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Detecting defects on diffraction gratings is crucial for ensuring their performance and reliability. Practical detec-
tion of these defects poses challenges due to their subtle nature. We perform numerical investigations and demon-
strate experimentally the capability of coherent Fourier scatterometry (CFS) to detect particles as small as 100 nm
and also other irregularities that are encountered usually on diffraction gratings. Our findings indicate that CFS is
a viable tool for inspection of diffraction gratings. © 2023 Optica Publishing Group under the terms of the Optica Open

Access Publishing Agreement

https://doi.org/10.1364/AO.503350

1. INTRODUCTION

Diffraction gratings play a critical role in numerous technologi-
cal applications, including optical devices, integrated circuits,
and microfluidic systems. This diffractive optical element is
widely used in many fields, including spectroscopy [1,2], spec-
tral beam combining [3,4], chirped pulse compression [5–7],
liquid crystal displays, and photonic devices [8]. These precisely
engineered structures, composed of periodically spaced grooves
or ridges, enable the manipulation and control of light at the
nanoscale. Even though recent advancements in nanofabrica-
tion techniques have enabled the production of high-quality
diffraction gratings with precise dimensions and controlled
surface properties [9], the manufacturing process can introduce
nanoscale contaminants or defects that can severely impact
the diffraction efficiency, resulting in significant repercus-
sions on their performance [10,11]. However, detecting these
defects poses substantial challenges due to their subtle nature.
Therefore, the development of effective inspection techniques
for detecting and characterizing defects on diffraction gratings is
of paramount importance [12].

Numerous numerical studies have explored defects in diffrac-
tion gratings, significantly advancing our understanding of their
effects. Through rigorous simulations, researchers have explored
the impact of various types of defects, such as nanoscale defects,
scratches, or irregularities, on the diffraction characteristics
of the gratings [13–15]. These studies have revealed that even
small defects can lead to significant alterations in the diffracted
light patterns, affecting parameters such as diffraction efficiency,
spectral response, and loss [16–18]. However, despite these
valuable insights, the practical detection of these defects remains
a formidable task.

The detection of defects on diffraction gratings poses chal-
lenges primarily due to their nanoscale dimensions. Defects on
the diffraction grating complicate the interpretation of signals,
arising from scattering interactions among the grating, the
defect, and higher-order scattering. Consequently, it is crucial
to develop robust and sensitive inspection techniques that can
overcome these challenges and reliably identify the presence of
defects on diffraction gratings. The traditional tools used for the
inspection of diffraction gratings are a scanning electron micro-
scope (SEM) [19], atomic force microscope (AFM) [20], and
bright field microscopy [21–23]. SEM and AFM are the bench-
mark techniques for nano-scale metrology because of the very
high resolution of a few nanometers. However, these techniques
have low throughput and can potentially inflict permanent
damage to the sample, making them invasive and primarily
employed in off-line mode. While bright field microscopes are
non-invasive and can be used in in-line mode, they are limited
by Abbe’s diffraction limit and have low spatial resolution [24].
Recently, the stochastic optical reconstruction microscopy
(STORM) technique, which uses the selective labeling method
of fluorophores, was implemented to image defects and nanos-
tructures of the size of tens of nanometers [25]. The technique
is promising for nanoscale contamination inspection; however,
as the method involves labeling, implementing it in the indus-
try for in-line inspection remains a challenge. Alternatively,
coherent Fourier scatterometry (CFS) is an optical metrology
technique based on the light scattered from the object being
imaged in the far field, which is very sensitive to detect small iso-
lated particles or small changes in parameters of nanostructures
[26–28]. CFS is an optical, in-line, non-invasive technique that
does not require labeling [29]. CFS has been implemented for
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reconstruction of parameters of diffraction gratings, and also for
the detection of isolated nanoparticles on clean surfaces.

This paper presents a comprehensive numerical study on the
detection of contamination in diffraction gratings using CFS
by implementing rigorous 3D electromagnetic simulations, to
realize the effects of a particle on a diffraction grating on the far
field signatures. Furthermore, we present experimental results
demonstrating the capability of CFS to detect particles as small
as 100 nm on diffraction gratings with a period of 792 nm. We
also demonstrate that CFS can be used to detect extra defects
such as break defects, bridge defects, indentation defects, and
line collapse defects, which are commonly encountered in
diffraction gratings. Our findings highlight the potential of CFS
as an inspection tool for diffraction gratings.

2. METHODS

A. Theory

In this section, we introduce the diffraction theory for CFS.
In Fig. 1(a), the geometrical representation of a periodic 1D
grating interacting with a focused beam is illustrated. The grat-
ing is defined by the geometrical parameters: period (p), line
width (w), height (h), side wall angle (swa), and bias (b). b is
a parameter that is introduced to define the relative position of
the grating to the optical axis of the focused beam. Although the
definition of the position b = 0 can be arbitrary, we define it as
the position when the optical axis of the focused beam bisects the
w, i.e., the position x = 0 as indicated in Fig. 1(a). We introduce
a coordinate system (x , y , z) to define the grating geometry,
with x -axis being parallel to the grating vector (Eg ), y -axis being
perpendicular to the grating vector, and z-axis being parallel to

Fig. 1. (a) Schematic representation of a 1D periodic grating,
having coordinate system (x , y , z), diffracting an incident beam into
multiple orders. The diffracted beams are collected by an objective lens
(O) having numerical aperture (NA) and propagated to the back focal
plane (BFP), having coordinate system (ξ, η). (b) Condition of overlap
between zeroth order and+nth order (having radius NA/λ), separated
by distance n/p in the back focal plane. The same applies to −nth
order. (c) Effect of overlap parameter (F ), on the back focal plane of
the objective lens (represented with black circles).

the optical axis of the focused beam. Using angular spectrum
representation formalism, we can conceive a focused beam to be
an expansion of an infinite number of plane waves of different
propagation directions [30]. Let us consider one such instance
of the plane wave, incident on the grating by the polar angle
θi and azimuthal angle φi . The grating diffracts the incident
beam into multiple different directions as zeroth order, ±1st
order, and higher orders. The angle of propagation for the nth
diffraction order is given by grating’s law

sin θi + sin θn = nλ/p, (1)

where λ is the wavelength of the incident plane wave. The
diffracted orders are collected by an objective lens (O) having
numerical aperture (NA) and mapped to the back focal plane
(BFP) based on the Fourier optics theory. The BFP is in the
Fourier space with the coordinate system (ξ, η), where ξ and
η are parallel to x and y , respectively. Now, if we consider the
diffraction from the grating for all the plane waves, each θi and
φi will be mapped to a different point in the BFP, i.e., the (ξ, η)
plane. This mapping is limited by the NA of the objective lens.
This results in each order being mapped as a circle of radius
NA/λ, separated by a distance n/p in the BFP, where n is the
diffraction order, as shown in Fig. 1(b). Now, any order is said to
overlap if it follows the condition

n
p
≤

2NA

λ
. (2)

Further, the amount of overlap between the diffracted orders
in the BFP is defined by the overlap parameter (F ) as [31]

F =
λ

NA× p
. (3)

In Fig. 1(c), we have shown the effect of F , on the back focal
plane of the objective lens. When F > 2, there is no overlap
between the orders, i.e., all the higher orders are not collected
by the objective lens. When 1< F < 2, there is an overlap
between 0, ±1 orders but no overlap between ±1 orders is
observed. Finally, when F < 1, there is overlap between even
more diffracted orders.

B. Experimental Setup

Here, we show the experimental setup of CFS. Its general con-
figuration is shown in Fig. 2. A collimated and linearly polarized
laser (λ= 405 nm) source is applied for illumination. The
collimated beam from the laser passes through a non-polarizing
beam splitter (BS1), which further travels to a high NA micro-
scope objective (O) (NA= 0.9) and is focused on the Si grating
sample (S). In the experiment, we do not align the polarization
direction of the laser with the grating. The sample is placed
on a piezo translation stage (X-Y TS), with the grating vector
(Eg ) parallel to the horizontal (typically wider) scan direction
(x ). The translation stage can be laterally scanned in a serpen-
tine pattern. The diffracted light from the grating is collected
back by the microscope objective (O) and passes through the
non-polarizing beam splitter (BS1) again. A telescopic setup
consisting of two lenses (L1 and L2/L3) is added to de-magnify
the Fourier plane of the objective to a split detector (SD). In this
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Fig. 2. Schematic of the experimental setup of coherent Fourier
scatterometry (CFS).

way, the angular spectrum for all diffracted waves is detected
at once for all incident plane waves within the focused spot. A
charge-coupled device (CCD) camera is added in the back focal
plane (BFP) of the microscope objective (O) with the help of a
second non-polarizing beam splitter (BS2) to localize the region
of interest in the sample.

The split detector consists of two pixels aligned perpendicular
to the scan direction, and the intensity from one pixel is sub-
tracted from the other. As a result, any specular reflections (such
as the case for gratings with F > 2) and noise in the system are
eliminated, and we observe the differential signal to be nearly
zero. As the focused beam is scanned through a grating structure,
i.e., bias (b) is increased from zero to period (p), for gratings
with F < 2, the far field signature becomes asymmetric, and we
observe a position-dependent differential signal. This position-
dependent differential signal will repeat periodically if scanned
through a large number of periods across the grating sample,
i.e., the obtained differential signal is scan invariant.

C. Numerical Model

To understand the interaction of a focused beam with an isolated
particle present in a grating, we need to perform accurate rigor-
ous electromagnetic modeling. The electromagnetic problem of
the interaction of a 1D grating illuminated by a focused beam
has been studied using well-known rigorous coupled-wave

analysis (RCWA) [31,32], which is acclaimed for applications
in periodic dielectric structures. In our case, we have an aperi-
odic scatterer, i.e., a particle, on a periodic background, i.e., a
grating. In order to treat this problem, we utilized rigorous 3D
electromagnetic simulations, the finite difference time domain
(3D-FDTD) method, using a commercial software package
(Lumerical FDTD) [33]. In FDTD simulations, Maxwell’s
equations are solved in discretized Yee grids (i.e., spatial and
temporal grids) in the time domain.

To mimic the experimental conditions, we model multi-
ple periods (nine periods for this case) of the grating with and
without the isolated particle at different positions [i.e., the
particle is present on top of the groove (line), and the particle is
present on top of the substrate of the grating], as the simulation
object. We determine the number of periods of the grating in
the simulation object such that the width of the focused beam
(FWHM∼ 302 nm) is smaller than the dimension of the sim-
ulation object (∼7.128 µm). We implement perfectly matched
layer (PML) boundary conditions to all the boundaries. The
illumination scheme is defined as that of a TE polarized (i.e., the
polarization direction at the pupil is parallel to the grating lines)
plane wave of wavelength λ= 405 nm being focused by a high
NA(= 0.9) microscope objective onto the simulation object
[34]. The diffracted near field from the sample is computed
and sampled at the monitor plane and propagated to the far
field in the FDTD simulation using Lumerical FDTD’s inbuilt
near-to-far field transformation (NFFT), where the computed
near field is decomposed into spherical waves emanating from
the sampled grids (point sources) of the monitor plane. By using
Green’s theorem, the radiating spherical waves at a specific
distance from the monitor plane can be integrated to produce
the far field signatures [35].

In Figs. 3(a)–3(c), the y = 0 plane, while in Figs. 3(d)–3(f ),
the z= 0 plane of the full 3D-FDTD model is shown (for bias
position, b = 0). The simulation object’s geometry is defined by
the parameters, period (p), line width (w), height (h), side wall
angle (swa), bias (b), and particle dimension (a). The grating
and particle materials are Si (n = 5.4254+ 0.3309i ) and Pt
(n = 1.7317+ 2.8713i ), respectively. To simulate scanning
effects, we change b and we shift the simulation object along
x -axis keeping the position of the source injection plane,
monitor plane, and computational domain constant.

D. Sample Preparation/Deposition Method

A grating sample with geometrical parameters as detailed in
Table 1 served as the substrate for particle deposition and sub-
sequent measurements. Particle deposition is performed via
electron beam induced deposition (EBID) with FEI FIB/SEM
Helios G4 CX. Nominal sizes are 100× 100× 100 nm tung-
sten (W) and platinum (Pt) particles deposited on a period
792 nm diffraction grating. The same settings were used: 5 kV
acceleration voltage, 1.3 pA beam current, 200 ns dwell time,
−90% overlap, 0.05 µm3/nC volume per dose. For the W
material, the transverse size of the resulting particles according
to the SEM image is ≈ 130 nm and for Pt particles ≈ 115 nm.
The SEM measurements of the tilted plane grating with the
particles deposited were not conclusive, and it is not possible
to report the height of the final structures. It is our observation
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Fig. 3. 3D-FDTD simulation scheme of a grating with and without
an isolated particle at different positions (shown for bias position
b = 0). (a)–(c) Corresponding y = 0 plane. (d)–(f ) Corresponding
z= 0 plane.

Table 1. Geometrical Parameters of the Diffraction
Grating

Grating Parameters Nominal Values

Period (p) 792 nm
Line width (w) 396 nm
Height (h) 150 nm
Side wall angle (swa) 90◦

for the deposition of similar particles directly on silicon wafers
that the height of the resulting structures is less than the nominal
structure. Also, the nominal size particles we deposited are lack-
ing definition, effectively being not a cube but rather bumps of
material.

3. RESULTS

A. Particle in a Periodic Grating: Numerical Study

In this section, we perform a numerical study on the influence of
an isolated particle on the far field signatures of the diffraction
grating. The primary objective of this numerical study is to
provide a valuable tool for enhancing our understanding and
interpretation of experimental results. Experimental data can
often be intricate and challenging to interpret directly, making
these simulations particularly valuable in aiding comprehen-
sion. As discussed earlier we are modeling an infinite periodic

structure (a grating) as a finite non-periodic structure. Thus, we
need to verify that our simulation model is faithful. We compare
our simulated far field signatures with that of a semi-analytical
method (RCWA), for the case where there is no defect/particle
present on the grating. In Fig. 4(a), we have shown the far field
signatures of the 3D-FDTD simulations performed without
the presence of a particle [as shown in Figs. 3(a) and 3(d)] cor-
responding to the different bias positions (b = 0 nm, 66 nm,
198 nm) within a single period for a Si grating with geometrical
parameters as mentioned in Table 1. In Fig. 4(b), the corre-
sponding far field signatures obtained from RCWA have been
shown. As for both simulation methods the far field signa-
tures are consistent, we establish that our model describes the
phenomena satisfactorily.

Now, to simulate the scanning of the grating with and with-
out the isolated particle, we add a platinum (Pt) particle in the
shape of a cube with dimension (a)= 100 nm in the simulation
object of the grating. We consider two such cases: first, when
the particle is present on top of the groove (line) of the grating
[as shown in Figs. 3(b) and 3(e)], and second, when the particle
is present on top of the substrate of the grating [as shown in
Figs. 3(c) and 3(f )]. We perform a scan by changing the bias
b(= 0 to p) across a period with a scan step of 33 nm, with the
center of the particle at the position b = 0 for both cases. As the
bias position b = 0 represents the axis of symmetry for which
the grating is reflection symmetric, i.e., bias−b is equivalent to
the mirror image of bias b, consequently, the far field signatures
are also mirror images. Therefore, we obtain the far field signa-
tures for scan positions b =−p to p . For all the scan positions,
we calculate the split-detector differential signal of the far field
signatures. Mathematically, this can be described as

SD(b)=
N/2∑

n1=1

N∑
n2=1

In1,n2(b)−
N∑

n1=N/2+1

N∑
n2=1

In1,n2(b), (4)

where In1,n2 is the far field signatures at the (n1, n2)th pixel,
with N 2 being the total number of pixels in the square far field
plane. In Fig. 5(a), the differential signal of the scan for the
first case (represented by the red curve) along with the differ-
ential signal when the particle is absent (represented by the

Fig. 4. Far field signatures for different bias positions
(b = 0, 66 nm, 198 nm) of a Si grating (without particle) of period
(p)= 792 nm, line width (w)= p/2, height (h)= 150 nm, illumi-
nated by a TE polarized focused beam of wavelength (λ)= 405 nm.
(a) Simulated using 3D-FDTD scheme; (b) simulated using RCWA.



Research Article Vol. 62, No. 29 / 10 October 2023 / Applied Optics 7593

Fig. 5. Simulated differential scan signal of a Si grating (geomet-
rical parameters described in Table 1) (a) with particle (dimension
a = 100 nm) present on grating line (represented by the red curve) and
without particle (represented by the black curve), with the represen-
tation of the scanned region and the position of the particle (shown
in orange); (b) with particle (dimension a = 100 nm) present on the
grating substrate (represented by the blue curve) and without particle
(represented by the black curve), with the representation of the scanned
region and the position of the particle (shown in orange).

black curve) is plotted. Consequently in Fig. 5(b), the differ-
ential signal of the scan for the second case (represented by the
blue curve) along with the differential signal when the parti-
cle is absent (represented by the black curve) is plotted. The
depiction of the scanned region has been shown below in both
plots of Fig. 5. The scan signal in each case is normalized to
the respective scenario in the absence of the particle, such that
signal= SD(b)/||SDnp||∞. The cumulative change in the
signal (c ) can be calculated with c =

∑
|signalnp − signalwp|,

where the indices np and wp mean the case of no particle and
with particle, respectively. In the case of the modeled scenario of
swa = 90◦ when the particle is present on top of the substrate
of the grating, the change is c swa=90◦ = 6.61, and it drops when
the swa parameter is varied c swa=85◦ = 6.52, c swa=80◦ = 6.55.
For the case when the particle is present on top of the grooves
(lines), the change is c swa=90◦ = 5.18, and it increases when
the swa parameter is varied c swa=85◦ = 6.00, c swa=80◦ = 5.90.
The simulated results in Fig. 5 indicate that the presence of an
isolated particle on the grating affects the far field signatures by
reducing the differential signals near the vicinity of the particle
irrespective of the position of the particle on the groove (line)
or substrate. But in the absence of a particle, we measure the
differential signal repeating itself as we scan through the grating.
These results demonstrate that this technique can detect isolated
particles present on a grating.

B. Particle in a Periodic Grating: Experimental Study

In this section, we demonstrate the experimental measurements
using CFS to detect particles present on a diffraction grating
structure. For that, we have deposited an array of 4× 5 tungsten
(W) particles (in the shape of a cube 100× 100× 100 nm) and
an array of 8× 1 platinum (Pt) particles (in the shape of a cube
100× 100× 100 nm) on a Si grating (period p = 792 nm,
line width w= p/2, height h = 150 nm, and side wall angle
swa = 90◦) using electron beam induced deposition (EBID).
In Fig. 6, we show the SEM images of the grating where the
particles are deposited.

Fig. 6. SEM images of a deposition of array of (a) 4× 5 tungsten
(W) particles (in shape of cube 100× 100× 100 nm); (b) 8× 1
platinum (Pt) particles (in shape of cube 100× 100× 100 nm) on a Si
grating (period p = 792 nm, line widthw= p/2, height h = 150 nm,
and side wall angle swa = 90◦) using electron beam induced deposi-
tion (EBID). The locations of the deposited particles are marked using
dashed cubes for better visualization.

The experimental setup of CFS as depicted in Fig. 2 has been
used for data collection. Here, we illuminate the grating sample
using a linearly polarized focused spot using a high NA= 0.9
microscope objective, with the polarization in an arbitrary ori-
entation. The grating sample is placed on the piezo translation
stage with the grating vector (Eg ) being parallel to scan direction
(x ). The diffracted field is captured by the split-detector, and
the position-dependent differential signal is recorded. Now, the
change in the signal in the vicinity of a particle is a reduction
in the peak-to-peak value of the periodic differential signal as
also discussed earlier. We can use this property, and by high-
lighting this change in the differential signal, we can improve
the visualization of the detected particles. In Fig. 7(a), we have
shown the CFS mapped data in the region where particles are
deposited. Here, the breaks in the solid line indicate the presence
of a particle, with the array of 4× 5 W particles shown within
dashed region 1 and the array of 8× 1 Pt particles shown
within dashed region 2. The shown CFS mapped data are
rotated by an angle 1.8◦, as the grating sample is placed on
the piezo translation stage manually, and we cannot place the
grating vector (Eg ) exactly parallel to the scan direction.

Now, we define the signal-to-noise ratio (SNR) as

SNRdB = 10 log10

Psignal

Pnoise
. (5)

Here, Psignal is the power of the signal, and Pnoise is the power
of the noise. Now, to calculate the SNR our task reduces to
separating out the signal due to the particle only, without the
periodic background signal. To tackle this problem, we Fourier
transform our data to the frequency domain and filter out the
frequencies due to the background structure. This can be done
for periodic structures such as gratings where the frequencies
of the background are located along the axes parallel to the
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Fig. 7. (a) CFS mapped data where the W (shown within dashed
region 1) and Pt (shown within dashed region 2) particles are
deposited, highlighting the change in the periodic differential signal
due to the particles. (b) Fourier filter used to remove the background
signals. (c) CFS mapped data after filtering the background signals,
where the array of W particles can be clearly seen. (d) CFS mapped data
after filtering the background signals, where the array of Pt particles can
be clearly seen.

direction of the grating vector (Eg ). We use a combination of
rectangular and circular filters to eliminate the background
frequencies due to the periodic grating as well as the noise and
inverse-Fourier transform it back to the spatial domain, as
shown in Fig. 7(b). From this, a significant contrast between the
scattering of the structure and the scattering of the particle is
achieved, making the problem analogous to particle detection
on a plane substrate. In Figs. 7(c) and 7(d), we have shown the
CFS mapped data after using the filter for an array of 4× 5 W
particles, and an array of 8× 1 Pt particles, respectively. We can
observe that the background from Fig. 7(a) is minimized, and
we can distinguish the particles. The SNR is 7.24 dB.

C. Extra Defects

In this section, we demonstrate the capabilities of CFS to detect
different types of defects usually encountered in diffraction grat-
ings. Some of the most common defects in diffraction gratings
are break defects, indentation defects, bridge defects, and line
collapse defects [36]. We identify and locate these defects in Si
gratings with periods p = 378 nm, 792 nm, 918 nm, having
line width w= p/2, height h = 150 nm, and side wall angle
swa = 90◦. In Fig. 8(a), we have shown a break defect in Si grat-
ings with period p = 792 nm using SEM and the corresponding

Fig. 8. SEM images (on the left) and the corresponding CFS
mapped data (on the right) for various defect types in Si grating
(a) break defect (p = 792 nm); (b) bridge defect (p = 792 nm); (c) line
collapse defect (p = 378 nm); (d) indentation defect (p = 918 nm).

CFS mapped data. In Fig. 8(b), we have shown a bridge defect
in Si gratings with period p = 792 nm using SEM and the
corresponding CFS mapped data. In Fig. 8(c), we have shown a
line collapse defect in Si gratings with period p = 378 nm using
SEM and the corresponding CFS mapped data. In Fig. 8(d),
we have shown an indentation defect in Si gratings with period
p = 918 nm using SEM and the corresponding CFS mapped
data. From the following study, we have demonstrated that CFS
is a viable tool that can be used to detect different types of defects
encountered in diffraction gratings.

4. CONCLUSION

In this paper, we have demonstrated the use of coherent Fourier
scatterometry (CFS) as a novel tool for the inspection of diffrac-
tion gratings. We performed a numerical 3D-FDTD analysis
to understand the effects of an isolated particle on the far field
differential signal of a diffraction grating. The infinite periodic
grating is approximated with a finite dimension of the grating;
this is possible as the illuminating focused spot interacts with
only a finite number of periods of the grating at any instant of
time. We observed that irrespective of the position of the particle
on the grating, the differential signal diminishes in the vicinity
of the particle. Further, experimentally the capabilities of the
tool were demonstrated by detecting tungsten W and platinum
Pt particles of dimensions ∼100 nm on a diffraction grating
of period 792 nm. However, CFS is prone to alignment toler-
ances of the grating with the piezo translation stage. Further,
we demonstrate that Fourier filtering can be used along with
CFS to remove the background periodic signal of the grating
to achieve a high SNR of 7.24 dB, although it should be noted
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that the filter used is ad hoc and cannot be generalized just yet.
Beyond the detection of particles on diffraction gratings, we
demonstrated that CFS can be employed to detect different
types of common defects that are encountered in diffraction
gratings. These defects reduce the performance of the diffrac-
tion gratings. These results suggest that the CFS technique
can be implemented for the nanoscale metrology application
of periodic structures, and is a viable in-line inspection tool of
semiconductor integrated circuits. Future development should
include more complicated patterned structures, which will
require the development of the technique to deal with edges that
are arbitrarily oriented.
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