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Abstract

Gas vesicles, micrometer-scale protein structures that function as bacterial buoyancy providers, encapsulate
gas in a highly optimized manner. While their atomic structure has been elucidated through single-particle
analysis of cryo-EM images, certain structural and functional details remain uncertain. Its biogenesis - the
formation and growth mechanisms - consequently remains elusive. Here we apply automated segmenta-
tion methods originating from cell imaging to cryo-EM images of gas vesicles to analyze the positions of gas
vesicle features in a context-preserving matter. Subsequent whole gas vesicle processing is able to transform
accurate gas vesicle segmentations into high-confidence structural feature location picks and statistics. This
enables the formation of a sizeable data set containing 86k whole gas vesicles, improved resolution 2D class
averages, and the potential for improved structural modeling. Combining high sample number contextual in-
formation enables inference on the dynamical properties of gas vesicle growth. Our findings validate recent
atomic structure propositions and lend support to a stochastic monomer insertion growth model.
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1
Introduction

1.1. Who runs the world? Proteins!
Proteins are a fundamental workhorse of all living things, without proteins no life. Proteins are large, com-
plex molecules that play many critical roles in cellular processes. They do most of the work in cells and are
required for the structure, function, and regulation of the body’s tissues and organs.1

Studying proteins is therefore vital for understanding crucial processes in the fields of medicine, agricul-
ture, and industry among many others. Additionally, a fundamental understanding of biology can have
wide-reaching unforeseen benefits.2 In order to maximize these potentials, atomic model structures of pro-
teins are preferred since atomic resolution understanding is fundamental for understanding protein func-
tion. Given an atomic model, one is able to explain structural properties like hydrophobicity or reaction
potential of a substance. More specifically, structural models are fundamental for drug-based design - know-
ing how a molecule interferes with a drug target is crucial. Such structural models are commonly obtained
through analysis with cryo-electron microscopy (cryo-EM), x-ray crystallography, or nuclear magnetic reso-
nance (NMR) spectroscopy.

Despite significant experimental effort, only a small fraction of the structures of known protein sequences
have been determined.3 This is due to the painstaking effort required to determine a single protein structure.
Given a hard-to-crystallize protein, obtaining an atomic model can be prohibitively challenging. This can
be due to many additional factors such as: hard-to-reproduce native protein physiology imaging conditions,
small protein size, low protein yields, or heterogeneous protein shapes and structures among many other
complicating factors.

Notably, there are also predictive models like Deepmind’s AlphaFold that try to predict protein structure from
its genetic sequence. However, the development of computational methods to predict protein structures has
focused on physical interactions and evolutionary history. As a consequence, these methods have been lim-
ited in their utility for many biological applications due to their lack of accuracy in most cases where a close
homolog has not been solved experimentally.3

1.1.1. Gas vesicles: bacterial ballast tanks
An example of such an elusive protein structure is that of the protein gas cylinder that many aquatic bacteria
express for controlling buoyancy.4 These structures, also referred to as gas vesicles (GVs), are self-assembling
pure protein structures of only a single monomer thick wall, with sizes of around dozens of nanometers in
width, and lengths ranging from tens of nanometers to the micrometer range (Figure 1.1).4

Their design is rigorously dictated by stringent specifications, owing to their primary function of offering
buoyancy. First, the structure has to maximize the ratio of encompassed volume to structural volume, and it
has to be able to be diffusive to gasses but keep water out.6 Additionally, it has to be able to withstand pressure
specific to the organisms they are expressed in. As a result, GVs are micrometer-scale protein structures that

1



2 1. Introduction

Figure 1.1: GV dwarfed by RBC (a) Diagram of human red blood cell (RBC) compared to (b) a 40 nm long gas vesicle (GV) cryo-EM image
cutout. (c) Proposed atomic structure GV model of Huber et al.5

are only several nanometers thick - that despite having a structure surface thickness of one or two peptides
GVs can still resist pressure up to several bar.7

Given that these buoyancy constraints are only varying in the amount of pressure the GVs have to sustain
their structure is highly conserved across species. Generally, only the widths of the GVs tend to vary signifi-
cantly between species since this has the most effect on the pressure resistance of the structure.4 Their main
protein subunits GvpA2 (which we from here on refer to by the name of its more often referenced homolog
GvpA) and GvpC make up the shell and outer support structure, which form strong effective structures simi-
lar to supporting walls and corrugated ribs of canned goods containers respectively.5 GVs are rigid structures
comprised of two outward conal tips that transition into helical cylinders towards the center. The line in the
center at which the two halves meet is called the seam. Along the seam Huber et al propose that a point exists
at which the top helix transitions to the bottom helix through polarity reversal of the monomer insertions,
this location is coined the polarity reversal point (PRP).5 Besides being widely present protein structures with
unique features, GVs are also interesting as potential acoustic reporters for ultrasound imaging.8

GVs are difficult to image using crystallization due to their odd physiology - heterogeneous in widths, lengths,
tip shape, and PRP position. Consequently, conventional structure determination methods were for a long
time not sufficient to resolve an atomic structure, despite intensive efforts.4, 9, 10 Moreover, this heterogeneous
appearance also gives issues for structural reconstruction in conventional single-particle-analysis (SPA) meth-
ods.11, 12

1.2. Cryo-EM: the gold standard for structure determination of heteroge-
neous macromolecules

With the maturation of cryo-EM hardware and software, 3D volumes and corresponding de novo atomic reso-
lution structures (<4Å) can now be reliably resolved for a large range of sizes and types of molecular biological
structures (e.g. viruses, membrane proteins, RNA or DNA assemblies).13 Significant improvements in imag-
ing capabilities are in part possible due to the maturation of direct electron detector device (DDD) sensors,
ever-increasing computational capacity and advancements in data processing software.11 It is therefore that
cryo-EM is the current gold standard for resolving atomic-resolution structures of heterogeneous difficult-
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Figure 1.2: Cryo-EM SPA Workflow Diagram showing main steps in cryo-EM Single Particle Analysis (SPA) workflow. Sample prepara-
tion; isolation of particles and subsequent cryogenic plunge freezing of imaging grid. Image acquisition; electron beams generate 2D
projections of particles, seen as contrast on the image. Image processing; individual particles segmented and extracted from images,
aligned to orientation of prior 3D particle shape, generate 2D class average for back projections improvement of 3D model. Progressive
iteration of particle alignment and 3D model refinement towards the final atomic model. Adapted from Akbar et al.18

to-crystalize macromolecules.14 Given that many functional proteins (see GVs) fall in this category, cryo-EM
presents a reliable and effective way of resolving this important set of proteins.15 This efficacy is reflected in
the exponentially increasing number of cryo-EM-resolved protein maps.16, 17

Most maps are obtained through SPA, a method consisting of several key stages. First, the sample prepara-
tion phase involves protein purification. This often involves expressing the protein of interest through the
insertion of a DNA vector in a suitable host organism like E . Coli . The cells are then lysed and often sub-
jected to a pipeline of filtering through means of size exclusion, elution, or other separation strategies. The
resulting isolated protein sample is then blotted onto an imaging grid. This imaging grid most often consists
of non-magnetic materials like copper, gold, or carbon that form a support structure that does not deflect the
electrons. The sample is then subjected to cryogenic plunge freezing. A process that cools so rapidly that no
crystallization of water molecules can occur, preserving the sample in a near-native state.

The subsequent stage is image acquisition, where electron radiation interacts with the sample to generate
two-dimensional (2D) projections of the particles onto the microscope detectors. Combinations of inter-
acting and non-interacting electrons produce mostly phase contrast on the image plane that represents the
effective electron-interacting density of the sample. Downstream this information is translated into a density
map and through subsequent fitting an atomic resolution structure of the particle of interest.

Following the acquisition, image processing is undertaken. During this phase, the images are corrected for
any drifting of the stage as a consequence of external vibrations or electron interactions among other factors.
This process is called motion correction and is possible due to the generation of so-called movies by the mi-
croscope. This involves taking images at a high refresh rate. These movies can then be used to estimate the
stage drift in between images and subsequently perform motion correction.

Additionally, the images are corrected for the influence of the contrast transfer function (CTF) of the electron
signal. The CTF represents the degree of modulation and attenuation of the image signal as a function of
spatial frequency. Changes in the CTF are a result of variations in the effective defocus, aberration of the mi-
croscope lens, and differences in ice or particle thickness. These values tend to drift throughout acquisition
and within images. Additionally, the defocus is varied on purpose to cover separate parts of the Fourier space
that the CTF would otherwise nullify. Covering the full spatial frequency range can be used for improved
structural modeling. Overall, compensation for the CTF is crucial for resolving atomic resolution structures.

CTF correction involves estimating the parameters of the CTF, such as the defocus value and astigmatism, for
each image (subsection). These parameters describe how the electron waves are phase-shifted and attenu-
ated as they pass through the sample and reach the detector. The estimation is typically done by analyzing
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the power spectrum of the image, which is obtained by converting the image from the spatial domain to the
frequency domain using a Fourier transformation.

Once the parameters are estimated, they are used to computationally reverse the effects of the CTF on the
image. This involves adjusting the amplitudes of the Fourier components in the image based on the CTF pa-
rameters to correct for the attenuation.

Individual particles are picked and extracted from the motion and CTF-corrected images. The extracted par-
ticles are then clustered for image similarity. The resulting classes are averaged to create 2D class averages.
Given that the image noise is stochastic, averaging over many images will increase the signal-to-noise ratio
(SNR).

These higher SNR 2D class averages are then used to filter the particle set for erroneous outliers and subse-
quently use this set to align the individual particles to the orientation of an initial three-dimensional (3D)
particle shape (volume). This can be understood as a Bayesian optimization problem where we incorporate
prior information on the particle shape and smoothness to solve the orientation parameters of the image
that best matches a projection of the 3D particle shape. To then subsequently, obtain an improved estimate
of the volume with these orientation parameters using backprojection.19 In the case of an established par-
ticle volume reconstruction program called CryoSPARC, this involves performing expectation-maximization
(EM), where the expectation step applies a branch and bound algorithm to find orientation parameters.20

The maximization step is done using stochastic gradient descent (SGD) towards the volume that best ex-
plains these parameters. The improved volume can then be used to once again obtain improved orientation
parameters, this is done until an estimate of the volume converges (Figure 1.2).

1.3. What do we know?
The GV shells atomic structure has only recently been resolved using cryo-EM SPA (3.2 Å resolution), resolving
a model that consists of GvpA subunits (∼7 kDa) that make up the core.5 However, some crucial aspects re-
main uncertainly mapped. More specifically, the precise structure of the GV tips and proposed PRP point are
unresolved in 3D and only inferred indirectly through model building and inference from 2D views. This is a
consequence of their difficult-to-model structure (heterogeneous in location for the PRP and heterogeneous
in appearance for the tip). Additionally, the tip is a rather thin part of the GV compared to the main structure
which means it’s covered by a thicker layer of ice, which in turn decreases the signal and visibility of this point.

Huber et al propose a GV growth model that explains the found structure and fits with the main subunit’s
(GvpA) properties. As is shown in Figure 1.3, the images of GVs can be explained by the proposed model con-
sisting of GvpA subunits. Huber et al propose that GVs form from two cone-like nucleations that meet at the
seam. The GV is then proposed to grow from individual GvpA insertions at the point of the seam where the
two cone helixes meet and the polarity of the helix GvpA structure reverses - the PRP. The structure and the
proposed PRP location additionally offer an explanation for the transition from conical growth of the nucle-
ation cones to cylindrical growth along the center. This growth transition is proposed to happen through an
interplay of GvpA structure and resulting forces when growing at the PRP. This leads to variability in the cone
angle at which the growth transitions due to cylindrical growth offering a lower subsequent energy state than
conical growth.5

The precise mechanism of GV growth is still unclear. Current projections point to growing mechanisms
adding monomers at the PRP, where either symmetric or stochastic expansion is possible. Symmetric when
two opposing monomers are added simultaneously or stochastic when single monomers are inserted ran-
domly. If the symmetric theory were to hold we would expect the seam and PRP always to be located at the
geometric center of the GV.

Both the PRP and the tips of the GV cones have not yet been atomically resolved. This leads to uncertainty in
regard to how GVs nucleate. That is in part hard to predict due to the highly hydrophobic components of the
GvpA monomer, which leads to denaturation when exposed to the environment (cytosol). Additionally, un-
certainty regarding the PRP leads to uncertainty on the precise growth mechanism of GVs. Therefore, we can
affirm that the uncertainties surrounding the biogenesis of GVs, specifically the unclear aspects of nucleation
and growth, stem from the complications that arise when modeling the inherent heterogeneous structure of
GVs using conventional single particle analysis (SPA).
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Figure 1.3: GVs, what do we know? (a) From left to right: A single GvpA monomer (3.2 Å resolution) fitted to the 2D class average of the GV
seam. GV particle from cryo-EM image. Diagrams showing the proposed pseudo atomic GV model and monomer insertion mechanism
at the seam and polarity reversal point (PRP). (b) 2D class average of GV tip, followed by the proposed growing GV mechanism. Starting
with two nucleation cones, and transitioning from conal to cylindrical growth. Adapted from Huber et al.5

1.4. Issues stemming from GV structure (heterogeneity)
For resolving the tips and PRP or to perform inference on biogenesis conventional single-particle cryo-EM
workflows are not applicable because these methods are not able to identify these regions while preserving
contextual information such as the relative position of other points of interest of the same GV. This is a con-
sequence of using conventional direct particle picking, such as the use of cross-correlation with a template.
We can localize these points but contextual information on the GV the point belongs to is lost. Without this
information, it is not possible to infer the location of the point of interest relative to other points of interest
or measures such as the specific GV length or width. Without this information inference on the distribution
and proposed underlying dynamics of PRP positions becomes infeasible.

Additionally, 3D reconstruction of GVs runs into issues using context-free particle picks when performing
structure reconstruction algorithms such as homogeneous or helical reconstruction (these methods assume
a homogeneous or helical structure respectively). This is a consequence of the non-homogeneous GVs struc-
ture and non-perfect helical structure respectively. Particle picks that do have contextual information can
potentially be filtered for having a specific measure (length, width, or cone shape). Additionally, this context
information can be used to validate the accuracy of the found points of interest. Obtaining GV feature-filtered
higher confidence particle picks could result in improved structural modeling. To achieve context-preserving
particle picks we have the need for extraction of individual whole GVs from images, to this end, we require
the segmentation of images into distinct cell areas (instance segmentation).
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Figure 1.4: Cellpose model workflow (a) Input image to be segmented, fed through the Cellpose U-net model to obtain gradient pre-
dictions and a cell probability output. These outputs are combined to produce a gradient map of the segmented cells. (b) U-net model
structure from Cellpose showing four downsample residual layers to extract feature information (style) and four upsample residual lay-
ers to identify features in a location-independent manner. (c) Combined gradient map is used to identify instance segmentation of cells
that result in the Cellpose output masks. Adapted from Stringer et al.21

1.5. Machine learning for robust cell instance segmentation
In the last decade, Machine Learning (ML), more specifically Deep Learning (DL), has found its way across
science and has also provided a solution for the problem of accurate, general-to-specific, reproducible cell
segmentation. A similar issue to cell segmentation is being solved in the field of computer vision, namely,
that of object instance identification.22

Imitating computer vision, the field of biology has found that the use of similar specific DL networks offers
a robust solution to instance cell segmentation. DL methods, specifically those using convolutional neural
networks (CNN) with a U-net architecture, have significantly outperformed other methods in image recogni-
tion tasks.23

Cellpose is a cellular segmentation network that incorporates the established DL methods.24 Cellpose uses
a Residual block U-net architecture to perform instance segmentation of images (Figure 1.4 b). Additionally,
Cellpose incorporates transfer learning with human-in-the-loop capabilities to tailor a network to segment
specific samples.24 Transfer learning involves applying a pre-trained model as the starting point for training
a sample-specific model. Applying a human-in-the-loop approach to transfer learning involves manually re-
annoting outputs generated by our transfer learned model and retraining - reannotating additional images
and retraining until segmentation performance converges. The result is that Cellpose can use a relatively
small number of images per type of cell to train a network.

The U-net model architecture sequentially downsamples and then upsamples the image to create feature
maps (styles), integrating skip connections (Residual blocks) between layers of equal size, and global skip
connections from the image styles. These styles are computed at the lowest resolution and applied to all sub-
sequent computations.

As illustrated in Figure 1.4a, Cellpose takes a 2D image input and outputs three mappings of the input (hor-
izontal/vertical gradient and inside-outside cell predictions). It does this by transformation trough using a
simulated diffusion process that starts from the predicted center of the cell, generating spatial gradients that
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point toward the center. This provides a single normalized mapped flow direction from 0° to 360°.

The gradients are predictions of horizontal and vertical spatial flows for individual cells. Additionally, Cell-
pose predicts whether a pixel belongs to a cell. These predictions are combined to produce a flow field ("Com-
bined gradients" in Figure 1.4).

The combined gradient is then used to create a watershed-like representation with fixed edges at the pre-
dicted not-cell pixel points. The basins of attraction of these points represent the predicted masks. Essen-
tially, each pixel "follows the flow" along the predicted flow fields, converging toward its eventual fixed point.
Lastly, the final masks are created by grouping pixels together based on their convergence to the same fixed
point (Figure 1.4 c). This process ensures that all pixels assigned to a specific mask are related to the same
cellular structure instance.

1.6. Can segmentation of cryo-EM images in a context-preserving manner
inform us on GV biogenesis?

We propose to train a GV-tailored instance segmentation model (Cellpose 2.0) to accurately and robustly
segment GVs from cryo-EM images. These segmented GVs are then extracted and subsequently processed
to extract precise locations of interest (e.g. tips and seam) with corresponding contextual information (GV
length, width, and distance to other points of interest) for answering questions on biogenesis.

Given that the growth mechanism is yet undetermined we want to deduce what kind of insertion growth
model GVs follow. Previous studies support the case for the stochastic model through off-center seam obser-
vations. Therefore, we propose to test the stochastic model, by observing these instances of GVs with seam
positions at distinct locations from the geometric center of the GV structure. Given a large number of these
measurements, we can fit a distribution and subsequently validate if this matches with the expected distri-
bution of this measure.

Additionally, we can numerically estimate the number of monomers per GV half given its width and length.
We then argue that the proposed stochastic growth model can be understood as a binomial elementary ran-
dom walk of a number of steps equal to the number of monomers of a whole GV (each insertion can be un-
derstood as a random walk to the left for the top GV halve and to the right for the bottom half). Therefore we
expect the monomer count difference between monomer halves to follow the distributions associated with
an elementary random walk. Therefore, we expect the seam-center offset (monomer difference) to converge
to a normal distribution with a mean offset of 0 and a standard deviation of the square root of the number of
monomers in the GV.

To obtain this information we will need the locations of tips and seams of whole GVs. These we can use to
determine the ratio between GV halves to subsequently determine the drift away from the center. Then, we
can perform the geometric fitting of the known monomer dimensions to these features to estimate the num-
ber of monomers in a GV. Given these objectives, we strive to answer the following research question

Can we apply context-preserving particle picking to elucidate the growth mechanism of GVs, and can
a stochastic growth model accurately describe their biogenesis as evidenced by the distribution of seam-
center offsets?

To reiterate, this involves using DL-based segmentation for context-preserved picked point-of-interest po-
sitions, possibly enabling the determination of the seam and tip structures. Additionally, precise GV loca-
tion statistics on the seam and tip points could lead to inference on GV biogenesis by validating a stochastic
monomer insertion growth model through analysis of seam-center offset statistics.
To achieve this in a feasible fashion automated instance segmentation is required. To this end, we will make
use of a DL-based generalist cell segmentation package called Cellpose. Cellpose allows systematic identifica-
tion of points of interest which can be subsequently used with template matching to obtain high-confidence
positions of points like the tip and seams.
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The remainder of this thesis discusses the implementation and training of a Cellpose GV model, the com-
ponents of the GV processing pipeline, the theory for validating the proposed stochastic growth model, and
the methods of 3D reconstruction in the Methods in Chapter 2. We present the resulting performance and
output statistics from the GV pipeline with 3D model structure findings in the subsequent Results in Chapter
3. Then the inference on our results in Chapter 4, and lastly, future research recommendations in the Outlook
in Chapter 5.



2
Methodology

2.1. Image processing
Our data set consists of 33k micrographs of GVs originating from B aci l lus meg ater i um imaged with a
300kV Krios G4 E-CFEG Selectris Falcon 4i cryo-EM from the European Molecular Biology Laboratory (EMBL).
The acquisition characteristics are identical to those of Huber et al.5

The motion-corrected movies are provided in .mrc format representing 4096 by 4096 pixels with a 1.518
Å/pixel resolution. For more efficient post-processing the corresponding images are downscaled and con-
verted to a suitable image format. The image type is converted from the output format of the motion-
correction algorithm (.mrc) to a format more suitable for subsequent image processing in Cellpose and down-
stream (.tif). The images are downscaled by binning, which is done why taking a square cutout of the images
around the center of the power spectrum. The resulting images have reduced information in the high spatial-
frequency domain, which should not affect the efficacy of segmentation or point-of-interest picking signifi-
cantly. Cutting at half the original frequency range ’bins’ the images 4 times, reducing the pixel size by 4 and
effectively reducing the resolution and information by the same factor. This lowers storage space require-
ments significantly (16x) while increasing throughput through reduced computational processing costs. The
unbinned images are used only when performing structure determination at the end of the workflow using
CryoSPARC.

To resolve the structure of the GV seam and tips from a given cryo-EM dataset we will need to extract their
exact positions. In a SPA cryo-EM workflow, these points are used to extract these regions of interest (particle
picks). These picks are then often clustered and averaged to create 2D classes, which are then used to filter
out outlier particles and to check the orientations and quality of the particle picks. 3D model building starts
with a rough initial blob-like shape and then all the given input particles are aligned using the projection-
slice theorem. These aligned particles are then used to refine the 3D density through backpropagation.19

Then again, we realign our particles to this refined volume, which in turn can inform an improved 3D model.
We reiterate this procedure until the 3D density reconstruction converges.

Getting the particle pick locations directly from unprocessed data could be done using a reference, however,
conventional methods applying cross-correlation (template matching) do not maintain contextual informa-
tion of the picked points of interest. Consequently, we would not be able to get corresponding features of
interest - e.g. GV length, width, cone angles and distance to other types of points of interest. While it is pre-
cisely this contextual information that can facilitate the analysis of GV biogenesis.

Therefore we propose a GV processing pipeline that involves obtaining an instance segmentation of indi-
vidual GVs using DL-based segmentation (Section 2), and subsequent GV processing, and only then we will
apply template matching of our points of interest using a suitable reference. Performing the analysis in this
way will maintain contextual information and allow for checking of the found location using this context of
the isolated GV.

9
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In order to obtain these high-confidence points of interest we will be formulating an image processing pipeline
to utilize the high-accuracy instance segmentation. The following sections cover the components of this
workflow in order of application.

Figure 2.1: Cellpose GV segmentation hyperparameter influence (a) From left to right: input GV cryo-EM micrograph, Cellpose outputs
- outline, combined gradient and masks for default hyperparameter settings (cell diameter: automatic, cell probability threshold: 0). (b)
Same as in (a), for found optimal hyperparameters as shown in 2.3 (cell diameter: 150 pixels, cell probability threshold: 0).

2.1.1. Accurate GV segmentation
The first step in processing our input data is to obtain a rough idea of the locations of our points of interest
from the accurate segmentation maps. These rough points can then be refined and improved upon to obtain
high-confidence points suitable for inference on structure and biogenesis.

Instance segmentation - the separation of background and individual structure volume - is a suitable method
for obtaining these initial rough estimates. Segmentation can, however, be sensitive to outlier shapes, such
as GVs only partly in the image, or imaging impurities. Additionally, our method has to be robust to varying
widths and lengths of GVs. We find that overlapping GVs and image impurities lead to improperly segmented
GVs in build-in Cellpose models. It is for this reason that we chose to restrict our training set to only contain
segments of non-overlapping and impurity-free GVs. Training with this type of data set significantly improved
model performance.

To achieve the desired accurate robust instance segmentation of GVs we apply transfer learning and the
human-in-the-loop approach of Cellpose 2.0. (Figure 2.2)24

We found that "cyto 2" from the Cellpose 1.0 model zoo offered the best initial GV segmentation performance.
We then trained our custom GV Cellpose model using "cyto 2" by annotating only intact clearly visible GVs
in 60 images. Ignoring difficult-to-annotate GVs (due to impurities or overlapping GVs) and removing bad
segments in this category leads to training the best-performing segmentation model.

Additionally, our custom GV model requires a set of Cellpose hyperparameters ("Channels", "Resample",
"Flow threshold", "Cell probability threshold", and "Cell diameter"). "Cell diameter" and "Cell Probability
Threshold" are found to be of significant influence on segmentation performance. As can be seen, by the



2.1. Image processing 11

Figure 2.2: Cellpose 2.0 transfer learning & human-in-the-loop Diagram of model training workflow for training a GV instance seg-
mentation model using the Cellpose 1.0 model zoo as the pre-trained starting model.21 Subsequent retraining with Cellpose 2.0 using
manually re-annotated outputs iteratively.24

wrongly shaped masks using the default model parameters in Figure 2.1a.

A critical parameter is the "Cell diameter". The models in Cellpose have been trained on images that were
rescaled to all have a uniform diameter. Therefore, Cellpose needs a user-defined cell diameter (measured in
pixels) as input, or it can also estimate the object size on an image-by-image basis. The automated estimate
uses a two-step process that involves generating a "Style" vector from the network. Changing the diameter
can impact the results, potentially causing cells to be either over-split or over-merged. We find that setting a
set value of 150 performs best (Figure 2.3).

Cellpose also takes into account a parameter known as "Resample". This involves running the algorithm on
your rescaled image, where the rescaling factor is determined by the diameter you input or determined auto-
matically. The dynamics can either be run on the rescaled image size (Resample=False) or on the resampled,
interpolated flows at the original image size (Resample=True). The choice between these two options affects
the smoothness of the regions of interest (ROIs) and the speed of the operation. We find the best results by
running with "Resample" set to "True".

Figure 2.3: Cellpose hyperparameter optimisation Heatmap show-
ing mean Jaccard index from running Cellpose on a set of ten GV
micrographs for varying hyperparameters of interest. The Jaccard

index is defined as a pixel-wise IoU(A, B) = |A∩B |
|A∪B | ) - A Cellpose out-

put, B manually annotated ground truth.

Flow threshold is another key parameter. This
threshold restricts the error of the flows for each
mask to ensure that the shapes recovered af-
ter the flow dynamics step are consistent with
real ROIs. By adjusting this threshold, you can
influence the quantity and shape of the ROIs
that are returned. The channel selection is
not of importance since we will be using only
greyscale images and not segmenting any substruc-
tures (nuclei), therefore "Channels" will be set at
[0,0].

Finally, there is the "Cell probability threshold" pa-
rameter. The network predicts a probability for each
cell and pixels that score greater than this parame-
ter value are used to determine ROIs. Tweaking this
threshold allows you to change the number of ROIs
returned, particularly from dim areas. For this value,
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Figure 2.4: GV processing pipeline example steps (a) Input GV micrograph. (b) Cellpose combined gradient output. (c) Cellpose masks
output. (d) Extracted GV. (e) Rotated extracted GV. (f ) Preliminary points-of-interest and statistics from extracted GV.

we found the default value of 0 to work best (Figure 2.3). Once the hyperparameters are optimized we can
segment our dataset. The next step is to use these segments to extract individual GVs for subsequent anal-
ysis. Figure 2.2 illustrates the difference in performance between the default and found optimized Cellpose
hyperparameters.

2.1.2. Standardised formatting of extracted GVs through rotation and centering
In order to extract our GV feature of interest (GV length, width, and cone angles) we perform pre-processing
on the GVs to obtain a standardized extracted GV (cutout) as is shown in Figure 2.4. This can then subse-
quently be used for the analysis of individual GVs. The pre-processing consists of particle extraction and
then subsequent standardization. Extraction is done by multiplying the image with a mask corresponding
to a GV instance segment. Standardization consists of rotating the GV to be upward and centering the GV
in the center of the extracted image. After this pre-processing, we obtain upward-centered extracted GVs to
subsequently extract our features from.

Rotation angle determination
After segmentation and extraction, the first standardization script that is applied to the extracted GVs is the
rotation angle determination method. We find that using the Fourier transform of an extracted cutout allows
computationally efficient, precise, and robust estimation of the rotation angle. This method relies on the
distinct frequency patterns in the power spectrum originating from the repeated structure of the GV cell wall.
For individually extracted GVs this wall will be homogeneously orientated within the image, producing a clear
orientation signal in the power spectrum (Figure: 2.5). Additionally, we can see that the reference does have
a constant inherent contrast signal that does not correlate to the reference input orientation. For this reason,
the center part of the reference stack is blocked out to enhance correlation efficacy.

This method works by extracting a sub-cut around the center of the extracted GV, obtaining the power spec-
trum through the application of a Fourier transform, and then multiplying this spectrum with the spectrum
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of a reference image that is rotated by a rotation angle (α° ). We perform this multiplication for a range of 180
α ° s equally divided between 0° and 180° degrees of rotation. The Fourier spectra multiplication that results
in the highest value (equivalent to real-space correlation) indicates that the input cutout was rotated by the
corresponding angle α° (Figure 2.6).

Figure 2.5: Reference stack Fourier method GV rotation angle (a) Micrograph cutout of chosen reference GV at 0° rotation. (b) Power-
spectrum from applying an FFT to (a). Showing lay lines at angel parallel of GV shell direction. Sample specific contrast information at
the center. (c) Micrograph cutouts and corresponding power spectra for 45° and 120° rotation.

Figure 2.6: Workflow Fourier method GV rotation angle Starting from the input micrograph GV cutout; subsequent cutout around
the center, FFT of the cutout for power spectrum cutout, multiplication of cutout power spectrum with reference stacks constituents,
max sum reference constituent represents best correlation and corresponding index identifies found rotation angle α°, reference match
shows power spectrum from reference stack that best correlates with input - showing angle identifying ley lines in black. Rotated α°
shows the rotated cutout. Output is GV rotated by α°.
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With an obtained rotation angle we can rotate and center the extracted GV to obtain a standardized GV to
subsequently extract feature statistics from. In order to filter out potentially poorly orientated standardized
cutouts we apply some preliminary filtering based on heuristically defined measures. To this end, we define
the following test statistics

Test 1: half_distance =
√

half_dist_x2 +half_dist_y2, (2.1)

Test 2: x_y_ratio = half_dist_y2

half_dist_x2 , (2.2)

both functions find half_dist_(x or y) by taking the distance in the rotated outputs between the center and
the tip or center-left for the y and x distance estimates respectively (in pixels). Test 1 tests that the half length
of the GV is of a certain size, we filter for this since small GVs are harder to correctly estimate the rotation
angle from using this method. Test 2 exploits the knowledge that a correctly orientated GV should have a
reasonably large length-over-width ratio. We find that the combination of these two measures at heuristi-
cally defined cutoff levels produces the best results when testing a sample set of forty curated standardized
extracted GVs. We take a rotated GV as correctly orientated when both these measure score above the heuris-
tically defined limits (100 for Test 2.1, 2 for Test 2.2).

We find that for smaller GVs this method is less accurate and the resulting processed GVs tend to be re-
jected when tested by the previously proposed tests and corresponding cutoff values (Test 1 2.1 and Test 2
2.2) Wrong rotation angel estimation appears to happen because of the curvature of the cell walls around
the center for smaller GVs. This results in a different Fourier spectrum pattern that no longer uniquely iden-
tifies the rotation angle of the GV. To address this problem we apply an additional Fourier method to these
rejected (assumed-to-be-small) GVs. This additional i s_smal l_g v method applies the same Fourier method
but with a reference of a small GV. See Supplementary A for part of the i s_small _g v method reference stack
in Supplementary Figure A.1, and method in Supplementary Figure A.2.

Figure 2.7: Preliminary points-of-interest (a) Proccesed GV (extracted, rotated, and centered) with corresponding preliminary statistics;
width (W), length (L), and cone angel (C). Preliminary points of interest are indicated in the left top in colors [pixel values]. Example
points of interest used for calculating the cone angles are the Tip (purple arrow), Base Top (blue arrow), Base Bot (orange arrow), and
Bottom Tip (red arrow) (b) Preliminary points-of-interest from a single micrograph.

2.1.3. Preliminary points of interest
Within this work, we are interested in resolving and understanding current yet unresolved points of GVs. Our
preliminary points of interest, therefore, include estimations of said points (see Figure 2.7). We focus on the
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seams and tip points (purple and red arrows). Additionally, we extract the points at which the GV structure
transitions from a cone to a helical shape (blue and orange arrows). We do this to be able to obtain an esti-
mate of the cone angles. The preliminary locations of these points are obtained through heuristic approaches
on the standardized cutouts.

The preliminary tips we find by taking the highest and lowest points of the standardized cutout. The prelimi-
nary seam point by taking the left-most and right-most points of the center. We find the end of the cone and
the start of the helical base by tracing the pixel values starting from a tip and measuring when the width stops
increasing for a certain number of steps.

We chose to extract a set of identifying points of interest from GVs to be used for subsequent analysis targeting
to efficiently process GVs and keep output data manageable (Figure 2.7 b). These points can be combined to
extract preliminary estimates of the GV length (L), width (W ), and cone angles (Ctop or Cbot ) (Figure 2.7a).

Figure 2.8: Edge filtering example (a) Cellpose mask output. (b) Result from applying edge filtering to masks from (a).

2.1.4. Filtering outlier segments
We argue that inaccurate segments will be separable from good segments through the application of system-
atic data analysis methods. For this, we apply positional and feature-based filtering.

Using positional information from masks it is possible to filter out GV masks that are on the boundary of the
image and are therefore not showing a whole GV. Incomplete segments are more complicated to systemati-
cally analyze, therefore, filtering them out is preferred. We filter these cutoff GVs by checking the distance of
their preliminary tip and center points to the edges of the image (Figure: 2.8).

Besides incomplete GV views due to image boundaries, inaccurate GV cutouts can also occur due to improper
segmentation as a result of image irregularities. E.g. overlapping GVs, ice crystals obscuring view, and outlier
GV shape that the GV segmentation network cannot accurately segment. Again, these segments are hard to
systematically analyze, and filtering them out is therefore preferred.

To filter out inaccurate segments not at the edge of the image we apply k-means clustering to the prelimi-
nary features statistics obtained from the standardized cutouts. It can be argued that inaccurate segments
will have distinct preliminary statistics and are therefore able to be grouped by k-means clustering. Resulting
clusters are then selected for further processing based on cutout appearance and feature statistics.



16 2. Methodology

Figure 2.9: Template match workflow (a) Reference stack formation showing a subset of the 180 constituents representing rotations
ranging from 0° to 180°. (b) Template match workflow from left to right; Input micrograph is extracted, an example target region (right
seam) is extracted using a preliminary point-of-interest (blue dot), the target is cross-correlated with a constituent of reference stack
(seam stack) corresponding to the rotation angle α°- obtained from applying the Fourier angle method. Then the maximum value in the
resulting cross-correlation map represents our found target (seam) match location (red dot).

2.1.5. Template matching
We require a high confidence level of accuracy if we are to reliably obtain structure statistics and points of
interest. The heuristics methods used to obtain preliminary estimates of these points do not account for
outliers and are not checked for true accuracy, therefore, a more verifiable method for obtaining these data
points is required.

To increase the reliability of the picked points of interest - and subsequent statistics - we apply template
matching through cross-correlation of the preliminary points of interest with a high-confidence structure
reference. We center, scale, and contrast-invert these high-confidence references which are adapted from the
work of Huber et al and constitute a 2D class average of respective points of interest (Figure 2.11).5

The template-matching workflow relies on cross-correlation verifying the location of points of interest to
produce high-confidence estimates. To this end, cross-correlation is used by applying the equivalent of a real
space convolution in the form of a Fast Normalized Cross-Correlation in the frequency domain, as defined
by J.P. Lewis.25 This procedure correlates the input target area (cutout around previously determined pre-
liminary points of interest) and a real space reference stack constituent with a previously estimated rotation
angel α° . Notably, we find that adding Gaussian noise to the masking outside the reference and applying
Gaussian filtering to the target increases correlation performance (Figure 2.9). We propose that Gaussian fil-
tering decreases the image wide contrast gradient which increases the relative contrast between the areas of
interest and their direct neighborhood - increasing correlation performance. Additionally, without the Gaus-
sian noise added to the zero values at the outside of the masked reference, we find that the reference tends to
align to the zero pixel values areas in the input area - decreasing correlation performance.

Due to the high computational cost involved in applying rotations, we avoid directly rotating the target area.
Instead, we compare the target to an image in a rotated reference stack that has already been rotated by a
specific angle. What angle (α° ) from the stack to choose from has been previously determined for the GV
belonging to the target using the Fourier rotation method (Section 2.1.3).

Additionally, the references are also centered around the point of interest for more tractable result interpre-
tation. For the seam and PRP reference, we find the x-axis centering of the references through projection
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Figure 2.10: Template match reference centering (a) Seam
reference from provided 2D class average of Huber et al5 We
indicated the centre of image (green dot) and found centre
seam (red dot). (b) Summation output from projection of (a)
onto the x-axis to find centre point (red brackets). (c) Same as
(a) for a PRP reference. (d) Same as (b) for PRP reference

Figure 2.11: References template matching method (a) Wide
view tip reference. (b) Narrow view tip reference. (c) Seam
reference. (d) PRP reference. All references are previously ob-
tained 2D class averages centred around template marking
points (red dots), scaled to the pixel resolution of the input
data (1.518 Å/px times a binning factor of 4), and have their
contrast inverted to match that of the data.

onto the x-axis, see Figure 2.10. The other centers we pick manually. We also scale the reference to have the
same pixel size as the target images. Finally, we apply contrast inversion to have matching contrast with the
target (Figure 2.11). In order to automatically test the found template match points we propose the following
(heuristically determined) output checks.

Figure 2.12: Template match output testing (a) Tip target match testing. Tip target correlation maps are shown with found tip target
match (red dot). Correlation maps are rotated by rotation angle α° and a horizontal region is cut out (striped red box). These extracted
regions are then subdivided into target match and residual locations (pink box). The highest correlation value in the residual locations
is then compared to the tip target match correlation. (b) Input micrograph for template matching with previously found target locations
and rotation angle α° (c) Seam target match testing. Seam target correlation maps are rotated by rotation angle α°. (d) Test statistics
seam (1) and tip (2). X is defined as the height difference of the seam target locations in the rotated cross-correlation maps. A pixel value
scaled version of X is compared to the distance between GV helical rings (50 Å).
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Testing seam and tip location matches

We test the confidence of the tip positions by applying a heuristically determined method of checking a sub-
selection of the rotated cross-correlation maps for similarly high correlation coefficients (Figure 2.12a).

For testing the confidence of the seam positions we compare the height of the rotated cross-correlation maps
for the seam targets of the two GV sides. This can be argued to be a robust method since within the GV struc-
ture the seam is expected to be at the same height on both sides of the GV (Figure 2.12 c). We take the margin
of error to be the height of one protein helical ring (50 Å).5

Performing these operations in a scalable manner requires sound processing and data storage management.
To this end, and to streamline and make it readily reproducible we use the workflow manager package Snake-
Make.

2.2. Scaling the workflow
A challenging aspect of this method of structure determination is the amount of data that needs to be pro-
cessed in a structured manner, both in terms of storage and computational requirements.

unbinned_mrc/INDEX.mrc

0_bin_and_convert_data_snakemake.py

INDEX_binned.tif

1_segment_snakemake.py

1_segmented/INDEX_segmented.npy

24_get_angle_snakemake.py

2_angles/INDEX_angles.npy 4_is_small_gv/INDEX_is_small_gv.npy

35_procces_rot_cutouts_snakemake.py

3_length_width_cone_angle/INDEX_length_width_cone_angle.npy

5_points_of_interest/INDEX_points_of_interest.npy

6_poi_fig_snakemake.py

6_points_of_interest_fig/INDEX_points_of_interest_fig.png

Figure 2.13: Directed acyclic graph representation of the Snakemake GV processing pipeline Red boxes represent data file paths
with generalized naming conventions as used in Snakemake. Green boxes represent the functions (.py) that process and output data
from and to their respective file paths. The naming convention follows that of the file-storing system as used in the GV Snakemake
pipeline. E.g. storing Cellpose segmentation outputs from applying the "1-segment_snakemake.py" function to files that are stored as
"Index_binned.tif" format in the "1_segmented ’folder, with the wildcard name "Index" and ending on _segmented.npy. We removed
the visualization of non-direct input-output relations to enhance the interpretability of the DAG.

SnakeMake
Processing a single image takes in the order of minutes, it is, therefore, infeasible to conventionally process
the 33k input images in a reasonable amount of time. We need a way to process images in parallel. To this
end and to enhance the applicability of our GV pipeline we use the workflow manager package Snakemake.26

Snakemake works on the principle of using directed acyclical graphs (DAGs) to represent the steps in a work-
flow to guide automated data processing. These DAGs can be followed to produce directions for processing
an image, Snakemake is able to apply these processing steps in parallel to a given number of images using a
given number of processing units (CPUs or GPUs).

Snakemake requires the user to define the steps of the workflow in a so-called "Snakefile". In this file, the
steps are accompanied by their respective input and output file types. Snakemake is able to interpret the
"Snakefile" into a DAG. Providing the Snakemake package with a Snakefile of your workflow and pointing it
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towards the outputs one wants to generate leads to Snakemake performing this analysis automatically.

Transfer data & scripts to DelftBlue

Submit Slurm job

Snakemake

Retrieve outputs

Figure 2.14: Directed acyclic graph of
Delftblue workflow Red boxes indicate
preparational steps for running scripts
on Delftblue. Orange boxes present the
running order on delft blue - submitting
a slurm job (sbatch file type) that in turn
runs the Snakemake workflow.

It does this by generating a DAG from the Snakefile by going through
the hierarchy of steps in the workflow until it comes to the point
where the files needed to perform a step are present on the sys-
tem. It will then perform all the subsequent steps and store the
data as dictated by the Snakefile. The DAG corresponding to the
GV processing workflow consists of four main scripts that perform
the main tasks. An additional script is present to produce out-
put figures to check the functioning of the pipeline, see Figure
2.13).

DelftBlue
Due to the size of our input data (33k images and 1Tb storage requirements), we require significant computa-
tional resources to perform our analysis. To this end, we make use of the Delft High-Performance Computing
Centre (DHPC), DelftBlue Supercomputer.27 DelftBlue enables the submission of sbatch scripts which can
reserve a specified amount of computational resources for a specified time (e.g. fifty CPUs for ten hours).

Submitting an sbatch file that runs our Snakemake workflow enables us to perform our whole GV processing
workflow on 33k micrographs in a day taking around 1900 CPU hours or around 3.5 minutes per image (Fig-
ure 2.14).

2.3. Statistical inference
Besides serving as a proof of concept for context-preserving Cryo-EM data processing capabilities for in-
creasing imaging analysis efficacy, large-scale analysis also enables the collection of structure statistics on a
previously unfeasible scale. We propose a set of measures to be collected and used for subsequent inference
on GV biogenesis, more specifically to find support for the proposed stochastic monomer insertion growth
model.

2.3.1. GV growth model
We seek to obtain improved structure information of the seam and tips to test the proposed stochastic monomer
insertion model as proposed by Huber et al.5 Additionally, statistics extracted from high-confidence seam po-
sitions can inform us on whether GVs appear to follow this proposed model. To this end, we will model the GV
growing mechanism as a binomial distribution. We will first introduce the measure we define for performing
inference on the GV growth model.

Monomer quantification
To estimate the extent to which the growth dynamics of a GV follow a stochastic insertion model we want to
formulate a measure that is standardized for the width and length of the GV. To achieve this we will be using
the estimated monomer counts per GV halve. The number of monomers offers a method of measuring the
growth difference between the separate GV halves, which is normalized for differing lengths and widths of GV
halves. Using the specific length, width, and cone angles we are able to estimate the monomer counts of the
GV halves. With a significant number of GVs we can then in turn obtain information on the growth distribu-
tion of GVs. Given the central limit theorem, we can assume that a large sampling of these values will provide
an accurate estimate of the true distribution of the differences between the monomer counts of GV halves.
Inference on GV biogenesis can then be done by comparing the found distribution with the distribution as
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Figure 2.15: Binomial growth model related to GV monomer counts (a) GV monomer pseudo model of 4800 monomers (N ) as proposed
in Section 2.1.2 of GV halves with a cone angle of 60 °, length of 1400 (NA ) and 1600 Å (NB ), and width of 500 Å, leading to an off-
centre seam location. The monomer delta measure (M∆) is defined as the difference between monomer counts of the halves of the GVs
(NA −NB ). This is equal to the number of monomers between the geometric centre (green dash) of the GV length and seam location
(purple dash), which translates to an absolute M∆ larger than zero. The centre of the GV is drawn as an untangled line of monomers for
illustrative purposes. (b) Proposed realisation of M∆ density histogram of GVs with a total monomer count between 4750 and 5000. The
expected pdf from the proposed binomial growth model with mean and σ of 0 and 70 is overlaid (red line).

expected in the proposed stochastic insertion growth model.

We use a numerical monomer fitting approach to estimate the number of monomers per GV halve based on
the length, width, and cone angle of the GV halve. The approach assumes that the gas vesicle (GV) is a volume
with a cylindrical center and a conical end (caps). Additionally, we assume that the monomers are evenly dis-
tributed along a helical path defined within this body, as done by Huber et al.5

We disregard GV halves that have a measure cone angle of fewer than 20 degrees since these are likely the
result of errors in the upstream pipeline (this results in the discarding of 13 GVs). We use parameters of the
previously resolved GV structure: a rotation (twist) of -3.874° and a rise of 0.525 Å per subunit. The number
of monomers per helical rotation we find by dividing by the absolute of the rotation ( 360

3.874 ∼ 93). The pitch, in
simple terms, is the vertical distance a helix ascends for one full 360° rotation. We calculate it by multiplying
the number of monomers per rotation by the rise (92.92∗0.525 = 48.783Å).

The length of the tip is computed using the trigonometric equation for a right-angled triangle, where the GV’s
radius is the adjacent side, the tip length is the opposite side, and the tip angle is the angle between them.
Therefore, we calculate the GV tip length as

tip length = radius

tan(tip angle)
, (2.3)

the length of the cylindrical portion of the GV is then calculated as the total length minus the tip length. The
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helical path is defined using a parametric equation, where we iterate from 0 to the total number of turns in
the GV. The function assumes that the radius of the helix remains constant within the cylindrical portion of
the GV and decreases linearly to zero within the tip. The z-coordinate of the helix (along the axis of the GV)
is calculated differently for the cylinder and the cap, taking into account the change in pitch due to the cone
angle in the tip.

We then estimate the number of monomers by identifying the local minima in the path length modulo of the
unit length of the helix (the length of one full turn), discarding the last few turns. The function assumes that
each local minimum corresponds to the center of a monomer. For these calculations, we use the set of pre-
viously determined characteristic GV helical parameters (rise (0.525), run), pitch (48.8 Å), and twist (-3.87 °
).5 These we can keep constant since we are dealing with the same sample data and these parameters should
not influence the average difference between halves - which is our measure of interest.

GV Center Point
An additional measure is a high-confidence GV geometric center point, which is found by taking the mean
value of the high-confidence tip positions. This value is also used to calculate refined estimates of the distance-
to-seam measure. Length and widths are obtained by taking Euclidean distances between the high confi-
dence seam and tip points - that in turn inform the estimation of the monomer numbers per halve.

A method of quantifying the growth behavior of monomers is to model the insertion of monomers as follow-
ing a binomial model of equal probabilities (p = q = 0.5). Given a binomial model, the distribution is defined
by the number of picks N , and the number of times NB an option corresponding to p is realized. Their GV
counterparts are the number of monomers in a GV (N ) and the number of monomers in one half (we pick
the bottom half NB ) respectively. We then expect the standard deviation of NB to converge to E [NB ] = N

2 and

σ[NB ] =√
N ∗p ∗q =

p
N

2 . When we want to analyze the drift of the seam in regards to the geometric center

we can measure P = N
2 − NB , where NB represents the number of monomers on one side. Given that N

2 is

taken as a constant the measure P also has an expected standard deviation of
p

N
2 .

Monomer delta
Another way of describing the stochastic insertion is to model the growth as a random walk away from equal
size GV halves. The deviation from a completely equal monomer growth distribution is then defined as the
monomer difference between the top and bottom GV (Figure 2.15). We coin this measure the monomer delta
(M∆), which is defined as

M∆= NA −NB , (2.4)

With NA representing the number of monomers in the top part of the standardized GV and NB that off the
bottom. The monomer walk (stochastic insertion) is a series of steps in which each step can be either towards
the top or bottom half of the GV, with an equal probability of 0.5 for each direction. We can model this using
a simple random walk with a step size of 1. In other words, we are assuming a stochastic single-monomer
insertion growth model that follows a binomial distribution with an equal probability of insertion. We can
therefore consider the positional drift of monomer insertion away from M∆= 0 as a representation of an el-
ementary random walk.

M∆ can be understood in terms of the cumulative sum of these steps. Let’s denote the cumulative sum at
step N as SN . In this case, SN represents the M∆ at the total GV size of N monomers. The expected value
of the M∆ (E [SN ]) is zero because, on average, an equal number of steps will be taken towards the top and
bottom halves of the GV (equal amount of monomers added to NA and NB ). This means that over time, M∆

is expected to not drift consistently in any particular direction.

The standard deviation of SN (
√

E [S2
N ]−E [SN ]2) is given by the square root of the number of monomers

(
p

N ). This reflects the fact that as time progresses and more steps are taken, the variability or spread of the
M∆ increases. However, on average, the M∆ should not exhibit a systematic bias.
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Therefore, the central limit theorem then implies that over a large number of GVs, the distribution of M∆values
can be expected to approximate a normal distribution that corresponds to the distribution produced by an el-
ementary random walk with a mean of 0 (no drift) and a standard deviation of

p
N . Given that we can rewrite

M∆ to NA −NB = N −2NB = 2( N
2 −NB ) we have that the monomer delta is equal to twice our binomial mea-

sure P . Therefore we can expect the variance of M∆ to be equal to follow V AR(2P ) = 4V AR(P ) = 4∗ N
4 = N .

In this way, we can see that measuring either the monomer difference or twice the normalized binomial dis-
tribution should lead to the same observed standard deviation.

GV seam-center offset
Besides looking at the monomer difference we also wanted to look at the raw distance difference between the
center of the GV and its seam position. To this end, we define the GV seam-center offset (D) as the Euclidean
distance between the mean value of the found seam positions and the center of the mask or

D =
√(

x0 − x1 +x2

2

)2
+

(
y0 − y1 + y2

2

)2
, (2.5)

with (x1,y1) and (x2,y2) representing the left and right seam positions. Moreover, (x0, y0) represent the center
GV coordinates.

2.4. Preliminary 3D reconstruction of GV tip and seam
We will be using our high-confidence location coordinates as particle picks for a conventional SPA workflow.
Then we obtain 2D class averages and possible subsequent 3D volume estimates by using the cryo-EM SPA
program CryoSPARC.20

Figure 2.16: Importing custom particle picks into CryoSPARC (a) Tip particle picks. (b) Center seam particle picks. (c) Seam particle
picks. Showing custom particle picks imported using CryoSPARC.tools into CryoSPARC for four micrographs. Images are captured from
an "Inspect Particle Picks" job within CryoSPARC.
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Custom Particle Picks
Integrating custom-picked particles into a CryoSPARC structure determination workflow is enabled through
the use of CryoSPARC.tools package. This allows direct scripting interaction with CryoSPARC, enabling the
loading of externally picked particle positions into CryoSPARC.

We will be importing three distinct high-confidence location sets. The first set contains the GV tip locations,
the second the center coordinate at the seam, and the third will contain the individual seam picks (Figure
2.16 a, b, and c respectively).

For all sets, we will perform clustering and subsequent 2D class averaging to produce high-resolution 2D
structure images.12 When these 2D classes are sufficiently high-resolution we will then try and produce cor-
responding 3D model volumes through Ab into reconstruction for the tip. We use a "Helical Refinement" job
to solve the structure of the GV tube around the seam.28 Helical refinement using predefined helical symme-
try parameters like the pitch and more than D1 symmetry are not possible since the seam and corresponding
PRP disrupt the helical symmetry. Additionally, we tried using "Non-uniform refinement" for the tips and
seams but this failed to improve upon the reached resolution.29

2.5. Code & model availability
Both the code for the pipeline ("snakemake_d at a_pi pl i ne_packag e") and the Cellpose GV model file
("20221010_GV _seg menter ") are available by request through the Biomolecular Electron Nanoscopy lab
repository (https://gitlab.tudelft.nl/aj-lab).

https://gitlab.tudelft.nl/aj-lab
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Results

3.1. Robust low error gas vesicle processing
After applying the GV processing workflow to our input set of 33k cryo-EM micrographs of GVs we obtain 1.15
million segments. These are filtered leading to the extraction of high-confidence features of 86K whole GVs.
Here we present the outputs of the pipeline in order of application.

Figure 3.1: Cellpose GV instance segmentation(a) Result overview from applying the best performing Cellpose model zoo model (cyto2).
Input colom shows a cryo-EM micrograph of purified B. meg ater i um GVs. Gradients show the resulting Cellpose combined gradients
output. Masks show the result of combining the gradients with the independent cell pixel predictions. (b) Result overview from applying
the custom-trained GV Cellpose model.

3.1.1. Standardisation of over a million GV segments
The custom GV model is able to identify a wide range of GV shapes and sizes accurately. The best performing
Cellpose model zoo model c y to2 tends to hallucinate or miss GVs and segment others as if they are more

25
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Figure 3.2: Example GV processing pipeline outputs(a) Binned input GV cryo-EM micrograph. (b) GV Cellpose model output masks.
(c) GV processing pipeline output. (d) Same as (a). (e) Same as (b). (f ) Same as (f).

cell-shaped (blob like, less rigid) (Figure 3.1). This leads to curved segmented GV walls and rounded-off tips.
Given that a GV is comprised of rigid walls and sharp tips this is not beneficial to segmentation accuracy.
The custom GV model does not suffer from these segmentation issues - segmenting straight lines for the GV
cylinder and triangles for the tips. Additionally, we find that the custom GV model has no observed false pos-
itives. It does however tend to miss hard-to-segment GVs (overlapping or obscured due to imag impurities),
but this we argue is an attractive feature since these kinds of GVs are unwanted for subsequent processing.
The resulting 33k segmented GV images contain 1.15 million GV instance masks as per Section 2.1.2).

The processing pipeline is able to reliably segment, extract, rotate and centre the GVs (Figure 3.2). The net-
work does tend to neglect to segment parts of GVs that are overlapping (Figure 3.2 b) and the processing
wrongly estimates the rotation angle in a fraction of the GVs (Figure 3.2 c and f). Examples of the preliminary
output points resulting from the processed GVs are shown in the Supplementary Figure B.1. However, these
erroneous segments can be filtered out by the subsequent filtering steps. In the GV processing pipeline, the
1.15 million segmented GV instances are edge-filtered as described in Section 2.1.3. The resulting set con-
tains 482k GVs.

Figure 3.3: Hierarchical clustering on GV features Heatmap of hierarchical clustering output on a 100k random sample using a selected
set of normalised GV features of the edge-filtered set.
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Figure 3.4: Feature boxplots of (selected) clusters Boxplot of selected features from preliminary points-of-interest for clusters resulting
from k means clustering (with a k of 20). Input data set for clustering contained 482k GVs, selected clusters cover 174k GVs (14006 in
Cluster 0, 9212 in 2, 5523 in 4, 21989 in 8, 8437 in 12, and 27310 in cluster 18).

3.1.2. GV segments are separable through clustering on structural features
Subsequently, we perform hierarchical clustering on a set of features of a 100k sub-sample of our edge-filtered
set. This results in preliminary information on the distinct features of classes within the data set - see Figure
3.3. Performing PCA or t-sne does not lead to a clear distinction of erroneously segmented GV classes - both
show many distinct clusters but not a clear bifurcation as desired. We, therefore, apply k-means cluster-
ing and determine the class of proper segments (rigid and accurate in shape) through inspection of feature
statistics and standardised GV appearances. We observe that generally top and bottom cone angles are highly
correlated, which is assuring assuming that a GV is composed of identical cone structures. Additionally, we
observe that the GVs segmented with the i s_small _g v method offer a distinct profile in terms of length and
cone angles to those from the main method (Section 2.1.2). From this preliminary hierarchical clustering, we
can conclude that the data appears separable based on the selected feature statistics.

We perform k-means clustering (k = 20) on these selected features as described in Section 2.1.4. We chose
clusters (0,2,4,8,12,18) on the basis of their feature distributions - given that their mean cone angles (∼ 60
°), mean widths (∼600 Å ) and mean lengths (1500-4500 Å) are consistent with previous research - as can be
seen in Figure 3.4 (selected clusters in green).4, 5 In the figure we show box plots of the distribution of the
preliminary features on a cluster basis. We select clusters mostly on the basis of having a desired width range
of around 500 Å combined with consistent top and bottom cone angle estimations. Additionally, we inspect a
random subset of processed GV samples from the selected clusters to check their general shape and rotation
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to establish the validity of the selected clusters, see Supplementary Figure B.2.

Figure 3.5: GV template match output (a) Extracted GV input with corresponding target locations (blue dots). (b) Target match location
outputs of tips or seam (both pink dots), PRP (red dots) overlaid on input micrograph. (c) input target region with best match location
(red dot). (d) Rotated target reference. (e) Cross-correlation map between target and reference. (f ) 3D rendering of cross-correlation
map (rotated at -45 °) g X-axis slice of cross-correlation map at y of best match. (1-6) represent template match flows of the top tip,
bottom tip, right seam, left seam, right PRP, and left PRP targets respectively.
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3.1.3. Template matching identifies exact tip and seam locations
In order to have higher confidence particle picks of our features of interest (seam and tip) we perform tem-
plate matching (Fast Normalized Cross-Correlation) with a reference as described in Section 2.1.5. For the
seam picks our estimate is bound to be more accurate since the preliminary seam pick was positioned at the
geometric centre of the GV, while we expect and observe the seam to also be located off-center. The template
matching location pick can be reasonably expected to correspond to the location of the seam of the GV as
described in the testing of Section 2.1.5.

Filtering the GVs from the clustering step (174k GVs) results in the high-confidence tip and seam estimates
of 106k top and 107k bottom tips and 94k seam location picks that pass the tests as described in Section
2.1.5. We use only GVs that have templated matched points for both tips and the seam, this results in a high
confidence set of 86K whole GVs. An example output of an arbitrary GV from this finalised set is depicted
in Figure 3.5 for target matches in Panel 1-4. Here we visually observe that the found tip and seam locations
match the observed locations with high accuracy. The PRP location template match we find to generally be
off (see Figure 3.5 Panel 5 and 6), this we propose is the result of the PRP being harder to template match due
to the fact that the PRP will only be visible in a fraction of images. This is due to the requirement that the
GV has to be orientated just right for the PRP to be visible in the cryo-EM projection image, which will not
happen often given that the PRP is only a single point on the circumference of the seam. It is for this reason
that we chose not to pursue additional analysis of our found PRP template match points. Further example
outputs are shown in the Supplementary Figures B.4, B.5 and B.6.

Metrics Values (±)

N 6702.66 (4844.34)
N top 3339.32 (2454.83)
N bot 3363.34 (2453.29)
M ∆ -8.01 (252.43)
Dist. center-seam [Å] 56.84 (78.32)
Seam diff. LR [Å] -0.12 (12.26)
L/W 4.73 (3.6)
Width [Å] 572.56 (143.97)
Length [Å] 2628.7 (1655.34)
Top length [Å] 1310.4 (838.15)
Bot length [Å] 1318.3 (837.6)
Mask [px] 31028.68 (23446.38)
Angle top [°] 61.66 (12.96)
Angle bot [°] 61.77 (13.06)
Rot angle [°] 89.98 (103.35)

Figure 3.6: Overview feature statistics Mean and 95% confi-
dence intervals of features of interest from Table 3.1. N rep-
resents the number of monomers in a GV, with top and bot
referring to the GV halves. M∆ represents the monomer dif-
ference between top (NA ) and bottom halves (NB ) as defined
in Equation (2.4). Dist. Center-Seam is our measure D as de-
fined in Equation (2.5). Rot angle refers to the rotation angles
found through the application of the Fourier angle method
(Section 2.1.2)

Image data [33K,16Tb]

Motion Correct [33k, 1Tb]

Segmented GVs [1.15m, 69Gb]

Edge filtering [482k,194Mb]

Clustering [174k,118Mb]

Template matching [86k, 11Mb]

Figure 3.7: Data processing pipeline Flowchart of the com-
plete data processing pipeline. Boxes in red represent steps
performed by collaborators, where the numbers between
brackets represent [image number, data size]. Boxes in or-
ange represent steps performed within this work, where the
numbers between brackets represent [GV number, data size].

3.2. Output statistics show a varied GV set
Our ML-based segmentation and subsequent processing workflow as defined in Section 2 processed 33k
cryo-EM images with a size of 1 Terabyte (Tb) to a segmented set of 1.15 million GV instances and then down
to a data frame of 86 thousand high confidence GV points (Figure 3.7).

We subsequently use these high-confidence tip and seam locations to refine our estimates of the GV (halves)
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length, and widths. We calculate an improved length estimate from the distance between the tip and seam
positions, and the widths from the distance between the left and right seam position. Additionally, the values
are multiplied by the realised pixel size of the analysed images. This we calculate by multiplying the pixel size
of the microscope by the binning factor (binning factor: 4, microscope pixel size: 1.518 Å/px).

These refined estimates are then used to estimate the number of monomers (N ) at the top and bottom of
the GV as described in Section 2.3.1. We chose to use the whole set mean cone angle of 61.72 ° as a constant
when calculating the GV halve monomer counts because errors in our method of determining these angels
could result in erroneous differences in cone angels between GV halves - this could potentially obscure our
estimate of the monomer count differences. The proposed cone angle estimation errors are however of such
small magnitude that on average the estimated cone angle should be representative of the true value. It
will therefore not influence the validity of the mean cone angle estimation. Additionally, we argue that us-
ing a constant tip angle should not significantly affect the distribution of M∆ given that only a fraction of
monomers are contained in the tips. These statistics are then used to calculate the monomer delta (M∆) and
distance to the centre-seam (D) as defined in Section 2.3.

The resulting refined set of 86K GVs measures forms the basis for the rest of our analysis (Table 3.1). The
summary statistics are in line with values found previously (Figure 3.6).4, 5 We find that the mean M∆ is sig-
nificantly different from 0 (mean = -8.01; σ = 128.79, t (86k-1) = 18.24; p ∼ 0). This is not what we expect to
find given the proposed growth model but we contribute this to some systematic error within our pipeline and
not to any real-world physiology since the orientations of the GVs are assumed to be uniformly distributed
within the images. Therefore, any physiological reasons for seam-centre offsets should be smoothed out over
the random sampling of orientations from GVs picked in the pipeline. Potentially, the found rotation angle
(α°) has a systematic bias that results in shorter GV halves having a slightly higher chance of being rotated to
the top of the GV. This could then result in a slight negative bias in our estimate of M∆.

Compared to previous work, we find a slightly higher cone angle of 61.72 ° , but this can be attributed to
an erroneous estimation of the base height of the GV. Previous work found GVs ranging from 0.1 - 1 µm in
length.5 Our filtered set ranges from 0.1 - 0.6 µm. We propose that this is a result of filtering or potentially
sample prep differences. The former is because longer GVs are more often cut off from the image field, and
it could be possible that we used a smaller image view than previous studies. The latter since purifying the
GVs involves centrifugal separation of the GVs from the bacterial host proteins and broken GVs. Within these
iterative cycles of spinning and subsequent supernatant separation, the shear forces in both the spinning and
subsequent pipetting could introduce a bias towards shorter and wider GVs due to their higher shear-force
resistance leading to filtering for smaller GVs.5

Index Image ID N N Top N Bot M∆ Dist. Center-Seam [Å] Width [Å] Length [Å] Top Length [Å] Bot Length [Å]

00000 00235_1-1 1972 1109 863 246 133.16 592.35 2604.83 1435.44 1169.38
00001 00235_1-1 1950 964 986 -22 13.57 606.78 2622.32 1300.58 1321.73
00002 00235_1-1 1168 726 442 284 141.75 692.23 1781.59 1030.11 751.48
00003 00485_1-3 2895 1484 1411 73 38.87 589.47 3713.11 1893.27 1819.84

... ... ... ... ... ... ... ... ... ... ...
86490 33085_1-3 1680 795 885 -90 79.16 622.31 2287.61 1065.80 1221.80

Table 3.1: Refined GV statistics data frame Refined statistics data frame of 86k GV resulting from applying the filtering pipeline showing
selected GV identifiers and features. N represents the number of monomers in a GV, with top and bot referring to the GV halves. M∆

represents the monomer difference between top (NA ) and bottom halves (NB ) as defined in Equation (2.4). Dist. Center-Seam is our
measure D as defined in Equation (2.5).

Cluster statistics
Additionally, we inspect the refined feature statistics on a cluster basis as can be seen in Figure 3.8. We find
M∆ to be converging to a normal distribution around a mean of 0. Similarly, the distance to the centre-seam
("Dist. center-seam") also does not show any notable inter-cluster dissimilarities. The difference in the height
of the estimated seam position of the left and right GV walls ("Seam diff LR") is interestingly bifurcated around
0. We expect this to be the consequence of the seam having a slight height gradient around its circumference
due to the helical nature of both sides. A correctly estimated left seam position height will therefore always
be off from the right counterpart.
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The length-over-width measure ("L/W") illustrates the distinct type of GVs within the clusters. The corre-
sponding width and length statistics show that this variation mostly stems from differences in GV lengths.
This is in part a consequence of selecting for clusters with widths and cone angle profiles consistent with
previous research. The top or bottom length and the mask pixel sizes ("Mask") also reflect this inter-cluster
difference. Last, the estimated rotation angles of the GVs within the images are uniformly distributed within
the possible range, as is expected given the arbitrary orientations and size of the set.

Figure 3.8: Cluster sorted statistical overview refined GV data Violin plot overview of refined measures sorted on selected clusters. N
refers to the number of monomers. Top or bot refers to statistics concerning a GV half. M∆ represents the monomer difference as
defined in Equation (2.4). The angle refers to the whole cone angle at respective GV halves. Rot angle refers to the rotation angles found
through the application of the Fourier angle method (Section 2.1.2).

3.3. Growth dynamics appear stochastic
Using our refined statistics (Table 3.1) we are able to visualize and measure relations between variables to
inform us about the proposed stochastic GV growth model. Within the following trend and feature relation
analysis we chose to create bins along our data set along a feature of interest. We chose to bin to be able to
infer marginalized relations that allow for clear visualization of results and allow estimation of the distribu-
tions of our relation of interest. Depending on the measure of interest we chose a bin size that is as small as
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possible to negate any underlying distribution gradient effects, but large enough to contain enough samples
for sufficiently high confidence estimation of the distribution parameters. We subsequently perform analysis
on a related feature of interest within these bins. Plotting the resulting outputs and performing regression
analysis enables the identification of trends and possible relations between the features of interest. We chose
to only take into account bins that contain a minimum of 100 particles to provide confidence in the stability
of the estimates.

We chose to not include R2 estimates of our regressions since most often this number does not add relevant
information to what is already visually verifiable. Moreover, R2 measures are only relevant when rigorous
testing of the corresponding residuals has been performed, this we find to be outside the scope of the type
of relations we propose to illustrate. Moreover, to account for the effects that binning might have on the dis-
tributions of the feature relations we chose to add parallel visualizations using so-called hexbin plots. These
visualize the number of particles in a finely discretized feature relation space showing the underlying feature
data. From these plots, we can infer densities and general shapes of the direct relations.

Figure 3.9: Width vs. length (a) Hexbin plot of the widths versus the lengths in our refined GV table 3.1. (b) Scatter plot showing the
mean lengths of GVs within equally spaced bins (10Å) ranging from widths of 0 to 1000 Å. Red dots indicate bins with less than 100,
Yellow with less than 1000, and blue with more than 1000 GVs.

Length, width, and monomer count relations
We first want to establish the relation between the length, width, and monomer numbers to help inference on
their effect on ∆M . Knowing how these features relate to each other can help predict how they will be related
to the number of monomers in a GV (N ), which we expect to influence ∆M .

First, we explore the relationship between the GV width and length. Figure 3.9 a shows a hexbin plot, that
relates the width to the length of GVs. We observe that most particles have a width of around 600 Å and a
corresponding length of 1800 Å. Moreover, we find that for smaller GVs we have less density around the same
length.

We perform binning along the width (bin size of 10 Å) and find a Sigmoid-looking relation for the domain of
bins with more than 1000 GVs, see Figure 3.9. Given a constant growth rate and that the amount of monomers
scales as π∗wi d th, we then expect that the length of a GV will be inversely related to its width. Since with an
equal growth rate, a wider GV will grow less long than a more narrow one. Consequently, we expect the width
and length to roughly be inversely related. Therefore we fit a power-law function following y = a

x − c. The
resulting fit with an a of 1.6 million and c of 280 appears to not hold any physiological relevance. We propose
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that the distribution might be affected by the shear forces of GV purification leading to inverse selection for
long and thin GVs as described in Section 3.2. We can however state that a general negative width-to-length
relation appears valid.

Figure 3.10: Width and length vs. monomer count (N ) (a) Hexbin plot of the widths versus N in our refined GV table 3.1. (b) Scatter plot
showing the mean widths of GVs within equally spaced bins (10Å) ranging from widths of 0 to 1000 Å. (c) Same as in (b) but of length
versus N . (d) Scatter plot showing the mean lengths of GVs within equally spaced bins (50Å) ranging from lengths of 0 to 6500 Å. Red
dots indicate bins with less than 100 GVs.

In Figure 3.10, we illustrate the estimated relationship between the width or length and the monomer count
(N ). The linear regression fits suggests a positive correlation between the length or the width and N . However,
it is noteworthy that the width does not exhibit a similar linear relationship as observed with the length. This
discrepancy can be attributed to our estimation of the monomer counts NA and NB using the corresponding
GV half-lengths and widths, as detailed in Section 2.3.1. Furthermore, drawing upon the findings in Figure
3.9, which validates a negative width-to-length relationship. We hypothesize that this inverse width-length
relation causes the monomer increase corresponding to a width increase to be negated by a non-linear de-
crease in length. This, in turn, results in the observed non-linear width-N relation.
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Length vs. distance centre-seam
When we plot the lengths of GVs versus their center-seam distance (D) we find relations that appear linear
(Figure 3.11 b). Figure 3.11 a presents a hexbin plot that shows the number of particles in the discretized sur-
face of length versus D . From this, we observe that most particles are around a length of 2000 Å and 20 D and
appear with a Gaussian-like spread around that point. We plot the mean D of GVs in equally spaced length
bins (50 Å). When we fit a linear model through linear regression we find an intercept of 42.21 and a slope of
0.01. This intercept points to a 40 Å offset from zero, which could be caused by the allowed estimation error
of the seam position of up to 50 Å (distance of one helical GV ring). Furthermore, the found slope points to a
relation where a 1000Å increase in the length of a GV leads to an average added D of 10, which points to the
expectation that D would increase with the length of the GV. This is in line with expectations of a stochastic
growth model where a longer GV leads to an increase in the expected center-seam offset.

Figure 3.11: Length vs. seam-center difference (a) Hexbin plot of the lengths versus the distance from center to seam position (D) as
defined in equation 2.5. (b) Scatter plot showing the mean D of GVs within equally spaced bins (50Å) ranging from a length of 0 to 6300
Å. Red dots indicate bins with less than 100 GVs.
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Monomer difference relations
When performing a similar analysis of the relationship between length, width or monomer counts with the
monomer difference between halves (M∆) we find additional relations supporting a stochastic model.

The first relation of interest is how the length influences M∆. We obtain an estimate by performing a binning
of the lengths (bin size of 50 Å) and measuring the corresponding bin mean M∆. We find a linear fit with an
intercept of -30.33 and a slope of 0 (Figure 3.12). Additionally, we observe an increasing variability in the M∆

as the length increases. This is in accordance with the expectation that with a stochastic growth model (con-
verging to an elementary random walk in the limit) we expect the standard deviation of the mean distance
traveled to increase in the order of the square root of the number of steps. Given the results in Figure 3.10 d,
this is as expected. We do however expect the mean distance (M∆) to have an expectation of 0, which is not
found to be the case. We expect this to be the result of some combination of improper estimations at points
along the GV pipeline leading to a systematic error, following the proposed reason from Section 3.2.

Figure 3.12: Length vs. M∆ (a) Hexbin plot of the lengths versus the monomer difference (M∆) as defined in equation 2.4. (b) Scatter
plot showing the mean (M∆) of GVs within equally spaced bins (50Å) ranging from a length of 200 to 6300 Å. Red dots indicate bins with
less than 100 GVs.

Besides the length, it’s also interesting how the width relates to the monomer delta. We obtain an estimate
by binning on width (bin size of 10 Å). The resulting linear regression intercept and slope are -15.40 and -0.02
respectively (Figure 3.13). We find the spread in mean M∆ of the widths to be a lot less variable than those
of the length-M∆ relation. We propose that this is a consequence of the width having less of a straightfor-
ward relation to the number of monomers in the corresponding GV. An increase in width is proportional to
the number of monomers of a single helical loop, but given an equal growth rate, this translates to a lower
average GV length - as we have seen in Figure 3.9. Additionally, we expect that thinner GVs and therefore
also longer GVs are more underrepresented in our data set due to a lower sheer stress resistance. It is these
arguments that we propose to shape the relation between the width and N as shown in 3.10 b. Combining
these effects we propose explains how the width seems to not significantly affect the variability in the spread
of the mean M∆ estimates.
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Figure 3.13: Width vs. M∆ (a) Hexbin plot of the widths versus the monomer difference (M∆) as defined in equation 2.4. (b) Scatter plot
showing the mean (M∆) of GVs within equally spaced bins (10Å) ranging from a width of 100 to 850 Å. Red dots indicate bins with less
than 100 GVs.

Figure 3.14: M vs. M∆ (a) Hexbinplot of the monomer counts M versus the monomere difference (M∆) as defined in equation 2.4.
(b) Scatter plot showing the mean (M∆) of GVs within equally spaced bins (250 M) ranging from a length of 0 to 12500 M Å. Red dots
indicate bins with less than 100 GVs.

When performing the same analysis but instead binning on the monomer count (N ) (bin size is 250 N ) we
once again find a similar relation of increasing variability as the number of monomers increases but with a
systematic downward error (Figure 3.14). A linear regression fit results in an intercept of -23.06 and a slope of
-0.0003.
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We want to test if the proposed elementary random walk distribution expectations of the standard deviation
(E [M∆2] = N or σ(M∆) =p

N ) match those we can measure for the respective monomer count (N ) bins. To
this end, we once more bin over the number of monomers (bin size of 250 N ) and calculate the standard de-
viation of M∆. We find that the expected standard deviation of

p
N is less than the found standard deviation

(Figure 3.15 a). We chose to only perform regression on bins with more than a thousand GVs (Figure 3.15 b) to
increase the validity of the standard deviation estimate. As shown in Figure 3.15 c through linear regression
we find an intercept of 287.02 and a slope of 1.40. This is quite far off from the expected standard deviation
(yellow unit line). However, it does match the general trend that an increase in N translates to a higher stan-
dard deviation of M∆. Normalizing for the expected standard deviation we find a linear regression fit with an
intercept of 9.09 and a slope of -0.05 (Figure 3.15 d). From the normalized relations, we find that the differ-
ence in the proposed model for the standard deviation and the found deviation appears to decrease with an
increasing number of N.

Figure 3.15: Expected std. M∆ vs. found std. M∆ (a) Histogram (blue) of the monomer difference (M∆) (Equation 2.4) for GVs with
a monomer count (N ) between 6000 and 6250. Overlaid is the pdf of a normal distribution with the proposed monomer difference in
Section 2.3.1 (N [0,

p
(N −er r or )] (c) Scatter plot showing the number of particles per bin for equally spaced bins (250M) ranging from 0

to 20000 M . (c) Scatter plot showing the expected std. M∆ versus the found std. M∆ of the bins of (b). textbf(d) Same measure as in (c)
but normalized for the Expected std. M∆. Red dots indicate bins with less than 1000 GVs.
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We suspect that an estimation error in the location of the PRP is at most the number of monomers in one
ridge. The number of monomers in a ridge was found to be 92 for a width of 356 Å. Given that the amount
of monomers in a ridge is related by a factor π to the width we can assume a linear relation. Therefore, we
can vary the estimation error to the mean widths within a bin by scaling 92 N by the ratio of mean divided
by the corresponding example width of 356 Å. This error we define as Ner r or We propose to take into ac-
count this standard deviation by modeling the error Ner r or by a standard uniform ranging from -2 Ner r or to
2 Ner r or (given that the error is doubled in the difference). We use that standard deviation should converge

to σ[U (a,b)] = (b−a)2

12 in the limit. Therefore, we can add the squared standard deviation to the expected vari-
ance to account for the estimation error (Figure B.7). This however does not seem to correlate to a more clear
distribution. Additionally, we find that performing the same analysis on M∆

2 (Figure B.10) combined with the
error estimation leads to the expected standard deviation to match the found standard deviation (Figure B.8).
Interestingly, this we argue is interchangeable with comparing P to an expected standard deviation of

p
N ,

since M∆
2 = (NA−NB )

2 = N
2 −NB = P . We are, however, not able to formulate why half the monomer difference

or P results in this correct fit with a twice as large as expected standard deviation of
p

N . It does however
highly fit expectations as proposed for M∆ following a stochastic insertion model (Section 2.3.1).

To verify our model proposed relation between a binomial model as represented by measure P and M∆ we
perform the same kind of analysis on P . P translates to comparing the standard deviation of NA with the
expectations from a binomial model of N picks as proposed in Section 2.3.1. The found relation using P
(binomial model) closely resembles the one found by comparing M∆, which is as was proposed in Section
2.3.1. The results and corresponding analysis can be found in Supplementary Figure B.10 in Supplementary
B.4.
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3.4. Promising preliminary reconstructions
3.4.1. High resolution 2D class averages support the existence of the polarity-reversal-

point and tip nucleations

Using CryoSPARC we obtained 2D class averages of our high-confidence points of interest set. We perform a
"2D classification" job with close to default parameters, tweaking parameters iteratively in a heuristic-guided
fashion. Importing our tip data set leads to the classification of sets of thousands of tip particles. This involves
importing the points into an empty job using the CryoSPARC.tools package. These particles are then together
with CTF and motion-corrected images combined to extract the points of interest. Then we perform a high
pass filter of 300 Å for the seam center picks, 200 Å for the tips, and 100 Å for the seam picks. We chose and
subsequently probe around these cutoffs based on the size of the particle extraction box size and the amount
of contextual information that we think is required for proper centering. Applying a high pass filter reduces
information not required for aligning the particles to distinct classes in 2D classification. We find that this
increases the alignment and subsequently resolved resolution of the 2D class averages. Subsequently, we
perform iterative rounds of 2D classification and particle extraction to create a subset of particles that are
able to be used for high-resolution 2D class averages.

Figure 3.16: 2D class averages of tip particles 2D class averages are displayed with the number of particles per class (mint #). Generated
using CryoSPARC (tools).20

Our initial tip set extracted with a box size of 256 pixels (388.61 Å) results in high-resolution 2D class averages
of Figure 3.16. In these classes, we observe the general cone helix with ridges visible with white lines. They
distinctly show a conal monomer tip structure as proposed by Huber et al.5 At this resolution the helical cone
bands are clearly visible (Figure 3.16). The large box sizes does however lead to difficulties in alignment which
results in a lower realised 2D class average resolution.
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Figure 3.17: Refined 2D class averages of tip particles 2D class averages are obtained with a smaller box size than in figure 3.16. Displayed
with the number of particles per class (mint #). Generated using CryoSPARC (tools).20

When we take a smaller cutout box (128 pixels, 194.30 Å) CryoSPARC is better able to center and form higher-
resolution 2D class averages. We do however end up with significantly smaller classes after additional rounds
of 2D classification and selection. While we might lose an overview of the whole tip structure we gain high-
frequency information (Figure 3.17). Looking at class 7 of this set, we can clearly see the distinct traces of α1

backbones of GvpA as proposed by Huber et al (Figure 3.18).5
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Figure 3.18: α−1 linking visible in GV tips 2D class average GvpA backbone α−1 chains are visible in class 7 of the 2D GV tip points
averages. The red ley lines are drawn onto the α−1 chains on both the inner and outer spiral of the tip. A specific example of a distinct
α−1 is indicated (red arrow). Displayed with the number of particles per class (mint #). Generated using CryoSPARC (tools).20
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Using the center-seam particle set we are able to create high-resolution 2D class averages that show the sym-
metrical mirror axis that the seam creates within the GV wall structure where GvpA monomers reverse in
structural direction (white arrow, Figure 3.19). Additionally, the seam is the point of the GV where the two
halves meet, at the seam these halve are closer than the average distance between helical ribs. This causes a
smooth appearance.

Figure 3.19: 2D class averages of seam center particle GvpA monomers reverse in structural direction (white arrow). Displayed with the
number of particles per class (mint #). Generated using CryoSPARC (tools).20

Importing our seam particles allows us to create high-resolution 2D seam class averages at a resolution of 4
Å reported by CryoSPARC (trough FSC comparison). These clearly show the features of the seam and PRP as
proposed previously (Figure 3.20).5 The location of the seam is clear by the symmetrical mirror point that
the seam creates within the GV wall structure where GvpA monomers reverse in structural direction (white
arrow). We find classes that show an asymmetric reversal, indicating that this class is close to showing a 2D
projection of the PRP point (blue arrow). Additionally, we find a class that has a near-perfect overlap of the
two opposing GvpA sidechains, indicating that this class is showing the PRP (blue arrow). These 2D classes
support the existence of the PRP.

Figure 3.20: 2D class averages of seam particles GvpA monomers reverse in structural direction (white arrow). Asymmetric GvpA struc-
ture reversal indicates that this class is close to showing a 2D projection of the PRP point (blue arrow). near-complete overlap of the two
opposing GvpA sidechains, indicating that this class is showing the PRP (blue arrow). Displayed with the number of particles per class
(mint #). Generated using CryoSPARC (tools).20
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3.4.2. 3D volumes show the feasibility of seam and tip reconstruction
We perform 3D volume reconstruction as described in Section 2.4 on the seam-duo and tip particles inde-
pendently. The resulting structures can be compared to previous densities for the seam and the proposed
pseudo-atomic model for the tip. From these comparisons, we propose that our preliminary resolved vol-
umes are supportive of previous findings and indicate the possibility of resolving the tip and seam at high
resolution.

Figure 3.21: Tip volume reconstruction (a) Output volume of 3D reconstruction (Ab inito) from tip data set (Table 3.1) with a GvpA2
monomer fitted to the structure (pink arrow). (b) Volume of (a) rotated by 90 ° in x. (c) Simulated 3D density from the proposed pseudo-
atomic model by Huber et al.5 (d) Model of (a) rotated by 90 ° in x. Volumes and densities are rendered in ChimeraX 1.4.30

Tip volume reconstruction
We find that using the particle picks of the 2D class average from extracted particles with a cutout outbox
size of 256 pixels (388.61 Å) results in a structure that most closely resembles the previously proposed mod-
els (Figure 3.16). The structure is constructed using an "Ab-initio" CryoSPARC job that tries to reconstruct a
volume from scratch given C1 symmetry (no assumed symmetry). We are not able to resolve a structure that
maintains the symmetry and resolution as the proposed pseudo-atomic model from Huber et al, see Figure
3.22.5 The found model in Figure 3.22 a resembles the pseudo-atomic model in Figure 3.22 c from only one
direction, we visually validate this aligning a GvpA monomer to the angled ridge of the volume. Looking at
a 90 ° rotation of this volume in Figure 3.22 b we see that this does not match the proposed volume as can
be seen in Figure 3.22 d. We propose that the CryoSPARC "Ab Inito" job lands in a local optimum that only
conforms to the proposed structure in one dimension and that the shifted cone halves as visible in panel b
represent an erroneous local optimum. We propose that a correct tip shape reconstruction is difficult as a
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consequence of the GVs never being imaged in an upward position in the ice, which is due to their length be-
ing significantly longer than the ice thickness leading to a preferred side ward orientation. It is therefore that
the upward orientation is not well represented in our data set, which leads the SGD procedure of CryoSPARC
to fail to correctly optimize for the volume from this direction.12

To circumvent this issue we performed volume refinement with a low-pass filtered (30 Å) version of panel d
as a reference, which is from the pseudo-atomic model from Huber et al.5 This led to a general structure that
we would expect for 90 ° rotation view. It did not however result in an immediate improvement in resolution,
which means that at that point the map does not provide meaningful insights. Given that the found prelim-
inary volume does seem to contain structural information matching with previous expectations we propose
that with additional refinement and heuristic tweaking obtaining an improved structural tip model appears
feasible. However, due to time constraints, this was outside the scope of this work.
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Figure 3.22: Seam volume reconstruction (a) GV tube reconstruction around seam points of Table 3.1 after applying a non-uniform
refinement CryoSPARC job with an initial helical model of 500 Å (outer: 510 Å, inner: 490 Å). (b) Rotated (-120 ° x, 90 ° y) masked volume
from (a) compared to seam volume of Huber et al.5 (c) Volume from (a) rotated by -90 ° in x. (d) Model from (b) compared to PRP of the
pseudo-atomic model from Huber et al.5 Volumes and models are rendered in ChimeraX 1.4.

30

Seam volume reconstruction
We continue with the particle picks of the highest resolution 2D class average (class 3,4,5 and 6) from the
2D class steps with a cutout outbox size of 625 pixels (Figure 3.19) and apply a helical refinement job in
CryoSPARC with an initial helical volume with a width of 474 Å (outer: 480 Å, inner: 468 Å), as described in
Section 2.4. These initial volume values we find by measuring the width of the largest class using ImageJ.

Interestingly, the resulting mask consists of half a GV tube in which we can clearly resolve the rib structure
(Figure 3.22 c). We propose that during helical refinement the algorithm is only able to clearly resolve to half
of the GV tube for most of the particles. This is a consequence of the particles being from 4 classes with dis-
tinct GV widths, which means that a full helical model would never be able to fit all the particles. Half a helical
tube however is able to accommodate a larger range of helix widths. In essence, this convergence of half a
mask is similar as would be the next course of action when fitting on multiple width classes of particles, that
is to use half a helix mapping as the initial model to fit to.

Looking at the seam containing GV helix reconstruction in Figure 3.22 b we compare it to the found densities
from helical reconstruction off non-seam containing GV picks that were obtained by conventional helical re-
construction (blue densities).5 We can confirm that our model converges to the correct global structure when



46 3. Results

comparing the angle and size of the repeating GV ridge pattern.

Additionally, when we observe the seam containing GV helix reconstruction (Figure 3.22 a and d) we find that
density is missing around the proposed location of the seam. We compare the location of this missing density
to an extracted PRP of two monomers from the pseudo-atomic model of Huber et al (red monomers).5 We
find the location of the densities approximately lines up with the proposed symmetrical axis that is the result
of the two meeting GV halves, supporting the proposed model containing a PRP. We argue that the reason
density is missing at this point is a consequence of the high variability of the location of the PRP for individ-
ual GV particles, which leads to the inability to assign clear densities to these locations. In this way, we argue
that the densities also support a stochastic growth model given that when the PRP would always be at the
same location we would not expect to observe missing densities to this extent.

In addition, we tried helical reconstruction on individual classes but were not able to reach a resolution where
we were able to resolve the rib structure and seam location to a similar extent. We propose that difficulties
in reconstruction are in part a consequence of the challenge of aligning 2D particle images in such a way
that the PRP is at the correct orientation since it is a weak (heterogeneous) feature of the images. Moreover,
mismatches in the alignment of particles could result in additional artifacts in the reconstructed densities.
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Conclusion

We performed machine-learning-based instance segmentation of gas vesicles, subsequent processing, and
filtering on a massive scale. Analyzing tens of thousands of images to target over a million individual gas vesi-
cle (GV) structures. Performing this analysis in a scalable, tractable, and reproducible manner by leveraging
workflow packages and high-performance cluster computing capacity. Our resulting high-confidence struc-
tural feature set describes 89k whole GVs.

Given the uniqueness of the GV structure and performing cryo-EM single-particle analysis (SPA) using seg-
mentation, the workflow has been custom-built and formulated through a heuristic process of optimization.
An improved theoretical foundation could lead to more carefully designed processing procedures to improve
processing accuracy and confidence of inference on the obtained feature statistics. As an example currently,
the pipeline applies a rudimentary form of k-means clustering to try and filter out erroneous segments. Ad-
ditionally, the pipeline has issues standardizing small GVs, which leads to their under representation in our
data set. This could introduce unforeseen biases that potentially convolute set statistics and lead to the per-
ceived feature relation inconsistencies.

The separability of GV segments clustered on structural features could be probed by relaying the selected ver-
sus unselected clusters using statistical distance visualization methods like PCA or t-SNE. The processing of
small GVs could be improved by performing Fourier angle analysis on half the GV and using a half-small GV
reference. This would negate the problem of opposing GV wall directions making extraction of the rotation
angle inconsistent.

Given that we find many instances of seam-center offsets and a significant non-zero mean seam-center off-
set, we propose that a simultaneous top and bottom insertion model appears highly unlikely. Additionally,
given a simultaneous insertion model we would expect less to no variability in the center-seam offset. While
in fact, we see more variability than a stochastic single-insertion model would predict.

More specifically, we propose that the higher-than-expected mean seam-center offset variability might ei-
ther result from erroneous measurements or introduced biases during processing. Alternatively, it might hint
towards a mechanism where insertion is not following equal probabilities or that the GV halves do not start
growing together from equal sizes. Further even, subsequent insertion could have a certain degree of serial
correlation. This we argue could be a consequence of subsequent insertion to a single GV halve being more
energetically favorable. Another possibility is that differences in GV halve widths might lead to unequal inser-
tion probabilities that result in our observed significant seam-center offset variability. Further research could
probe this question by measuring width distances between halves and trying and relate those to differences.

Using a high-confidence structural feature set, we find evidence that supports previously posed structural
properties and characteristics of GVs. We identify the presence of α1 side chains in GV tips, which points to
the validity of the proposed pseudo atomic model of Huber et al.5 Additionally, we find strong evidence that
the position of the so-called polarity reversal point’s (PRP) is subject to drift from the geometric center of the
GV. The found distributions of the seam-center offset and its corresponding monomer drift represent a higher

47



48 4. Conclusion

variability than expected from an equal probability insertion model. However, given this high variability, we
argue that this is still evidence supporting the hypothesis that GVs self-assemble by insertion of individual
GvpA monomers at the PRP in a stochastic fashion as opposed to the alternative model of pairs of monomers
being inserted synchronously on both halves.



5
Outlook

Context-preserving segmentation and processing of cryo-EM images in a single-particle-analysis (SPA) of
GVs, as done in this work, can serve as a proof of concept of how improved computational capabilities (accu-
rate machine-learning-based segmentation and parallel processing) enable targeted extraction of informa-
tion from the high imaging throughput that cryo-EM methods can produce. All the while preserving con-
textual information important for sound inference. Substituting this kind of workflow in conventional SPA
pipelines has the potential to open up dynamical analysis avenues of macromolecules.

Structural reconstruction
Increased accuracy and robustness of particle picking through training of customized machine-learning-
based networks like Cellpose offers avenues to obtain new order of magnitudes of particles to be used in con-
ventional cryo-EM SPA workflows. Additionally, more fine-tuned segmentation models might allow particle
picking of previously unfeasible to segment structures. In the case of GVs, we are able to obtain a significant
number of particles that form high-resolution 2D class averages of structure components of interest (seam
and tips). Future research could use this expanded data set size to obtain higher-resolution 3D modeling
structures of previously difficult-to-map areas.

Feature statisticss
Being able to flexibly segment and process many different types of GVs enables the collection of expansive
feature sets spanning most of the realizations of GV types. This in turn facilitates the probing of feature
relations that can offer inference on structural and dynamical properties.

Fast processing of homologs
Given the ease of reanalyzing new data sets once a custom model and processing pipeline have been built,
analyzing adapted data sets and obtaining feature statistics could help with genetic-to-protein function or
structural assays. For the case of GVs, creating slight GV gene homologs and testing for differences in feature
statistics offers a way of better understanding how these genes influence biogenesis.

Method generalisation
Performing inference by obtaining statistics and providing custom particle pick positions for future down-
stream analysis is now enabled by readily implementable DL-based segmentation solutions and workflow
management tool kits. This kind of workflow could be applied to other structure-resolving problems where a
high throughput of data of highly heterogeneous structures is being produced.

We expect that with more accessible and readily implementable (parallel) workflow packages a wide scope of
new research avenues will appear in regions of science where there is currently an under capacity to scalably
and reproducibly evaluate the data being obtained.
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A
Methodology Supplementary

A.1. Fourier angle method

Figure A.1: Reference stack Fourier method small GV rotation angle a Micrograph cutout of chosen small reference GV at 0° rotation. b
Powerspectrum from applying an FFT to (a). Showing laylines at angel parallel of GV shell direction. Sample specific contrast information
at center. c Micrograph cutouts and corresponding power spectra for 45° and 120° rotation
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Figure A.2: Workflow Fourier method small GV rotation angle Starting from the input micrograph GV cutout; subsequent cutout around
the centre, FFT of cutout for power spectrum cutout, multiplication of cutout power spectrum with small GV reference stacks con-
stituents, max sum reference constituent represents best correlation and corresponding index identifies found rotation angle α°, refer-
ence match shows power spectrum from reference stack that best correlates with input. Rotated α° shows the rotated cutout. Output is
GV rotated by α°.
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Results Supplementary

B.1. Processing results

Figure B.1: Example preliminary points on images (a) Example set of preliminary points from well-segmented images (b) Example set
of preliminary points from harder-to-segment images
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B.2. Clustering results

Figure B.2: Selected k means GV clusters (a) Boxplots of k-means clustering feature statistics showing selected (green) and unselected
clusters (black). (b) Visualisation of a random sample of 20 standardised extracted GVs per cluster (Section 2.1.2). Showing selected
(green) and unselected clusters. Clusters have been sorted from lowest to highest average mask size in pixels (left to right).
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Figure B.3: Small GV selection in clustering Plotting the proportion of segmented GVs per cluster. (a) Proportion of is_small_gv segments
in the selected clusters. (b) Same as in (a) but for unselected clusters.



60 B. Results Supplementary

B.3. Template matching results

Figure B.4: GV template match output (a)Example output points from template match flows drawn on the input image. Shows the top
tip (blue dot), bot tip (blue dot), right seam (red dot), left seam (red dot), right PRP (green dot), and left PRP (green dot) targets. (b)
Example output from template match flows of the top tip, bot tip, right seam, left seam, right PRP, and left PRP targets (top to bottom).
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Figure B.5: GV template match output (a)Example output points from template match flows drawn on the input image. Shows the top
tip (blue dot), bot tip (blue dot), right seam (red dot), left seam (red dot), right PRP (green dot), and left PRP (green dot) targets. (b)
Example output from template match flows of the top tip, bot tip, right seam, left seam, right PRP, and left PRP targets (top to bottom).
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Figure B.6: GV template match output (a)Example output points from template match flows drawn on the input image. Shows the top
tip (blue dot), bot tip (blue dot), right seam (red dot), left seam (red dot), right PRP (green dot), and left PRP (green dot) targets. (b)
Example output from template match flows of the top tip, bot tip, right seam, left seam, right PRP, and left PRP targets (top to bottom).
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B.4. Statistical results

Figure B.7: Estimation error adjusted Expected std. vs. found std. M∆ (a) Histogram (blue) of the monomer difference (M∆) (Equation
2.4) for GVs with a monomer count (N ) between 6000 and 6250. Overlaid is the pdf of a normal distribution with an additional width-
varying estimation error for the proposed monomer difference in Section 2.3.1 (N [0,

p
N +Ner r or ] (b) Scatter plot showing the number

of particles per bin for equally spaced bins (250M) ranging from 0 to 20000 M . (c) Scatter plot showing the estimation error adjusted
expected std. versus the found std. of M∆ of the bins of (b). (d) Same measure as in (c) but normalised for the Expected std. M∆. Red
dots indicate bins with less than 1000 GVs.
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Figure B.8: Expected std. M∆ vs. found std. M∆
2 (a) Histogram (blue) of half the monomer difference ( M∆

2 ) (Equation 2.4) for GVs with
a monomer count (N ) between 6000 and 6250. Overlaid is the pdf of a normal distribution with the proposed monomer difference in
Section 2.3.1 (N [0,

p
N ] (b) Scatter plot showing the number of particles per bin for equally spaced bins (250M) ranging from 0 to 20000

M . (c) Scatter plot showing the expected std. M∆ versus the found std. M∆
2 of the bins of (b). (d) Same measure as in (c) but normalised

for the Expected std. M∆
2 . Red dots indicate bins with less than 1000 GVs.
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Figure B.9: Estimation error adjusted expected std. M∆ vs. found std. M∆
2 (a) Histogram (blue) of half the monomer difference ( M∆

2 )
(Equation 2.4) for GVs with a monomer count (N ) between 6000 and 6250. Overlaid is the pdf of a normal distribution with an additional
width-varying estimation error for the proposed monomer difference in Section 2.3.1 (N [0,

p
N +Ner r or ] (b) Scatter plot showing the

number of particles per bin for equally spaced bins (250M) ranging from 0 to 20000 M . (c) Scatter plot showing the estimation-error
adjusted expected std. M∆ versus the found std. M∆

2 of the bins of (b) . (d) Same measure as in (c) but normalised for the Expected std.
M∆. Red dots indicate bins with less than 1000 GVs.
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We perform a linear regression on the found relation we find an intercept of 146.24 and a slope of 1.41, which
also points to a positive linear relation of the standard deviations but does not fit expectations from the bino-
mial model (Figure B.10 a). The normalized relation results in a linear regression fit with an intercept of 8.85
and a slope of -0.09. Like the fit to the normalized random walk model expectations, we find that the error
with the expected standard deviation appears to decrease with an increasing number of N . The found rela-
tion using P (binomial model) closely resembles the one found by comparing M∆, which is as was proposed
in Section 2.3.1.

Figure B.10: Binomial expected std. vs. found std. P (a) Scatter plot showing the expected std. P under the binomial model as proposed
in Section 2.3.1 versus the found std. P of the equally spaced bins (250N ). (b) Same measure as in (a) but normalized for the expected
std. P . Red dots indicate bins with less than 1000 GVs.
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