
 
 

Delft University of Technology

Structured light assisted coherent fourier scatterometry for physical parameter retrieval of
nanostructures

Dou, X.

DOI
10.4233/uuid:2ac46a6e-c97a-495a-b9d3-f65ec8c7cf2b
Publication date
2024
Document Version
Final published version
Citation (APA)
Dou, X. (2024). Structured light assisted coherent fourier scatterometry for physical parameter retrieval of
nanostructures. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:2ac46a6e-c97a-495a-b9d3-f65ec8c7cf2b

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:2ac46a6e-c97a-495a-b9d3-f65ec8c7cf2b
https://doi.org/10.4233/uuid:2ac46a6e-c97a-495a-b9d3-f65ec8c7cf2b


STRUCTURED LIGHT ASSISTED COHERENT FOURIER
SCATTEROMETRY FOR PHYSICAL PARAMETER

RETRIEVAL OF NANOSTRUCTURES





STRUCTURED LIGHT ASSISTED COHERENT FOURIER
SCATTEROMETRY FOR PHYSICAL PARAMETER

RETRIEVAL OF NANOSTRUCTURES

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on Monday 15 April 2024 at 12:30 o’clock

by

Xiujie DOU

Master in Optical Engineering,
Shenzhen University, Shenzhen, China

born in Xingtai, China



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. H.P. Urbach, Technische Universiteit Delft, promotor
Dr. ir. S.F. Pereira, Technische Universiteit Delft, promotor
Prof. dr. X.C. Yuan, Shenzhen University, China, promotor

Independent members:

Prof. dr. B.R. Brandl Universiteit Leiden
Prof. dr. W.M.J.M. Coene Technische Universiteit Delft and ASML Holding N.V.
Dr. N. Bhattacharya Technische Universiteit Delft
Dr. S. Witte Advanced Research Center for Nanolithography

Other members:

Dr. C.W. Hagen Technische Universiteit Delft

Prof. dr. C. Min of Shenzhen University has contributed greatly to the preparation of this
dissertation.

Keywords: Scatterometry, structured light, nanostructure detection

Printed by: Proeschriftspecialist

Cover by: Light gives humans the eyes to see the big world in tiny things. Cover
inspired by Advanced Photonics, Vol. 5, Issue 5, 059901 (October 2023).
https://doi.org/10.1117/1.AP.5.5.059901

Copyright © 2024 by Xiujie DOU

ISBN 978-94-6384-570-0

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://doi.org/10.1117/1.AP.5.5.059901
https://repository.tudelft.nl/


Science is a way of thinking much more than it is a body of knowledge.

Carl Sagan





CONTENTS

Summary xi

Samenvatting xiii

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Overview of existing metrology methods . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Electron microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2. Scanning probe microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3. Optical Scatterometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Coherent Fourier Scatterometry . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Structured light field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1. Phase singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2. Polarization singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3. Pancharatnam-Berry Phase . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5. Goals and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2. A semi-analytical method for the scattering problem 33
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2. The Tight-focusing analysis of vector beam . . . . . . . . . . . . . . . . . . . . 35
2.3. Numerical simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1. FDTD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2. The FDTD solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4. Far-field of scattering field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3. Control the properties of a tightly focused field 51
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2. The method of PB phase shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3. The controllable transverse enhancement . . . . . . . . . . . . . . . . . . . . 54
3.4. The energy flux of the focusing field . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5. Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. Polarization-sensitive scattering for nanostructure detection 61
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3. The comparison between TE and TM modes . . . . . . . . . . . . . . . . . . . 65

VII



VIII CONTENTS

4.4. The detection sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. Polarization singularity assisted determination of step-shaped nanostructure 73
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1. Generation of the desired beam . . . . . . . . . . . . . . . . . . . . . . 74
5.2.2. The detection approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3. The scattered field for different structure heights . . . . . . . . . . . . . . . . 78
5.4. Simultaneous detection of height and SWA . . . . . . . . . . . . . . . . . . . . 79

5.4.1. The determination of height . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2. The determination of SWA . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5. Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6. Transversal optical singularity induced precision measurement of step-shaped
nanostructure 87
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1. The generation of desired beam . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2. Two factors influencing the desired beam . . . . . . . . . . . . . . . . 90
6.2.3. The detection approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.1. The scattering angle in the x y-plane . . . . . . . . . . . . . . . . . . . . 94
6.3.2. Contribution of scattering angles in three different planes . . . . . . . 95

6.4. Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7. Conclusion and outlook 101
7.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A. Polarization transformation of high NA lenses 105

Acknowledgements 109

Curriculum Vitæ 111

List of Publications 113



ABBREVIATIONS

AFM Atomic Force Microscope

CCD Charge Coupled Device

CD-SEM Critical Dimension Scanning Electron Microscope

CD Critical Dimension

CFS Coherent Fourier Scatterometry

CVB Cylindrical Vector Beam

DoF Degree of Freedom

DUV Deep Ultraviolet

EUV Extreme Ultraviolet

FDTD Finite-Difference Time-Domain

FEM Finite Element Method

FIB Focused Ion Beam

FWHM Full Width at Half Maximum

HG Hermite-Gaussian

IC Integrated Circuit

LG Laguerre-Gaussian

LH Left-handed

LOS Longitudinal Optical Singularity

LPB Linearly Polarized Beam

NA Numerical Aperture

OAM Orbital Angular Momentum

OS Optical Scatterometry

OV Optical Vortex

IX



X ABBREVIATIONS

PB Pancharactnam-Berry

PML Perfectly Matched Layer

PS Poincaré Sphere

RCWA Rigorous Coupled Wave Analysis

RH Right-handed

RPB Radially Polarized Beam

SEM Scanning Electron Microscope

SNOM Scanning Near-field Optical Microscopy

SoP State of Polarization

STM Scanning Tunneling Microscope

SWA Side-wall Angle

TCs Topological Charges

TEM Transmission Electron Microscope

TOS Transversal Optical Singularity

UV Ultraviolet

VP Vortex waveplate



SUMMARY

In the semiconductor industry, the minimum element size has stepped into nanometer
level. To keep the functionality of fabricated nanostructures, there is a huge demand of
a technique that can provide non-destructive inspection and allow for in-line or in-situ
monitoring during the manufacturing process. Optical scatterometry, which uses the
far-field optical scattering information to retrieve the geometrical features of a structure,
is a suitable method. As a non-imaging technique, optical scatterometry does not produce
images of the illuminated object. Optical scatterometry relies on retrieving nanostructure
profile parameters by continuously comparing the given set of predicted signatures
expected from a scattering experiment with the actual measured ones. Because we
parametrize the structure with a limited set of parameters (i.e. we use prior knowledge of
the structure), we can reconstruct the structure with a resolution beyond the diffraction
limit. This technique is particularly valuable for characterizing micro- and nano-scale
structures that are commonly found in semiconductor devices and integrated circuits.

Coherent Fourier scatterometry (CFS) occupies a very important position in the field
of scatterometry, and uses a coherent beam that is focused by a lens to illuminate the
structure. The scattering light is then recorded and analyzed at the Fourier plane. CFS has
been used for detecting isolated defects on surfaces and determine critical dimensions
such as sidewall angle, height and width of printed structures such as lines, gratings, and
trenches.

The optical field generation and modulation is an essential topic for coherent beams.
Taking this as the standpoint, we further developed and extended the applications of
CFS technique in the realm of morphology reconstruction for nanostructures. In this
thesis, the primary focus of the study is on exploring aspects such as the generation of a
desired light beam, the effect of polarization and optical singularity as extra tools for the
identification of certain parameters of nanostructures that have found to be challenging
when using uniform light beams.

In Chapter 1, we introduce the current development status and metrology demands of
the semiconductor chip industry. Principles and characteristics of the existing methods,
including the electron microscopy, scanning probe microscopy, and optical scatterometry,
are sketched. Moreover, the basic theories of structured optical fields, from physical
properties to generation approach, are formulated.

As the optical field modulation is the central issue in this thesis, the fundamental theory
of the relevant methods, as well as the numerical simulation methods, are introduced
in Chapter 2. On this basis, we generate a controllable optical field by shaping the
Pancharactnam-Berry (PB) phase under a focusing condition in Chapter 3. More precisely,
the intensity distribution of the field perpendicular to the optical axis, is structured with a
tunable length and subwavelength width in the focal plane.

We then propose a far-field detection system combined with a split detector to retrieve
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parameters of a step structure. To demonstrate the feasibility of the method, in Chapter
4, we analyze the impact of the polarization state and focus position of the incident
laser beam. Our results indicate that a dedicated polarization mode should be chosen to
increase the measurement precision.

Structured light beams with optical singularities always lead to zero-field intensities
and possess a high intensity gradient in a region around the singularity. The latter makes
the above mentioned method interesting to enhance resolution. To improve the detection
accuracy and broaden the measurement methods, we use two novel optical singularities,
i.e., the optical polarization singularity and transversal optical phase singularity, as the
light source to interact with the nanostructure. The physical properties of the scattered
light field with the above optical singularities are analyzed in detail in Chapter 5 and
Chapter 6. We demonstrate that for the case of a step structure, both the sidewall angle
and height can be retrieved with high precision in a single measurement or a few mea-
surements. Our results illustrate that optical singularities provide an effective and robust
approach to determine an accurate profile of nanostructures.



SAMENVATTING

In de halfgeleiderindustrie heeft de minimale elementgrootte het nanometerniveau be-
reikt. Om de functionaliteit van gefabriceerde nanostructuren te behouden, is er een
enorme vraag naar een techniek die niet-destructieve inspectie en in-line- of in-situ-
monitoring mogelijk maakt tijdens het productieproces. Optische scatterometrie, die
gebruik maakt van informatie van optische verstrooiing in het verre veld om de geo-
metrische kenmerken van een structuur te achterhalen, is een geschikte methode. Als
niet-beeldvormende techniek produceert optische scatterometrie geen beelden van het
belichte object. Optische scatterometrie is afhankelijk van het verkrijgen van profielpa-
rameters van nanostructuren door continu de gegeven set van voorspelde signaturen
die uit een verstrooiingsexperiment verwacht worden te vergelijken met de werkelijk
gemeten signaturen. Omdat we de structuur parametriseren met een beperkte set pa-
rameters (d.w.z. we gebruiken voorkennis van de structuur), kunnen we de structuur
reconstrueren met een resolutie beter dan de diffractielimiet. Deze techniek is bijzonder
waardevol voor het karakteriseren van micro- en nanostructuren die vaak voorkomen in
halfgeleiderapparaten en geïntegreerde schakelingen.

Coherente Fourier-scatterometrie (CFS) neemt een zeer belangrijke positie in op het
gebied van scatterometrie en gebruikt een coherente bundel die door een lens wordt
gefocust om de structuur te verlichten. Het verstrooide licht wordt vervolgens vastgelegd
en geanalyseerd in het Fourier-vlak. CFS is gebruikt voor het detecteren van geïsoleerde
defecten op oppervlakken en het bepalen van kritische dimensies zoals zijwandhoek,
hoogte en breedte van geprinte structuren zoals lijnen, tralies en sleuven.

Het genereren en moduleren van optische velden is een essentieel onderwerp voor
coherente bundels. Met dit als uitgangspunt hebben we de toepassingen van de CFS-
techniek verder ontwikkeld en uitgebreid voor de morfologie-reconstructie van nano-
structuren. In dit proefschrift ligt de primaire focus van het onderzoek op het verkennen
van aspecten zoals het genereren van een gewenste lichtbundel, het effect van polarisatie
en optische singulariteit als extra hulpmiddelen voor de identificatie van bepaalde para-
meters van nanostructuren die een uitdaging zijn gebleken bij het gebruik van uniforme
lichtbundels.

In hoofdstuk 1 introduceren we de huidige ontwikkelingsstatus en metrologie-eisen van
de halfgeleiderchipindustrie. Principes en karakteristieken van de bestaande methoden,
waaronder elektronenmicroscopie, scanningprobemicroscopie en optische scatterome-
trie, worden geschetst. Bovendien worden de basistheorieën van gestructureerde optische
velden, van fysische eigenschappen tot de opwekkingsaanpak, geformuleerd.

Aangezien de optische-veldmodulatie centraal staat in dit proefschrift, wordt de funda-
mentele theorie van de relevant methoden en de numerieke simulatiemethoden geïn-
troduceerd in hoofdstuk 2. Op basis hiervan genereren we een controleerbaar optisch
veld door het vormen van de Pancharatnam-Berry (PB) fase onder een focusconditie in
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hoofdstuk 3. De intensiteitsverdeling van het veld loodrecht op de optische as wordt
gestructureerd met een instelbare lengte en sub-golflengte breedte in het brandvlak.

Vervolgens stellen we een verre-veld-detectiesysteem voor in combinatie met een ge-
splitste detector om de parameters van een stapstructuur te bepalen. Om de haalbaarheid
van de methode aan te tonen, analyseren we in hoofdstuk 4 de invloed van de polarisatie-
toestand en focuspositie van de invallende laserstraal. Onze resultaten geven aan dat een
speciale polarisatiemodus moet worden gekozen om de meetprecisie te verhogen.

Gestructureerde lichtbundels met optische singulariteiten leiden altijd tot veldintensi-
teiten van nul en bezitten een hoge intensiteitsgradiënt in een gebied rond de singulariteit.
Dit laatste maakt de bovenstaande methode interessant om de resolutie te verbeteren. Om
de detectienauwkeurigheid te verbeteren en de meetmethoden uit te breiden, gebruiken
we twee nieuwe singulariteiten in de bundel, namelijk de optische polarisatiesingulariteit
en transversale optische fasesingulariteit, als lichtbron om te interageren met de nano-
structuur. De fysische eigenschappen van het verstrooide lichtveld met de bovenstaande
optische singulariteiten worden in detail geanalyseerd in hoofdstukken 5 en 6. We laten
zien dat in het geval van een stapstructuur zowel de zijwandhoek als de hoogte met hoge
precisie kunnen worden bepaald met één of enkele metingen. Onze resultaten laten zien
dat optische singulariteiten een effectieve en robuuste aanpak bieden om een nauwkeurig
profiel van nanostructuren te bepalen.
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2 1. INTRODUCTION

1.1. BACKGROUND

An integrated circuit (IC) is a set of electronic circuits formed on a single small flat piece
(or ‘chip’) of semiconductor material, typically silicon. On September 12, 1958, Jack Kilby
at Texas Instruments developed the world’s first germanium IC, thus marking a significant
milestone in the integration of electronic devices into a single semiconductor material.
However, Kilby’s invention did not constitute a true monolithic IC chip because it relied
on external gold-wire connections. Just a few months later, Robert Noyce at Fairchild
Semiconductor invented the first true monolithic IC chip, which featured critical on-chip
aluminum interconnecting lines on a silicon planar substrate, and this circuit laid the
foundation for modern IC chips.

Commercially-produced silicon ICs have played a pivotal role in the semiconductor
industry’s transition from the ‘age of invention’ to the ‘age of business’. This transition
from the small scale to today’s very-large-scale integration took slightly more than half a
century. The ability of IC integration to keep pace with Moore’s law [1], which predicts that
the number of transistors that can be integrated on a single chip doubles every 18 months,
can be attributed to the continuous advancements and breakthroughs being made in
semiconductor manufacturing technologies. This law still provides a reasonably accurate
estimate of the scale and timing of the next generation of integrated circuits. However,
the doubling period has been extended from 18 months to 24 months at present.

Technological progress, which is characterized by the production of devices with in-
creasingly smaller geometrical parameters, has also pushed the limits of the available
manufacturing equipment’s capabilities. The IC manufacturing industry optimizes the
processes taking into account speed, scalability and economic factors. As result, the
use of the lithographic technique represents the only choice available among the nano-
manufacturing techniques at present [2–5].

Shortening the operating wavelength is one of the most effective methods to improve
the resolution of the lithographic method. Historically, the used wavelength decreased
from the traditional ultraviolet (UV) to deep UV (DUV), and now extreme UV (EUV)
has been implemented [6–8]. Together with the development of these new lithography
techniques there is a need for new metrology and inspection methods. For some products,
more than 50% of the manufacturing process requires a measurement or alignment
process.

Surface topography control has always been an important topic in manufacturing
and in many other engineering and scientific fields. In IC manufacturing, surface mea-
surement of the in-chip regions is almost impossible because of the extremely complex
patterns and the disturbances between the layers. Fortunately, analysis of suitably de-
signed test patterns on the lithographic mask or on the wafer has been sufficient to enable
evaluation and control of the IC manufacturing process [9]. The test patterns are designed
as gratings with different periods and orientations that are etched into the scribe line
between the in-chip regions, as shown in Figure 1.1. In the new generations of lithog-
raphy process, in addition to the critical dimension (CD) of the micro/nanostructures,
other parameters such as side wall angle (SWA), roundness of the corners of the gratings,
line edge roughness should be determined to guarantee the quality of the end prod-
ucts. Furthermore, control and estimation of the SWA is particularly challenging in chip
manufacturing processes.
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Image in the chip

Image in the scribe line

Figure 1.1: Schematic of the IC measurement. Adapted with permission from Ref. [9].

1.2. OVERVIEW OF EXISTING METROLOGY METHODS
Metrology techniques are essential to all aspects of IC research and development, in-
tegration, manufacturing process control and testing, where the use of light, electrons,
X-rays, and surface forces, among others [10, 11] are applied. These technologies have a
broad measurement resolution that spans several orders of magnitude. In the following
subsections, the most important technologies in this field along with their advantages
and disadvantages are described.

1.2.1. ELECTRON MICROSCOPY

The electron microscope uses electron beams to generate an image with nanometer-
order resolution, which is far beyond the resolution of optical microscopes. The first
transmission electron microscope (TEM) [12, 13] was developed in the 1930s by two
German physicists, Max Knoll and Ernst Ruska, at Siemens. Adenauer improved the
design of the TEM in 1937 by establishing the concept of a scanning electron microscope
(SEM). In the case of SEM a focused electron beam is scanned [14], the device uses a
focused electron beam that moves over the surface of a sample; this bombardment of
the sample excites secondary electrons beams, which are then collected to produce a
‘backscatter’ pattern.

Although the TEM can provide an extremely high lateral resolution (< 50 pm) [15],
this microscope is not widely used in the semiconductor field because of the complex
sample preparation, limited field of view and vacuum operating environment. SEM is
more suitable for surface texture imaging; however, the sample needs to be cut to enable
observation of its cross-section, and the high-pressure electron beam used can easily
damage the sample.

The specialized critical dimension SEM (CD-SEM) [16, 17] is optimized for the re-
quirements of IC manufacturing for the determination of critical geometric parameters
including linewidth, edge roughness, and surface defects from a normal top-down image.
The SWA is obtained when the beam or the sample is tilted. Resolution and reproducibil-
ity in the sub-nanometer range can be attained by using lower electron energies [18].
Despite its strict operating environment requirements and destructiveness, the CD-SEM
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remains one of the indispensable techniques for off-line IC measurements due to its
ultra-high lateral resolution. Focused ion beams (FIBs) [19] work in a very similar manner
to SEMs. FIBs also use secondary electrons excited by the sample to perform imaging,
and thus offer the same advantages and disadvantages as the SEM.

1.2.2. SCANNING PROBE MICROSCOPY

In 1981, Gerd Binning and Heinrich Rohrer at IBM in Switzerland built the first scanning
tunneling microscope (STM) based on their discovery of the quantum tunneling phe-
nomenon, which refers to a tiny electron flow or a small current that occurs between
the sample and the probe. When a small and delicate probe moves across the surface
of a sample, STM [20, 21] uses the probe to detect this small current and use it to im-
age the sample; this approach could overcome the shortcomings of conventional image
microscopy by eliminating the input sources. With STM one can obtain images on the
atomic scale [22].

Another popular scanning probe microscope is the atomic force microscope (AFM) [23],
which uses the Van der Waals force acting between the atoms to measure the sample’s
morphology. In AFM, a probe is attached to one end of a microcantilever and a very small
gap is maintained between the top of the probe and the sample surface by controlling
the microcantilever; during this process, a weak Van der Waals force occurs. The sample
profile information can then be obtained via undulating control of the gap between the
probe tip and the surface during the scanning process to ensure that the Van der Waals
force remains constant. In AFM, sub-nanometer resolution (< 1 nm lateral and < 0.1 nm
vertical) is routinely realized, and true atomic resolution is achievable under appropriate
conditions [24]. However, the tip itself has a certain geometric dimension; therefore,
for dense structures with small dimensions, there are limitations of this technique, in
particular for the case of high-aspect ratio topography measurement, particular in high
aspect ratio structures where the SWAs are steeper than the slant angles of the tips.

AFMs are optimized for critical dimensions, and the 3D-AFM in particular [25, 26], is
used to measure nanowires and other related dimensional parameters. The 3D-AFM has
been developed to perform 3D measurements using two-axis cantilever vibration or tilting
of the scanning head. In addition, the 3D-AFM can be used to extract the desired critical
geometrical parameters from the 3D image, including measurement of the SWA, which is
one of the parameters of interest treated in this dissertation. It has been demonstrated
that the 3D-AFM sidewall measurement uncertainty can be reduced to less than 1 nm.
Complex feature geometries can then be measured by using tips that are optimized for
specific sample. However, the low throughput of AFM represents an obstacle to its use as
an in-line inspection method.

In recent years, the advent of microscopic imaging techniques based on a near-field
principle has reduced the resolution limit to less than one-tenth of the wavelength (i.e.
λ/10). In scanning near-field optical microscopy (SNOM) [27, 28], the optical lens is
replaced with a probe with an aperture that is much smaller than the wavelength. When
such a sub-wavelength probe is placed in the near-field region, the diffraction limit is
broken due to the coupling of evanescent waves that carry the subwavelength details
of the object. However, SNOM suffers from the same problem as AFM since it is also a
scanning technique and it is very slow. Additionally, its depth of field is much smaller
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that that of the traditional microscope. All these drawbacks have greatly limited the
application of SNOMs.

All methods mentioned above can provide extremely highly resolution, and play in-
dispensable roles in the semiconductor industry. However, these methods are either too
slow or destructive, and hence there is a huge demand for a fast, far-field, non-destructive
measurement methods, as shown in the following section.

1.2.3. OPTICAL SCATTEROMETRY

In the early stage of IC manufacturing, the surface textures of semiconductor chips could
be characterized using optical microscopes, and many microscopy-related methods
have been developed to improve either the image quality or the detection precision,
including differential interference/phase contrast methods [29], confocal laser scanning
microscopy [30], and scanning white-light interferometry [31]. Many of these methods
remain powerful in many fields today, but they cannot provide adequate resolution or
precision for present semiconductor industry. The resolution of a traditional optical
system is governed by the Abbe diffraction limit, which states that the smallest resolvable
distance d is given by,

d = λ

2NA
. (1.1)

where λ is the wavelength and NA = n sinθ is the numerical aperture of the lens with the
refractive index n. The geometries of the fabricated structures are often too small to be
resolved with conventional microscope systems and other measurement strategies have
thus been introduced.

In the late 1990’s, a commercial solution that satisfied many of the needs of high-
volume IC manufacturing emerged. The technique known as optical scatterometry (OS)
[32, 33]. Unlike the image-based metrology techniques, OS is not a ‘what you see is
what you want’ method but it is a statistical model-based method. When the number of
unknown parameters is rather limited and the signal to noise ratio is sufficiently large, we
parametrize the structure with a priori knowledge, then we can reconstruct the structure
with a resolution beyond the diffraction limit. Through measurement and analysis of the
light scattered by a structure, it is possible to retrieve certain parameters of the structure.
The implementation of optical scatterometry involves two main stages, as illustrated in
Figure 1.2, in which the first one is known as the forward problem. The optical ‘signature’
or ‘fingerprint’ of the target structure is collected by using a suitable setup. Here, the
‘signature’ represents the optical response of the sample, which can be related to the
structural profile and the material properties of the sample itself. Then the profile of
the target structure must first be parameterized according to a priori knowledge and a
forward scattering model is built to relate the profile parameters to the simulated optical
signature. In the second stage, to address the inverse problem, the profile parameters are
retrieved by matching the measured and simulated signatures.

As an example, for the case of a diffraction grating consisting of periodic lines and
spaces, the scattered light is governed by the well-known grating equation:

sin(θi )+ sin(θm) = m
λ

Λ
, (1.2)
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where θi is the angle of incidence, θm is the angle of the m-th diffraction order (where m
= 0, ±1, ±2, . . . ), λ is the wavelength, and Λ is the period (pitch) of the grating.

The scattered or diffracted fields are sensitive to the material and the dimensional
parameters of the structure, and can thus be regarded as the ‘fingerprint’ or ‘signature’ of
the grating. Therefore, similar to the use of a fingerprint to identify a person, the scattered
or diffracted fields can be used to identify structures. Various scatterometric setups have
been established by adjusting the angle of incidence θi , the scattering angle θm , and the
wavelength of the incident light λ, which allows the setups to be basically categorized
as angular scatterometer and spectroscopic scatterometer. It should be noted that the
grating equation only shows the relationship in terms of the physical location between
the angle of the incident light and the diffraction orders, but the interaction between the
light and the grating is usually quite complex and rigorous simulations are required to
calculate the field in each diffraction order.

Figure 1.2: The working principle of optical scatterometry.
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ANGULAR SCATTEROMETERS

The first attempt of scatterometry in metrology was undertaken by Kleinknecht and Meier
in 1978 for monitoring etch rates in SiO2 and Si3N4 [34]. Two years later, their setup was
improved to measure the linewidths on IC masks and was used to perform in-process
monitoring of these linewidths on wafers [35]. The setup was a static one in which both
the incoming beam and the detector were kept at fixed angles, and it is very similar to the
current 2-θ scatterometer [36]. The 2-θ scatterometer is a typical angular scatterometer,
as illustrated in Figure 1.3(a). In angular scatterometry, a monochromatic light source is
incident on the structure at an angle θi after passing through an optical system with an
angle scanning function. By following Equation 1.2, the detector can locate and measure
the diffracted light of any order when the angle of incidence is known.

In Figure 1.3(a), both the input module and the detector module are adjustable to a
scanning angle of incidence θi , and the detector can move correspondingly to record
the reflectance (or transmittance) of the zeroth-order diffracted light θ0; the reflectance
(transmittance) is then plotted as a function of the angle of incidence θi . There are
two main advantages in recording the zeroth-order diffracted light. One is that the
zeroth-order diffracted light generally has the highest intensity as compared to all other
diffraction orders, and can thus provide the highest signal-to-noise ratio, which is an
important evaluation metric. The other one is that the zeroth-order diffracted light usually
exists, regardless of the values of θi . The zeroth-order is simply the specular order, and
thus the selection of the zeroth-order becomes a study of the specular reflection as a
function of the angle of incidence. In the measurements of the specular reflection, the
detector is always positioned symmetrically at the normal to the substrate with respect to
the incoming light, and this is why the detector is also named the 2-θ scatterometer.

Figure 1.3(b) shows another type of angular scatterometer. Here, the angle of incidence
θi is fixed at a specific angle, whereas the detector is scanned or an array detector is used
to record the diffracted light of the various diffraction orders θm . The reflectance (or trans-
mittance) is then plotted as a function of the diffraction angle θm . To distinguish it from
the aforementioned 2-θ scatterometer, this setup can be called a scattering angle-resolved
scatterometer based on its working characteristics; similarly, the 2-θ scatterometer can
also be named as incident angle-resolved scatterometer. For a specific ratio of λ/Λ,
Equation 1.2 shows that a higher order may not propagate to the far field. To ensure that
sufficient scattering information is available to enable accurate profile reconstruction of
small-pitch structures, light sources with short illumination wavelengths, e.g. an EUV
light source [37] or an X-ray light source [38], can be used in scattering angle-resolved
scatterometers.

SPECTROSCOPIC SCATTEROMETERS

Rather than scanning the input/detector angles as the angular scatterometers do, spectro-
scopic scatterometers instead scan the wavelength of the incoming light. As depicted in
Figure 1.3(c), the spectroscopic scatterometer is implemented by using a broadband light
source and detects the spectrum of the scattered light on the detector side. According to
Equation 1.2, the incident wavelength will also influence the diffraction angle. Except the
zeroth-order reflection, the grating will disperse each wavelength into a different diffrac-
tion direction when illuminated by a broadband source. Therefore, similar to the 2-θ
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scatterometer, the majority of spectroscopic scatterometers only collect the zeroth-order
reflection to avoid the cumbersomeness of the first (or higher) orders of the diffraction.
The collected intensities of the reflected light can be used to determine parameters of
the structure, as can the phase and polarization information. For example, the ellipso-
metric scatterometer is a well-known type of spectroscopic scatterometers, in which the
polarization changes in the scattered light are used to determine the parameters of the
structure being illuminated. This technique has been widely used in the measurement of
the critical dimensions of grating structures [39, 40].

θi θ0

(a)

θi θ0

(b)

θi θ0

(c) (d)

Figure 1.3: Schematics of different scatterometric setups. (a) a 2-θ system in which the
incoming light and the detector are moved simultaneously, and (b) a fixed angle setup in
which only the detector moves; (c) spectroscopic system without any moving parts. The
amplitude, phase and polarization of the light can be used to acquire information about
the structure to be analyzed. (d) a hemisphere detector, e.g., a Fourier lens system, which
can collect all diffraction orders simultaneously.

By using special optics, multiple diffraction orders can be measured simultaneously,
as illustrated in Figure 1.3(d). Optical Fourier scatterometry is a typical example. In an
optical Fourier scatterometer, a high-NA objective is employed to focus the beam into the
structure and measure the reflectance for different diffraction angles simultaneously in
the Fourier plane; the information in the Fourier space is then analyzed to increase the
detection capability.

1.3. COHERENT FOURIER SCATTEROMETRY
Coherent Fourier scatterometry (CFS) is a relatively new branch of OS that was originally
suggested by El Gawhary et al. [41]. Unlike the scatterometry methods mentioned
previously, in which the light source is often a discharge lamp or is quasi-monochromatic,
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CFS uses the scattering behavior of a spatially coherent light source. When a discharge
lamp or a quasi-monochromatic spatially incoherent light source is used as the incident
light, a diffraction-limited spot cannot be generated. This implies that a large spot
illuminates a large area of the grating. When compared with the incoherent case, the use
of spatially coherent illumination makes CFS a competitive and possibly even superior
method when an appropriate strategy is used. In addition to the widespread use for
periodic structures, CFS can also be used to study isolated structures. To date, CFS has
been applied to the reconstruction of grating profiles and the detection of nanoparticles
or defects on substrates made from different materials [42]. In this thesis, one of the main
topics is the application of CFS for the reconstruction of the steep SWA of a silicon-based
step nanostructure, which represents as a quite challenging problem in IC manufacture.

Figure 1.4: Common configuration used for the CFS technique.

A common configuration for CFS is shown in Figure 1.4. The incident beam usually
stems from a spatially coherent light source with a specific wavelength; in our case, the
selected wavelength is 633 nm, which can be generated by a He-Ne laser. After passing
through a specific optical system (indicated by the black box in the incident arm), a light
probe with the desired light structure is focused on the sample by using an objective
with a specific NA. If a strongly focused coherent illumination is applied, the probe
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beam will be sub-micron in size; therefore, to cover the area of interest on the sample,
a scanning system such as the typical system based on use of piezoelectric stages can
be implemented. The transverse scanning capability of a piezoelectric stage ensures
that the sample can be scanned point-by-point in the plane, which is essential for CFS.
The same objective is also used to collect the reflected and scattered light, where the far
field is imaged on a charge-coupled device (CCD) camera (i.e., camera 2 in Figure 1.4).
Additionally, another branch can be implemented to allow imaging of the sample plane
on another CCD camera (i.e., camera 1 in Figure 1.4).

The coherence of the illumination provides more degrees of freedom (DoFs) for op-
tical detection. More precisely, this technique not only enables the intensity or phase
to be measured, but also enables the measurement of the singularity, the orbital angu-
lar momentum, the spin angular momentum, and other optical properties of the light
beam. The specific distribution of these optical properties construct a huge family of
structured light fields, which has fulfilled many applications. Structured light technology
is characterized by its accuracy, so merging structured light field and CFS can be used
to improve the sensitivity on the determination of the structural parameters. Hereto,
the most concise description of our workflow becomes projecting a known pattern of
structured light onto the objects and analyzing the deformations or distortions of the
pattern after it has interacted with the objects. By carefully analyzing these distortions,
the shape of the objects within the field of view can be reconstructed.

1.4. STRUCTURED LIGHT FIELD

Structured light refers to the generation and application of custom light fields. They can
be customized by several optical DoFs, including its wavelength (coherence), amplitude,
phase and polarization. Structured light has been proved to be a very useful tool in many
fields related to light–matter interactions, from imaging [43], microscopy [44], metrology
[45] to optical communication [46], optical tweezers [47], quantum information [48], just
to name a few. In the semiconductor industry, structured light may open up new ways to
address the challenges in measurement precision.

Many types of structured light have been widely generated and researched. A milestone
of structured light are light beams carrying orbital angular momentum (OAM), such
as optical vortex with spatial helical phase. Intensive studies of OAM have opened the
floodgates of structured light research [49]. Another important branch of structured
light is that of the ‘Poincaré beams’, which are light beams that can have all possible
polarization states in their cross-section [50]. The investigation of this kind of ‘exotic’
beam thrived after it was found that radially and azimuthally polarized beams exhibit
very intriguing properties upon tight focusing [51].

In the early 2000s, with the emergence of liquid-crystal spatial light modulators (LC-
SLM) [52], digital micromirror devices (DMD) [53] and later geometric phase elements
such as q-plates [54] and other spin–orbit approaches [55], it has become possible to
reshape the light in all its DoFs outside a laser cavity. To date, many types of spatially
structured fields have been widely generated and researched, a glimpse of a manifold of
structured beams along with their physical properties is shown in Figure 1.5, including
fundamental Gaussian beams as well as higher order Gaussian beams and their superpo-
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sition beams, propagation-invariant beams and Airy beams. Essentially, these structured
beams can be described as the eigenfunctions of linear and angular momentum opera-
tors, or as the combinations of these eigenfunctions.

Figure 1.5: Typical examples of structured light beams with an operator representation.
Adapted with permission from Ref. [56].

Optical singularity is a common phenomenon that can be observed in both Hermite-
Gaussian beams and Laguerre-Gaussian beams. An optical singularity occurs at a point
(x0, y0) where a certain optical property φ of the field (such as phase or polarization) is
discontinuous, i.e. the limit

lim
(x,y)→(x0,y0)

φ(x, y) (1.3)

does not exist. This implies that the amplitude at (x0, y0) must be 0 and the field gradient
in the immediate neighbourhood of the singularity is high. There are two main forms of
optical singularities, namely the polarization and phase versions. The just mentioned
beam optical vortice is one typical type of phase singularity and is part of the larger
subject of singularity optics. Poincaré beams have a polarization singularity on their
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optical axis. In the following, in accordance with the work for the thesis, I will introduce
the basic properties of structured beams with specific phase and polarization singularity
distributions.

1.4.1. PHASE SINGULARITY

TYPICAL LASER MODE

When studying Gaussian beams, polarization-dependent effects will be neglected, so we
will use the scalar theory. Let E be a component of the electric field of a Gaussian beam
and u(x, y, z) or u(r,φ, z) be the reduced amplitude, then the electric field E(x, y, z) can
be written as:

E(x, y, z) = u(x, y, z)e i kz , (1.4)

where k = 2π/λ is the wavenumber. Under the paraxial approximation, the field u(x, y, z)
or u(r,φ, z) obeys the free-space paraxial Helmholtz equation [57] as

∇2u +2i k
Çu

Çz
= 0, (1.5)

where ∇2 represents the Laplacian operator in the transverse coordinates. The equation
can be gained from the regular Helmholtz equation (∇2+k2)u = 0 by substituting Equation

1.4 and neglecting the term Ç2u
Çz2 . We will consider solutions of the form

u(x, y, z) =A (z)exp
[ i k(x2 + y2)

2q(z)

]
. (1.6)

Here, A (z) is a complex-valued function and q(z) is called the complex beam parameter
for a Gaussian beam. If the imaginary part of q(z) is negative, Equation 1.6 will have a
Gaussian intensity profile perpendicular to the z-direction. The Gaussian beam whose
amplitude is a purely exponential function of x2 + y2 is the well-known fundamental
Gaussian mode. There also exists higher-order Gaussian modes for which A depends on
x and y polynomially.

For the fundamental Gaussian mode, substitution of Equation 1.6 in Equation 1.5 gives

q(z) = z +q0, (1.7)

for some constant q0. And

A (z) = q0

q(z)
, (1.8)

where the integration has been chosen such that A (0) = 1. With Equation 1.7 and 1.8, the
Equation 1.6 can be written as:

u(x, y, z) = q0

q(z)
exp

[ i k(x2 + y2)

2q(z)

]
. (1.9)

To interpret this result, we write 1/q(z) as the sum of real and imaginary parts with beam
curvature R(z) and beam waist w(z) as:

1

q(z)
= 1

R(z)
+ iλ

πw2(z)
. (1.10)



1.4. STRUCTURED LIGHT FIELD

1

13

In Equation 1.10:

R(z) = z
[

1+ ( zR

z

)2
]

,

w2(z) = w2
0

[
1+ ( z

zR

)2
]

,
(1.11)

where w0 is the beam waist when z = 0 and zR =πw2
0 /λ is the Rayleigh distance. Further-

more, we have
q0

q(z)
= wo

w(z)
exp[−i arctan(z/zR )]. (1.12)

With the help of Equation 1.10 and 1.12, Equation 1.9 can also be further represented in
terms of R(z) and w(z):

u(x, y, z) = w0

w(z)
exp

{
− i arctan(z/zR )+ i k(x2 + y2)

2R(z)
− x2 + y2

w(z)2

}
. (1.13)

There also exist higher-order modes whose variation in the plane perpendicular to
z-axis is more general and complex. The so-called Hermite-Gaussian (HG) is the paraxial
solution in Cartesian coordinates. The Hermite-Gaussian solution HGmn modes, which
are obtained by the separating the variables x and y , can be written as:

umn(x, y, z) =Amn(q(z))Hm

( p
2x

w(z)

)
Hn

( p
2y

w(z)

)
exp

{
i k(x2 + y2)

2q(z)

}
=Hm

( p
2x

w(z)

)
Hn

( p
2y

w(z)

)
w0

w(z)
exp{−i (m +n +1)arctan(z/zR )}

exp
{ i k(x2 + y2)

2R(z)
− x2 + y2

w(z)2

}
,

(1.14)

where the amplitude factors Hn denotes the the Hermite polynomials given by:

Hn(x) = (−1)n exp(x2)
d n

d xn exp(−x2).

Note that the fundamental Gaussian beam can be generated when m = n = 0. Every light
field that is a solution of the paraxial wave equation can be written as a linear combination
of the HG modes. The intensity distribution of the HG modes varies with different values
of the parameters m and n, as shown in Figure 1.6.

Another complete basis is the so-called Laguerre-Gaussian (LG) modes, which is the
paraxial solution in cylindrical coordinates (r,φ, z). The Laguerre-Gaussian solution LGl

p
modes can also be obtained by separating the variables r and φ [58]:

ul p (r,φ, z) =Al p (q(z))

( p
2r

w(z)

)|l |
L|l |

p

(
2r 2

w(z)2

)
exp

[
i kr 2

2q(z)

]
exp{i lφ}

=
( p

2r

w(z)

)|l |
L|l |

p

(
2r 2

w(z)2

)
w0

w(z)
exp{−i (2p +|l |+1)arctan(z/zR )}

exp
{ i kr 2

2R(z)
− r 2

w(z)2

}
exp{i lφ},

(1.15)
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Figure 1.6: Intensity distribution of HGmn mode with different m and n parameters.
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Figure 1.7: Intensity distribution of LGl
p modes with different p and l parameters.
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where the amplitude factor Ll
p (x) is given by the Laguerre polynomial:

Ll
p (x) = exp(x)x−l

p !

d p

d xp

(
x l+p exp(−x)

)
,

the parameter l represents the azimuthal index, which characterizes the order of the
phase singularities or vortices. After completion of a full revolution around the central
optical singularity, the phase is changed by 2πl . In addition, the parameter p represents
the radial index, which determines the number of concentric circles or rings within the
intensity distribution of the light spot. Figure 1.7 illustrates the intensity distributions
of LG modes with various values of l and p. The simplest and most distinctive LG mode
(LG1,0) appears as a single annular ring of high intensity with a 2π phase singularity along
the beam axis. When l = p = 0, this solution reduces to the well-known fundamental
Gaussian beam solution as Equation 1.13.

Figure 1.8: Decomposition of LG vortex beams. Examples of the decomposition of LG
modes.(a) LG0,1 and (b) LG0,2 into HG modes. Adapted with permission from Ref. [49].

The above solutions, both the HG modes and the LG modes are the paraxial solutions
to the scalar Helmholtz equation that corresponds to homogeneously polarized scalar
beams. Every above beam family is known to be a basis for the two-dimensional space,
and thus an arbitrary square integrable two-dimensional function can be presented as a
series of HG or LG functions. In fact, these two beam families are equivalent, such that
any LGl

p mode can be decomposed into a linear combination of HGmn modes and vice
versa, as illustrated in Figure 1.8.

PROPERTIES OF OPTICAL VORTICES

In optical vortex (OV) beams, light is twisted like a corkscrew around its axis of travel. The
phase circulates around a zero-field point, thus generating a helical phase front to form a
phase singularity in the center. Over the last 30 years, the OV beam has been regarded as
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one of the most interesting optical modes. In the following, I will briefly introduce the
basics of singularities, their properties, their generation, and related applications.

The OV beam has the topological charge (TC) of its helical phase, which depends on
how many twists the light does in one wavelength. If the phase angle continually increases
along a closed loop and changes by 2πl , then l is the so-called TC, which can be positive
or negative, depending on the direction of the twist. In general, the TC is an integer to
ensure that the field is uniquely defined and it is defined as:

l = 1

2π

∮
c
∇ϕ(r) ·dr, (1.16)

where ϕ is the phase distribution and c is a closed loop that surrounds the singularity.

0

1

0

2π

l = 0 l = 2l = 1l = -1

Figure 1.9: The intensity of optical vortex beams with different topological charges and
their corresponding phase distribution. The value of l indicates the topological charges
of OV beams.

The LG beam is one of the natural laser modes that contains an OV and the mathemati-
cal expression for this beam has been given as Equation 1.15. Figure 1.9 depicts the typical
geometries of the OV beams. The value l of TC can effect the size of the region of the
singularity and also can decide the transverse phase structure. The light beam with helical
phase-fronts also carry an orbital angular momentum (OAM) equivalent to lħ. According
to the classification introduced by Nye and Berry [59], a monochromatic light wave can
possess two main types of phase singularities: a screw wavefront dislocation and an edge
dislocation. Physically, these singularities can be divided into longitudinal and transversal
states, i.e., oriented parallel and perpendicular to the propagation direction, respectively.
Figure 1.10 shows the schematics of the longitudinal and transversal optical singularities
with an OAM. An intuitive difference appears between them, in that the OAM vector is
rotated by π/2 to that of the other singularity. Consequently, a pure screw dislocation is
the core of a ‘longitudinal’ OV, and the edge dislocation produces a ‘transversal’ OV, with
respect to the wave propagation direction.
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The transversal optical singularity has been demonstrated to be closely associated with
the energy flux, which is usually accompanied by a locally reversed energy flux. The most
direct way to produce a singularity is to form an edge dislocation. In 2000, Vasnetsov et
al. analyzed the way in which an edge dislocation of a wavefront can be created within
an interference field of two paraxial Gaussian beams with different waist parameters
[60]. In this case, the phase saddle and the vortex often appear simultaneously. The
position of phase saddle point and vortex point in the interference field is related to the
off-axis parameters, the waist width, and the phase and relative amplitude of the beams
[61]. At a specified value of the governing parameter, the saddle point coincides with the
vortex. There is also a case in which the saddle collides with the vortex, which results in
the reversal of the sign of the light circulation and the creation of two new circular edge
dislocations.

A simpler case is that when an optical field is tightly focused, e.g., in typical dark-hollow
Gaussian beams, where transversal vortices and transverse components will appear
directly in the focal field [62]. The distributions of the phase singularities are highly
dependent on the truncation parameter and the NA of the focusing lens. In particular,
the beam order (i.e., the intensity distribution in the cross-section) additionally affects
the spatial distributions of the phase singularities, and these phase singularities can then
be achieved outside the focal plane.

Figure 1.10: Characteristics of longitudinal and transversal optical singularities with a
spatial OAM.

In a more general case, when three or more plane waves interfere in space, complete
destructive interference occurs on lines called nodal lines, where there occur phase
singularities, wave dislocations or optical vortices, as shown in Figure 1.11. The singular
nature of the nodes arises in the case where the complex number describing the wave
is zero [63]. Provided that an interference pattern is formed by superposing three plane
waves, where the sum of the two smallest phasors exceeds the amplitude of the largest,
the vortex lines will be both straight and parallel. Therefore, in a cross-section, there is a
regular array of vortex points in two dimensions [64]. Here, the distribution of the vortices
is highly dependent on the directions and amplitudes of the waves. For situations with
four or more instances of laser interference, the properties of the singularities are similar.
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Figure 1.11: Near field for Young’s slits. (a) Intensity for two slits, showing bright and
dark fringes. (b) Intensity for three slits, where now zeros of intensity occur at points.
(c) Phase for three slits, where intensity zeros occur where all phases meet. (d) Inset,
showing two phase singularities, whose phases increase in opposite directions. Adapted
with permission from Ref.[64].

1.4.2. POLARIZATION SINGULARITY

REPRESENTATION OF POLARIZATION STATE

As we all know, light can occur as a plane wave, which is characterized by a wave vector,
an electric vector and a magnetic vector, and these three vectors are perpendicular to
each other. Generally, the amplitudes and the phase difference of the two orthogonal
components of the electric field vector are used to represent the polarization state of the
light. In free space, the plane wave which propagates along the z-direction and its electric
displacement vector lies in the x y-plane can be described as follows:

Ex (z, t ) = a1(z)cos(ωt −kz +δ1),

Ey (z, t ) = a2(z)cos(ωt −kz +δ2),

Ez = 0.

(1.17)

where an(z)(n = 1,2) is the amplitude of the wave, ω is the angular frequency, k is the
wave number, and δn (n = 1,2) is the corresponding initial phase. Further transformation
then gives: (Ex

a1

)2
+

(Ey

a2

)2
−2

Ex

a1

Ey

a2
cosδ= sin2δ, (1.18)

where δ= δ2 −δ1 denotes the phase shift between the x and y components. Equation
1.18 implies that the electric field vector describes an ellipse as a function of time at a
fixed position z, and the polarization characteristics of this elliptically polarized light can
be uniquely determined as long as a specific set of parameters (a1, a2,δ) is provided.
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Generally, the two axes of the ellipse are not in the Ox and O y directions in the Cartesian
coordinate system. Let Oξ and Oη be a set of new coordinate axes oriented along the
major and minor axes of the ellipse, respectively, and let ϕ be the angle between Ox and
the major axis of the ellipse Oξ, as shown in Figure 1.12. If 2a and 2b (a ≥ b ≥ 0) are
the axis lengths of the ellipse and A =

p
a2 +b2, then the ellipse equations in the Oξ, Oη

coordinate system are

Eξ(z, t ) = A cosχcos(ωt −kz),

Eη(z, t ) =±A sinχsin(ωt −kz).
(1.19)

The positive and negative signs before A represent the two possible directions that the
endpoints of the electric vector can follow along the ellipse as time t increases. The
polarization state of the same polarization ellipse can also be uniquely described by this
set characteristic parameters (A,ϕ,χ), where ϕ denotes the orientation of the major axis
of the ellipse, and χ is used to calculate the ellipticity τ = tanχ = ∓b/a. When τ = 0,
indicates that E is linearly polarized, τ=∓1 represents left- and right-handed circular
polarised light, respectively, 0 < τ< 1 represents the left-handed elliptical polarization
state, and −1 < τ< 0 represents the right-handed elliptical polarization state.

Figure 1.12: The polarization ellipse.

Characterization of the polarization ellipse requires three independent quantities, na-
mely the amplitudes a1, a2 and the phase difference δ, or the total amplitude A, the angle
χ representing the ellipticity and the orientation of the major axis ϕ. These two sets of
characteristic parameters, (a1, a2,δ) and(A,ϕ,χ), can be mutually converted. However,
the period of the light field is too short to allow direct observation of the polarization
ellipse and therefore a more intuitive description of the polarization state is required. In
1852, George Gabriel Stokes proposed that the polarization state of a light field can be
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expressed using four quantities, namely the Stokes parameters.

s0 =a2
1 +a2

2, (1.20a)

s1 =a2
1 −a2

2, (1.20b)

s2 =2a1a2 cosδ, (1.20c)

s3 =2a1a2 sinδ. (1.20d)

The parameter s0 is proportional to the wave intensity, and the parameters s1, s2, and s3

have the following relationships with ϕ (−π/2 ≤ϕ≤π/2) and χ (−π/4 ≤α≤π/4)

s1 =s0 cos2χcos2ϕ, (1.21a)

s2 =s0 cos2χsin2ϕ, (1.21b)

s3 =s0 sin2χ. (1.21c)

A polarized beam such as Equation.1.18 satisfies:

s2
0 = s2

1 + s2
2 + s2

3 . (1.22)

whereas a partially polarized beam satisfies:

s2
0 > s2

1 + s2
2 + s2

3 . (1.23)

To describe all the possible states of polarization (SoP) of a polarized plane-wave, the
Poincaré sphere (PS) provides a prominent geometric representation, where the SoP is
represented by a point on the surface [65].The PS is constructed based on the coordinates
sn = sn/s0, (n = 1,2,3), and 2θ and 2ϕ denote the longitude and latitude of the point in
the spherical coordinate system respectively, as shown in Figure 1.13. The north and
south poles correspond to right- and left-handed circular polarization, the equator to
linear polarization, and intermediate points between the poles and equators to elliptical
polarization. The northern and southern hemispheres separate right- and left-handed
ellipticity. For arbitrary meridian circles, the orientations of the SoPs produce no change
although changes in ellipticity from the south to the north poles, where positive and
negative values represent left-handed and right-handed SoPs, respectively. Similarly, for
arbitrary latitude circles, the ellipticity of the SoPs produce no change with the orienta-
tions changes.

Finally, the state of polarization of a fully polarized monochromatic beam can be
expressed as a two-dimensional Jones vector with respect to an orthonormal basis (ê1, ê2)
in the form

E = cosχ ê1 + sinχexp(iϕ) ê2. (1.24)

The angle χ is a measure to control the relative amplitudes of the two components of E,
and the angleϕ is related to their phase difference. Currently, the two most common used
orthonormal basis are the Cartesian representation (êx , êy ) and the helicity representation
(êr , êl ), during which êx and êy denote unit linear polarized state along x and y direction,
and êr and êl denote right-hand and left-hand circularly polarized state.
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2χ

2φ

Ω

（-π/2, 0）

（0, 0）
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（0,π/2）

（π/6, 0）
（π/4, 0）

（π/3, 0）

Figure 1.13: Standard Poincaré sphere representation for plane waves with arbitrary
ellipticity, orientation and handedness.

PROPERTIES OF CYLINDRICAL VECTOR BEAMS

Polarization is another fundamental property of light, which has been used to initiate
different types of light-induced process by varying the incident polarization states. From
a physical perspective, a polarized beam features a spatially independent or dependent
distribution and its polarization distribution can be either homogeneous or inhomoge-
neous. The latter is a typical type of structured beams. Polarization singularities appear
widely in polarized structured beams, which has been demonstrated to show extreme
sensitivity when detecting slight changes due to interaction with (nanoscale) objects. One
particular example is that of laser beams with cylindrical symmetry in their polarization,
known as cylindrical vector beams (CVBs), which can be described in terms of higher
order or hybrid order Poincaré spheres [66, 67].

Polarization singularities can be classified into two categories. For a circular polariza-
tion where the polarization ellipse’s orientation is undefined, it is defined as the C-point.
The other kind is the V-point, which generally appears in local linearly polarized optical
fields, and both the orientation and the handedness of the polarization ellipse can be
considered to be indeterminate. In random fields, elliptical and linear polarization states
can occur in different regions in the same field.

The CVBs are vector beam solutions to Maxwell’s equations that obey axial symmetry
in terms of both amplitude and phase. Consider the full vector wave equation with the
electric field

∇×∇×E−k2E = 0. (1.25)
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An axially symmetric vector solution with the electric field aligned to the azimuthal
direction can be written as:

E(r, z) =U (r, z)exp
[
i (kz −ωt )

]
eφ, (1.26)

where eφ is the unit vector in the azimuthal direction and U (r, z) should satisfy the
following equation under the paraxial approximation:

1

r

(
r
ÇU

Çr

)
− U

r 2 +2i k
ÇU

Çz
= 0. (1.27)

There is a clear difference for Equation 1.5 and Equation 1.27. The solution that obey
azimuthal polarization symmetry has the trial solution as [68]

U (r, z) = E0 J1

(
βγ

1+ i z/zR

)
exp

[
− iβ2z/(2k)

1+ i z/zR

]
u(r, z), (1.28)

where β is a constant scale parameter, J1(x) is the first-order Bessel function of the first
kind and u(r, z) is the fundamental Gaussian solution in cylindrical coordinates. This
solution corresponds to an azimuthally polarized vector Bessel-Gaussian beam solution.
In many applications, the simplified distribution is widely used. For a small value of β,
the vector Bessel–Gaussian beam at the beam waist can be approximated as:

E(r, z) = Ar exp(− r 2

w(z)2 )ei , i = r,φ. (1.29)

The amplitude profile is exactly that of the LG01 mode without the vortex phase exp(iφ).
In the same way as for the scalar situation, with reference to Equations. 1.14 and 1.15, the
radial Er and azimuthal Eφ polarizations denote can also be expressed as a superposition
of the orthogonally polarized HG01 and HG10 modes [69]

Er = HG10êx +HG01êy ,

Eφ = HG01êx +HG10êy .
(1.30)

The state of polarization of the modes shown in Figure 1.14 (a)-(c) are the radial polarized,
azimuthal polarized and the linear superposition of these two. Figure 1.14 (d) and (e)
illustrates the formation of the radial and azimuthal polarization beams by using the
linear superposition of orthogonally polarized HG modes, as demonstrated in Equation
1.30.

1.4.3. PANCHARATNAM-BERRY PHASE

Pancharatnam–Berry (PB) phase, also known as geometric phase, is distinct from the
dynamic phase that we are familiar with. Dynamic phase refers to the phase changes that
result from changes in optical path length as a light wave propagates through a material.
This phase is associated with the changes in both the optical path length and the refractive
indices properties of the material. In contrast, the PB phase refers to the accumulation
of an additional phase caused by a change in the polarization state that occurs when
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Figure 1.14: Geometry of Cylindrical Vector Beams. (a) radially polarized mode; (b)
azimuthally polarized mode; (c) generalized CV beams as a linear superposition of (a) and
(b). (d) radial and (e) azimuthal polarizations can be formed using linear superposition of
orthogonally polarized HG modes.

a light wave passes through an an-isotropic optical element or experiences geometric
transformations in the parameter spaces.

The PB phase was first put forward by Pancharatnam in his study of the interference of
polarized beams in 1956 [70]. His central result, also known as Pancharatnam’s rule or
theorem, is that when a polarized beam returns to its original state of polarization via two
intermediate polarizations, the phase does not return to its original value but increases
by a phase factor equal to half of the solid angle spanned on the PS. Later in 1984 Berry
discovered a geometric phase factor in a quantum systems whose parameter are cyclically
altered and he also pointed out its connection with Pancharatnam’s optical phase [71].
This phase was soon realized to be quite general because it occurs in various systems
[72–74]. Most importantly, the PB phase enables the manipulation of light polarization,
leading to the creation of vector optical fields with spatially in-homogeneous states of
polarization [75, 76]. The geometric configuration of states of polarization provides an
additional and powerful intrinsic DoF to control light.

PANCHARATNAM’S CONNECTION

To give a clear understanding on how the PB phase build up, we will give a brief introduc-
tion of Pancharatnam’s theorem. The key concept behind Pancharatnam’s theorem is the
so-called Pancharatnam’s connection, the criterion that two beams with different polar-
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ization states are in phase when their superposition give maximum intensity. According
to Equation 1.24, two different polarization states, a and b, can be written as

Ea = (cosχa , sinχa exp(iϕa))T,

Eb = exp(iγab)(cosχb , sinχb exp(iϕb))T,
(1.31)

where γab is the overall phase difference. According to Pancharatnam’s connection, the
intensity

I = |Ea +Eb |2 =|Ea |2+|Eb |2 +2ℜ(E∗
a ·Eb) (1.32)

reaches its maximum value, implying that

ℜ(E∗
a ·Eb) > 0, (1.33a)

ℑ(E∗
a ·Eb) = 0, (1.33b)

where ℜ denotes the real part and ℑ denotes the imaginary part. These two conditions
can uniquely determine the phase difference γab .

As depicted in Figure 1.13, the orange line represents the evolution of the polarization
state on the PS, where the value of the PB phase φB is equal to half of the solid angle
Ω enclosed by the beam’s route [71, 77, 78]. In recent years, the study of the PB phase
has gained significant attention in the area of structured light fields, and the creation of
customized optical patterns to satisfy specific needs in all kinds of applications [79–85]. To
mention a few examples, a needle of either a longitudinally or transversely polarized beam
has been proposed assisted by amplitude, polarization, and phase modulations of the
input light in tight focusing systems [79, 84], wherein the electric field permits a significant
enhancement along the optical axis the transversal direction is suppressed, resulting in a
tighter hot spot with long depth of focus. PB phase offers promising opportunities for the
control and manipulation of light waves with tailored polarization states, which would
enable a wide range of applications including optical information processing, quantum
computing, and high accuracy measurements.

1.5. GOALS AND OUTLINE OF THE THESIS
The goal of this work is to construct effective and robust methods to improve the char-
acterization of nanostructures by employing structured optical fields, and provide a
guidance for wider industrial inspections. In this thesis, we used an analytical model to
analyze and control the characteristics of focused optical fields. Then, we used a semi-
analytical model to deal with the interaction process between the optical field and the
structures, by monitoring the scattered field at the far field. Furthermore, the influence of
the polarization state and optical singularities on the scattered field are analyzed in detail
in the following chapters:

• Chapter 2: We introduce the fundamental theory of the analytical methods which
are employed in this thesis to describe the scattering problems. The vectorial
diffraction theory is firstly introduced, which is an analytical model and has been
widely used to investigate the optical field distribution especially for highly focused
conditions. After that, numerical simulation methods, which are commonly used in
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optical scatterometry to predict the scattered field, are briefly introduced. Finally,
the theory for analyzing the propagating characteristics the scattering field from
the near field to the far field are further explained. These theories constitute the
theoretical basis of this dissertation.

• Chapter 3: The properties of the incident field are the most essential topic in optical
scatterometry. To generate a controllable optical field, we demonstrate an elongated
focused field by specially shaping the Pancharactnam–Berry (PB) phase. Moreover,
with the Richards and Wolf vectorial diffraction method, the strength vectors and
energy flux of the electromagnetic fields are derived. On this basis, the transverse
enhancement of a focused optical field is controllable through the phase index in
the PB phase. This lays the foundation for structured light field modulation, that
can play a role in the interaction of light with structures.

• Chapter 4: We propose a far-field detection system to determine the sidewall angle
(SWA) of a cliff-shape step structure. Numerical calculations are carried out to
verify the detection capabilities of the scheme. In the simulations, the impact of
the polarization state and focus position of the incident laser beam have been
considered. The results indicate that the TM polarization is more suitable for steep
SWA detection than the TE mode, meanwhile, a feasible focus interval can be
optimized to retrieve steep SWAs. Overall, the proposed method is fast, extremely
sensitive and easy to implement, and provides a powerful approach to investigate
the scattering behavior of nanostructures.

• Chapter 5: To improve the detection accuracy and broaden the measurement meth-
ods of the physical parameters of nanostructures, a novel metrology method has
been proposed and demonstrated to determine simultaneously the height and
side-wall angle of a step-shaped nanostructure. A Hermite-Gaussian singular beam
is employed into a typical coherent Fourier scatterometry system to improve the
sensitivity in retrieving parameters such as SWA and height of cliff-like nanos-
tructures. Due to the high sensitivity driven by the singularity line of the beam,
both parameters can be retrieved by analyzing the intensity profile of the far-field
scattering pattern while changing the relative direction between the singularity
and structure. This is an effective and robust method, and could provide a good
complementary information to the CFS technique.

• Chapter 6: The transversal optical singularity (TOS) occurs perpendicular to the
propagation direction, and its phase integral is 2π in nature. The TOS usually
emerges within a nano-size range; thus, it provides a great possibility for accurate
determination of parameters of nanostructures. We show simulations of a TOS array
field that can be obtained by a three-wave interference. Our results show that the
TOS scatters into the far field after its interaction with a step shaped nanostructure,
and the propagation direction of the scattered TOS shows a close relation with the
parameters of the step structure. Finally, by monitoring the spatial coordinates of
the scattered TOS, e.g, the angle between the fitted propagation line and the axes,
the physical parameters of the step nanostructure are retrieved with high precision.
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• Chapter 7: Conclusion and outlook. A summary of the thesis and discussions for
potential future work is presented.
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2.1. INTRODUCTION

We have discussed in Section 1.3 how one can implement CFS technique to deal with
the problem of structural parameter measurement. Unlike the conventional angular
and the spectroscopic scatterometers, CFS uses a beam of light focused by a objective
with a specified NA. The field distribution in the focal region needs to be calculated by a
suitable method according to different focusing conditions. For instance, when the NA
of the objective lens is relatively small, the focused field can be calculated by the scalar
diffraction theory, whereas when the NA gradually increases, the field distribution at
the focal region will have not only transversal but also longitudinal components due to
depolarisation effects. Thus, the scalar theory is no longer able to accurately describe
the behavior of the focused field, and therefore a vectorial diffraction theory has to
be adopted. The analytical model for a high NA focusing system is first presented in
Section 2.2. Following that, we take the properties of the input beam into account and
further provide the analytical expressions for arbitrary polarized beam, which is the most
important mathematical basis for the generation of the desired structured light field.
We further evaluate the effect of input ellipticity, handedness, and orientation on all
components of the electric and magnetic field strengths, as well as the Poynting vector
near focus.

The investigation of scattering behavior of the desired light probe after interacting
with the sample of interest is a crucial part in CFS. Establishing an analytical solution
to explain the scattering problem between the focusing field and complex structures is
challenging, and in most case, even impossible. The scattering problem has consistently
posed difficulties in the field of optics and holds a long-standing history dating back over
a century. Gustav Mie derived a rigorous mathematical solution for elastic scattering of a
homogeneous sphere by solving Maxwell’s equations in 1908. This renowned solution,
known as Mie scattering theory, enables an analytical calculation of scattering from
spherical particles of varying sizes and materials.

If we employ the Mie scattering theory to deal with the scattering behavior of irregular
(asymmetric) objects, it typically requires a multipole expansion, which represents the
scattering field of the irregular object as a linear combination of a series of multipole mo-
ments to approximate the scattering behavior. The accuracy of the expansion depends on
the number of multipole orders, and higher orders generally lead to more accurate results
but also increase computational complexity. It is important to note that the multipole
expansion remains an approximation method in the calculation of scattering from irreg-
ular objects, and it may have limitations when dealing with complex geometric shapes or
non-uniform scattering characteristics. For more accurate results, other methods such as
numerical simulations and experimental measurements are commonly used to solve the
scattering problem. Numerical simulations based on electromagnetic theory offer a more
feasible method, which facilitates rapid modeling, optimization of structural parameters,
and reduction of experimental costs. In this thesis, we mainly rely on the Finite Difference
Time Domain (FDTD) method to carry out our numerical modeling task. In Section
2.3, a detailed explanation of FDTD algorithm and a brief introduction of the solver are
presented.

As a far-field detection method, the obtained near-field scattering signals in CFS need to
be projected to the far-field for further processing. We discuss about the relevant theories
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of near-field and far-field transformation in Section 2.4. In conclusion, we established
a semi-analytical method to solve the scattering problem for the structural parameter
retrieval.

2.2. THE TIGHT-FOCUSING ANALYSIS OF VECTOR BEAM

The Richard-Wolf vector diffraction theory [2, 3] is the most widely used vectorial
diffraction method to express a tightly focused field. Such field is calculated by solving
the diffraction integral of the focused field spectrum, and then using the Debye-Wolf
approximation for the beams [4, 5]. The well defined integral representation of the focused
field is called the Debye-Wolf integral, which is the kernel part to generate our desired
illumination in this thesis. We rely on the references [6–8] to give the following detailed
expressions.

Tu2.1

Ω

P(r,ϕ,z)

Lenseρ

eφ

k0 eθ

eφ
k1

y

x

z
f

θ

Figure 2.1: Schematic of an incident paraxial ray focusing through an objective lens with
high NA.

Consider a monochromatic plane wave Ein propagating along the z direction, which
will pass through a spherical objective lens with focal distance f . The time harmonic
electric field for an arbitrary point P (x, y, z) in the image space, which contains time
dependence in the form of e−iωt , is given by:

E (P, t ) =ℜ[
e (P )e−iωt ],

H (P, t ) =ℜ[
h (P )e−iωt ],

(2.1)

where e (P ) and h (P ) are the complex electric and magnetic field vectors, which can be
obtained by integrating over the exit pupil (dkx ,dky ). The field in the focal region is given

Parts of this section are based on Optics Communications 458, 124790 (2020) [1].
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by:

e(P ) =− i k

2π

Ï
Ω

a(kx ,ky )

kz
exp

{
i k · rP

}
dkx dky ,

h(P ) =− i k

2π

Ï
Ω

b(kx ,ky )

kz
exp

{
i k · rP

}
dkx dky ,

(2.2)

whereΩ is the solid angle subtended by the aperture of the lens at the paraxial focal point,
which is controlled by the maximum incidence angle θ of the lens and dΩ= 1/kz dkx dky

is an element of the solid angle formed by the k-directions, a(kx ,ky ) and b(kx ,ky ) are the
‘strength factors’ of the unperturbed electromagnetic field, k is the wave vector pointing
from the spherical pupil to the focus, rP is the vector from the focus to the point P.
a(kx ,ky ) and b(kx ,ky ) are defined by the following relations

b(kx ,ky ) =
√
ε

µ
k×a(kx ,ky ), (2.3)

where ε and µ represent the permittivity and permeability in the image space.

It is convenient to use polar coordinates (eρ ,eϕ,ez ) in the entrance pupil and use
spherical variables (eθ,eϕ,er ) in k-space for the rays derived upon refraction through
lens, as shown in Figure 2.1. Upon the refraction surface, vectors eρ and ez transform into
eθ, and er , respectively, while eϕ remains the same. Also defined are the angles α and
φ used to describe the direction of the wave vector in the focal plane. Assume that the
lens fulfills the Abbe sine condition ρ = f sinα, and the polar coordinates of the pupil
point corresponding to the wave vector satisfy the following relationship φ=ϕ+π. For
an aplanatic system, the refraction surface is a spherical shell limited by its numerical
aperture NA= n sinα, where n is the refractive index of the medium between the lens and
the focal region. We then express the propagation vector k in image space in spherical
coordinates, and the arbitrary point P in image space in cylindrical coordinates, as follows:

k = (k sinθcosφ,k sinθ sinφ,k cosθ),

= (−sinθcosϕ,−sinθ sinϕ,cosθ),

rP = (rP cosφP ,rP sinφP , zP ).

(2.4)

Upon solving for 1/kz dkx dky = sinθdθdϕ, we can rewrite the integral Equation 2.2 in
the following form:

e(P ) =− i k

2π

∫ α

0

∫ 2π

0
a(θ,ϕ)exp

{
i k[−rP sinθcos(ϕ−φP )+ zP cosθ]

}
sinθdθdϕ

h(P ) =− i k

2π

∫ α

0

∫ 2π

0
b(θ,ϕ)exp

{
i k[−rP sinθcos(ϕ−φP )+ zP cosθ]

}
sinθdθdϕ.

(2.5)

The strength factor a(θ,ϕ) and b(θ,ϕ) (for the detailed derivation of see Appendix A, are
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given by

a(θ,ϕ) = f lin

p
cosθ

ex
in

{
cosθ+ sin2ϕ(1−cosθ)

}+e y
in

{
cosϕsinϕ(cosθ−1)

}
ex

in

{
cosϕsinϕ(cosθ−1)

}+e y
in

{
1− sin2ϕ(1−cosθ)

}
ex

in sinθcosϕ+e y
in sinθ sinϕ

 ,

b(θ,ϕ) =
√
ε

µ
f lin

p
cosθ

−e y
in

{
cosθ+ sin2ϕ(1−cosθ)

}+ex
in

{
cosϕsinϕ(cosθ−1)

}
−e y

in

{
cosϕsinϕ(cosθ−1)

}+ex
in

{
1− sin2ϕ(1−cosθ)

}
−e y

in sinθcosϕ+ex
in sinθ sinϕ.


(2.6)

where lin is the input beam, ex
in and e y

in are the corresponding amplitudes of the input
beam in global Cartesian coordinates. Substituting Equation 2.6 into Equation 2.5, gives
the electric field distribution as:

e(P ) =− i k f

2π

∫ α

0

∫ 2π

0
lin

p
cosθ sinθexp

{
i k[−rP sinθcos(ϕ−φP )+cosθzP ]

}
ex

in

{
cosθ+ sin2ϕ(1−cosθ)

}+e y
in

{
cosϕsinϕ(cosθ−1)

}
ex

in

{
cosϕsinϕ(cosθ−1)

}+e y
in

{
1− sin2ϕ(1−cosθ)

}
ex

in sinθcosϕ+e y
in sinθ sinϕ

dθdϕ.

h(P ) =− i k f

2π

√
ε

µ

∫ α

0

∫ 2π

0
lin

p
cosθ sinθexp

{
i k[−rP sinθcos(ϕ−φP )+cosθzP ]

}
−e y

in

{
cosθ+ sin2ϕ(1−cosθ)

}+ex
in

{
cosϕsinϕ(cosθ−1)

}
−e y

in

{
cosϕsinϕ(cosθ−1)

}+ex
in

{
1− sin2ϕ(1−cosθ)

}
−e y

in sinθcosϕ+ex
in sinθ sinϕ

dθdϕ.

(2.7)

By employing the aforementioned expression, an analytical expression for the focusing
field corresponding to arbitrary paraxial input field (ex

inex ,e y
iney ,0) can be obtained.

As we know, for any given polarized optical field, its corresponding state of polarization
(SoP) in theory may be described by a combination of a pair of orthogonal base vectors.
Mathematically, all SoPs on the standard PS may be described in the Cartesian coordinate
system as a unit vector given by

V = 1p
2

[
exp(i a)(cosbex + sinbey )+exp(−i a)(−sinbex +cosbey )

]
, (2.8)

where both a and b are constants, controlling the ellipticity and orientation, respectively.
The unit vectors ex and ey , are directed along the x and y axes, respectively.

When the input field with polarization distribution represented by Equation 2.8 is
incident upon this focusing system, then based on the Equation 2.7, the electric field at
any point P(rP ,φP , zP ) near focus can be expressed in a more compact form as

e(P ) =
Ex (rP ,φP , zP )

Ey (rP ,φP , zP )
Ez (rP ,φP , zP )


=− i k f

2π

∫ α

0

∫ 2π

0

p
cosθl0(θ)K(ϕ,θ)ME sinθdϕdθ.

(2.9)
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For our following calculations, we chose NA = 0.95 and n = 1; the function l0(θ), which
represents the input amplitude distribution, has the form

l0(θ) = exp
[
−β2( sinθ

sinα

)2
]

J1
(
2β

sinθ

sinα

)
, (2.10)

where β is the ratio of the pupil radius to the beam waist, which we take as unity in our
configuration, J1 the first-order Bessel function of the first kind, and K(ϕ,θ) is the focusing
propagation factor given by

K(ϕ,θ) = exp
{
i k[−rp sinθcos(ϕ−φp )+ zp cosθ]

}
. (2.11)

In equation 2.9, ME is the electric polarization vector in the strongly focused field and
stems from the polarization contribution of the incident light field. When the input SoP is
denoted by equation 2.8, the corresponding focusing electric polarization vector is

M x
E = 1p

2
{[cos(b −ϕ)cosθcosϕ− sin(b −ϕ)sinϕ]exp(i a) (2.12a)

− [sin(b −ϕ)cosθcosϕ+cos(b −ϕ)sinϕ]exp(−i a)},

M y
E = 1p

2
{[cos(b −ϕ)cosθ sinϕ+ sin(b −ϕ)cosϕ]exp(i a) (2.12b)

− [sin(b −ϕ)cosθ sinϕ−cos(b −ϕ)cosϕ]exp(−i a)},

M z
E = 1p

2
{cos(b −ϕ)sinθexp(i a)− sin(b −ϕ)sinθexp(−i a)}. (2.12c)

The integrations over ϕ can be accomplished using the identity:∫ 2π

0
e−i krP sinθcos(ϕ−φP )e i mϕdϕ= 2πi mJm(−krP sinθ)e i mφP , (2.13)

where Jm is the Bessel function of the first kind of order m. The electric fields near focus
then have the following form:

Ex (rP ,φP , zP ) =− i k f

2
p

2

∫ α

0

p
cosθl0(θ)sinθ· (2.14a){[

cosb(cosθ+1)J0(−krP sinθ)

+cos(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e i a

− [
sinb(cosθ+1)J0(−krP sinθ)

+ sin(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e−i a

}
e i kzP cosθdθ,

Ey (rP ,φP , zP ) =− i k f

2
p

2

∫ α

0

p
cosθl0(θ)sinθ· (2.14b){[

sinb(cosθ+1)J0(−krP sinθ)
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− sin(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e i a

− [
cosb(cosθ+1)J0(−krP sinθ)

−cos(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e−i a

}
e i kzP cosθdθ,

Ez (rP ,φP , zP ) = k fp
2

∫ α

0

p
cosθl0(θ)sinθ2J0(−krP sinθ)· (2.14c)[

cos(b −φP )e i a − sin(b −φP )e−i a]
e i kzP cosθdθ.

Obviously, the three mutually perpendicular polarization components are nonzero, which
means that the local polarization ellipse of the focused field is not purely in the transverse
plane or longitudinal plane. Similarly, the corresponding magnetic field at any point
P (rP ,φP , zP ) near focus can be expressed as

h(P ) =
Hx (rP ,φP , zP )

Hy (rP ,φP , zP )
Hz (rP ,φP , zP )


=− i k f

2π

∫ α

0

∫ 2π

0

p
cosθl0(θ)K(ϕ,θ)M H sinθdϕdθ,

(2.15)

where M H is the magnetic polarization vector in the tightly focused field given by

M x
H =

√
ε

2µ
{[−sin(b −ϕ)cosθcosϕ−cos(b −ϕ)sinϕ]exp(i a) (2.16a)

− [cos(b −ϕ)cosθcosϕ− sin(b −ϕ)sinϕ]exp(−i a)},

M y
H =

√
ε

2µ
{[−sin(b −ϕ)cosθ sinϕ+cos(b −ϕ)cosϕ]exp(i a) (2.16b)

− [cos(b −ϕ)cosθ sinϕ+ sin(b −ϕ)cosϕ]exp(−i a)},

M z
H =

√
ε

2µ
{−sin(b −ϕ)sinθexp(i a)−cos(b −ϕ)sinθexp(−i a)}. (2.16c)

The integrations over ϕ can be accomplished as before, yielding

Hx (rP ,φP , zP ) =− i k f
√
ε/µ

2
p

2

∫ α

0

p
cosθl0(θ)sinθ· (2.17a){[− sinb(cosθ+1)J0(−krP sinθ)

− sin(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e i a

− [
cosb(cosθ+1)J0(−krP sinθ)

+cos(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e−i a

}
e i kzP cosθdθ,

Hy (rP ,φP , zP ) =− i k f
√
ε/µ

2
p

2

∫ α

0

p
cosθl0(θ)sinθ· (2.17b)
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{[
cosb(cosθ+1)J0(−krP sinθ)

−cos(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e i a

− [
sinb(cosθ+1)J0(−krP sinθ)

− sin(b −2φP )× (1−cosθ)J2(−krP sinθ)
]
e−i a

}
e i kzP cosθdθ,

Hz (rP ,φP , zP ) = i k f
√
ε/µp

2

∫ α

0

p
cosθl0(θ)sin2θJ1(−krP sinθ)· (2.17c)[− sin(b −φP )e i a −cos(b −φP )e−i a]

e i kzP cosθdθ.

In terms of the three-dimensional electric and magnetic fields, the energy flux is given
by the time-averaged Poynting vector

P ∝ℜ(e×h∗). (2.18)

We calculate the energy flux of the tightly focused standard full Poincaré beams using
Equations 2.14, 2.17 and 2.18.

(a)

(b)

(c)
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(e)

(f)

(g)
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P
z
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xy

Figure 2.2: Theory-derived Poynting vector in the focal plane of tightly focused input
fields with a = 0, π/12, π/6, π/4 and −π/4 when b = −π/4. The upper and lower rows
depict the transverse and longitudinal components of the energy flux, respectively. All
distributions of the energy flux are normalized to their maximum values of the total
energy flux for each input field to enable a direct comparison between the five beams.

Next, we discuss the effect of the optical DoFs including ellipticity and handedness on
the energy flux. By calculation, we find that both ellipticity and handedness mainly affect
the transverse energy flow, and the longitudinal energy flow remains almost unchanged
regardless of ellipticity and handedness. The Poynting vectors of the five tightly focused
electric fields are drawn in Figure 2.2. We see that the transverse energy flow is zero for
a spin-free input field (a = 0), whereas for other values of this flow exists and always
exhibits a doughnut-shaped pattern [Figure 2.2(c), (e), (g), and (i)], arising from the spin-
to-orbital angular momentum conversion. Furthermore, the magnitude of the transverse
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component of the Poynting vector, compared with the longitudinal component [Figure
2.2(b), (d), (f), (h), and (i)], gradually increases as |a| increases. Moreover, we find that the
handedness of the input field only affects the direction of the transverse energy flow and
has no effect on the magnetic field [Figure 2.2(g) and (i)].

(a)

(b)
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(d)

(e)

(f)

(g)

(h)

(i)

(j)

P
z

P
xy

Figure 2.3: Same as for Figure 2.2 but with b =−π/4, −π/8, 0, π/8 and π/4 when a =−π/8.

In contrast to the optical DoFs, i.e. ellipticity and handedness, orientation has no effect
on both the transverse and longitudinal energy flows (see Figure 2.3 depicting the energy
flux in the focal plane of five input fields). Apparently, the transverse energy, which has a
ring-shaped pattern, always exhibits the same magnitude and direction with a change of
input orientation (upper row in Figure 2.3). Similarly, the longitudinal energy flow has a
hot spot located on-axis (lower row in Figure 2.3).

2.3. NUMERICAL SIMULATION METHOD
In optical scatterometry, several methods are commonly used to numerically compute the
solution of an electromagnetic scattering problem. These include: the rigorous coupled
wave analysis (RCWA) [9], the finite element method (FEM) [10], and the finite difference
time domain (FDTD) method [11].

RCWA, also known as the Fourier modal method, is a numerical method for solving
grating problems. It slices the grating geometry into slabs, treating them as periodically
modulated planar waveguides. By solving eigenequations of waveguide modes through
Maxwell’s equations and matching the field at interfaces of the slabs, the electromagnetic
field and diffraction efficiencies outside the grating structure can be obtained. RCWA
provides a fast and reliable calculation of the diffraction field of periodic structures.

FEM is a numerical method originally applied in structural mechanics and thermo-
dynamic theory. Its main principle involves decomposing the complex large-area con-
tinuous field into a series of non-overlapping small-area discrete fields. Approximate
solutions are then used for these small areas. It is characterized by its ability to handle
complex geometries and material inhomogeneity, the capability to bring thermal or me-
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chanical solutions into electromagnetic results, and its applicability to multi-disciplinary
problems.

FDTD is a numerical method that directly solves Maxwell’s equations in the time
domain. In this method, the equations are represented in terms of central-difference
equations, and the components of the electromagnetic field are sampled alternately in
space and time domains. This allows for the calculation of electric and magnetic field
distributions corresponding to different times and space points. FDTD is suitable for
arbitrarily complex geometries and is used in this thesis for modeling the interaction of
focused light with nano-structures. It is worth mentioning that although the FEM also
can simulate the interaction between the focusing field and nanostructures, it consumes
more computational resources than FDTD. Therefore, when dealing exclusively with
electromagnetic field problems, FDTD is both faster and more resource-efficient. The
following section will provide a brief introduction to its working principle.

2.3.1. FDTD ALGORITHM

Maxwell’s equations consist of four equations which are a set of fundamental equations
that govern macroscopic electromagnetic phenomena. This set of equations can be
written in both differential form and integral form. Considering a source-free situation (no
electric and magnetic current source), the partial differential form of Maxwell’s equations
in time domain is:

∇×H = ÇD

Çt
+ J ,

∇×E =−ÇB

Çt
− J∗,

∇•D = 0,

∇•B = 0.

(2.19)

where H is the magnetic field strength, E is the electric field strength, D is the electric
induction strength, B is the magnetic induction strength, J is the current density, J∗
is an imaginary magnetic current density, to make the equations symmetric without
introducing complexity. These currents are excited inside the materials.

Maxwell’s equations also require constitutive relations between field components to
form complete equations. These are given by:

D = εE,

B =µH ,

J =σE,

J∗ =σ∗H .

(2.20)

where ε, µ, σ, σ∗ are the permittivity, permeability, electrical conductivity and magnetic
resistivity of the material, respectively. They are scalars for isotropic media and tensors for
anisotropic media. For homogeneous media, they are constant, while for inhomogeneous
media, they vary with spatial location. Here we take the simplest case, assuming that the
space under study is passive and parameters of the medium also do not vary in time and
space.
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In a rectangular coordinate system, E and H can be decomposed as follows E = Ex ax +
Ey ay +Ez az , H = Hx ax +Hy ay +Hz az . The two curl equations in Maxwell’s equations
can be expressed as six scalar equations:

Hz

Çy
− Hy

Çz
= εEx

Çt
+σEx , (2.21a)

Hx

Çz
− Hz

Çx
= εEy

Çt
+σEy , (2.21b)

Hy

Çx
− Hx

Çy
= εEz

Çt
+σEz , (2.21c)

Ez

Çy
− Ey

Çz
=−µHx

Çt
−σ∗Hx , (2.21d)

Ex

Çz
− Ez

Çx
=−µHy

Çt
−σ∗Hy , (2.21e)

Ey

Çx
− Ex

Çy
=−µHz

Çt
−σ∗Hz . (2.21f)

To show how FDTD solves these equations iteratively, these equations are next repre-
sented in terms of finite difference by using the Yee’s algorithm [12]. In 1996, K. S. Yee
first expressed the Maxwell’s six scalar equations by using the FDTD method. In order
to discretize each electromagnetic field component in the above six scalar equations in
space and time, the 3-D space is divided into numerous small cubic cells, and the six
components of the electromagnetic field are configured at special positions on each cubic
cell, known as Yee cells, as shown in Figure 2.4. Spatially, Ex , Ey and Ez are discretized at
each edge of every Yee cell and Hx , Hy and Hz are discretized at the center position of
each face of every Yee cell. Each electric field component is surrounded by four magnetic
field components, and similarly, each magnetic field component is surrounded by four
electric field components. The sampling time of the electric field component is set to be
an integer time step, and the magnetic field component is sampled at a half-integer time
step. That is, sampling of E and H is done alternately on the time axis and the electric
and magnetic components always differ by half a grid step in either direction.

The sampled electric and magnetic field components are written as E n+1
x (i + 1

2 , j ,k),

E n+1
y (i , j + 1

2 ,k), E n+1
z (i , j ,k + 1

2 ), H
n+ 1

2
x (i + 1

2 , j ,k), H
n+ 1

2
y (i , j + 1

2 ,k), H
n+ 1

2
z (i , j ,k + 1

2 ), re-
spectively. The spatial coordinates of each grid point can be expressed as (i , j ,k) =
(i∆x, j∆y,k∆z), among which ∆x, ∆y , ∆z denote the grid steps of the Yee cell along the
three coordinate axes, respectively, and i , j , k denote the number of spatial steps in
respective directions. Therefore, the function at any space and time can be represented
by

f tn (i , j ,k) = f (x, y, z, tn) = f (i∆x, j∆y,k∆z,n∆t ), (2.22)

where ∆t denotes the time step and n denotes the number of the time step.
The central difference approximation with second-order accuracy is used both in the

temporal and spatial domain to substitute the space and time derivatives in the six scalar
equations. The first partial derivative for each space component, evaluated at time
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tn = n∆t , is given by:

Ç f tn (u)

Çu
≈ f tn (u + ∆u

2 )− f tn (u − ∆u
2 )

∆u
+o(∆u2) (u = x, y, z), (2.23)

where ∆u is the step interval. Then, the first partial derivative with respect to time for a
particular space point is given by:

Ç f tn (u)

Çt
≈ f tn+1/2 (u)− f tn−1/2 (u)

∆t
+o(∆t 2). (2.24)

Figure 2.4: Schematic of electric and magnetic components in Yee cell.

The time and space derivatives of the electromagnetic field in the six scalar equations
of Equation 2.21(a)-(f) are approximated by Equation 2.23 and Equation 2.24 to obtain
the finite-difference form for each electromagnetic field component, as

E n+1
x (i + 1

2
, j ,k) =C (i + 1

2
, j ,k)E n

x (i + 1

2
, j ,k)

+D(i + 1

2
, j ,k)

( H
n+ 1

2
z (i + 1

2 , j + 1
2 ,k)−H

n+ 1
2

z (i + 1
2 , j − 1

2 ,k)

∆y

)

−D(i + 1

2
, j ,k)

( H
n+ 1

2
y (i + 1

2 , j ,k + 1
2 )−H

n+ 1
2

y (i + 1
2 , j ,k − 1

2 )

∆z

)
,

(2.25)

among which

C (i , j ,k) = 2ε(i , j ,k)−σ( j , j ,k)∆t

2ε(i , j ,k)+σ( j , j ,k)∆t
, C∗(i , j ,k) = 2µ(i , j ,k)−σ∗( j , j ,k)∆t

2µ(i , j ,k)+σ∗( j , j ,k)∆t
,

D(i , j ,k) = 2∆t

2ε(i , j ,k)+σ( j , j ,k)∆t
, D∗(i , j ,k) = 2∆t

2µ(i , j ,k)+σ∗( j , j ,k)∆t
.
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The finite difference equations corresponding to Equation 2.21(b) and (c), respectively,
can be similarly constructed.

H
n+ 1

2
x (i , j + 1

2
,k + 1

2
) =C∗(i , j + 1

2
,k + 1

2
)H

n− 1
2

x (i , j + 1

2
,k + 1

2
)

−D∗(i , j + 1

2
,k + 1

2
)

(E n
z (i , j +1,k + 1

2 )−E n
z (i , j ,k + 1

2 )

∆y

)
+D∗(i , j + 1

2
,k + 1

2
)

(E n
y (i , j + 1

2 ,k +1)−E n
y (i , j + 1

2 ,k)

∆z

)
.

(2.26)

The finite difference equations corresponding to Equation 2.21(e) and (f), respectively,
can be similarly constructed.

The above FDTD equations indicate that the electric (magnetic) field at any time de-
pends on the electric (magnetic) field of the previous time step, the adjacent magnetic
(electric) field of the first half time step on the surface orthogonal to this electric (mag-
netic) field, and the electromagnetic parameters of the medium. The FDTD method takes
the electromagnetic problem as the initial value problem, the electromagnetic field in the
simulation region is zero at the initial moment. Under the source excitation, the resulting
equation is solved in a leapfrog manner. In other words, the electric field is computed at a
given instant in time, then the magnetic field is computed at the next instant in time, and
this process is gradually advanced in time until convergence. To achieve convergence of
the electromagnetic field, the time step must be chosen sufficiently small.

2.3.2. THE FDTD SOLVER

Benefiting from the rapid development of computing power, commercial simulation
software has developed very rapidly, and simulation packages based on the FDTD method
have been made. The Lumerical FDTD Solution of Ansys company is the main numerical
simulation software used in this dissertation, which can quickly and accurately solve the
2-D and 3-D electromagnetic field Maxwell’s equations.

In FDTD simulation, difference equations are used to calculate spatial electromagnetic
field distribution, so the space needs to be divided into grids, like the Yee cells do. The
size of the grid directly determines the accuracy of the numerical calculation and the
running time of the system. In general, the mesh size should be smaller than λ/10, and
for small irregular structural elements such as tips, slope, holes, and so on, a smaller mesh
size is necessary to obtain accurate results. It is computationally unfeasible to solve a
scattering problem in infinite space, so it is necessary to introduce boundary conditions
to calculate the distribution of electromagnetic field in a bounded part of space. It is
worth mentioning that perfectly matched layer (PML) can simulate the propagation of
electromagnetic waves to infinity, which corresponds to the actual situation and saves
computing resources. In addition to the widely used PML, there are also Bloch boundary,
symmetric-antisymmetric boundary, periodic boundary, etc. Different boundary condi-
tions need to be used for different structures and incident field conditions. The selected
boundary condition restricts the EMF simulation region to be contained by the boundary
and this divides the whole space into the inner space where the spatial field needs to be
calculated and the outer space where the spatial field does not need to be calculated.
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In the Lumerical FDTD solver, the geometrical characteristics and refractive index of
the structure can be set using a library with structure and material parameter values
to establish the model. The initial value of the electromagnetic field is given by adding
appropriate light sources. These sources can be the built-in sources of the solver, such as
a dipole or optical fields like plane wave, Gaussian beam, etc. and could also be generated
by a customized script. The desired output field can be extracted from the monitors
that one can choose, which include the electric and magnetic components, and even the
Poynting vector and power if needed.

2.4. FAR-FIELD OF SCATTERING FIELD

In the previous sections, we discussed the generation of the incident field, as well as the
acquisition of the scattering field through numerical simulation methods. The final step
is propagating the scattering near field into the far-field for further analysis.

Now, let us consider a plane wave encountering a lens with z as its optical axis, and
finite extension in transverse x y plane. Under the assumption of the thin lens and paraxial
approximation, the transmittance function of this lens can be characterized by a parabolic
phase delay to the incident wavefront. The finite extent of the lens can be treated by a
pupil function P (x, y) related to the lens defined as

P (x, y) =
{

1, inside the lens aperture,

0, else.
(2.27)

The transformation function of the lens with focal distance f is represented by:

t (x, y) = P (x, y)exp
[− i

k

2 f
(x2 + y2)

]
. (2.28)

Assume that the light incident on the lens is denoted as U (x, y,0), and the light behind
the lens is denoted as U

′
(x, y,0). The field distribution of U

′
(x, y,0) is given by

U
′
(x, y,0) =U (x, y,0)P (x, y)exp

[− i
k

2 f
(x2 + y2)

]
. (2.29)

We use the Fresnel diffraction integral to get the field distribution in the back focal plane
(z = f ). If the back focal plane coordinates are (x f , y f ), the result is given by:

U (x f , y f , f ) =
exp(i k f )exp[i k

2 f (x2
f + y2

f )]

iλ f

×
∞Ï

−∞
U

′
(x, y,0)exp

[
i

k

2 f
(x2 + y2)

]
exp[−i

2π

λ f
(x f x + y f y)]d xd y.

(2.30)

Inserting the Equation 2.29 into Equation 2.30, gives
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U (x f , y f , f ) =
exp[i k

2 f (x2
f + y2

f )]

iλ f

×
∞Ï

−∞
U (x, y,0)P (x, y)exp[−i 2π( fx x + fy y)]d xd y

=
exp[i k

2 f (x2
f + y2

f )]

iλ f
F

{
U (x, y,0)P (x, y)

}(
fx , fy

)
,

(2.31)

where F (·) denotes the 2D Fourier transform and the spatial frequencies are fx = x f /λ f ,
fy = y f /λ f ( f is the focal length), and the constant phase change given by the factor
exp(i k f ) is omitted. Equation 2.31 shows that the output complex amplitude U (x f , y f , f )
is the Fraunhofer diffraction pattern of the input complex amplitude U (x, y,0) within the
aperture enclosed by the lens (P (x, y)). Although the distance of the observation plane
is equal to the focal length of the lens, which is much shorter than the typical distance
required for Fraunhofer diffraction, we can still observe the Fraunhofer diffraction pattern
at the back focal plane due to the presence of the lens. Because of the presence of the
quadratic phase factor in front of the integral sign, the relationship between the input
plane and the back focal plane is not an exact Fourier transform, in other words, there is a
phase distortion between the field distribution in the back focal plane of a lens and its
frequency spectrum.

The Fresnel propagation of waves can also be described by the angular spectrum theory.
Considering a wave field U (x, y, z) propagating in the z-direction. Let z =−d(d > 0), the
2D Fourier representation of U (x, y,−d) is

U (x, y,−d) =
∞Ï

−∞
A( fx , fy ,−d)exp[i 2π(x fx + y fy )]d fx d fy , (2.32)

where

A( fx , fy ,−d) =
∞Ï

−∞
U (x, y,−d)exp[−i 2π(x fx + y fy )]d xd y, (2.33)

is called the angular spectrum of U (x, y,−d). According to angular spectrum theory, we
can assign a physical meaning to the above Equation 2.32. The complex exponential
function exp[i 2π(x fx + y fy )] can be regarded as a plane wave with the propagation di-

rection (α = λ fx ,β = λ fy ,γ =
√

1−α2 −β2) and A( fx , fy ,−d) is the complex amplitude
in the plane z =−d of this plane wave. In this theory, any wave can be represented as a
superposition of plane waves propagating at different angles with different wavevectors
and amplitudes.

We can see that the angular spectrum of the field is the Fourier transform of this field, so
this field can also be expressed as the inverse Fourier transform of the angular spectrum.
Let us assume that U (x, y,0) and U (x f , y f , f ) still represent the field incident on the lens
and on the back focal plane respectively. The angular spectrum of U (x, y,0) is given by
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A( fx , fy ,0) =
∞Ï

−∞
U (x, y,0)exp[−i 2π(x fx + y fy )]d xd y, (2.34)

and the Fourier representation of U (x, y,0) is given by

U (x, y,0) =
∞Ï

−∞
A( fx , fy ,0)exp[i 2π(x fx + y fy )]d fx d fy . (2.35)

In addition, U (x, y,0) must satisfy the Helmholtz equation at all points without sources,
namely

∇2U (x, y,0)+k2U (x, y,0) = 0. (2.36)

Substitution of Equation 2.35 into Equation 2.36 yields:

∞Ï
−∞

[
Ç2

Çz2 A( fX , fY ,0)+ (k2 −4π2( f 2
x − f 2

y ))A( fx , fy ,0)

]
exp

{
i 2π(x fx + y fy )

}
d fx d fy = 0,

(2.37)
this is true for all waves only if the integrand is zero:

Ç2

Çz2 A( fx , fy ,0)+ (k2 −4π2( f 2
x − f 2

y ))A( fX , fY ,0) = 0. (2.38)

The solution which corresponds to a wave propagating in the positive z-direction is:

A( fx , fy ,0) = A( fx , fy ,−d)exp
{
i (−d)

√
k2 −4π2( f 2

x − f 2
y )

}
. (2.39)

The above equation shows that the propagation of waves only change the relative phase to

the angular spectrum, and the function of exp
{
i (−d)

√
k2 −4π2( f 2

x − f 2
y )

}
can be regarded

as the propagator of the diffraction system.
In the Fresnel or paraxial approximation, the propagator in Equation 2.39 is given by

exp
{
i (−d)

√
k2 −4π2( f 2

x − f 2
y )

}≈ exp
{
i k(−d)exp[−iπλ(−d)( f 2

x + f 2
y )]

}
, (2.40)

and the relationship between A( fx , fy ,−d), A( fX , fY ,0) becomes

A( fx , fy ,0) = A( fx , fy ,−d)exp(i k(−d))exp[−iπλ(−d)( f 2
x + f 2

y )]. (2.41)

If the extent of the field U (x, y,0) is smaller than the extent of P (x, y), Equation 2.31 can
be written as

U (x f , y f , f ) =
exp[i k

2 f (x2
f + y2

f )]

iλ f
A( fx , fy ,0), (2.42)

or, using Equation 2.41

U (x f , y f , f ) =
exp[i k

2 f (1− d
f )(u2 + v2)]

iλ f
A( fx , fy ,−d). (2.43)
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Thus, for an input field placed at a distance d before a lens, the field at the back focal plane
of the lens is given by the Fourier transform of the initial field multiplied by a quadratic
phase factor that depends on the distance d . With d = f , the above equation becomes

U (x f , y f , f ) = A( fz , fy ,− f ). (2.44)

Obviously, z = f makes the phase distortion disappear, and the relationship between the
front and back focal plane becomes the exact Fourier transform. This formula is valid to
describe the input-output relation for the lens.

To CFS, the same objective lens is used to focus the incident light onto the structure
and collect the scattering light from the structure. The presence of the lens allows CFS
to collect all the scattering light which fits in the numerical aperture of the lens, and
conveniently perform Fourier analysis on the back focal plane without being affected
by the quadratic phase factor. After obtaining the near-field data from the Lumerical
FDTD solver, we can further perform a near-to-far transformation by the analytical
methods, both the Fresnel diffraction integral and the Fast Fourier transform method are
considered.

In this chapter, we present the semi-analytical research method that we have considered
to investigate the scattering problem between structured light field and the object. We
will carry out our researches in the following chapters according to these concepts.
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3
CONTROL THE PROPERTIES OF A

TIGHTLY FOCUSED FIELD

In this chapter, we show that elongating a tightly focused field in the direction perpendicular
to the optical axis is possible. We demonstrate our approach by specially shaping the
Pancharactnam–Berry (PB) phase. The analytical formulae required to calculate the
vectors and energy flux of the three-dimensional electromagnetic fields near the focus of an
aplanatic optical system are derived by using the Richards and Wolf vectorial diffraction
methods. Calculations reveal that the transverse enhancement is controllable and depend
on the phase index in the PB phase, thereby giving rise to a focus with tunable length and
sub-wavelength width in the focal plane.

Parts of this chapter have been published in Optics Letters 44, 2 (2019) [1].
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3.1. INTRODUCTION
For a sensible interpretation of the image formation and information retrieval, it is neces-
sary to have a good understanding of the field used for illumination of the sample. The
ability to generate light fields with almost any desired structure has renewed interest in
generating and analysing optical fields with new shapes. Novel techniques involving the
manipulation and structuring of light have been recently introduced in the field of optical
metrology, with the goal of finding new solutions to old problems.

In view of the practical needs of CFS, it is common to use a focused light spot of the
order of a wavelength as the measurement probe. A focused light spot is easy to generate,
but is not always the optimal probe. Since the focused light spot can only illuminate a
small area, in order to cover all the areas of interest, we must scan this region. For the
grating structure commonly encountered in IC measurement, one of its axes remains
unchanged. In this situation, using a larger-sized line shape focused field for detection
would undoubtedly save a lot of time. To date, however, attempts to target transverse
elongation of the focus in the focal plane have not been undertaken, which is highly
desired in practical applications. In this chapter, we demonstrate an new approach
by specially shaping the PB phase to elongate a tightly focused field in the direction
perpendicular to the optical axis.

3.2. THE METHOD OF PB PHASE SHAPING
In this section, we propose a method to elongate the tightly focused field in the direction
perpendicular to the optical axis assisted by PB-phase shaping. The expressions for
calculating the electromagnetic strength vectors and energy flux near focus are derived
using the vectorial diffraction methods of Richards and Wolf. Based on an analytical
model, the transverse enhancement was found only to depend on the phase index of the
PB phase. As a result, a focus with controllable length and subwavelength width in the
focal plane is achieved. Furthermore, the corresponding Poynting vector distributions
are studied in detail to provide a better understanding of the transverse enhancement of
focusing.

To give a clear understanding of the PB phases, a brief analysis concerning its origin is
necessary. Because PB phases are related to variations in the SoPs, we assume there are
two polarization states in terms of an initial one E1 and a final one E2. For simplicity and
without loss of generality, E1 corresponds to a linear polarization with an orientation with
respect to the x-axis denoted by c. Hence, it may be represented as a two-dimensional
Jones vector such that

E1 = cosc êx + sinc êy = 1p
2

[
exp(−i c)êl +exp(i c)êr

]
, (3.1)

where êx and êy denote unit vectors directed along the x- and y-axes, respectively, of
the linear polarization; similarly, êl and êr denote unit vectors of left-handed (LH) and
right-handed (RH) circular polarization. For arbitrary light beams with a homogeneously
linear SoP, the two components expressed in terms of LH and RH circular vibrations
have opposite initial phases, the value of which determines the orientation of the linear
vibration. After a polarization transformation, if the PB phases acquired by the LH and
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RH circular components are, respectively, εl and εr , the resultant final polarization state
E2 is then expressed as [2]

E2 = 1p
2

{
exp[i (εl − c)] êl +exp[i (εr + c)] êr

}
= e

(
i
εr +εl

2

) {[
cos

(εr −εl

2
+ c

)]
êx +

[
sin

(εr −εl

2
+ c

)]
êy

}
.

(3.2)

Unfortunately, a dynamic phase appears in Equation 3.2, indicating a phase retardation
of (εr +εl )/2 compared with that in Equation 3.1. However, if we choose εr =−εl = εe ,
this phase disappears. The PB phase εe as an intrinsic optical degree of freedom may
have arbitrary distributions in theory, and thus provides a powerful means to manipulate
light. Indeed, great success has been achieved in enabling transformations from states
E1 to E2, such as wave plates and subwavelength gratings as well as specially designed
optical systems [3–6].

Numerous practical applications ranging from microscopy to data storage as well as
micromanipulation require tight focusing. Different from previous results suggesting
tightly focused fields permit a significant enhancement in the direction along the optical
axis, a tunable enhancement in the direction perpendicular to the latter is found also to
be possible when setting

εe = 2πν(r sinϕ/r0)3, (3.3)

where ν is the phase index, r and ϕ denote the polar radius and azimuthal angle, respec-
tively, and r0 is the radius of the input field. In this case, εe is a function of both r and ϕ;
thus, the resultant PB phase get a space-variant distribution. Referring to the Equation
2.7 in Chapter 2, the corresponding three-dimensional electric field near the focus can be
given as

Eout(ρ, φ, z) = −i k f

2π

2π∫
0

α∫
0

p
cosθlin(θ)sinθME (3.4)

×e{i k[−ρ sinθcos(ϕ−φ)+z cosθ]}dϕdθ,

where (ρ,φ, z) are the cylindrical coordinates of the image space; k and f denote the
wave number and focal length, respectively, θ is the tangential angle with respect to the
z-axis, α= arcsin(NA/n) with NA the numerical aperture of the focusing objective lens
and n the refractive index in the image space, which we take as 0.95 and 1, respectively.
The function lin(θ) represents the complex amplitude distribution of the incident beam,
having the form [7]

lin(θ) = exp

[
−β2

(
sinθ

sinα

)2]
J1

(
2β

sinθ

sinα

)
, (3.5)

where β is the ratio of the pupil radius to the beam waist, which we choose as 1 in our
configuration; J1(x) is the first kind of first order Bessel function. In Equation 3.4, ME

represents the electric field polarization vector in the image space contributed by the
input polarization and its explicit forms is
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ME = M x
E êx +M y

E êy +M z
E êz (3.6)
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Next, we analyze the tightly focused electric field distributions based on Equations
3.4-3.7. As examples, we explore the focal behaviors of three different optical fields with
(ν,c) = (0,π/2)(1,π/2) and (20,π/2); the corresponding input polarization and intensity
distributions are depicted in Figure 3.1, with the focusing conditions mentioned above.
For (ν,c) = (0,π/2) [Figure 3.1(a)], the beam is linearly polarized with spatially invariant
SoPs. Its orientation is parallel to the y-axis direction. However, for a nonzero value of ν,
the beam has a spatially varying SoP [Figure 3.1(b) and (c)], with the orientation of the
local vibration varying along the y-axis but has no change in the direction perpendicular
to it.

Figure 3.1: Polarization and intensity distributions of three different pupil fields with
(ν,c) = (0,π/2), (1,π/2), and (20,π/2)

3.3. THE CONTROLLABLE TRANSVERSE ENHANCEMENT
The corresponding normalized electric field distributions in the focal plane are depicted
in Figure 3.2. Apparently, the y-polarized component [Figure 3.2(b), (f), and (g)], is much
larger than the x-component [Figure 3.2(a), (e), (i)] and the z-component [Figure 3.2(c),
(g), (k)] is much bigger and dominates the total field for all the three cases. Specifically,
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Figure 3.2: Electric field intensity distributions of tightly focused pupil fields with (ν,c) =
(0,π/2), (1,π/2), and (20,π/2) (upper, middle, and lower rows, respectively). From left
to right, the four columns show the x-, y-, and z-polarized components and the total
electric field. The insets for each image depict the normalized intensity profiles along
the x (green curve) and y axes (red curve), respectively. All intensity distributions are
normalized by the maximum intensity in the focal plane for each input light mode.
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almost no field is found for the x-polarized component [Figure 3.2(a)] of the linearly
polarized input beam. However, the on-axis quasi-circular intensity distribution for the
y-polarized component [Figure 3.2(b)] and twin focal spots located along the y-axis for
the z-polarized component [Figure 3.2(c)] play a dominant role, resulting in an elliptically
shaped pattern for the total field [Figure 3.2(d)] with the major-axis direction being in
accordance with the orientation of the input field [Figure 3.1(a)]. Most importantly,
all three electric field components [Figure 3.2(e)–(g) and 3.2(i)–(k)] permit a significant
transverse enhancement along the y-axis with increasing ν, resulting in a tunable length
of focus in the direction perpendicular to the optical axis for the total field [Figure 3.2(h)
and (l)] accompanied with the increase of side lobes. Such fascinating focal behaviors are
attributed to the one-dimensional manipulation of the input SoPs. As a result, a transverse
elongation of focus is also possible, complementing the well-known long depth of focus.
Moreover, the long foci exhibit high uniformity as they are intensity profiles with near-flat
tops; see insets in Figure 3.2(h) and (l).

Figure 3.3: Full width at half-maximum (FWHM) values of the electric field intensity along
the x- and y-axes versus the phase index ν with NA = 0.95.

The value of the phase index ν in the specially designed PB phase ε affects significantly
the transverse enhancement of the focus, as seen in Figure 3.2. To detail and quantify
the relationship between ν and the length and width of the focus, Figure 3.3 shows the
full width at half-maximum (FWHM) values along both the x- and y-axes versus ν; the
FWHW/ values are from left to right for ν=0, 1, . . . , 20, respectively: 0.510, 0.444, 0.434,
0.430, 0.428, 0.426, 0.424, 0.424, 0.424, 0.422, 0.422, 0.422, 0.422, 0.422, 0.420, 0.420, 0.420,
0.420, 0.420, 0.420, 0.420 along the x-axis and 0.726, 1.492, 1.872, 2.150, 2.376, 2.568, 2.736,
2.886, 3.022, 3.146, 3.260, 3.366, 3.466, 3.560, 3.648, 3.734, 3.810, 3.896, 3.968, 4.036, and
4.106 along the y-axis. Obviously, a linearly polarized beam may be used to create an
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elliptical spot under tight focusing conditions because this focal field has different FWHM
values along the x- and y-directions. Furthermore, with increasing ν, the FWHM values
along the x and y-axis decrease and increase, respectively, which are smaller than the
diffraction limit for this focusing lensλ/(2NA) = 0.526 and different from the line-focusing
of a cylindrical lens. Therefore, a tunable transverse enhancement of focusing controlled
by phase index ν is achieved.

3.4. THE ENERGY FLUX OF THE FOCUSING FIELD
To provide a better understanding of the transverse enhancement of focusing assisted by
the shaping of the PB phase, its energy flux needs to be evaluated. The corresponding
three-dimensional magnetic field near focus may be similarly derived to the electric field
[8],

Hout(ρ, φ, z) = −i k f
√
ε/µ

2π

2π∫
0

α∫
0

p
cosθlin(θ)sinθM H (3.8)

×e{i k[−ρ sinθcos(ϕ−φ)+z cosθ]}dϕdθ,

and M H represents the magnetic field polarization vector in the image space contributed
by the input polarization and its explicit forms are

M H = M x
H êx +M y

H êy +M z
H êz , (3.9)

M x
H =−cos

[
ϕ−2πν

(
sinθ sinϕ

sinα

)3

− c

]
sinϕ (3.10a)

+ sin

[
ϕ−2πν

(
sinθ sinϕ

sinα

)3

− c

]
cosθcosϕ,

M y
H =cos

[
ϕ−2πν

(
sinθ sinϕ

sinα

)3

− c

]
cosϕ (3.10b)

+ sin

[
ϕ−2πν

(
sinθ sinϕ

sinα

)3

− c

]
cosθ sinϕ,

M z
H =sin

[
ϕ−2πν

(
sinθ sinϕ

sinα

)3

− c

]
sinθ, (3.10c)

where ε and µ denote, respectively, the dielectric constant and the magnetic permeability
of the image space, and M H is the magnetic field polarization vector in the image space.
The magnetic fields distributions described by Equations 3.8-3.10c are evidently quite
different from those describing the electric fields, Equations 3.4–3.7. In terms of the
three-dimensional electric and magnetic fields, the energy current is determined by the
time-averaged Poynting vector [8, 9],

〈S〉∝ c

8π
ℜ(

Eout ×H∗
out

)
, (3.11)
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where asterisk represents the operation of complex conjugation. We can then calculate
the energy flux based on Equation 3.11.

Figure 3.4: Energy flow distributions of the tightly focused input optical fields with (ν,c) =
(0,π/2), (1,π/2), and (20,π/2) (left, middle, and right columns, respectively). The upper
and lower rows depict the transverse and longitudinal energy flows, respectively. The
direction of the transverse energy flow is indicated by black arrows. All energy flow
distributions are normalized by the maximum energy flow in the focal plane for each
input light mode.

The Poynting vectors of the transverse and longitudinal components in the focal plane
for the fields (Figure 3.2) are shown in Figure 3.4. No transverse energy flow is found in
Figure 3.4(a). On the contrary, the circularly symmetric hot spot plays a dominate role
in the longitudinal energy flow [see Figure 3.4(b)]. However, with nonzero ν, multiple
rings in the transverse energy flow along the y-axis are very clearly observed and exhibit
circular [Figure 3.4(c)] and elliptical-shaped [Figure 3.4(e)] patterns for low and high
values of ν, respectively. Moreover, the circular symmetry of the longitudinal energy flow
is broken, becoming a needle-shaped pattern for ν equal to 1 [Figure 3.4(d)] and permits
a further elongation along the y-axis with increasing ν [Figure 3.4(f)].



3.5. CONLUSIONS

3

59

3.5. CONLUSIONS
In conclusion, we have proposed a method to enhance the tightly focused field in the
direction perpendicular to the optical axis assisted by a specially designed PB phase. The
expression for calculating the electromagnetic and Poynting vector distributions near the
focus has been derived using the Richards-Wolf vectorial diffraction methods. Physicaly,
the focusing process can be treated as a simple Fourier transformation. By increasing the
phase index ν for the incident light field, the density of the polarization state increases
along the y-direction, which corresponds to the density fluctuation of PB phase. That is
equivalent to a higher spatial frequency of the incident light field along the y-direction.
Consequently, the focus field, being the Fourier transform of the incident light field,
is elongated along y-direction. Based on such analytical model, the transverse field
enhancement depends only on the phase index ν of the PB phase. As a result, a focus with
controllable length and subwavelength width in the focal plane is achieved. Furthermore,
the corresponding Poynting vector distributions are studied in detail. This work not
only broadens the concept of structured light felds, but also has potential applications
including optical micro- and nano-fabrication, micromanipulation.
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4
POLARIZATION-SENSITIVE

SCATTERING FOR NANOSTRUCTURE

DETECTION

In this chapter, we propose a far-field detection system to determine the steep side-wall angle
(SWA) of a cliff-shaped step structure on a silicon substrate by combining a split detector
with a scanning method. The far-field radiation field is asymmetric due to the scattering
of the step structure, and further numerical analysis demonstrates the reliability of this
far-field measurement method. In the simulations, two key variables, i.e., the polarization
state and the focus position of the incident laser beam, are considered to explore their
impacts. By scanning over the structure laterally and longitudinally with both TE and
TM polarizations, polarization effects on the far-field occur. These effects show higher
sensitivity to steep SWA variation for TM polarization than for TE. Furthermore, with a
comprehensive longitudinal scanning analysis for the TM polarization case, a feasible
focus interval can be optimized to retrieve the steep SWA. As the proposed method is fast,
highly sensitive and easy to implement, it provides a powerful approach to investigate the
scattering behavior of nanostructures.

Parts of this chapter have been published in Meas.Sci.Technol. 32, 085201 (2021) [1].
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4.1. INTRODUCTION

In the semiconductor industry, the photomask is a key component in the lithographic
system. The accurate evaluation of the structures on the photomask dominates the per-
formance of the end products. Consequently, a strictly precise description of the shape of
the groove on the photomask plays an important role in the in-line process control and
process development. Those structures are often gratings whose shape can be described
by some geometrical parameters, such as period, middle critical dimension, height and
SWA. In practical applications, the grating period is generally the best controlled parame-
ter, the SWA is more difficult to determine optically than the middle critical dimension
and the height [2].

In recent years, with continuous miniaturization of photonic and electronic devices, the
mask feature sizes become smaller and smaller, and consequently, the SWA has become
increasingly important in lithography mask fabrication. For example, EUV masks need
steep vertical SWA, since in case of non-vertical SWA, the transferred pattern sizes on
the wafer will be affected by shadowing effects. If there is a large deviation in the final
etched pattern, it will deteriorate the subsequent fabrication of further layers on the
nanostructure, and it may even lead to the failure of the chip. The verticality of the
SWA, therefore, has become a crucial factor in mask fabrication [3]. Non-destructive
determination of the SWA, especially for reconstruction of steep SWA with high precision
is obviously indispensable in nanostructure metrology.

Several techniques have been used to measure the SWA, currently, AFM and SEM are
the two most popular methods. For SEM [4–6], both the cross-sectional scanning electron
microscopy (X-SEM) and critical dimension scanning electron microscopy (CD-SEM)
have drawbacks, for instance, in the case of X-SEM, one needs to cut the sample to observe
its cross-section, which might introduce extra errors, while with CD-SEM the SWAs have
to be computed indirectly, with the resolution being limited by the primary electron beam
diameter. For AFM [7–10], it is hard to measure SWAs greater than the slant angle of the
tips, and also its low throughput is an obstacle. Moreover, these methods are all based on
near-field measurements, and the experimental systems are very complex, with rigorous
operating conditions.

To overcome these drawbacks in dimensional and structural metrology, a non-destruc
tive, fast and quantitative method such as optical scatterometry has become commonly
used for nanostructure profile reconstruction, in particular in in-line lithographical man-
ufacturing process. Optical scatterometry [11, 12] is inherent a model-based metrology
technique that is used to reconstruct the optimal nanostructure profile parameters by
continuously matching the theoretical signatures with the measured ones. The theoretical
model for the scattering process is based on the rigorous solution of Maxwell’s equations.
Many methods have been proposed, depending on the structure features, such as the
so-called C method [13, 14], the rigorous coupled wave analysis (RCWA) [15–17], the finite
element method (FEM) [18–20], and the finite difference time domain (FDTD) [21–23],
etc. For instance, RCWA is primarily suitable for calculation of diffraction field of periodic
structures, while FEM is more flexible to solve boundary value problems.

In this chapter, we propose a novel detection optical system for the determination
of steep SWAs that explores asymmetries in the far-field scattered light. The proposed
approach is appropriate for all values of SWAs but here we focus on steep SWAs because
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there it is still a lot of challenges associated with them. Numerical calculations using
the FDTD method are carried out to verify the detection capabilities of the scheme. The
rigorous electromagnetic interaction between a cliff-like structure and the focused laser
beam generated by a cylindrical lens is modeled to distinguish different steep SWAs,
which is closer to the experimental situation and more accurate than the scalar analysis
[24]. We conduct lateral and longitudinal scanning of the structure for both TE and TM
polarization, and monitor the scattered light by a split detector to analyze the polarization
effect in the far field. The results reveal that TM polarization is more sensitive for steep
SWA detection, and it could be possible distinguish SWA differences below 1°, which
meets the technological requirement of absorber SWA in ITRS2008 roadmap [25]. We
defined a quantity called the “visibility” to quantify the influence of the longitudinal focus
position to steep SWA detection in the TM case. The results reveal that there is a feasible
longitudinal focus interval which can be used to distinguish steep SWAs with different
heights of the structure, and within this interval, there is an optimal focus position. Our
findings present a robust and sensitive determination method for steep SWAs in far-field
detection, and we believe it will provide a feasible approach for accurate measurement of
more complicated nanostructures.

4.2. METHODOLOGY
A cliff-like structure is shown in Figure 4.1(a). We select one cliff-like subarea as the target
structure as it is the pivotal part of a general grating profile. Grating profiles are obtained
by varying the height and SWA of the structure. Figure 4.1(b) is the proposed detection
system for SWA determination, where the cliff-like structure is centered in a right hand
coordinate system and is illuminated by a probe beam. For simplicity we assume that the
cliff-structure is infinite along the x-axis and invariant with respect to the y coordinate.
Consequently, the disturbances from other parameters are avoided, and the structure
can be fully described by the SWA and height in the xz plane. A collimated laser beam
with polarization in the pupil which is either parallel (TE) or perpendicular (TM) to the
y-axis, is focused on the upper interface of the structure through a cylindrical lens. By
using a cylindrical lens, the interaction of the light with the structure is a two-dimensional
scattering problem.

It has been demonstrated in previous work [24, 26, 27] that an object can be described
as a phase step if its slope is sufficiently steep. The phase step will introduce an offset
to the scattered light due to the path difference on either side of the step, as shown in
Figure 4.1(c). Furthermore, the relative movement between the structure and the incident
beam will bring a dynamic variation in the far field, which can be collected through the
same cylindrical lens. To get a high sensitivity at high speed, a split-detector technology
is implemented, which is often used in differential phase-contrast microscope [28–30].
The split detector measures the intensity in both halves of the exit pupil and integrates
each of them and then subtracts them after normalization:

χ=
∫ 0
−r I out(ξ) dξ−∫ r

0 I out(ξ) dξ∫ 0
−r I out(ξ) dξ+∫ r

0 I out(ξ) dξ
, (4.1)

where r = NA· f defines the detection area, NA is the numerical aperture of the cylindrical
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lens, f is the focal length, and ξ is the coordinate in the exit pupil. Theoretically, the
detection sensitivity and the anti-noise performance can be improved by considering the
difference of the integrals of the two halves.

Figure 4.1: (a) Scheme of the cliff-like structure showing its geometrical parameters. The
structure is fully described by height and SWA. (b) Diagram of a reflection scanning system
with a split detector. A collimated laser beam with wavelength of 633 nm is focused onto
the sample by a cylindrical lens with NA of 0.6. The scattered light is collected by the
same lens and finally recorded by a split detector. (c) The simulated near-field intensity
showing the interaction between the focused beam and silicon-based cliff-like structure
in xz plane for TM polarization.

To study the interaction between the cliff-like structure and probe beam, we performed
simulations using the commercial software “FDTD solutions” (Lumerical Inc., Canada). A
two-dimensional FDTD model is built with a total simulation region of 10 µm × 8 µm,
where the silicon step structure (as described in Figure 4.1(b)) is created in the bottom
region and all other part are air. A 633 nm-wavelength TM- or TE-polarized light source
is generated through a self-written script based on Refs. [31, 32], and focused on the
upper surface of the silicon structure with the NA of 0.6. The refractive index of silicon
is 3.882+0.019i at this wavelength as given by the FDTD material database. Perfectly
matched layer (PML) boundary conditions are used at all boundaries of the simulation
domain without causing reflections. In order to provide enough computational precision
to distinguish different SWAs, the grid size in the cliff-shape region (as described in Figure
4.1(c)) is chosen as 2 nm in the x-direction and 5 nm in the z-direction; Finally, the far-
field is calculated by projecting the scattered near field obtained from FDTD simulation
to the pupil plane.
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4.3. THE COMPARISON BETWEEN TE AND TM MODES

Figure 4.2: Explanation of the process of the lateral scanning of the focused beam. The
probe beam is scanned along x-axis from left to right as shown in (a) and (b). The
translation is denoted by xt . (c) and (d) are the far-field radiation field when xt =−0.6
µm and 0 for the TE polarization, respectively. (e) and (f) are the far-field radiation field
when xt =−0.6 µm and 0 for the TM polarization.

To better understand the offset caused in the scattered light by the step, we begin with
the height set to λ/4 and SWA of 90◦, which satisfies the quadrature condition (i.e. the
phase difference between the reference and the signal beam is around π/2) [26]. We
firstly perform a lateral scan, with the probe beam focused on the upper interface of the
structure. The translation of the focus spot along the x-direction is defined by xt , and
the probe beam moves from negative to positive xt , where xt = 0 means that the centre
of the spot is on the edge of the step, as shown in the Figure 4.2(a) and (b). Figure 4.2(c)
and (d) show the far-field radiation field in the pupil plane for TE polarization, and Figure
4.2(e) and (f) for TM polarization. Figure 4.2(c) (e) and (d) (f) correspond to two scanning
positions, namely xt =−0.6 µm and 0µm, respectively. For xt =−0.6 µm (Figure 4.2(c)
and (e)), a major portion of the radiation field is concentrated in the center with two small
side lobes, which means that when the probe beam is relatively far from the cliff-structure,
the probe beam is mainly reflected by the surface. As one can see, the intensity of the two
twigs in Figure 4.2(c) is much bigger than in Figure 4.2(e), which indicates that the TE
and TM modes have different edge scattering behavior; for both Figure 4.2(c) and (e), the



4

66 4. POLARIZATION-SENSITIVE SCATTERING FOR NANOSTRUCTURE DETECTION

far-field intensities for 80◦ and 90◦ highly coincide, when the probe beam is far from the
cliff-structure. For the beam focused at the center xt = 0, the scattered light from the right
and left halves of the step exerts a π phase difference. The scattered light in the middle
part becomes very weak after interference, leaving two asymmetric radiation fields at
divergence angle around ±40◦ with a high intensity, as shown in Figure 4.2(d) and (f).
Although the intensity ratio between the two lobes in Figure 4.2(d) is larger than in Figure
4.2(f), the difference of between the intensity patterns for SWA 80◦ and 90◦ is larger for
TM (Figure 4.2(f)) than for TE (Figure 4.2(d)).

Figure 4.3: Top: Stacks of the far-field radiation field for different scanning positions xt in
(a) TE and (b) TM polarization for a cliff-like structure with height =λ/4 and SWA = 90◦.
Bottom: split detector signals for a cliff-like structure with different SWAs, namely 80◦,
86◦, 88◦, 89◦ and 90◦ under two different polarizations: (c) TE polarization and (d) TM
polarization.

Figure 4.3(a) shows the variation of the intensity of the scattered far field for TE po-
larization, for scanning position xt in the range from −0.6 µm to 0.6 µm, with scanning
step of 0.06 µm and for SWA of 90◦. Figure 4.3(b) is analogous to Figure 4.3(a) for TM
polarization. The results show that the radiation distribution in the far field for TE and
TM polarization are similar. There is however a difference in the ratio of the intensities
in the two lobes when the probe crosses the edge of the step. This phenomenon can be
explained by the electromagnetic boundary conditions [33]. Figure 4.3(c) and (d) shows
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the split detector signals for a cliff-like structure with different SWAs as function of the
scanning position xt for TE and TM polarization, respectively. The height of the step is
λ/4 again and SWA is 80◦, 86◦, 88◦, 89◦ and 90◦. The longitudinal position of the focus
is fixed at the upper interface of the sample, in accordance with the scheme in Figure
4.2. The lateral scanning region ranges from −2 to 2 µm, with the same scanning step
as before. According to Figure 4.3(a), for TE polarization the scattered intensity in the
left half of the pupil is always larger than in the right half, and the split detection signal is
always positive. Furthermore, the split detector signals for all five SWAs highly coincide,
meaning that TE polarization is not very sensitive to changes in steep SWAs.

In contrast, for TM polarization shown in Figure 4.3(d), the split detection signal clearly
differs for different SWAs. Each SWA produces a unique ‘heartbeat’ signal, with different
amplitudes. The insert in Figure 4.3(d) shows that the difference between 89◦ and 90◦ is
still visible and possibly could be measurable, which makes us conclude that the scattering
due to TM polarization has the potential for applications in determining steep SWA to the
order of 1◦. Although the absolute value of the split detect signal for TE polarization is
higher than for TM, its sensitivity to SWA variation is smaller. The results show thus that
TM polarization is preferable for steep SWA determination.

Figure 4.4: The stacks of the far-field radiation field along different vertical scanning
positions zt in (a) TE and (b) TM polarization for a cliff-like structure with height =
λ/4 and SWA = 90◦. The split detector signals for five different SWAs for two different
polarizations: (c) TE polarization and (d) TM polarization.
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Since we consider the dependence on the position of the focus of the incident spot, it is
hard to determine the exact position of the focal plane of the laser beam w.r.t. the struc-
ture. Figure 4.4(a) and (b) show the longitudinal scanning results of the same structure
(height =λ/4, SWA = 90◦) shown in Figure 4.2 along different focal position zt . The lateral
position of the beam is fixed at xt = 0, and the beam moves from top to bottom with focus
plane position (zt ) changing from 0.3 µm to −0.3 µm. Note that zt = 0 corresponds to the
probe beam being focused at the upper interface of the structure. As shown, scattering
angle where maximum field amplitude occurs is located mainly around ±40◦ scatter-
ing angle for both polarizations. As consequence, the scattered light could be collected
without any position adjustment when the polarization changes.

In Figure 4.4, when the incident beam is TE polarization, the scattered field is for all
focal positions zt more strongly scattered to the left than to the right side of the pupil,
but the ratio of the left and right intensities changes gradually with longitudinal focal
position. As shown in Figure 4.4(b), the scattered field much more strongly varies with
longitudinal focus for TM polarization than for TE. Figure 4.4(c) and (d) show the split
detector signals for different steep SWAs for TE and TM polarizations, respectively, when
xt = 0. The parameters of the tested structure are kept the same in Figure 4.3, i.e., the
step height is λ/4 and the SWA is 80◦, 86◦, 88◦, 89◦ and 90◦. The scanning range is from
0.3 µm to −0.3 µm and step size is 0.01 µm. As demonstrated in Figure 4.4(c), although
the longitudinal focus position changes the far field distribution, the overall trend of the
five split detection signals looks quite similar. While for the TM case, as shown in Figure
4.4(d), the difference between the split detector signals for different SWAs is more obvious.
In conclusion, the split detector signals generated by changing the longitudinal focus
positions could also be used to retrieve the SWAs of the nanostructure.

4.4. THE DETECTION SENSITIVITY ANALYSIS
The comparison of TE and TM polarization for both lateral and longitudinal scanning,
imply that TM polarization is more sensitive than the TE polarization for difference in
SWA. We have also studied the transitional polarizations between the TE and TM mode,
and as result, we conclude that TM polarization is the optimal one. We therefore further
explore the TM case. For a quantitative description of the detection sensitivity, we define
a contrast value of split detector signals χ, as:

visibility = |max(χ)|− |min(χ)|
|max(χ)|+ |min(χ)| , (4.2)

where max(χ) and min(χ) are the maximum and minimum of the split detector signal.
It should be noted that the absolute value of minimum χ can be greater than that of the
maximum, the visibility value can be negative under some conditions.

For each vertical focus position, a horizontal scanning is performed to get a series of
far-field radiation patterns, referring to the horizontal rail in Figure 4.3(b). We further get
the split detector signal of the far-field from Equation 4.1 as function of xt . The visibility
value is calculated from Equation 4.2 by getting the extreme value of the split detector
signal. Finally, only one scalar quantity is obtained from the stacks of far-field radiation
field with respect to zt .
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The visibility is plotted as a function of the longitudinal focus position in Figure 4.5(a).
It demonstrates that the visibility of 80◦ is always higher than the other four SWA values,
and very distinguishable. For quasi-vertical SWAs, however, the optimum focus position
should be used, since the difference between the visibilities is small. The largest variation
of the visibility as function of focus position for SWAs close to 90◦ occurs for focal position
zt =0.05 µm, hence 50 nm above the upper surface. The results of visibility are logical and
consistent with expectation: focusing on the upper interface of the structure is not the
only valid position, there is indeed a feasible focus interval to detect steep SWAs.

The above simulations are based on the condition that the height is equal to λ/4. The
cases for other heights have also been investigated, and the results are shown in Figure
4.5(b). The SWA in this case is fixed at 90◦ and the height is equal to 148 nm, 158 nm and
168 nm. We can see that the height also has a strong influence on the visibility values,
but the focus interval around zt ≈ 0.05 µm is still good to use. In addition to 90◦, we also
investigated other SWAs with different heights. The results show the same tendency as
in Figure 4.5(b). This indicates that our method is still valid when the wavelength of the
focused beam is fixed and the structure height has a tolerant deviation from λ/4, and
with the right focus interval we can accurately retrieve the steep SWAs. It is important
to emphasize that the requirement on the physical height of the sample is not stringent.
Our method can be used in a wide range of heights by adjusting the incident wavelength.

Figure 4.5: (a) Visibility of the split detector signal as function of the focal position zt of
the spot for five values of SWA. The visibility is defined by Equation 4.2, as explained in
the main text. (b) The visibility as function of the focal position of the focal spot for three
different heights when the SWA is fixed to 90◦.

4.5. CONCLUSIONS
In conclusion, we have proposed an efficient approach for distinguishing steep SWAs
of a cliff-like structure by analyzing the far-field scattering signals. An incident beam is
focused onto the structure by a cylindrical lens, and the scattered light is collected by
the same cylindrical lens and detected by a split-detector to record the far-field signals.
Both lateral and longitudinal scanning of the structure under TE and TM polarization are
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performed to optimize the detection sensitivity. The simulations demonstrate that the
polarization state is an important factor to modulate the far-field scattering field, and
TM polarization is much more suitable for steep SWA detection than TE polarization. A
parameter called "visibility" is defined to quantify the influence of the longitudinal focus
position on detecting steep SWA. There is a feasible vertical focus interval that can be used
to distinguish different SWAs, and inside this interval there is an optimum focus position.
For step height of a quarter wavelength, TM configuration can be applied to detect the
SWA difference with accuracy higher than 1◦ at a suitable focus position. Also, according
to simulations, the method is robust even after adding a small surface roughness to the
step. The proposed approach is fast, highly sensitive and easy to implement. Moreover,
the influences of height deviations are also analyzed. For realization of the experiments,
there are many factors that need special attention, such as the alignment between the
structure and focused beam, focusing and tilting errors. There should be also special
attention to the detector, as this should have low noise amplifiers and probably combined
with heterodyne techniques given that the expected voltage differences are small. We
envision that, in the future, machine learning [34] can be applied to solve the inverse
problem in scatterometry by building a comprehensive database based on calculations
as presented in this paper to analyze the experimental data.
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5
POLARIZATION SINGULARITY

ASSISTED DETERMINATION OF

STEP-SHAPED NANOSTRUCTURE

We propose a novel metrology method to determine simultaneously the height and side-wall
angle of a step-shaped silicon nanostructure. By employing an optical singular beam into
a typical coherent Fourier scatterometry system, both parameters can be retrieved through
analyzing the intensity profile of the far-field scattering pattern. The use of singular beam
is shown to be sensitive to slight changes of the parameters of the step. By changing the
relative direction between the singularity and structure, the height and side-wall angle can
both be retrieved with high precision. This new method is robust, simple, and can provide
valuable means for micro-and-nano- metrology.

Parts of this chapter have been published in Optics Express. 30, 16 (2022) [1].
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5.1. INTRODUCTION
With the continuously reduction of the dimensions of semiconductor devices, there has
been a strong demand for a simple, robust, non-invasive, and far-field optical detection
technique that is sensitive to nanoscale dimensions. This demand is mainly driven by the
requirements of the production quality control, in-line process control and production
equipment in the semiconductor industry. Several near-field microscopy systems [2–
6] such as atomic force microscopy and scanning electron microscopy, can provide
extremely high resolution. However, they are not suitable for industrial environment
since they operate mostly off-line, they are expensive, have low throughput and some
of them are invasive. In principle, optical methods are good candidates to overcome
those difficulties. Optical scatterometry [7, 8], which uses the far-field optical scattering to
retrieve the geometrical features of a structure, is a non-invasive in-situ detection method,
with Fourier Scatterometry (FS) being distinguished by the detection plane. In FS, the
light that is scattered from the structure at different angles is recorded and analyzed at the
Fourier plane in one shot [9–11]. Coherent Fourier scatterometry (CFS) uses a coherent
focused beam to illuminate the structure [12]. The use of coherent illumination makes
CFS quite competitive and even superior to the incoherent counterpart. CFS has been
successfully applied to detect the shape parameters of grating structures as well as to the
detection of nano-particles and contamination [13–16].

Spatially modulated structured light, refers to a light beam with specially designed
intensity, phase, or polarization distribution patterns [17–19]. It has drawn extensive
attention of researchers because of its novel characteristics in many fields. Structured
light beams with an optical singularity, also called singluar beams [20–22], have potential
for a lot of applications. The singularity often refers to the discontinuities in phase or
polarization in the light field, and the optical field intensity usually has a sharp decrease
near the singularity. It has been shown that the dark singularity can be extremely sensitive
to detect slight changes in the field due to its interaction with (nano)objects [23–29]. Such
property of the singular beam has been verified to be feasible in precise measurement of
nanostructures [25].

In this chapter, we employ a singular beam on a Coherent Fourier Scatterometry (CFS)
scheme to determine both the height and side-wall angle (SWA) of a step-shaped silicon
nanostructure simultaneously. A numerical 3-dimensional (3D) rigorous model is built,
and the computed scattered far-field intensity is further analysed. Due to the high sensi-
tivity driven by the singularity line of the beam, the numerical results demonstrate that
the proposed approach can distinguish tiny differences in height and SWA. As an effective
and robust method, this work could provide a good complement to the CFS technique for
finer measurements of nanostructures.

5.2. METHODOLOGY

5.2.1. GENERATION OF THE DESIRED BEAM

In conventional CFS, the nanostructure sample is illuminated by a coherent focused
beam with a truncated Gaussian spatial profile, and is then further investigated via a
raster-scanning of the structure. Here, we introduce a (1,0) mode Hermite-Gaussian
(HG10) singular beam (with a line singularity in the center) into the conventional CFS to
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improve the detection sensitivity and increase the scanning speed.
A novel liquid crystal polarization modulation technique is employed to generate

HG10, which is significantly more efficient and flexible than the previous methods. The
polarization state of a laser beam is modulated at the scale of single pixel of a liquid crystal
device, e.g., Q-plate and liquid crystal polymer vortex waveplate (VP) that we are going to
talk about. The so-called VP is essentially a half-wave plate with a constant phase delay
over the entire aperture, but the fast axis rotates continuously over the entire plate. VPs
can turn linearly polarized beams into arbitrary order cylindrical vector beams (CVBs),
and can also turn circularly polarized beam to optical vertices with arbitrary topological
charges.

We will investigated theoretically the generation of m-th order CVB as an example to
describe the inherent transform mechanism in the framework of the Jones matrix theory
[30, 31]. The Jones matrix of the incident linearly polarized beam can be expressed as

Ei =
[
cosθ sinθ

]T
, (5.1)

and that of the m-th order CVB as

Eo = [
cos(mϕ+ϕ0) sin(mϕ+ϕ0)

]T
, (5.2)

where θ represents the orientation of the incident linear polarization with respect to
the x-axis, ϕ the azimuthal angle, and ϕ0 the inner polarization rotation of the CVBs.
Supposing that the Jones matrix M of VP is defined as

M =
[

A B
C D

]
. (5.3)

To generate the aimed m-th order CVBs, the input beam Ei , the output beam Eo , and M
should satisfy the relation MEi = Eo , i. e.[

A B
C D

][
cosθ
sinθ

]
=

[
cos(mϕ+ϕ0 ±θ)
sin(mϕ+ϕ0 ±θ)

]
, (5.4)

the symbol ± before θ indicates either clockwise or anticlockwise changing VPs to gen-
erate the m-th order CVBs. The Jones matrix of the clockwise changing VPs can thus be
expressed as

Mc =
[

cos(mϕ+ϕ0) −sin(mϕ+ϕ0)
sin(mϕ+ϕ0) cos(mϕ+ϕ0)

]
, (5.5)

while that of the anticlockwise changing VPs is

Ma =
[

cos(mϕ+ϕ0) sin(mϕ+ϕ0)
sin(mϕ+ϕ0) −cos(mϕ+ϕ0)

]
. (5.6)

The relationship between Mc and Ma is Mc = MaH0, where H0 denotes a half wave-
plate with fast axis oriented horizontally. It should be noted that if incident beams are
orthogonal to each other, the output CVBs remain orthogonal. For example, if a first order
(m = 1) VP turns a x-polarized beam, namely θ = 0, into radially polarized beam, then
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an azimuthally polarized beam can be obtained from a y-polarized beam (θ =π/2). The
energy efficiency of this method is above 96%.

Ideally, optical devices with the Jones matrix of Equation 5.5 and 5.6 are able to convert
linearly polarized beams into an arbitrary aimed m-th order CVBs. However, the precisely
designing and fabricating all of the orders of the optical converters is time-consuming
and expensive. To avoid this problem, the physical link among different order VPs is
further investigated, as

Mm = Mm-nH0Mn . (5.7)

The above Equation 5.7 reveals that a high-order VP can be achieved by cascading two
low-order VPs with a half wave-plate, and there is no need to manufacture all of the
high-order VPs.

Beam
Spli�er

Microscope
Objec�ve

Sample

Polarizer 2 Polarizer Vortex 
waveplate

1

Lens 1

Lens 2

Split 
detector

Laser

HG10 RPB LPB

Figure 5.1: A reflective coherent scatterometer illuminated by a singular beam. A colli-
mated laser beam passes through two linear polarizers with a vortex waveplate in between
to generate the desired HG10 beam. This beam is then focused onto the sample by a mi-
croscope objective. The scattered and reflected light is collected by the same objective
and finally analyzed by the split detector.

Our desired beam HG10 can be generated by a radially polarized beam, in this case, a
first-order VP is applied. The schematics of the entire system is depicted in Figure 5.1.
The incident collimated beam (λ= 633 nm) is firstly transformed to a linearly polarized
beam by passing through the first linear polarizer, and then linearly polarized beam is
converted into radially polarized beam by the VP element [30, 32]. The radially polarized
beam then passes through another linear polarizer to produce the desired HG10 beam. As
shown in the generation diagram, arrows in the squares in the upper-right corner indicate
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the polarization direction of corresponding beams, while those in the circle at the bottom
depicts the fast axis direction of the VP, which can clearly demonstrate the process of
beam generation. Then the generated HG10 beam is further focused by a microscope
objective (NA= 0.6) onto the sample structure. The scattered and reflected light from
the structure is collected by the same objective, and the Fourier plane of the objective is
imaged at a split detector through a beam splitter and a 4 f system.

5.2.2. THE DETECTION APPROACH

The intensity and phase pattern of the generated HG10 beam before the microscope
objective are shown in Figure 5.2(a) and (b), and the focused beam at the plane of the
structure has been calculated by a three-dimensional Fourier transform method based
on the Debye-Wolf integral [33–35], with FWHM of the focus size is 1.15 µm. As shown in
Figure 5.2(a), a zero-intensity singularity line appears in the middle of the pattern, with a
π-phase jump between the two sides across the singularity. The black arrows in Figure
5.2(a) indicates the direction of the polarization.

Figure 5.2: (a) The intensity and (b) phase distribution of the HG10 beam. The polarization
is perpendicular to the singularity line as indicated by the black arrows. Scalebar is
500 nm. (c) 3D view of the interaction between HG10 beam and step-shaped silicon
nanostructure.

Most nanostructures used to characterize the quality of nano fabrication have local
steep walls and ridges of different widths. For simplicity, here, the studied structure is
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selected as a step-shaped silicon structure with height and SWA which is invariant with
respect to the y-coordinate. Figure 5.2(c) schematically shows the situation when the
focused linear singularity is aligned along the edge of the step-shaped sample (which we
will call the parallel configuration), where the left side lobe of the focused HG10 beam is
projected onto the lower surface of the step structure and the right one onto the upper
surface. The incident HG10 beam can be freely rotated by changing the direction of
linear polarizer 2, and therefore the angle between the singularity line and the edge of
nanostructure is tunable.

In addition to the parallel configuration, we also consider the other typical situation
named perpendicular configuration, where the line singularity of HG10 beam is perpen-
dicular to the edge of the structure, which can be achieved by rotating the polarizer 2 (or
the sample) by 90◦ w.r.t. the parallel configuration. Note that these configurations can
also be obtained by keeping the input beam fixed and rotating the sample laterally. The
sensitivities of the two configurations due to the structural parameters are discussed in
details in the following sections.

For numerical analysis of the scattered far field intensity of the structure, a 3D finite
difference time-domain (FDTD) model is built. The HG10 illumination source is gen-
erated through a self-written script, and its singularity line is tunable and rotatable. In
simulations, the computational convergence must be satisfied to keep the validity, and
the simulation will complete successfully and shut off automatically when convergence
criteria are satisfied. In the model, a fine computing grid will ensure the accuracy of
the results, but meanwhile introduce additional computations to increase the run time
because a finer grid requires a smaller time step. To trade off the run time and com-
putational precision, the grid size in the step structure region (made of silicon index of
refraction n = 3.882 at 633 nm) is set as 2 nm in x y-plane and 5 nm in the z-direction.
A perfect matching layer (PML) boundary condition is employed for all simulations. To
obtain a signal that is very sensitive to the structure, a split-detector aligned with its split
line along the y direction is implemented here by integrating the intensities from each
half of the split detector and subtracting them.

5.3. THE SCATTERED FIELD FOR DIFFERENT STRUCTURE

HEIGHTS
In our previous works [36, 37], we have focused on the SWA measurements under the
assumption that the height of the step-shaped structure is already known. However, in a
more general case, both parameters are not known, thus we need to figure out the effects
of both parameters on the scattered far-field intensity. To reveal the effect of the height
of structure, Figure 5.3 presents the intensity profiles of the back-scattered field in the
back focal plane of the objective at three different heights of 0 nm, 80 nm (≈λ/8), and 160
nm (≈λ/4). The SWA is set to be 90◦ in all cases. The upper row in Figure 5.3 is measured
in the parallel configuration for the incident beam as indicated in Figure 5.1(c), and the
lower row is measured in the perpendicular configuration. The bold solid white line in
the figure corresponds to the edge of the step structure.

As shown in Figs.5.3(a) and 5.3(d) at the height of 0 nm, the scattered fields are nearly
the same, because the incident beam is just reflected by a flat surface and thus the profile
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is similar to the HG10 beam shown in Figure 5.2(a). With an increased height of the
step-structure, as shown from Figure 5.3(a) to 5.3(c), the scattered intensity in the left
hemisphere becomes weaker while the right lobe gradually moves to the center. In Figure
5.3(c), the scattered field with a bright spot in the center is very similar to a Gaussian beam,
mainly because the phase difference of the reflected light introduced by the height of 160
nm is around π, which nicely compensates the inherent π-phase jump of HG10 beam
as shown in Figure 5.2. Similarly, for the perpendicular configuration in Figure 5.3(d) to
5.3(f), the main lobes of the scattered field gradually move to the upper hemisphere, and
another dark line is formed along the horizontal direction with the increase of height. As
shown in Figure 5.3(f), the horizontal dark line caused by the sample is perpendicular
to the singularity line of HG10 beam, and divides the scattered field into four quadrants.
Notably, the far-field intensity distribution of the scattering field strongly depends on the
height of the step, hence providing an alternative approach for retrieving the value of the
height of the structure.
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Figure 5.3: The far-field intensity distributions at the back focal plane of the objective
when a HG beam is focused on a step (silicon) with variable height and fixed SWA = 90◦.
The upper (a-c) and lower (d-f) rows are simulated when the singularity line is parallel
and perpendicular to the step (shown as a white line in the plots), respectively. The three
columns correspond to three different structure heights: 0 nm, 80 nm, and 160 nm. The
wavelength is 633 nm and the numerical aperture is 0.6.

5.4. SIMULTANEOUS DETECTION OF HEIGHT AND SWA
To quantify the discernibility of the configuration, the scattered signal in the far-field
is divided into the left and right halves for split detection, with the split line of the split
detector parallel to the step structure in accordance with Figure 5.3. The split detection



5

80
5. POLARIZATION SINGULARITY ASSISTED DETERMINATION OF STEP-SHAPED

NANOSTRUCTURE

signal is obtained by integrating the intensity on both halves of the split detector and
subtracting them. The signal is then normalized by the total intensity (i.e., the sum of the
intensities of both halves of the split detector).

5.4.1. THE DETERMINATION OF HEIGHT

Several Height-SWA combinations are investigated by sweeping the height from 0 nm to
400 nm and SWA from 80◦ to 90◦, in parallel and perpendicular configuration, as shown in
Figures 5.4(a) and 5.4(b), respectively. The results indicate that the height of the structure
has a dominating influence in the value of the split detection signal, while the SWA makes
a minor impact.

Figure 5.4: The split detection analysis for different Height-SWA combinations. 3D view
of the split detection signals by sweeping both the height and the SWA of the structure in
parallel (a) and perpendicular (b) configuration, respectively. Both the scale and color
represent the value of split detection signal. (c) Larger region and higher precision height
sweeping with SWAs of 80◦ and 90◦ in both configurations. Note that the black and red
curves almost overlap everywhere.
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For further confirmation of the different roles of the two parameters, a more accurate
sweeping is carried out for both configurations as depicted in Figure 5.4(c). Here, the
value of height is swept from 0 nm to 630 nm in both configurations, and two typical
SWAs (80◦ and 90◦) are selected for comparison. Black and red curves in the parallel
configuration highly coincided in the entire range, proving that the effect of SWAs is
negligible in this case. In this configuration, the changes in the split detector value are
more sensitive for changes in the height of the structure, so the split detection signal can
be used for accurate determination of the height.

On the contrary, the blue and green curves (corresponding to two different SWA in
the perpendicular configuration) are highly coincided when the height is below 100 nm,
but show differences with increasing height. The difference is much bigger around the
height of 280 nm and 590 nm, corresponding to the valley of the curves. Compared to
the parallel case, the perpendicular configuration shows a better performance on the
discrimination of SWAs. Although in Figure 5.4(c) the effect of height is quasi-periodic
in all curves, accurate height value of the structure can still be determined based on the
combined results of the two configurations.

5.4.2. THE DETERMINATION OF SWA

Figure 5.5: (a) The split detection signals as a function of the rotation angle for five
SWAs and seven different heights. The signal is generated by rotating the singularity
from 0◦ to 180◦, of which the 0◦ and 180◦ rotation angles correspond to the parallel
configuration, and the center rotation angle (90◦) corresponds to the perpendicular one.
(b) The normalized split detection signal in perpendicular mode as a function of the SWA
for different structure heights.

With calibrated heights of the nanostructure, Figure 5.5 shows quantitative comparisons
of the split detector signals for five SWAs at different heights. The position of the sample
is fixed and the singularity line of the incident beam is rotated from 0◦ to 180◦, i.e., from
the parallel to the perpendicular configuration and finally back to the parallel situation.
For every height, the signal is plotted as function of the rotation angle for five values of
the SWA, and the signals for five different SWAs are self-normalized by the maximum
value. The difference within each set of curves in Figure 5.5(a) gives the index to evaluate
the distinguish capability of the singular beam. It is clear that the signals for SWAs of
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θ = 80◦ and 90◦ are the top curve and the bottom curve, respectively, and the peaks of
different values of the detected signals for various SWAs are obtained at the perpendicular
mode when rotating the singularity direction of the singular beam. To clearly compare
the distinguishing capability at the perpendicular mode, we plot in Figure 5.5(b) the
normalized split detection signal as a function of the SWA for different heights. For a
certain height, the difference value compared to the reference point (SWA= 80◦) shows
a monotone variation, and for each SWA, a unique split detection signal is obtained.
Consequently, the perpendicular mode is capable of determining the SWAs. The slope
of the curve can be used to quantify the accuracy. One notices also that it is easier to
determine the SWA when the step is not very shallow.

5.5. DISCUSSIONS AND CONCLUSIONS

From the results of the perpendicular case in Figure 5.4(c), one can achieve a compre-
hensive understanding of the dependence of the signal on the height variations. The
differences between curves for SWA of 80◦ and 90◦ are more pronounced within a certain
height interval (close to integer multiples of the half-wavelength), as there then exists a
π phase difference on both sides of the singularity line. This reveals that the SWAs can
be better distinguished in these height intervals than for others. It should be noted that
the lateral shadow of the step-structure with low height is ultra-small. For instance, the
shadow difference between 89◦ and 90◦ is only 1.4 nm for the height of 80 nm, which
is an extremely tiny value to be distinguished. Consequently, the five curves are highly
coincident at the height h = 80 nm, indicating that it is still a challenge for the proposed
method to distinguish the SWAs in the case of shallow steps.

Based on the above analysis, the height can be calibrated with high accuracy without
the influence of SWA in the parallel configuration. By rotating the singularity line in a
suitable height interval, our method can be successfully used to distinguish steep SWAs.
Ultimately, with a combination of the above two processes, e.g., focusing the singularity
line along the step-structure and rotating the singularity line, both the height and SWA
of the structure can be retrieved simultaneously. Moreover, the mechanical vibrations
can be effectively evaded by just rotating the singularity line of the incident beam. The
rotation allows disambiguation and decoupling of the experimental signal from the effect
of experimental noise by allowing for multiple measurements, which helps to improve
the measurement accuracy. This is a great improvement compared with previous works.

The sample that occurs in practice often includes steps of which the left and right part
consist of different material. Due to the different scattering and reflection efficiency of the
two materials, the intensity and phase shift between the two regions will be changed and
will affect the intensity contrast. Moreover, most functional structures are constituted by
combining monomer units, where the boundary conditions are periodic. For this case, the
numerical effort will open a new window for the CFS modelling. These are very valuable
and meaningful subjects for accurate nanoscale detection in practical applications.

In conclusion, we employed a HG10 mode singular beam to combine with the conven-
tional CFS system to retrieve the geometrical parameters of structures that are commonly
used in the semiconductor industry. For simplicity but without loss of generality, a step-
shaped structure with an invariant y-axis is selected as the sample. Using our method,
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it is possible to determine both the height and the SWA of the structure simultaneously
by rotating the singularity direction of HG10 beam and measuring the far field with a
split detector. This provides a much simpler and more robust approach than the raster
scanning method in conventional CFS. When the singularity is parallel to the invariant
axis of the sample, the height can be accurately detected regardless of the value of the
SWA. By rotating the angle of the singularity line of the singular beam w.r.t. the direction
of the edge of the structure, one can retrieve the SWA with high accuracy in a suitable
height interval. The proposed method can work under wide conditions, and is not lim-
ited to step-structures. The same approach applies to more varied materials, structures,
wavelengths, etc., and these will be further discussed in the following research. Given that
the height interval where the sensitivity is high depends on the wavelength, one can tailor
the sensitivity region by varying the wavelength of the illumination. This work will open
up new opportunities for precision measurements in the semiconductor industry.
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6
TRANSVERSAL OPTICAL

SINGULARITY INDUCED PRECISION

MEASUREMENT OF STEP-SHAPED

NANOSTRUCTURE

Optical singularity indicates zero-intensity point in space where parameters, such as phase,
and polarization, are undetermined. In the case of a transversal optical singularity (TOS),
the latter occurs perpendicular to the direction of propagation, and its phase integral is
a positive or negative 2π in nature. Since it occurs within a nano-size range, one expects
that TOSs could be sensitive to the light-matter interaction process and could provide a
great possibility for accurate determination of certain parameters of nanostructure. In this
chapter, we propose to use TOSs generated by a three-wave interference to illuminate a
step nanostructure. After interaction with the nanostructure, the TOS is scattered into the
far field. The scattering direction can have a relation with the physical parameters of the
nanostructure. We show that by monitoring the spatial coordinates of the scattered TOS, its
propagation direction can be determined, and as consequence, certain physical parameters
of the step nanostructure can be retrieved with high precision.

Parts of this chapter have been published in Optics Express. 31, 20 (2023) [1].
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6.1. INTRODUCTION

With continuing miniaturization and intelligence of optoelectronic devices and the ex-
plosive demand of the consumer market, the semiconductor industry advances towards
higher-level products that need to be made with shrinking critical size and high volume,
which also demonds higher requirements for metrology methods [2]. To ensure the func-
tionality and yield of the semiconductor chips, quality assessment is always an important
topic in the modern manufacturing industry. Optical scatterometry [3–5] has been used
extensively in the manufacturing process, and it has shown sufficient robustness in the
in-line process quality control and sufficient accuracy in critical dimension measurement.

For the next generation of lithography, in addition to the critical dimension of mi-
cro/nanostructures, more accurate measurements need to be executed to reduce the
uncertainties of the determination of the side-wall angle (SWA), the surface roughness
and the left/right round corners of the nanostructures. Furthermore, we identified that
SWA is one of the least predicable and controllable parameters in the chip manufacturing
process. Quality assessment is still a very challenging and urgent matter. The conven-
tional optical scatterometry usually uses the amplitude, the polarization and in some
cases the phase characteristics of the scattered light to determinate the parameters of the
target structure. However, with the further exploration of light properties, other charac-
teristics such as singularity [6], orbital angular momentum [7], spin angular momentum
[8] also show great potential to improve such parameter determination.

An optical singularity is a point where the amplitude of the field is zero and the phase
undefined [9–12]. Close to the singularity there is a high gradient. There are two main
forms of optical singularity: the polarization and phase versions. Both have been widely
employed in many frontier research and application areas [13–16]. The polarization
singularity, which appears widely in vector beams, has been demonstrated to achieve
extreme sensitivity in detecting slight changes due to the interaction with (nano)objects
[17, 18]. The phase singularity is ubiquitous in complex wave systems and occur at points
where the amplitude of a field component vanishes.

In recent times, structured light has become synonymous with orbital angular momen-
tum. The richness of the topic as well as its myriad of applications has seen it attract much
attention. In optical vortex beams, the helical phase circulates around a zero-field point,
thus generate an orbital angular momentum to form an optical phase singularity. The
phase integration around an orbital angular momentum is an integer multiple of 2π, be-
ing known as the topological charge. Physically, the phase singularity can be divided into
the longitudinal and transversal states, i.e., parallel and perpendicular to the direction
of propagation, respectively. The longitudinal optical singularity possesses an arbitrary
topological charge. The region around the optical singularity where the amplitude is very
small, usually in the size of several wavelengths. Longitudinal optical singularity has been
widely used in optical interconnection, computing, and optical manipulation areas [10,
19–21].

In the case of transversal optical singularity (TOS), however, the phase integration
around the singularity is 2π. The above mentioned TOS is a property of a time harmonic
beam without considering changes in the temporal domain. Very recently, the generation
of light with spatiotemporal TOS has been demonstrated both in theory and experiment
[22–27]. It provides an additional temporal freedom, which it is expected to have impact
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in frontier research. It has been shown that TOS occurs at the nodal lines with complete
destructive interference as for example edge diffraction [28], interference of Gaussian
beams [29], under highly focusing condition [30], or multiple plane waves overlapping in
space [31–33].

In this chapter, we employ three linearly polarized Gaussian waves with intersection
angle of 0◦ and ±45◦ to generate an array of TOS in the interference region. After the
interaction with the step nanostructure, the scattering field also contains phase singularity
which is detectable in the far field. We have seen that the scattering direction of the TOS
depends highly on the parameters of the step-structure. By detecting the scattering angle
of the scattered TOS, the height and SWA of the structure can be reconstructed with
high precision. The numerical results demonstrate that this is an efficient and sensitive
method, and it provides a good complement to coherent Fourier scatterometry technique
for finer measurements of nanostructures.

6.2. METHODOLOGY

6.2.1. THE GENERATION OF DESIRED BEAM

It has been demonstrated that three plane waves are sufficient to produce transversal
phase singularity [34–36]. The three-wave interference always results in an array of
vortices, as long as the sum of the two smallest phasors exceeds the amplitude of the
largest one. Here, without loss of generality, we consider the generation of TOSs by three
Gaussian beams interference, where the beams have equal amplitude and the same
polarization direction, i.e., the y-axis direction in our case.

Figure 6.1: (a) Schematic of the TOS generation and its interaction with the silicon-based
step nanostructure. The wavelength of the incident beam is 633 nm. (b) and (c) are the
intensity and phase distribution of the interference field in a free space.

The wavelength of the incident Gaussian waves is chosen at 633 nm and their propaga-
tion angles are set as 0◦ and ±45◦ with z-axis, respectively. The three Gaussian waves are
all placed in the xz-plane and symmetric with the z-axis (see Figure 6.1(a)), with waist ra-
dius of 1.02 µm, equivalent to the case of a focused beam with NA of 0.2. The interference
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field forms an array of TOSs. As the three waves are distributed symmetrically with z-axis,
the TOSs are also axially symmetric. Figure 6.1(b) and 6.1(c) are the field intensity and
phase distribution of the interference field, respectively. TOSs are essentially the same in
physical properties, under the condition of neglecting the absolute positive and negative
value of its topolotical charge. Hereinafter, we will focus on a randomly selected TOS
(labeled in Figure 6.1(c) by a blue circle) to investigate its changes after interacting with
the structure. Here, we chose the 633 nm wavelength source, because it is a visible light
and has widely been used in scatterometry for nanostructure reconstruction in many
inspection systems in current semiconductor industry.

6.2.2. TWO FACTORS INFLUENCING THE DESIRED BEAM

The physical characteristics of the optical field depends on the illumination, and the
spatial distribution of the TOSs will change if the illumination sources are changed. The
distribution of the TOSs can be modulated by the wavelength and the angle of the incident
waves. The influences of these two factors will be discussed in the following.
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Figure 6.2: Generation of TOS field with 400 nm, 633 nm and 800 nm, for interfering
beams incident under the angles of 0◦ and ±45◦.

As the characteristic of TOS is indistinctive in physics, it can be reasonably inferred
that its scattering behavior follows similar pattern and it is scalable in a wide range of
wavelengths. Figure 6.2 depicts the phase distribution of the TOS field with three different
wavelengths, proving that the generation of TOSs is universal. It should be noted that,
some typical features, e.g., the position of the TOS, is closely related to the wavelength.
Consequently, for other wavelengths, the only issue is that the relative position between
the source and step structure should be changed according to the wavelength, to make
sure that the TOS can interact with the sample structure.

In experiments, the incident angles of the beams may be slightly deviate. Therefore we
need also to study its influence on the TOS field. Figure 6.3 depicts the phase distribution
of the interference field when the illuminating angle from the two sides rotates with
a small angle (from ±45◦ to −43◦ and 47◦). It shows that spatial position of the TOS
(indicated by blue circle) shifts slightly, but without obvious change in phase distribution
around the blue circles.

A 3D finite-different time-domain (FDTD) model is built for numerical analysis from a
commercial FDTD solver (Lumerical FDTD solutions 2020 R2.4). The material of the step
structure is set as silicon, the input medium is air, their material index are default values
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Figure 6.3: Comparison of the phase distribution of the interference field generated by
three beams with different incident angles. The top numbers denote the incident angles
of the three incident beams. The wavelength is 633 nm.

given in the Material Library. The wavelength of the three incident Gaussian beams is
633 nm, and they are also the built-in source in the solver, which are typically linearly
polarized. Both the propagation direction and the waist of the Gaussian beam can be
modified by the user. The adjustment of the propagation direction of three Gaussian
beams can control the spatial location of the singularity, and the setting of the waist is
equivalent to changing of the NA of the objective to alter the focusing conditions. As a TOS
is always distributed within a nanoscale range, the calculating resolution should be fine
enough to ensure the final accuracy. The grid size in the step structure region is therefore
set as 5 nm in x y-plane and 2 nm in z-direction. In the other computational region, the
grid size is uniformly set as 25 nm in three directions. Finally, a perfect matching layer
(PML) boundary condition is employed for all simulations.

6.2.3. THE DETECTION APPROACH

POSITION CALIBRATION BETWEEN TOS AND STRUCTURE

When the beam is focused on a flat substrate, the original interference field will be
redistributed due to the influence of the substrate, as shown in Figure 6.4(a) and (b). The
coordinate of the selected TOS in Figure 6.4(b) needs to be extracted to ensure that the step
structure can be accurately placed on this position. The intensity and phase distribution
in the plane y = 0 for the interaction between TOS field and the step nanostructure are
depicted in Figure 6.4(c) and 6.4(d), respectively. Figure 6.4(d) indicates that the selected
TOS will interact with the step nanostructure. In the interaction process, the original
localized TOSs will be scattered into the far field, keeping its topological charge valid
in the scattering process [37–39].It needs a certain propagation distance to retrieve the
scattered TOS, thus no TOS is retrieved in Figure 6.4(d) (Figure 6.4(d) is the phase pattern
in the plane y = 0). The position of the scattered TOS is highly dependent on the physical
properties of the step structure. Detecting this position of the scattered TOS can be
an alternative approach to retrieve the parameters of the step, which in our case are
its height and SWA. Naturally, the scattered field we are interested in is the differences
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between the optical field with a step nanostructure and with a flat substrate. The position
of the scattered TOS is determined by monitoring the spatial coordinates of the phase
singularity.

Figure 6.4: Scheme of the TOS induced precise detection. (a) and (c) are the total field
after interaction with the flat substrate and the step-structure. (b) and (d) are the phase
distribution of the fields corresponding to (a) and (c). The position of the generated TOS
is marked by a blue circle. (d) indicates that the TOS interacts with the edge of the step
nanostructure.

When interaction occurs between the TOS and the step nanostructure, the original TOS
will be scattered into the far field at a specific scattering direction. As the TOS possesses
a spiral phase around the singularity in xz-plane, the spatial position of the scattered
TOS can be determined by the interference field of the scattered field and a reference
field. By varying the y-value along the y-axis and recording the spatial position of the
TOS at corresponding xz-planes, its three-dimensional propagation trajectory line can be
achieved. On this basis, the scattering direction can be retrieved by fitting a straight line
with the spatial coordinates of TOSs. The slope of the fitting line refers to the scattered
direction of the TOS, which directly reflects parameters of the step structure.

THE TRAJECTORY OF SCATTERED TOS

Given the geometry of the model, the scattering is symmetric with respect to the y-
coordinate. Without loss of generality here, we focus on the positive y-axis. To reduce
disturbance, the spatial position of the optical source and structure are both fixed in the
following analysis. Figure 6.5(a) shows the process to obtain the trajectory line of the
scattered TOS as function of y . The spatial location of the scattered TOS is determined
by the spiral-shaped phase distribution in different cross sections along the y-axis. The
yellow circles in the profiles denote the retrieved TOS. By connecting the location of the
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TOS in each plane, we can obtain its scattering trajectory line. Figure 6.5(b) shows the
trajectories of the scattered TOS with fixed height (633 nm) for various SWAs. As the
legends indicate, the yellow line for SWA= 82◦, the blue line for 85◦, and the red one
for 88◦. It is obvious that SWAs can influence the location of scattered TOS and further
change its spatial trajectory, in other words, the trajectory line is closely related to the
value of the SWA.

In addition to the SWA, the step height also give rise to changes in propagation direction
of the scattered TOS. Figure 6.5(c) shows the trajectory line of the scattered TOS for
different step heights when the SWA is fixed to 85◦. In the cross-section of y = 2.0 µm,
the positions of the scattered TOS for these three heights (675 nm/ 633 nm/ 600 nm)
almost coincide. For the y = 2.5 and 3.0 µm plane, the singularity positions are dispersed.
Likewise, the trajectory line of the scattered TOSs is then achieved by connecting the
location of TOS in each plane. It is clear from these results that the trajectory line shows
visible difference in these three cases, which means that the trajectory line is also sensitive
to the height of step. We also find that the trajectory line changes fastest along the y-axis,
followed by the x-axis, and z-axis, so the change of the trajectory line in x y-plane should
be the most obvious one to be considered.
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Figure 6.5: Spatial trajectory line of scattered TOS by a step nanostructure with different
geometrical parameters. (a) The process of tracking the scattered TOS. The trajectory line
of the scattered TOS is built by connecting all the position makers along the y-axis. The
bottom dark gray region indicates the step structure. (b) The scattered TOS trajectories
with step height of 633 nm but various sidewall angles (SWAs). (c) The trajectory line of
TOS scattered by the step nanostructure with different heights, while the SWA is 85◦ for
all cases. The simulation results clearly show that the scattering trajectory line is highly
dependent on both the height and SWAs.

THE SCATTERING ANGLE

By fitting a straight line with the spatial positions of the scattered TOSs, the slope of the
line then reflects physical parameters of the step structure. In Figure 6.6, we do the same
simulation with a larger calculating range of ±10µm along the y-axis, and show how to
calculate the scattering angle in x y-plane. Figure 6.6(a) shows the spatial distribution of
the scattered TOS in the xz-plane at different y-value. In 6.6(b), the x-coordinate of the
retrieved TOS as function of y shows a good linear trajectory in this larger scale (more
than 10 wavelengths), where the fitted trajectory line matches well with the retrieval
points. This result supports the stability of our method. Consequently, the slope of the
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fitted curves is calculated to get the scattering angles that characterize the directionality
of the TOSs. Here, the scattering angle refers to the angle between the fitted straight line
and the y-axis.

Figure 6.6: The spatial distribution of the scattered TOS. (a) The spatial distribution of
the TOS, where the top-right label denotes the position in y-axis and the yellow circle
denotes the position of the TOS. (b) The x-coordinate of the retrieved scattered TOS as
function of y , where the red dots are the spatial position of the TOS, and the blue dashed
line is the linear fit and the yellow sector is the scattering angle.

6.3. SIMULATION RESULTS

6.3.1. THE SCATTERING ANGLE IN THE x y -PLANE

To make a preliminary assessment of the dependence of the scattered TOS on the SWA
and height of the step nanostructure in particular, the SWA and height are swept indepen-
dently to analyze the scattered behavior of TOS in the x y-plane. In the retrieval of SWAs,
the structure height is fixed as 633 nm, and the selected TOS is located at the middle of
the oblique surface of the step. The SWA is swept from 81◦ to 89◦ with intervals of 1◦,
and the projection of the 3D trajectories on x y-plane and its fitting curve are plotted in
Figure 6.7(a). Here, the fitting curves are nearly linear, which reveals that the scattered
TOS possesses high directional property. Consequently, the slope of the fitted curves is
calculated to get the scattering angles that characterize the directionality of the TOSs.

Figure 6.7(b) shows the distribution of the scattering angle for different SWAs. We find
that different SWAs correspond to different scattering angles, where the maximum value
appears at 85◦ for this condition. The variation range of the scattering angle is typically
wider than 5◦, which is large enough to be distinguished. For the retrieval of height, the
SWA is fixed at 85◦, and other eight heights are chosen around 633 nm. The selected TOS
is still fixed at the middle of the step oblique surface when the height equals to 633 nm.
Figure 6.7(c) and Figure 6.7(d) give the fitting curves and scattering angles for different
heights, respectively. Like Figure 6.7(a) and Figure 6.7(b), the changes in height also
influence the scattering angle. Each height can be encoded to one scattering angle, and
the maximum value appears at 633 nm. Based on these results, one can safely conclude
that the scattering direction is highly dependent on changes in SWA and height. In Figure
6.7(b) and (d), the scattering angles both show a tendency of first increasing and then
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decreasing with respect to the changing of SWA/height, which shows that the relationship
between the scattering angle and SWA/height is not unique. Consequently, only one
scattering angle is not sufficient for unique detection.
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Figure 6.7: Properties of the scattered TOS against the height and steep SWA. (a) Recorded
spatial position of scattered TOS in the x y-plane and the fitted lines for a 633 nm-height
step with different SWAs. (b) Retrieved scattering angle of the scattered TOS to the y-axis
corresponding to the SWAs shown in (a). (c) and (d) are the corresponding fitted lines and
scattering angles for step-structure with different heights.

6.3.2. CONTRIBUTION OF SCATTERING ANGLES IN THREE DIFFERENT

PLANES

As mentioned in Figure 6.5, the space curve of the TOS changes along all three axes, so
it is easy to extend the scattering angle calculation onto the other two planes. Figure
6.8(a) plots the 3D trajectory line of the scattered TOSs, as well as their projection in three
planes, for three different SWAs, namely 80◦, 85◦, and 89◦. The height of the structure
is still fixed as 633 nm, and the selected TOS is still located at the middle of the oblique
surface, i.e., the same conditions as applied in Figure 6.7(a). It is apparent here that
their projections in each plane possesses high directional property. The scattering angles
in y z- and xz- plane are defined as the angles between the TOS propagation and the
y-and z-axis, as the bright yellow triangles indicate. The data acquisition conditions
for Figure 6.8(b) are the same as for Figure 6.7(c), which shows the 3D trajectories for
three different heights, and the corresponding fitting lines in three projection planes.
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Not only the scattering angles on the x y-plane, but also the scattering angles on the xz-
and y z-planes show significant difference. Here we can conclude that the set of three
scattering angles provides better possibilities to determine the structural parameters,
which can help to overcome the non-uniqueness problem that follows from Figure 6.7
resulting in great potential in precision measurement.

Figure 6.8: 3D trajectory line of the scattered TOS against the SWA and step height. (a)
The height of the step is fixed at 633 nm, but the SWA varies. The scattering angle in
each plane is presented by the bright yellow triangle. (b) The SWA is fixed at 85◦ with
various heights. The trajectory line is projected onto x y-, xz-, and y z-planes, and the
fitted curves in each plane exhibit high linearity characteristic.

Figure 6.9: The unique retrieval of SWA and height of the step structure by using three
scattering angle projections. (a) retrieval of the SWA. (b) retrieval of the height.

Finally, Figure 6.9 shows the 3D distribution of the scattering angles of the TOSs for
step nanostructure with varying parameters. Figure 6.9(a) depicts the spatial position
governed by three scattering angles for different SWAs, and Figure 6.9(b) plots the results
for different heights. It demonstrates that the scattering angle possesses a dispersed
distribution in the 3D space, which means that the parameters of the step structure
can be uniquely distinguished by the set of three scattering angles. The spatial distance
between two adjacent parameters reflects the degree of discrimination between them. For
angle measurement techniques, the distance is large enough to distinguish the difference
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in the nanostructure parameters.
Since the scattering angle is sensitive to both height and SWA, we need to build a data

library of various SWA-height combination. For each SWA-height combination, there
will be a unique set of scattering angles (as shown in Figure 6.9(a) and Figure 6.9(b))
corresponding to a certain structure. Angle measurement methods are very mature, and
it is easy to realize a measurement accuracy up to 1 arcsec [40]. Therefore, the TOS can be
suitable for precision measurement of parameters of the step nanostructures.

6.4. DISCUSSIONS AND CONCLUSIONS
It should be pointed out that since the illuminated area is very small on the sample,
roughness should not be a big issue if one considers high quality printed nanostructures.
In previous work of one of the authors [41], they have demonstrated that it is possible
to acquire the optical field data that is reliable enough to reconstruct subwavelength
features of gratings without considering roughness in the simulations.

In the simulation scenario, the phase information is calculated directly, and the angle
information can be obtained by fitting the spatial coordinates of the phase singularity. In
experiments, realistically, the phase cannot be measured directly, but one can consider
using a reference beam and measuring the intensity after interference [42–47]. Finally,
it should be noted that the composite optical field is composed of the reflected and the
scattered field after interaction between the source and the structure, and the TOS is
included in the scattering component. To fetch this valuable information, a calibration
measurement with a flat substrate is necessary to eliminate the impact of the reflected
field. In experiments, this can be achieved by moving the sample to an area without any
structure as the flat reference.

In conclusion, we propose a three-wave interference generated TOS method to retrieve
the geometrical parameters of a step nanostructure. Without loss of generality, the step
structure is invariant along the y-direction. After interaction with the step structure, the
TOS is scattered into the far field, with specific angle depending on the parameters of the
step. By detecting the spatial position of the scattered TOS, the scattering angles with the
axes are achievable. With this method, it is possible to retrieve both the height and SWA
of the structure with high precision. Furthermore, this TOS can also work under a strong
focusing mode, which will help to improve the detection accuracy. The TOS, meanwhile,
is not limited to the parameter retrieval as described here, but it is expected to play a role
in many other broaden scenarios, such as ultra-sensitive sensing, information storage,
etc.
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7
CONCLUSION AND OUTLOOK

7.1. CONCLUSION
In this thesis, we aim to fully leverage the coherent characteristics of the light source for
accurate determination of a step-shape nanostructure using far field information.

In Chapter 1, we first gave an overview of the existing metrology methods in the IC
manufacturing field and explained their advantages and disadvantages. We provided a
comprehensive explanation on the characteristics of phase, polarization, and PB phase in
coherent light. Moreover, we systematically introduced the several types of beams that are
directly relevant to the subsequent sections, including their mathematical expressions,
physical characteristics. This section can be regarded as the foundation theory related to
our research.

Chapter 2 can be considered as the recipe for our research endeavors. In this chapter, we
presented a semi-analytical approach for addressing scattering problems, including the
vectorial diffraction theory to generate the desired source and the numerical simulation
method to calculate the interaction between the source and the structure, and finally the
Fresnel diffraction integral to obtain the far field of scattering light.

The main contribution of the thesis are laid out in Chapter 3, 4, 5, 6, namely:

• elongating the focused field in the direction perpendicular to the optical axis by
shaping the Pancharactnam–Berry (PB) phase;

• studying the influence of the polarization state and the focus position of the incident
beam in the estimation of SWAs of a cliff-shape step structure;

• determining parameters of a cliff-shape step structure by using polarization singu-
larity;

• determinatining parameters of a cliff-shape step structure by using phase singular-
ity.

The achievements in this dissertation are encouraging and promising, and the results
show that our method can function as a good complement to the CFS technique to
improve the parameter retrieval of nanostructures. It is important to note that, although
we conduct most analysis with specific source field and selected structures, the principles
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of this research are not limited by these conditions but can work under other conditions
too. Furthermore, regarding the work we have proposed involving the flexibility in shaping
the light field, one may envision many useful applications in ultra-sensitive sensing,
information storage and on-chip manufacturing process. Given the effectiveness of our
analysis, we hope that this research will open new opportunities for the semiconductor
industry as well as other industrial applications.

7.2. OUTLOOK

Regarding the work we have proposed and demonstrated involving optical field shaping
and its application in the profile retrieval of nanostructures, we hope that our results
will inspire further research in future, considering different types of nanostructures and
experimental realizations. In this section, we will discuss possible research topics and
focus areas that could be of great interest in continuing research in this field.

FEASIBLE EXPERIMENTAL DESIGN

In this thesis, we have focused on theoretical and numerical analysis of new ways to
determine parameters of nanostructures by shaping the light field that interacts with the
structures and detecting the scattered field in the far field. To make the approach more
realistic, as well as to test its feasibility and determine its potential in actual industrial
applications, real experiments should be performed to calibrate accuracy and limitations
of the proposed methods. Recent experimental results 1 on the reconstruction of SWA and
height of a step structure using uniform illumination CFS encourage us to believe that
our proposed schemes here could also work as well. Furthermore, it will be interesting to
compare the effect of using structured beams instead of uniform beam illumination on
the reconstruction.

Structured beams such as the one discussed in Chapter 6 can be generated by a spatial
light modulator or a specially designed phase mask can be used to generate the three
laser beams, which are then incident into an objective lens to generate the focused field
with TOSs onto the step structure. The position of the step structure can be controlled by
a piezo-electric translation platform to align the structure with the TOS. The scattered
TOS field along the y-direction can be collected by another objective lens on the side of
the step structure. Then, the scattered field after the objective lens should interfere with
an oblique plane wave with the same wavelength to generate the interference fringe field
captured by a CCD. Based on this recorded field, the phase distribution of the singular
light field can be retrieved by the Fourier-transform method, and thus the spatial location
of the singularity can be retrieved. Finally, the trajectory of the TOS can be obtained
by scanning the interference field along the scattering direction with a piezo actuator.
With the measured intensity distribution of the interference field, the phase distribution
can be calculated through two Fourier transformations of the interference field. Thus,
information about the singularity can be retrieved for further analysis.

1A.Paul, J.Rafighdoost, X.Dou and S.F.Pereira."Investigation of coherent Fourier scatterometry as a calibration
tool for determination of steep side wall angle and height of a nanostructure", submitted for publication
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EFFICIENT METHODS FOR SOLVING INVERSE PROBLEMS

As we all know, the success of optical scatterometry techniques not only relies on the
forward optical modeling for nanostructures, but also depends on the process of solving
the inverse problems. Our work have given exciting results, but this is just a first step for
this topic. In fact, solving the inverse problem is also a very important issue and further
research is needed. Consequently, we envision that in future, using artificial intelligence
methods to solve the inverse problem in scatterometry by building a comprehensive
database based on calculations as presented in this thesis can be used to analyze the
experimental data.





A
POLARIZATION TRANSFORMATION

OF HIGH NA LENSES

The geometric description of the focusing process of a high numerical aperture objective
is shown in the Figure A.1.
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Figure A.1: Schematic of the geometry of the strong focus model

Consider a monochromatic incident wave propagating along the z direction, in other
words, z is the direction of the optical axis, extending from object space to image space.
An arbitrary point Po in the object space forms a meridional plane with the optical axis z.
ein represents the incident light field, and eref represents the refraction light field through
a spherical objective lens, k̂ is a unit vector representing the propagation direction of the
light in the image space. We assume that êin and êref are the unit vectors representing the
vibration directions of ein and eref, and lin and lref are the amplitude factors, respectively.
By accounting for energy conservation, we obtain the apodization function of the lens as

lref = lin

p
cosθ. (A.1)

The ‘strength factor’ a(θ,ϕ) in Equation 2.5 is given by

a(θ,ϕ) = f lin

p
cosθêref. (A.2)
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The next crucial step is to get the specific form of êref. We introduce two sets of unit vectors
(ρ̂,ϕ̂, ẑ) and (P̂ , Ŝ, k̂), among which ρ̂ and P̂ are placed in the meridional plane, such that
ρ̂ is perpendicular to the optical axis z in the object space and P̂ is perpendicular to the
propagation direction k̂ in the image space. Both unit vectors ϕ̂ and Ŝ are perpendicular
to the meridional plane and point inward. The reason for using the polar basis in entrance
pupil is that the radial component of the electric field in the entrance pupil becomes
a P-component of the plane waves behind the lens, while the azimuthal component
becomes the S-component of the plane waves. There is no cross-talk between these
components. The êref lies in the plane of P̂ and Ŝ, hence

êref =αP̂ +βŜ, (A.3)

where α and β are two constants, and satisfy the relation α2 +β2 = 1. Let (θ0,φ0) and
(θ1,φ1) be the polar angles of ρ̂ and P̂ , respectively, which can be uniquely determined by
(θ,φ). From the geometric schematic of Figure A.1, it also clear that φ=ϕ+π, evidently

θ0 = π

2
, φ0 =φ−π=ϕ,

θ1 = π

2
−θ, φ1 =φ−π=ϕ,

(A.4)

Then we have

ρ̂ =
sinθ0 cosφ0

sinθ0 sinφ0

cosθ0

=
cosϕ

sinϕ
0

 , ϕ̂=
 sinθ0 sinφ0

−sinθ0 cosφ0

cosθ0

=
cosϕ

sinϕ
0

 . (A.5)

And P̂ and Ŝ are the unit vectors given by

P̂ =
sinθ1 cosφ1

sinθ1 sinφ1

cosθ1

=
cosθcosϕ

cosθ sinϕ
sinθ

 , Ŝ =
 sinϕ
−cosϕ

0

 . (A.6)

According to Debye–Wolf theory, the wave components upon focusing do not change
their polarization in local coordinate basis attached to them, namely that as the light
traverses the system, the angle between the electric ( and also the magnetic) vector and
the meridional plane of the ray remains constant, hence

ρ̂ • êin = P̂ • êref,

ϕ̂• êin = Ŝ • êref.
(A.7)

If the incident beam is paraxial, the input beam has mainly transverse component, while
longitudinal component is neglected, it implies that êin has the form of êin(x, y,0). The
unite vector êin(x, y,0) can be expressed as

êin(x, y,0) = ex
inx̂ +e y

in ŷ , (A.8)

By substituting Equation A.3 into Equation A.7, we get

α= ρ̂ • êin = ex
in cosφ+e y

in sinφ

β= ϕ̂• êin = ex
in sinφ−e y

in cosφ.
(A.9)
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Hence, Eqution A.2 follows the form as

a(θ,ϕ) = f lin

p
cosθ(αP̂ +βŜ), (A.10)

Plugging Equations A.6 and Equations A.9 in Equation A.10 gives

a(θ,ϕ) = f lin

p
cosθ(ex

in cosϕ+e y
in sinϕ)

cosθcosϕ
cosθ sinϕ

sinθ

+ (ex
in sinφ−e y

in cosφ)

 sinϕ
−cosϕ

0


= f lin

p
cosθ

ex
in

{
cosθ+ sin2ϕ(1−cosθ)

}+e y
in

{
cosϕsinϕ(cosθ−1)

}
ex

in

{
cosϕsinϕ(cosθ−1)

}+e y
in

{
1− sin2ϕ(1−cosθ)

}
ex

in sinθcosϕ+e y
in sinθ sinϕ


(A.11)

According to the Equation 2.3, the ‘strength factor’ b(θ,ϕ) of magnectic field can be write
as

b(θ,ϕ) =
√
ε

µ
f lin

p
cosθk̂ ×a(θ,ϕ)

=
√
ε

µ
f lin

p
cosθ

−e y
in

{
cosθ+ sin2ϕ(1−cosθ)

}+ex
in

{
cosϕsinϕ(cosθ−1)

}
−e y

in

{
cosϕsinϕ(cosθ−1)

}+ex
in

{
1− sin2ϕ(1−cosθ)

}
−e y

in sinθcosϕ+ex
in sinθ sinϕ


(A.12)





ACKNOWLEDGEMENTS

It has taken me six and a half years to get here, and there is so much I want to say but I
do not know where to start. Looking back at the years, the fragments of memory flashed
through my brain, bringing many emotions to my heart. During the PhD there was little
time for fun and most of the time was a laborious exploration. But someone told me that
things that are truly worthwhile are likely to be difficult. On the completion of my thesis, I
would like to acknowledge many people who gave me immense help and support in this
long, long journey.

First and foremost, I would like to give my heartfelt thanks to my promotors of the Delft
University of Technology, Prof. Paul Urbach and, Dr. Silvania Pereira. Paul, thank you
for your constructive and insightful comments on my research and thesis, which have
been very enlightening to me. I greatly admire your achievements in theoretical optics,
which have helped me to have a deeper understanding of my own work. You are serious
and conscientious in research, and you are tolerant and humorous in life. Thank you for
teaching me how to properly respond to scientific inquiries and how to roll my tongue. I
extend my appreciation to Silvania for her constant guidance and support, and for being
the most important person during my whole PhD. Silvania, you participated in all my
research work and provided me with abundant help; you kept track of my progress and
gave me critical advice; you always encouraged me and responded promptly to my needs.
I highly appreciate your incredible patience, enormous efforts and great responsibility. It
is my luck to have you as my promotor and supervisor.

I would like to give my tremendous thanks to my promotor, Prof. Xiaocong Yuan, and
daily supervisor, Prof. Changjun Min, of the Shenzhen University. Prof. Yuan was also my
promotor during my master, and nearly one third of my life so far has been spent under
his guidance. His farsighted wisdom, broad academic vision, rigorous academic attitude
and noble ethics have a profound impact on my academic career. Prof. Yuan, I thank you
for everything you have taught me, I would not be here without your support from the
beginning to the end. I also want to express my gratitude to Prof. Min, who has a solid
academic foundation, open academic thinking and a gentle disposition. Prof. Min, thank
you for your selfless help and patient guidance, you have always been my role model.
I am also grateful to Prof. Zhongsheng Man and Prof. Yuquan Zhang for their patient
answers and inspiration when I was confused. Moreover, special thanks to all members
of the thesis committee for their careful reading and valuable feedback.

I would like to thank the staff and faculty in the Optics Research Group. Yvonne van
Aalst and Lidija Nikolic, our former and current group assistant, thank you both for
helping me survive through the cumbersome administrative problems. I also want to
express my particular thanks to Yvonne for her help when I was dealing with a case of rent
fraud. She accompanied me to the police office and quickly helped me find an apartment
through the university. Yvonne gave me tremendous help in my life in Delft. Thank

109



110 ACKNOWLEDGEMENTS

you Roland Horsten and Thim Zuidwijk for your technical support. Our offices faced
each other, your laughing and talking were the melody of my life at that time. I would
like to also extend my thanks to all the other Optics Research Group members, Nandini
Bhattacharya (I still have the gift you gave me), Auréle Adam, Wim Coene, Jian-Rong Gao,
Florian Bociort, Omar El Gawhary, Joseph Braat, Iman Esmaeil Zadeh, Peter Somers and
Jeff Meisner, for sharing interesting stories and the stimulating discussions during the
"coffee break" time in the group.

I would like to mention a lecturer I met in my Graduate School courses, Sjoerd Zwart.
I enrolled in two of his courses, one is "Research Design" and the other is "Creative
and critical thinking in Engineering", both courses have left a deep impression on me.
Whenever I encounter a research bottleneck, I always think back to the content of his
courses, which has benefited me a lot.

Then, I would like to continue my thanks to my dear colleagues and friends. The first
two important people I want to thank are Peiwen (Doris) Meng and Sander Konijnenberg.
Doris, we have been involved in so many highs and lows of each other’s lives, shared
each other’s happiness and sadness together. Thank you so much for your constant
encouragement, comfort and company. I wish you all the best in the future and I will
always be there for you when you need me. Sander, I remember those days we shared
each other’s view on life in our office, when our friendship began. I am often struck by
your profound thoughts and professional ability, and I got a lot of life philosophy and
inspiration from you. Thank you so much for lending a hand when I was trapped, and I
also wish you enjoy your life, dude. My sincere thanks go to Yuxin Wang and Zheng Zhu
for meeting all the challenges of my doctoral career together with me, because of you
guys my journey was not a lonely one. I would like to express my appreciation to Xukang
Wei for being helpful and reliable in my times of need. I also cherish the time spent with
Dmytro Kolenov, Priya Dwivedi, Min Jiang in the same office. Thanks to Dmytro for being
so positive and enthusiastic, I still remember our discussions about scatterometry; to
Priya for the interesting customs about India; to Min for skincare tips. Special thanks
need to be given to Thomas van der Sijs for translating the summary into Dutch.

I would like to express my gratitude to all other colleagues from the group: Yifeng Shao
(thanks for all the help), Ying Tang (thanks for your help with the Huawei interview),
Zheng Xi, Zhe Hou, Luca Cisotto, Matthias Strauch (thanks for all the fun activities, such
as the BBQ and bowling), Paolo Ansuinelli, Fellipe Peternella, Daniel Duplat, Lauryna
Siaudinyte, Kefei Hei, Guang Shi, Po-Sheng Chiu, Po-Ju Chen, Jila Rafigh Doost, Anubhav
Paul. I am also very grateful that I met some excellent Chinese friends in The Netherlands.
They are Tao Hou, Shan Jing, Wenting Ma, Hongpeng Zhou. What’s even more gratifying
is that we have kept in close touch after returning to China. I also want to thank Shuoshuo
Zhang, Ruping Deng, Xi Xie, Aru Kong, Zhangyu Zhou, Jiakang Zhou, Yuting Zhao, who
accompanied me at the last phase of my PhD. I enjoy our fun activities outside the office,
don’t forget to call me if there is a karaoke event.

Last, but not least, I want to give my sincere and deep gratitude to my whole family.
Thanks to my parents for their endless and unconditional love. Thanks to my siblings,
who shielded me from the storms of life. Thanks to the rest of my family, I love you with
all of my heart.

Xiujie Dou, March 2024



CURRICULUM VITÆ

Xiujie DOU

27-02-1991 Born in Xingtai, China.

EDUCATION
2009–2013 B.Sc. in Optical information Science and Technology

The College of Post and Telecommunication of WIT
Wuhan, China

2014–2017 M.S. in Optical Engineering
Nanophotonics Research Centre (NRC), Shenzhen University
Shenzhen, China

2017 PhD. in Physics
Optics Research Group, Delft University of Technology
Delft, The Netherlands
Thesis: Coherent Forier Scatterometry
Promotor: Prof. dr. H. P. Urbarch

Prof. dr. X.C. Yuan
Assoc. Prof. dr. S. F. Pereira

AWARDS
2018 First prize of NRC, Shenzhen University

2017 Outstanding graduates of Shenzhen University

Grand prize of NRC, Shenzhen University

2016 National Postgraduate Student Scholarship

Excellent Postgraduate Student Award of Shenzhen University

Grand prize of NRC, Shenzhen University

111





LIST OF PUBLICATIONS

Journal Publications
14. A.Paul, J.Rafighdoost, X.Dou and S.F.Pereira."Investigation of coherent Fourier scatterometry

as a calibration tool for determination of steep side wall angle and height of a nanostructure".
In: Measurement Science and Technology (2024). (Accepted)

13. X. Dou, J. Zhou, Y. Zhang, C. Min, S. F. Pereira, and X. Yuan. “Transversal optical singularity
induced precision measurement of step-nanostructures”. In: Optics Express 31.20 (2023),
pp. 32840–32848.

12. X. Dou, C. Min, Y. Zhang, S. F. Pereira, and X. Yuan. “Optical singularity assisted method for
accurate parameter detection of step-shaped nanostructure in coherent Fourier scatterome-
try”. In: Optics Express 30.16 (2022), pp. 29287–29294.

11. X. Dou, S. F. Pereira, C. Min, Y. Zhang, P. Meng, H. P. Urbach, and X. Yuan. “Determination of
steep sidewall angle using polarization-sensitive asymmetric scattering”. In: Measurement
Science and Technology 32.8 (2021), p. 085201.

10. Y. Zhang, C. Min, X. Dou, X. Wang, H. P. Urbach, M. G. Somekh, and X. Yuan. “Plasmonic
tweezers: for nanoscale optical trapping and beyond”. In: Light: Science & Applications 10.1
(2021), p. 59.

9. Z. Man, X. Dou, and H. P. Urbach. “The evolutions of spin density and energy flux of strongly
focused standard full Poincaré beams”. In: Optics Communications 458 (2020), p. 124790.

8. P. Meng, S. F. Pereira, X. Dou, and H. P. Urbach. “Superresolution effect due to a thin dielectric
slab for imaging with radially polarized light”. In: Optics Express 28.14 (2020), pp. 20660–
20668.

7. Z. Man, X. Dou, and S. Fu. “Pancharatnam–Berry phase shaping for control of the transverse
enhancement of focusing”. In: Optics Letters 44.2 (2019), pp. 427–430.

6. Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, and X. Yuan. “All-optical manipulation of microm-
eter sized metallic particles”. In: Photonics Research 6.2 (2018), pp. 66–71.

5. A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan. “Sensitive gap-
enhanced Raman spectroscopy with a perfect radially polarized beam”. In: Plasmonics 13
(2018), pp. 991–996.

4. X. Dou, A. Yang, C. Min, L. Du, Y. Zhang, X. Weng, and X. Yuan. “Polarization-controlled
gap-mode surface-enhanced Raman scattering with a single nanoparticle”. In: Journal of
Physics D: Applied Physics 50.25 (2017), p. 255302.

3. Y. Zhang, X. Dou, Y. Yang, C. Xie, J. Bu, C. Min, and X. Yuan. “Flexible generation of femtosec-
ond cylindrical vector beams”. In: Chinese Optics Letters 15.3 (2017), p. 030007.

113



114 CURRICULUM VITÆ

2. Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan. “Dynamic plas-
monic nano-traps for single molecule surface-enhanced Raman scattering”. In: Nanoscale
9.30 (2017), pp. 10694–10700.

1. L. Zhang, X. Dou, C. Min, Y. Zhang, L. Du, Z. Xie, J. Shen, Y. Zeng, and X. Yuan. “In-plane
trapping and manipulation of ZnO nanowires by a hybrid plasmonic field”. In: Nanoscale
8.18 (2016), pp. 9756–9763. (Equal contribution first author)

Conference Proceedings

2. X. Dou, C. Min, L. Zhang, Y. Zhang, and X. Yuan. “Dynamic plasmonic trapping and ma-
nipulation of nanoparticles and nanowires”. In: CLEO: QELS_Fundamental Science. Optica
Publishing Group. 2016, FM2B–7.

1. L. Zhang, X. Dou, C. Min, Y. Zhang, and X. Yuan. “In-plane trapping and manipulation of ZnO
nanowires on a metallic surface”. In: CLEO: QELS_Fundamental Science. Optica Publishing
Group. 2016, JW2A–90.

Conference Presentations and Posters
3. "Transversal optical singularity assisted precision measurement of nanostructures," oral

presentation at the 14th International Conference on Information Optics and Photonics
(CIOP), Xi’an, China, (August 2023).

2. "The application of structure light field in the determination of step-shape nanostructures,"
poster presentation at the 15th National Conference on Laser Technology and Optoelectron-
ics (LTO), Shanghai, China, (October 2020).

1. "Study of determination of steep side wall angles based on far field measurements," poster
presentation at the European Optical Society Biennial Meeting (EOSAM), Delft, the Nether-
lands (October 2018).


	Contents
	Summary
	Samenvatting
	Introduction
	Background
	Overview of existing metrology methods
	Electron microscopy
	Scanning probe microscopy
	Optical Scatterometry

	Coherent Fourier Scatterometry
	Structured light field
	Phase singularity
	Polarization singularity
	Pancharatnam-Berry Phase

	Goals and outline of the thesis
	References

	A semi-analytical method for the scattering problem
	Introduction
	The Tight-focusing analysis of vector beam
	Numerical simulation method
	FDTD algorithm
	The FDTD solver

	Far-field of scattering field
	References

	Control the properties of a tightly focused field
	Introduction
	The method of PB phase shaping
	The controllable transverse enhancement
	The energy flux of the focusing field
	Conlusions
	References

	Polarization-sensitive scattering for nanostructure detection
	Introduction
	Methodology
	The comparison between TE and TM modes
	The detection sensitivity analysis
	Conclusions
	References

	Polarization singularity assisted determination of step-shaped nanostructure
	Introduction
	Methodology
	Generation of the desired beam
	The detection approach

	The scattered field for different structure heights
	Simultaneous detection of height and SWA
	The determination of height
	The determination of SWA

	Discussions and Conclusions
	References

	Transversal optical singularity induced precision measurement of step-shaped nanostructure
	Introduction
	Methodology
	The generation of desired beam
	Two factors influencing the desired beam
	The detection approach

	Simulation results
	The scattering angle in the xy-plane
	Contribution of scattering angles in three different planes

	Discussions and Conclusions
	References

	Conclusion and outlook
	Conclusion
	Outlook

	Polarization transformation of high NA lenses
	Acknowledgements
	Curriculum Vitæ
	List of Publications

