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Abstract

A recent trend in robotics is aimed at the cooperation between human and robot. This has
led to an increased development of collaborative robot manipulators. Typical characteristics
of collaborative robots are their user-friendly and lightweight design, innovative compliant
mechanics, the implementation of various safety features and advanced control capabilities.
These characteristics enable humans to work alongside the manipulator or interact with it.

The implementation of passive compliant components such as springs and pneumatics have a
beneficial effect on the level of safety for the operator. However, the added complexity often
has a negative influence on the degree to which an accurate description of the system dynamics
can be derived. Furthermore, the lightweight design and increasing payload-to-weight ratio
amplify the effect of exogenous alterations to the system, such as attaching an object to the
end effector.

The work in this thesis is aimed at obtaining an accurate description of the system dynamics
for control purposes. In doing so, special attention is given to dealing with instantaneous
time-varying phenomena.

An online semi-parametric approach is used to produce a valid description of the inverse
dynamics of the considered system. The method consists of a non-parametric part which
is described using Gaussian process regression (GPR) and a parametric part for which the
parameters are identified using an extended Kalman filter (EKF). In this thesis, instantaneous
system changes are introduced by attaching an unknown object to the end effector of the
manipulator. The EKF implementation is specifically aimed at rapidly compensating for the
response induced by this object. The GPR is used to compensate for remaining modeling
errors.

The performance of the proposed methods is evaluated in simulation. The semi-parametric
description achieves high modeling accuracy, fast adaptation to instantaneous system changes
and reasonable generalization capabilities. Implementing the proposed solution in real-time
applications requires additional research on the subject of online GPR.
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Chapter 1

Introduction

Robotic manipulators are increasingly being integrated in various industries, such as the
automotive, electronics, chemical and food industries [1, 2]. Initially, deploying robotic ma-
nipulators was only a possibility for large companies with high production rates. Now, the
use of such manipulators is spreading towards smaller and more specialized companies as well
[2, 3]. The demand for robotic manipulators is predicted to continue to rise in the coming
years [1]. With this forecast in mind, an increase in research and development is essential.

An important topic that gets more attention is the development of collaborative robots [4].
Due to the use of innovative compliant designs for such robots, accurate knowledge of the
system dynamics becomes more difficult to obtain. Nonetheless, the availability of this system
knowledge is essential for cooperative control methods. This thesis is concerned with resolving
this dilemma. In Section 1-1, background information is given on collaborative industrial
robot manipulators. Section 1-2 continues with the objectives of this thesis. Finally, in
Section 1-3, the outline of the remainder of this thesis is given.

1-1 Collaborative robot manipulators

To clarify the concept of collaborative industrial robots, note that ISO 8373 defines an in-
dustrial robot as “An automatically controlled, reprogrammable, multipurpose manipulator
programmable in three or more axes, which may be either fixed in place or mobile for use in
industrial automation applications.” This rather wide definition indicates the versatility of
such devices. A collaborative industrial robot qualifies as a subclass of industrial robots, and
refers to manipulators that are specifically designed to facilitate cooperation between humans
and robots [5]. The definition of such a robot is not strict and the approaches that are used
to achieve this are different depending on the application and the preferences of the manu-
facturer or the buyer of the device [6]. There are however several characteristics that shape
the appearance of the collaborative robot in general. These characteristics show on both the
hardware and software side of the system and are partly influenced by safety standards and
regulations. Physically, the manipulators often have a relatively lightweight and sleek design.

Master of Science Thesis N.L.D. Marck



2 Introduction

(a) Collaboration between a robot and its
operator1

(b) High performance robot manipulators
working in an enclosed perimeter2

Figure 1-1: Comparison of non-collaborative and collaborative robot manipulators. The manipu-
lator in (a) shows compliant behavior and allows for the operator to be present during operation.
Welding robots, as shown in (b), do not feature compliant behavior. Operators are not allowed
near the systems during operation.

Their joints may contain springs or other flexible mechanisms to increase the compliance of
the device. A high number of joints makes them dexterous and versatile, so they can ex-
ecute a great number of tasks. In most cases, additional sensors are implemented, such as
force/torque sensors, to improve safety and control capabilities. The interface is relatively
user-friendly and software that is used to control the robot is generally advanced, but easily
programmable (for example through teaching by demonstration) [6].

The application of collaborative robots varies considerably compared to their non-collaborative
counterparts. Traditionally, industrial robots are used in various areas where they are de-
ployed to do jobs independently of an operator. These jobs include material handling, pack-
aging, welding and other high-precision operations, as well as jobs that can be described as
dirty, dull or dangerous [7]. In many cases these robots are programmed to do one task, and
one task only. A good example of such a robot is a welding robot shown in Figure 1-1b.
With advancements in technology, collaborative robots have emerged. Through this, the field
in which industrial robots are deployed is expanding and the number of tasks that can be
executed is increasing. The typical attributes of collaborative robots that are described pre-
viously, make that they are especially qualified to execute tasks to assist, rather than to work
independently [6]. Consequently, tasks like lifting (heavy) parts during manual assembly or
repositioning objects for further use can be executed by such devices. Additionally, due to
their compliance and safety instructions, the manipulators can work alongside humans with-
out the necessity of a safety cage. As a result, humans and robots can work on a single object
at the same time, leading to increased efficiency [6]. Figure 1-1a shows such collaboration
between a robot and its operator.

Given the rise in interest in collaborative devices, numerous robot manufacturers have seized
the opportunity to expand their product line-up and design collaborative robots for this
emerging market. Some big names in the industry, such as ABB, Fanuc, Kuka, and Bosch,
all have collaborative robots in production. Other companies like Rethink Robotics and
Universal Robotics develop and build collaborative robots exclusively. Most of these systems

1Source: http://www02.abb.com/global/seitp/seitp202.nsf/0/93444951d1557c59c1257e200051d731/
$file/YuMi.jpg

2Source: http://www.roboticstrends.com/images/wide/roboticarms.jpg
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1-2 Research description and motivation 3

differ in size and capabilities, but show similar characteristics based on the aforementioned
description on collaborative robots. A convenient overview of several of such devices is found
in [5].

1-2 Research description and motivation

1-2-1 Benefits of accurate system knowledge

Generally, collaborative robots are designed for various tasks, using advanced control strate-
gies. Such tasks include impedance control and gravity compensation. These control strate-
gies rely on a forward control action which is based on a predefined model of the manipulator
dynamics. Having an accurate model of the system is vital for the effectiveness of the con-
troller and the manipulator itself. Several valuable positive consequences of accurate model
knowledge for control are stated below.

Allows for lower feedback gains
With an accurate feedforward action, the accuracy of the operation relies less on the
feedback action. Using higher feedback gains improves accuracy, but also has some
downsides such as reduced compliance, risk of actuator saturation and instability in the
presence of noise or unmodeled dynamics [8]. Additionally, high feedback gains increase
the stiffness which may invoke a more intense reaction in the case of a collision.

Allows for more accurate impedance control
For impedance control, the measured forces are considered in combination with the
dynamics model of the manipulator [9]. When the model deviates from the true system,
expected and measured forces deviate, resulting in a bias introduced by the controller
itself.

Prevents drift during gravity compensation tasks
The same holds for gravity compensation [9]. Discrepancies between the internal model
and reality cause the controller to interpret these model inaccuracies as external forces.
As a consequence, the manipulator will act accordingly, introducing a drifting motion.

Facilitates the detection of external interaction
Analogous to registering non-existing forces is overlooking existing forces. This phe-
nomena may cause damage to the device or harm humans in the vicinity of the device.

1-2-2 Challenges

Motivated by the statements above, acquiring accurate knowledge of the system dynamics has
a high priority. However, obtaining accurate system knowledge is challenging under several
conditions. Two primary conditions considered in this thesis are described below.

Master of Science Thesis N.L.D. Marck



4 Introduction

(a) Pneumatic actuator as used in the
biped Lucy [11]. Image adopted from [10]

(b) Kuka iiwa LBR 14 R820 collaborative
robot3

Figure 1-2: Manipulator characteristics that induce challenges for control. (a) shows a con-
figuration that is actuated through pneumatic actuators. Innovative actuators (like these) may
introduce modeling errors. (b) shows a lightweight collaborative robot with a payload-to-weight
ratio of nearly 50%. Therefore, the influence of the payload on the system dynamics is relatively
high. More information on this device is found at [12].

Uncertain manipulator dynamics

The dynamics of a manipulator are described using models which only partly describe real-
ity. This is especially relevant for passively compliant robot manipulators due to their often
complex mechanical designs. Examples of mechanical parts that may prove difficult to model
accurately are flexible links, passive compliant joints and compliant actuators [10]. An ex-
ample of such a compliant actuator is shown in Figure 1-2a. Modeling errors may also occur
when the system dynamics are changing over time due to varying operating conditions or due
to wear of components. Any incorrectly modeled or unmodeled dynamics lead to incorrect
control actions.

Significant instantaneous system changes

In addition to unknown manipulator dynamics, the system may also be exposed to (instanta-
neous) changes to the environment or to the manipulator itself. The most common example
of this would be a pick and place task of an unknown object. The inertial parameters of
this object must be considered and compensated for by the controller. When the inertial
parameters are significant compared to the dynamics of the manipulator itself, this instanta-
neous system change may severely impact controller performance. With the introduction of
lightweight robots, payload-to-weight ratios have increased to nearly 50% (The Kuka LBR iiwa
14 R820, displayed in Figure 1-2b, has a mass of approximately 30 kg and accepts payloads of
14 kg). In practice, the operator has to find and fix the inertial parameters of the considered
object in advance. Alternatively, high-tech devices (such as the Kuka LBR iiwa) feature the

3Source: http://www.utkuolcar.com/wp-content/uploads/2017/01/kuka-iiwa.jpg
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1-2 Research description and motivation 5

capability to identify these parameters by maneuvering the object over a predefined set of
trajectories.

1-2-3 Problem formulation

From the subsections above it is concluded that ideally, perfect knowledge of the system dy-
namics is available to guarantee accurate control capabilities and load estimations. However,
innovative manipulator designs with potentially flexible links and joints, or passive compliant
actuators make modeling the dynamic relations difficult. The introduction of instantaneous
system changes, for example through the picking and placing of unknown objects, adds to
these complications. In addition, increasing payload-to-weight ratios amplify the significance
of unknown objects on the dynamics model mismatch. In order to solve these problems, the
following research goal is formulated:

Construct an approach for identifying the dynamics of a robot manipulator which
is subjected to both model uncertainties as well as instantaneous system changes.

Existing research is mainly concerned with learning manipulator dynamics under time-invariant
conditions. Recent articles with this objective are [13] and [14]. Time-varying conditions are
not taken into account here. Other research is focused on modeling and identifying instanta-
neous system changes. These include multiple-model methods such as described in [15] and
[16], or methods that utilize parameter adaptation as described in [7] or [17]. Here however,
the assumption is made that the system behaves perfectly according to the rigid body dy-
namics (RBD) description. This assumption may not hold for the manipulators considered
in this thesis. Hence, the available methods do not provide the means to achieve the desired
goal.

In order to achieve the stated goal, several objectives are derived. The objectives form the
guideline for the remainder of this thesis. The specific case considered in this thesis is based
on the pick and place task. A rigid object is assumed to be attached to the end effector of a
manipulator, of which the dynamics are uncertain and partly incorrect. Further assumptions
and imposed restrictions are discussed in later parts of the report, when relevant.

Specify the manipulator model
The aim of this thesis is to facilitate working with collaborative robot manipulators. To
obtain relevant results, an appropriate model must be used to describe these manipu-
lators.

Provide an approach for indentifying/learning the dynamic relations
The behavior of the system must be observed and identified. The proposed method
must be able to handle the model uncertainties and system changes that are implied in
the research goal.

Investigate the performance of the proposed scheme
The validity of the obtained approach is investigated. This is done based on the results
obtained in simulation.

Master of Science Thesis N.L.D. Marck



6 Introduction

In this thesis, an attempt is made to achieve the research goal making use of both a model
based description and machine learning concepts. The combined semi-parametric approach
ideally captures the advantages of both methods. As such, model knowledge is used to obtain
a general description of the system dynamics and machine learning is used to deal with
unmodeled dynamics. This attempt is motivated by the argument that “Any application
area that uses regression analysis can benefit from semi-parametric regression.” [18]

1-3 Thesis outline

In the remainder of this thesis, the problem stated in Subsection 1-2-3 is further discussed
and solutions to tackle the problem are proposed. In Chapter 2, the used modeling methods
are described. In Chapter 3, model learning and identification approaches are introduced and
discussed. Subsequently, a method for the integration of the proposed algorithms is described
in Chapter 4. The proposed identification approach will be evaluated in Chapter 5. Lastly,
conclusions and recommendations are stated in Chapter 6.

N.L.D. Marck Master of Science Thesis



Chapter 2

Modeling

The first objective of this thesis states that a manipulator model is to be defined. Collaborative
robots prove to be difficult to model due to passive compliant actuators or flexible links
or joints. Capturing these characteristics in the model would make the used model more
complex and not generally applicable. For these reasons it is decided that a generic rigid body
dynamics (RBD) model is used for the remainder of the thesis. Take note that model mismatch
and uncertainties can be introduced regardless of the used modeling method, ensuring that
the obtained results are equally valid.

In addition, the following modeling characteristics are assumed:

• The manipulator uses the articulated layout, consisting only of revolute joints in a serial
configuration

• The system is actuated through torque control at every joint

• Instantaneous system changes are represented by modeling a rigid object with unknown
dynamic parameters, which engages at the end effector of the device.

Throughout this thesis, the considered manipulator is described with reference to the joint
space coordinates. The system state is defined by the angular position q, angular velocity q̇
and angular acceleration q̈. The Cartesian base frame coordinates (r, ṙ and r̈) are relate to
the joint space coordinates as:

r = g(q) (2-1a)
ṙ = J(q)q̇ (2-1b)
r̈ = J(q)q̈ + J̇(q)q̇, (2-1c)

where J(q) is referred to as the Jacobian. The nonlinear function g(q) is defined based on the
kinematics of the manipulator. The remainder of this thesis does not discuss the theory and
practice of operational space control but focusses on the dynamic relations in the joint-space.
In [19], more information on the topic of operational space control is given.

Master of Science Thesis N.L.D. Marck



8 Modeling
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(a) Representation of a serial manipulator.
Figure adopted from [7]
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(b) Rigid object in a translated reference
frame

Figure 2-1: Reference frames for kinematics and dynamics. The reference frames in (a) are
located at each joint. Each frame can be represented as a transformation of the previous frame.
(b) Shows a rigid object (indicated by the gray area) with its own axes (xc, yc and zc) in a
translated reference frame (xi, yi and zi). r0 represents the vector from the base frame origin
to the object center of mass.

For the kinematic description of the manipulator, the Denavit-Hartenberg (DH) representa-
tion is considered. In this representation, a reference frame is attached to each joint of the
manipulator (as shown in Figure 2-1a). Each frame can be derived by a transformation (ro-
tation and translation) of the previous reference frame. A transformation is uniquely defined
by four parameters: θ, a, d and α, which are referred to as the link length, link twist, link
offset and joint angle respectively. A detailed description of the DH representation is found
in [7].

The dynamics of a rigid body manipulator are considered next. Various methods are devel-
oped for deriving these equations. In this thesis, two methods are considered relevant: the
Euler-Lagrange method and the Newton-Euler algorithm [7]. The Newton-Euler algorithm is
particularly convenient for efficient numerical computations. The Euler-Lagrange formulation
uses an energy-based approach which can be used to obtain a symbolic representation of the
manipulator. This chapter continues with Section 2-1, in which a short description is given
to the implementation of the Newton-Euler algorithm for a serial manipulator. Subsequently,
in Section 2-2, the Euler-Lagrange equations are used to obtain a linear representation of a
rigid object in a translated reference frame. Section 2-3 ends this chapter with a discussion.

2-1 Dynamics of a serial manipulator

Commonly, the equations of motion for a robot manipulator are described as τ (q, q̇, q̈) =
M(q) q̈ + C(q, q̇) q̇ + G(q) [7]. With reference to the research goal, this equation can be
extended towards:

τ (t, q, q̇, q̈) = M(t, q) q̈ +C(t, q, q̇) q̇ +G(t, q) + ε(t, q, q̇, q̈) (2-2)

The time variable t is added to the equations to indicate the time-varying behavior of the
system. The nonlinearities are contained in the matrices M(t, q), C(t, q, q̇), G(t, q) and
ε(t, q, q̇, q̈), where M(t, q) is referred to as the inertia or mass matrix, C(t, q, q̇) contains

N.L.D. Marck Master of Science Thesis



2-2 Dynamics of a rigid object 9

Table 2-1: Relevant manipulator parameters for RBD

Parameter Physical representation

DH-parameters Used to describe manipulator kinematics
m Link mass
c link center of mass
I link inertia matrix around center of mass
Jm Motor inertia
R Transmission ratio
B Viscous friction
Tc Coulomb friction

the Coriolis and centripetal forces, G(t, q) contains gravity forces and ε(t, q, q̇, q̈) represents
(non)linear, (non-)conservative torques, which are introduced by incorrectly modeled or un-
modeled dynamics. The contribution of this term to the complete equation increases when
the true manipulator is not accurately described using the RBD model.

When no symbolic representation of the system is needed and fast computation time is re-
quired during simulation, often the Newton-Euler algorithm is used. This method applies a
forward recursion which sequentially derives the linear and angular motion for each link, from
the manipulator base frame to the end effector of the robot (in Figure 2-1a, from the base,
frame 0, to the end effector, frame 3). After this forward recursion, a backward recursion
is executed where the reaction forces and coupling terms are considered (from frame 3 back
to frame 0). Additional torques and nonlinear frictions can be applied directly to the joints
during the backward recursion.

In order to apply the Newton-Euler algorithm, full knowledge of the kinematic and dynamic
parameters of the manipulator is required. Table 2-1 gives an overview of the relevant pa-
rameters.

2-2 Dynamics of a rigid object

As stated in the introduction, one cause for the occurrence of instantaneous system changes
is the picking and placing of unknown objects. In this section, the dynamic relations of a
rigid object attached to the end effector of a manipulator are described using a symbolic for-
mulation. The behavior of any rigid object in an arbitrary reference frame can be represented
using its mass, center of mass and its moment of inertia around this center of mass. Symbolic
expressions of these parameters are as displayed in Equations (2-3a) to (2-3c). The center of
mass is taken relative to the reference frame and the moment of inertia terms are relative to

Master of Science Thesis N.L.D. Marck



10 Modeling

the object’s own center of mass. Ten unique values are required for a full definition.

Mass m =
[
m
]

(2-3a)

Center of mass c =

cx

cy

cz

 (2-3b)

Moment of inertia Ic =

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 (2-3c)

With relevance to the goals in this thesis, the dynamic relations are desired of a static object
in a moving reference frame, which refers to a rigid object being picked up by the manipulator.
A visual representation of this is displayed in Figure 2-1b. To describe the dynamic relations,
first the kinetic energy K and potential energy P of the object are determined. The kinetic
energy of the object is defined in Equation (2-4a) and is the sum of the linear and angular
kinetic energies. Here, variables v and ω are respectively the linear and angular velocities,
where subscript c refers to the center of mass of the object and subscript i refers to the
reference frame. The identity matrix is indicated as I. Using vc = vi + ωi × c and the
parallel axis theorem: Ic = Ii −m (ccᵀI3×3 − cᵀc), the kinetic energy can be rewritten into
Equation (2-4b). Transformations indicated by S× and SI (which are defined in Equations (A-
1) and (A-2)) are used to obtain the linear parameter representation in Equation (2-4c) [20].

K = 1
2mv

ᵀ
cvc + 1

2ωiIcωi (2-4a)

= 1
2mv

ᵀ
i vi +mcᵀS×(vi)ωi + 1

2ω
ᵀ
i SI(ωi)Ii (2-4b)

=
[

1
2v

ᵀ
i vi, ωᵀ

i S
ᵀ
×(vi),

1
2ω

ᵀ
i SI(ωi)

]
︸ ︷︷ ︸

KR(q, q̇)

mmc
Ii


︸ ︷︷ ︸
w

(2-4c)

The potential energy is composed in a similar fashion, where the linear parameters are ex-
tracted from Equation (2-5a) to obtain the linear representation in Equation (2-5c). Param-
eter r0 refers to the vector from the base frame origin of the manipulator to the end effector
joint. g0 is the gravity vector, defined as: g0 = [0, 0, 9.81]ᵀ.

P = −mg0 (r0 + c) (2-5a)
= −mgᵀ0r0 − gᵀ0 (mc) (2-5b)

=
[
−gᵀ0r0, −gᵀ0, 0

]
︸ ︷︷ ︸

PR(q)

mmc
Ii


︸ ︷︷ ︸
w

(2-5c)

The equations of motion for the considered object are now derived using the Euler-Lagrange
description in Equation (2-6a). In Equation (2-6b), the product notation introduced to the
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2-3 Discussion 11

kinetic and potential energy is maintained. The dynamics are now written as a product
of a state-dependent regressor and an independent linear parameter vector : τ (q, q̇, q̈) =
Φ(q, q̇, q̈)w.

Fext = d
dt
∂K
∂q̇
− ∂K
∂q

+ ∂P
∂q

(2-6a)

=

 d
dt
∂Kᵀ

R

∂q̇
− ∂Kᵀ

R

∂q
+ ∂Pᵀ

R

∂q


ᵀ

︸ ︷︷ ︸
Φ(q, q̇, q̈)

mmc
Ii


︸ ︷︷ ︸
w

(2-6b)

2-3 Discussion

This chapter describes how the manipulator and a (to the end effector attached) rigid object
are described using a RBD model. A number of decisions are made to specify the complete
system used for this thesis. This section is used to demonstrate that these assumptions do
not decrease the relevance of the research.

2-3-1 The relevance of the RBD model

The RBD model is the primary parametric method used for modeling the dynamics of the
manipulator in this thesis. The motivation to use the RBD model is its simplicity and
interpretability. Considering the statements made in the introduction, this type of model
may prove to be not entirely valid for the discussed manipulators.

Taking this issues into account, the RBD model is utilized nevertheless. The justification
for this decision is based on the potential to make adaptations to the parameters during
operation and the possibility to add arbitrary torques to each joint. Consequently, nonlinear
relations which are in reality introduced by parameter uncertainties, time-varying phenomena,
nonlinear joint frictions and unknown actuator characteristics, may be introduced to the
model regardless of the RBD model used initially.

2-3-2 Manipulator control

The manipulator assumed for this thesis uses the articulated layout and is controlled by
applying toques directly to each joint. The assumption of torque control is convenient for
describing the system dynamics and simulating the robot. The potential to use torque control
on industrial manipulators is somewhat limited for end users. However, the assumption of
torque control implies control on a low level, which increases the validity of the proposed
method in general. This thesis is concerned with the proof of concept of the constructed
approach. Therefore, torque control remains a valid solution. Additionally, the assumed low-
level control provides the potential to include actuator modeling errors. The modeling errors
directly influence the torques applied to the joints. Torque control therefore gives the most
fitting and practical representation for this thesis.
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Chapter 3

Identification of system dynamics

The next stage of the report is focused on completing the second objective, which is establish-
ing the approach used for identifying or learning the dynamics of the system. The modeling
method used for this purpose is defined in Chapter 2. Even though the model is defined,
the system parameters are assumed to be uncertain, which is in accordance with the research
goal. Furthermore, instantaneous system changes are also to be taken into account.

With respect to identification and learning, the following complementary statements are made:

• Identification is motivated by improving the validity of the system its dynamics equa-
tions (see Equation (2-2)) for control purposes, not to obtain the true physical repre-
sentation of the system.

• To prevent down-time, an approach is required that allows for identification during
operation

• Adaptation to system changes must occur in an automated fashion

In [21], a survey is found which is focused on modeling, identification and machine learning.
Various characteristics are used to describe the methods concerned with this subject. The
distinction is made between parameteric and non-parametric methods, global and local meth-
ods and also online and offline methods. In addition, differences in the complexity of these
methods may also be taken into account.

The aim in this thesis is to create an advantage by using prior knowledge. To this end, the rigid
body dynamics (RBD) are used to describe the input-output relations of the manipulator.
This parametric method gives a globally valid model when all dynamic system parameters
are known. These parameters may be provided by the manufacturer of the manipulator. The
assumed rigid object can be described using RBD as well. For the purpose of this thesis,
the relevant parameters of this object are assumed to be unknown. Given a set of input
and output data, the unknown parameters may in this case be identified using least squares
algorithms [22]. Alternatively, stochastic methods such as the Kalman filter can be used to
identify unknown parameters [17].
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14 Identification of system dynamics

The dynamics of the system can also be described through the use of non-parametric algo-
rithms. These types of algorithms do not use a predefined structure and are in this sense more
flexible, allowing for a better fit. Several of such methods are developed to solve the identifica-
tion problem through regression. Some popular algorithms include support vector regression
[23], locally weighted projection regression [24] and Gaussian process regression (GPR) [25].
In this thesis, GPR is considered, by virtue of its high modeling accuracy and interpretabil-
ity of predictions. Furthermore, GPR allows for semi-parametric regression, which is also
proposed in [26] and because of its stochastic nature, the likelihood of measured data can
be determined. The RBD are used as prior knowledge of the GPR algorithm, ensuring that
acceptable results are found when only a limited amount of data is available.

The remainder of this chapter further describes the mentioned frameworks. Section 3-1 con-
tinues on how the extended Kalman filter (EKF) can be used to identify unknown parameters.
In Section 3-2, an introduction is given to GPR, followed by a description of how it is used to
describe manipulator dynamics. Finally, the last section (Section 3-3) of this chapter contains
a discussion on these frameworks.

3-1 Temporal identification using the extended Kalman filter

A widely accepted algorithm for state estimation is the Kalman filter. The Kalman filter may
also be applied to observe unknown system parameters. The equations on which the Kalman
filter problem is based read:

xk = f(xk−1) + µk−1 (3-1a)
yk = h(xk) + νk, (3-1b)

where xk and yk are respectively the process state and output at time step k. The function
f(·) relates the previous state to the current state and the function h(·) relates the current
state to the output. The state and output equations are subjected to noise terms µ and ν,
which are modeled as zero mean Gaussian processes.

3-1-1 Technical description of the EKF

The considered system for this thesis is nonlinear, so the conventional linear Kalman filter
does not suffice. Consequently, a first order EKF is proposed for this research, because it
has proven itself useful in similar cases [17] and requires much less computational effort than
alternative methods, such as the unscented Kalman filter [27]. The EKF is derived from the
linear Kalman filter, but uses the Jacobians presented in Equations (3-2a) and (3-2b) for
the prediction of the covariance P of the state x and the calculation of the Kalman gain
K. Matrices M and N represent the covariance matrices of the state equation noise and
measurement equation noise respectively. The recursive equations for the EKF are displayed
in Equations (3-3a) to (3-3f), where the predicted state and state covariance matrix (before

N.L.D. Marck Master of Science Thesis



3-1 Temporal identification using the extended Kalman filter 15

the update) are indicated by x̃ and P̃ .

F x(xk−1) = ∂f(xi)
∂x

∣∣∣∣
xi=xk−1

(3-2a)

Hx(x̃k) = ∂h(x̃i)
∂x

∣∣∣∣
x̃i=x̃k

(3-2b)

prediction: x̃k = f(xk−1) (3-3a)
P̃ k = F x(xk−1)P k−1F

ᵀ
x(xk−1) +Mk−1 (3-3b)

update: Sk = Hx(x̃k)P̃ kH
ᵀ
x(x̃k) +Nk (3-3c)

Kk = P̃ kH
ᵀ
k(x̃k)S−1

k (3-3d)
xk = x̃k +Kk (yk − h(x̃k)) (3-3e)
P k = P̃ k −KkSkK

ᵀ
k (3-3f)

3-1-2 Implementation of the EKF for parameter identification

As is described in Section 2-2, the dynamic equations of an object that is attached to the
end effector of a manipulator can be expressed as: τ (q, q̇, q̈) = Φ(q, q̇, q̈)w. To identify the
unknown parameters w, the EKF is used, where the linear parameter vector is defined as the
state. To prevent unrealistic estimates, boundary conditions on the state vector are applied.
This is achieved by transforming the state through a sigmoid function, as proposed in [17].
For the transformations, see Equations (A-3) to (A-5). The prediction and update equations
with the transformed state w′ = Sig−1(w) are written as in Equations (3-4a) and (3-4b).
The state is assumed constant, with the Jacobian as in Equation (3-5a). The Jacobian of the
measurement update is given in Equation (3-5b).

w′k = w′k−1 + µk−1 (3-4a)
τ k = Φ(q, q̇, q̈)Sig(w′k) + νk (3-4b)

Fw′(w′k−1) = ∂f(w′i)
∂w′

∣∣∣∣
w′i=w

′
k−1

= I10×10 (3-5a)

Hw′(w̃′k) = ∂h(w̃′i)
∂w′

∣∣∣∣
w̃′i=w̃

′
k

= Φ(q, q̇, q̈) ∂ Sig(w̃′i)
∂w′

∣∣∣∣
w̃′i=w̃

′
k

(3-5b)

The used sigmoid function has an additional benefit, which is described in [17]. The derivative
of the sigmoid function goes to zero when the upper or lower bound is reached. Consequently,
the Jacobian in Equation (3-5b) decreases for the states that approach their imposed bounds.
This effect slows down the rate at which that specific state is allowed to change.
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Figure 3-1: Functions drawn at random from a Gaussian distribution. The Gaussian distribution
has a zero mean and the marked grey area indicates plus and minus two times the standard
deviation (a). When the GP is conditioned on the training data (marked with the ‘+’-symbols),
a posterior distribution is found (b). The figures are adopted from [25].

3-2 Spatial description using Gaussian process regression

Even though identifying the dynamics of nonlinear systems is feasible using strictly parametric
descriptions, inaccuracies occur when the assumed model structure is incorrect or incomplete.
In this section, the Gaussian process (GP) framework is introduced, which is described in
detail in [25]. This framework can be utilized to solve regression problems. Through regression
an input-output relation is learned after which output predictions can be made based on a
given input.

3-2-1 Regression in the GP framework

The goal of a regression method is to enable the prediction of a continuous variables. The
GP is the tool which is used to achieve this goal. In the GP framework, inference often takes
place in the function space. The non-parametric nature ensures a high flexibility and the
possibility to model nonlinear functions [25].
The stochastic variables used for the GPR framework may be defined through any kind of
probability density function, however most often (as is the case in this thesis), the variables
are assumed to satisfy a Gaussian distribution. The multivariate Gaussian distribution is
defined as:

N
(
µ , Σ

)
= 1√

(2π)n|Σ|
exp

(
−1

2(y − µ)ᵀΣ−1(y − µ)
)
, (3-6)

and is completely defined by two parameters: the mean µ and the covariance Σ.
In general, the goal of a regression method is to find the latent function f(X) of the stochastic
process from Equation (3-7), using the n aggregated inputs x ∈ R1×m in matrix X ∈ Rn×m

and outputs in vector y ∈ Rn×1. The latent function f(X) may be represented by any linear
or nonlinear function and the term ε ∈ Rn×1 is often assumed to be a Gaussian distributed
white noise signal with a variance of σ2

n, i.e.: ε ∼ N
(
0 , σ2

nIn×n
)
.

y = f(X) + ε (3-7)
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3-2 Spatial description using Gaussian process regression 17

The probability distribution of the latent function values for a given set of inputs and outputs
is called the posterior distribution and is found by applying Bayes’ rule as indicated in Equa-
tion (3-8). In the GP framework, not only the noise but also the latent function itself is mod-
eled as a GP, defined over the input space. Consequently, the assumption can be made that the
latent function f(X) behaves according to a zero mean GP as displayed in Equation (3-9a).
This distribution is often referred to as the prior , since this term contains prior assumptions
of the latent function, which is gathered in the covariance matrix Kx,x and sometimes also
the mean function. The used notation is: Ka,b ∈ Rn1×n2 = cov(a ∈ Rn1×m, b ∈ Rn2×m),
where the function cov(· , ·) represents the used covariance function. With GPR, the co-
variance matrix is often constructed based on the squared exponential covariance function.
More information on this subject can be found in [25]. A visual representation of the prior
is displayed in Figure 3-1a. Continuing on Equation (3-7) and with the noise defined as
ε = N

(
0 , σ2

nI
)
, the probability distribution of the output values, given the latent function,

is referred to as the likelihood and reads as in Equation (3-9b). The term in the denominator
of Equation (3-8) represents the marginal likelihood and is a normalizing constant which is
independent of the latent function values.

posterior = p (f(X) |y) = p (y | f(X)) p(f(X))
p(y) = likelihood× prior

marginal likelihood (3-8)

p(f(X)) = N
(
0 , Kx,x

)
(3-9a)

p (y | f(X)) = N
(
f(X) , σ2

nI
)

(3-9b)

p(y) =
∫
p(f(X)) p (y | f(X)) dX (3-9c)

The posterior distribution is proportional to the product of the likelihood and the prior. Since
the prior and likelihood both have a Gaussian distribution, the posterior distribution also
satisfies a Gaussian distribution and is represented by the statement in Equation (3-10). The
latent function values f(X) are indicated as fx. For a Gaussian posterior, the mean is also
the maximum a posteriory, implying that with the assumed noise model and inputs X , the
probability of measuring outputs y from latent function values f(X) = Kx,x(Kx,x+σ2

nI)−1y
is maximized.

p (fx |y) ∝ p (y |fx) p(fx) = N
(
fx , σ

2
nI
)
N
(
0 , Kx,x

)
= N

(
σ−2

n (K−1
x,x + σ−2

n I)−1y , (K−1
x,x + σ−2

n I)−1
)

= N
(
Kx,x(Kx,x + σ2

nI)−1y , σ2
nKx,x(Kx,x + σ2

nI)−1
)

(3-10)

To predict the function values corresponding to an arbitrary input, note that the latent
function values corresponding to both training data X and test data X∗ are both drawn
from a joint Gaussian distribution. Taking into account that the latent function values are
only available through their noisy measurements, the joint distribution can be displayed as
in Equation (3-11). The conditional probability of the predicted function values f∗, given
the measured outputs of the training data, is shown in Equation (3-12). Figure 3-1b gives a
graphical representation of a posterior distribution.
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[
y
f∗

]
∼ N

(
0 ,
[
Kx,x + σ2

nI Kx,∗
K∗,x K∗,∗

])
(3-11)

f∗ ∼ N
(
K∗,x

(
Kx,x + σ2

nI
)−1

y , K∗,∗ −K∗,x
(
Kx,x + σ2

nI
)−1

Kx,∗

)
(3-12)

In this subsection the basic description of GPR is given. Additional relevant topics included
covariance functions ans hyperparameter optimization, which are also described in [25].

3-2-2 Modeling inverse dynamics with GPR

The described GPR algorithm can be applied for manipulator control. This is done by training
the GP to represent the inverse dynamics of the manipulator [28]. Assuming torque control,
the equation described by the GP will be a spatial mapping of the form: τ = f(q, q̇, q̈).
With reference to a trained data set consisting of inputs (q, q̇ and q̈) and outputs (τ ), the
posterior distribution is found. Using the notation from Subsection 3-2-1, the training inputs
are stored in a data matrix: X ∈ Rn×m, where the rows are composed of n sampled input
vectors [qi, q̇i, q̈i] ∈ R1×m. For a certain array of test inputs X∗, the predicted torques are
determined to be the mean of the posterior distribution, τ̄ ∗.

More specifically, using the prior τ (X) ∼ N
(
fest(X) , Kx,x

)
and the likelihood τ | τ (X) ∼

N
(
τ (X) , σ2

nI
)
, the predicted torques are computed as:

τ̄ ∗ = fest(X∗) +K∗,x
(
Kx,x + σ2

nI
)−1

(τ − fest(X∗)) (3-13)

and its covariance as:

cov(τ ∗) = K∗,∗ −K∗,x
(
Kx,x + σ2

nI
)−1

Kx,∗ (3-14)

The above statements imply that an arbitrary mean function (fest(X)) is used for the prior
distribution. Using a non-zero mean is beneficial due to higher modeling accuracy, better
generalization and a faster learning speed [26]. In the absence of relevant data, the second
term of Equation (3-13) drops to (near) zero and prediction will read: τ̄ ∗ ≈ fest(X∗).

When the notation fest(X) = Φ(X)w holds, the parameter vector may be assumed to be a
stochastic variable defined as w = N

(
w̄ , B

)
, where B is a covariance matrix that contains

uncertainty measures of the linear parameters in w [25, 26]. Using this, the uncertainties of
the linear parameters are accounted for. Based on the training data, the estimated parameter
vector is then determined as:

w̄ =
(
B−1 + Φ(X)ᵀ(Kx,x + σ2

nI)−1Φ(X)
)−1 (

Φ(X)ᵀ(Kx,x + σ2
nI)−1τ +B−1w

)
(3-15)

And is used for prediction as:

τ ∗ = Φ(X∗)w̄ +K∗,x
(
Kx,x + σ2

nI
)−1

(τ −Φ(X)w̄) (3-16)

Although this approach with stochastic parameters shows promising results according to [26],
the possibility for the implementation in the considered setup is not certain yet, due to the
assumption of a time-varying environment.
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3-3 Discussion

This chapter describes the two important frameworks that are used in this thesis to identify
and learn the dynamics at play. In this section, some additional remarks are made on the
assumptions and characteristics of these two methods.

An assumption that is vital for both methods is that the applied torques, as well as the
angular positions, angular velocities and angular accelerations are known. This assumption is
valid for modern robots where position sensors are accurate enough to allow for differentiation
of the position measurement signal. Remaining noise is dealt with through the term νk in
the Kalman filter equations. The GP also assumes the presence of noise. Hence, having only
access to noisy velocities and accelerations is not a limiting factor.

Furthermore, the EKF and GP models both assume Gaussian noise models. However, both
methods also describe a nonlinear relation of the form τ = f(q, q̇, q̈), for which this assump-
tion is generally not valid. For this thesis it is assumed that the considered nonlinear mapping
does not introduce critical issues for the EKF and GP approach based on documented exper-
iments with similar applications [17, 26].

The GPR framework has the desirable characteristic of being able to model a wide variety of
functions accurately and is also relatively predictable as compared to other non-parametric
frameworks [21, 25]. Applying GPR however also entails some difficulties. With regard to
the performance of the predictions, sufficient training data in the considered part of the
state-space is required since the approach does not generalize towards unknown parts of the
state-space. Furthermore, overfitting or underfitting may occur when the GP is not tuned
correctly. the tuning in itself is not a trivial task. Information regarding the tuning of GPs is
found in [25]. With respect to the practice of implementing the GP, the management of data
is to be considered. This is especially true for real-time applications. Whereas prediction
has a computational cost of O(n), training of the GP scales with the cube of the amount of
training data, resulting in a cost of O(n3) [25]. For this thesis, GPR is considered nevertheless,
based on its potential to use in a semi-parametric framework and its stochastic characteristics.
Issues regarding the implementation of GPR are the subject of many existing researches ([21]
also refers to research done in this area).
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Chapter 4

A semi-parametric approach to
identification and control

As stated in Chapter 2, the dynamics of the considered system can be described as shown in
Equation (2-2). Finding this relation is the main goal of the research. From a more practical
point of view, having perfect knowledge of these relations makes it possible to describe a
followed trajectory (e.g. through the joint acceleration q̈(t)) as a function of the applied
torques and initial conditions. Alternatively, the torques at the joints may be derived as a
function of the followed trajectory. These relations are referred to as the forward dynamics
and inverse dynamics respectively and read as:

Forward dynamics: q̈(t) = ff(τ (t), q0, q̇0) (4-1a)
Inverse dynamics: τ (t) = fi(q(t), q̇(t), q̈(t)) (4-1b)

For control purposes, especially the inverse dynamics are of interest. With perfect knowledge
of the system and the desired system state [qd(t), q̇d(t), q̈d(t)], the inverse dynamics can be
used to derive a torque that is used as a control input and produces exactly this desired state
(provided that the angular position and velocity are initialized correctly). This phenomenon
is illustrated in Figure 4-1. Motivated by this description, the identification of the system is
primarily aimed at finding the inverse dynamics.

For convenience, the research goal of this thesis is restated here: “Construct an approach for
identifying the dynamics of a robot manipulator which is subjected to both model uncertain-
ties as well as instantaneous system changes.”

In accordance with this research goal, the used procedure for identification must be carried out
during operation to deal with time-varying phenomena. Consequently, the observed dynamics
can be used directly to improve the inverse dynamics model, which in turn provides the
forward control term. Three criteria are introduced that give an indication on the effectiveness
of the used approach to learn the inverse dynamics. Particularly, the inverse dynamics model
must:
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Figure 4-1: Inverse dynamics control used to cancel the manipulator dynamics. Given a desired
trajectory (existing of qd, q̇d and q̈d), the torques are derived by the controller and applied to the
manipulator. In the case that the inverse dynamics are perfectly known and the initial conditions
q0 and q̇0 agree with the desired trajectory, the resulting trajectory exactly resembles the desired
trajectory.

• Describe the dynamics accurately.

• Adapt rapidly to deal with instantaneous system changes.

• Give a description that generalizes well over the whole state-space.

The philosophy used in this thesis to meet these criteria is that an attempt should be made
to benefit from model knowledge in combination with online learning. This is realized using a
semi-parametric description of the system dynamics. The semi-parametric approach improves
on methods that are purely non-parametric, since the latter do not recognize any structure
in the data and therefore do not generalize towards unknown parts of the state-space. Addi-
tionally, better modeling accuracy can be achieved compared to strictly parametric methods
[26].

In conformity with Chapter 2, a manipulator model is considered with uncertain dynamic
relations. Furthermore, the instantaneous model changes are represented by an object which
may or may not be attached to the end-effector. Having knowledge of the manner in which a
system change may occur allows for the possibility to rapidly identify the transformation and
react accordingly. In this thesis, identifying these structured system changes is to be achieved
by the extended Kalman filter (EKF). Unstructured and unmodeled errors are dealt with
through Gaussian process regression (GPR).

The remainder of the chapter is focused on describing and motivating the semi-parametric
approach that is proposed to achieve the research goal stated in the introduction to this thesis.
To this end, a control scheme is constructed in Section 4-1, which supports the proposed
methods. Information related to observing and identifying during operation is discussed in
Section 4-2. Subsequently, the control approach is described in Section 4-3. With this control
scheme in place, Section 4-4 continues on system change detection and switching for the
designed control configuration. The chapter is ended in Section 4-5 with a discussion and
remarks on the treated subjects.

4-1 Control scheme design

In this thesis, identification and learning of the system dynamics is achieved in the context of
a control scheme. More specifically, the system is identified based on input and output data
that is gathered during operation. The direct learning approach is applied to this end (see
[21]). Gathered data contributes to the knowledge of the inverse dynamics which can directly
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Figure 4-2: Proposed control and identification scheme. Direct learning is implemented to find
the inverse dynamics model of the manipulator, which is used for deriving a forward control term.
A feedback loop is added to guarantee stability. The control scheme is based on the feedforward
nonlinear control scheme described in [28].

be utilized to produce an increasingly ‘accurate’ forward control action, implying that the
desired output and true output become more similar. This corresponds with the philosophy
represented in Figure 4-1. Since perfect knowledge of the system cannot be assumed, a feed-
back term is applied to counteract disturbances and deviations from a desired set-points. The
torques applied through feedback have a direct influence on the gathered training data and
therefore help shape the non-parametric description of the system dynamics. A representa-
tion of the identification and control configuration is shown in Figure 4-2. The control term
for this configuration reads:

τ (qd, q̇d, q̈d, q, q̇) = fff(qd, q̇d, q̈d) + ffb(qd, q̇d, q, q̇), (4-2)

where the subscripts ff and fb refer to the feedforward and feedback terms of which the
control action is comprised. subscript d is used to indicate the desired value for a variable.
The resulting control torques τ are applied to the actuators acting on the manipulator joints.

The configuration of the control scheme in Figure 4-2 is motivated by computation time
requirements. Feedforward torque predictions are performed outside of the feedback loop.
This allows for the learning and prediction tasks to be executed at a relatively low frequency
(if necessary). The feedback term operates at higher frequency to guarantee stability [28].

The proposed scheme has to perform two main tasks, which are observing the system dynamics
and controlling the manipulator. The Sections 4-2 and 4-3 discuss how these tasks are carried
out in the proposed framework.

4-2 Observing

Observing the dynamics of the system is subdivided into three parts. Subsection 4-2-1 de-
scribes how the system state is derived from measurement data. The identification of linear
system parameters is described in Subsection 4-2-2. Finally, Subsection 4-2-3 deals with
management of training data in relation to the GPR algorithm.
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4-2-1 State filter

The proposed control action, given in Equation (4-2), is dependent on angular positions,
velocities and accelerations. Generally, only angular positions are directly available from the
encoders of the manipulator. As a result, the velocities and accelerations are to be derived in
order for the state to be fully defined.

To obtain the angular velocities from the measured positions, a first order difference equation
is used, namely: q̇(k) = s (q(k)− q(k − 1)), where k is an integer value which refers to a
time step and the signal is sampled with a sampling rate s. The angular accelerations can be
derived analogously as: q̈(k) = s (q̇(k)− q̇(k − 1)).

The assumption is made that the encoders are sufficiently accurate and high sampling rates
can be achieved. In this case the angular velocities and accelerations can be derived relatively
accurately. To deal with measurement noise, a moving average filter is proposed. The filter
introduces a delay in the velocity and acceleration data. This is dealt with by compensating
the delay of the associated torques, positions and velocities manually to obtain an equal delay
in all gathered data.

4-2-2 Parameter observer

Given that the state of the device (containing q, q̇, q̈) is available, only the linear parameters
related to the unknown object are to be observed in order to obtain the complete rigid body
dynamics (RBD) description in the notation τ (q, q̇, q̈) = Φ(q, q̇, q̈)w(t). The EKF is used to
this end. The implementation is equivalent to the implementation described in Subsection 3-
1-2.

Note that the Kalman filter is not used to solve a dual problem, where the linear parameters,
as well as the state are to be derived in the same framework. The separation of these tasks
results in a less complex implementation and prevents the possibility of incorrectly attributing
modeling errors to the measurement data.

Furthermore, the parameter identification is included for the sake of model accuracy and
learning speed, not for accurately deriving true or realistic model parameters. The errors
that are introduced through uncertainties in the manipulator model prevent the EKF from
observing the exact parameters, however, the observed parameters give a general description
of the dynamics in known and unknown parts of the state-space. The aim is to converge
rapidly towards these values and subsequently remain close to these values without being
influenced significantly by dynamic phenomena that are not induced by the attached object.

Some considerations are to be made with respect to the tuning of the EKF. The tuning is
done taking the statements above into account. The initial process state w0 (which is the
linear parameter vector) and the initial state covariance P 0 are to be declared. Furthermore,
the covariance matrices of the process noiseM and measurement noiseN need to be defined.
The sigmoid function that is used to bound the linear parameters requires a lower bound,
upper bound and slope (bl, bu and bs respectively) to be defined.

In the proposed configuration, the measurement covariance N is based on expected model
errors. A higher noise covariance implies larger model errors. As a result, the identified
parameters will tend towards values which generalize better and neglect unstructured local
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errors. The off-diagonal entries of this matrix are set to zero which reduces the effect of errors
on individual joints on the parameter vector.

The initial state covariance P 0 and the sigmoid function slope bs directly influence the speed
of convergence of the parameters after initializing the EKF and are tuned with respect to
the chosen measurement noise covariance N . A balance is to be found between speed of
convergence and the extent to which a generally applicable parameter vector is found (a
slower convergence prevents the parameters from fitting to local modeling errors).

The process noise covariance matrix M is added which ensures that the linear parameters
do not converge toward a steady state, but are able to adapt. This is in accordance with the
fact that the parameters are not perfectly valid over the entire state-space. Additionally, this
also allows for adaptation to gradual system changes.

The lower and upper bounds for the parameter vector are set to values that can reasonably be
expected to represent the unknown object including the modeling errors. Note that negative
values for the lower bounds (bl) are for this reason a valid assumption (the model of the
manipulator may overestimate the mass of the true manipulator). The upper bounds (bu)
are chosen marginally higher than the maximum expected values, to prevent the Jacobian of
the measurement update (see Equation (3-5b)) to completely go to zero.

4-2-3 Data management

The EKF is used to observe the linear parameter vector which, in combination with the
regressor, contains information of the system dynamics. Dynamics that are not described
by this model cannot be captured in the parameters and are therefore unobservable. These
dynamics are to be captured by the data-driven Gaussian process (GP).

The GP is used to obtain a spatial description of the system dynamics. The observed dynamics
are captured in the training data that is gathered over time. With reference to Equation (3-
13), the applied torques are gathered in an array τ and the measurement data obtained while
applying these torques is used to configure the covariance matrix Kx,x ∈ Rn×n. The data is
included in the posterior distribution through the term

(
Kx,x + σ2

nI
)−1 ∈ Rn×n.

During online operation, the training process is controlled by managing the incoming data.
Not all measurements are used in the training data covariance matrix, since this would imply
that the covariance matrix grows for every new measurement without limits. Sparsification
is proposed through the use of m < n inducing variables, which restricts the dimensionality
of the GP [29]. The data is consequently stored in Kx,uK

−1
u,uKu,x ∈ Rm×m, which limits

the computational efforts when the training data set grows large. More information on this
method for sparsification is found in [29]. For simplicity, the general notation for describing
GPR is used in this thesis (see Section 3-2).

For long running experiments older data is sequentially removed from the torque and state
measurement arrays. This prevents the computation time from increasing too much. Addi-
tionally, forgetting old data serves the purpose of dealing with gradual time-varying system
dynamics. It is assumed that new data holds more relevance than old data. Deleting the old
data therefore ensures that predictions are not based on invalid data.
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4-3 Controlling

In Chapter 3, approaches are described that can be used to model the inverse dynamics
of a manipulator. The parametric approach (which is based on the RBD model) and non-
parametric approach (using GPR). Both approaches possess different characteristics. In an
attempt to capture advantages of both methods, a semi-parametric model is proposed in [26].

The scheme in Figure 4-2 shows that the control action is comprised of a feedforward term
and a feedback term. Next, a proposed implementation for these terms is given.

4-3-1 Feedforward control

The forward control term is based on knowledge of the inverse dynamics of the system. With
reference to Equation (4-2), the forward term is constructed as:

τff(qd, q̇d, q̈d) = τman(qd, q̇d, q̈d) + τ gp(qd, q̇d, q̈d,w(t)) (4-3)

Ideally, this forward term cancels out the dynamics of the manipulator, which is represented
as in Equation (2-2). Combining the assumed system dynamics and the control term for the
desired situation leads to the equality:

M(t, q) q̈ +C(t, q, q̇) q̇ +G(t, q) + ε(t, q, q̇, q̈) = τman(q, q̇, q̈) + τ gp(q, q̇, q̈,w(t)) (4-4)

The subscript d is dropped for the sake of legibility. The term τman(q, q̇, q̈) represents a
control torque which is based on the operator’s (inaccurate) knowledge of the manipulator.
The derivation of this term is based on the RBD model with estimated dynamic and kinematic
parameters (captured in M̃ , C̃ and G̃), which is symbolically represented as:

τman(q, q̇, q̈) = M̃(q) q̈ + C̃(q, q̇) q̇ + G̃(q) (4-5)

With reference to Equation (4-4), the GP consequently has to deal with the inaccuracy of the
model parameters and any other unmodeled and time-varying behavior, including ε(t, q, q̇, q̈).
The predicted torques are equal to the mean of the posterior distribution τ ∗. Hence, the
torques are described as:

τ gp(q, q̇, q̈,w(t)) = mean
(
N
(
τ̄ ∗ , cov(τ ∗)

))
= Φ(X∗)w(t) +K∗,x

(
Kx,x + σ2

nI
)−1

(τ −Φ(X)w(t)) (4-6)

In this definition, the variance of the noise is represented by σ2
n and the matrixX contains all

measurement data (which is gathered as described in Section 4-2). The corresponding torques
are stored in τ . For the mean of the prior distribution, the deterministic parametric function
τmean = Φ(X)w(t) is used, resulting in a semi-parametric description of system dynamics.
Although [26] proposes the use of the stochastic parameter vector, the deterministic version
is deemed more suitable for this application. This is motivated by the fact that a time-
varying parameter vector is provided by the EKF, whereas the GP gives a spatial description.
The covariance matrix of the prior distribution is created based on the squared exponential
covariance function. More information on the subject is written in Section 3-2.

N.L.D. Marck Master of Science Thesis
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4-3-2 Feedback control

A straightforward method for control is proportional-derivative (PD) feedback control. This
form of control is often used when joint-space control is considered. The same setup of using
computed torque control combined with PD feedback control is applied in several researches
[13, 17, 30]. For the considered type of manipulator, the feedback control term can easily be
written as a summation of the error of the angular position and error of the angular velocity.
Scaling the errors with the proportional gain Kp and derivative gain Kv leads to the control
action:

u = Kpe+Kvė (4-7)

Here, e = qd − q and ė = de
dt = q̇d − q̇.

In this thesis, the used gains Kp and Kv are diagonal. Hence, no coupling is introduced
through the feedback term. The feedback for each joint is strictly independent of other joints.
This prevents inaccuracies in one joint to actively disturb the control action on other joints.

Furthermore, in accordance with the philosophy of this thesis, low-gain feedback is desired
(see Subsection 1-2-1). This is taken into account when setting the gains.

4-4 System change detection

The semi-parameteric control and identification approach presented in Sections 4-1 to 4-3 is
able to correctly describe the inverse dynamics of a system under time-invariant conditions.
However, as indicated in the problem statement (Subsection 1-2-3), the constructed scheme
has to deal with time-varying phenomena. Whereas gradual changes over time are automat-
ically compensated for by both parametric and non-parametric parts (see Subsections 4-2-2
and 4-2-3), abrupt changes in the system dynamics require a more specific procedure to retain
accurate system knowledge.

4-4-1 The relevance of system change detection

In this thesis, an interest is taken specifically into manipulators that are handling various
unknown objects. The picking and placing of objects by a manipulator is modeled as a
discrete event. It is required that the discrete events are detected and that a switching
procedure is executed to achieve rapid adaptation toward the new situation.

A detected system change has consequences for the parametric, as well as the non-parametric
parts of the considered scheme. The parameter identification, which is managed through the
EKF, operates on a relatively long time scale, meaning that the parameters do not converge
rapidly towards their new values after a system change has occurred. The EKF is reinitialized
after a detection to solve this problem. Detection of system changes is however more crucial
for the spatial description defined through the GP. Including data from two different system
descriptions into one training data set leads to incorrect predictions that are based on data
from both the current and previous system. After detection, newly acquired training data
should therefore be stored in a different data set, that is used to describe only the newly
obtained system.
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Dealing with such events can be done by making use of multiple models. Using a discrete
number of different models allows for the control algorithm to make use of knowledge that is
available from previous events. Model for Sensorimotor Learning and Control (MOSAIC) is
an algorithm for multiple model control that uses pairs of forward-inverse models to describe
different contexts [15]. Although the concept is promising, the used models are linear. There-
fore, direct implementation of the approach is not possible. Based on the concept used in [15],
an algorithm for nonlinear multiple model control is proposed in [16]. This research uses the
locally weighted projection regression algorithm to describe multiple input-output relations in
parallel. This method however does not make use of prior knowledge and as such, is entirely
dependent on the availability of data to be able to detect system changes. This is where the
semi-parametric GPR has the advantage, since it allows for system changes to be detected
also when no data is directly available.

In known parts of the state-space, the GPR can be utilized to determine whether a system
change has occurred. The GPR framework is ideally suited to provide a system change
detection measure due to its stochastic nature. With access to the active training data
set Xactive, torques can be predicted for any desired test input x∗. Using a recent state
measurement x∗ = xi as test input, the likelihood of the corresponding torque τ i can be
determined with respect to the posterior distribution of the active GP model. As such, the
detection measure may include the probability: p (τ i |xi ,Xactive , τ active), which is easily
determined with respect to the posterior distribution of the trained GP.

For this thesis it is deemed more interesting to focus on the issues related to system change
detection in unknown parts of the state-space. This is the topic of the following subsection.

4-4-2 Model based detection in unknown parts of the state-space

In order to determine whether an abrupt change in system dynamics has occurred while in
an unexplored part of the state-space, the RBD model is utilized. The forward model can be
used to check whether (with the current linear parameter set) the expected state resembles
the measured state while applying a certain load. Equivalently, as proposed in [16], one might
use pairs of input-output data and simply use the available inverse dynamics model to verify
the validity of the current parameters.

In this thesis, the RBD model is specifically used to give a general description of the dynamics
of an unknown object which is engaged at the end effector of a manipulator. Unmodeled ma-
nipulator dynamics are not accurately captured by this parametric term and should therefore
ideally not trigger a switching event. The degree to which a currently active parameter set
is valid should for this reason be rated with reference to the ability of any parameter set
(given the model) to fit the data at that instance. Hence, a model based detection measure
ηmb (eτactive, eτinstant) is used, where eτ is the torque prediction error , which is defined as the
difference between the calculated torques τ̃ and the true torques τ . eτactive is the torque
prediction error obtained using predictions with the currently active parameter set. eτinstant
is obtained when using the parameter set that is computed for that specific instance.

The current torque prediction error is found using the linear representation of the dynamics,
with the error described as eτ = τ̃ − τ = Φ(q, q̇, q̈)w̃(t)− τ . With reference to a known set
of input and output data, the current model error can therefore be calculated using simply
the estimate of the linear parameter vector, indicated by w̃(t).
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The torque prediction error related to the instantaneously derived parameter set (eτinstant) is
determined using the same approach, but now using the linear parameters winstant. These
parameters can be derived using recent measurement data and the pseudo-inverse of the
regressor Φ(q, q̇, q̈). However, this method does not restrict the parameters in any way and
may therefore lead to unrealistic parameters that do not represent the model as intended.
It is more appropriate and convenient to use a framework that is already in place, which
is the EKF. A parameter set winstant is estimated by an EKF, in parallel to the currently
active parameter set, but different tuning settings are used to realize fast adaptation. The
utilization of this method is similar to the approach described in [31], where an adaptive
secondary model is proposed which rapidly adapts to acquire the best model fit in the current
situation.

With the active and instantaneous torque predictions described as above, the following system
change detection measure is proposed:

η (eτactive, eτinstant) = α
‖eτactive‖21
‖eτinstant‖1

(4-8)

The 1-norm is preferred over the 2-norm to prevent the errors occurring at individual joints
from dominating the outcome of the norm (and therefore the detection). Furthermore, the
norm of the active torque prediction error appears squared in the equation to increase the
influence of higher errors in the currently active parameter set. α is a tuning constant that
is scaled depending on the desired sensitivity of the approach. When the detection measure
reaches a certain threshold, a switch event is triggered.

4-5 Discussion

4-5-1 Application possibilities

The description of the system dynamics consists of a non-parametric part which deals with
the unmodeled dynamics. The goal of the parametric description is to model the dynamics
that are subjected to instantaneous changes. The instantaneous change is in this thesis
represented by an object which is attached at the end effector of the manipulator. Focusing
on this specific situation is however by no means a restriction. In theory, assuming the
RBD model holds, the entire manipulator can be described using the linear representation
τman = Φman(q, q̇, q̈)wman [7]. When any of these dynamics are expected to experience
abrupt changes, they can be appended to the linear parameter vector. Caution is required
when this is attempted however, since some of the parameters may interfere with each other,
which has a negative effect on the generalization capability of the parametric model.

4-5-2 Recognizing external influences

Accurate knowledge of the system is especially important for impedance controlled manipu-
lation and for tasks that require gravity compensation. In the case of gravity compensation,
interaction with an operator is to be expected. Such interactions will influence the ability of
the EKF to accurately identify the linear parameters of the system, since these parameters are

Master of Science Thesis N.L.D. Marck
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based on the relation between applied or measured torques and the system state. An external
influence will disturb this relation, resulting in diverging parameter estimates or undesired
switch events.

Several solutions could solve the described issue, for example by using camera or infrared
imaging to detect the cause of an interference. Alternative solutions are methods that detect
physical contact such as a sensitive skin, like on the Bosch Apas (see [5]). Or, devices that
have an active switch or button to indicate interaction, like on the Baxter robot [32]. Applying
one or several of these methods would suffice, however, not all robots are equipped with such
measures. Measures may also be taken on the software side. The error in a torque prediction
may indicate a system change, however, when the resulting error does not comply with a
physical object (for example when high forces are observed in the horizontal plane), one may
assume that external forces are applied.
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Chapter 5

Evaluation

In accordance with the final objective formulated in the introduction, the proposed solutions
are to be implemented and evaluated. To test the proposed methods on their ability to achieve
high modeling accuracy and adaptivity, simulation experiments are designed and carried out.
The simulations are based on a model of the Kuka youBot arm (specifications found in [33]).

Both the simulation, as well as the lab experiments make use of the Matlab software package
[34]. Within Matlab, there is made use of several toolboxes. For modeling the kinematics and
dynamics of a serial manipulator, the Robotic toolbox [35] is used. Also the gpml-toolbox [36]
is used for training and prediction in the Gaussian process regression (GPR) framework. The
implementation of the extended Kalman filter (EKF) is arranged by the EKF/UKF toolbox
[37].

This chapter continues on Section 5-1 with a description of the setup that is used for the
simulation. The control scheme that is proposed is evaluated in Section 5-2. Subsequently,
the detection and switching methods are tested in Section 5-3.

5-1 Simulation setup

The control scheme is applied on a manipulator that is designed to mimic the Kuka youBot
arm, pictured in Figure 5-1a. The Kuka youBot arm is a 5-degree-of-freedom (DoF) ma-
nipulator using the articulated layout. Optionally, the manipulator is mounted on a driving
base, however, the base is not considered in this thesis. A graphical representation of the
Matlab simulation model is shown in Figure 5-1b. Note that the used model is not entirely
representative of the youBot arm, but only based on its design. The used kinematic and
dynamic parameters are loosely based on the parameters specified in in [33]. The model for
this device is used for the following reasons:

• It is based on a real robot, which makes it representative in terms of joint movements
and required torques.
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(a) Kuka youBot 5-DoF arm1
Z

Y
X

(b) Simulation arm in Matlab

Figure 5-1: Kuka youBot manipulator and a model of its kinematics. The visual representation
of the Matlab model is produced with the Robotic toolbox [35].

• Although it has five DoFs, three of its joints operate in the vertical plane, making the
data easily interpretable.

• A Kuka youBot is available in the Delft Center for Systems and Control (DCSC) lab,
which facilitates potential follow-up studies

This section continues with Subsection 5-1-1 on the description of the true system and the
estimated model which are used for simulation. Additionally, definitions are given with respect
to the considered rigid objects in Subsection 5-1-2. In Subsection 5-1-3, a noise model is
constructed that is used to mimic true measurement data.

5-1-1 Manipulator description

For the Matlab simulations a true system and an estimated model are required. For the
true system, the exact dynamic relations are assumed to be unknown for control purposes
Additionally, an unknown object may or may not be attached to this device. The estimated
model represents the incorrect estimate of the true system and is used by the controller to
derive control torques with reference to a desired trajectory. The discrepancies in the dynamic
descriptions of these two models, in addition to the influences of the unknown attached object,
are to be captures by the semi-parametric control term, as stated in Equation (4-3).

In the Matlab simulations, the Robotic toolbox is used to model both true and estimated
systems according to the rigid body dynamics (RBD) framework. The joint angels are defined
to be all zero in the straight up position. Consequently, the model in Figure 5-1b is displayed
in the pose: [0◦, 30◦, 90◦, 60◦, 0◦], where the entries represent the joint angles for joints 1
through 5 respectively, counted from the base towards the end effector. Furthermore, the z-
axis of the end effector is defined to be in the axial direction of the last joint. When the final

1Source: https://4.imimg.com/data4/LM/VV/MY-1955060/kuka-youbot-500x500.png
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5-1 Simulation setup 33

Figure 5-2: General dimensions and workspace of the Kuka youBot manipulator. Image adopted
from [33].

joint is at a 0◦ angle, the x-axis points in the vertical plane and the y-axis is perpendicular
to the vertical plane. A general indication of the dimensions and workspace of the youBot
manipulator is depicted in Figure 5-2. Several adaptations to the true system are made to
introduce modeling errors. This introduces errors in the forward control torque applied to
compensate the true system’s dynamics. The implemented discrepancies are described in the
listing below.

Discrepancies in actuation
In the introduction to this report it is mentioned that innovative actuators may prove
difficult to model accurately (see Subsection 1-2-2). Consequently, the torque acting on
the system may not entirely represent the torque that is desired by the implemented
controller. The relation τ truej = τappliedj − sign(τappliedj )(β−1

j τappliedj )2 is used to induce
actuation related errors, where the subscript j indicates the considered joint. Using
the appropriate values for β, the quadratic term causes a slightly reduced torque to be
engaged at the manipulator joints.

Discrepancies in system parameters
The behavior of the system to an applied torque is described by the kinematic and
dynamic system parameters. These parameters are set to different values for the es-
timated and true models. The used parameters are quantified in Appendix B. Addi-
tionally, a nonlinear position dependent friction term is added for the true system (i.e.:
Bj = Bj(qj)) to introduce local nonlinear behavior in the dynamic relations.

Discrepancies in state measurements
The state of the true system is never directly measurable. Only noisy angular position
data is available. The true state is retrieved using methods described in Section 4-2.
Additionally an inaccuracy in the true system is introduced by making the assumption
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that the system is not perfectly calibrated. Errors in the calibration of the manipulator
are modeled by adding modest offset angles to the joints in the system kinematics, also
visible in the Denavit-Hartenberg (DH) parameters of the model.

5-1-2 Rigid object specifications

For simulating the picking and placing tasks which are executed by the manipulator, rigid
objects are defined. The objects are fully defined by the mass, center of mass and the moments
of inertia as indicated by Equations (2-3a) to (2-3c). The moments of inertia are defined with
reference to the center of mass and the center of mass is measured from the attachment point
of the object.
Two specifications are considered while defining the parameters of the objects: the mass of
the used manipulator and the payload-to-weight ratio of modern manipulators. Considering
a payload-to-weight ratio of 50 % and with the mass of the simulated youBot arm being
approximately 5 kg, an object is configured with a mass of 2.5 kg. Additional objects are
defined for switching purposes. The parameters of the objects are displayed in Table 5-1.
The center of mass is defined with reference to its attachment point.

Table 5-1: Objects used to represent instantaneous unknown system changes

mass [kg] Center of mass [m] Moments of inertia [kg m2]

Object 1 2.5
[
0.05 0.05 0.08

]
diag(

[
1.9 1.9 1.9

]
· 10−2)

Object 2 2.0
[
0.02 0.02 0.04

]
diag(

[
5.0 5.0 5.0

]
· 10−3)

Object 3 1.0
[
0.01 0.03 0.07

]
diag(

[
4.2 4.2 4.2

]
· 10−4)

5-1-3 Noise model

The considered system is identified by observing the relation between the applied torques
and the system state: τ = f(q, q̇, q̈). To fully identify this relation, access to the applied
torques and angular positions, velocities and accelerations of the manipulator is required.
Generally, the angular position is directly obtained as an output of the encoder and the
velocities and accelerations must be derived from this data. In contrast to simulation data,
real measurement data is subjected to noise, which can have a severe influence on the ability
to derive the angular acceleration. Because of the crucial role of the measurement noise in
finding the accelerations, a noise model is used in the simulation to obtain relevant results.
The noise model is based on data that is gathered from a Kuka LBR iiwa 7 R800 at the
DCSC robotics lab. This data set is assumed to be representative of currently available
sensors and encoders. Two seconds of measurement data (gathered at 1000 Hz) is displayed
in Figure 5-3. Differentiating and filtering the data is realized as proposed in Section 4-2. The
filter is applied after both differentiations and averages over the previous 20 data samples,
resulting in a 10 ms delay on the velocity and a 20 ms delay on the acceleration. The delay is
compensated for when the data is prepared for parameter identification and training of the
Gaussian process (GP).
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Figure 5-3: Visualization of Kuka iiwa measurement data and the derived velocity and acceler-
ation. A moving average filter is used to retrieve the signals from the noisy measurements. The
data is obtained from the Kuka LBR iiwa 7 R800 in the DCSC lab.

For the simulation, a zero mean Gaussian noise is added to the output of the model (the
angular positions). The noise is acting on the individual joints and no cross-correlation is
assumed. The variance of this noise is modeled to mimic the noise observed in the measure-
ments displayed in Figure 5-3. Recreating the trajectory of the measured data set, a similar
response is achieved for the simulation data, which is displayed in Figure 5-4. The resulting
noise model is dependent on the angular accelerations and reads:

εqj(q̈j) ∼ N
(

0 ,
(
10−6 (1 + 0.5 abs(q̈j))

)2
)

(5-1)

5-2 Proposed identification and control scheme

The scheme used to identify the parameters and control the simulated system is constructed
with reference to the approach described in Section 4-1. The implementation of the feedback
control and forward control, as well as the tuning of the EKF are dependent on the considered
system. The individual components of the scheme are arranged and tested in simulation.

5-2-1 PD feedback control

The feedback requires five gains for the proportional action and five gains for the derivative
action of the proportional-derivative (PD) controller. The output of the feedback control
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Figure 5-4: Simulation data with the added noise model. The measurement data from the Kuka
device is imitated to obtain a noise model.

complements the forward control term, which provides the estimated torques to follow a
desired trajectory. Consequently, using the feedback control term from Equation (4-7), the
gains Kp and Kv have units N m rad−1 and N m s rad−1 respectively. The emphasis of this
thesis is on the identification of the dynamics. The feedback merely has a supportive task.
Hence, a crude method is used for the quantification of the values of Kp and Kv.
Preferably, low gains are used for the feedback in accordance with the desired compliant
behavior of the manipulator. The proportional gains of joints 2, 3 and 4 are determined on
the heuristic that a 15 degree deflection steady state error is accepted in the stretched most
horizontal position, where the weight of the unknown object has the largest possible effect.
Additionally, the maximum accepted load for the manipulator is assumed for this purpose,
which is set to 2.5 kg (As stated in Section 5-1). The joints 1 and 5 are appropriately scaled
with reference to the gains found for joints 2, 3, and 4. The values for Kv are simply
determined as a fraction of the proportional gain and are to tuned to maintain stability. The
considered values are given in Table 5-2. The same values are used during all experiments to
obtain comparable results.

5-2-2 EKF parameter estimation and model based torque prediction

The equations describing the EKF (see Equations (3-3a) to (3-3f)) are implemented to derive
the linear parameters for the model based description of an unknown object which is attached
to the end effector of the manipulator. To determine the extent to which the EKF is able to
achieve this goal in the presence of significant manipulator model inaccuracies, simulations
are run.
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Table 5-2: PD-Gains used for feedback controller

Kp Kv

axis 1 45 3
axis 2 45 3
axis 3 30 2
axis 4 18 1.2
axis 5 9 0.6

The EKF is evaluated on two separate tasks. First, the parameter estimation is tested.
Subsequently, the ability of the parametric model to accurately describe the error dynamics
is assessed. To gather data for the identification, both simulation are run while following
a reference trajectory ([q(t), q̇(t), q̈(t)]). The proposed identification and control scheme
(without the non-parametric term) is implemented to this end. Feedback is used to manage
the deviations from the desired reference trajectory, where the gains are defined as in Table 5-
2. Object 1 (see Subsection 5-1-2) is attached to the end effector of the true system from t = 0
onwards. The EKF is configured in accordance with the guideline proposed in Subsection 4-
2-2. The tuning is at aimed at achieving rapid convergence during the initial phase of the
simulation, followed by moderate adaptation to obtain a general representation of the linear
parameters. The initial estimate of the linear parameter vector is set zero: w0 = 010×1,
which implies that the controller does not expect an object to be attached to the manipulator.
Furthermore, no time-varying phenomena are introduced in this simulation.

The first simulation is aimed at evaluating the ability of the EKF to identify the relevant
parameters. This is done for two separate cases. First, a true system is used that corresponds
exactly with the estimated model, hence, only the effects of the unknown object are to be ac-
counted for. Subsequently, the true model is considered where inaccuracies and nonlinearities
are added.

Estimates of the first four parameter (m, mcx, mcy and mcz) are displayed over time in
Figure 5-5. It becomes clear that rapid convergence is achieved for all considered parameters.
The estimated related to m and mcx are immediately observable and start converging from
the start of the simulation. mcy andmcz are observed from t ≈ 2 s, and then converge quickly.
For the ideal case, where the true system equals the estimated model, the estimates converge
to their true values. This does not hold true for the realistic case. The discrepancies between
the system and the model are projected onto the linear parameters, which therefore are not
entirely representative of the attached object.

The estimates related to the diagonal entries of the moment of inertia matrix (Ixx, Iyy and
Izz) are displayed in Figure 5-6. This figure clearly demonstrates that not all parameters are
observed during an individual operations. When certain parameters (in this case the estimates
of Ixx and Iyy) are not excited, the estimates remain at their initial values. The parameter
Izz is observable in this simulation and converges to approximately the true value. The
diagonal entries of the state covariance give an indication of the extend to which a parameter
is observed. When a parameter is not excited, its entry in the covariance matrix remains
unaffected. This relation between the parameter estimates and their respective covariance
matrix entries is clearly visible in Figure 5-6.

The second simulation is aimed at evaluating the ability of the parametric model (in combina-
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Figure 5-5: Mass and moments estimates obtained using the EKF. The identification is compared
for the ideal case and realistic case, where the realistic case takes modeling errors into account.
The ideal case assumes perfect knowledge. The estimates for the realistic case do not converge
to the true object parameters due to the influence of the modeling errors.
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Figure 5-6: Moments of inertia estimates obtained using the EKF. The parameters Ixx and Iyy

prove to be only marginally observable and do not fully converge towards their true values. Izz

does converge for both the ideal and realistic case, which also shows in the corresponding entry
of the covariance matrix.
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Figure 5-7: Comparison of torques while using the model based forward control scheme. The
blue line indicates the torques that are required for perfect forward control. The red line represents
torques obtained using the parameters identified by the EKF. The yellow line is obtained when
the true parameters are used. The black dashed line indicates the start of the pose change of the
second and third joints.

tion with EKF parameter estimation) to describe the desired system dynamics. A trajectory
tracking task is executed that is primarily focused on the fourth joint. The angels of the
first and last joint are for this task set to zero. The trajectories for the remaining joints are
depicted in Figure 5-8

Figure 5-7 shows three plots that give insight into the advantages and disadvantages of this
configuration. The first plot shows the torques for the third joint of the youBot arm. A
comparison is made between the required torques, the torques determined with the EKF
estimates and torques determined using the true parameters. It is clear that the EKF identified
parameters do not accurately describe the true object (see Figure 5-5), but do achieve a better
fit than when using the true parameters. This confirms the statement that the EKF can
partly compensate for modeling errors. The second plot in Figure 5-7 compares the required
and estimated torques at the fourth joint from t = 0 s. The EKF estimate initializes at
0 N m, but quickly converges toward the required values. The remaining errors are accredited
to error dynamics that cannot be captured by the parametric model. Finally, the third
plot demonstrates the generalization capabilities of the parametric approach. A trajectory
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Figure 5-8: Reference angels defined for a tracking task. The task is focused on the fourth joint
of the manipulator. The second and third joint transition into a new pose halfway through the
simulation. The first and fifth joint remain unused.

transition occurs at t = 19.5 s (indicated with the black dashed line). The parametric model
does not suffer large losses in accuracy. The remaining errors are again accredited to dynamics
that are not captured by the parametric model.

5-2-3 Torque prediction using GPR

Implementing the GPR framework results in a non-parametric description of the error dy-
namics that are induced by the discrepancies between the true system and estimated model.
A zero-mean GP is used to investigate the capabilities of GPR to accurately describe these
dynamics. Based on the simulation results, decisions are made regarding the specific imple-
mentation of the GPR framework.

The setup of the simulation is similar to the setup used in Subsection 5-2-2. from t = 0 s
forward, object 1 is attached to the end effector of the manipulator. The zero-mean GP is used
to model both the error dynamics, as well as the dynamics related to the unknown object.
Low-gain feedback is used in accordance the desired compliant behavior of the system. The
feedback serves the purpose of guiding the manipulator towards its desired trajectory.

Training the GP is carried out in an online fashion, as is required for the stated research goal
of this thesis. The implementation of online real-time GPR is considered a complex problem
which is treated in many researches (e.g. in [13]). For the simulation it is not required that
the learning is to be carried out in real-time. Consequently, the computation time of the
used training approach is for this simulation not restricted by the chosen sampling time of
the control algorithm.

GPR setup description

The covariance matrix of the GP prior is constructed using the squared exponential covariance
function with a diagonal weighting matrix. The entries on the diagonal can be interpreted
as length-scales. Methods (such as marginal likelihood maximization or cross-validation)
are available for optimizing these hyper-parameters. However, the optimization of these
parameters on the limited amount of available data gathered during operation has not led
the desired performance. Erratic behavior is observed in untrained parts of the state-space.
Consequently, tuning is done manually, where the length-scales are set to values best suitable
for the dynamics at hand.
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Figure 5-9: Comparison of torques while using GPR predictions. The blue line indicates the
torques that are required for perfect forward control. The red line represents torques obtained by
the GPR predictions. The yellow line is obtained when the parametric model is used in combination
with the true object parameters. The black dashed line indicates the start of the pose change of
the second and third joints.

Sparsification is implemented using inducing variables as indicated in Subsection 4-2-3. The
locations of the inducing inputs are often determined with reference to the used sparsification
method. An overview of approaches is given in [29]. Given the occurring issues with the
optimization of hyper-parameters, the flexibility for the location of the inducing inputs is also
reduced. The length-scales considered in the squared exponential kernel limit the placement
of the inducing inputs. Taking this into account, the inducing inputs are for this thesis
defined to be a subset of the acquired measurement data. The subset is defined by using
an equally spaced distribution of the corresponding unique reference trajectory data points.
The variational free energy (VFE) approach is used for approximating the posterior in the
sparse GP framework. Based on [38], this approximation method shows better covariance
estimations, which is deemed relevant for in this research (it reduces the possibility of an
illegitimate system change detection, which is related to Section 4-4). The implementation of
GPR with VFE approximation in Matlab is achieved using the GPML toolbox [36].

Evaluating simulation results

Utilizing the GPR framework, torques are inferred from data that is gathered during op-
eration. Figure 5-9 shows the required torques compared to the torque predictions at the
fourth joint of the simulation manipulator. Predictions of the parametric model with true
linear parameter vector are also depicted. The first plot shows the predictions from t = 0 s to
t = 19 s. The predictions based on the GP are clearly not accurate during the initial phase of
the tracking task. However, when more data is gathered, the predictions become more similar
to the required torque.

Master of Science Thesis N.L.D. Marck



42 Evaluation

0 2 4 6 8 10 12

Time [s]

-6

-4

-2

0

2

4

T
or

qu
e 

[N
m

]

Torque applied at joint 4

required SGPR EKF

14 16 18 20 22 24 26 28

Time [s]

-6

-4

-2

0

2

4

T
or

qu
e 

[N
m

]

Torque applied at joint 4

Figure 5-10: Comparison of torques while using GPR predictions in combination with EKF
parameter identification. The blue line indicates the torques that are required for perfect forward
control. The red line represents torques obtained using the semi-parametric model (here referred
to as SGPR) for predictions. The yellow line is obtained when only only the parametric model
is used in combination with the EKF identified parameters. The black dashed line indicates the
start of the pose change of the second and third joints.

The second plot of Figure 5-9 shows the application of the GP attempting to predict torques
during and after a new part of the state-space is entered. The GP model does not generalize
to unknown parts of the state-space, which drastically impacts the ability of the GP to predict
the required torques at these locations. As a result, predictions tend to drift towards the mean
of the prior. As new data is gathered the predictions become more accurate again. Clearly,
the availability of data in the considered part of the state-space is vital to the accuracy of the
torque predictions.

5-2-4 Combined GPR with EKF parameter estimation

From the simulation results presented above, it is concluded that the parametric RBD model
in combination with the parameter estimation from the EKF describes the true system accu-
rately as long as the error dynamics can be captured by the parametric model. The method
shows good generalization capabilities. A non-parametric approach is well suited to deal with
unmodeled dynamics. In the following simulation, the semi-parametric scheme is used. The
primary motivation for combining the parametric and non-parametric methods is to benefit
from the opportunities presented by both individual methods. The settings used for the EKF
and GPR implementations are identical to the settings used in the previous experiments.

In the first plot of Figure 5-10, the simulation is again initialized with no knowledge of the
linear parameters. Furthermore, no data is available for the GP at t = 0 s. Comparing
Figure 5-10 to Figure 5-9, it is clear that the the semi-parametric method provides a more
accurate description compared to the GPR. The linear parameters that are identified by the
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Figure 5-11: Comparison of modeling methods based on the torque prediction RMSE. Results
are obtained on initialization and generalization properties.

EKF give shape to the mean function of the GP, which ensures fast convergence of the torque
predictions towards the required torques. The nonlinearities that cannot be modeled by this
parametric part are initially compensated for by the feedback term, after which the GP is
trained on the measured data and is able to describe these nonlinearities independently. The
second plot in Figure 5-10 shows the capability of the used scheme to deal with a transition
in the followed trajectory. Comparing Figure 5-10 to Figure 5-9 again, it is evident that the
semi-parametric model gives far better generalization capabilities.
The included figures are useful to configure the GP and EKF for identification, training
and prediction. However, in order to quantitatively test the effectiveness of the combined
approach, an additional experiment is proposed. The goal of this experiment is to compare the
combined approach to the individual approaches on the three criteria specified in Chapter 4:
learning speed, modeling accuracy and generalization capabilities.
Because all approaches require online learning to reach their full potential, the control scheme
from Figure 4-2 is used here. The most relevant performance measure for the considered
research goal is the difference between the required torques and the predicted torques. Al-
ternatively, the difference between the desired and actual angular position of the controlled
system can be used as a measure to quantify the tracking performance.
The experiment is constructed to allow for the three criteria to clearly be observed from
the results. The experiment is therefore divided into an initialization part and a generaliza-
tion part. For the initialization, a single trajectory is tracked four times successively and the
torque prediction and joint position errors are determined. Subsequently, using the knowledge
gained during this first trajectory, a generalization run is executed on a different trajectory.
Comparing the data from the two parts shows the degree to which the considered methods
meet the set criteria. To ensure independence of the order in which the different trajecto-
ries are used, each trajectory is used for both initialization and generalization. Applying
this approach for three trajectories, results from three initialization and six generalization
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Figure 5-12: Comparison of modeling methods based on the angular position RMSE. Results
are obtained on initialization and generalization properties.

experiments are gathered (each trajectory can be used twice for generalization). The root-
mean-square error (RMSE) of the angular position and prediction torques are subsequently
averaged to obtain the final results.

Focusing on the experiment results displayed in Figure 5-11, it is clear that the parametric
model with EKF parameter estimation gives the best results for initialization. GPR cannot
give accurate predictions during the first iteration. The semi-parametric GPR (or SGPR for
short) remarkably does not initialize as well as expected considering that, in the absence of
data, the EKF determined mean is used. This result is likely explained by the early inaccurate
data. Apparently, the SGPR predictions are based on this disruptive data where it would
have been more beneficial if the EKF mean was followed. The iterations two to four show
a strong improvement for both GP methods. The EKF only improves slightly after the first
iteration.

Continuing on the results regarding the generalization, is seen that the GPR description has
improved somewhat compared to the first iteration during the initialization phase. Some of
the previously gathered data has apparently been reused for this trajectory. The EKF Does
not suffer from changing the trajectory and remains approximately equally accurate. The
SGPR prediction behaves more predictable in this case, where it now scores approximately
equal to the EKF prediction. Both GP approaches prove to give accurate predictions on the
later iterations, but the SGPR method has the upper hand due to its faster convergence.

It can be concluded that the semi-parametric GPR method scores high on accuracy and
learning speed and its generalization capabilities are mainly determined by the ability of the
parametric mean to accurately describe relevant the dynamics.

Finally, the tracking performance is shortly discussed. Figure 5-12 shows the RMSE of the
angular positions. These results are obtained from the same data as is used for Figure 5-11.
Taking a closer look, the individual results, a very similar pattern can be observed in the data,
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as might be expected. However, in this experiment, the three forward control approaches can
be compared with a feedback controlled setup. Using the forward control term clearly pays
off when using low-gain feedback.

5-3 Object detection using the extended Kalman filter

The results in Section 5-2 show the ability of the proposed scheme to effectively meet the
performance criteria stated in Chapter 4. The unknown object is included in the system
dynamics directly during the simulation initialization. The detection of system changes was
not considered in these simulations. The model based detection scheme discussed in Subsec-
tion 4-4-2 is evaluated in this section.

The considered switching scheme is able to distinguish between error dynamics that are
induced by the instantaneous system changes and error dynamics that are induced by errors
in the manipulator model. This is achieved by the implementation of a secondary EKF that
uses a stationary state covariance matrix that is fixed to equal the initial state covariance P 0.
Hence, during the initialization phase, the estimates provided by this EKF show a similar
response compared to the EKF used for the parametric forward control term. Whereas the
primary EKF converges to steady parameters with a slow adaptation rate, the second EKF
retains its rapid adaptation capabilities.

Based on the torque prediction errors obtained through both EKFs, the detection measure
is computed. A moving average filter is used to decrease the influence of sporadic peaks in
the error signals. The torque prediction errors corresponding to both EKFs are displayed
in Figure 5-13a. In this figure it is visible that the errors follow a similar trajectory that
is induced by the errors in the manipulator model. When the system change occurs (by
changing from object 1 to object 2, see Table 5-1), the error increases significantly when
using the converged parameter set, whereas the fast adapting parameter set causes a smaller
prediction error. The detection measure is shown in Figure 5-13b. Even though a delay is
introduced by filtering the signals and the temporal behavior of the EKF, a clear indication
for the system change is obtained.

By tuning the α-parameter and setting an appropriate threshold, the detection measure is
used to force a switching event. A simulation is run where sequentially the three objects are
attached to the manipulator (first object 3, then object 1 and then object 2 ). Figure 5-14
shows the first four parameters from the linear parameter vector. It can be observed that
the parameters converge toward a steady configuration (identical to the behavior shown in
Figure 5-5). When the system change has occurred, the detection triggers the switching
event. In this simulation, the state covariance matrix of the EKF is reset to stimulate fast
convergence towards the new parameters. Alternatively, one might also adopt the values from
the fast adapting EKF, but this results in abrupt changes in the torque predictions used for
control. The detection after the second change shows a slightly longer delay as compared to
the first change. This can be explained by the fact that the difference in mass is relatively
small. The detection may in this case be less evident than for objects that are less similar.
Note that for even more similar objects, the detection may fail and overlook the system
change. If so, the prediction errors are marginal and the change may effectively be dismissed
as a gradual system change.
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Figure 5-13: Torque predictions errors and detection measure during a system change occur-
rence. When the system change occurs (black dashed line), the prediction errors show a diverging
response. This effect is captured in the detection measure.

0 5 10 15 20 25 30 35

Time [s]

0

2

4

[k
g]

Estimate of: m
true EKF estimate

0 5 10 15 20 25 30 35

Time [s]

-0.1

0

0.1

0.2

[k
g*

m
]

Estimate of: m*c
x

0 5 10 15 20 25 30 35

Time [s]

0

0.05

0.1

0.15

[k
g*

m
]

Estimate of: m*c
y

0 5 10 15 20 25 30 35

Time [s]

-0.2

0

0.2

0.4

[k
g*

m
]

Estimate of: m*c
z

Figure 5-14: Four entries from the linear parameter vector during an operation with occurring
system changes. The true system changes are observed by looking at the black lines. The red
dashed lines indicate when a switching event is triggered.
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Chapter 6

Conclusions and recommendations

This thesis provides an approach for identifying the dynamics of a robot manipulator which
is subjected to both model uncertainties as well as (instantaneous) system changes. This
is achieved by using an extended Kalman filter (EKF) to identify parameters of the rigid
body dynamics (RBD) model, in combination with the data driven non-parametric Gaussian
process regression (GPR) framework. The approach describes the inverse dynamics of the
considered system. Instantaneous system changes can be detected using EKF parameter es-
timates. Conclusions can be drawn with respect to the validity, practicality, and relevance
of the proposed approach. These conclusion are found in Section 6-1. In Section 6-2, recom-
mendations are given for future research.

6-1 Conclusions

Various industries have shown an increasing interest in robot manipulators. This interest
also exists for manipulators that are designed as lightweight collaborative devices. These
innovative types of manipulators are programmed to cooperate with their operator and may
include compliant joints or actuators to increase safety. Having accurate knowledge of the
system’s dynamics has beneficial effects regarding control purposes, but obtaining an accurate
description is made difficult by these innovative joints and actuators. High payload-to-weight
ratios further increase the influence of exogenous alterations on the device.

The research goal of this thesis is aimed at constructing a method that can deal with uncertain
system dynamics and instantaneous time-varying phenomena. To this end, a semi-parametric
approach is suggested in Chapter 4, where a parametric description is used to adapt rapidly
towards expected changes in the system dynamics. In addition, the non-parametric descrip-
tion is used to deal with unmodeled dynamics, which cannot be compensated for by the
parametric part. The approach is implemented in an online fashion to deal with these (in-
stantaneous) time-varying phenomena. Simulations are run to test the capabilities of the
constructed approach. Results of these simulations are included and discussed in Chapter 5.
Based on the results and the process to obtain these results, several conclusions are drawn.
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Using a semi-parametric approach to derive the dynamic relations of an uncertain
system in a time-varying environment has a positive effect on modeling accuracy,
learning speed and generalization capabilities

The three criteria that are used to test the capabilities of the semi-parametric ap-
proach are the modeling accuracy, learning speed and the extent to which the dynamics
description generalizes towards different parts of the state-space. Simulation results
in Section 5-2 show that, of the three considered approached, the semi-parametric ap-
proach is the only approach that achieves good performance on all three criteria.

Using a model based description of an object at the end effector has beneficial
effects on the accuracy of the obtained dynamic relations

The uncertainties that are present in the manipulator model may partly be compen-
sated for by the parameters that are used to identify the object attached to the end
effector. These parameters are only locally valid, but are updated over time, resulting
in a parametric description which becomes more accurate as the system remains longer
in a certain part of the state-space.

Instantaneous system changes can be detected using a pair of EKFs that use fast
and slow adaptation rates for the identification of a linear parameter vector

The torque prediction errors obtained when using the two separate parameter vector
estimates show a diverging response when a system change has occurred. This effect is
captured in a detection measure which is used to trigger a switch event.

The practicality of an online trained GPR for the application of real-time robot
control is questionable

Although a considerable amount of research is performed in this field, the applica-
tion of online GPR is considered to be the least robust element of the proposed learn-
ing scheme. The GPR framework requires a lot of decision making, such as defining
the covariance function, hyper-parameters, and possibly optimization and sparsification
schemes. These decisions have a significant influence on the performance of the learn-
ing scheme and the performance may vary between tasks. Obtaining a generally well
performing setup requires a considerable amount of effort, but yields no guarantees.

6-2 Recommendations for future research

With reference to the simulation results and the conclusions that are drawn, a number of
recommendations are formulated and are listed below.

Decrease the amount of heuristics used in the described approaches
Both the EKF as well as the GPR framework currently require decision making which
is in this report mainly dealt with through tuning of the relevant parameters. The same
holds for the method used for system change detection. Tuning these parameters is
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a time-consuming activity and presumably yields non-ideal and non-repeatable perfor-
mance. Future research may lead to a more strict and ideal implementation of the used
methods.

Investigate the possibility for hyper-parameter optimization in this framework
The hyper-parameters of the GPR are manually set in this thesis (which contributes
to the heuristics mentioned in the previous recommendation). Hyper-parameter opti-
mization can be used to find hyper-parameters that increase the accuracy of the torque
predictions. However, no desirable results where obtained when predicting on data that
was not used for the optimization. Further research on this topic in combination with
the methods proposed in this thesis is recommended.

Extend the proposed detection method
In the current method, the system change detection is focused on detecting in parts of
the state-space where no data is available. In parts where data is available it is preferred
to infer system changes based on the GPR framework. Investigating the possibility to
combine both approaches for detection is suggested. This may lead to a more general
framework and possibly better detection capabilities in the transition area between
known and unknown parts of the state-space.

Apply the proposed methods on a real manipulator
The modeling errors used in simulation may differ from the errors observed on a real
manipulator. Results obtained from experiments on a real setup may indicate further
areas for improvement. Preferably, a manipulator is used that fits the described char-
acteristics mentioned in the introduction and that allows for low-level control.

Investigate how force sensor data can be utilized in this framework
In the setup considered for this thesis, the gathered data consists of applied torques
and angular positions, velocities and accelerations. The angular positions are obtained
through sensor measurements. Some robot devices are equipped with load sensors. Such
sensor data may influence how best to implement the approaches proposed in this thesis.
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Appendix A

Mathematical definitions

Alternative notation for linear operations

a =

a1
a2
a3

 , b =

b1
b2
b3

 , L =

L11 L12 L13
L12 L22 L23
L13 L23 L33


While working with cross products, the following transformation matrix is proposed:

a× b =

a1
a2
a3

×
b1
b2
b3

 =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


b1
b2
b3


a× b = S×(a) b = −aS×(b) (A-1)

Additionally, to transfer the six unique entries of a symmetric 3×3 matrix into a 6×1 vector,
a transformation as in Equation (A-2) is applied.

La =

L11 L12 L13
L12 L22 L23
L13 L23 L33


a1
a2
a3

 =

a1 a2 a3 0 0 0
0 a1 0 a2 a3 0
0 0 a1 0 a2 a3




L11
L12
L13
L22
L23
L33


La = SI(a)L′ (A-2)

Sigmoid function definitions

Boundary conditions on a parameter vector are applied by transforming the state through a
sigmoid function.

Master of Science Thesis N.L.D. Marck



52 Mathematical definitions

The true state is function of the transformed state with the upper bound b+ and lower bound
b−. The slope of the function is defined through c.

x = Sig(x′) = b+ − b−

1 + e−cx′
(A-3)

The transformed state is found through the inverse sigmoid function with the same bounds.

x′ = Sig−1(x) = ln(b+ − x)− ln(x− b−)
−c

(A-4)

The derivative of the sigmoid function with respect to the transformed state is written as:

∂ Sig(x′)
∂x′

= c(b+ − b−)ecx′

(ecx′ + 1)2 (A-5)
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Appendix B

Description of simulation manipulator

The manipulator used in the Matlab simulations is based on the Kuka youBot. The kinematic
and dynamic parameters are loosely based on the parameters specified in [33]. The values
used in this appendix are all directly related to the values used for the implementation in the
Robotic toolbox in Matlab [35].

The tables displayed below give the values used for the rigid body dynamics (RBD) description
in this report. The values that have been adapted to represent modeling errors are indicated
in blue. All values are displayed with si-units.

Table B-1: DH-parameters as used for the estimated model

α a θ d
axis 1 −90◦ -0.034 0 0.147
axis 2 0 0.155 −90◦ 0
axis 3 0 0.135 0 0
axis 4 90◦ 0 90◦ 0
axis 5 0 0 0◦ 0.171

Table B-2: DH-parameters as used for the true system

α a θ d
axis 1 −90◦ -0.034 0 0.147
axis 2 0 0.155 −95◦ 0
axis 3 0 0.135 0 0
axis 4 90◦ 0 85◦ 0
axis 5 0 0 5◦ 0.171
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Table B-3: Motor, gear and joint parameters as used for the estimated model

Jm R B TC

axis 1 13.91 · 10−6 156 1 · 10−4 0
axis 2 13.91 · 10−6 156 1 · 10−4 0
axis 3 13.57 · 10−6 100 1 · 10−4 0
axis 4 9.32 · 10−6 71 1 · 10−4 0
axis 5 3.57 · 10−6 71 1 · 10−4 0

Table B-4: Motor, gear and joint parameters as used for the true system

Jm R B TC

axis 1 13.91 · 10−6 156 1 · 10−4 × 1.2 0
axis 2 13.91 · 10−6 156 1 · 10−4 × 1.2 0
axis 3 13.57 · 10−6 100 1 · 10−4 × 1.2 0
axis 4 9.32 · 10−6 71 1 · 10−4 × 1.2 0
axis 5 3.57 · 10−6 71 1 · 10−4 × 1.2 0

Table B-5: Link parameters as defined for the estimated model

Link mass [kg] Center of mass [m] Link inertia [kg m2]

axis 1 0.139
[
0.015 0.500 −0.015

]
diag(

[
0.006 0.003 −0.006

]
)

axis 2 1.318
[
−0.041 0.000 0.020

]
diag(

[
0.0006 0.003 0.003

]
)

axis 3 0.821
[
−0.030 0.000 −0.010

]
diag(

[
0.0006 0.002 0.002

]
)

axis 4 0.769
[
0.000 0.015 0.054

]
diag(

[
0.0001 0.0001 0.0001

]
)

axis 5 0.091
[
0.000 0.000 −0.113

]
diag(

[
0.0002 0.0002 0.0001

]
)

Table B-6: Link parameters as defined for the true system

Link mass [kg] Center of mass [m] Link inertia [kg m2]

axis 1 0.139×1.1
[
0.015 0.500 −0.015

]
diag(

[
0.006 0.003 −0.006

]
)×1.2

axis 2 1.318×1.1
[
−0.041 0.000 0.020

]
diag(

[
0.0006 0.003 0.003

]
)×1.2

axis 3 0.821×1.1
[
−0.030 0.000 −0.010

]
diag(

[
0.0006 0.002 0.002

]
)×1.2

axis 4 0.769×1.1
[
0.000 0.015 0.054

]
diag(

[
0.0001 0.0001 0.0001

]
)×1.2

axis 5 0.091
[
0.000 0.000 −0.113

]
diag(

[
0.0002 0.0002 0.0001

]
)
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Appendix C

Simulation figures

0 5 10 15 20 25 30 35

Time [s]

-0.1

-0.05

0

0.05

T
or

qu
e 

[N
m

]

Torque applied at joint 1

required EKF

0 5 10 15 20 25 30 35

Time [s]

-15

-10

-5

0

5

T
or

qu
e 

[N
m

]

Torque applied at joint 2

0 5 10 15 20 25 30 35

Time [s]

-10

-5

0

T
or

qu
e 

[N
m

]

Torque applied at joint 3

0 5 10 15 20 25 30 35

Time [s]

-5

0

5

T
or

qu
e 

[N
m

]

Torque applied at joint 4

0 5 10 15 20 25 30 35

Time [s]

-0.5

0

0.5

1

T
or

qu
e 

[N
m

]

Torque applied at joint 5

Figure C-1: Plots related to Subsection 5-2-2: Torques required for perfect tracking compared
to the torques applied through the control action with EKF parameter identification
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Figure C-2: Plots related to Subsection 5-2-3: Torques required for perfect tracking compared
to the torques applied through the control action specified by GPR predictions
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Figure C-3: Plots related to Subsection 5-2-4: Torques required for perfect tracking compared to
the torques applied through the control action specified by GPR predictions with EKF parameter
identification
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Figure C-4: Plots related to Section 5-3: Torques required for perfect tracking compared to the
torques applied through the control action based on EKF predictions. The Black dashed lines
indicate instantaneous system changes.

N.L.D. Marck Master of Science Thesis



Bibliography

[1] International Federation of Robotics, “Executive Summary World Robotics 2016 Indus-
trial Robots.” http://www.ifr.org/industrial-robots/statistics/, 2016.

[2] R. McCutcheon, R. Pethick, B. Bono, and M. Burak, “The New hire: How a New Genera-
tion of Robots is Transforming Manufacturing.” http://www.pwc.com/us/en/industrial-
products/publications/next-manufacturing-robotics.html, 2014.

[3] B. Brumson, “Unique Robotic Applications.” http://www.robotics.org/content-
detail.cfm/Industrial-Robotics-Industry-Insights/Unique-Robotic-
Applications/content_id/2572, 2011.

[4] T. M. Anandan, “The Business of Automation, Betting on Robots.”
http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/The-
Business-of-Automation-Betting-on-Robots/content_id/6076, 2016.

[5] M. Bélanger-Barrette, “Collaborative Robot Ebook: Sixth Edition.”
http://blog.robotiq.com/collaborative-robot-ebook, 2015.

[6] T. M. Anandan, “The Realm of Collaborative Robots: Empowering Us in Many Forms.”
http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/The-
Realm-of-Collaborative-Robots-Empowering-Us-in-Many-Forms/content_id/4854,
2014.

[7] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and Control. New
York: John Wiley and Sons, 2006.

[8] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model Learning with Local Gaussian Pro-
cess Regression,” Advanced Robotics, vol. 23, no. 15, pp. 2015–2034, 2009.

[9] G. A. D. Lopes, “Control Methods for Robotics - SC4240TU, Lecture slides.”
http://www.dcsc.tudelft.nl/ sc4240tu/index.html, 2015.

[10] R. Ham, T. Sugar, B. Vanderborght, K. Hollander, and D. Lefeber, “Compliant Actuator
Designs,” IEEE Robotics & Automation Magazine, vol. 16, no. 3, pp. 81–94, 2009.

Master of Science Thesis N.L.D. Marck



60 Bibliography

[11] B. Vanderborght, B. Verrelst, R. V. Ham, J. Naudet, J. Vermeulen, D. Lefeber, and
F. Daerden, “LUCY, a Bipedal Walking Robot with Pneumatic Artificial Muscles,”
Mechatronics, 2004.

[12] K. R. Corporation, “LBR iiwa.” https://www.kuka.com/en-us/products/robotics-
systems/industrial-robots/lbr-iiwa, 2017.

[13] J. Schreiter, D. Nguyen-Tuong, and M. Toussaint, “Efficient Sparsification for Gaussian
Process Regression,” Neurocomputing, vol. 192, pp. 29–37, 2016.

[14] A. S. Polydoros and L. Nalpantidis, “A Reservoir Computing Approach for Learning
Forward Dynamics of Industrial Manipulators,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 612–618, 2016.

[15] M. Haruno, D. M. Wolpert, and M. Kawato, “Mosaic Model for Sensorimotor Learning
and Control.,” Neural computation, vol. 13, pp. 2201–2220, 2001.

[16] G. Petkos, M. Toussaint, and S. Vijayakumar, “Learning Multiple Models of Non-Linear
Dynamics for Control under Varying Contexts,” in International Conference on Artificial
Neural Networks, 2006.

[17] V. Joukov, V. Bonnet, G. Venture, and D. Kulić, “Constrained Dynamic Parameter
Estimation using the Extended Kalman Filter,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3654–3659, 2015.

[18] D. Ruppert, M. Wand, and R. Carroll, Semiparametric Regression. New York: Cam-
bridge University Press, 2003.

[19] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational Space Control:
A Theoretical and Empirical Comparison,” International Journal of Robotics Research,
vol. 27, no. 6, pp. 737–757, 2008.

[20] A. De Luca, “Robotics 2: Dynamic model of robots: Analysis, properties, ex-
tensions, parametrization, identification, uses.” http://www.diag.uniroma1.it/ delu-
ca/rob2_en.php, 2015.

[21] J. Peters and D. Nguyen-Tuong, “Model Learning for Robot Control : A Survey,” Cog-
nitive Processing, vol. 12, no. 4, pp. 319–340, 2011.

[22] M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares
Approach. New York: Cambridge University Press, 1 ed., 2007.

[23] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization and Beyond. Cambridge, MA: MIT-Press, 2002.

[24] S. Vijayakumar and S. Schaal, “Locally Weighted Projection Regression: An O(n) Algo-
rithm for Incremental Real Time Learning in High Dimensional Space,” in International
Conference on Machine Learning, pp. 1079–1086, 2000.

[25] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Massachusetts
Institute of Technology: MIT-Press, 2006.

N.L.D. Marck Master of Science Thesis



61

[26] D. Nguyen-Tuong and J. Peters, “Using Model Knowledge for Learning Inverse Dy-
namics,” in IEEE International Conference on Intelligent Robotics and Automation,
pp. 2677–2682, 2010.

[27] Z. Xue and H. Schwartz, “A Comparison of Several Nonlinear Filters for Mobile Robot
Pose Estimation,” in IEEE International Conference on Mechatronics and Automation,
vol. 1, pp. 1087–1094, 2013.

[28] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Computed Torque Control with Nonpara-
metric Regression Models,” in American Control Conference, pp. 212–217, 2008.

[29] J. Quiñonero-Candela and C. E. Rasmussen, “A Unifying View of Sparse Approximate
Gaussian Process Regression,” Journal of Machine Learning Research, vol. 6, pp. 1939–
1959, 2005.

[30] D. Nguyen-Tuong and J. Peters, “Local Gaussian Process Regression for Real-time
Model-based Robot Control,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 380–385, 2008.

[31] K. S. Narendra and J. Balakrishnan, “Adaptive Control Using Multiple Models,” IEEE
Transactions on Automatic Control, vol. 42, no. 2, pp. 171–187, 1997.

[32] E. Guizzo and E. Ackerman, “How Rethink Robotics Built Its New Baxter
Robot Worker.” http://spectrum.ieee.org/robotics/industrial-robots/rethink-robotics-
baxter-robot-factory-worker, 2012.

[33] M. Florek-Jasińska, “YouBot Detailed Specifications.” http://www.youbot-
store.com/wiki/index.php/YouBot_Detailed_Specifications, 2015.

[34] MATLAB, version 9.1.0 (R2016b). Natick, Massachusetts: The MathWorks Inc., 2016.

[35] P. Corke, “Robotics toolbox version 9.10.” http://petercorke.com/wordpress/toolboxes,
2015.

[36] C. E. Rasmussen and H. Nickisch, “GPML toolbox version 4.0.”
http://gaussianprocess.org/gpml/code/matlab/release/oldcode.html, 2016.

[37] S. Särkkä, J. Hartikainen, and S. Arno, “EKF/UKF toolbox version 1.3.”
http://becs.aalto.fi/en/research/bayes/ekfukf/, 2011.

[38] M. S. Bauer, M. van der Wilk, and C. E. Rasmussen, “Understanding Probabilistic
Sparse Gaussian Process Approximations,” arXiv Electronic Journal, pp. 1–18, 2016.

Master of Science Thesis N.L.D. Marck



62 Bibliography

N.L.D. Marck Master of Science Thesis



Glossary

List of Acronyms

DCSC Delft Center for Systems and Control

DH Denavit-Hartenberg

DoF degree-of-freedom

EKF extended Kalman filter

GP Gaussian process

GPR Gaussian process regression

PD proportional-derivative

RBD rigid body dynamics

RMSE root-mean-square error

VFE variational free energy

List of Symbols

ε(t, q, q̇, q̈) Time-varying (non)linear (non-)conservative forces
ω Angular velocity
Φ(q, q̇, q̈) State dependent regressor

bl Lower sigmoid bound
bs Sigmoid slope
bu Upper sigmoid bound
c Center of mass
C(t, q, q̇) Time-varying Coriolis and centripetal forces
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64 Glossary

e Angular joint position error
eτ Torque prediction error
ė Angular joint velocity error
G(t, q) Time-varying gravity forces
I Moments of inertia matrix
I Identity matrix
J(q) Jacobian
K Kalman gain
Kp Proportional gain
Kv Derivative gain
K∗,∗ Test data auto-covariance
Kx,∗ Cross-covariance between training and test data
Kx,x Training data auto-covariance
K Kinetic energy
M Process noise covariance matrix
M(t, q) Time-varying mass matrix
N Measurement noise covariance matrix
P State covariance matrix
P Potential energy
q Angular joint position
q̇ Angular joint velocity
q̈ Angular joint acceleration
r Cartesian joint position w.r.t. base frame
ṙ Cartesian joint velocity w.r.t. base frame
r̈ Cartesian joint acceleration w.r.t. base frame
v Linear velocity
w Linear parameter vector
X Training input data set
x State
k Time step index
m Mass
s Sampling rate
t Time
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