centrifugation is given in the following sec-
tion, where key elements of novelty of the current analysis are highlighted. The math-
ematical model used in the current investigation is described in Sec.3.3, and results
discussing solutions of this model for homogeneous or band sedimentation are dis-
cussed in Sec.5.4. To illustrate the practical application of the theory, in Sec. 3.5 we
describe two applied cases, fractionation of spherical metallic nanoparticles and frac-
tionation of graphene platelets. We chose graphene because the development of a pro-
tocol to fractionate graphene would enable to overcome one of the biggest bottlenecks
in large-scale graphene production, namely the large polydispersity in lateral size and
thickness of the platelets produced [19]. Finally, conclusions are drawn in Sec.3.6.

3.2 Overview of mathematical models of sedimentation/centrifugation

The evolution of the particle size distribution following the application of a con-
stant body force to a particulate system can be modeled via a set of one-dimensional
transport equations, each governing the particle number density (or volume fraction)
corresponding to each size class. Kynch [20] analysed a monodisperse particulate sys-
tem via one such model, excluding particle diffusion. Kynch’s model could capture the
discontinuity in the volume faction profile in correspondence to the liquid-suspension
and suspension-sediment interfaces observed in experiments. By extending Kynch’s
theory by adding a diffusive term to the transport equation, Davis and Russel [21]
analysed the diffusive broadening of the concentration fronts due to Brownian motion.
Blanchette and Bush [22] studied the evolution of particle volume fraction during sed-
imentation of monodisperse particles in a density stratified medium. Antonopoulou et
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al. [23] developed a one-dimensional continuum model for sedimentation of monodis-
perse colloidal particles in centrifugation. To account for the fact that the sediment
layer grows in size when it is sufficiently packed, they incorporated into the model an
effective maximum volume fraction, derived by considering the minimum separation
between two spherical colloids.

Theoretical studies on systems of 2 or 3 size classes are available [24–26], whereas
theoretical studies on sedimentation of widely polydispersed systems (i.e. number of
classes significantly larger than 3) are scarce. Esipov [27] analysed a theoretical model
for polydispersed suspensions. The settling velocity of each class was closed in terms
of a weighted average of the volume fraction of each particle class, leading to a set
of coupled Burgers equations. The initial Gaussian particle size distribution was dis-
cretized with 26 particle classes. Xue and Sun [28] compared experimental results
with the solution of a one-dimensional convection equation (Brownian motion and hy-
drodynamic diffusion were neglected), considering 35 size classes. A similar model
was used by Abeynaike et al. [3], with up to 8 size classes.

In contrast to the works above, we consider a fine discretization of the particle size
distribution with 1000 size classes, to predict the evolution of a continuous log-normal
size distribution with specified mean and variance values. A further key difference
with previous works is that, we focus on the time evolution of the particle size dis-
tribution in the supernatant vs. that in the sedimented layer, while previous works
focused on the time evolution of concentration profiles for each particle class. A key
novelty of the current paper is that the work published so far considered single-step
sedimentation, meaning that starting from a mixed suspension the simulations ended
when all the particles reached the bottom of the container. In contrast, we consider
multi-step sedimentation in which the sediment is removed after a given time and the
remaining suspension is subjected to a further sedimentation step.

3.3 Mathematical model of this chapter

We consider a dispersed system contained in a straight vial of height H. The body
force acting on the dispersed phase (which is equal to the gravity force in sedimen-
tation and to the centrifugal force in centrifugation) is assumed to be constant along
the vial and directed parallel to the side walls of the vial (see Fig.3.1). We seek to
describe the number density N(x, t,q) of particles at position x and time t having
settling velocity q, with x = 0 corresponding to the free surface of the liquid (the axis
x is directed towards the bottom of the vial). We focus initially on particle velocity,
and not on particle size, because calculating the time evolution of the size distribution
requires stipulating a relation between size and velocity, and this relation depends on
the specific shape of the particles, hence it is not universal. Once the problem is un-
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derstood and modeled in the velocity space, the results can be translated in terms of
size (see Sec. 3.5).

The time evolution of N(x, t,q) is governed by a convection-diffusion equation
[29]:

∂

∂t
N(x, t,q) +

∂

∂x
(qN(x, t,q)) =

∂FD
∂x

. (3.1)

Here FD is a diffusive flux accounting for the diffusive transport of the particles in the x
direction (by either Brownian motion or hydrodynamic diffusion). The second term on
the left-hand side represents the convection of the dispersed phase by the body force.
The settling velocity q is in general a function of the particle size, particle density,
effective density of the suspension, concentration of the particles with velocity q, and
concentration of the particles with velocity different from q [29, 30]. The diffusive
flux also depends on full size distribution. Many papers considered the problem of
closing the hindered settling function for polydispersed systems [30–34]. Because
of the complexity of the multi-step situation and to produce a theoretical baseline for
future work, in our simulation we do not consider hindered settling effects. We assume
that the suspension is extremely dilute, i.e. the total volume fraction of the dispersed
phase φT ≪ 1, so that hydrodynamic and contact interactions between the dispersed
phase elements can be neglected. In this case, q becomes independent ofN and can be
taken out of the differentiation. Furthermore, if hydrodynamic and contact interactions
are negligible, the diffusive flux is also negligible. With the further assumption that
Brownian motion is negligible (high Péclet number), Eq.3.1 simplifies to the following
linear convective equation:

∂

∂t
N(x, t,q) + q

∂

∂x
N(x, t,q) = 0. (3.2)

The characteristic time scale for convection over a length H is H/q. The ratio of
the diffusive time scale H2/D to the convective time scale is the Péclet number Pe =

Hq/D, where D is the diffusion coefficient of the particle [1]. For spherical particles,
the condition for particle radius a of negligible diffusion in centrifugation (Pe >

1) corresponds to a3 > 3kBT/4πH(ρp − ρl)ge, where kBT is the characteristic
thermal energy, ρp and ρl as densities of particles and solvent respectively, ge as the
centrifugal acceleration, and the relation of a and ge making Pe = 1 is plotted in
Fig.3.3 assuming H = 1cm, (ρp − ρl) = 1000kg/m3, and at room temperature.

We solve equation 3.2 numerically and analytically for the initial condition:

N(x, t = 0,q) = N0(x,q), (3.3)

where N0(x,q) is the initial particle number density of particles with velocity q at
position x. We consider two situations: the particles are homogeneously distributed
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Figure 3.3: Color map of logarithm value of Péclet number of spherical particles in the (a,
ge) space. The black line is Pe = 1.

in a slab of height h < H near the top of the vial (case 1, band sedimentation); or
the particles are homogeneously distributed in x ∈ [0,H) (case 2, homogeneous sedi-
mentation). The model equation is solved in a half-bounded region x ∈ [0,∞), where
x = 0 corresponds to the free interface at the top of the vial. The particles are consid-
ered to be sedimented when they reach x = H.

In the dilute limit, the settling velocity is only a function of the particle geometry.
The settling velocity q of an isotropic (spherical) particle (Eq.3.9) or an anisotropic
(disk) particle (Eq.3.10) is given in Sec.3.5. We consider an initial log-normal distri-
bution of q as an illustration of the application of the theory (note that for disks the
settling velocity is log-normally distributed if lateral size d and thickness L are both
log-normally distributed and independent [35]).

For nq discrete size species Eq.3.2 becomes

∂

∂t
Ni(x, t;qi) + qi

∂

∂x
Ni(x, t;qi) = 0, i = 1, 2, · · · ,nq, (3.4)

where Ni(x, t;qi) is the number density of species i with settling velocity qi. The
initial condition for species i is

Ni(x, 0;qi) = f0(qi)n0(x), (3.5)
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where n0(x) is the initial total particle number density including all the species at
position x, and f0(qi) is the frequency of species i in the original sample. For case 1
(band sedimentation), we specify

n∗
0(x

∗) =

1 for 0 ⩽ x∗ ⩽ 0.1

0 for 0.1 < x∗ ⩽ 1
. (3.6)

For case 2 (homogeneous sedimentation), we specify

n∗
0(x

∗) = 1, 0 ⩽ x∗ ⩽ 1. (3.7)

Here variables with superscript (∗) are dimensionless, and x∗ = x/H, n∗
0 = n0/m

where m is the initial number density value everywhere in the particle-laden region.
The numerical procedure to solve Eq.3.4 proceeds as follows. From the probability

distribution function (p.d.f.) of q, p(q), a discrete frequency distribution f(qi) can
be calculated for i = 1, · · · ,nq, dividing the range [0,Q] into nq slabs of size ∆q =

Q/nq. Here Q is an assigned maximum value of q at which the upper tail of the p.d.f.
is cut. The value of f(qi) gives the percentage fraction of particles with velocities
between qi and qi + ∆q, and is calculated as f(qi) = p(qi)/

∑nq

i=1 p(qi). In our
discretization, the nodes are centered at each slab, soqi = (i−0.5)∆q. The frequency
distribution at time t = 0 is denoted as f0(qi). Eq.3.4 is then solved by a finite
difference method in which spatial derivative is discretized by a first-order upwind
scheme and time is integrated by a first-order Euler scheme.

The solution of Eq.3.4 gives the probability of having particles of a given class
qi for any position x at time t. In a multistep sedimentation process, the interest
is in characterizing how the particle distribution in the supernatant differs from
that in the sedimented layer. The number of particles of size qi in the supernatant,
denoted as ns(qi) is calculated by integrating over the entire length of the vial,
assuming that the particles which have crossed the boundary x = H as the
sedimented layer: ns(qi) =

∫H
0 N(t, x;qi)dx. The number of particles in the

sedimented layer is nb(qi) =
∫∞
H N(t, x;qi)dx. The corresponding frequencies are

fs(qi) = ns(qi)/
∑

ns(qi) and fb(qi) = nb(qi)/
∑

nb(qi). The sum nt of the
number of particles in the supernatant and in the sedimented layer is evidently equal
to the initial number of particles: nt = ns +nb =

∫H
0 n0(x)dx.

3.4 Results and discussion

3.4.1 Time evolution of the frequency distribution: supernatant v.s. sediment layer

A log-normal p.d.f. p(q) with mean value of q as 0.1 and variance of q as 0.01
is shown in Fig.3.4(a). Note that the settling velocity q is non-dimensionalized by a
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Figure 3.4: (a) p.d.f. of a log-normal distribution with mean value 0.1 and variance 0.01. (b)
Discretized frequency distribution for 1000 species corresponding to (a).

characteristic velocity (e.g. the settling velocity of a particle with certain size). It is
seen that for these parameters most of the distribution falls within q ∈ (0, 0.3), so
we choose the maximum size Q = 0.3. By choosing Q = 0.3 and nq = 1000, the
interval from q = 0 to 0.3 is discretized into 1000 slabs of increment ∆q = 0.0003.
The corresponding frequency distribution f0(qi) is shown in Fig.3.4(b).

Time evolutions of the frequency distributions in the supernatant and in the sedi-
ment layer are shown in Fig.3.5 and Fig.3.6, respectively, for both case 1 (band sed-
imentation) and case 2 (homogeneous sedimentation). From Fig.3.5, it is seen that
there are fewer size classes in the supernatant as time goes by because the larger par-
ticles sediment on the bottom quicker. The largest size classes in the supernatant are
the same for band and homogeneous sedimentation at the same time. However, the
moving front of the frequency distribution curve of the supernatant in band sedimen-
tation is sharper than that in homogeneous sedimentation. From Fig.3.6, it is seen
that the sediment layer in homogeneous sedimentation always contains all the size
classes, whereas in band sedimentation the smaller size classes come to the sediment
layer at later times. In Fig.3.7, the frequency distributions in the supernatant and in the
sediment layer at the same time t = 10 are plotted together for both band and homoge-
neous sedimentation. It is seen that the curves overlap slightly in band sedimentation,
which means there is clear distinction between the size classes in the supernatant and
the size classes in the sediment layer. However, all the size classes in the supernatant
appear in the sediment layer for homogeneous sedimentation.

3.4.2 Particle fractions in the supernatant and in the sediment layer

Fig.3.8 shows the time evolution of particle fractions in the supernatant and in the
sedimented layer, respectively, for both band and homogeneous sedimentation. Due
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Figure 3.5: Time evolution of the frequency distributions in the supernatant for case 1 (red
lines) and case 2 (blue lines).

to the existence of clear fluid under the particle-laden layer in band sedimentation,
the decreasing of particle fraction in the supernatant is delayed, whereas the particle
fraction in the supernatant starts to decrease from the beginning in homogeneous sedi-
mentation. Moreover, it is seen that particle fraction in the supernatant decays faster in
homogeneous sedimentation than that in band sedimentation by comparing the slopes
of the curves of the two cases.

In both band and homogeneous sedimentation the initial frequency distribution is
“cut” by a front that moves to the left with a certain velocity (see Fig.3.5). This veloc-
ity can well be characterized as the velocity of qs

max, the largest particle size in the
supernatant. Because the transport equation Eq.3.4 is linear, Ni(x, t;qi) can be eas-
ily calculated analytically. From the value of Ni(x, t;qi), particle number of species
qi in the supernatant at time t, which is ns(qi, t), can be calculated by integration.
Setting ns(qi, t) = 0 provides the following relationship between qs

max and t (see
Appendix A.1 for details):

qs
max =

H/t for t > H/Q

Q for t ⩽ H/Q
, (3.8)

where H is the length from the free interface to the bottom of the vial, and Q is the
largest value of q of the original sample. The validity of this expression is demon-
strated in Fig.3.9, where the simulated values of qs

max with varying time are plotted.
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Figure 3.6: Time evolution of the frequency distributions in the sediment layer for case 1 (red
lines) and case 2 (blue lines).
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Figure 3.9: The value of qs
max versus time t. Eq.(8), band and homogeneous sedimentation

are shown by the solid line, circular and square symbols, respectively.
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3.4.3 Minimisation of impurities

The presence of a front that moves with velocity given by Eq.3.8 suggests a protocol
to isolate a certain interval of the frequency distribution. Suppose we would like to
separate particles with q ∈ (qmin,qmax) from all the other particles, where qmin

and qmax are somewhere in the middle of the frequency distribution. An intuitive
protocol is to centrifuge the suspension for a certain time and discard the sediment.
This would give in the supernatant a suspension containing only particles with veloc-
ities less than a certain threshold. Then we could take the supernatant, centrifuge it
again and in this case remove the supernatant. In the sedimented layer, we would have
particles having an intermediate range of velocities larger than a minimum threshold
and smaller than a maximum threshold. The sequence could be repeated again, with
different centrifugation times assigned to each step. The problem is to predict how the
observed thresholds depend on the assigned qmin and qmax for a given sequence of
centrifugation times. Solving this problem requires choosing the centrifugation time
rationally so that the amount of impurities is minimized. We have found in the previ-
ous section that the initial size distribution cannot be cut sharply into two parts (i.e.
the frequency curves in the supernatant and in the sediment layer overlap at each time),
and a certain amount of small velocity (finer) particles will always reach the bottom.

An insight from the previous section is that the time scale of motion of the front
is given by the ratio of the vial height H and the front velocity. This suggests that
the centrifugation times should be chosen based on the ratio of H with qmax and
qmin. We therefore propose the following algorithm, whose convergence and error we
aim to characterize (in the same way as done for algorithms implementing numerical
methods in scientific computing):
Step 0: Calculate centrifugation times tmin = H/qmax and tmax = H/qmin, and
set ∆t = (tmax − tmin)/(N− 1) based on the total centrifugation steps N.
Step 1: Centrifuge the suspension, using a constant body force, for a time t1 = tmin.
Move the supernatant to another test tube which is to be centrifuged in the next step.
Discard the sediment.
Step 2: Centrifuge the supernatant from the previous step 1 for a time t2 = t1 +∆t.
Move the supernatant to another test tube for the next step centrifugation. Collect the
sediment as part of the separated sample.
Step 3: Centrifuge the supernatant from the previous step 2 for time t3 = t2 + ∆t.
Move the supernatant to another test tube for the next step centrifugation. Collect the
sediment as part of the separated sample.
· · ·
Step N− 1: Centrifuge the supernatant from the previous step N− 2 for time tN−1 =

tN−2 +∆t. Move the supernatant to another test tube for the next step centrifugation.
Collect the sediment as part of the separated sample.
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Step N: Centrifuge the supernatant from the previous step N− 1 for time tN = tmax.
Discard the supernatant. Collect the sediment as part of the separated sample.
Step N + 1: Assemble all the collected sediment from Steps 2, 3, · · · ,N − 1 and N

as the separated sample.
According to Eq.3.8, the largest value of q in the supernatant at the end of Step

1 is qmax. This means that all the particles with q > qmax in the original sample
have settled at the bottom wall in Step 1, and therefore the sediment should be com-
pletely discarded in Step 1 as according to the prediction it does not contain useful
particles. On the other hand, according to the prediction at the end of Step N, the
largest value of q in the supernatant is qmin, which means the supernatant contains
particles smaller than the desired ones. Hence the supernatant at the end of step N

should be discarded. The model predicts that particles with q ∈ (qmin,qmax) have
settled on the bottom wall gradually from Step 2 to Step N. That is why the sediment
layers from steps 2 · · ·N should be collected and mixed together, and the collected
sample has a distribution whose shape depends on the number of total centrifugation
steps N.

Effect of the number of steps

An example is given in the current subsection to show how the multi-step approach
works and how the number of centrifugation steps may be chosen. Suppose particles
with q ∈ (0.025, 0.045) from the log-normally distributed system shown in Fig.3.4(b)
are desired. This interval is chosen because it contains the value of q corresponding
to the peak of the initial frequency distribution, q = 0.035. The calculated values of
tmin and tmax are 22.2 and 40, respectively (step 0). We need to devise N steps of
successive centrifugation, for which t1 = 22.2 in Step 1 and tN = 40 in Step N. We
would like to know how the purity of the sample depends on N.

Because we know that band sedimentation gives a sharper division of the initial
frequency distribution, we anticipate that the level of purity given by band sedimenta-
tion is larger than that by homogeneous sedimentation. Hence, we consider two cases:
in case A, the initial condition for each step of centrifugation is that the particles are
uniformly dispersed within a top layer of length 0.1 as band sedimentation; in case
B, the initial condition of each centrifugation step is that the particles are uniformly
dispersed in the whole solvent of length 1 as homogeneous sedimentation.

The frequency distributions of the particles in the supernatant and in the sediment
layer after Step 1 of centrifugation are shown in Fig.3.10. In agreement with the pre-
diction, Fig.3.10(a) shows that all the particles remaining in the supernatant are of
q smaller than 0.045. The sediment layer at the end of Step 1 contains, as expected,
particles larger than the desired ones, and also a fraction of the desired ones from the
original sample as indicated by the frequency distributions between q = 0.025 and
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Figure 3.10: Frequency distributions after Step 1 of centrifugation for particles (a) in the
supernatant and (b) in the sedimented layer. (Band sedimentation is shown as red lines, and
homogeneous sedimentation as blue lines. The two vertical thin lines in (b) mark q equals
0.025 and 0.045, respectively.)

q = 0.045 (marked by two thin vertical lines in Fig.3.10(b)). This fraction, i.e. the
ratio of the numbers of particles with q ∈ (0.025, 0.045) in the sedimented layer after
Step 1 and in the original sample, is 13.6% for case A and 78.4% for case B, respec-
tively. This means the yield will be much higher in band sedimentation than that in
homogeneous sedimentation.

We now analyze how the shape of the frequency distribution of the separated sample
changes with N. This will give us insights into how to choose the number of centrifu-
gation steps in the separation algorithm. Fig.3.11 shows the frequency distributions
of the separated sample as N equals 2, 3, 4 and 5, respectively. For comparison, the
frequency distribution of particles with q ∈ (0.025, 0.045) in the original sample is
also shown in Fig.3.11. It is seen that in case A (band sedimentation) the frequency
distribution curve nearly remains the same as N increases, thus the separation algo-
rithm converges fast and using N = 2 gives predictions that are no worse than those
obtained for N = 3. There are differences with the “desired” size distribution, shown
in black. In particular, while the maximum value of q is 0.045 as desired, the fraction
of particles with velocities close to 0.045 is smaller than that in the original distri-
bution (there is an evident drop in frequency for q larger than about 0.042). In case
B (homogeneous sedimentation), the separation algorithm instead does not converge.
The curve becomes smoother as N increases, assuming an approximate bell shape,
and the peak value shifts to the left (smaller values of q) as N increases. The shape of
the frequency distribution is quite different from the desired one, although the range
of q covers the desired range.

To characterize the convergence properties more synthetically, Fig.3.12(a) shows
the mean value and standard deviation of q of the separated sample for N equals 2,
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the separated sample for different N values for both band and homogeneous sedimentation.
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Figure 3.13: The impurity percentage and yield as ∆q increases for (a) case A and (b) case
B, respectively. The vertical line in (a) marks ∆q equals 0.00278.

3, 4 and 5. It is seen that the mean value in case B (homogeneous sedimentation) is
smaller than that in case A (band sedimentation), and standard deviation in case B is
larger than that in case A. The impurity percentage of the separated sample, defined
as the ratio of the number of particles with q outside (0.025,0.045) to the total particle
number of the sample, is shown in Fig.3.12(b). In case A the statistics converge fast
and the impurity level is always below 10%. In case B, the impurity level is around
50% for N equals 2 and increases as the number of steps increases.

An improved fractionation protocol

Based on the results from the last subsection, it is inferred that choosing N = 2 min-
imizes the impurity percentage. This suggests that a simple two-step approach, as fol-
lows, is practical and beneficial for the fractionation of a given range (qmin,qmax):
Step 1: Centrifuge the suspension for time t1, keep the supernatant for the next step
centrifugation and discard the sediment.
Step 2: Centrifuge the supernatant from Step 1 for time t2, then collect the sediment
as the separated sample and discard the supernatant.

There is clearly an arbitrariness in the choice of t1 and t2. The previous subsec-
tion suggests that the time scales should be t1 = H/qmax and t2 = H/qmin, but
choosing values that are close, but not identical, to these two limits may give better
result. The impurities in the separated sample are particles with q smaller than qmin.
Thus, the time t2 could be decreased to let fewer smaller particles sediment on the
bottom wall and decrease the impurity percentage. To explore this possibility, we set
t2 = H/(qmin +∆q) and study the fractionation efficiency as a function of the pa-
rameter ∆q (0 < ∆q < (qmax − qmin)). Apart from the impurity percentage, the
other quantity of interest is the yield, defined as:

yield =
number of particles with q ∈ (qmin,qmax) in the separated sample
number of particles with q ∈ (qmin,qmax) in the original sample

.
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Figure 3.14: The value of (1-impurity percentage)×yield as ∆q increases for (a) case A and
(b) case B, respectively.

By increasing ∆q, we expect a decrease in impurity level but also a decrease in yield.
To see the effect of increasing ∆q, cases A and B in the last subsection are considered
here following the modified two-step approach described above. The simulation re-
sults, shown in Fig.3.13, confirm that the impurity percentage and yield both decrease
as ∆q increases. An optimised algorithm would have a comparatively large yield and
a large purity. Therefore we use an objective function, (1-impurity percentage)×yield,
to indicate the balance between yield and purity, as shown in Fig.3.14. This objective
function has a peak value, which corresponds to ∆q ≃ 0.001 and ∆q ≃ 0.004, for
cases A and B respectively. The fact that ∆q ≪ (qmax−qmin) means that our orig-
inal choice of ∆q = 0 was actually quite close to the optimal. Looking at Fig.3.13,
however, one can see that while the yield does not decrease much by choosing the
optimal value instead of ∆q = 0, the impurity percentage drops substantially in case
A (from 5.5% to about 1.5%) because the slope of the impurity percentage curve
is large when ∆q is small. This example illustrates that a finely tuned algorithm, or
fractionation protocol, can have substantial effects on the purity level. Another inter-
esting modification is to replace t2 = H/qmin with t2 = (H− h)/qmin in case
A, where h is the initial length of the particle-laden region, and this is equivalent to
choose ∆q = qmin(h/(H− h)). With this choice the predicted impurity percent-
age is 0 in case A. As indicated by Fig.3.13(a), the impurity percentage is 0 when
∆q = 0.025× 0.1/(1− 0.1) = 0.00278.
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Figure 3.15: Radius frequency distribution of the chosen AuNP sample.

3.5 Practical applications of the theory

3.5.1 Fractionation of nearly spherical metallic nanoparticles (isotropic particles)

Nominally spherical metallic nanoparticles with well-controlled size range are im-
portant for many applications, ranging from drug delivery [36], medical diagnostics
and sensors [37], electrochemical applications [38] to catalytic applications [39]. For
spherical particle of radius a in Stokes flow, the single-particle settling velocity is [40]

q =
2

9

(ρp − ρl)

µ
gea

2. (3.9)

Here ρp and ρl are densities of the particle and medium liquid, respectively, µ is the
dynamic viscosity of the liquid, and ge is the equivalent g-force of the centrifugation
ge = Rω2 where R is the rotor radius and ω is the rotational speed of the rotor.

To illustrate how to predict the impurity percentage and yield during a centrifuga-
tion process and to design an optimal two-step procedure aiming at lower impurity
percentage, we take an example from ref.[41] where Au nanoparticles (AuNPs) are
fractionated by centrifugation. We consider the AuNP sample has a log-normal ra-
dius distribution with mean value 7.9 nm and standard deviation 5.1 nm (see Table 1
and Figure 2a in ref.[41], note that in ref.[41] size was characterized using diameter
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Figure 3.16: Effect of the offset value on impurity percentage and yield for homogeneous
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whereas it’s radius here). The frequency distribution of the radius is shown in Fig.3.15
with a cut at 25 nm. The desired radius range is 5-15 nm. As shown in Sec.3.4.3, a two-
step protocol can be adopted. In the first step, the centrifugation parameters (time or
rpm) should be calculated using the largest desired size (i.e. 15 nm). In the second step,
the unoptimized way is to calculate the centrifugation parameters using the smallest
desired size (i.e. 5 nm). However, as shown in Sec.3.4.3, adding an offset value (∆a)
to the smallest desired size to calculate the centrifugation parameters can lead to lower
impurity percentage (optimized way). Note that the possible value of ∆a in this case
is between 0 to 10 nm. By numerically solving the set of linear convective equations
Eq.3.4, the effect of adding an offset value ∆a on impurity percentage and yield is
shown in Fig.3.16. Note that Fig.3.16 is constructed assuming an homogeneous so-
lution before each step of the procedure (i.e. homogeneous centrifugation), as this is
more easy and practical for multicascade centrifugation. From this reference map, we
can see that by choosing ∆a as 3 nm the impurity percentage drops from 29% to 17%
whereas the yield (defined in Sec.3.4.3) drops from 65% to 50%. The size frequency
distributions of the fractionated sample by unoptimized or optimized (choosing ∆a

as 3 nm) two-step procedures are shown in Fig.3.17. From Fig.3.17, it is seen that the
distribution from the optimized procedure has a larger fraction in the desired range
than that from the unoptimized procedure, which means the fractionated sample from
the optimized procedure has lower impurity percentage. The mean values of the dis-
tributions shown in Fig.3.17 are 7.40 nm for optimized procedure and 6.57 nm for
unoptimized procedure. The standard deviations are 2.46 nm for optimized procedure
and 2.43 nm for unoptimized procedure.

3.5.2 Fractionation of graphene (anisotropic particles)

Liquid-phase exfoliation (LPE) is a promising method [42, 43] to produce 2D nano-
materials, such as graphene [44–46], MoS2 [47, 48] or BN [49, 50]. The flakes pro-
duced with LPE tend to be polydispersed in lateral size and thickness [51, 52], with
both variables following approximately log-normal distributions [52, 53]. Fractiona-
tion of 2D nanomaterials by centrifugation is very common [8–10, 41, 54].

In the following we refer to graphene, but the results are equally applicable to other
2D nanomaterials. Modelling a graphene flake as a disk-like particle of diameter d
and thickness L, the settling velocity is (see Appendix A.2 for derivation)

q =
π

27.48µ
(ρp − ρl)gedL. (3.10)

The settling velocity q of a disk is proportional to the product of lateral size d and
thickness L. If both d and L are log-normally distributed, q also follows log-normal
distribution assuming d and L are independent. However, statistical analysis of large
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amount nanoflakes produced by LPE shows that the average values of lateral size
and thickness are correlated by a power low < d >∼< L >r, with the exponent r
depending on the type of the material and the exfoliation procedure [51, 52]. Based on
this relationship, Ogilvie et al. [51] proposed the following expression for the average
settling velocity of 2D nanosheets:

⟨q⟩ =
(ρp − ρl)k

2⟨L⟩mge

6πµ
. (3.11)

In Eq.3.11, ⟨L⟩ is the average layer number of the nanosheets, and k is a shape factor
related to the aspect ratios of the nanosheets with the dimension of length. An average
and idealised value for the exponent m is 2.5, covering a broad initial distributions
of ⟨L⟩ of different 2D materials. The values of k and m can be determined by a
calibration experiment [51]. Then, Eq.3.11 can be utilized to calculate the parameters
needed for centrifugation (i.e. equivalent g-force and centrifugation time).

We will now explain how to use the one-dimensional model (Eq.3.4) to predict
the outcome of the fractionation of nanosheets by centrifugation. Suppose nanosheets
with layer number between L1 and L2 (L1 < L2) are desired. First, a calibration
experiment can be done to acquire the values of k and m in Eq.3.11. The frequency
distribution of layer number of the nanosheets (L) can be obtained by atomic force
microscopy (AFM). Second, the frequency distribution of the settling velocity can be
obtained once the physical properties of the nanosheets (i.e. density) and solvent (i.e.
density and viscosity) and the equivalent g-force used in the centrifugation are known,
according to Eq.3.11. The two settling velocities q1 and q2 of nanosheets with layer
number L1 and L2, respectively, can be calculated. Third, the centrifugation times
used in the two steps can be chosen as t1 = H/q2 and t2 = H/q1, respectively, and
H is the filling height of the dispersion in the vial. After centrifuging for the duration
of t1, the sediment can be discarded and the supernatant can be centrifuged again for
t2, and the sediment from the second step can be collected as the fractionated sample.
By solving the one-dimensional model (Eq.3.4) with corresponding parameters (i.e.
the centrifugation times) and initial conditions (i.e. band or homgeneous sedimen-
tation, initial frequency distribution), the frequency distribution of the fractionated
sample can be obtained. Based on this distribution, the full statistics of the fraction-
ated sample (e.g. range, mean value and standard deviation of the layer number) can
be predicted. Finally, to increase the purity of the fractionated sample, the centrifuga-
tion time in the second step can be lowered to t2 = H/(q1 + ∆q). By solving the
one-dimensional model, a reference map like Fig.3.16 of the impurity percentage and
yield when choosing different ∆q can be constructed. Then, the appropriate value of
∆q to be used in the centrifugation process can be chosen based on the desired purity
and yield.
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Similarly, the model and corresponding experimental protocol can be used to frac-
tionate nanosheets by lateral size. Suppose a sample of nanosheets with approximately
the same thickness whereas the lateral size is log-normally distributed with mean as
0.1 µm and standard deviation as 0.1 µm, to be fractionated by lateral size, and the
desired range of lateral size is from 0.025 µm to 0.045 µm. Since the nanosheets
have the same thickness, q ∼ d according to Eq.3.10. Therefore q also follows log-
normal distribution. Take the settling velocity of a nanosheet whose lateral size is
1 µm as characteristic velocity to non-dimensionalize q, the system is converted to
the one studied in Sec.5.4. If the two-step approach shown in Sec.3.4.3 is adopted to
fractionate the sample, and the centrifugation time in the second step (t2) is based
on the settling velocity of the nanosheet whose lateral size is 0.025 µm, the impurity
percentage of the final product would be about 5% using band sedimentation (assum-
ing initially the height of particle-laden layer is 10% of the vial height), and would
be about 50% using homogeneous sedimentation, according to Fig.3.12(b). To lower
the impurity percentage, t2 could be lowered. For example, the impurity percentage
would be 0 ideally in band sedimentation if t2 is based on the settling velocity of
the nanosheet whose lateral size is 0.02778 µm, and would be about 45% in homo-
geneous sedimentation if t2 is based on the settling velocity of the nanosheet whose
lateral size is 0.035 µm, according to Fig.3.13. In the meantime, the yield would de-
crease from 86% to 80% in band sedimentation, and would decrease from 21.5% to
19% in homogeneous sedimentation.

3.6 Conclusions

In this chapter, a mathematical model is used to study the multicascade (multistep)
sedimentation or centrifugation of polydisperse particle systems with an initial log-
normal size distribution, under the main assumption that the suspension is dilute. Two
cases are considered: band sedimentation, where the particles are initially deposited
in a small slab at the top of the clear fluid, and homogeneous sedimentation, where
the particles are evenly dispersed in the vial initially. The model enables to predict
the time evolution of the size frequency distributions in the supernatant and in the
sediment layer, and the conditions for optimal sorting of an initial size distribution in
distinct particle size classes. Fractionation of metallic nanoparticles and fractionation
of graphene nanosheets are taken as examples to illustrate the practical application of
the theory. The main conclusions of our analysis are as follows.

In band sedimentation, the frequency distribution curves in the supernatant and in
the sediment layer overlap only slightly at each time (see Fig.3.7(a)), meaning there
is a clear distinction between the size classes in the supernatant and in the sediment
layer. Therefore, in the absence of convective or diffusive mixing, band sedimentation
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is preferable over homogeneous sedimentation to fractionate particles by size. In ap-
plications where the purity of the sample is paramount, therefore, band sedimentation
could offer significant advantages. The main drawback of band sedimentation is the
lower yield and the fact that, in practice, it is more difficult to controllably place a layer
of particle-rich fluid over the clear fluid without incurring in gravitational instabilities
that lead to fluid mixing. Methods to overcome this practical issue are using solvent
with density gradient [55] and adding a buffer layer liquid between the suspension
and clear fluid [56]. Given the significant advantages of band sedimentation in terms
of purity, new methods to prevent mixing when using band sedimentation should be
investigated in the future.

To answer the research question proposed in chapter 1, we have proposed and an-
alyzed a rational protocol to isolate a certain particle size range. The protocol, de-
scribed in Sec. 3.4.3, involves two characteristic centrifugation or sedimentation times:
tmin = H/qmax and tmax = H/qmin, where H is the height of the free surface
of the liquid with respect to the bottom of the vial, qmax is the velocity of the largest
(fastest) particles and qmin is the velocity of the smallest (slowest) particles. The
protocol involves sedimenting or centrifuging for time tmin = H/qmax, transfer-
ring the supernatant to a new vial and centrifuging for a longer time. Then the process
is repeated a number of steps. In analyzing this method we have found that, surpris-
ingly, a two-step method is not worse than a multi-step method when the objective is
to isolate a given particle size range (see Fig.3.12). Therefore, to isolate a size range
that lies in the middle of the size distribution, only 2 steps could be used. Furthermore,
we have found that shifting the time by a small amount can lead to an even more pre-
cise selection of the size class, i.e. the attainment of a sample with reduced amount
of “impurities” (particles that are selected but are not in the desired particle class).
In both the initial protocol and in the improved one there is, in general, a trade-off
between yield and amount of impurities.

The advantage of the methods we propose is that they are based on the equations of
motion of the particles in the fluid, and therefore using the parameters of the paper will
lead to exact predictions in the very dilute limit in which the sedimentation velocity of
one particle does not depend on the presence of the other particles. The analysis can be
used as a theoretical guideline to design or modify sedimentation and centrifugation
protocols for more realistic situations where the suspension is not truly dilute. For
instance, we envision application in the fractionation of graphene particles, and have
provided practical guidelines for this case (see Sec. 3.5.2).

The digitalisation of laboratory procedures means that exact algorithms will be re-
quired to replace choices based on empiricism, so the availability of exact formulas
and accurate quantitative predictions for centrifugation/sedimentation will become in-
creasingly useful, both in analytical laboratories and in plant operations. In the future,
we will investigate with the help of high-resolution, particle-resolved simulations how
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well the dilute theory is able to describe the evolution of the size distribution when the
suspension is not so dilute that hydrodynamic interactions can be neglected and the
flow microphysics leading to convective mixing in band sedimentation/centrifugation.
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4
H I N D E R E D S E T T L I NG O F A L O G - NO R M A L LY
D I ST R I B U T E D ST O K E S I A N S U S P E N S I O N

In the previous chapter, the hydrodynamic interactions between particles are ne-
glected. To quantify the effects of hydrodynamic interactions on the average and fluc-
tuating particle settling velocities, settling velocity statistics for dilute suspensions of
polydisperse spheres having a log-normal size distribution are generated from Stoke-
sian dynamics simulations in this chapter. Meanwhile, a thorough comparison be-
tween our numerical results and predictions of existing models of the hindered settling
function of each size class is made.

This chapter is based on the article:
H. Li and L. Botto. “Hindered settling of a log-normally distributed Stokesian suspension.” In: J. Fluid
Mech. 1001 (2024), A30.
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4.1 Introduction

Prediction of the settling velocity of polydisperse suspensions is crucially important
in applications ranging from wastewater treatment [1] to nanoparticle sorting [2], par-
ticle size characterisation [3], and sediment transport modelling [4]. Despite decades
of research on the settling of polydispersed suspensions this field still offers interesting
scientific problems. A central challenge that this chapter aims to address is the quan-
tification of the settling velocity of each particle class in a suspension that is truly
polydisperse, meaning that the number of classes exceeds the two or three classes that
simulations [5–8] and experiments [9–11] have so far focused on. To quantify such
velocity with high accuracy we perform Stokesian Dynamics simulations, in the rela-
tively dilute regime (solid volume fraction ϕ less than 0.1) for which phenomena of
particle segregation and clustering are not expected to be very important; for ϕ ≪ 1,
the theory of Batchelor [12] for polydispersed suspensions should be sufficiently ac-
curate and can be used to provide a framework for the analysis, hence the focus on
the dilute regime. Furthermore, in addition to validating Batchelor’s model for non-
negligible volume fractions, this chapter aims to demonstrate the accuracy of the three
most used one-dimensional models for the settling velocity of each class - the Davis
& Gecol model, the Masliyah-Lockett-Bassoon (MLB) model, and the polydisperse
Richardson-Zaki model - in predicting the simulated settling velocity data as the parti-
cle concentration increases (these models are reviewed in Sec. 4.2). There are claims
in the literature that semi-empirical models that do not take into account the full parti-
cle size distribution, such as the MLB and the polydisperse Richardson-Zaki models,
are able to capture accurately the sedimentation of the suspension. However, these
models have not in fact been rigorously validated; only the ability to roughly capture
concentration profiles for selected parameters has been checked. Therefore it seems
important to validate these models which are routinely used in practical settings [4,
13]. If such models do predict the settling velocity of some particle classes, we would
like to know for which particle range they provide accurate predictions and with what
error.

The particle size distributions is assumed to be a log-normal. Log-normal particle
size distributions are ubiquitous in particulate systems, and the accurate prediction of
the class-averaged particle velocity for log-normally distributed particles has recently
become important because of the need for accurate size fractionation of micro and
nanoparticles [2, 14].

Despite recent interest in the modelling of suspensions of wide and continuous size
distributions [15–19], data on the settling of polydisperse suspensions with many size
classes is surprisingly scarce. Physical experiments have been mostly carried out for
bidisperse or tridisperse suspensions [9–11, 20, 21]. The largest size ratio between
two size classes considered in these experiments was about 4, and only the velocity of
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the largest size class was, in some experiments, measured (strictly speaking, in these
experiments the velocity of the interface between different quasi-homogeneous partic-
ulate regions was measured, not the actual particle velocity). Numerical simulations
have been carried out for bidisperse suspensions using Stokesian dynamics [5, 6, 8]
and the force coupling method [7], with size ratios up to 4. In these simulations the
velocity of each particle class was measured and compared with model predictions.
Simulations of sedimentation of suspensions with a continuous log-normal distribu-
tion have been carried out by Vowinckel et al. [22] in a domain bounded by top and
bottom walls, but in this study the velocity of each size class was not quantified.

Particle velocity statistics in the current chapter are calculated for polydisperse
suspensions of non-Brownian, inertialess, low-Reynolds-number spheres of uniform
mass density, having discrete particle size classes that are fitted to continuous log-
normal distributions for different values of the polydispersity parameter α (see figure
4.4), defined as the ratio between the standard deviation and the mean value of the par-
ticle size distribution. The size distribution is chosen to be a log-normal, because of
the recurring presence of this distribution in polydispersed particle systems [22–24].
The log-normal size distribution is discretised into up to 9 classes, with the largest
size ratio between two classes being 5 (see figure 4.4). We vary the volume fraction
ϕ from 0.01 to 0.1 and α in the range of 0.1− 0.4. As a base case we include in Sec.
4.4 data for mono and bi-disperse suspensions, for which some literature information
is available. In addition to mean particle velocities, the corresponding standard devia-
tions and the shape of the particle velocity distributions are reported. This information
provides a quantitative characterisation of the spread of the particle velocity around
the mean as the polydispersity in particle size is increased.

To be able to compare against theoretical models, producing smooth data not af-
fected by large statistical error is essential. This constraint has required us to average
the velocity data over hundreds of simulations. To keep the simulation cost manage-
able while allowing us to explore a range of relevant parameters of solid concentration
and polydispersity, following other authors [5–8], we produce converged particle ve-
locity statistics by generating a large number of random particle configurations inside
a triply periodic box, and ensemble-averaging over all such configurations. Despite
limitations, which are discussed in Sec. 4.6, this established approach has in the past
enabled fundamental insights into the relation between particle concentration and set-
tling rate (for example, see Wang and Brady [8]). In Sec. 4.6 we compare, for selected
parameters, random array simulations to dynamic simulations in which the particle
microstructure is allowed to evolve in time. Differences between the two simulation
approaches have been found not so large to affect the main conclusions of the chapter.
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4.2 Overview of one-dimensional models for the class-averaged set-
tling velocity

For a Stokesian suspension of polydisperse spheres grouped into m distinct parti-
cle classes, the average settling velocity of the i-th class can be written as ⟨ui⟩ =

uSt,ihi(ϕ), where uSt,i = 2
9µa

2
i (ρp − ρf)g is the single-particle Stokes velocity

of the i-th class, hi(ϕ) is the hindered settling function of that class, and ϕ =

(ϕ1,ϕ2, ...,ϕm) is the vector of volume fractions [25]; ai is the particle radius, µ
is the fluid viscosity, and ρp − ρf is the density difference between the particles and
the fluid.

The literature reports several models for hi(ϕ), as reviewed by Berres, Bürger, and
Tory [13]. The only model that is completely based on first principles is the model of
Batchelor [12], which was developed as an extension of the former theory of Batchelor
for monodisperse suspensions [26]. Batchelor’s formula reads

hi(ϕ) = 1+

m∑
j=1

Sijϕj, (4.1)

where Sij are scalar sedimentation coefficients that are functions of the size ratio
ai/aj for spheres of identical mass density [27] (an explicit expression for Sij is
given in Sec. 4.5.2). Batchelor’s model is accurate to first-order in the total volume
fraction ϕ =

∑
jϕj and is, therefore, in principle only valid for negligibly small val-

ues of ϕ. A semi-empirical extension of Batchelor’s formula was proposed by Davis
and Gecol [10] to improve the predictive capability in the regime of relatively high
volume fractions. Their formula reads

hi(ϕ) = (1−ϕ)−Sii

1+

m∑
j=1

(Sij − Sii)ϕj

 , (4.2)

where ϕ =
∑

ϕj is the total volume fraction, and the coefficients Sij are defined as
in equation (4.1). The model is essentially an interpolation formula between an exact
result (for ϕ → 0, equation (4.2) recovers (4.1)) and an approximate result (in the
dense limit, form = 1 equation (4.2) reduces to a power-law form, where the exponent
−Sii = 6.55 is numerically close to the exponent ≃ 5 of the well-known Richardson-
Zaki’s formula). The models of Batchelor and Davis & Gecol have been tested in
experiments and simulations of bidisperse suspensions [7–9, 11, 21]. In experiments,
the descending velocities of the interfaces separating different regions were measured.
In simulations, settling velocities of the two classes were calculated. It was shown that
Batchelor’s model works reasonably well for dilute suspensions withϕwithin 5%, and
Davis & Gecol’s model can be used for also dense suspensions.
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Models (4.1) and (4.2) are rarely used in practice because they contain a large num-
ber of coefficients. Simpler expressions have therefore been developed for practical
predictions of the hindered settling of polydisperse suspensions. The most popular
is the Masliyah-Lockett-Bassoon (MLB) model [20, 28]. The MLB model has been
partially validated by comparison of predicted and experimentally measured concen-
tration profiles following settling, starting at the initial time from a homogeneous sus-
pension with a Gaussian particle size distribution [13, 29]. This validation is not com-
plete, because the particle concentration at a given point in space is the sum of the
concentrations of the different particle classes. Therefore, if a range of the particle
size distribution makes a dominant contribution to the concentration, then an accept-
ably accurate prediction of the concentration profile may hide errors in the prediction
of the velocity of certain particle classes. Furthermore, validation of the settling rates
predicted by the MLB model for more than three size classes has not been published.

The MLB model reads

hi(ϕ) = (1−ϕ)n−1

1−

m∑
j=1

(
aj

ai

)2

ϕj

 , (4.3)

where aj/ai is the ratio of the radii of the j-th and the i-th species. Appendix B con-
tains details of the derivation of the MLB model, so that the model assumptions can

be evaluated. The function
(
1−

∑m
j=1

(
aj

ai

)2
ϕj

)
is the hindered settling function

obtained by including the effect of volume fraction on the fluid-solid slip velocity (a
continuity effect), and neglecting the effect of hydrodynamic interactions on the drag
force experienced by each particle. The prefactor (1−ϕ)n−1 incorporates the effect
of hydrodynamic interactions.

An even simpler model, which has been adopted by some authors [11, 22, 30, 31],
is based on the model of Richardson and Zaki [32] for monodisperse suspensions. It
reads

hi(ϕ) = (1−ϕ)n, (4.4)

where n ≈ 5 [33]. This model predicts different velocities for different particle radii
ai, because hi contains the single-particle Stokes formula at denominator. In the cur-
rent chapter, this hindered settling formula will be referred to as Richardson-Zaki’s
model for polydispersed suspensions.

4.3 Numerical approach and validation

Consider a polydisperse suspension of N spheres having the same density but dif-
ferent radii. The N spheres are divided into m size classes. The radius of size class
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Figure 4.1: A configuration for volume fraction ϕ = 0.05 and polydispersity parameter α =

0.4. The spheres are coloured according to their radii.

i is ai. Each sphere in class i is subjected to a force Fi = 4
3πa

3
i (ρp − ρf)g, which

includes the particle weight and buoyancy; ρp and ρf are the densities of the spheres
and the fluid, respectively, and g is the gravitational acceleration. The single-particle
Stokes velocity corresponding to each class is uSt,i =

2
9µa

2
i (ρp − ρf)g, where µ is

the dynamic viscosity of the fluid. In the current work, the particle velocity statistics
are calculated from instantaneous random configuration of the spheres by first aver-
aging over the particles in the computational domain and then ensemble-averaging
over statistically identical configurations. Each configuration is generated by randomly
placing the spheres one by one inside the computational domain, ensuring that each
placement gives no overlap between the spheres [5, 8, 34] (we note that a simulation
of settling under gravity of a random particle configurations is different from a simu-
lation of uniform flow past fixed random arrays, because in the former case different
particles have different velocities, while in the latter the relative velocity between the
particles and the undisturbed fluid is uniform). An example of a random array con-
figuration is shown in figure 4.1. In our coordinate system, gravity is aligned in the z

direction, also referred to as vertical direction in the following. The horizontal direc-
tion corresponds to the x and y coordinates.

To calculate the velocities of individual particles, a basic version of the Stokesian
Dynamics method is adopted [35, 36]. While modern grid-based particle-resolved
methods could be used [37–39], the Stokesian Dynamics method is perfectly suitable
for the objectives of the current chapter: it is accurate in the relevant range of parti-
cle concentrations, it allows fast simulations, and (unlike grid-based methods) it can
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simulate large ratios between the largest and smallest particle radii without numerical
difficulties - a feature we would like to maintain for future highly-polydisperse simula-
tions. In the Stokesian Dynamics method, the velocities of the spheres are calculated
by solving the mobility problem

U− ⟨u⟩ = MF, (4.5)

where U is the 3N vector containing the velocities of the spheres, F is the 3N vec-
tor containing the gravitational forces acting on the spheres (these forces include the
particle weight and the buoyancy force), and M is the 3N× 3N mobility matrix [40].
In equation (4.5), ⟨u⟩ is the average translational velocity of the suspension. In our
simulations ⟨u⟩ = 0 because of the zero volume flux condition of batch sedimen-
tation [13]. Note that in the current work only velocity-force coupling is considered,
i.e. the stresslet and other force moments are not considered. Brady and Durlofsky
[41] showed that in a sedimenting suspension the inclusion of the stresslet changes
the settling rate negligibly. Because we work in the relatively dilute limit, short-range
lubrication are also neglected.

The mobility matrix M depends on the positions and radii of the spheres. We used
the Rotne-Prager approximation for this term [42, 43]. This approximation has been
shown to give accurate predictions of the sedimentation velocities of suspensions from
dilute to relatively dense [41]. Triply periodic boundary conditions are applied to the
simulation box. The mobility matrix is constructed using the Ewald summation tech-
nique by splitting the mobility matrix into a real-space part and a wave-space part [44].
Explicit formulae for the mobility matrix for a polydisperse suspension can be found
in Beenakker [44] and Hase and Powell [45]. As characteristic length and velocity
scales, we choose the mean particle radius ⟨a⟩ and the single particle Stokes velocity
corresponding to ⟨a⟩. To make forces non-dimensional we use the effective weight of
the mean particle, 4

3π⟨a⟩
3(ρp − ρf)g.

In figure 4.2, numerical predictions for a single sphere in a triply periodic cubic box
are plotted against Hasimoto’s analytical solution [46] and the simulation results of
Brady et al. [35]. The volume fraction of the simple cubic array is varied by varying the
size of the box. Based on the point-force assumption, Hasimoto [46] derivedu/uSt =

1−1.7601ϕ1/3 forϕ ≪ 1, whereuSt is the Stokes velocity of the sphere. Brady et al.
[35] used Stokesian Dynamics with different approximations for the mobility matrix.
The results of Brady et al. [35] shown in figure 4.2 correspond to simulations in the
Rotne-Prager approximation. As seen from figure 4.2, our results match exactly those
of Brady et al. [35] and converge to Hasimoto’s solution for ϕ → 0. This test validates
our implementation of the Ewald summation for the periodic boundary conditions.

In figure 4.3, the normalized relative settling velocity is shown as a function of the
normalized centre-to-centre distance between two unequal spheres with size ratio 2
and 5, respectively. In our simulations, the radius of the large sphere is fixed to al = 2.
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Figure 4.2: Normalized settling velocity vs. volume fraction for a simple cubic array of
monodisperse spheres. The line is the point-force solution of Hasimoto [46]. Upward trian-
gles are the numerical results of Brady et al. [35].

Figure 4.3: Normalized relative settling velocity for a pair of spheres as a function of the
centre-to-centre distance for (a) size ratio 2 and (b) size ratio 5. Results of current simulations
are shown as symbols, and analytical results of Wacholder and Sather [47] are shown as lines.
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Figure 4.4: Discrete frequency distributions of particle size for different values of the poly-
dispersity parameter (symbols). Lines indicate the continuous log-normal distributions that fit
the discrete frequency histograms.

The radius of the small sphere is as = 1 and 0.4 for size ratio 2 and 5, respectively
(these values are chosen because the largest radius is 2 and the largest size ratio is 5
in the polydisperse simulations analysed in this chapter). The relative settling velocity
between the two spheres is normalized by the Stokes velocity of the large sphere. The
centre-to-centre distance is normalized by the radius of the large sphere. In figure 4.3,
symbols are results from our simulations, and lines correpond to the asymptotic solu-
tion of Wacholder and Sather [47], in which only far-field hydrodynamic interactions
were considered. It can be seen that our results match the analytical solution for both
vertically and horizontally aligned pairs.

The current chapter discusses results for bidisperse suspensions and polydisperse
suspensions with more than two classes, also comparing with the monodisperse case.
For the monodisperse case, the radius of the spheres is a = 1. For the bidisperse case,
two size ratios are considered: a2/a1 = 2 and 5. The radii of the small size classes
are a1 = 0.8 and 0.4 for these two size ratios, respectively. The volume fraction of the
small size class is ϕ1 = 3

11ϕ for size ratio 2, and ϕ1 = 1
76ϕ for size ratio 5. These

volume fraction ratios are chosen so that the average radius of the spheres is equal to
1.0 for each system.

For the simulations with several size classes, the particle size distribution follows
p(a) = 1

aσ
√
2π

e−(lna−µ)2/2σ2 , where the mean value of the size distribution is

⟨a⟩ = eµ+σ2/2 and the standard deviation is ∆a =
√(

eσ
2
− 1
)
e2µ+σ2 . We define

the polydispersity parameter as α = ∆a/⟨a⟩. Four size distributions are considered,
with ⟨a⟩ = 1 and α =0.1,0.2,0.3 or 0.4. Each distribution is cut at the two ends,
resulting in a range amin ⩽ a ⩽ amax, where amin and amax are chosen so that
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Figure 4.5: Volume fraction distributions for different values of α.

at least 95% of the original distribution falls within this range. The largest size ratio
between two spheres is 5. Each radius range is discretized into between 4 and 9 size
classes, with a difference of 0.2 between the radii of two adjacent size classes.

The discrete number frequency distributions are overlaid on the corresponding con-
tinuous distributions in figure 4.4 . The frequency of size class i is calculated as

p(ai)∑m
j=1 p(aj)

. The corresponding volume fraction distributions are shown in figure 4.5.
For each value of α, the volume fraction ϕ ranges from 0.01 to 0.10. For each simu-
lated case, corresponding to a combination of α and ϕ, a fixed box size L = 80 is used
and 500 random particle configurations are generated. The total number of spheres in
each case varies from 925 to 12223. We have verified that increasing the size of the
computational domain beyond L = 80 does not change the magnitude of the results
significantly. As an example, in figure 4.6 we show the velocities of three size classes
(for ϕ = 0.03 and α = 0.4) as a function of L.

The average velocity of class i is calculated by ensemble-averaging over M config-
urations as

⟨uξ,i⟩ =
∑M

k=1 u
k
ξ,i

M
, (4.6)

where ξ = 1, 2, 3 correspond to the three Cartesian coordinates, uξ,i is the intrin-
sic volume average of the velocity component uξ,i within one configuration, and ⟨·⟩
is the ensemble-averaging operator. The intrinsic volume average within class i over

configuration k is uk
ξ,i =

∑Ni
l=1 u

k
ξ,i,l

Ni
, where Ni is the number of particles in class i.

The standard deviation of a certain velocity component within one realisation is cal-

culated as
(
u′
ξ,i

)k
=

√∑Ni
l=1(uk

ξ,i,l−uk
ξ,i)

2

Ni−1 . Averaging over many realisations gives
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Figure 4.6: Normalized average settling velocity versus domain size for three selected size
classes (ϕ = 0.03 and α = 0.4).

an improved estimate of the class-averaged standard deviation. In the bulk of the chap-
ter we indicate averages by the bracket symbol, distinguishing between volume and
ensemble average when necessary.

4.3.1 Relation between the mobility formulation and Batchelor’s formula

In this section we show the connection between the mobility formulation, equation
(4.5), and Batchelor’s formula, equation (4.1). For simplicity of notation, let us con-
sider a specific size class. Without loss of generality we consider class 1. According
to (4.5) the velocity of the α-th sphere in the 1-st size class is

uα,1 =

m∑
i=1

Ni∑
β=1

Mα1,βiFi, (4.7)

where Ni is the number of spheres in the i-th class, and Mα1,βi is the 3× 3 mobility
matrix representing the hydrodynamic interaction between the α-th sphere in the 1-st
class and the β-th sphere in the i-th class [40]. Because Mα1,α1 = (6πµa1)

−1, (4.7)
can be written as

uα,1 = uSt,1 +
∑
β ̸=α

Mα1,β1F1 +
∑
i ̸=1

Ni∑
β=1

Mα1,βiFi. (4.8)

The average velocity of the 1-st class in this configuration is

u1 = uSt,1 +
1

N1

∑
α

∑
β ̸=α

Mα1,β1F1 +
∑
α

∑
i ̸=1

Ni∑
β=1

Mα1,βiFi

 , (4.9)
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but because Fi is constant within the same size class we can also write

u1 = uSt,1 + s11F1 +
∑
i ̸=1

s1iFi, (4.10)

where s11 and s1i describe the intra-class hydrodynamic interactions (within the 1-
st class) and the inter-class hydrodynamic interactions (between the 1-st and the i-th
classes), respectively. These two matrices can be written as s11 = (N1 − 1)M11 and
s1i = NiM1i, where M11 and M1i are the average two-sphere mobility matrices.
Upon ensemble-averaging, the average velocity of the 1-st size class can be written as

⟨u1⟩ = uSt,1 + ⟨s11⟩F1 +
∑
i ̸=1

⟨s1i⟩Fi. (4.11)

The average velocity component in the gravity direction can be written as

⟨u1⟩
uSt,1

= 1+
9µ⟨s11⟩
2a2

1n1

ϕ1 +
∑
i ̸=1

9µ⟨s1i⟩
2a2

1ni

ϕi, (4.12)

where the formula for the single-particle Stokes velocity is used and ni is the number
density of class i. The scalar ⟨s1i⟩ is the component of ⟨s1i⟩ for the velocity-force
coupling in the gravity direction.

Extending equation (4.12) to a generic class i yields

⟨ui⟩
uSt,i

= 1+Bii(ϕ)ϕi +
∑
j̸=i

Bij

(
ϕ,

aj

ai

)
ϕj. (4.13)

The dependence of Bii and Bij on the volume fraction vector ϕ comes from the fact
that ⟨sij⟩ depends on the pair distribution functions, and the pair distribution functions
in turn depend on the volume fraction of each class. The dependence of Bij on aj/ai

comes from the dependence of the two-sphere mobility matrix on the size ratio. For
ϕ → 0, Bii is a constant and Bij = Sij is only a function of aj/ai. In this limit,
equation (4.13) recovers Batchelor’s expression (4.1).

4.4 Hindered settling of monodisperse and bidisperse suspensions

To build confidence in the ability of the numerical method to predict settling data
in more complex situations, we compare our simulations against settling models for
monodisperse and bidisperse suspensions. For the monodisperse case, the comparison
also provides a validation of our numerical approach. Indeed, the empirical or semi-
analytical models are well established in their regime of validity: the Richardson-Zaki
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Figure 4.7: Monodispese case: average settling velocity, normalized by the single-particle
Stokes velocity, versus volume fraction

correlation summarises experimental data obtained by these authors, and its validity
has been confirmed in numerical simulations [6, 7] and independent experiments [48];
the analytical model of Batchelor for monodispersed suspensions is exact for ϕ ≪ 1

[25]; Hayakawa-Ichiki’s model has been favourably compared against monodisperse
simulations for a wide range of volume fractions [49].

The normalised average settling velocity ⟨uz⟩/uSt for the monodisperse suspen-
sion is plotted in figure 4.7 as a function of ϕ. We include in the plot the Richardson-
Zaki correlation (1−ϕ)n [32] for n = 5, the Batchelor model 1+ Sϕ [26] assuming
S = −6.55 and the Hayakawa-Ichiki model (1−ϕ)3

1+2ϕ+1.429ϕ(1−ϕ)3
[50]. The values

chosen for the exponent n and the coefficient S here are typically for non-Brownian
particles interacting only hydrodynamically [49, 51].

Our simulation results agree with Batchelor’s model for ϕ approximately smaller
than 0.03. For larger volume fractions, the simulation gives larger values than Batch-
elor’s model. A similar range of validity for Batchelor’s model was also found by
Abbas et al. [7] using a force-coupling method. Our results also agree well with
the Hayakawa-Ichiki model for ϕ ⩽ 0.05 and they lie between the predictions of
Richardson-Zaki’s correlation and Hayakawa-Ichiki’s model for ϕ ⩾ 0.06. The simu-
lation data for ϕ = 0.01 is smaller than the values predicted by the three models. This
is expected because of the use of triply-periodic boundary conditions in a domain of
finite size [52].
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Figure 4.8: Bidisperse case: average settling velocity normalized by the single-particle Stokes
velocities for the small (left panels) and large (right panels) particles. Panels (a) and (b) are
for size ratio 2. Panels (c) and (d) are for size ratio 5.

Normalised average settling velocities for the small and the large particles in the
bidisperse case are plotted as symbols in figure 4.8 for two size ratios. The predictions
of Batchelor’s model (equation (4.1)), Davis & Gecol’s model (equation (4.2)) and the
MLB model (equation (4.3)) are indicated by lines. It is seen from figure 4.8 (a) and
(c) that our results for the small particles agree with the predictions of Batchelor’s
model for ϕ ⩽ 0.05, and lie between the predictions from Batchelor’s model and
Davis & Gecol’s models for ϕ ⩾ 0.06. For the large particles, our results agree with
predictions from Batchelor’s model forϕ ⩽ 0.03 and lie between the predictions from
Davis & Gecol’s and MLB models for ϕ ⩾ 0.04. Stokesian dynamics calculations by
Wang and Brady [8] that include stresslet and lubrication contributions also predicted
for ϕ larger than around 0.05 hindered settling velocities smaller and larger than those
of Davis & Gecol’s for the small and the large particles, respectively. Our results of the
bidisperse case are therefore in line in term of trends with those of Wang and Brady
[8].
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(a) (b) (c)

Figure 4.9: Configuration for different polydispersity parameters and ϕ=0.05, with the
spheres coloured according to their settling velocity; (a) α=0, (b) α=0.2, and (c) α=0.4.

Figure 4.10: Probability distribution functions of (a) horizontal and (b) vertical velocities for
different polydispersity parameters and ϕ=0.05.

4.5 Polydisperse suspensions

4.5.1 Velocity statistics

Before delving into the analysis of the mean settling velocity, we analyse the proba-
bility distribution of particle velocities in the polydisperse particle simulations. This
information enables a characterisation of the statistical representativeness of the mean
values. To illustrate the spatial distribution of particle velocities, in figure 4.9 we show
snapshots of the simulations with each sphere coloured according to its settling veloc-
ity. Spheres coloured in red have settling velocities in the direction of gravity whereas
spheres coloured in blue have settling velocities opposite to gravity. Figure 4.9 (c)
shows that the smaller particles can move against gravity, and have negative velocities
comparable in magnitude to the positive settling velocity of the largest particles.

Probability distribution functions (PDFs) of horizontal and vertical velocities,
shown in figure 4.10 for different values of α, are approximately Gaussian, with a
variance that increases as α increases. These PDFs are constructed by considering all
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Figure 4.11: Probability distribution functions of (a) horizontal and (b) vertical velocities for
α=0.4 at ϕ=0.05. In contrast to Fig. 4.10, here the PDFs are calculated based on the distribu-
tion of velocities within each size class.

the particles in the simulation domain. However, spheres belonging to the same size
class also have a distribution of settling velocities. Therefore, in figure 4.11, we show
the PDFs of the horizontal and the vertical velocities of spheres in each size class
for α=0.4. For comparison, the PDFs of the velocities of all the spheres are included
in this plot as grey lines. Again, the PDFs are approximately Gaussian (simulations
by Cheng and Wachs [34] of uniform flow past fixed polydisperse random arrays
indicate also a Gaussian distribution for the hydrodynamic forces of a given size
class). Surprisingly, the PDFs of the horizontal velocities for different size classes
collapse onto a single curve (figure 4.11 (a)). From the PDFs of the vertical velocities
in 4.11 (b), it is seen that the mean velocity increases as the size of the particle
increases, and different size classes have comparable variances.

The average vertical settling velocity of each size class normalized by the corre-
sponding single-particle Stokes velocity is shown in figure 4.12 for different values
of α. The inset shows a zoom in the range 0.8 ⩽ ai ⩽ 2. Because now the settling
velocity is normalised by the single-particle settling velocity, the information in this
plot complements the data of figure 4.11 (b). We see that for fixed α the normalized
average settling velocity increases as the particle size increases. This means that the
velocities of small particles are more hindered than the velocities of large particles. For
a given size class, the normalized average settling velocity decreases as α increases,
and decreases faster for small particles than for large particles. The standard deviation
around the mean seems to decrease with ai, except for values near ai = 1.4 (we have
examined the velocity probability distributions of several configurations and found
no probability distributions with atypical behaviour of the ai = 1.4 class; no simple
explanation was found for this anomalous data point).
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Figure 4.12: Normalized average settling velocity of each size class for different polydisper-
sity parameters and ϕ=0.05. The inset is a zoom in the range 0.8 ⩽ ai ⩽ 2. The lines are
guides for the eyes.

Figure 4.13: Normalized average settling velocities of each size class, for α=0.4 and different
volume fractions. The inset shows a zoom in the range 1 ⩽ ai ⩽ 2.
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Figure 4.14: Normalized (a) horizontal and (b) vertical velocity fluctuations for different α
and ϕ=0.05.

Figure 4.15: Normalized (a) horizontal and (b) vertical velocity fluctuations for different ϕ
and α=0.4.

In the previous figures, the total volume fraction was fixed, and α was changed. In
figure 4.13, we instead change ϕ for fixed α=0.4. This plot confirms the trend seen
in figure 4.12: for a given volume fraction, the normalized average settling velocity
decreases as the particle size decreases. The normalized average settling velocity de-
creases faster with increasing ϕ for small size particles.

To summarise, the smaller particles are more hindered and more affected by poly-
dispersity than the large ones.

Statistical deviations with respect to the mean particle velocity, as measured by the
root-mean square of the velocity fluctuation, increase as α or ϕ increase (see figures
4.14 and 4.15). The normalized horizontal and vertical velocity fluctuations of each
size class are shown forα = 0.2 and 0.4 with fixedϕ = 0.05 in figure 4.16. For a fixed
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Figure 4.16: Normalized velocity fluctuations of each size class at ϕ = 0.05 for (a) α = 0.2
and (b) α = 0.4.

α horizontal direction vertical direction

0.1 0.32 1.13
0.2 0.38 1.33
0.3 0.46 1.56
0.4 0.53 1.85

Table 4.1: Approximate values of the prefactor c in the scalings of the horizontal and the
vertical normalized velocity fluctuations for each α at ϕ = 0.05.

α, the normalized velocity fluctuations decrease as the particle size increases. Figure
4.11 seems to suggest that the velocity fluctuations are approximately independent of
the particle radius ai. Because the Stokes velocity scales as a2

i , it is expected that
the velocity fluctuations normalized by the Stokes velocity scale as ∼ a−2

i . Our data
confirm this scaling (see lines in figure 4.16): u′

i/uSt,i = ca−2
i fits the data for

all the values of α and ϕ simulated, as shown in tables 4.1 and 4.2. This scaling
is also observed in our simulations of bidisperse suspensions: the ratio of velocity
fluctuations between the two classes in these simulations is close to 1. Peysson and
Guazzelli [53] measured experimentally the velocity fluctuations of small and large
particles in a dilute bidisperse suspension with size ratio 2. They found that the ratio
of velocity fluctuations between the small and the large size classes were around 0.85
and 0.75 in the vertical and horizontal directions, respectively, yielding a ratio roughly
close to ours.
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ϕ horizontal direction vertical direction

0.01 0.28 0.95
0.03 0.45 1.54
0.05 0.53 1.85
0.08 0.61 2.08
0.10 0.62 2.15

Table 4.2: Same as table 4.1 but for different ϕ at α = 0.4.

Figure 4.17: Ratio between vertical and horizontal velocity fluctuation magnitudes for ai = 1

and (a) different α at ϕ = 0.05, or (b) different ϕ at α = 0.4.
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Figure 4.18: Comparison between the current simulation results and the predictions of hin-
dered settling function models for the average velocity of different size classes, for ϕ=0.05
and different polydispersity parameters: (a) α=0.1, (b) α=0.2, (c) α=0.3 and (d) α=0.4.

The anisotropy ratio between the vertical and the horizontal velocity fluctuations,
plotted in figure 4.17, is around 3.5 regardless of the values of α or ϕ. This value was
also observed in the monodisperse and bidisperse simulations.

4.5.2 Comparison with hindered settling models

In this subsection, current simulations are compared with predictions from Batch-
elor’s (see equation (4.1)), Davis & Gecol’s (see equation (4.2)) and MLB (see equa-
tion (4.3)) models. The accuracy of Richardson-Zaki correlation (see equation (4.4))
for polydisperse suspensions is also checked. The values of the coefficients Sij in
Batchelor’s and Davis & Gecol’s models are calculated from Sij = −3.50− 1.10λ−
1.02λ2 − 0.002λ3 where λ = aj/ai [10]. The value of the exponent n in the MLB
model and the Richardson-Zaki correlation is 5.

Hindered settling functions corresponding to different size classes for fixed ϕ=0.05
and different α are compared against different theoretical models in figure 4.18. The
Richardson-Zaki correlation largely overestimates the hindered settling functions of
smaller particles, whereas it gives reasonable values for larger particles. The discrep-
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Figure 4.19: Relative differences between the average settling velocities from different models
and from the current simulations for fixedϕ = 0.05: (a) Batchelor’s model; (b) Davis & Gecol
model; (c) MLB model.

ancy between the Richardson-Zaki correlation and the computed hindered settling
functions of smaller particles increases as α increases. For each α, the predictions
from the other three models show a consistent trend for each size class. The MLB
model gives the largest settling velocities, Batchelor’s model gives the smallest set-
tling velocities, and Davis & Gecol’s model gives intermediate values. The differ-
ences between the predictions from these three models get smaller as the particle size
increases.

Figure 4.19 shows the normalized relative differences between the computed and
predicted average settling velocities. The Batchelor model and the Davis & Gecol
model predict the average settling velocity of each size class quite well for all α con-
sidered here, with relative errors smaller than 10%, except for the smallest size class
ai=0.4 for α=0.4 for which the simulation gives a very small settling velocity. From
figure 4.19 (c), it is seen that the relative difference between the predictions from the
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MLB model and the current simulations decreases as ai increases, or α decreases.
For ai ⩾ 1, the MLB model predicts the average settling velocities quite well, with
the relative difference within 10%. For ai ⩽ 0.8, the MLB model starts failing.

Hindered settling function data for fixed α=0.4 and different ϕ are compared with
the predictions from different models in figure 4.20. Also, Richardson-Zaki’s correla-
tion predicts the hindered settling functions of smaller particles poorly. For the other
three models, a similar trend in the predicted values is observed as the one in the case
of varying α. The predictions from the MLB model and the Davis & Gecol model
are quite close to each other for all size classes at each volume fraction, and they are
also quite close to the values from current simulations for larger particles. However,
the Davis & Gecol model slightly underestimates the hindered settling functions of
the larger particles when ϕ > 0.06. For smaller particles, the predictions from the
MLB model and the Davis & Gecol model are larger than the values from the simu-
lations, and the discrepancies between the predictions from these two models and the
values from current simulations get larger as ϕ increases. The predictions of Batche-
lor’s model are close to the simulated values for ϕ approximately less than 0.05. As
ϕ increases, Batchelor’s model underestimates the hindered settling functions of all
size classes systematically compared to the results of current simulations.

For fixed α=0.4, the relative differences between the average settling velocities pre-
dicted by different models and calculated by current simulations of each size class for
different volume fractions are shown in figure 4.21. For each size class, the relative
difference between the prediction from the Batchelor model and the current simula-
tions increases as the volume fraction increases, and it is within 10% when ϕ ⩽ 0.05,
except for the smallest size class ai = 0.4. From figure 4.21 (b) and (c), it is seen that
the relative differences are quite close for the Davis & Gecol and the MLB models,
with those of the MLB model slightly larger. For larger size classes (ai ⩾ 1), both
these two models give quite accurate predictions for all volume fractions considered,
with the relative differences within 10% compared to the results of current simula-
tions. For smaller size classes (ai ⩽ 0.8), both these two models give predictions
with large relative differences compared to the results of current simulations, and in
general the relative difference gets larger as volume fraction increases or as size of the
class decreases.

4.5.3 Velocity slip

We saw that the MLB model, despite its simplicity, gives relatively good agreement
for the large particles. However, it fails for the small particles. The MLB model is
based on a closure relation for the particle-fluid velocity difference (see Appendix
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Figure 4.20: Comparison between the current numerical results and the predictions of differ-
ent models. The comparison is here evaluated as a function of ϕ for fixed α=0.4 . (a) to (f )
correspond to size classes a1,a2,a4,a6,a7 and a9, respectively.

[ May 6, 2025 at 10:45 – classicthesis]



chapter
4

4.5 polydisperse suspensions 89

Figure 4.21: Same as in Fig. 4.19, but for different volume fractions and fixed α = 0.4.
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Figure 4.22: Normalized slip velocity for each size class for ϕ=0.05 and different α. The line
shows the prediction of the MLB model.

B). Therefore, to understand the limits of validity of the model, we compute the slip
velocity from the simulation data and compare against the MLB model prediction.

Slip velocities for each size class normalized by the corresponding Stokes velocities
are plotted in figure 4.22 for ϕ=0.05 and different α. The slip velocity for size class
i is defined as the difference between the average settling velocity of class i and the
average velocity of the fluid phase,

uslip,i = ⟨uz,i⟩− ⟨uf⟩. (4.14)

The value of ⟨uf⟩ is obtained from the zero volume-flux condition
∑

ϕj⟨uz,j⟩+(1−

ϕ)⟨uf⟩ = 0. The slip velocity predicted by the MLB model is calculated from (see
Appendix B)

uslip,i = uSt,i(1−ϕ)n−1. (4.15)

It is seen that the MLB model does not predict accurately the slip velocities of
the smaller particles. The discrepancy between the MLB model prediction and the
simulation data increases asα increases. The slip velocities of relatively large particles
are reasonably well captured. As the particle size increases, the simulation data tends
to converge to the MLB model prediction.

The normalized slip velocities for each size class for fixed α=0.4 and varying ϕ are
plotted in figure 4.23. It is seen that the prediction of the MLB model gets increasingly
worse as the volume fraction increases for the small size classes. Predictions for the
largest particles are instead acceptable regardless of the volume fraction.
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Figure 4.23: Normalized slip velocity for each size class for α=0.4 and different values of ϕ.
The dashed line is the prediction of the MLB model.

4.6 Comparison with dynamic simulations

In our simulations, we ensemble-average over random particle configurations. This
approach has been used by several authors, leading to quantitative predictions such
as the average sedimentation velocities and velocity fluctuations of the particles in
monodisperse and bi-disperse suspensions [5–8]. Phenomena of particle clustering
or segregation could in principle be important in our simulations. Regarding segrega-
tion, Batchelor and Janse Van Rensburg [54] have proven that in settling polydisperse
suspensions of spheres having the same density but different radii, particle class seg-
regation (i.e. the tendency of particles of the same class to accumulate in specific
locations) does in general not occur (the polydisperse suspension is practically ho-
mogeneous). Furthermore, in our range of parameters the suspension is dilute and
phenomena of particle clustering (regardless of the class the particles belong to) are
expected not to be dominant features.

To assess the validity of our simulation approach, we have carried out selected dy-
namic simulations. For these simulations, we chose a domain size L = 56, a volume
fraction 0.05 and α = 0.4. Initially the particles are randomly distributed. In the dy-
namic simulations, at each time step the particle velocities are calculated from equa-
tion (4.5) and the particle positions are updated by a two-step, explicit method. The
settling velocity of the suspension is shown as a function of time in figure 4.24.

The normalized average settling velocities of each size class from dynamic simula-
tions and random arrays are plotted in figure 4.25 (instantaneous results from dynamic
simulations are time-averaged over 500 ⩽ t ⩽ 1000). Differences between the hin-
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Figure 4.24: Dynamic simulation: settling velocity of the suspension, averaged over all the
particles, as a function of time.

dered setting functions in the dynamic simulation and random arrays are visible. The
particle velocity is seen to be slightly smaller in dynamic simulations than that in the
random array simulations, except for the two size classes ai = 0.6 and ai = 0.8
where the reverse is true. However, the differences are comparatively small and the
trends of the dynamic and static simulations are identical. The PDFs of the horizon-
tal velocities of spheres in each size class from the dynamic simulation are shown in
figure 4.26. Most of the PDFs collapse onto each other, as in the random array case,
except the PDFs of larger size classes which show some relatively minor deviations.
In figure 4.27, the pair distribution functions between the smallest and the largest size
classes are plotted for both dynamic simulations and the random array simulations.
Despite the statistical noise (which is more severe in polydisperse simulations than in
monodisperse simulations due to the smaller number of particles per size class), the
two pair distributions appear quantitatively similar. Strong clustering in the dynamic
simulations would lead to pair distribution function values significantly larger than 1
for close interparticle distances. Instead, the values of the pair distribution functions
at close separations are similar in range to those of the static simulations, and do not
exceed 1.05. The results of the current section suggest that in our range of parameters
phenomena of clustering, if present, are not sufficiently strong to affect the results
presented in the current chapter.

4.7 Summary and discussion

The hindered settling function for non-Brownian, inertialess, dilute suspensions of
polydisperse spheres with a log-normal size distribution was quantified via Stokesian
Dynamics simulations, considering the effects of the polydispersity parameter α and
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Figure 4.25: Normalized average settling velocity of each size class comparing the dynamic
and the “random array” simulations.

Figure 4.26: Probability distribution functions of horizontal velocities of spheres in each size
class from the dynamic simulations.

[ May 6, 2025 at 10:45 – classicthesis]



94 hindered settling of a log-normally distributed stokesian suspension

ch
ap

te
r

4

Figure 4.27: Pair distribution functions of particle positions (between the smallest and the
largest size classes) for (a) “random array” and (b) dynamic simulations.

the volume fraction ϕ. This is the first work that reports the velocity of each parti-
cle class for a log-normally distributed system with number of classes larger than 3.
The class-averaged settling velocity ⟨uz,i⟩ of each particle size class was found to
decrease for increasing α. The strongest dependence on the parameters was found in
the range of small particles: ⟨uz,i⟩ decays, with increasing ϕ or increasing α, faster
for the smaller particles than for the largest particles, indicating a larger effect of hy-
drodynamic interactions on the lower tail of the particle size distribution.

The probability distribution functions of horizontal and vertical velocities of each
size class tend to follow approximately a Gaussian distribution. The magnitude of
the horizontal and vertical velocity fluctuations for each size class increases as ϕ or
α increases, and appear to follow the approximate scaling u′

i ∼ uSt,i(ai/⟨a⟩)−2.
Our simulations for the log-normally dispersed system suggest a value of about 3.5
for the anisotropy ratio between the vertical and the horizontal velocity fluctuations.
This value is comparable to the one observed in our simulations for monodisperse or
bidisperse suspensions.

A detailed comparison with available theoretical model has been proposed. The
accuracy of Richardson-Zaki’s correlation for polydispersed suspensions was found
to be unacceptable: for α=0.4 and ϕ=0.05, the value predicted by Richardson-Zaki’s
formula for the smallest particles can be up to seven times larger than the simulated
value! On the other hand, the MLB model works surprisingly well for predicting the
settling velocity of the upper tail of the particle size distribution, but not the lower tail.
Our simulations confirm that Batchelor’s model gives quite accurate predictions for all
size classes when ϕ ⩽ 0.05, yielding discrepancies of the settling velocities that are
within 10% of the numerical results. The Davis & Gecol model and the MLB model
give comparable predictions in our range of volume fractions. Both these models tend
to overestimate the hindered settling function of the smaller particles. The discrepancy
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between the models and the simulation data increases as α or ϕ increases, suggesting
that future studies should focus on moderately dense suspensions with a wide size
ratio.

Although both models overestimate the settling velocity of the smaller particles,
the MLB model gives much more accurate predictions than the Richardson-Zaki’s
correlation. MLB is also based on Richardson-Zaki’s formula, but in the MLB model
the formula is used to estimate the particle-fluid slip velocity, not the absolute settling
velocity. For applications where the focus is predicting the sedimentation of the larger
particles (e.g., separation of large particles from a polydisperse mixture), using the
MLB model could be sufficient. For applications where the stratification in different
layers needs to be predicted (e.g. in sedimentology [4]), using the MLB model will
overestimate the fraction of the smaller particles in the sediment region. In particle
size fractionation by centrifugation or sedimentation [2, 14]), using the MLB model
could give a wrong prediction of the region where most of the small particles are
located, jeopardising the entire size fractionation procedure.

Looking at the main assumptions of the MLB model, re-derived in the Appendix
B, we can see that the model rests on the assumption that the Stokes drag correction
for each size class only depends on the total volume fraction of the suspension. This
assumption cannot hold in general, and thus this is the main area of model improve-
ment. Despite our efforts, we have not been able to propose, based on rigorous fluid
mechanics arguments, an improvement of the MLB model in which the effect of poly-
dispersity is accounted for in the closure of the fluid-particle velocity slip. Perhaps
data for the drag force on polydisperse fixed arrays subject to a uniform flow [34,
55–57] could be used to suggest improved models. However, one should take into ac-
count that uniform flow past a fixed polydisperse array and the average velocity of a
polydisperse array subject to known external forces are two different problems. Given
the difficulty of coming up with a closure relation valid for all particle sizes, machine
learning techniques such as symbolic regression [58–61] could be used to incorporate
into the MLB model information about the moments of the particle size distribution.

The good comparison between Batchelor’s model and the simulation data for suffi-
ciently small ϕ enables us to use this analytical model to illustrate why the prediction
of the velocity of the small particles is highly dependent on the full particle size dis-
tribution, while that of the large particles is not. Equation (4.1) can be rewritten as

hi = 1+ Siiϕ+

m∑
j=1

(Sij − Sii)ϕj, (4.16)

where Sii = −6.55 and ϕ is the total volume fraction. The direct influence of the size
of particle class j on the hindered settling of particle class i is negligible if |(Sij −
Sii)ϕj| ≪ |Siiϕ|. For ϕ = 0.05, the magnitude of the intra-class interaction term
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Figure 4.28: Inter-class interaction term appearing on the right hand side of equation (4.16)
for ai = 0.4 (“small” particles) and ai = 2 (“large” particles). The particle size distribution
corresponds to α = 0.4 and ϕ = 0.05.

Figure 4.29: (a) Interaction coefficients Sij − Sii and (b) volume fraction distribution corre-
sponding to the interaction term of figure 4.28.

[ May 6, 2025 at 10:45 – classicthesis]



chapter
4

4.7 summary and discussion 97

is |Siiϕ| = 0.33. Let us compare this value to the inter-class interaction term for
ϕ = 0.05. In figure 4.28 (Sij − Sii)ϕj is shown for ai = 0.4 (small particles) and
ai = 2 (large particles), for α = 0.4. The maximum absolute value of the inter-
class interaction term for the small particle is 0.13, not negligible in comparison to
0.33. The maximum value of the inter-class interaction term for the largest particles
is instead 18 times smaller than the intra-class interaction term. The question is: in
the case of log-normally distributed particles, why is the inter-class interaction term
small for the large particles? Is this because the interaction coefficients are small in
magnitude? Or because of the distribution of volume fractions?

To reply to these questions, in figures 4.29 (a) and (b) we show (Sij−Sii) andϕ sep-
arately. For completeness, in figure 4.29 (a) (Sij − Sii) is shown also for aj/ai → 0

(even though the smallest value we consider in our work is 0.2). It is seen that in our
log-normal distribution the volume fraction corresponding to the small particles is
small in comparison to that of the large particles, and tends to zero as the lower tail
of the particle size distribution is approached. The quantity (Sij − Sii) is on the other
hand not diverging for aj/ai ≪ 1, and is O(1) in this limit. Therefore, specifically
for a log-normal particle size distribution the reason why the lower tail has a small
influence on the upper tail is that the volume fraction corresponding to the lower tail
is comparatively small and is weighted by an interaction term that is not large. For a
more general particle size distribution, the situation is more subtle. For example, if
the particle size distribution was such that ϕ was comparatively large in the small par-
ticle range, one would expect the settling velocity of the largest particles to be more
affected by the smallest particles than seen in our simulations. To test this hypothesis,
we simulated a case where there are 5 size classes and all size classes have the same
volume fraction. The corresponding number frequency distribution is shown in figure
4.30. The smallest size class occupies in terms of particle numbers more than 80%
of the total. The normalized average settling velocities from simulations and model
predictions are shown in figure 4.31 for a total volume fraction of 0.03. Batchelor’s
model gives quite accurate predictions, whereas other models overpredict the hindered
settling functions of smaller size classes. The large particles are still relatively unin-
fluenced by the small particles, even if the volume fraction of the small particles is
significantly larger than in the simulations with the log-normal particle size distribu-
tion. The reason for this is that while Sij − Sii ≈ 3 for aj/ai ≪ 1, this O(1) value
is still much smaller than the value |Sij − Sii| ≈ 30 for aj/ai close to 5 (see figure
4.29). In other words, the settling velocity of large particles is directly influenced by
the size distribution of particles in neighbouring size classes only. It seems that, from
the point of view of the velocity of the large particles, the specific size distribution of
the small particles does not matter, only the total volume fraction contribution due to
the small particles matters, via the term Siiϕ in equation (4.16).
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Figure 4.30: Number frequency distribution of a polydisperse suspension where all size
classes have the same volume fraction.

Figure 4.31: Hindered settling function corresponding to the size distribution of figure 4.30.
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The analysis above also gives insights into the condition for which models parame-
terised on the total volume fraction can be used as a first, practical approximation for
the prediction of the settling of a dilute polydisperse suspension. This approximation
is reasonable when the inter-class interaction term is comparatively small. This term
is small when either ϕj ≪ 1 for finite Sij − Sii, the case discussed above. Or when
the particle size distribution is narrow so that |Sij − Sii| → 0, the case discussed by
Davis and Hassen [30] (see the value of Sij − Sii for aj/ai approaching 1 in figure
4.28 (a)). If deviations of Sij from Sii are small, then it can be seen from equation
(4.13) that the hindered settling function for ϕ ≪ 1 depends only on the total vol-
ume fraction. For a not too dense suspension with a narrow size distribution, the use
of Richardson-Zaki’s correlation is for example partially justified (note that the expo-
nent n ≃ 5 in the Richardson-Zaki correlation is numerically close to |Sii| = 6.5;
this “lucky coincidence” was also noted by Davis and Hassen [30]).

A challenge in the current investigation has been the lack of experimental data to
compare to. Experimental techniques such as X-ray radiography [62], magnetic res-
onance imaging [63], or optical experiments with fluorescent particles [64] could be
used to measure the velocity of a given small particle fraction in a widely polydisperse
suspension.
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5
E N H A N C E D S E T T L I NG O F A G RO U P O F S P H E R E S

To quantify the hindered settling function from the experiments, it is important to
accurately measure the single particle Stokes velocity. In this chapter, we present both
simulations and experiments in the Stokes regime to illustrate how the particle settling
velocity measured from the experiments can be affected by a large error compared to
its corresponding Stokes velocity when the particles are added as a group, as usually
done in experiments with natural sediments. The experiments are carried out by our
collaborators from Deltares.

This chapter is based on the article:
H. Li et al. “Collective settling of spherical particles and implications for the experimental measurement
of particle density.” In: (To be submitted).
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5.1 Introduction

The quantification of particle settling velocities is important in industrial processes,
to estimate for instance the residence time of particles in gravity settlers [1], or to
predict the transport and fate of sediments in natural systems [2, 3]. Furthermore,
interest in the behaviour of microplastics in the aquatic environment, triggered by the
fact that more and more microplastics are found in water bodies [4–6], has led to
numerous studies on the settling rate of the microplastics [7–11].

The most common approach to measure the settling rate of particles is to transfer a
small amount (mL) of liquid containing a dilute particle suspension into a settling col-
umn by using a pipette. The settling velocity is recorded with a camera at locations far
away from the injection point, to ensure that the particles have reached their terminal
velocities [9, 12, 13]. This procedure is also adopted to measure the settling veloc-
ity of particle aggregates, such as low-density flocs found in estuarine regions [14–
17] and other sediments [18]. In most practical cases involving flocs, particle (floc)
density is very close to the density of the suspending liquid, typically water. There-
fore, the particles settle in the Stokes regime. In this regime the settling velocity of
an isolated particle in an unbounded domain is proportional to the solid-fluid density
difference ∆ρ according to u = (2/9)∆ρga2/µ, where µ is the fluid viscosity, g is
the acceleration of gravity, and a is the radius of the particle. Provided the suspension
is sufficiently dilute, this expression can be used to calculate ∆ρ from the measured
particle velocity.

Recent experiments with flocs have shown that the settling velocity measured with
the pipette method is incompatible with predictions using realistic values of the den-
sity of the floc. Measurements with the suspension drop give values of the settling
velocity of flocs that are much larger than the value predicted by the Stokes settling
rate [14]. These experiments have instead showed that dropping single flocs in the
settling column gave values that are close to the Stokes settling value. In the current
paper we call the first mode of settling collective enhanced settling.

In the current paper we present simulations that illustrate the difference between
collective enhanced settling and individual settling, starting from experimental obser-
vations using spherical particles of controlled size and density. The use of such well
controlled particles enables us to be in the regime where the Stokes formula is known
to hold exactly in the individual settling case and avoid the uncertainties in shape, size
and density encountered when using flocs.

The results of our paper on the effect of collective motions on particle settling is
of practical interest in several contexts. Collective settling is encountered during the
discharge of particle-laden plumes in (deep-sea) mining [19], the propagation of tur-
bidity currents [20] and hypopycnal plumes [21], etc. To estimate the settling fluxes
in the far-field region of the plume, where the particle concentration is very low, the
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Stokes settling velocity is used as input parameter, and its validity assumed. The as-
sumption is based on the fact that the suspension is very dilute (volume fraction within
1%), so hydrodynamic interactions are assumed to be unimportant. The current paper
challenges this assumption.

Settling of suspension drops in quiescent viscous liquids has been studied both ex-
perimentally and numerically [22–24]. In these studies, the initial velocity of the cloud,
breakup of the cloud and particle leakage from the cloud were the main focuses. In the
current paper, we are interested in discussing implications of theoretical predictions
for the settling velocity as a function of solid concentration and particle polydispersity
in view of experimental measurements. For this purpose, we start from some exper-
imental observations with the FLOCCAM setup described in Sec. 5.2 and then use
simulations (Sec. 5.3) to illustrate the limitations of the experimental method and ways
of overcoming these limitation.

5.2 Experimental method

For the settling experiments two batches of polystyrene particles are utilized, with
a median particle diameter of approximately 600µm and 900µm, as characterised by
the particle size distribution shown in Fig. 5.1 (obtained with a Malvern Mastersizer
2000 [25]). The density of the particles is in the range of 1020-1040kg/m3. The liquid
used is water (density ρf = 1000 kg/m3).

The settling velocity was measured with TU Delft’s FLOCCAM device. The FLOC-
CAM device is a video microscopy based system designed to measure particle size
distributions (PSDs) for particles larger than 20µm and the particle settling velocity
[26–30]. A schematic of the setup is shown in figure 5.2.

The FLOCCAM system comprises several key components. Central to the setup is
a cylindrical settling column measuring 10cm × 10cm × 30cm, with glass panels on
the front and back, and plastic side walls. Video footage of the settling particles is cap-
tured by a 5MP CMOS camera with a resolution of 2592×2048 pixels and a pixel size
of 4.8µm. The camera, equipped with a Global Shutter (model: iDS UI-3180CP-M-
GL Rev.2.1, AB02546), is paired with a telecentric lens (model: S5VPJ2898) manu-
factured by Sill Optics GmbH & Co. KG, featuring an adjustable working distance and
a C-mount. This combination provides a pixel resolution of approximately 8.6µm.

For illumination, a Flat Lights TH2 Series Red LED panel (63mm× 60mm) was
employed due to its high directivity, ensuring consistent lighting throughout the ex-
periments. The light panel was powered and controlled by a DC 24V Input Controller
(model: PB-2430-1) from CCS Inc.

To inject the particles into the settling column, a plastic conical feed well terminat-
ing with a rectangular outlet measuring 2mm × 10mm was used. A suspension drop
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Figure 5.1: Particle size (diameter) distribution of polystyrene particles as measured by
Malvern Mastersizer 2000.

containing particles were carefully extracted using a pipette and released into the col-
umn. Settling velocities were recorded approximately 25cm below the injection point.

The post-processing of FLOCCAM videos was done by using the software Safas
[26, 31]. Safas, which stands for Sedimentation and Floc Analysis Software, is a
Python module specifically designed for processing and analyzing images and videos
of sedimenting particles, especially cohesive sediment flocs. This open-source soft-
ware enables users to easily extract critical data such as particle size, morphology,
and settling velocity, allowing users tocustomize its image filters.

In the first set of experiments, particles with a given size (600µm or 900µm) were
tested under both individual settling and group settling conditions. For the individual
settling case, each particle was introduced into the settling column one at the time,
ensuring no interference from neighbouring particles. In the collective settling case,
a small amount of particles were transferred into the column.

The group settling behaviour of a polydisperse group of particles, consisting of a
mixture of 600µm and 900µm particles, was also studied and compared to the in-
dividual settling behaviours of particles from each size range. The ratio between the
number of 600µm and 900µm particles in the mixed group is 7 : 1.
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Figure 5.2: Schematic representation of the FLOCCAM setup [26].

5.3 Simulation approach

Simulations are carried out with a Stokesian dynamics method in the force formu-
lation [32, 33]. The simulation code is the same as in Ref. [34], where complete vali-
dation cases are presented. Essentially the method is based on calculating the average
settling velocity starting from the particle position by knowing that, in a low-Reynolds
number suspension, the velocity of each particle is a linear function of the gravitational
forces (weight and buoyancy) acting on each particle.

The numerical simulations are carried out as follows. Firstly, particles are randomly
placed inside a cubic box ensuring no overlap between any pair of particles. The group
of particles in the box is assumed to settle in an unbounded fluid. Then, the particle
velocities are calculated by the Stokesian dynamics method [32, 33]. In the Stokesian
Dynamics method, a mobility matrix M is assembled based on the relative position
of all the particles. For this matrix, which incorporates the hydrodynamic interactions
between the particles, we adopt the Rotne-Prager approximation [35, 36] (this approx-
imation is appropriate for dilute suspensions). Formulas for the components of M in
this approximation are taken from Refs. [35, 36]. The vector containing the velocities
of the particles is calculated from the following equation:

U = MF, (5.1)

where U is a 3N× 1 vector of the velocities of the N particles, and F is a 3N× 1

vector of the forces on the N particles. For a particle with radius a, the force on the
particle is f = 4πa3

3 (ρp − ρf)g, where ρp and ρf are the densities of the particle and
the fluid, respectively, and g is the gravitational acceleration. In the simulations, the
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instantaneous particle settling velocities are calculated according to equation (5.1),
with forces corresponding to the assigned random configuration of the particles.

Additional dynamic simulations are also carried out. In the dynamic simulations,
particle velocities are calculated according to equation (5.1) at each time step, then the
particle positions are updated [37]. In the dynamic simulations, particles are randomly
positioned inside a spherical domain forming a suspension drop initially.

When the average separation between identical particles of radius a is infinitely
large, M is a diagonal matrix with entries equal to the mobility coefficient 1/(6πµa),
where µ is the viscosity of the fluid. At finite interparticle separations, interparticle in-
teractions alter the settling velocity of each particle, and can make the average settling
velocity of a group of particles smaller or larger than the Stokes settling velocity. The
average settling velocity ⟨U⟩ = 4πa3

3 (ρp − ρf) ⟨M⟩g, so ⟨M⟩ depends on the inter-
particle separation or, equivalently, on the solid volume fraction. For a polydisperse
suspension, each size class will have its own average settling velocity [34].

The simulation results are presented in non-dimensional form. The simulations are
non-dimensionalized using a characteristic lengtha0 and a characteristic Stokes veloc-
ity u0 =

2a2
0

9µ (ρp − ρf)g. For the polydispersed simulation, the characteristic length
is the average radius of the particles ⟨a⟩.

5.4 Results and discussions

Figure 5.3 (top) presents the results of a settling experiment for particles of diame-
ters centered around 600µm, comparing individual and collective settling. When par-
ticles were introduced individually into the settling column, their velocities followed
reasonably well Stokes’s formula for ρp ≃ 1030kg/m3, with a small dispersion about
this law (blue dots). The addition of particles as a group has two main effects: a large
dispersion of velocities for a given diameter (compare orange and blue dots) and sig-
nificantly larger measured velocity of the particles in the group settling case than in
the individual settling case. It may seem that the increase in settling velocity due to
group settling is limited, but we should take into account that the FLOCCAM setup
does not allow to measure velocities larger than 8.5mm/s, so the increase in velocity
will be even larger than seen in Fig. 5.3.

Figure 5.3 (bottom) is similar to Fig. 5.3 (top), but now the comparison is between
individually settling particles and mixed suspensions containing particles with diam-
eters centered at 600µm and 900µm. The addition of 900µm particles in the mixed
group causes a significant spread in the velocity distribution, compared to the group
settling behavior shown in figure 5.3 (top) and to a notable increase in the settling
velocity of 600µm particles as well. In this new figure the fact that particle veloci-
ties can be larger than 8.5mm/s is more evident than in Fig. 5.3 (top), because the
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Figure 5.3: (top) experimental particle settling velocities, comparing individual and group
settling for a range of particle diameters centered at 600µm; (bottom) experimental particle
settling velocities for a predominantly bi-disperse mixture of 600µm and 900µm.
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Figure 5.4: Simulated settling velocities of a sphere of radius a2 ⩽ a1 in a simulation of a
horizontally aligned sphere pair, where one of the spheres has a radius a1 and the other has
a radius a2. uSt,2 is the Stokes velocity of the sphere with radius a2 and r is the center-to-
center distance of the pair. Lines are the analytical solutions of Ref. [38]

scatter plot of orange symbols is ‘cut’ at the upper velocity boundary. Therefore the
measured increase in velocity due to polydispersity is in fact a lower bound of the
actual increase.

The increase in the number of particles to a suspension generally is believed to give
a reduction in settling rate [39]. The increase in settling rate in Fig. 5.3 (top) is due to
the fact that the particles during addition in the FLOCCAM tank form a suspension
region with an extent that is much smaller than the lateral size of the tank. In such case,
the hydrodynamic interaction between the particles give a larger settling rate than in
individual settling. For example, consider a pair of identical spherical particles of
radius a1 = a2. Their settling velocity increases as the center-to-center separation r

between the particle centers decreases, and is larger than the settling velocity of each
particle by a factor that reaches almost 50% at close separation for spheres that are
horizontally aligned, as illustreated in Fig. 5.4. The hydrodynamic influence of one
sphere on the other sphere decays slowly, as 1/r, so that one should reach separations
r ≈ 10a1 to reach values comparable to the single-particle settling velocity. For an
homogeneous system, an interparticle separation of r ≈ 10a1 corresponds to a very
small solid volume fraction of 0.1%, so one should have local volume fractions that are
extremely small for the the influence of hydrodynamic particle-particle interactions
to be negligible.

The addition of long-range velocity disturbances by many particles settling in a
group can give settling velocities much larger the single particle settling velocity. In
Fig. 5.5 we compare group settling and individual settling for configurations in which
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Figure 5.5: Monodisperse case: Normalized particle settling velocities in the collective set-
tling and individual settling. The mean value and standard deviation of the settling velocity
are 6.6 and 0.7, respectively. The horizontal line in the blue box represents the median value.

Figure 5.6: Monodisperse case: normalized average particle settling velocity versus volume
fraction in the group settling. Symbols are results of current simulations with error bars show-
ing the standard deviation of the particle velocity fluctuations. The dashed line is the analytical
solution from the reference [23] for particles randomly distributed within a sphere.
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100 particles are randomly placed in a cubic box of side L = 35a. In this plot, the
average separation is such that the volume fraction is 1% and the average velocity
of the group is more than 6 times larger than the single-particle Stokes velocity. The
average velocity of the group will depend on the (local) volume fraction, therefore in
Fig. 5.6 we plot the average velocity of the group of particles as a function of ϕ; this
plot is obtained by fixing the size of the particle and changing the particle number for
a fixed simulation box size. From these graphs we can see that the dispersion about the
mean value for these monodisperse simulations is comparatively small (an analysis of
the problem of randomly distributed point-forces located within a sphere of radius R
in Ref. [23] reports fluctuating velocity of at most 5% of the difference between the
average velocity of the particle group and the single particle settling rate) and is due
to the fact that particle in the center of the group move with a velocity comparable to
the average velocity of the group, while the settling velocity of particles at the group’s
periphery is smaller than that of the group (see Fig. 5.7(a)). The average velocity of
the group follows approximately the expression

⟨u⟩ /u0 = 1+
6

5

(
R2ϕ

a2
−

a

R

)
(5.2)

where R and ϕ are the radius and volume fraction of the cloud, derived by Ekiel-
Jeżewska and co-workers [23]. To plot the dashed line in figure 5.6, R is chosen as
half of the box size L/2. This expression could be used for an initial estimation of the
size or volume fraction of the cloud so that the average particle velocity is close to the
Stokes velocity.

We now turn to the analysis of simulations in the bidisperse case. The normal-
ized particle settling velocities in both individual settling and group settling cases
are shown in figure 5.8. For these calculations, in the individual settling case, a single
particle with radius a1 or a2 is placed inside the domain. For collective settling, 50
small particles with radius a1 and 50 large particles with radius a2 are placed inside a
cubic box with size L = 58a1, resulting a volume fraction as 0.01. At this volume fac-
tion, in the collective settling, the settling velocities of the small particles range from
10 times to 20 times their Stokes velocity (the mean value and standard deviation of
the settling velocity as 16.4 and 2.3, respectively). This large influence of bidispersity
on the average settling rate can be understood from the fact that, as shown in Fig. 5.4,
in a pair of dissimilarly sized particles the velocity of the small particle is larger than
its Stokes settling velocity and approaches the velocity of the large particle as r is
reduced (in a very dilute dispersion of particles, hydrodynamic interactions are essen-
tially pair-wise additive, so results for particle pairs translate qualitatively to a particle
cloud). Of course, in a bidisperse situation the larger particles will settle faster than
the small particles, resulting in phenomena of segregation within an initially homo-
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(a) (b)

(c)

Figure 5.7: Example of simulated configurations for (a) monodisperse, (b) bidisperse and (c)
polydisperse cases. The particles are colored according to their settling velocities (normalized
by the reference Stokes velocity).

Figure 5.8: Bidisperse case: Normalized particle settling velocities in the collective settling
and individual settling.
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(a) (b)

Figure 5.9: Polydisperse case: (a) normalized particle settling velocities comparing collective
and individual settling, and (b) normalized particle settling velocities per size range in the
collective settling.

geneous cloud [40] or even disintegration of the cloud [37] depending on the relative
particle size.

Finally, Fig. 5.9 shows results for the polydisperse case . The particle size is dis-
tributed according to a Gaussian with mean 1.5 and standard deviation 0.2. A graph
comparing the settling velocity vs particle radius for individual settling and collective
settling is shown in figure 5.9 (a). For the collective settling simulation, 100 particles
are placed randomly in a cubic box with L = 50 (volume fraction ϕ = 0.01). The
average settling velocity of the group of particles is at least 10 times larger than the
individual settling rate. Fluctuations in the velocity around the mean value, for each
value of a are comparatively large, so assigning a law of dependence between u and
a can only done in a least-square sense. The scatter plot of Fig. 5.9 (a) and the values
presented in Fig. 5.9 (b), where the settling data is plotted per particle size classes,
indicate that in group settling the correlation between particle size and velocity is
weak.

From the discussion above, it may seem that the use of a polydisperse suspension is
detrimental to calculating the particle mass density from the settling rate in an experi-
ment. However, we will now argue with the help of dynamic simulations that polydis-
persity may in fact help.

As a cloud of initially spherical monodisperse particles settles, the cloud maintains
its shape while growing in size until it breaks up into “blobs”. While the cloud main-
tains its shape, the settling velocity is much larger than the single-particle (Stokes)
settling velocity, so measurements of settling velocity in the cloud configuraion gives
an unreliable estimate of the particle density. Small polydispersity has the effect of
destabilising the initial cloud, but a cloud still forms and breaks up into smaller clouds
that also have a velocity larger than the Stokes velocity. However, if the polydispersity
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is large, an initially spherical particle cloud quickly disintegrates. Upon disintegration,
the velocity approach the Stokes velocity.

In Fig. 5.10(a) we show a snapshot of a dynamic simulation of a polydisperse sus-
pension of 949 particles initially confined within a sphere. The initial volume fraction
is 1%. The particle sizes are distributed according to the discrete logarithmic size dis-
tribution shown in Fig. 5.10(b). Because of the large polydispersity (the parameter σ
characterising the log-normal is 0.32, while the mean radius is 0.94) the initial spher-
ical cloud has lost its coherence in shape in a comparatively short time. The cloud has
disintegrated, leaving a trail of small particles (seen at the top of the image) that settle
essentially with their velocity of the same order of the Stokes velocity (but still larger).
The larger particles near the bottom still experience hydrodynamic interactions and
settle at a velocity larger than the Stokes velocity.

Particles in the tail give a particularly good measure of the Stokes velocity, which
becomes better and better as time progresses. This trend is demonstrated in Fig. 5.11,
which the velocity of each particle size distinguishing between trail particles (in red)
and particles in the core of the cloud (blue) for ϕ = 1%. If the distance between a par-
ticle and the average position of all the particles is larger than the radius of the initial
cloud, this particle is considered as a trail particle. Otherwise it is considered as in
the cloud. The red dots approach in time the continuous line indicating the Stokes pre-
diction. The figure also shows that the largest (heaviest) particles in the trail offer the
best agreement with the Stokes velocity. This is because the hydrodynamic influence
of the smallest particles in a polydisperse distribution on the large particles is rela-
tively weak [34]. The small particles “feel” the influence of the large particles, but not
vice versa. This also explains why in the experiments of Ali, Kirichek, and Chassagne
[14] the estimation of the effective density of the smallest flocs had a larger variance
for the small flocs than for the large flocs. From figure 5.11 it is also apparent that the
velocity of the particle belonging to the core of the cloud is almost independent of the
particle size.

How long does it take for a polydisperse cluster to disintegrate? The time for dis-
integration depends on the initial volume fraction. For example, for ϕ = 0.01% and
ϕ = 0.001% no typical cloud evolution behaviour (with a toroidal vortex) is ob-
served in our dynamic simulations, regardless of the number of particles in the cloud.
For ϕ = 0.1%, the evolution follows initially a typical cloud behavior for N = 250

until the cloud disintegrates. For monodisperse particle clouds, Ho et al. [37] found
that the cloud breakup time is in the range 500− 1200τc, where τc = R0/ ⟨u⟩ is the
time it takes for a spherical cloud of radius R0 to travel a distance R0 when moving
with a velocity ⟨u⟩ = 4/15ϕ∆ρgR2/µ (equal to equation (5.2) when ϕ ≪ a/R).
For a Gaussian distribution of at least 1500 particles, they found a smaller breakup
time in the range 200-700 τc. For number of particles smaller than 1000, they found
that cloud destabilisation was “difficult to be detected or even does not occur in some
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Figure 5.10: (a) A snapshot of a dynamic simulation of a settling polydisperse cloud. Par-
ticles are colored according to their sizes. (b) Particle size distribution used in the dynamic
simulation. The mean value and standard deviation of the particle radius is 0.94 and 0.32, re-
spectively.
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Figure 5.11: Particle velocities for different size classes at three different times in the dynamic
simulation. Blue symbols are for the particles in the cloud, red symbols are for the particles
in the trail, and the red lines are the Stokes velocities.

Figure 5.12: (a) The destabilization times from different dynamic simulations. Triangles for
monodisperse clouds, squares and diamonds for polydisperse clouds. (b) The destabilization
length versus the destabilization time of the cloud. Symbols are the results of our dynamic
simulations, and the dashed line is the correlation given in the Ref.[37].

realizations”. This result is compatible with our observation of absence of conven-
tional breakup for extremely small volume fractions when the particle distribution is
lognormal with a large variance.

In an experiment, most interesting is the destabilisation length Ldes, as this sets the
position where the camera should be placed. Fig. 5.12 shows Ldes/D0 = Ldes/(2R0)

vs the normalised destabilisation time tdes/τc as measured in our simulations, against
the correlation for Ldes/D0 = 0.41tdes/τc developed by Ho et al. [37]. This correla-
tion provides a reasonably good fit to the data. Taking a lower bound tdes/τc ≃ 200,
we find Ldes/D0 ≃ 82. For the experiments of Fig. 5.2 we use a rectangular out-
let 2mm × 10mm to inject the particles. Using for D0 the average dimension of the
outlet 6mm we get Ldes ≃ 49.2cm, almost two times larger than the value we use
for the placement of the camera in the experiments of Fig. 5.2. A much taller col-
umn, or a much smaller particle volume fraction, would have been needed to avoid
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hydrodynamic interaction effects in the measurement of the settling rate by the pipette
method.

5.5 Conclusions

In this paper we use simulation results of cloud of particles sedimenting at low
Reynolds number in an unbounded fluid to evaluate the effect of collective particle
interactions on the increase in settling rate over the single-particle (Stokes) settling
rate formula. Experiments with spherical particles are also carried out to motivate
the study and indicate trends in the data that the simulations aim to explain. The ex-
periments are done with the same FLOCCAM setup that has been used in previous
publications to evaluate the density of environmental flocs.

Previous experiments with flocs suggest that the values of effective floc density,
ρeff, obtained by fitting the Stokes formula to the measured settling velocity data,
are incompatible with the intrinsic density of the solid component of the floc, ρs. A
truly isolated particle settles with a velocity proportional to the radius of the particle
squared, yielding a particle density ρp = ρf+

9
2µu0/(ga

2). However, the method to
introduce particles in a settling column intrinsically leads to the formation of a parti-
cle cloud. In this case the particle settles approximately with the velocity of the cloud,
which scales proportionally to the squared radius of the cloud R2 and is thus much
larger than the single particle settling rate. This, in turn, gives rise to an overestimation
of the effective density. From Eq. (5.2), the measured particle density in the collec-
tive settling case satisfies approximately ρcoll

ρs
≃ 1 + 6

5
R2

a2ϕ, assuming R/a ≫ 1.
This equation can be used to correct the density estimation and obtain ρs from ρcoll,
provided that a measurement of the instantaneous size of the cloud and of the cor-
responding (local) volume fraction of particles in the cloud (or, alternatively, of the
average interparticle distance) are available. Experimentally, this could be achieved by
using two cameras with different fields of view allowing the resolution of the typical
interparticle separation and the visualisation of the cloud as a whole.

The origin of the increased settling rate is of course purely hydrodynamic. The
dependence of hydrodynamic interactions on the particle configuration should be a
warning to draw conclusions from experimental estimates of the density that do not
consider the way the particles are suspended. For example, if the particles were homo-
geneously distributed in the settling tank, the settling rate would decrease for increas-
ing ϕ [39, 41]. The fact that the particles form a cloud of finite extent smaller than
the width of the settling column is thus essential. Sketch Fig. 5.13 illustrates the two
types of “collective settling”, giving rise to either hindered settling (for a suspension
that spans the width of the settling column) or enhanced settling.
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(a) (b)

Figure 5.13: Sketches showing (a) collective settling of particles, and (b) hindered settling
of a suspension. Blue lines with arrows represent the fluid streamlines, and red arrows show
the particle moving direction. l is the size of the particle group (i.e. the diameter of the grey
dashed circle enclosing the particles in (a)), and L is the lateral size of the container.

Other essential ingredients highlighted in the paper are the expansion of the cloud
during settling (which increases R and thus reduces ϕ for a given number of particles),
the cloud breakup at a critical time (see Fig. 5.12) and the dispersion in the velocity
values for different particles belonging to the same cloud. For a widely polydisperse
cloud at very low volume fractions, the particles in the tail are largely isolated from
hydrodynamic interaction with the core of the cloud, and therefore their settling rate
is much closer to the Stokes settling rate than the rest of the cloud, as our simulations
demonstrate. The velocities of the particles in the core instead have been found to be
largely uncorrelated with the particle size. For this latter particle sub-population the
approach of mapping the particle density to the particle velocity is intrinsically flawed.
Finding methods to distinguish trail from core particles experimentally would give a
better estimation of the density. This in fact is quite challenging because, as shown
in Fig. 5.10(a), a highly polydisperse cloud does not appear as an easily identifiable
spherical blob. Again, it seems that the analysis of experimental images would benefit
from viewing the particle distribution both at the level of the single particle and at
the much larger scale of the cloud. Furthermore, the data recorded should include the
position of the sample particle with respect to the center of mass of the cloud.
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B U C K L I NG O F F L E X I B L E S H E E T S I N S H E A R F L OW

In previous chapters, dilute suspensions of polydisperse spheres are studied. Since
the suspensions are dilute, the particles are far from each other and the hydrodynamic
interactions have weak dependence on the particle shape. In this chapter, the effect
of hydrodynamic interactions on the buckling of a pair of flexible sheets in the shear
flow is studied, using both experiments and simulations. The sheets are positioned
parallel and close to each other and the deformation is measured at the particle scale.
The experiments are carried out by a former postdoc in our group.

This chapter is based on the article:
H. Perrin*, H. Li* and L. Botto. “Hydrodynamic interactions change the buckling threshold of parallel
flexible sheets in shear flow.” In: Phys. Rev. Fluids 8 (2023), 124103.
* denotes equal contribution
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6.1 Introduction

Soft biological or synthetic objects, such as cells, lipid bilayers, macromolecules,
and nanoparticles, can deform when suspended in sufficiently strong shear or exten-
sional flows [1–4]. Predicting flow-induced morphological changes is crucial in many
fields, ranging from biophysics, where swimming of micro-organisms relies on fluid-
structure interactions [5], to soft matter physics, where the rheological response of a
particulate suspension is affected by the instantaneous particle shape [6]. Model stud-
ies in canonical flows have provided profound physical insights of general applicabil-
ity. For example, the theoretical prediction of the coil-stretch transition of polymers in
simple shear flow [7, 8] was instrumental in the development of rheological models
for dilute polymer solutions [9].

The recent need to develop liquid-based methods to process two-dimensional (2D)
nanomaterials [10–12] has triggered new interest on the effect of flow on the morphol-
ogy of sheet-like materials [3, 10, 11, 13–17]. Two-dimensional materials have low
bending modulii and therefore can undergo transient or permanent buckling in flow [3].
Recent numerical studies [3, 18] demonstrate that purely mechanical models based on
the competition between hydrodynamic compressive force and elastic-bending forces
can capture the change of morphology of isolated graphene sheet and 2D polymers
suspended in a simple shear flow. This agreement demonstrates that the morphology
of a single sheet is determined by a buckling instability whose threshold depends, for
a given fluid shear rate and viscosity, only on the bending modulus and length of the
sheet. However, the extension of this result to suspensions of many particles is an open
question. Because of their relatively large contact area, sheet-like particles are prone
to stacking at small inter-particle separations [11, 19]. Hydrodynamic interactions be-
tween nearly parallel sheets are thus expected to alter the buckling dynamics predicted
for single sheets.

In this study we investigate parallel pairs of flexible sheets in a shear flow as a
function of their separation distance, and study how the buckling instability thresh-
old depends on hydrodynamic interactions. By performing model experiments, and
interpreting the results with the help of boundary-integral simulations and theoretical
modeling, we demonstrate that hydrodynamic interactions can trigger bending far be-
low the buckling threshold of a single sheet. Hydrodynamic interactions cannot there-
fore be considered second-order effects when predicting the morphology of flexible
sheets in flow. More specifically, our simulations and theoretical modeling show that
the dipolar disturbance flow field induced by each sheet gives rise to a lateral hydro-
dynamic force. This lateral force modifies the mechanical response of the sheet pair
to the compressive axial hydrodynamic force experienced when the pair is oriented in
the compressional quadrant of the shear flow. On the other hand, for small separations,
the lubrication forces overcome this dipolar contribution and prevent bending. These
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two competing effects result in a non-monotonic relation between interparticle dis-
tance and critical shear rate for buckling. More generally, our results suggest that the
deformation of close sheets in a suspension may not only depend on the mechanical
and geometric properties of each sheet but also strongly on the pair-particle separation
and thus on the concentration.

6.2 Experiments

6 cm

Figure 6.1: (a) Schematic of the shear cell. (b) Schematic of a buckled sheet viewed along the
vorticity direction of the shear flow and definition of the mid-point orientation angle θ and
mid-point curvature κ̄. The compressional quadrant and the extensional quadrant are shown.
In this schematic, the sheet is oriented in the compressional quadrant (−π/2 < θ < 0).

Mylar sheets (Young’s modulus E ≃ 4 GPa) of different thicknesses
(h = 23, 50 and 125 µm), width w = 1 cm and length L ranging
from 1 to 4 cm were used. Corresponding sheet bending modulii are B ≃
5.0× 10−6, 5.0× 10−5, and 8.1 × 10

−4 J (B = Eh3/12(1− ν2) where ν ≃ 0.5
is the Poisson’s ratio). The shear cell is composed of a belt driven by two co-rotating
cylinders of diameter 6 cm – see fig.6.1(a). A motor, connected to one of the
cylinders, imposes a controlled shear rate in the range γ̇ = 0.4− 10 s−1. The design
of the shear cell is essentially identical to the one described in Ref. [20], so we refer
to that publication for construction details. The flow cell allows to generate a flow
that, in the central region away from the cylinders, is essentially a two-dimensional
simple shear flow (the flow profile was measured by Particle Image Velocimetry,
see Appendix C). We considered single sheets, and pairs of parallel sheets with
separation distance d varying in the range d/L = 0.03− 1. The sheets were placed
in glycerol (the viscosity is η ≃ 1 Pa.s and the density is ρ ≃ 1.2× 103 kg.m−3).
Mylar is slightly more dense than glycerol, and the difference between their densities
is ∆ρ ≃ 10

2kg.m−3. The sedimentation time over one sheet length is of the
order of 103s, which is about 100γ̇−1 for the lowest shear rate. Furthermore, the
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sedimentation is in the vorticity direction so the motion of the sheet along the vertical
direction does not affect the essentially two-dimensional dynamics of the sheets. The
maximum Reynolds number Re = ργ̇L2/η is of order 1 at the maximum shear rate.
The sheets were immersed in the liquid when the belts were not in motion (zero flow
velocity), and manipulated with tweezers so that their normal was in the plane of the
flow. When studying sheet pairs, the sheets were placed parallel to each other and the
separation distance d measured. After placing the sheets, the motor driving the belts
was switched on. Data from experiments in which the sheets were not sufficiently
parallel were discarded. The criterion for parallelism was that the initial angle
between the two sheets must not be greater than 2◦. During the dynamics, the normal
vector remains in the flow-gradient plane and thus the dynamics is two-dimensional.
Optical measurements with a camera were carried out from the top, i.e. along the
vorticity direction of the undisturbed shear flow, with a time resolution of 0.1 s
and with a spatial resolution of 25 µm/pixel. Sheet profile detection is performed
manually using imageJ software. We extracted the midpoint orientation angle θ(t)

by fitting a line to each sheet’s profile – see fig.6.1(b). The mid-point curvature κ̄(t)

was obtained by fitting a parabola to each sheet’s profile. We detected and analyzed
sheet profiles at maximum temporal resolution only when there was a significant
temporal variation in angle or curvature. For this reason, the temporal density of data
points seen in the graphs is not uniform. As explained in section 2 of the Appendix C,
for the few (about one in a hundred) images that were not captured due to a camera
software problem, we used linear interpolation to account for the small temporal gap
between images. Even though the maximum Re is of order 1, in analyzing the results
we will consider a low Reynolds approximation (Stokes flow). As it will appear later,
this approximation gives a reasonable agreement between the simulations and the
experimental data. For each case, the experiment was repeated 2 to 3 times, and all
the results are shown in the figures presented below.

6.3 Simulation Method

We simulated the fluid-structure interaction of thin sheets in Stokes flow by a reg-
ularized Stokeslet approach [17, 21–23]. The regularized Stokeslet method has been
used to study a variety of fluid-structure interaction problems at low Reynolds number,
including cilia-driven transport [21], flagella synchronization [22], and flow around
double helices [23]. As in the experiment the flow and the sheet dynamics are two-
dimensional, we simplified the simulation choosing a two-dimensional description.
For a two-dimensional slender body, the approach consists in placing regularized force
singularities along the body’s centerline. The integral of the regularized force density
over each discretization line segment represents the force exerted by that segment of
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the slender body on the fluid. Owing to the linearity of the Stokes equation, the veloc-
ity field u(x, t) at position x and time t obeys the following boundary integral equation
[24]:

u(x, t) = u∞(x) +
1

4πη

∫
C

Gϵ(x, x0) · f(x0, t)dl, (6.1)

where u∞ is the undisturbed background flow, η is the dynamic viscosity, f(x0, t) is
the force density exerted on the fluid by the sheet element dl centered at x0 and Gϵ is a
2D regularized Stokeslet for an unbounded flow [25]. Here, we neglected the double-
layer potential because of the inextensibility approximation for the sheets [17, 23].
Since the sheets are inertia-less, the hydrodynamic force (−f) is balanced by the local
internal elastic force. Numerically, we compute the elastic force from the derivative of
the bending energy, as done in [17, 22, 26]. A very large value of the spring stretching
constant was used to model the inextensibility of the sheets. The maximum relative
elongation of the sheet during the dynamics was typically not larger than 10−3. The
kinematics of each sheet is governed by the no-slip boundary condition on the surface
of the sheet. In the slender body approximation, this condition is approximated by a
no-slip condition at the centerline of the sheet:

∂X(s, t)
∂t

= u(X(s, t)), (6.2)

where X(s, t) is the position vector along the centerline of the sheet at the curvilinear
coordinate s and time t. In this numerical method the sheet has zero thickness, there-
fore in order to observe tumbling and bending, the sheet needs to be initialized at an
orientation angle different from ±π/2 and the initial shape set to a perturbation from
a straight line [27]. Based on our previous work [17] we chose for the initial orienta-
tion θ0 = −π/2+π/10 and for the initial shape perturbation the first buckling mode
κ(s) = κ0 sin(sπ/L) with a small amplitude κ0 = 8× 10−3/L, where κ(s) is the
local curvature at s. At each time step, the velocity field is calculated first by eq.(6.1),
then eq.(6.2) is advanced in time by a first-order explicit Euler scheme to obtain the
sheet’s configuration at the new time step. In the simulations, each sheet is discretized
by 51 nodes and the time step is 10−5γ̇−1. Validations of the code on two cases for
which asymptotic solutions are known can be found in our previous article [17]. Those
two cases are the relaxation of an initially deformed sheet in a quiescent flow and the
tumbling dynamics of a single sheet in a shear flow. During the simulation, at each
time step the mid-point curvature κ̄(t) = κ(s = L/2, t) of a sheet is calculated by
fitting a parabola to its center.
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6.4 Dynamics of a single sheet

For an inextensible flexible sheet of length L, width w and bending modulus B, the
Euler buckling force for axial compression scales proportionally to wB/L2 [28, 29].
The viscous compressive force in a shear flow in the Stokes limit scales as ηγ̇Lw.
Its dependence on the orientation angle is −2 sin θ cos θ [3, 30], which is maximum
when the sheet is oriented along the compressional axis θ = −π/4 of the shear flow
(see fig.6.1(b)). The buckling dynamics of a single flexible sheet depends therefore on
the elasto-viscous number [3]

Ev =
ηγ̇L3

B
. (6.3)

This non-dimensional number can be also interpreted as the ratio of two time scales:
1/γ̇, the characteristic time scale of the shear flow, and ηL3/B, the characteristic time
scale of curvature relaxation in a quiescent viscous liquid.

We determined the single-sheet buckling threshold by measuring experimentally
the sheet curvature κ̄ corresponding to different elasto-viscous numbers, placing only
one sheet in the shear cell. The Mylar sheet is practically perfectly flat when not sub-
ject to external forces. The residual curvature of each sheet, if at all present, is at most
0.02/L. For small elasto-viscous numbers, the sheet tumbles in the flow and remains
straight. For relatively large elasto-viscous numbers, for example Ev ≃ 21 (fig.6.2(a)),
the sheet deforms during tumbling. The time dependence of the angle θ(t) in fig.6.2(a)
is well described by Jeffery’s solution for rigid oblate ellipsoids [3, 31, 32]. This agree-
ment validates the Stokes flow assumption we made for the simulations. This agree-
ment also shows that the tumbling dynamics is not significantly affected by the sheets
deformations for curvatures smaller than 1/L. The time-dependent curvature is seen
to grow when the sheet is oriented in the compressional quadrant (−π/2 < θ < 0),
which is the signature of the buckling instability. Then the curvature decays to zero,
over a time scale 1/γ̇. It is interesting to note that the curvature decays also in the
compressional quadrant, likely because for (−π/4<θ<0), the hydrodynamic forces
are predominantly compressive but their magnitude is below the threshold for buck-
ling. As θ(t) spans the extensional quadrant (0 < θ < π/2), the curvature decays
monotonically to zero. To identify the single-sheet buckling threshold, we measured
the maximum curvature κ̄max attained during a tumbling cycle for different elasto-
viscous numbers (see fig.6.2(b)). The results lie in two regions separated by a critical
elasto-viscous number Ec

v ≃ 11± 3 above which the sheet always deforms with a cur-
vature larger than the experimental resolution. The maximum curvature measured in
experiments seems to increase proportionally to E2

v, see the Appendix C for a log-log
version of fig.6.2(b). Below this number the sheets curvature is negligible. We defined
the critical value of Ev as the threshold value above which sheets always deform. The
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Figure 6.2: (a) Normalized mid-point curvature κ̄L (crosses) and mid-point orientation an-
gle θ (triangular markers) versus rescaled time γ̇t for Ev ≃ 21. Time has been shifted so
that γ̇t = 0 corresponds to the orientation θ = 0. The black line is Jeffery’s prediction
θ(t) = arctan(γ̇t) [31]. (b) Maximum normalized curvature versus elasto-viscous number
for a single sheet. The dark and light grey regions delimit the rigid limit and the buckling re-
gion, respectively. The measured critical elasto-viscous number from this diagram is Ec

v ≃ 11.
(c) Normalized curvature versus normalized time from dynamic simulations of a single sheet
for different elasto-viscous numbers.
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uncertainty in the determination of Ec
v was estimated from the dispersion of the data

points, see Appendix C for a log-log version of fig.6.2(b). To corroborate this observa-
tion, we performed numerical simulations of single sheets for different elasto-viscous
numbers, see fig.6.2(c). For elasto-viscous numbers larger than Ev = 8, the curvature
increases in time, signature of the growth of the buckling instability. For elasto-viscous
numbers smaller than Ev = 8, the curvature decays. The simulations confirm that the
maximum curvature increases approximately as ∼ E2

v for relatively small values of
Ev, see the Appendix C. The agreement between the numerical prediction (≃ 8) and
the experimental value (≃ 11) is acceptable considering the finite experimental resolu-
tion, which makes a very precise determination of the buckling threshold difficult [30].
A mathematical model for the buckling of a thin flexible circular disk, based on apply-
ing Jeffery’s solution for the hydrodynamic stress on an oblate ellipsoids to predict the
compressive load on the disk, predicted a threshold values ≃ 102 [33]. Recent simu-
lations of an hexagonal flexible sheet modeled as a collection of beads interacting via
long-range hydrodynamic interactions - represented at the Rotne-Prager-Yamakawa
level - suggested a critical buckling threshold in simple shear flow of about 50 [3].
Since both the hydrodynamic compressive force and the elastic response of the sheet
depend on the shape, it is expected that the buckling threshold for rectangular sheets is
different than the ones for circular disks or hexagonal sheets, so differences with pub-
lished work are expected. The experimental determination of the buckling threshold
for single rectangular sheets, confirmed by our numerical simulation, is an important
step that provides a reference case for the study of pairs of parallel sheets.

6.5 Dynamics of a pair of parallel sheets

A body formed by two sheets bonded together by adhesion or friction has a larger
bending rigidity than a single sheet [29, 34, 35]. Therefore one may intuitively assume
that two sheets separated by a layer of viscous liquid would have a larger buckling
threshold than a single sheet. In contrast, we found that a pair of parallel sheets can
deform for values of Ev below the single-sheet threshold. For example, for Ev ≃
3.6 the single-sheet curvature is negligible (see fig.6.2(b) and fig.6.3(a) 1) while for
the same parameter two sheets separated by d/L ≃ 0.2 display a finite curvature.
The curvature of the two sheets increases with time, then decreases, changes sign
and finally decays to zero at the end of the tumbling motion (see fig.6.3(a)). In the
single-sheet case, for Ev > Ec

v the curvature relaxes while the sheet is oriented in the
extensional quadrant (see fig.6.2(a)). In contrast, pair of sheets deform while oriented
in the extensional quadrant (fig.6.3(b) right panel). These two changes of behavior for

1 Four experimental data points are missing at γ̇t ≃ 0.17 and γ̇t ≃ 5.4 due to a camera software issue,
which does not influence our observation of the concave and convex shape.
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Figure 6.3: Comparison between single sheet dynamics and dynamics of a pair of parallel
sheets below the single-sheet buckling threshold. (a) Experimental normalized curvature κ̄L

versus normalized time γ̇t for a single sheet (in black) and a sheet pair separated by d/L ≃
0.2 (in red) for Ev ≃ 3.6. (b) Images of a pair of parallel sheets at two selected times. (c)
Normalized curvature κ̄L versus normalized time γ̇t for simulation of a single sheet (in black)
and a pair of sheets separated by d/L = 0.1 (in red) for Ev = 7. (d) Simulated shapes of a
pair of parallel sheets corresponding to the two selected times of fig.6.3(b).

a pair of sheets, bending below the buckling threshold and bending in the extensional
quadrant, are consequences of hydrodynamic interactions between the sheets, as it
will be demonstrated below. A further example illustrating how the curvature changes
with time for d/L ≃ 0.04 and Ev ≃ 12.8 is given in the Appendix C.

To rationalize the experimental observations, we simulated the dynamics of two
parallel flexible sheets. For Ev = 7, the simulations indicate that the single sheet dy-
namics is stable: a small initial curvature decreases in time – see the black line in
fig.6.3(c). For a pair of parallel sheets separated by a distance d = 0.1L and the same
value Ev = 7, the computed curvature follows qualitatively the experimental dynam-
ics, see the red line in fig.6.3(c): each sheet of the pair deforms, adopts a concave shape
in the compressional quadrant (fig.6.3(d), left panel), then the curvature changes sign,
the sheets adopt a convex shape in the extensional quadrant (fig.6.3(d), right panel)
and finally the deformation relaxes to zero. Because in the simulation only hydrody-
namic interactions are accounted for, the simulation results support the hydrodynamic
origin of the two changes of behavior discussed above in relation to experiments.
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Figure 6.4: Hydrodynamic interactions from simulation. (a) Lateral force induced by the first
sheet on the second sheet in the case of two parallel sheets in a shear flow, oriented in the
compressional quadrant (at θ0 = −π/2+ π/10), for d/L = 1, 0.7 and 0.5. (b) Magnitude
of the lateral force at the center of the sheet versus the separation distance when the sheets
are oriented in the compressional quadrant (at θ0 = −π/2+ π/10). The line is the best fit
y = Axα with A ≃ 0.02 and α ≃ −1.1. (c) Vector plot of the 2D disturbance flow. The
rectangle represents the sheet. (d) Magnitude of the disturbance flow velocity udist induced
by a sheet in a 2D compressional flow, versus the distance r measured orthogonally to the
sheet.

From the numerical simulations of two sheets we computed the lateral force on
one of the two sheets, when oriented in the compressional quadrant and for varying
distance d/L, see fig.6.4(a). The lateral force is non-uniform along the sheet, with a
maximum value in the center of the sheet and minima located at the two edges. The
force distribution can be described, to a first approximation, as a parabola. As d/L

increases it is seen from fig.6.4(b) that the amplitude of the parabolic profile decreases,
following a power law with an exponent close to −1. To explain and model this lateral
force, we quantified the disturbance flow field set up by a sheet. Because the sheet is
inertia-less and the flow 2D, the disturbance flow field in the far field is that of a 2D
force dipole whose amplitude decreases as 1/r [36], where r is the distance from the
geometric center of the sheet. The flow disturbance induced by a body oriented along
the compressional or extensional axis of a shear flow can be approximated by placing
an elongated particle in a two-dimensional purely straining flow [37], with the long
axis of the particle along the extensional direction. We performed simulations with
this simplified flow configuration. The computed vector plots in fig.6.4(c) illustrate
the dipolar characteristics of the flow, where it is seen that the spatial variation of the
flow corresponds to the parabolic distribution of the lateral force. The amplitude of the
disturbance flow field is reasonably well captured by a 1/r dependence for r as small
as 0.5L (see fig.6.4(d)). The sign of the background straining flow governs the sign
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of the dipole: with our convention the sign is positive for compressional background
flow and negative for extensional background flow. Hence, the simulations show that
the presence of one sheet generates a parabolic lateral force on the other sheet; this
lateral force originates from the disturbance dipole flow field, its amplitude scales as
L/d and its sign is governed by the background flow field, being positive when the
sheets are in the compressional quadrant and negative in the extensional quadrant.

The information above enables to construct a minimalistic model of flow-induced
shape changes that takes into account the dependence on sheet-to-sheet distance. From
a balance of forces and moments on an inextensible sheet, in the linear approximation
the curvature κ obeys the Euler-Bernoulli equation

Bw
d2κ

ds2
− Tt(s)κ(s) − fn(s) = 0, (6.4)

where s is the curvilinear coordinate, fn is the lateral hydrodynamic force per unit
length and Tt is the axial tension [29, 38]. The axial tension satisfies

dTt

ds
+ ft(s) = 0, (6.5)

where ft is the axial hydrodynamic force per unit length [29, 38]. To model fn and
ft we used a quasi-static approximation that consists of two main assumptions. First,
we neglected the effect of the lateral hydrodynamic drag force caused by the time
variation of the curvature. Second, we assume that the curvature is only coupled to
the orientation θ through the amplitude of ft, which we assume to be −2 sin θ cos θ.
Considering the two extreme cases θ = −π/4 (orientation at maximum compression)
and θ = π/4 (orientation at maximum extension) and modeling the axial force per
unit length as an edge force arising from the straining component of the imposed shear
rate, we obtain Tt = −ηγ̇Lw for θ = −π/4 and Tt = ηγ̇Lw for θ = π/4. Fitting
the results of our numerical simulations, we modeled the lateral force per unit length
arising from the dipolar flow field as

fn(s) = ±w
L

d
ηγ̇Kg(s) (6.6)

where the sign depends on whether the sheet is oriented along the compressional or the
extensional axis. The function g(s) = 1

12 −
(
s
L − 1

2

)2 is a symmetric parabola of zero
mean that reproduces the spatial variation of the lateral force seen in fig.6.4(a) and K

is a numerical pre-factor. We estimatedK ≃ 0.4 from the force amplitude computed at
the orientation θ0, see fig.6.4(b) (by definition K = A g(1/2)/2 sin θ0 cos θ0, where
A is a fitting parameter). The moment balance then reads

d2κ̃

ds̃2
± Ev

(
κ̃(s̃) −

K

d̃
g(s̃)

)
= 0, (6.7)
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where κ̃ = κL, s̃ = s/L and d̃ = d/L. The "+" sign corresponds to the maxi-
mum compression (θ = −π/4). The "−" sign corresponds to the maximum exten-
sion (θ = +π/4). At maximum compression, for the single sheet case (1/d̃ → 0)
this differential equation reduces to the classical Euler-buckling equation for an edge
axial load. If Ev = π2, the Euler-buckling equation admits two solutions verifying the
free end boundary conditions κ̃(0) = κ̃(1) = 0. One solution is the trivial solution
κ̃(s̃) = 0 and the other is the first buckling mode κ̃(s̃) = κ̃0 sin (πs̃) for a purely
axial load. The value of the buckling threshold, here π2, corresponds to a uniform
axial tension. However, it can be shown that for a more realistic model of the axial hy-
drodynamic force ft(s), i.e. a linear variation of ft(s) along the sheet [30] for which
the axial tension is a parabola, the threshold is reduced by only 15% with respect to
π2. Therefore the model of uniform axial tension captures the essential behavior of
buckling. The value Ec

v = 11± 3 we measured experimentally is comparable with the
prediction π2 of this minimal model. On the other hand, at the maximum compres-
sion, for finite d̃ eq. (6.7) admits only one solution satisfying the boundary conditions
for any given value of Ev:

κ̃(s̃) =
K

6d̃Ev

(
[Ev(−6(s̃− 1)s̃− 1) + 12] + (Ev − 12) cos

(√
Evs̃
))

+
K

6d̃Ev

(Ev − 12) tan
(√

Ev/2
)

sin
(√

Evs̃
)

.
(6.8)

The existence of a unique non-zero solution means that there is no buckling instability
in the strict sense. Hydrodynamic interactions remove the buckling instability and the
curvature has a finite bending amplitude for all values of Ev. To summarize, for a
single sheet in pure compression there is a buckling instability while for a pair of
sheets, there is no buckling instability but bending deformations do occur. Taking the
limits Ev → 0 and Ev − Ec

v → 0 with Ev < Ec
v, one can derive from eq. (6.8) the

following approximation for the maximum curvature (at θ = −π/4) of the mid-point
of the sheet:

κ̄ ∼ +K
L

d

Ev

Ec
v − Ev

. (6.9)

Here we have indicated explicitly the sign of the lateral force, the "+ " sign correspond-
ing to the compressional quadrant. In the extensional quadrant, by solving eq. (6.7),
one can show that the curvature scales as κ̄ ∼ −KEv L/d. As illustrated in the sketch
on the left panel of fig.6.5, the change of sign of the dipole force as the sheet tumbles
explains the change from concave to convex morphologies seen in fig.6.3(b). Equation
6.7 is linear, so the scaling in L/d for the dipole amplitude determines the dependence
of the bending curvature with respect to d.

To evaluate the ability of the model above to capture essential features of the exper-
imental data, for each value of the parameters (Ev,d/L), we measured the maximum
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Figure 6.5: Left panel: sketch of the hydrodynamic forces distribution in the single and two
sheet cases. The black line segments represent the sheets. The green arrows represent the com-
pressional or extensional tangential forces. The red arrows represent the dipolar lateral forces.
For Ev < Ec

v the single sheet remains straight while the pair of sheets adopts concave and con-
vex shapes. Right panel: morphology diagram. Maximum normalized curvature for different
normalized separation distances d/L and elasto-viscous numbers Ev = ηγ̇L3/B. The black
squares correspond to deformation below the experimental resolution κr = 0.02/L, the color
circles to a finite curvature. The shadow regions are guides for the eye. The experimental data
for single sheets of fig.6.2(b) are reported in correspondence to d/L = ∞. The equation of
the dashed line is d/L = KEv/ (κrL(E

c
v − Ev)), with Ec

v = 11, κrL = 0.02 and K = 0.02.
The dashed line is plotted for d/L > 0.05.

rescaled curvature κ̄maxL during tumbling. For pair of sheets, the results indicate
two regions of behavior (see right panel fig.6.5). A first region where each sheet’s
curvature is lower than the experimental resolution. The label "Straight" in the figure
indicates this first region. And a second region where the sheets deform significantly
(indicated by the label ’Bent’ in the figure). Significant deformations are seen to occur
for Ev as small as 0.8− 1, i.e. approximately ten times smaller than in the single-sheet
case. Sheet proximity has thus a strong effect on the morphology. Our simple model
provides a criterion for which the curvature becomes larger than the experimental res-
olution κr = 0.02/L. This criterion defines two regions in the morphology diagram
delimited by the dashed line of equation d/L = KEv/ (κrL(E

c
v − Ev)) in fig.6.5. The

model predicts a much larger amplitude of deformation than observed in the experi-
ments, but a similar trend with respect to Ev. Indeed, the value of K used in fig.6.5,
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K = 0.02, is smaller than the one obtained from fitting the lateral force profiles of
fig.6.4(b), K ≃ 0.4. The overestimation of the amplitude of deformation in the model
likely originates from two aspects of the quasi-static approximation we used: first, we
neglected the hydrodynamic drag force in the normal direction to the sheets, which
delays the curvature response time; second, we assumed that the compressive force ft
is constant while in the experiments the sheets tumbles and thus are not submitted to
a constant force. But it can be seen accounting for the difference in the value of K that
the model is in reasonably good agreements with experimental data for d/L ≳ 0.05,
as the dashed line in this interval separates the circles from the squares symbols with
the correct scaling law in L/d. For d/L ≲ 0.05, the sheets are observed to remain
straight during the tumbling motion for all Ev tested and the L/d prediction fails.
The experimental data of fig.6.5 reveal thus that the relation between the separation
distance and the critical elasto-viscous number to observe significant bending is non
monotonic. Further experimental and simulation results of κ̄maxL versus d/L for
fixed Ev are shown in the Appendix C to give further evidence that the relation is
non monotonic. Lubrication forces between two plates separated by a distance d scale
as 1/d3 for a normal displacement [39] and so are dominant at small distances over
the dipolar forces. The time scale for the growth of the deformation in the case of a
steady compressive force and lubrication scales as (L/d)3τ [39] where τ = ηL3/B is
the elasto-viscous time scale. This time scale is much longer than the tumbling time
scale 1/γ̇ for moderate Ev = γ̇τ and small d/L. Thus, lubrication forces constrain
dynamically the deformation for very small distances and moderate Ev. The convex
shape is not observed in every experimental case, because for large distance between
the sheets (d/L > 0.5) the centers of mass of the sheets are convected by the flow and
thus the sheets are not always perfectly “in registry”. A plot showing the amplitude
of the maximum curvature of the convex shape from simulations can be found in the
Appendix C.

6.6 Conclusion

In this study we measured for the first time the effective buckling threshold, which
we define as the threshold to observe significant bending, for a pair of flexible sheets
suspended in a viscous simple shear flow as function of the sheet-sheet distance. In ex-
periments, we obtain a value of the critical elasto-viscous number for buckling of a sin-
gle rectangular sheet of Ec

v ≃ 11. This number is quite close to the one we obtain from
2D simulations, Ec

v ≃ 8. Our main result is the demonstration of a large reduction,
by about a factor of ten, of the elasto-viscous number for which a close pair of paral-
lel sheets bend significantly. This reduction is caused by the dipolar flow disturbance
induced by one sheet. This disturbance induces a lateral force on the second sheet.
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With a minimal model we showed that this lateral force enhances the effect of the
compressional force experienced by the pair when oriented along the compressional
axis of the shear flow. Furthermore, we showed that the dipolar flow disturbance in-
duces bending also when the pair is oriented in the extensional quadrant. Experiments
and simulations suggest that the amplitude of bending is inversely proportional to the
distance between the sheets. For small separations, the lubrication force prevails and
limits the dynamical deformation of the sheets. The competition between the dipolar
enhancement and lubrication leads to a non-monotonic relation between distance and
effective buckling threshold.

In the applied context of designing macroscopic materials, for instance nanocom-
posites, from sheet-like nanoparticles by liquid-based methods (as ink printing, coat-
ing, polymer nano-composite processing and liquid-phase exfoliation [10, 11]), our
results suggest that at finite volume fraction hydrodynamic interactions could amplify
deformations induced by the shear flow. The effect could alter thermal, optical or elec-
trical properties that are dependent on the nanoparticle shape. In the context of rhe-
ology, by focusing on hydrodynamic pair-interactions our results provide a first step
to understand the dynamics of flexible sheets in suspension. In particular, it has been
evidenced for suspensions of fibers that buckling produces normal stress differences
[27]. Hence, our results suggest that the microstructure of a suspension of sheet-like
particles, including the statistics of pair-particle orientation and inter-particle distance,
could have a profound influence on the rheology by affecting the instantaneous parti-
cle shape. Therefore, the microstructure of suspensions of sheet-like particles should
be well-characterized in future rheological studies.
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7
C O N C LU S I O N S A N D R E C O M M E N DAT I O N S

In this chapter, the main conclusions of this thesis corresponding to the research
questions proposed in the first chapter are given. Moreover, some recommendations
of the future research directions are listed.
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7.1 Conclusions

This thesis addresses two fluid dynamics problems: (i) sedimentation of polydis-
perse suspensions, and (ii) buckling of flexible particles in the shear flow. These top-
ics are motivated by the need to better understand the processing of 2D nanomaterials
in liquids. The flow regime considered in this thesis is the Stokes flow, as the local
particle Reynolds number in liquid processing of 2D materials is particularly small.
In Stokes flow, the hydrodynamic interaction between particles is long-ranged, and
the main focus of this thesis is to study the effect of long range hydrodynamic interac-
tions on the particle dynamics (e.g. settling velocity, buckling threshold). The work is
based on numerical simulations, complemented by the theoretical analysis of experi-
ments carried out by collaborators. In this section, answers to the research questions
proposed in chapter 1 are provided.

Sedimentation of polydisperse suspensions

The first objective of the PhD research was to understand the sedimentation of poly-
disperse suspensions, in view of applications to particle size fractionation. This objec-
tive is addressed in chapters 3, 4 and 5.

In chapter 3, a one-dimensional model is used to study the multicascade centrifu-
gation of polydisperse suspensions to isolate certain size ranges from an initial size
distribution. The model predicts the time evolution of the volume fraction distribution
of each size class. Assuming the suspension to be very dilute, the settling velocity
of each size class is calculated by using the corresponding Stokes velocity, neglect-
ing particle-particle interactions. Two scenarios are considered: band sedimentation,
where initially particles are dispersed in a small slab on top of the clear fluid, and
homogeneous sedimentation, where initially particles are evenly dispersed in the vial.
The question we want to answer is:

• What are the optimal parameters to obtain a relatively monodisperse suspension
starting from a polydisperse suspension through a liquid cascade centrifugation
process?

It is demonstrated that band sedimentation is preferred to homogeneous sedimenta-
tion for the purpose of size fractionating a particulate suspension, as there is a clear
distinction between the size classes in the supernatant and those in the sediment layer
at each time in band sedimentation. The drawbacks of band sedimentation are the
limited amount of materials being processed in each step of the multicascade cen-
trifugation and the potential occurrence of Rayleigh-Taylor instabilities happening at
the interface between the particle-laden layer and the clear fluid, which could lead to
mixing of particles of different sizes [1]. With regard to the number of centrifugation
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steps, it is found that surprisingly a two-step multicascade centrifugation procedure
gives the least amount of impurity (i.e. particles that are selected but are not in the
desired particle size range) than other procedures involving more steps. To reduce the
amount of impurity even further, an improved two-step procedure is proposed by re-
ducing the centrifugation time in the second step by a small amount. However, this
also leads to a decrease of the yield. Thus, the multicascade centrifugation process
can be optimized based on a trade-off between the yield and the amount of impurity
desired. Despite the limitations of neglecting hydrodynamic interactions, this is the
first analysis of multicascade centrifugation presented in the literature.

For suspensions where particle-particle interactions are not negligible, the average
and fluctuating particle settling velocity depend on the distribution of particle sizes.
The effect of hydrodynamic interactions on the particle settling velocities of polydis-
perse suspensions of spheres is studied in chapter 4. In this chapter, settling velocity
statistics for dilute, non-Brownian homogeneous suspensions of polydisperse spheres
having a log-normal size distribution are generated from Stokesian dynamics simu-
lations and investigated, as a function of the total volume fraction ϕ and normalized
with α of the particle size distribution. Both the average velocities and the velocity
fluctuations of each size class are analyzed. The question we want to answer is:

• How to predict the average settling velocity of each size class in a dilute settling
polydisperse suspension?

The average settling velocity ⟨uz,i⟩ of each size class decreases for increasing α.
Moreover, ⟨uz,i⟩ decays faster for the smaller particles than for the largest particles,
with increasing ϕ or increasing α, indicating a larger effect of hydrodynamic interac-
tions on the lower tail of the size distribution. A thorough comparison between our
numerical results and predictions of existing models of the hindered settling function
of each size class is made in chapter 4. The Batchelor’s model which is proposed
based on the first principle gives quite accurate predictions for all size classes when
ϕ ⩽ 0.05, and it underpredicts the hindered settling function of every size class at
larger volume fractions. The Davis & Gecol model and the MLB model give com-
parable predictions, with both overestimating the hindered settling functions of the
smaller particles. As for the Richardson-Zaki model, which is parameterized only on
the total volume fraction, gives the worst predictions, especially for the smaller parti-
cles. As an extension of the Richardson-Zaki model, the MLB model performs better
because it uses the Richardson-Zaki model to estimate the slip velocity between each
particle class and the fluid, rather than the settling velocity directly. Considering the
model derivations and applications, it would be valuable to improve the MLB model.
The main assumption of the MLB model is that the Stokes drag correction for each
size class depends on the total volume fraction. This assumption cannot hold in gen-
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eral, and thus this is the main area of model improvement. Our results suggest that
when using these hindered settling models to predict the volume fraction distribution
of each size class in a settling polydisperse suspension [2, 3], there will be large errors
in the predictions of the smaller size classes. For example, the composition of smaller
particles in the sediment will be overestimated.

For the velocity fluctuations of each size class, they increase asϕ orα increases, and
appear to follow the approximate scaling u

′
i ∼ uSt,i (ai/ < a >)−2. The anisotropy

ratio between the vertical and horizontal velocity fluctuations is around 3.5 in our
simulations. Our results of the velocity fluctuation scaling have implications on the
modeling of hydrodynamic diffusivity in polydisperse systems. The hydrodynamic
self-diffusivity of monodisperse suspensions is often modeled as D ∼ a⟨u⟩, where
a is the particle size and ⟨u⟩ is the average velocity of the particles [4]. This expres-
sion can be understood as the product of a correlation length proportional to a and
a fluctuating particle velocity proportional to the mean particle velocity. Our results
suggest that this formulation may not be generalized to polydisperse systems to write
the hydrodynamic diffusivity of class i as Di ∼ ai⟨ui⟩. Indeed, we have shown that
the mean velocity ⟨ui⟩ depends on the particle size ai whereas the velocity fluctua-
tions do not seem to depend on the size of the particle. Instead, the diffusivity of class
i might be written as Di ∼ ai⟨u⟩ where ⟨u⟩ is the average velocity of the suspension,
and this needs more further research.

During this thesis, a Stokesian dynamics method has been developed. This code has
also been used to reply to a practical problem of interest to experimental collaborators
who try to calculate the density of the flocs based on the Stokes velocity formula and
the measured settling velocity [5]:

• What are the implications of the widely used experimental procedure based on
pipetting a suspension drop in a vertical tank to measure the single particle
Stokes velocity?

In chapter 5, the implications of this procedure on the experimental measurement
of particle density are analyzed by considering two types of particle settling: individ-
ual settling where a single particle is allowed to settle, and collective settling where a
collection of particles are injected into the column. Simulations are carried out using
the Stokesian dynamics code and experiments are carried out by the collaborators in
Deltares. In the individual settling case, the particle settling velocity agrees with the
Stokes velocity, whereas in the collective settling case the individual particle settling
velocity is around O(10) times the Stokes velocity even at very small volume fractions.
Moreover, the particle settling velocity is further enhanced when part of the particles
are replaced with particles of larger sizes. There is no strong correlation between the
particle settling velocity and size in the collective settling of a group of polydisperse
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particles, as different sized particles have similar settling velocity ranges. The increase
of settling rate is due to the hydrodynamic interactions between particles. Additional
dynamic simulations show that for a widely polydisperse cloud at very low volume
fractions, particles in the tail have very weak hydrodynamic interactions with parti-
cles in the core of the cloud, thus tail particles have settling rates much closer to the
Stokes velocities. Our study suggests that by recording the settling dynamics both at
the individual particle level and at the suspension cloud level in the experiments, it is
possible to correct the measured settling velocities to the Stokes velocities by using
the cloud velocity formula. Moreover, by measuring the distance between each parti-
cle and the center of mass of the cloud in the experiments, it is possible to identify the
tail particles whose settling velocities are rather close to their Stokes velocities in the
settling of a polydisperse cloud.

Buckling of flexible particles in the shear flow

The second objective is to investigate the deformation dynamics of flexible particles
in a simple shear flow.

In chapter 6, the effect of viscous hydrodynamic interactions on the morphology of
flexible sheets in a simple shear flow is investigated both experimentally and numeri-
cally. The research questions are:

• What is the threshold above which a flexible sheet will deform in the shear flow?

• How does this threshold change due to hydrodynamic interactions in the shear
flow?

From experiments of thin sheets suspended in a shear cell, the critical value of the
elasto-viscous number for the buckling of a single rectangular sheet is found to be
around 11. This value is close to the one obtained from boundary integral simula-
tions, which is around 8. For a close pair of parallel sheets, a large reduction by about
a factor of ten of the elasto-viscous number for which they bend significantly is found.
This reduction is caused by a lateral hydrodynamic force from the disturbance flow
induced by the neighboring sheet. At the leading order, this disturbance flow can be
described by the flow of a force dipole. This dipolar flow also induces bending when
the pair is oriented in the extensional quadrant. The amplitude of bending of the pair
is inversely proportional to the inter-sheet distance. For small separations, the lubri-
cation between them prevails and limits the bending. The competition between the
dipolar enhancement and lubrication leads to a non-monotonic relation between the
distance and effective buckling threshold. Our study suggests that the deformation of
close sheets in a suspension may not only depend on the mechanical and geometric
properties of each sheet but also on the pair-particle distance (and thus on the concen-
tration).
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7.2 Recommendations

A few directions are recommended for future research:

• In chapter 3, the hydrodynamic interactions are neglected in the mathematical
model. To consider them, the hindered settling functions analyzed in chapter
4 can be used as closures for the settling velocity of each size class. Then the
model can be extended to study non-dilute suspensions and investigate the effect
of hydrodynamic interactions on the evolution of volume fraction distributions.

• For the hindered settling of polydisperse suspensions, systems of larger volume
fractions should be analyzed. The largest volume fraction considered in chapter
4 is 0.1. It is shown in chapter 4 by dynamic simulations that clustering is not
obvious in dilute suspensions. However, particles may cluster together in dense
suspensions. Thus, dynamic simulations in which the particle positions are up-
dated in time should be carried out for dense suspensions. Moreover, stresslet
and lubrication should also be included in the code when simulating larger vol-
ume fractions.

• As pointed out in chapter 4, a promising way to improve the MLB model is
to adopt more accurate drag closures in the MLB model. However, published
drag models for polydisperse systems have been proposed in the literature based
on the data of flow past fixed random arrays. Could these closures be adapted
to sedimenting polydisperse suspensions? Simulations of polydisperse systems
where particles move freely should be carried out to build polydisperse drag
models which consider particle relative motions.

• In this thesis, only spherical particles are considered for sedimentation. It would
be interesting to study the settling of plate-like particles for applications to
nanosheets, clay particles, etc. Numerical simulations of settling of plate-like
particles are possible by representing each plate through connected spheres as
done in the multiblob approach [6]. Relevant references for the possible numer-
ical approaches are refs [7–9]. Fast settling streamers are found in fiber suspen-
sions [4], and it would be interesting to see if they exist in platelet suspensions.

• Experiments of sedimentation of polydisperse suspensions with broad size dis-
tributions should be carried out, as currently there is no such study in the liter-
ature. The velocity of each size class in the homogeneous region where all size
classes are present should be measured. The mean settling velocity of each size
class should be compared with model predictions. The velocity fluctuations of
different size classes can be compared with each other to see if they have similar
magnitudes as observed in our simulations in chapter 4.
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A P P E N D I X T O C H A P T E R 3

a.1 Derivation of Eq.3.8

Since Eq.3.2 is linear, it can be solved analytically, and the solution under initial
condition Eq.6.2 is:

N(x, t,q) = N0(x− qt,q).

Based on this analytical solution, the number of particles with settling velocity q in
the supernatant at time t is:

ns
q(t) =

∫H
0

N(x, t;q)dx =

∫H
0

f0(q)n0(x− qt)dx

= f0(q)

∫H−qt

−qt

n0(x− qt)d(x− qt) = f0(q)

∫H−qt

−qt

n0(u)du.

For band sedimentation, based on the expression for initial total particle number
density n0(x), we have:

ns
q(t) =


f0(q)× 1× h = hf0(q) H− qt ⩾ h

f0(q)× 1× (H− qt) = (H− qt)f0(q) 0 < H− qt < h

0 H− qt ⩽ 0

.

Here h is the thickness of the initial particle-laden layer, H is the filling height of the
dispersion, and the value of n0 is chosen as 1.

For homogeneous sedimentation, we have:

ns
q(t) =

(H− qt)f0(q) H− qt > 0

0 H− qt ⩽ 0
.
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Based on the expression for ns
q(t), we know that at time t the number of particles

of q larger than H/t is 0 in the supernatant. Since the largest value of q in the sample
is Q, the largest value of q in the supernatant at time t is:

qs
max =

H/t t > H/Q

Q t ⩽ H/Q
.

a.2 Derivation of Eq.3.10

Consider a thin disk with lateral size d and thickness L settling in a viscous liquid
under an external force field with equivalent g-force ge. The body force on this disk
is:

Fb = (ρp − ρl)
π

4
d2Lge.

Here, ρp and ρl are densities of the particle and liquid, respectively. The drag force
on the disk can be expressed as:

Fd = f · 3πµldeq,

where µl is the dynamic viscosity of the liquid, de is the equivalent-volume diameter
of the particle which equals (3Ld2/2)1/3 for a disk particle, q is the settling velocity,
and f is the correction factor due to the non-spherical shape [1]. For a thin disk with
aspect ratio E = L/d, the correction factor f is 8E−1/3

3π when the disk settles in the
direction parallel to its axis of symmetry (broadwise), and is 16E−1/3

9π when the disk
settles in the direction perpendicular to its axis (edgewise) [1]. To account for the
rotational Brownian motion, the correction factor is averaged over all orientations,
which is 2E−1/3

π . This gives the drag force as:

Fd = 6.87µlqd.

By equating the body force and drag force on the disk, the settling velocity of a thin
disk particle is

q =
π

27.48µl
(ρp − ρl)gedL.
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A P P E N D I X T O C H A P T E R 4

b.1 Derivation of the slip velocity closure in the MLB model

A derivation of the MLB model is provided here to highlight the key assumptions of
the model, which was too concisely described in the original papers [2, 3]. Consider
a homogeneous polydisperse suspension with m particulate classes. The radius and
density of the j-th class are aj and ρj, respectively, with j = 1, 2, . . . ,m. The density
and dynamic viscosity of the fluid are ρf and µ, respectively. Gravity is in the neg-
ative z direction. Due to the differences between the particle and the fluid densities,
a macroscopic pressure gradient dp/dz along the height of the mixture is needed to
balance the excess weight of the particles. This pressure gradient drives the back flow
of the fluid during settling of the particles. Corresponding to this pressure gradient,
each particle experiences a buoyancy force F∇p = (−dp/dz)Vp, where Vp is the
volume of that particle. The total force exerted on each particle by the fluid is given
by F∇p, by the buoyancy force due to the undisturbed hydrostatic pressure gradient
and by the drag force due to the relative fluid-particle velocity difference.

The steady-state momentum equation for the fluid phase is(
−
dp

dz

)
(1−ϕ) −

m∑
j=1

fd,j = 0, (A.S1)

whereϕ is the total volume fraction, and fd,j is the volumetric drag force density (drag
per unit volume) exerted by the j-th particle class. The steady-state particle momentum
equation for the j-th particle class is(

−
dp

dz

)
ϕj + fd,j − (ρj − ρf)ϕjg = 0, (A.S2)

where ϕj is the volume fraction of the j-th class. Using equations (A.S1) and (A.S2)
gives

dp

dz
= −

m∑
j=1

(ρj − ρf)ϕjg, (A.S3)
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and

fd,j = (ρj − ρsusp)ϕjg, (A.S4)

where ρsusp = (1−ϕ)ρf+
∑m

i=1 ρiϕi is the density of the suspension (see e.g. Xia
et al. [4] for the case m = 1). The predictive accuracy of equation (A.S4) for small
particles immersed in a suspension of larger particles has been put into question [5,
6].

To calculate the particle velocity, a constitutive equation relating relative velocity to
force must be postulated. The MLB model uses a linear law between the drag force and
the slip velocity uslip,j between the j-th particle class and the average fluid velocity:

fd,j = −βjuslip,j. (A.S5)

where uslip,j is defined as in equation (4.14). The friction coefficient was calculated
as βj =

9µϕjC(ϕ)

2a2
j

. The case C = 1 corresponds to no influence of neighbouring
particles on the drag force exerted on a test particle (the factor ϕj is due to the fact
that fd,j is a force per unit volume). To model hydrodynamic interactions on the drag
force, the MLB model assumesC(ϕ) = (1−ϕ)2−n, as for a monodisperse case at the
same total volume fraction (from Richardson-Zaki’s correlation, the slip velocity in
the monodisperse case is uslip = ⟨up⟩− ⟨uf⟩ =

⟨up⟩
1−ϕ = uSt(1−ϕ)n−1; equating

(A.S4) and (A.S5) using this slip velocity gives C(ϕ) = (1−ϕ)2−n).
From (A.S4) and (A.S5), the slip velocity for the polydispersed case is

uslip,j =
2a2

j

9µ
(1−ϕ)n−2(ρj − ρsusp). (A.S6)

If all the particles have the same density, ρsusp = (1 − ϕ)ρf + ϕρp and ρj −

ρsusp = (1−ϕ)(ρp − ρf). In this case the slip velocity simplifies to

uslip,j = uSt,j(1−ϕ)n−1, (A.S7)

where uSt,j is the Stokes velocity of the j-th species. Using the definition of the slip
velocity and using mass continuity

∑
jϕj⟨uj⟩+ (1− ϕ)⟨uf⟩ = 0 yields equation

(4.3).
It can be seen from the derivation that the main assumptions in MLB’s model are

embedded in equations (A.S4) and (A.S5).
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c.1 PIV measurement of the shear flow

The PIV was performed in the plane orthogonal to the vorticity direction with mil-
limeters size air bubbles as tracers. Results are shown in Fig.C.S1. Fig.C.S1(a) is a
vector plot of the mean velocity field averaged over 13 seconds. It can be seen the mean
flow is a simple shear flow. To show the magnitude of the velocity fluctuation, time
variation of the velocity at a fixed position inside the shear cell is shown in Fig.C.S1(b).
It is seen that the horizontal velocity (in the shear direction) is quite steady and the
vertical velocity (in the gradient direction) is around 0 over time.

0.3

0.2

0.1

0.0

121086420

Mean velocity field (avarage over 13 seconds)

1 cm

Figure C.S1: (a) Mean PIV field in the plane orthogonal to the vorticity direction. The length
of the arrow indicates the magnitude. The average velocity in the flow direction at the position
of the black cross is 0.33 m.s−1. (b) Time series of the amplitude of the velocity in the flow
direction vx and in the flow gradiant vy direction at a fixed position (see the black cross on
Fig.C.S1(a)). The motor is switched on at time zero on the graph.
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164 appendix to chapter 6

c.2 Angle versus time for two parallel sheets

Fig.C.S2 shows the angle versus time from experiment corresponding to fig.6.3(a)
for Ev ≃ 3.6 and d/L ≃ 0.2. The monotonic time evolution of the angle was used to
shift correctly the time by a linear interpolation for the period where few frames are
missing (at γ̇ ≃ 0.17 and 5.4).

0

1086420-2

Figure C.S2: Angle versus time corresponding to to fig.6.3(a) of chapter 6.

c.3 Curvature versus time

0.4

0.3

0.2

0.1

0.0

-0.1

420-2-4

Figure C.S3: Normalized curvature κ̄L versus normalized time γ̇t for a sheet pair separated
by d/L ≃ 0.09 for Ev ≃ 7.5 in the experiment.

Here we show another example of how the curvature of the sheets changes with
time for the two sheets separated by d/L ≃ 0.09 and Ev ≃ 7.5 in the experiment.
Same signature with that seen in Fig.6.3(a) in chapter 6 is observed here also. The
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curvature of the two sheets first increases with time, then decreases, changes sign and
finally decays to zero. Whereas for a single sheet in the shear flow with Ev ≃ 7.5, its
deformation is negligible as shown in Fig.6.2(b) in chapter 6.

c.4 Measurement of the curvature and orientation

Here we explain how the curvature and orientation of the sheet is measured in the
experiments. From the image of the sheets in the shear flow obtained in the experi-
ments, as shown in Fig.C.S4, the profile of one sheet is manually detected with imageJ
(X(n), Y(n)) (red crosses in Fig.C.S4(Left)). The average orientation is extracted with
linear fit of Y versus X. The curvature is extracted with parabolic fit of X(n) and Y(n)

(red lines in Fig.C.S4(Right)). From these parabolic fits, the mid-point curvature is

κ =
X ′Y ′′ − Y ′X ′′

(X ′2 + Y ′2)
3/2

. (C.S1)
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Figure C.S4: Left: Snapshot of two sheets in the compressional quadrant.The red crosses are
manually detected for the profile of the sheet. Right: Parabolic fit of the sheet profile.

c.5 Fig.6.2(b) in lin-lin scale and log-log scale

Here we reproduce the Fig.6.2(b) in chapter 6 in linear-linear scale, as shwon in
Fig.C.S5. From the data we defined the threshold elasto-viscous number to be 11± 3.
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Figure C.S5: Maximum normalized curvature versus elasto-viscous number for a single sheet
in linear-linear scale.
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Figure C.S6: Maximum curvature versus the elasoviscous number in Log-Log scale for a
single sheet.

c.6 Maximum curvature versus elastoviscous number for a single sheet
from simulations

See Fig.C.S7.

c.7 Non-monotonic relation between curvature and separation distance

We plotted the maximum normalized curvature (κmaxL) as a function of normal-
ized separation distance (d/L) for different elasto-viscous numbers (Ev) from simu-
lations in Fig.C.S8 and from experiments in Fig.C.S9. From Fig.C.S8, it is seen that
the maximum curvature first increases and then decreases at each fixed Ev as d/L in-
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1

2

Figure C.S7: Maximum curvature v.s. Ev for a single sheet from simulations.

creases from 0.1 to 1 in the simulations. From Fig.C.S9, it is seen that the maximum
curvature is clearly larger when d/L is about 0.1 to 0.3 than the maximum curvature
for both smaller d/L (d/L < 0.1) and larger d/L (d/L > 0.3) in the experiments.
Thus, the relation between the curvature of the bent sheets and the separation distance
is non-monotonic. Moreover, shapes of the pair of sheets when they have maximum
curvatures during tumbling for different initial separation distances at Ev = 20 from
simulations are shown in Fig.C.S10. It is seen that the sheets have similar ’C’ shapes
at different d/L values, and they are more curved when d/L = 0.4 comparing to
d/L = 0.1 and d/L = 0.7.
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Figure C.S8: Maximum normalized curvature for different normalized separation distances
d/L and elasto-viscous numbers Ev from simulations.

c.8 Curvatures of convex shapes

The convex shape is not observed in every experimental case, because for large dis-
tance between the sheets (d/L > 0.5) the centers of mass of the sheets are convected
by the flow and thus the sheets are not perfectly “in registry”. Thus, we have convex
shape data only for a limited number of cases. We have studied the convex curvature
numerically, and found that our model predicts the sign of the curvature, but not the
scaling with respect to Ev and d. Below (Fig.C.S11) we provide data from simulations
of the amplitude of the maximum curvature of the convex shape. From this plot, it is
seen that the amplitude of the maximum curvature of the convex shape first increases
then decreases as Ev increases for fixed d/L.
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Figure C.S9: Maximum normalized curvature for different normalized separation distances
d/L at Ev ≃ 2, 5 and 10 from experiments.
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Figure C.S10: Shapes of the pair of sheets when they have maximum curvatures during tum-
bling for different initial separation distances at Ev = 20 from simulations. d/L = 0.1 (a),
0.4 (b) and 0.7 (c). Bottom row. Snapshot from experiments at Ev ≃ 12.8 of pairs of sheets
at maximum curvature for different distance d/L = 0.04, 0.14 and 0.4.
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Figure C.S11: Maximum normalized curvature of the convex shape for different normalized
separation distances d/L and elasto-viscous numbers Ev from simulations.
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