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Prof. dr. A. Stepnowski, Gdansk University of Technology
Prof. dr. C. de Mol, Université libre de Bruxelles
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Introduction 1
About 70% of the Earth’s surface is covered by sea water [1]. What is lying beneath the sea
surface, however, remained unknown to mankind for ages. It was not until the industrial
flourishing of the nineteenth century that one began to explore the ocean scientifically [2].
Today, modern technology enables an even more detailed investigation of the underwater
environment.

Investigations of the ocean have already brought forth a global understanding of the
underwater topography. From this, the deep ocean basins are known to reach several
kilometers of depth, whereas the wide flat margin of the continental shelf, spanning along
the continents with an average width of 70-75 km, is less than 300 m deep. Containing most
of the accessible resources for commercial use, such as fish, oil, gas, and sediment deposits,
the shallow continental shelf has become focus of a large amount of human activities at sea,
including shipping, naval operations, and coastal engineering. Many of these activities at
sea require detailed information about the ocean environment to guarantee safe navigation
and to enable the discovery and localization of resources. This motivates the gathering
of information about properties of the water column, the water–sediment interface and
sediment layers.

Techniques for monitoring the underwater environment, however, are limited. Com-
monly, cost intensive and locally restricted sampling methods are applied. An appropriate
remote sensing technique, on the opposite, would allow for a larger coverage. Optical
methods are not applicable beyond a few meters of depth since light is absorbed easily by
the sea water. The same holds for radio waves. Sound, on the other hand, is less attenu-
ated in the water column. Dependent on its frequency, sound can also penetrate into the
sediment body, where sound waves are altered according to the prevailing environmental
condition. Sound waves, therefore, are most suited for obtaining information about the
underwater environment and have been used intensively for this purpose for already more
than half a century. In this period, different acoustic systems have been developed to
fulfill specific tasks in observing the underwater environment, including bathymetric mea-
surements, imaging the seafloor, and detecting sediment layers. Still, the interpretation
of acoustic measurements is a challenging task. This especially holds for shallow water
environments, where sound propagation is rather complex due to interaction of sound with
the boundaries at the sea surface and seafloor.

This thesis analyses the effect of varying bottom properties on acoustic signals and
provides valuable information for refining environmental models. From this analysis, also
an efficient strategy for classifying sea bottom sediments is deduced.
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1.1 Historic background of underwater measurements

At the early stage of ocean exploration, the first and foremost parameter to measure was
the water depth since knowledge of it enables save navigation. Ancient navigation at sea
was dependent on rather simple but intricate mechanical soundings of the water depth with
the aid of a burled rope or lead line. This technique did not change much for centuries.
However, measurements were facilitated in the course of the industrial flourishing of the
nineteenth century. This also enabled large-scale research projects on the underwater en-
vironment, such as the Challenger expedition in the years 1872-1876. This expedition was
carried out in an attempt to understand the environment below the sea surface, thereby
covering a large range of measurements, including beside detailed bathymetric measure-
ments also sampling of the sea bottom [3].

Although sound was known to travel in the ocean since the observation of distant
shipping noise by Leonardo da Vinci in 1490, underwater acoustic applications emerged
relatively late. The first underwater sound speed measurements were carried out in the Lake
Geneva by D. Colladon and C. Sturm in 1826. However, it took almost another century
before underwater sound was applied for measuring distances. In 1912, L. F. Richardson
obtained a patent on echo ranging based on sound. This principal found application during
World War I (1914-1918). In this time, the focus of underwater research got directed toward
object detection and localization. In order to deal with the threat of enemy submarines,
one began to passively listen to their noise and inferring their positions. Research on active
acoustics followed shortly thereafter. In 1917, P. Langevin was the first to use electrically
generated sound (generated by a piezoelectric transducer) in underwater acoustics. Using
an active source emitting high-frequency pulses, one could now listen to the reflections
from any target, independent of its own noise. The distance to the object was obtained by
time measurements of traveling pulses. Whether an object was moving could be discerned
by observing changes in the tone, which occur due to the Doppler effect. The first active
sonar (sound navigation and ranging) system has been invented in the 1920s and research
on these systems has been intensified during World War II (1939-1945). After the war,
active sonar systems slowly replaced the lead line for bathymetric measurements. Since
then, they have been systematically used for depth measurements and mapping of the
oceans topography. These first systems were single-beam echosounders (SBESs), using a
pulsed signal. From these, diverse systems emerged, including subbottom profilers (early
1930s), side-scan sonars (1960s), and multibeam echosounders (late 1970s).

1.2 Recent developments in classifying the sea bottom

The classical technique applied for classification of the sea bottom material is based on
taking samples of the sediments. These measurements and their evaluations are expensive,
time consuming, and provide information at point positions only. Therefore, significant
research effort has been dedicated to methods allowing of remote classification for the sea
bottom. Acoustic signals were found to be a suitable tool for sea bottom classification
purposes, since they contain information on sea bottom characteristics. One of the first
to employ multibeam echosounder signals for environmental characterization was de
Moustier [4]. Since then, various classification methods using underwater acoustics have
been developed over the last few decades.
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A large part of the research on acoustic means for sediment classification has focused on
hydrographic systems that nowadays are widely available, such as multibeam echosounders
(MBESs), [4–9]; single-beam echosounders (SBESs), [10–16]; and side scan sonars (SSSs),
[17]. In general, these approaches can be divided into two groups, the phenomenological
(or empirical) and the model-based (or physical) approaches. In the phenomenological
approaches, features such as energy or time spread are determined from the received echo
signals. These features are known to be indicative for the sediment type. However, indepen-
dent measurements, such as sediment samples or cores, are needed to link the sediment
classes, obtained from signal features, to real sediment properties or sediment type. In
contrast, the model-based approaches make use of physical models and determine the
seafloor type by maximizing the match between modeled and measured signals or signal
features, where seafloor type or parameters indicative for seafloor type are input into the
model. In principle, no independent measurements are needed and the application of a
model-based approach directly provides the sediment parameters. Approaches presented in
literature mainly differ in the complexity of the sound propagation and sediment interaction
accounted for.

Contrary to these widespread commercially available systems, research has also focused
on the use of dedicated systems, such as vertical line arrays spanning a large part of
the water column. Geoacoustic inversion techniques have been developed and have
demonstrated to adequately assess the physical properties of the sediments [18–23].

The advantage of the hydrographic systems is that they are widely used already, and
therefore no additional hardware is required. The disadvantage, however, is that sediment
information often is obtained only at positions along the ship’s track since these systems
typically are mounted on board of a ship. In addition, these systems often employ high
frequencies in the order of several hundreds of kilohertz, sensing the upper part of the
sediment only. Exceptions hold for systems such as the towed ocean bottom instrument
TOBI [24], operating at a few tens of kilohertz. However, such systems were not available
for the current study.

Frequencies employed with dedicated line arrays typically lie in the range of several
hundreds of hertz, thereby penetrating and characterizing also the deeper sediment lay-
ers. Another advantage of these systems is that the geoacoustic sediment properties, in
principle, can be obtained over a large area without the need for a dedicated ship to nav-
igate over all parts of interest within the area. However, most of the systems employed
in previous experiments are not suited for application in an operational context since they
are based on relatively complex systems, with for example highly instrumented vertical line
arrays spanning the entire water column as the receiving system. In the late 1990s the use
of sparse arrays of hydrophones down to a single hydrophone combined with frequency-
coherent, model-based matched filter processing was shown to produce correct geoacoustic
parameters [25]. Further experimental work demonstrated that geoacoustic inversion re-
sults can be operationally obtained using a short array deployed from a small vessel [26] or
an underwater robot [27]. For the same purpose the use of vector sensors is investigated
[28].
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1.3 Research objectives

In this thesis, we further investigate means of efficiently obtaining a detailed picture of
the underwater environment. For this purpose, a large number of acoustic techniques for
the classification of sea bottom sediments is analyzed and assessed. The following main
research objective is defined.

• Establish a 3D model of a shallow underwater environment with the aid of acoustic
classification techniques.

For achieving this, the following secondary objectives are aimed at.

• Existing techniques are extended to increase their efficiency.

• Strengths and weaknesses of acoustic techniques for classifying the sea bottom sedi-
ments are defined and used for increasing the efficiency in underwater environmental
characterization by combining different techniques.

In order to fulfill these aims, acoustic data of two environmentally different regions are
investigated.

1.4 Outline of the thesis

This thesis is organized as follows.
Chapter 2 introduces the sensors typically applied for obtaining characteristics of the sea
bottom sediments. The focus is on acoustic sensors. Both, commercial hydrographic sys-
tems and dedicated line arrays are treated.
In Chapter 3, the datasets used throughout this research are described and placed into
their environmental context. Data from two different locations, one in the Mediterranean
Sea and the other in the North Sea, are considered. With this selection, a large range of
sediment types is covered, ranging from a variety of clay fractions in the Mediterranean
to silt, sand, and gravel in the North Sea. This variety of sediments allows for a detailed
assessment of sediment classification techniques, as provided in the following.
The Chapters 4–7 address different approaches for obtaining environmental information
from acoustic data. The aim is to access their performance for practical application, which
is the mapping of sediment parameters over an area of interest.
The first system considered is an SBES. In Chapter 4, three different classification ap-
proaches for SBES signals are presented and evaluated: one empirical method based on
echo shape parameters and two model-based approaches employing either the full echo
envelope or again shape parameters. The empirical method employs a principal component
analysis. The basic principles of the two model-based approaches are based on [13] and
[16].
In Chapter 5 a Bayesian approach for classifying MBES backscatter strength is presented.
This approach is based on [8], who introduced it for a single angle. Here, the approach
has been extended to be capable of handling a large number of beam angles.
The Chapters 6 and 7 are dedicated to the geoacoustic inversion of environmental pa-
rameters from the acoustic field observed by hydrophone arrays. First, synthetic data are
considered for performance tests in Chapter 6. These synthetic inversions then provide an



1.4 Outline of the thesis 5

optimal inversion strategy, which is used for inversion of the measured acoustic field in three
environments in Chapter 7. Here, the focus is on the effect of environmental variability on
the parameter estimates.
Finally, Chapter 8 concludes with a review of the major findings of this thesis, combining
the efforts to a comprehensive environmental picture. Also recommendations for further
research are presented.





Underwater acoustic sensors 2
Since the first sonar emerged in the early twentieth century, numerous acoustic systems
have been developed, including single- and multibeam echosounders, side-scan sonars, para-
metric arrays, seismic systems, and dedicated systems composed of several receivers and/or
sources. Each of these systems was developed for slightly different purposes, resulting in
the use of different frequencies, apertures, or position in the water column.

Conventional systems designed for hydrographic surveying, such as single- and multi-
beam echosounders, are recently employed for the classification of seafloor sediments.
Furthermore, dedicated systems, such as hydrophone arrays developed for monitoring the
acoustic field, allow for inverting environmental parameters. While most of the hydrographic
systems employ high frequencies in the range of a few ten to a few hundred kilohertz and
provide insight into the upper part of the seabed only, the dedicated systems, operating
at frequencies typically in the range of several hundred hertz, enable us to obtain environ-
mental parameters also for the deeper sediment layers. This motivates a combined use of
the different types of systems when we aim at establishing a 3D picture of the underwater
environment that helps understanding the acoustic processes.

The current chapter describes the principal of operation and the acquired data for each
of the systems considered. Most of this information is gathered from [1].

2.1 Sensors for hydrographic surveying

Hydrographic systems are commercially available systems for underwater surveying. In
general, they are mounted on or towed by a vessel. Different hydrographic systems initially
have been designed for specific purposes, such as depth measurements, mapping of the
seafloor, and profiling of sediment layers. Their scope, however, has broadened recently.

Most commonly used for depth measurements are single-beam echosounders (SBESs)
and multibeam echosounders (MBESs). Echosounders, however, are multi-functional sys-
tems. In the last few decades, they have also been considered for sediment classification.
Echosounders are also capable for mapping purposes, a task that was originally dedicated
to side-scan sonars. While all these systems, due to their use of generally high frequencies,
are restricted to observations of the upper thin layer of sediments, specific tools are dedi-
cated to sediment profiling. These include seismic systems, typically using chirp signals or
sound created by vibrating plates (boomers), subbottom profilers, and systems operating
on parametric arrays.

In the following, we focus on those hydrographic systems available for the current study,
which are SBESs, MBESs, and seismic systems. Other hydrographic systems are addressed
only briefly in this chapter.
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2.1.1 Seafloor mapping tools

The side-scan sonar (SSS) was the first system designed purely for imaging the seafloor.
Later, the multibeam echosounder (MBES) emerged as a combination of the bathymetry
measuring single-beam echosounder (SBES) and the imaging SSS, providing input to ge-
ological maps. While SSS and MBES are commomly used for sediment classification,
recently also the SBES was recognized to have this potential. Despite its low coverage,
the SBES also can be used for mapping sediment classes.

Side-scan sonars provide images of the seafloor, using reflected intensities recorded
versus time. These systems generally consist of two long antennas mounted on each side
of a fish, which is towed close to the seafloor to obtain high resolution (see Fig. 2.1). An
SSS sends pulsed signals with frequencies in the order of 100–500 kHz. These signals are
narrow in along-track direction and wide in across-track direction. They can thus cover large
distances. However, for most of the systems no angular information or other geometrical
properties are available. Exceptions hold for interferometric systems. Classification is,
therefore, often based on image processing.

Figure 2.1: Schematic of a survey with a side-scan sonar (left) and illustration of a Klein 5900

side-scan sonar (right, http://www.l-3klein.com/).

Echosounder systems are commonly hull-mounted. The central part of an echosounder
is its transducer, which contains both a source to transmit acoustic signals and a receiving
unit. The transducer of an SBES commonly points at nadir direction and has a small
aperture of a few degrees. The aperture of an MBES is also narrow along-track (often 1◦

or less), however, is large across-track, allowing it to cover a wide swath. An illustration
of the coverage of SBES and MBES systems is given in Fig. 2.2. Also shown are typical
sonar heads.

Within the transducer head, pulsed signals are generated by the source, commonly
applying a piezo-electric material that is caused to change its shape when exposed to a
voltage and which returns to its original shape when the voltage is removed. This technique
was first applied in the field of underwater acoustics by P. Langevin during World War I.

The generated pulses travel toward the seafloor, where they are scattered and partly
reflected back to the transducer. Here, the two-way travel time of the arrivals and the
echo intensities per time are recorded. In case of an MBES, these recordings are done per
beam, after beamforming has been applied. Given the sound speed in the water column,
water depth can be determined from the travel time of the first arrival. Further, information
on the bottom properties is contained in the shape and intensity of the received signal.
However, to determine the actual sediment properties, corrections for the transmission loss,
footprint effects, and the directivity of the sensor are standardly applied.
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(a) SBES

(c) MBES

Figure 2.2: Schematic of the coverage (left) and illustration of typical sonar heads (right) of an

SBES and MBES system, respectively. The SBES shown is a EA600 and the MBES is a EM3000D

dual head system, both manufactured by Kongsberg.

2.1.2 Profiling tools

Two types of hydrographic systems are generally applied for profiling of the sea bottom
sediments. These are subbottom profilers and seismic systems.

Seismic systems generally consist of a towed source and a towed receiving array as
schematized in Fig. 2.3. The source generates low frequency signals, which are capable to
penetrate deep into the sediment body where they can sense the deep sediment layering.

Different types of sources exist. Commonly used in shallow water surveying are boomer
sources and chirp sources. A boomer stores energy in capacitors. When released, this
energy causes a plate to move, resulting in a seismic pulse. Chirp sources, on the other
hand, create sound with increasing or decreasing frequency.

The measurements are based on the acoustic impedance contrast between two distinct
sediment layers (see App. C). These interfaces cause reflections, which are detected by the
receiving array. Travel time provides the depth of each layer. The signals thus provide a
vertical cross section of the sediment layers.

Subbottom profilers use the concept of seismics together with a structure similar to an
SBES. An illustration is given in Fig. 2.4. They send signals in normal direction. Contrary
to an SBES, subbottom profilers commonly employ low frequencies (1-10 kHz) in form of
frequency modulated signals. Lower frequencies, in general, require a wider aperture at the
expense of resolution. An exception are parametric sources, which have a narrow directivity.
Detected are reflections from impedance contrasts rather than surface scattering.
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Figure 2.3: Schematic of a seismic survey (left) and illustration of two seismic systems (right): an

Edgetech X-Star and a Uniboom system.

Figure 2.4: Principle of subbottom profiling (left) and illustration of a Tritech SeaKing parametric

subbottom profiler (right, http://www.tritech.co.uk/).

2.2 Dedicated acoustic systems

Dedicated systems, such as hydrophone arrays, have been developed for monitoring the
acoustic field. While high-frequency hydrographic systems provide insight into the upper
part of the sea bottom only, the dedicated systems, operating at frequencies typically in
the range of a few hertz to several hundred hertz, can also sense deeper sediment layers.
Opposite to seismic systems, the dedicated systems allow for obtaining environmental
parameters, using geoacoustic inversion.

Monitoring the acoustic field is generally performed by employing a source, sending
either a single tone or a modulated waveform, and a set of receivers placed in a distance
(generally a few hundred meters to several kilometers) to the source. Commonly, the
receiving hydrophones are arranged in a dense array, which is either moored or towed
behind a ship sailing over the area of interest (Fig. 2.5). Two types of arrays are in use:
the horizontal line array (HLA) and the vertical line array (VLA). Nowadays, research is
done towards sparse arrays down to a single hydrophone. Of special interest are drifting
sparse arrays, which allow for covering large areas without the need of a dedicated ship to
sail and which can enter also shallow water areas.
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(a)

(b)

(c)

Figure 2.5: Possible source–receiver configurations for VLAs: (a) moored source and receiver, (b)

moored source and towed receiver, and (c) ship-mounted source together with a sparse drifting array.
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The present study considers data from two different sea trials, providing independent results.
One is situated in the Mediterranean Sea and the other in the North Sea. The trial in the
Mediterranean is more complex in terms of the amount of different acoustic measurement
techniques employed. Therefore, it is well suited for establishing a multi-sensor approach,
as presented throughout this thesis. The challenge, however, lies in the softness of the
sediment present in this area. The trial area in the North Sea, on the other hand, features
a large variety of both soft and rough/hard sediments that fall into the scope of common
models. This makes it suitable for testing model-based approaches.

3.1 The MREA/BP’07 trial

The Maritime Rapid Environmental Assessment / Blue Planet (MREA/BP07) sea trial was
carried out in the Mediterranean Sea in the spring of 2007. In the context of MREA, it
aimed at addressing novel concepts of characterizing the underwater environment, thereby
investigating means of efficiently obtaining a detailed picture of the underwater environment
[26]. For this purpose, a large number of different acoustic and non-acoustic sensors
have been employed. The measured parameters concern both the water column and the
sediments. For a detailed description of the experiment, we refer to [29–31].

The sea trial was located in the BP 3 area southeast of Elba Island and off the coast
of Grosseto, Italy, as illustrated in Figs. 3.1 and 3.2. This region was also in the focus of
earlier experiments, such as the Yellow Shark experiments in 1994/1995, documented in
[18, 25, 32]. These provide indications of the expected environmental conditions, making
the region an ideal area for testing novel techniques of environmental classification.

The measurements considered throughout this thesis, however, were taken in a some-
what smaller region within the BP 3 area, covering the northern half of the REA I area and
ranging from 10.7◦ to 11.0◦ eastern longitude and from 42.5◦ to 42.8◦ northern latitude.

This chapter is based on the following publications, with minor changes.
K. Siemes, M. Snellen, A.R. Amiri-Simkooei, D.G. Simons, and J.-P. Hermand: ”Predicting spatial vari-
ability of sediment properties from hydrographic data for geo-acoustic inversion,” IEEE J. Ocean. Eng.,
35(4), 2010. [DOI:10.1109/JOE.2010.2066711] c©2010 IEEE. Parts are reprinted, with permission.
K. Siemes, J.-P. Hermand, M. Snellen, and D.G. Simons: ”Frequency and signal type dependence of the
performance of broad-band geoacoustic inversion in a shallow water environment with soft sediments,” in
Proceedings of the Underwater Acoustic Measurements (UAM) conference, 2011.
M. Snellen, K. Siemes, and D. G. Simons: ”Model-based sediment classification using single-beam echo
sounder signals,” J. Acoust. Soc. Am., 129(5), 2011. [DOI:10.1121/1.3569718] c©2011 Acoustical Society
of America. Parts are reprinted, with permission.
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Figure 3.1: Overview of the hydrographic surveys in the MREA/BP’07 research area. The red

rectangles mark the research area. Gray lines indicate the tracks of the MBES. Similar tracks are

covered by the SBES measurements. Yellow lines are the seismic transects of both the X-Star and

Uniboom.
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Figure 3.2: Overview of the source and receiver locations in the MREA/BP’07 research area, em-

ployed for geoacoustic inversion.
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Table 3.1: Acoustic devices

Type Specification Frequency [kHz] Beamwidth [◦] Direction Ping rate [Hz]

MBES Kongsberg EM3000D 300 (high) 1.5 normal to grazing 3–5 (max. 40)

SBES Kongsberg EA600 200, 38, and 12 7.2–15.5 normal (max. 20)

(high–medium)

Seismic Edgetech X-STAR SB-512i 0.5–12 (low) 16–32 near-normal (user-selected)

Seismic Uniboom 0.5–15 (low) N/A omnidirectional 1

3.1.1 Equipment and measurements

Vessels participating in the MREA/BP’07 experiment were the North Atlantic Treaty Orga-
nization (NATO) research vessel (NRV) Leonardo, the Italian Ship (ITS) Galatea and Are-
tusa, and the His/Her Netherlands Majestys Ship (HNLMS) Snellius of the Royal Nether-
lands Navy.

Acoustic sensors employed include both standard hydrographic systems and dedicated
hydrophone arrays (see Ch. 2). The hydrographic equipment consists of an SBES, an
MBES, and two seismic systems, as specified in Table 3.1.

Both the SBES and the MBES were mounted underneath the HNLMS Snellius of the
Royal Netherlands Navy. The SBES system used is a Kongsberg EA600, operating at the
frequencies 12 kHz, 38 kHz, and 200 kHz. The MBES is a Kongsberg EM3000D dual
head, operating at 300 kHz with a selected ping rate of 3–5 Hz. This system has a total
aperture of 130◦, within which up to 254 beams are formed. Both, the SBES and MBES are
considered for bathymetric measurements and classification of the upper few centimeters
of the seafloor sediments. The area surveyed by the MBES is illustrated in Fig. 3.1 by the
gray lines. A similar area is covered by the SBES measurements.

Indications of the deeper sediment layering are provided by the two seismic systems: an
Edgetech X-STAR SB-512i operating on low-frequency (0.5–12 kHz) chirp signals, which
was towed behind the HNLMS Snellius at a depth of 1.3 m below the sea surface, and
a Uniboom system, which uses a vibrating plate to create low-frequency (0.5–15 kHz)
pressure waves, mounted on a catamaran. Seismic measurements were conducted in the
same area covered by the MBES and SBES. However, due to a tight schedule, the coverage
with seismic data is less dense. In total, twenty eight profiles have been taken, twelve by
the X-STAR and sixteen by the Uniboom. One of the X-STAR profiles was taken in
the deeper part of the experimental area along the transect AB (which corresponds to
the XF transect of the former Yellow Shark experiments [18, 25]). All other X-STAR
profiles lie perpendicular to this profile, covering both the shallow and the deep part of the
MREA/BP’07 area. The Uniboom profiles again lie perpendicular to the AB transect. Few
additional transects were also sailed parallel to the coastline in the shallower part of the
experimental area.
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Figure 3.3: Sequence of signals as used for geoacoustic inversion. A sequence, containing 250–

1600Hz multitones, 300–800Hz low-frequency (LF) chirps, and 800–1600Hz mid-frequency (MF)

chirps, was sent every full minute. To ensure synchronization, triggering took place every six sec-

onds, as indicated by the gridding of the x-axis. A sequence starts with a 5.8-s multitone, followed

by a repetition of two 1.0-s MF chirps and one 3.0-s LF chirp, and ends with two 1.0-s MF chirps.

Table 3.2: Localization of the geoacoustic inversion runs.

RUN Source position Receiver position

ID ID Stationary location (avg.) [◦] ID Start location [◦] End location [◦]

RUN 2 ST 3 N 42.6010 ST 7 N 42.6099 N 42.6049

E 10.8748 E 10.8590 E 10.8698

RUN 3 ST 9 N 42.6176 ST 13 N 42.6284 N 42.6297

E 10.8459 E 10.8267 E 10.8364

RUN 5 F 4 N 42.7041 E 4 N 42.7107 N 42.7072

E 10.9202 E 10.9115 E 10.9193

Table 3.3: Properties of the geoacoustic inversion runs.

RUN ID Ranges [m]a Avg. water depth [m]b Source depth [m]c Receiver depth (upper hydrophone) [m]d

RUN 2 630–1620 106.8 N/A 18.64

RUN 3 1550–1980 107.9 92.75 11.79

RUN 5 360–1025 45.4 40.96 7.05

aobtained from GPS measurements
bobtained from 200 kHz SBES measurements
cobtained from pressure sensor between the MF and LF source (MF: -30cm, LF: +30cm)
dobtained from pressure sensor at the upper hydrophone
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For investigating the actual sediment composition of the deeper part of the sediment
body, a measurement configuration of a stationary source and a drifting array of hy-
drophones has been set up at different locations. These are depicted in Fig. 3.2. Three of
these locations have been selected for the current study and are listed in Tables 3.2-3.3. In
the cases (RUNs) considered, the distance between source and receiver lies between several
hundred meters to two kilometers. The depth of the sensors is chosen dependent on the
bathymetry, but constant for a single RUN.

The receiving unit is a vertical line array (VLA), composed of four 5-m spaced hy-
drophones. It was attached to a rigid-hulled inflatable boat (RHIB), launched from the
HNLMS Snellius and drifting toward the NRV Leonardo. The latter was carrying both a
low- (250–800 Hz) and mid-frequency (800–1600 Hz) source. These sources sent prede-
fined sequences of acoustic signals, as shown in Fig. 3.3, including signals composed of
tones at discrete frequencies (multi-tones) and frequency modulated waveforms (chirps) in
both bands. The multi-tones consist of 32 frequencies, 20 in the low-frequency band and
12 in the mid-frequency band. The chirps are sampled at 1 Hz in the 300–800 Hz and
800–1600 Hz band.

The acoustic measurements have been accompanied by a set of non-acoustic mea-
surements, including coductivity-temperature-depth (CTD) measurements to obtain ac-
tual sound speed profiles needed for accurate environmental modeling, and grab samples
for validation purposes. Twenty four bottom grab samples have been taken by a Hamon
grabber during the MREA/BP’07 trial. They contain information about the composition of
the upper ten centimeters of the seafloor. Information about deeper sediments is available
from core samples of former experiments (see Appendix B).

3.1.2 Bathymetry

Depth values, provided from the SBES and MBES measurements, cover the wide range of
a few meters to approximately 130 m, as can be seen in the bathymetry map (Fig. 3.4).
Starting at approximately 10 m in the shallow coastal area in the north, depth increases
with the distance to the coast and shows isobaths that tend to follow the coastline. At
15-km distance to the coast, the deepest part of the area under study is reached.

Generally, the change in depth per unit of distance is small, except for a small region
near the coast (between 20- and 40-m depth). This is shown in Fig. 3.5, presenting the
bathymetric slope as a function of position. In general, slope values of the MREA/BP’07
experimental area lie below 1◦. At some locations, such as the above mentioned region,
they are slightly increased, however do not exceed 3◦. Contrary to the bathymetric map,
the map of slope values shows more texture. Three distinct regions can be discerned. The
first one is the region of transition from the shallow to the deeper parts in the north, which
shows slightly higher slope values. A second region in which high values for the slopes are
present lies close to the Ombrone estuary in the east, at water depths less than 70 m. Here,
the slope values indicate the presence of a regular structure, which is orientated parallel
the isobaths. In the third region, an irregular, inhomogeneous structure can be found in
the deep, western part of the research area, which features the softest sediments of the
experimental area (see Section 3.1.3).
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Figure 3.4: Bathymetry in the MREA/BP’07 experimental area obtained from MBES (two-way)

travel time measurements (fully corrected for ship attitude and water column properties).
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Figure 3.5: Slope in the MREA/BP’07 experimental area: 1) continuously increased slope, 2)

regular structure, and 3) irregular structure.
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Figure 3.6: Sediment distribution in the MREA/BP’07 experimental area obtained from the analysis

of grab samples taken during the experiment. This figure presents two parameters that describe the

sediment type. One is the composition (sand, silt, clay, and colloid) of the sediment samples, given

as pie charts, thereby accounting for all particles within a sample. The other is the mean grain size

Mz of the sediment, calculated according to Eq. A.3 and rounded to integer values. Mz is indicated

by the diameter of the symbols, which is reciprocally proportional to its value.
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3.1.3 Properties of the sea bottom

The MREA/BP’07 area is part of the shallow continental shelf which links Elba to the Italian
peninsula. The shelf was subject to large sediment supplies during the Pleistocene epoch
[33]. Today, still large amounts of muddy sediments cover the basement, as documented
by core samples [25], which are illustrated in Appendix B.

The presence of soft sediments is further confirmed by the bottom grab samples that
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Figure 3.7: Comparison of two seismic X-star profiles: profile AB lies in the deep part of the

MREA/BP’07 area and runs parallel to the coastline, profile CD runs perpendicular to it. Both

profiles start at zero travel-time at the water-sediment interface.
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have been taken during the recent sea trial. The sediment distribution obtained from the
grab samples is given in Fig. 3.6. The grab samples indicate very fine sediments with mean
grain sizes of Mz = 7 φ to Mz = 11 φ, which equal a grain diameter of 0.008 mm and
less. A definition of grain sizes is given in App. A. The finest sediments with Mz = 11 φ
occur in the deepest parts of the MREA/BP’07 area, while the somewhat coarser sediments
with Mz = 7 φ settle close to the coast, as expected from common transport and settling
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Figure 3.8: Comparison of two Uniboom profiles: profile 13 lies in the shallow part of the

MREA/BP’07 area and runs parallel to the coastline, profile 11 runs perpendicular to it. Both profiles

have zero travel time at source depth.
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Figure 3.9: Thickness [m] of the upper sediment layer in the MREA/BP’07 research area (color)

and gas deposits (white lines) along the seismic transects (black lines).

behavior. The mean grain sizes are depicted in Fig. 3.6 as the diameter of the symbols.
Also, the percentages of the sand, silt, clay, and colloid contribution of the upper sediment
layer, calculated from all particles within a sediment sample, are shown. From these, it
can be concluded that the contribution of the finer sediments slightly increases from the
shallow to the deeper part of the trial area.

Seismic profiles taken in the area additionally show variations of the sediment layer
thickness. Four representative profiles are given in Figs. 3.7 and 3.8, depicting the reflec-
tions recorded by the X-STAR and UNIBOOM, respectively. Beside variation in the layer
thickness, they indicate the presence of additional layering underneath the upper sediment
layer and the presence of gas at several locations. This is confirmed by other profiles not
shown here.

Both the sediment layer thickness, calculated from the travel time between the reflections
at the water–sediment interface and the sediment–subbottom interface, and the occurrence
of gas have been extracted from the seismic profiles and are mapped in Fig. 3.9. From this
map it is evident that the thickness of the upper sediment layer varies with distance to the
coast. In the shallow-water area this thickness is larger than 40 m, whereas it amounts to
about 5 m only in the deepest part.

Gas is found in the shallowest parts of the research area as well as at a few other spots
in the deeper parts. The gas mainly remains below the first sediment layer. However, this
does not hold for the shallow coastal area, where gas reaches the water–sediment interface.
Here also the largest amount of gas is detected.
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Figure 3.10: Overview of the CBBC’04 area, taken from [8]

3.2 CBBC’04

The area of the Cleaver Bank and Botney Cut 2004 (CBBC’04) sea trial is located in the
North Sea, close to the Cleaver Bank and Botney Cut, north-west of the Netherlands as
documented in Fig. 3.10. The area is of interest due to its variability in sediment types,
which was already indicated in Ref. [34].

3.2.1 Equipment and measurements

A dense pattern of east-west tracks was sailed during the measurements in 2004, while
taking hydrographic measurements. Both SBES and MBES data are available.

The SBES measurements considered here were taken by a 38 kHz Kongsberg EA600
SBES system, similar to the one employed in the MREA/BP’07 experiment. This 38-kHz
echosounder has a beamwidth of 9.6◦ and a pulse length of 256 μs. Ping rates typically
are 5 Hz. The individual SBES returns indicate a clear ping-to-ping variability, which is
due to the stochastic nature of the backscatter process, motions of the ship, and presence
of bottom features. To constrain these effects at least partly and to capture the effects of
the seafloor type on the acoustic signals instead, a series of sequential pings is averaged.
Here, the averaging was carried out over 50 sequential pings, which cover a distance of
approximately 50 m. This value was chosen as a compromise between the aim to average
out the above described effects and still keeping an acceptable spatial resolution.

The MBES employed is also similar to the one used during the MREA/BP’07 experiment,
a 300 kHz Kongsberg EM3000D dual-head with an aperture of 1.5◦ for each of the 254
beams. These data have been analyzed in [8] and are not presented in this thesis.

During the 2004 trial, no grab samples have been collected. We thus have to rely on
samples of former experiments.
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Figure 3.11: Water depth in the CBBC’04 trial area.
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Figure 3.12: Slope in the CBBC’04 trial area.

3.2.2 Bathymetry

Water depths in the area vary between 30 m and 60 m as illustrated in Fig. 3.11. The
shallow eastern part forms the Cleaver Bank. Here, variation in depth is rather small.
This is confirmed by the map of the bathymetric slope in Fig. 3.12. Slope values at the
Cleaver Bank do not exceed 0.5%. However, from the slope map, two regions with distinct
slope patterns are evident in this shallow part. While the south-eastern part of the Cleaver
Bank shows only moderate changes in slope, the north-western part of the Cleaver Bank
is characterized by inhomogeneous, curled structures. Further to the west, the sea bottom
rather abruptly drops more than 10 m and forms a 60 m deep trench, the Botney Cut.
This harsh intersection comes along with slope values increased to 4%. The Botney Cut
itself features the smallest slope values, with less than 0.25%.
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Figure 3.13: Grain sizes in the CBBC’04 trial area.

3.2.3 Properties of the sea bottom

Information about the sediment composition is available from an earlier sea trial in Novem-
ber 2000. During this trial, a series of 20 bottom grabs was taken in the area under inves-
tigation. An overview of the Folk classes in the trial area is given in Fig. 3.13. The softest
sediments, such as silt and clay, occur in the deeper Botney Cut. The shallow Cleaver
Bank, on the other hand, is composed of various types of sand. In the north-western part
of this plateau, additionally gravel fractions are present.





Classification of SBES data 4
Currently, almost any modern vessel is equipped with an echosounder. Among these,
single-beam echosounders (SBESs) are widespread. However, they provide only an insight
into a small part of the seafloor, namely that part which actually falls under their footprint.
Still, each single acoustic signal contains information about the sea bottom with which
it interacted. The objective of this chapter is to investigate SBES signals in order to
assess their discriminating properties for different sediment types. For this purpose, either
the full received SBES echo or parameters that describe the shape of this echo can be
employed, since they represent deformations in the signal which are due to the interaction
with the sea bottom sediments. Existing approaches for coupling the signal information to
sediment parameters [10–13, 15, 16, 35] can be grouped in phenomenological and model-
based approaches. Phenomenological approaches give an acoustic classification of the
environment based on signal parameters. The resulting classes are then linked to sediment
types by a comparison with ground truth data, for example bottom grab samples. Model-
based approaches, on the other hand, fit a physical description of either the full echo shape
or its descriptive parameters to the measurements and thus couple the signal information
directly to sediment parameters. Both types of approaches are explored in the following,
after a description of the SBES signal is given.

4.1 The SBES echo and its parameters

SBES transducers transmit acoustic pulses toward the sea bottom, which are received back
at the transducer after the signal has interacted with the sea bottom (see Ch. 2.1). On
their way from the source to the receiver, these signals expand and experience different
kinds of losses, which have to be corrected for. The corrections described in the following
are standardly applied to underwater acoustic signals.

While traveling, the signal intensity decreases due to geometrical spreading and absorp-
tion. Geometrical spreading, or transmission loss, affects the signal on both the way down

This chapter is based on the following publications, with minor changes.
K. Siemes, M. Snellen, A.R. Amiri-Simkooei, D.G. Simons, and J.-P. Hermand: ”Predicting spatial vari-
ability of sediment properties from hydrographic data for geo-acoustic inversion,” IEEE J. Ocean. Eng.,
35(4), 2010. [DOI:10.1109/JOE.2010.2066711] c©2010 IEEE. Parts are reprinted, with permission.
M. Snellen, K. Siemes, and D. G. Simons: ”Model-based sediment classification using single-beam echo
sounder signals,” J. Acoust. Soc. Am., 129(5), 2011. [DOI:10.1121/1.3569718] c©2011 Acoustical Soci-
ety of America. Parts are reprinted, with permission.
M. Snellen, K. Siemes and D.G. Simons: ”On the practical applicability of single-beam model-based
seafloor classification,” in Proceedings of the European Conference on Underwater Acoustics (ECUA),
Istanbul, 2010.
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H

A(t) x (t) x (t)1 2

r1 r2

θ

Figure 4.1: Schematic of the SBES footprint. With increasing time t, the area A increases circularly,

before it decreases again out of its center and becomes a disk. The points x1(t) and x2(t) describe

the inner and outer boundary of this disk.

to the seafloor and on its way back to the receiver. The received signal further depends
on the footprint A, thus the area of the seafloor contributing to the response, which is
dependent on the angle φ under which the signal is sent, on the time t, and additionally on
the water depth and slope. For a constant water depth and slope, the footprint dependence
on the φ is schematized in Fig. 4.1. At the receiver, the signal is affected by the sensitivity
of the sensor, which can be expressed in a directional response function. Point sources are
omnidirectional but less sensitive to a special direction, whereas larger sensors are more
sensitive to a specific direction.

In the following, the SBES signals are treated as being fully corrected. Due to the
scattering properties of the seafloor1 , the basic shape of an SBES signal is the same for all
seafloor types. It features a strong first peak, formed by the sound that has been traveling
on the direct path, and a tail, formed by the sound that has been scattered and will therefore
arrive later. Variations in the roughness and hardness of the seafloor, however, can cause
delays in the arrival time of either parts of the signal. The actual shape of the received
echo, therefore, depends on the sediment composition. Figure 4.2 gives an overview of
typical SBES signals for different types of seafloor sediments.

Several features of the received signal, such as total energy, time spread, and skewness,
contain information on the sea bottom composition and can potentially be used as pa-
rameters in seafloor classification [35]. These features are conceptually similar to the first,
second, and third statistical moments. The echo energy E depends on the signal intensity
I(t) and, therefore, the sound pressure p.

E =

∫ T0

0

I(t)dt (4.1)

The time spread T is defined as

T =

√
4

E

∫ T0

0

I(t)(t− t0)2dt (4.2)

1At the seafloor the signal is scattered and/or reflected. Reflection- and scatter theory is treated in
App. C.
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Figure 4.2: Typical SBES signals for three different sediment types: (a) sandy gravel (Mz = −1),

(b) muddy sand (Mz = 3), and (c) sandy clay (Mz = 7).

and includes information about the temporal extent of the echo. Here, t0 is the echo center
of gravity. Further, the echo’s asymmetry is described by the skewness S, defined by

S =
8

T 3E

∫ T0

0

I(t)(t− t0)
3dt. (4.3)

Both, T and S have been normalized such that their correlation is reduced. The typical
form of the SBES echo with its tail following the main peak results in S being positive for
all sediment types.
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4.2 Phenomenological classification by echo shape parameters

4.2.1 Principal component analysis (PCA) and clustering

Although the (normalized) echo shape features, introduced in Ch. 4.1, are intrinsically
different in nature, they are statistically correlated. The PCA is adopted according to [36]
to reduce the dimensionality of the extracted features, while retaining most of the variation
of the features. PCA transforms a number of different but possibly correlated variables
via linear combination into a smaller number of uncorrelated variables, called principal
components, by means of an eigenvalue decomposition of the parameter covariance matrix.
The first few principal components account for as much of the variability in the data as
possible. They are then fed to a cluster analysis based on the well-known k-means clustering
algorithm [37]. In the following, we give a brief summary of these concepts as they are
applied to an underwater acoustics case in a colleague’s paper [38].

In general, measured parameters are collected in a n × m matrix Y, consisting of n
measurements of the m parameters. For the current application, these parameters rep-
resent the measured features E, T , and S, extracted from the acoustic signals. These
measurements are normalized in such a way that for each feature, the mean parameter
value has been subtracted and the resulting values are divided by its standard deviation.
Each of the columns of Y thus has zero mean and unit variance. The covariance matrix
of Y is then defined as

Σ =
Y ′Y
n− 1

. (4.4)

The eigenvalue decomposition of Σ is given as

Σ = UΩU ′ (4.5)

with U containing the eigenvectors, columnwise, and Ω containing the related eigenvalues
in its diagonal and zeros elsewhere. The eigen vectors are sorted such that the first one
represents the direction of maximal variation in the data and the following each represent
directions with decreasing variation.

A product of the i-th column of U with the data matrix Y , which is a linear combination
of the three signal features, represents the i-th principal component.

The principal components are statistically uncorrelated. They represent the directions
in which the maximum variation occurs, except for the higher order principal components.
Often, only the high-order principal components are selected as members of the new pa-
rameter set, neglecting those directions which only show slight variation.

In order to distribute the selected principal components over k classes, a number which
has to be predefined, the parameter space is divided into clusters. This is achieved by
employing the k-means clustering method. It starts with k initial centroids around which
the clusters are formed. In the following, these initial centroids are randomly selected
and each point, representing a measured parameter value combination, is assigned to its
nearest centroid, in terms of Euclidean distance. In an iterative process of assigning the
cluster members and updating the centroid positions, the sum of the distances between
the assigned points and their related centroids is minimized.
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4.2.2 Application of the PCA to the MREA/BP’07 data

A well-described application of the PCA to SBES signal features in the CBBC’04 area can
be found in [39]. Here, the PCA has been applied to the MREA/BP’07 SBES data. For
the current application we focus on the features energy E, time spread T , and skewness
S, extracted from the SBES signals. In three independent classifications, data from the
frequencies 12 kHz, 38 kHz, and 200 kHz are considered. Of special interest are the data
taken at the frequency of 200 kHz since this frequency has a similar magnitude as the
one of the MBES (300 kHz). Therefore, both datasets can be used for mutual validation
(Ch. 8.1).

The intensities of the received signals have been corrected for spherical spreading and
footprint effects. Another depth-dependent correction scales the echoes in time in relation
to a given reference depth. This correction compresses signals that are obtained at a
depth greater than the reference depth and elongates signals from a depth smaller than
the reference depth.

After the three signal features E, T , and S have been extracted from the recorded
signals, they have been normalized such that each echo feature has a zero mean and unit
variance. For each extracted feature the noise level has been reduced by averaging over
40 consecutive pings. All three resulting parameters show correlations, as displayed in
Tables 4.1-4.3. Especially, the energy and time spread are highly correlated, except for the
38 kHz data.

Table 4.1: Correlation between the SBES signal parameters at 12 kHz

Energy Time spread Skewness

Energy 1.0000 -0.3913 -0.1622

Time spread -0.3913 1.0000 0.0446

Skewness -0.1622 0.0446 1.0000

Table 4.2: Correlation between the SBES signal parameters at 38 kHz

Energy Time spread Skewness

Energy 1.0000 0.3657 -0.7815

Time spread 0.3657 1.0000 -0.3700

Skewness -0.7815 -0.3700 1.0000

Table 4.3: Correlation between the SBES signal parameters at 200 kHz

Energy Time spread Skewness

Energy 1.0000 -0.7121 -0.5511

Time spread -0.7121 1.0000 0.2757

Skewness -0.5511 0.2757 1.0000
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Figure 4.3: Maps of the three principal components (rows) at the frequencies 12, 38, and 200 kHz

(columns).

The PCA has been applied to assess the three signal feature combinations that con-
tain the relevant information for discriminating between different bottom types for each
frequency. The principal components are given in Fig. 4.3. For each frequency, two out of
the three principal components, which contain most of the variability of the data, are used
for cluster analysis. The results obtained at the different frequencies are as follows.

12 kHz : The first and second principal component account for approximately 48%
and 32% of the variability of the data, respectively. The first principal component is
influenced by all parameters, however less by the skewness. The skewness, on the other
hand, dominates the second component.

38 kHz : The first and second principal component account for approximately 68% and
25% of the variability of the data, respectively. All features contribute to both components.
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The timespread, however, appears to be stronger in the second component and weaker in
the first component.

200 kHz : The first and second principal component account for approximately 68%
and 25% of the variability of the data, respectively. The first principal component is
again influenced by all three features, which are in decreasing order: energy, time spread,
and skewness. The second principal component, on the other hand, is dominated by the
skewness and time spread.

Based on the inspection of the first two principal components, the number of clusters
with similar acoustic properties was set to four for each frequency. The resulting classifi-
cation maps are given in Figs. 4.4–4.6.

For all frequencies a similar map of the acoustic classes is obtained. Largest variations
among these results occur in the center part of the area. These variations might be
explained by the different penetration depth of the different frequencies and the presence
of slightly different material at these depths. In a first instance, the so found classes
are related to neither an acoustic or sediment property and require ground truth data
for interpretation. This is given by the sediment samples, provided in Ch. 3.1.3. The
arrangement of the four classes tends to represent variations which are also visible in the
sediment distribution. A comparison to other data sets will be provided in Ch. 8.1.
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Figure 4.4: Classification results of the PCA and clustering based on SBES signal features (energy,

time-spread, and skewness) at 12 kHz.
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Figure 4.5: Classification results of the PCA and clustering based on SBES signal features (energy,

time-spread, and skewness) at 38 kHz.
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Figure 4.6: Classification results of the PCA and clustering based on SBES signal features (energy,

time-spread, and skewness) at 200 kHz.
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4.3 Model-based classification using the full echo envelope

Instead of using ground truth data to infer an environmental interpretation from the SBES
measurements, environmental parameters can also be inverted from the measured signals.
This requires a sophisticated model of the acoustic behavior of the SBES signal for a
large range of environments. We follow the approach of predicting the full SBES echo
envelope that was proposed by [13] and which is further described in [14]. The received
echoes are modeled as being the result of scattering at the rough sediment interface and
at inhomogeneities in the sediment volume. The complexity of the medium accounted
for comes at the price of a series of unknowns, requiring efficient optimization methods.
Three sediment parameters are searched for, being the sediment mean grain size, the surface
roughness, expressed as the spectral strength, and the volume scattering parameter.

4.3.1 Method

The approach taken for the classification is schematized in Fig. 4.7. Following [13], use is
made of a physical model that predicts the SBES signal return. An optimization algorithm is
employed that searches for those input parameters that maximize the agreement between
measured and predicted signal. As a measure of the agreement between modeled echo
signal and measured echo signal, a cost function C is evaluated at each iterative step of
the optimization process. Here, the following cost function is used.

C =

∑
k [ymeas(tk)− ymod(tk)]

2∑
k [y

2
meas(tk) + y2mod(tk)]

, (4.6)

with ymeas and ymod denoting the measured and modeled echo envelope, respectively.
Further, k is the number of time samples considered, with tk being the corresponding time.

Figure 4.7: Schematic of the SBES classification approach based on echo envelope modeling.
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To obtain an overview of the sediment properties over large areas, large numbers of
pings need to be inverted. This requires the use of a very efficient optimization method
for minimizing C. Here, we have chosen Differential Evolution (DE), as described in
Appendix E.

Further, an appropriate model for predicting the received echo envelope needs to be
chosen. Here, we follow [40] as described in the following.

For the envelope of the received SBES signal we can write

y(t) =

∫
A(t)

σb(θ)B(θ)
e−4αr

r4
SA(r)dA, (4.7)

with A(t) the instantaneously ensonified area that contributes to the sound received at
time t and σb(θ) the backscattering cross section at the angle of incidence θ, which in turn
depends on t. B(θ) is the transmit/receive directivity pattern of the transducer and SA(r)
is the shape of the emitted signal, projected on the footprint to account for the variation
of the signal amplitude over the footprint. It depends on the slant range r =

√
x2 +H2,

with x the horizontal distance towards the receiver and H the water depth. A schematic is
given in Fig. 4.1. The signal further is corrected for the absorption α in the water column.

Equation 4.7 can be expanded as follows.

y(t) =

∫ x2(t)

x=x1(t)

σb

(
tan−1

( x

H

))
×

B
(
tan−1

( x

H

)) e−4αr

r4
SA

(
2

c
(r2 − r)

)
2πx dx (4.8)

Here, x1 and x2 denote the two x-values that bound A(t) = π (x2
2 − x2

1), and
r2 =

√
x2
2 +H2 is the slant range at x2. We have the upper bound

x2(t) =

√
c2t2

4
−H2, (4.9)

with c being the speed of sound in the water, which is assumed to be constant. The lower
bound x1 is dependent on t according to

x1(t) =

⎧⎨
⎩
0 for t ≤ t0 + Tp;√(

ct
2
− cTp

2

)2

−H2 for t > t0 + Tp,

with t0 =
2H
c

and Tp the pulse duration.
In general, the transducer characteristics, such as the beam pattern, the signal length,

and its shape, are known. This also holds for the data considered here. The water depth
can be derived from the measured two-way travel time and the water column sound speed.
Consequently, the only unknown in Eq. 4.8 is the backscattering cross section σb(θ). In
literature, several expressions for σb(θ) are discussed.[14, 40, 41] These expressions differ
in the level of detail accounted for describing the interaction between sound and sediment.
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Here, we have considered the considerably detailed and well-established backscattering
cross section as presented in [40], where both the backscatter cross section due to inter-
face roughness scattering σr and the one due to volume scattering σv are accounted for.
Expressed in decibel the backscatter cross section reads

σb(θ) = 10 log10(σr(θ) + σv(θ)). (4.10)

Both components are further described in App. C.
The sediment parameters that affect the backscatter cross section are: the mean grain

size Mz, the sediment–water ratios of the mass density ρ and of the sound speed ν, the
ratio of the imaginary and real part of the wave number δ, the ratio of the sediment volume
scattering cross section to attenuation coefficient σ2 (also referred to as volume scattering
parameter), the exponent of the bottom relief spectrum γ, and the strength of the bottom
relief spectrum w2 (or spectral strength). In [40], a value of 3.25 for the exponent of
γ is found to work well for many types of sediments. Further, empirical expressions are
provided in [40] that relate the remaining parameters to mean grain size (here, expressed
in φ units as described in Appendix A). These relations are valid for mean grain sizes in
the range of −1 φ to 9 φ. For this range, the derived empirical parameter values of the
above mentioned parameters are listed in Table C.2 of App. C. Employing these empirical
expressions, thus, can theoretically reduce the search to a single parameter only. However,
the spectral strength w2 and the volume scattering parameter σ2 are known to possibly
deviate significantly from default values obtained from expressions relating them to Mz

and are, therefore, included in the search. To assess the need to indeed account for all
three unknowns, we also present inversions where only the mean grain size is optimized
and the empirical expressions are used to assign values to the spectral strength and volume
scattering parameter, based on the mean grain size.

Based on a synthetic study [42] and preliminary inversions, DE settings were selected
such that 2400 forward calculations were applied.

4.3.2 Application of the echoshape model to the CBBC’04 data

In total, about 16000 averaged SBES pings have been inverted, covering the entire
CBBC’04 trial area. The parameters inverted for are the mean grain size Mz, the spectral
strength w2, and the volume scattering parameter σ2. The resulting estimates for mean
grain size are shown in Fig. 4.8. In addition, mean grain sizes as determined from the Folk
classes of the grab samples are included in the plot.

The spatial behavior indicated by the Folk classes, showing coarser sediments in the
center part of the area, is in agreement with that of the inverted mean grain size. For the
60-m deep trench in the south-western part of the area, inverted Mz values indicate the
presence of fine sediments (≥ 4 φ). This is expected due to the, in general, lower currents
in the deeper area and is in agreement with the Mz values obtained from the grab samples.
In the remainder of the area, both sets of Mz values are lower, indicating coarser sediments.
Here, however, they agree to a lesser extent. Whereas, the grab samples indicate only a
minor variation in composition for the south-eastern area, resulting in the same mean grain
size of typically 1.5 φ, the inversions reveal consistent regions with different mean grain
size values, showing variations of about 4 φ. The ability to identify these structures from
the grab samples is at least partly hampered by the small number of grab samples.
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Figure 4.8: Map of inverted mean grain size. Also shown is the measured mean grain size as

obtained from the grab samples as the colored squares. For the grab samples the Folk classes are

displayed, which are related to Mz according to empirical relations given in [40].

A more detailed comparison, for example, aiming at establishing a relation between
estimated Mz and all other parameters of the samples (shell percentage; gravel percentage;
and values for the 10%, 50%, and 90% threshold for grain sizes) is not feasible due to the
limited number of grab samples. In addition, the grab samples are located not exactly
along the acoustic tracks. Distances between grab samples and acoustic samples are at
least 50 m, whereas the acoustic classification indicates variability on typically these scales.

Figures 4.9 and 4.10 present the estimates for the spectral strength and the volume
scattering parameter, respectively. In general, these two estimated parameters reveal a
similar spatial pattern as Mz, dividing the area into three distinct regions. In Fig. 4.9,
clear lines are visible in the eastern part. In [16], it is hypothesized that these lines are
caused by fishing gear dragged over the seafloor. As can be observed from the inversion
results, these plough marks affect the spectral strength, but not the mean grain size and
volume scattering parameter. Figure 4.10 indicates higher values for the volume scattering
parameter for clay (0 < σ2 < 0.0075) than for fine sand (0.005 < σ2 < 0.0175). As
expected from [40], the highest values are found for the coarsest sediments that include
gravel (σ2 > 0.00175).

For w2 and σ2, no independent measurements are available for validation purposes.
In order to assess the sensitivity of the inversion to these two parameters, we have also
carried out inversions where only Mz is estimated and empirical relations (see Table C.2 in
App. C) are employed that express the spectral strength and volume scattering parameter
as a function of mean grain size. The results are presented in Fig. 4.11. Comparing
these to the results in Fig. 4.8, where Mz is determined from the inversion of all three
parameters, it can be seen that both figures indicate the same distribution of the coarse
and fine sediments. Inverting for Mz only, however, features higher Mz estimates, thus
finer sediment grains, resulting in a decreased correspondence with the mean grain size
estimates from the grab samples. In contrast, correspondence is somewhat enhanced in
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Figure 4.9: Map of the inverted spectral strength w2.

 σ   [−]  
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

2

3.025 3.050 3.075 3.100 3.125 3.150

3.025 3.050 3.075 3.100 3.125 3.1505
3
.9

8
5
3
.9

6
5
3
.9

4

5
3
.9

6
5
3
.9

4
5
3
.9

2

Longitude [degree East]

L
a
titu

d
e
 [d

e
g
re

e
 N

o
rth

]

3.2253.2003.175

3.175 3.200 3.225

5
3
.9

2
5
3
.9

0

5
3
.9

0
5
3
.9

8

Figure 4.10: Map of the inverted volume scattering parameter σ2.

the center part of the coarse grained area. Furthermore, the presence of plough marks is
now revealed in the map as lines with lower Mz values.

The parameters w2 and σ2 are known to often deviate significantly from the values as
predicted by the empirical relations. For the results shown in Fig. 4.11, the deviation of
w2 and σ2 from the empirical expressions contributes to mean grain sizes that differ from
their real values. By not relying on the empirical relations, more realistic values for Mz

will consequently be obtained and, therefore, Fig. 4.8 should represent the reality better
than Fig. 4.11. Furthermore, the obtained estimates for the spectral strength and volume
scattering parameter provide additional information about the sediment characteristics.
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Figure 4.11: Map of the mean grain size obtained from optimization where only Mz is searched

for.

Computation times, however, are significant for the three-parameter model. Using a
standard personal computer and MATLAB as the programming language, inverting a sin-
gle averaged ping requires several minutes computation time. Despite this effort for the
three-parameter model, off-line mapping is feasible as shown by Figs. 4.8-4.10. Beside its
possibility of classifying and mapping sea bottom sediments, this approach can also con-
tribute to a gain of insight into the scattering process, when applied to a large number of
different data sets. This would, consequently, allow for improving the modeling capabilities.

4.3.3 Applicability of the echoshape model to an environment with soft sedi-
ments

For fine grained sediments, such as present in the MREA/BP’07 area, volume scattering is
known to dominate roughness scattering. A complex model accounting for volume scatter-
ing is therefore recommendable. However, available models, such as the one presented here,
are commonly designed for standard grain sizes in the range of −1 φ to 9 φ. Extensions
of these models are thus needed.

In a first attempt, the empirical parameter values given in Table C.2 have been extrap-
olated for grain sizes up to 12 φ. However, these parameters show only slight variations
among these fine grains (see Fig. 4.12). This is also reflected in the inversions employing
these extrapolated values (not shown here), which are found to be unable to distinguish
between the small grain sizes. Furthermore, too small Mz-values are assigned to the fine
grained sediments and too large Mz-values are assigned to the less fine grained sediments.
These differences, however, are likely to results from the presence of gas, as evident from
the seismic profiles provided in Ch. 3.1.3. Further investigation is needed both for finding
more suitable empirical values for fine grained sediments and for modeling the presence of
gas.
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Figure 4.12: Empirical values from left to right of the ratios of density, sound speed, and wave

number, as displayed in Table C.2 and extrapolated for grain sizes > 9 φ.

4.4 Model-based classification using the echo energy

Since the inversion of the full echo envelope is time consuming, inverting only part of
the echo or its descriptive parameters (see Ch. 4.1) becomes highly attractive. Such an
approach is proposed by [16], coupling the echo energy to the reflection coefficient and
modeling the latter dependent on mean grain size. We further investigate this approach
for its practical applicability.

4.4.1 Method

From existing phenomenological classification approaches, it is well known that the energy
of the received signal allows for discriminating sediment types.[15, 35] This knowledge is
fully exploited in [16], where the received echo energy is assumed to be directly proportional
to the square of the amplitude reflection coefficient at normal incidence. Empirical relations
then relate the reflection coefficient to mean grain size.

Assuming that all received energy is the result of a reflection at the water–sediment
interface, the amplitude reflection coefficient can be determined from the SBES echo
energy as

R =
1√
ETX

2H
√
ERX

e−2αH
, (4.11)

with R the amplitude reflection coefficient, H the water depth, ETX the energy of the
transmitted pulse, ERX the energy of the received pulse, and α the absorption coefficient
in the water.

Based on the empirical relations in [40], the relation between Mz and the reflec-
tion coefficient, R, is calculated based on the sediment–water ratio of mass density, ρ,
and the sediment–water ratio of sound speed, ν, under the assumption of normal incidence.

R(Mz) =
ρ(Mz) · ν(Mz)− 1

ρ(Mz) · ν(Mz) + 1
(4.12)

The resulting reflection coefficient is presented in Fig. 4.13. Whereas Eq. 4.12 potentially
allows for estimating the mean grain size from the received signal energy, Fig. 4.13 illustrates
that R is not sensitive to mean grain sizes larger than 5.5 φ.
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Figure 4.13: Theoretical relation between sediment mean grain size and reflection coefficient, ob-

tained from Eq. 4.12.

4.4.2 Application of the echo energy model to the CBBC’04 area

The data considered are averaged in the same way as for the inversions employing the full
echo envelope (Sec. 4.3). Figure 4.14 presents the reflection coefficients estimated from
these averaged signals according to Eq. 4.11. Their values lie in the range from ∼ 0.05
to ∼ 0.3. According to the theoretical relation in Fig. 4.13, these values of the reflection
coefficient can be related to Mz values larger than 2 φ. However, from the analysis of the
bottom grab samples and also from the inversion results for the full echo envelope, see
Fig. 4.8, lower Mz values are known to occur in the area.
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Figure 4.14: Map of the reflection coefficient as determined from the averaged SBES returns. The

white lines indicate equal bathymetry contours.
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Figure 4.15: Theoretical relation between the mean grain size and the reflection coefficient, one

reproduced from Fig. 4.13 (gray squares) indicating the Rayleigh reflection coefficient and the other

obtained from the energy of the simulated SBES signals (black squares) for SBESs with a beamwidth

of 9.6◦ (left) and 30◦ (right).

To investigate possible causes of this effect, we have used Eq. 4.8 to predict the envelope
of the SBES returns for a series of mean grain size values. For the grain sizes considered, all
other sediment parameters of the model, including also w2 and σ2, are calculated according
to the empirical relations of [40], as given in Table C.2. Then, Eq. 4.11 is used to obtain an
estimate for the reflection coefficient based on the echo energy. The left plot in Fig. 4.15
shows the results for an SBES with a beamwidth of 9.6◦, as considered in the CBBC’04
experiment.

Clearly, the reflection coefficient estimated from the simulated signal is much lower
for the coarse grains than expected. The main reason for this deviation is the limited
beamwidth of the transducer, which strongly reduces the amount of sound that impinges
upon the SBES at angles away from normal incidence. This also causes non-uniqueness
in the conversion of energy to mean grain size, hampering the mapping of the mean grain
sizes based on the reflection coefficient. Using an SBES with a larger beamwidth will
reduce these effects.[43] This is demonstrated in the right plot of Fig. 4.15, where the
same procedure as above is followed for an SBES with an increased beamwidth of 30◦.
However, the contribution of the volume scattering now results in a reflection coefficient
that slightly exceeds the theoretical curve for the fine grained sediments.

Still, for the SBES with a standard beamwidth, as the 9.6◦ considered here, regions with
different sediment types are revealed by the echo energy.

An additional effect, hampering the coupling of the detected regions of the estimated
reflection coefficient to mean grain size, is the uncertainty in the spectral strength and
volume scattering parameter, as shown in the following. Again, the only parameter searched
for is the mean grain size, whereas all other parameters affecting the interaction of sound
with the seafloor are taken according to the assumed empirical relations (Table C.2). As
mentioned before, these relations are known to hold well for the sediment sound speed,
density, and attenuation, but less for the spectral strength and volume scattering parameter.
While, in general, these parameters are not known, here, the inversions of the full echo
envelope (Ch. 4.3) have provided estimates for w2 and σ2 for each averaged signal, in
addition to the estimates of Mz. This allows for assessing the influence of deviations in w2

and σ2 from their empirical values on the estimates of the reflection coefficient.
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Figure 4.16: The relation between the mean grain sizes inverted from the full echo envelope and the

measured reflection coefficients (dots). The color of the dots represents the inverted spectral strength.

For comparison, the graph of the simulated reflection coefficient is reproduced from Fig. 4.15. Here,

the color of the squares represents the empirical value of (a) the spectral strength and (b) the volume

scattering parameter, respectively.
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For this purpose, the measured values of the reflection coefficient are plotted in Fig. 4.16
versus the estimates of Mz obtained from the inversions using the full echo envelope (see
Fig. 4.8). The theoretical relationship betweenR andMz for an SBES with 9.6◦ beamwidth,
given in Fig. 4.15, is added for comparison. In case the empirical relations between the mean
grain size and the spectral strength and volume scattering parameter hold, the measured
reflection coefficient versus inverted mean grain size would repeat the theoretical relation.
However, the values of the R show a spread around these theoretical values, further adding
to the non-uniqueness of their relation. Maximum measured values of R can be twice as
large as the simulated values. An exception holds for reflection coefficients at mean grain
sizes between 2 φ and 5 φ, where the upper bound of the reflection coefficient is more
restricted (only 1.5 times of the simulated value). The lower bound of R, on the other
hand, is approximately 0.05 throughout the entire range of mean grain sizes, disallowing
an allocation of mean grain sizes at these small reflection coefficients.

We hypothesize that a major part of the spread is caused by deviations of the spectral
strength and volume scattering parameter from their empirical values, in addition to effects
of a possibly not fully converged optimization and a possible imperfectness of the model.
In the upper graphic of Fig. 4.16, the spectral strength is indicated by the color, whereas
the color of the lower graphic represents the volume scattering parameter. For the relation
between the reflection coefficient and the inverted mean grain size, the inverted spectral
strength and volume scattering parameter are displayed, respectively. For the theoretical
relation, the spectral strength and volume scattering values as obtained from the empirical
expressions are shown. The empirical values of the spectral strength indicate an increasing
spectral strength with decreasing Mz. Despite the large spread, the same trend is visible
in the estimates for the spectral strength obtained from the inversion. Considering the
variation of the spectral strength per mean grain size, the upper plot of Fig. 4.16 indicates
a decreasing reflection coefficient as a function of increasing spectral strength. This is
expected, since increased roughness results in an increased amount of scattering away from
normal incidence and, consequently, a lower signal strength received by the SBES. The
spread in R can thus, at least partly, be related to a spread in w2. The largest deviation
of the spectral strengths from their empirical values is found for coarse sediments. On
the other hand, deviations in the volume scattering parameter from their empirical values
(lower graphic of Fig. 4.16) mainly contribute to the softer sediments, represented by larger
Mz values. At smaller Mz values, thus larger grains, the influence of volume scattering
is very low, in general. The values for the volume scattering parameter, as obtained from
the inversions, are higher than those predicted by the empirical relations for the higher Mz

values, resulting in increased signal energies and consequently increased estimates for the
reflection coefficient, compared to the theoretically expected values.

An application to the MREA/BP’07 area seems not suitable due to the prevailing grain
sizes of 7 φ to 11 φ and the insensitivity of the reflection coefficient at this range.

4.5 Conclusions

In this chapter, we compare an empirical method and two model-based approaches of
different complexity for acoustic sediment classification with SBES signals.

The empirical method is based on echo shape parameters. It uses a principal compo-
nent analysis for decorrelating these parameters and k-means clustering for dividing the
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so found parameter space into classes. This method allows for fast computation. How-
ever, as groundtruth is required, field work becomes more extensive. Four different classes
emerged from this analysis for the MREA/BP’07 area. A comparison with grab samples
shows promising results. Overall, different classes emerge at locations with different grain
sizes. However, minor differences in the classification results are found for the frequencies
considered. These are assumed to result from different penetration depths.

For model-based approaches, computation time mainly depends on the complexity of the
model, since no independent measurements are needed. The first model-based approach
bases the classification upon matching the complete echo envelope and inverting for three
parameters, which are the mean grain size Mz, spectral strength w2, and volume scattering
parameter σ2, whereas the second model-based approach merely considers energy from the
received signal to estimate Mz only. Since their application is limited to moderate grain
sizes, the model-based approaches have been investigated primarily for the CBBC’04 area.

An application of the first model-based approach to the CBBC’04 data indicates its
feasibility to estimate sediment parameters for a range of different sediment types. The
estimates of the mean grain size are confirmed by the distribution of Folk classes, as de-
termined from sediment samples taken in the area. No independent measurements are
available for the roughness and volume scattering parameters. However, all three maps
(Figs. 4.8-4.10) reveal a similar pattern of sediment distribution, as expected from the
existence of empirical expressions relating these parameters. Whereas many applications
mainly require information about the sediment mean grain sizes, information regarding the
roughness and volume scattering parameters are of high relevance for application such as
sonar performance prediction. The search for three parameters, however, makes this ap-
proach computationally demanding. Using a standard PC and MATLAB as the program-
ming language, real-time processing is not feasible, but on-line applications are expected to
become feasible in the near future. A less computational demanding approach is to reduce
the inverted parameters to Mz only. This approach was found to reveal a similar pattern
for the sediment distribution. However, discrepancies between the inverted Mz values and
the values of Mz from the grab samples are enlarged.

Classification based on a direct relation between echo energy and mean grain size, to
eliminate the need for inversions completely, was found to be hampered by the limited
beamwidth of the SBES. Coarse grained sediments were found to result in the same es-
timates for mean grain size as finer grained sediments. The use of an SBES system with
a larger beamwidth would allow for increased discriminating performance. Still, also the
variation of the volume scattering parameter and the spectral strength around their empir-
ical values prevents the coupling between echo energy and mean grain size; the unknown
spectral strength and volume scattering parameter might then result in Mz estimates that
deviate from their true values.

Overall, it can be concluded that for model-based SBES classification, in practice, an
approach based on the full echo envelope and accounting for Mz, w2, and σ2 is recom-
mended. However, inverting for Mz only or considering the echo energy, instead of using
the full echo envelope, are approaches that are extremely useful for a first quick assessment
of an area, on which for example decisions for further surveying can be based.

In all cases, the validity of the model for the prevailing grain sizes needs to be guaranteed.
Most of the models currently available require extension in the field of fine and very rough
grain sizes. In cases of very fine grained sediments, empirical approaches have proven to
be a good alternative.
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MBES systems have proven to allow for characterization of the seafloor sediments. Many
approaches deal with the classification based on MBES backscatter strength data by mod-
eling the backscatter curves along a swath, thereby accounting for scattering at the rough
water–sediment interface and volume scattering of the sediment body [44, 45]. When
modeling backscatter strengths under different beam angles, the occurrence of nonuniform
sediment types within a single swath has to be accounted for. In addition, the MBES
needs to be well calibrated, which is not always the case [46]. Therefore, the approach
towards sediment classification employing MBES backscatter strength data chosen for this
paper employs the backscatter data per beam. It has been developed on the basis of a
Bayesian approach as proposed by [8]. To optimize the method for the current application,
characterized by water depths ranging from a few meters only to over one hundred meters,
modifications to the original method were required.

For characterizing the seafloor sediments, we use the backscatter strengths derived
from the intensity of the backscattered acoustic signal. The approach selected for the
current research utilizes the average backscatter strength per beam. An advantage
of this approach is its insensitivity to variations of seafloor type along the swath. In
addition, imperfect calibration of the MBES system does not hamper the classification.
The approach is presented in [8], where it is employed to a single angle of the CBBC’04
data. For the current research, it is extended, to be capable of dealing with a large range
of beam angles, and is applied to the MREA/BP’07 area. Due to the relatively large
distances between the tracks covered by the MBES in this area, the method is modified
such that a large number of beams can be accounted for in the classification, thereby
exploiting the high coverage capacity of the MBES. In addition, the MREA/BP’07 area
exhibits large variations in depths. This results in more variation (over the area) in the
statistical properties of the averaged beam backscatter strengths. To properly account for
these variations, a further extension is required as described in the following.

This chapter is based on the following publications, with minor changes.
K. Siemes, M. Snellen, A.R. Amiri-Simkooei, D.G. Simons, and J.-P. Hermand: ”Predicting spatial vari-
ability of sediment properties from hydrographic data for geo-acoustic inversion,” IEEE J. Ocean. Eng.,
35(4), 2010. [DOI:10.1109/JOE.2010.2066711] c©2010 IEEE. Parts are reprinted, with permission.
K. Siemes, M. Snellen, D. G Simons, J.-P. Hermand, M. Meyer, and J.-C. Le Gac: ”High-frequency multi-
beam echosounder classification for rapid environmental assessment,” in Proceedings of the European
Conference of Underwater Acoustics (ECUA), Paris, 2008.
K. Siemes, M. Snellen, D. G. Simons, and J.-P. Hermand: ”Using MBES backscatter strength mea-
surements for assessing a shallow water soft sediment environment,” in Proceedings of the Oceans IEEE
conference, Bremen, 2009.
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5.1 The Bayesian approach

The geoacoustic classification method that we present in this chapter is based on the
Bayesian approach as applied by [8]. It assumes that the filtered backscatter value BSθ, as
provided by the MBES system at beam angle θ, is the average of Nθ backscatter strength
values BSθ,n obtained from n = 1, . . . , Nθ scatter pixels within the beam footprint at θ.

BSθ =
1

Nθ

Nθ∑
n=1

BSθ,n (5.1)

Theoretically, the available number of scatter pixels Nθ can be determined from the
beam geometry (Fig. 5.1) as the fraction of the size of the beam footprint dA and the
size of a scatter pixel da, which varies with the water depth H, the beam angle θ, and the
beam opening angle θT , which also depends on θ.

Nθ =
dA

da

=
H · θT
cos2 (θ)

· 2 sin (θ)

cτ
(5.2)

The variables c and τ denote the water-column sound speed and the pulse length, re-

spectively. While Eq. 5.2 is valid for beams away from nadir, Nθ=0 = 1 holds at nadir.

If the number of scatter pixels for averaging per beam footprint is large enough, the
central limit theorem holds, resulting in BSθ being normally distributed. When a single
seafloor type is present, this allows one to fit a single Gaussian probability density function
(PDF) to the histogram of observed backscatter strength at that angle. If more than one
seafloor type is present, the backscatter histogram can be modeled by a sum of m scaled
Gaussians, with m representing the number of seafloor types.

f(BSθ|x) =
m∑
k=1

f(BSθ|xk)

=
m∑
k=1

ck exp

(
−(BSθ − μk)

2

2σ2
k

)
(5.3)

The histogram and the fitted Gaussians are depicted in Fig. 5.2. Here, for each Gaus-
sian PDF f(BSθ|xk), xk = [ck, μk, σk]

T holds, with ck the scaling factor, μk the
mean, and σk the standard deviation of the kth PDF. The unknown parameter vector
x = [x1, x2, ..., xm]

T can be estimated using the least-squares technique. The nonlinear
least squares, subject to bounds on variables as in [47], is used to obtain the μks and σks,
and the nonnegative least squares method, see e.g. [48], is used to obtain the contribu-
tions of the individual PDFs by constraining the coefficients cks to be positive. For further
explanation of the method and the steps involved we refer to [8].

This approach is well suited for regions with a uniform and moderate depth. However,
the assumption of a normal distribution for the averaged backscatter strength does not
hold, if the number of scatter pixels is small. Especially in very shallow water and at low
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Figure 5.1: Schematic of the beam- and signal footprint of an MBES as obtained by the receiver

array. The beam footprint dA = dX ·dY and the footprint of scatter pixel da = dX ·dy are indicated

in lighter and darker gray, respectively. They depend on the beam angle θ, the beam opening angle

in across-track direction θT (related to θ), the beam opening angle in along-track direction ΩX and

depth H (or alternatively range R). The upper right plot zooms into a single scatter pixel. Here, c is

the watercolumn sound speed and τ is the pulse length.

beam angles θ, beam footprints contain too few scatter pixels. Therefore, a modification
is applied to the above described classification method which involves an averaging over
both beams and pings, to create regions with comparable large numbers of independent
scatter pixels. The averaging over beams involves a number of b = b(θ) beams, which
again depends on the beam angle. Close to nadir, a small number of scatter pixels per
beam footprint demands averaging over a large number of beams. At the outer beams,
where beam footprints are large, b has to be chosen smaller. This ensures employing a
similar number of scatter pixels both at low and high incident angles.

In [49], this approach has been applied to MBES data taken in a very shallow (< 5m)
river environment. It was demonstrated that averaging indeed restored Gaussianity of the
beam backscatter values.

Table 5.1: Partition of beam angles and related tolerance angle (θtol) for averaging over beams

angular range [◦] θtol [
◦]

θ ≥ 38 2.5

38 > θ > 24 4.4

24 ≥ θ ≥ 20 6.4
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are taken into account for averaging. Here, dYk, k = 1, . . . , b denote the across-track size of the b
footprints, respectively, and dY ∗ is the across-track size of the footprint dedicated to θtol.
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Table 5.2: Partition of depth values and related number of pings for averaging (p)

depth range [m] p [-]

<10 12

10-15 8

15-20 6

20-25 4

25-35 3

35-80 2

>80 1

For a given depth H, (5.2) gives a rough estimation for the number of beams used in
the averaging as

b =
cos2 θ

sin θ
. (5.4)

Taking the b beams into account, they span an angular range of θtol as shown in Fig. 5.3.
More precisely, one has to include all beam angles around the central beam angle θ as
θ − θtol/2 ≤ θ ≤ θ + θtol/2. The values of these angular ranges θtol are determined from
Eq. (5.4) and used as tolerances. Typical values used in this contribution are listed in
Table 5.1. Based on the fact that the number of scatter pixels at angles smaller than 20◦

is too small to result in reasonable tolerance angles, these angles are not considered for
classification.

After having decreased the angular dependence, we expect that the number of scatter
pixels per beam footprint still varies with depth. Therefore, an averaging over p = p(H)
pings is proposed in the next step as discussed in [50]. The number of pings involved in
this averaging process depends on the water depth H and is determined empirically by
comparison of number of scatter pixels at different water depths. The values used in this
contribution are presented in Table 5.2.

Averaging over b beams and p pings results in the following backscatter strength values.

BS∗
θ =

1

p
· 1
b

p∑
l=1

∑
θ∈θtol

BSθ,l (5.5)

The averaged backscatter strengths BS∗
θ are now assumed to have a normal distribution

since large numbers of scatter pixels contribute to BS∗
θ . They are employed for classifi-

cation, using the Bayesian approach for single beams, with beam angles in the range of
θ1, . . . , θr.

From the classification at low grazing angles (which correspond to large beam angles,
being reference angles θ1 = 46◦, θ2 = 44◦, and θ3 = 42◦ for the MREA/BP’07 dataset) the
number of classes m is determined since a better discriminating performance is expected
at these angles. In principle, we expect the backscatter values measured at other angles
to feature the same number of classes. Therefore, we assume m to be constant for the
considered range of beam angles: θ1, . . . , θr.
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Figure 5.4: Normalized Gaussians at the reference angles (a) and at arbitrary angles (b). In (a),

reference angles are chosen as 46◦ (light gray), 44◦ (black), and 42◦ (medium gray). Per angle, the

four Gaussians are plotted as estimated by the Bayesian approach for single beam angles. For each

class, the average of the Gaussian means is indicated by a vertical dashed line. According to the

reference angles, a shift in backscatter strength is applied for all beam angles. Then, the Gaussian

mean values at an arbitrary angle are restricted to a boundary of ±0.5 [dB] around the averaged

means obtained at the reference angles. These boundaries are shown in (b) as gray rectangles. Here,

classification has been applied to shifted backscatter strength at beam angles of 40◦ and 38◦, indicated

by the black and gray curve, respectively. Class boundaries are given by the intersection points (black

squares) of the normalized Gaussians.

Additionally, the three initial classifications provide us with the μk’s, σk’s, and ck’s for
the three reference angles. The mean values (over all reference angles) of the Gaussian
PDF parameters μ̄k, σ̄k, and c̄k (k = 1, ...,m) can then be obtained as shown in Fig. 5.4(a).

For application of the classification method to an arbitrary angle under study (θ), we use
the fixed number of classes that has been obtained from the classification at the reference
angles. First, the entire histogram of the averaged backscatter strengths BS∗

θ of the angle
under study is shifted such that the mean of BS∗

θ becomes identical to the mean of the
averaged backscatter strengths at reference angles (θ1, θ2, and θ3). As an initial guess for
the mean values of the Gaussian PDFs we use μ̄k (k = 1, ...,m) of the reference angles.
Then, more restricted bounds on the mean parameters are used in the least squares process.
Here, these are μl

k = μ̄k − 0.5 dB for the lower bound and μu
k = μ̄k +0.5 dB for the upper

bound. Results for beam angles of 40◦ and 38◦ are depicted in Fig. 5.4(b).

5.2 Application of the Bayesian approach to the MREA/BP’07
data

The application of the Bayesian approach to the MBES data results in four classes for the
considered angular range of θ1 = 46◦ to θr = 26◦ beam angle. Larger beam angles could
not be accounted for, since for these angles the backscatter signals were too weak to be
detected in the deeper parts of the trial area. Also, beams near normal incidence are not
considered for classification, since they contain too few scatter pixels to assume normally
distributed backscatter strength.
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Figure 5.5 presents the results. We can identify clearly separable areas, each belonging
to a single class. The highest backscatter strengths are found in the shallowest part, close
to the Italian coast. Lowest backscatter strengths occur in the area with water depths of
approximately 40–60 m. Then, with increasing depth also backscatter strength increases
again. However, a somewhat asymmetric distribution between the northern and southern
part can be observed at similar depths. In several areas a coexistence of two classes can be
observed. Some of these areas coincide with areas identified by particular slope patterns.
For example, this holds for the region close to the Ombrone estuary in the eastern part where
a regular structure is found in both the slope map (Fig. 3.5) and the map of backscatter
strength classes (Fig. 5.5). Also for the irregular structure in the deeper southwestern
part, the influence of a second backscatter strength class is revealed to some degree, by
showing an additional increase in backscatter strength at the outer beam angles at several
locations. Since this behavior is not clearly visible in the other areas, it is hypothesized
that the backscatter behavior can be related to geomorphologic features which are already
visible in the slope map. Additionally, small scale structures can be recognized in the center
of the MREA/BP’07 area, which could not be resolved in the slope map.
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Figure 5.5: Map of the four MBES backscatter strength classes derived for the MREA/BP’07 area.
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5.3 Conclusions

The Bayesian approach presented in this chapter enables the detection of classes of
backscatter strength per beam. Treating the beams separately is benefical, since it accounts
for across-track variations of the sea bottom. On the other hand, angular dependence of
the backscatter strength leads to different classification results for different beams. Making
these results comparable based on the introduction of a reference angle has been suggested
and proven to work well for a shallow water environment composed of soft sediments.

Still, introducing a reference angle does not account for the difference in scatter pixels
contributing to the results at a single angle. Moreover, at angles close to nadir the limited
amount of scatter pixels was found to violate the assumption of normal distribution, which
is essential for the Bayesian approach. In order to overcome this problem, averaging over
beams has successfully been introduced, which not only restores normal distribution but
also increases the comparability of the classification results at different beam angles. An
additional increase in comparability could be accomplished by an appropriate averaging
over a sequence of pings, whose quantity is related to the prevailing water depth.

For the MREA/BP’07 data set it has been shown that the Bayesian approach, extended
for a range of beams, provides beamwise results that are in good agreement at the angles
considered. Combining the results at the different beams, a map mainly consisting of
clearly separable classes could be obtained. On the other hand, few regions with non-
uniform classification results exist that are found to coincide with particular slope patterns.
The classes obtained have been investigated for possible correlations with the sea bottom
type. Indeed, the distribution of the acoustic classes follows the one of the sediment mean
grain size obtained from independent bottom grab samples (see Ch. 3.1.3). However, some
backscatter strength values cannot be explained solely by the mean grain size. A trend
towards a larger backscatter strength for soft sediments is evident from the results. It is
assumed that this behavior is induced by the presence of gas in the bottom and/or water
column and is enforced by a dominating volume scattering at the very soft sediments.
Gas is visible in the seismic profiles (see Ch. 3.1.3) for regions with increased backscatter
strength.

Overall, it can be concluded that the presented method provides acoustic classes that
are closely related to environmental characteristics. However, interpreting the classes as
purely grain size dependent can give erroneous results for specific environments with soft
sediments. It is, therefore, advised to involve other environmental parameters in the inter-
pretation of the MBES classification results. This will be the focus of Ch. 8.1.
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Geoacoustic inversion is an attractive means for estimating physical properties of the envi-
ronment. With frequencies typically in the range of several hundred hertz, also properties
of deeper sediment layers can be estimated.

For inverting environmental parameters from the monitored acoustic field, matched field
processing (MFP) is widely accepted [51, 52]. In the simplest version, this technique em-
ploys a linear processor to spatially dense acoustic data at a single frequency, in order to
find the best match between the measured and modeled acoustic field. For shallow water
with turbulences due to waves and tidal currents, however, employing a single frequency
is often not sensitive enough. The broad-band version of the MFP (BMFP) allows for
applying a set of discrete frequencies [18]. Taking into account a large number of fre-
quencies especially becomes attractive in cases where less spatial information is available,
as applies to sparse arrays. Moreover, it has been demonstrated by [25] that employing
frequency modulated waveforms and using their frequency coherent information instead of
tones at discrete frequencies, is beneficial for sparse arrays down to a single hydrophone.
The inversion of modulated waveforms in the frequency domain is summarized under the
term model-based matched field processing (MBMF). Accounting for a large number of fre-
quencies, however, comes at the price of large computational demands, requiring efficient
optimization techniques as described in [53]. Using the frequency coherent information
within the MBMF approach even enlarges the computational effort. In addition, MBMF
requires the knowledge of the source spectrum.

In the scope of MREA, rapid application is important. Therefore, the above mentioned
geoacoustic inversion methods are investigated regarding their efficiency and an optimal
inversion strategy is established. This includes both an adjustment of the settings for the
optimization method and an adequate choice of the frequencies inverted for. In order to
find such an optimal setting, synthetic data resembling a part of the MREA/BP’07 area
are employed.

Based on hydrographic studies in the first part of this thesis (Chs. 3-5), the MREA/BP’07
environment is further described by a three-layer model, consisting of the water column and
a stratified sediment layer on top of a subbottom half-space. Environmental parameters
considered are the sound speed, attenuation, and density of the sediment and subbottom,
as well as the water depth and sediment thickness.

This chapter is partly based on the following publications.
K. Siemes, M. Snellen, D.G. Simons, and J.-P. Hermand: ”Feasibility of geo-acoustic inversion using a
sparse array of hydrophones at short range,” in Proceedings of the European Conference on Underwater
Acoustics (ECUA), 5-9 July, 2010, Istanbul, Turkey, 2010.
K. Siemes, J.-P. Hermand, M. Snellen, and D.G. Simons: ”Frequency and signal type dependence of the
performance of broad-band geoacoustic inversion in a shallow water environment with soft sediments,” in
Proceedings of the Underwater Acoustic Measurements (UAM) conference, 2011.
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6.1 Multi-frequency geoacoustic inversion approaches

Geoacoustic inversion is based on finding an optimal match between the measured and
the modeled acoustic field, resulting in a parameter combination that is descriptive for the
environment. Often, large numbers of parameters are needed to describe both the source-
receiver geometry and the environmental features that influence the sound propagation.
Since most relations between these parameters and the acoustic field are non-linear, and
parameter values, in general, can cover large ranges, the search space is likely to contain
local optima. Therefore, global optimization methods are commonly used to search a
predefined parameter space for the best set of parameters. An overview of the global
optimization methods commonly employed is given in Appendix E.

In order to determine the goodness of fit between the modeled acoustic field for a given
parameter combination and the measurements at sparse locations within the acoustic field,
these optimization methods employ an objective function, also referred to as energy- or cost
function C. Several objective functions are suggested in literature [54–56], correlating the
modeled and measured pressure fields either coherent in the spatial or frequency domain,
or in a few cases coherent in both. Most of these functions associate a better fit with lower
costs or lower energy.

Spatial coherent inversion: A standard spatial coherent processor is the linear Bartlett
processor, as given for example in [54]. It can be expressed as

BH =
1

NF

NF∑
j=1

φHj
, (6.1)

with

φHj
=

‖∑NH

i=1 pijq
∗
ij‖2∑NH

i=1 ‖pij‖2
∑NH

i=1 ‖qij‖2
(6.2)

denoting the spatial coherent summation. Here, pij is the measured acoustic field at hy-
drophone i and frequency j and qij the corresponding model output. The summation is
coherent over NH hydrophones in the spatial domain and incoherent over NF frequencies.
The function BH reaches its maximum value (BH = 1) in case of total agreement be-
tween measurements and model output while it becomes zero if model and measurements
are completely uncorrelated. A suitable cost function CH in the spatial coherent case is
therefore

CH = 1− BH . (6.3)

Frequency coherent inversion: Different ways of incoherent combination of the differ-
ent hydrophones can be found in literature. The first one presented is simply derived
from Eq. 6.1 by changing the order of summation, first coherent over frequency and then
incoherent over space [54]. This can be expressed as

BF =
1

NH

NH∑
i=1

φFi
(6.4)

with

φFi
=

‖∑NF

j=1 p̄ijq
∗
ij‖2∑NF

j=1 ‖p̄ij‖2
∑NF

j=1 ‖qij‖2
(6.5)
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being the frequency coherent summation. Here, the measured acoustic field has been
corrected for the source spectrum, resulting in p̄. The corresponding cost function is then
analogous to Eq. 6.3

CF1 = 1−BF . (6.6)

A different cost function is described in [56], employing a spatial incoherent product of
(1− φFi

) in the following form.

CF2 =

[
NH∏
i

(1− φFi
)

] 1
NH

(6.7)

Of the two presented frequency coherent approaches, Eq. 6.7 is found to work well with
the MREA/BP’07 data by [26]. In the following, we therefore either use Eq. 6.3 for spatial
coherent inversions or Eq. 6.7 for frequency coherent inversions.

6.2 Establishing an optimal inversion strategy

Since broad-band geoacoustic inversion of large parameter sets, which are typically asso-
ciated with descriptions of the shallow water acoustic field, is computational expensive,
efficient processing is important. Computational speed generally depends on the conver-
gency rate of the chosen global optimization approach, on the properties of the underlying
model of the acoustic field, and on the dimensions of the parameter space. Here, we
use a standard normal modes model to solve the wave equation of the acoustic field (see
Appendix D.2) in combination with differential evolution (DE), which is known to be a
highly efficient global optimization method (see Appendix E.2). The model accounts for,
both, geometrical parameters (defining the source and receiver depth, their range, and
the array tilt) and environmental parameters of the water column, sediment layer, and
subbottom. Since the geometrical parameters will be known in general, the search ranges
for these parameters can be restricted, resulting in increased efficiency. This also restrains
the geometrical parameters in dominating the inversion results, a characteristic that was
observed by [57]. Beyond this, computational speed can be gained by reducing the number
of forward model calculations. This number, however, will also determine the accuracy
of the results. An inversion strategy is considered being optimal, when it provides the
relevant parameter resolution within a minimal number of forward calculations. This can
be achieved by an appropriate choice for the following criteria:

1. the setting of the global optimization method under consideration,

2. the number and height of frequencies involved, and

3. complexity of the environmental model.
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While the complexity of the environmental model is merely determined by the prelim-
inary knowledge gained from the hydrographic survey, which is described in the previous
chapters, the first two criteria are easily adaptable. Finding appropriate values for these,
however, requires an iterative process, which is not presented here. We instead investigate
different DE settings under the assumption of a given optimal frequency setting, before we
investigate different frequency settings for a fixed optimal setting of the DE.

6.2.1 Criteria for comparing inversion strategies

In the process of finding an optimal inversion strategy, assessing the inversion results ob-
tained under the different strategies plays an important role. In order to obtain assessable
results, inversions have to be carried out in a well-known environment. For this purpose,
synthetic data have been created, closely resembling measurements of a reference run in
the MREA/BP’07 area (RUN 2 in Ch 3.1.1), which is the same as in [26]. Synthetic data
have the advantage that the true parameter values are known exactly.

The parameter values applied for the current investigation are provided in Fig. 6.1.
This figure also shows a schematic of the environment, which is assumed to be range
independent. It consists of a subbottom half-space of constant sound speed, covered by a
soft sediment layer of constant thickness with a sound speed gradient, and a water column
for which the full sound speed profile is measured. Here, the source is located at a range of
0 m. The source depth was set to 88.7 m. Further, four receiving elements (hydrophones)
are placed in the water column in form of a vertical array. The hydrophones are equally
5-m spaced with the upper hydrophone at 20.2 m depth. The source–receiver range is
considered at 200-m spaced steps between 600 m and 1800 m.

Using the parameters given in Fig. 6.1, acoustic fields have been created for the same
frequencies as considered in the MREA/BP’07 experiment by employing normal mode
modeling (see App. D.2). Both discrete tones (multi-tones) and frequency modulated
waveforms (chirps) are considered, thereby employing 32 frequencies in the entire low-
(LF) to mid-frequency (MF) band (250–1600 Hz) for the multi-tones and 1-Hz sampling
in the LF band (300–800 Hz) or MF band (800–1600 Hz) for the chirp signals. Then,
the acoustic pressure at the hydrophone positions is inverted using the same normal mode
model as employed for generating these data. In the inversion step, also sampling rates
larger than 1 Hz are investigated.

In the following, an example is given on how to assess the inversion results. It incorpo-
rates LF chirp signals obtained at 1400 m range and sampled at 10-Hz steps. Accordingly,
the cost function is taken conform Eq. 6.7. The choice of the signal type and sampling
rate is based on the computational efficiency. The choice of the range is based on the
model properties, which are described in App. D.2.2. Criteria for assessing the inversion
results are the convergency of the cost function and the accuracy and precision of the
parameter estimates, which describe the degree of agreement between the inversion results
and the true environment. In the following, different ways of representing these criteria are
introduced.

Using noiseless data, the cost function is expected to converge to zero. As an example,
Figure 6.2 displays the development of the cost function when applying DE over 400
generations with an initial population of 32 members. It is clearly seen that the costs
decrease rapidly within the first few generations. This is due to the settings of the crossover
rate of 0.55 and the multiplication factor of 0.6, which have been chosen such that a balance
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Subbottom sound speed cb m/s 1530 cs + δcs · hs + 1 cs + δcs · hs + 250

aused for creating the data

Figure 6.1: Schematic of the environment and measurement configuration.
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Figure 6.2: Convergency of the cost function.

between a global and local search is established. Converging toward an optimal solution
(zero costs), however, requires a much larger set of generations. On the other hand, a too
large number of generations is not desirable for efficiency reasons. The optimal choice of
the number of generations will be based on its effect on the accuracy and precision of the
inverted parameters.

Information on the accuracy and precision of a parameter estimate can be obtained from
plotting the costs as a function of parameter value. As an illustration, the upper part of
Fig. 6.3 gives such a cost surface for the estimates of the source depth. Also shown in
this figure are the true value as a red line and the estimate with the lowest energy as a
green line. It can be seen that the solution with the lowest energy can differ from the
true solution. Causes for such deviations are for example the presence of multiple optima,
a flat cost surface with a range of parameter values resulting in low cost values, or the
optimization method not exploring the entire search space.

Therefore, taking the value with the lowest energy as final result might not always be
the best choice. Alternatives for selecting an optimal solution can be based on averaging.
The different strategies include repeated inversions of the same dataset or averaging over
inversion results at neighbored locations (spatial averaging). Repeated inversions are rather
computational expensive. Averaging over space, on the other hand, might affect the
resolution. Alternatively, one can exploit the fact that processing DE, at least partially,
provides insight into the cost surface as shown in the upper part of Fig. 6.3. Averaging
can then be based upon these available estimates. The lower part of Fig. 6.3 shows a
histogram of the parameter estimates weighted by their cost value, emphasizing solutions
with low costs. Here, the green line gives the maximum of the histogram and the red line
again gives the true value. Of course, such histograms and thus the interpretation of the
results are dependent on the weighing factor.
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Figure 6.3: Cost surface (upper plot) and histogram (lower plot) of the estimated source depth.

6.2.2 Settings of the global optimization method

The global optimization method chosen for optimizing the match between the modeled and
measured acoustic field is DE. This method is further described in Appendix E.2. In the
current section, we focus on those properties of DE that affect its computational speed. DE
starts with an initial population of randomly chosen parameter value combinations, which
are then improved by adding the difference of two randomly chosen parameter vectors
(scaled by a factor F ), followed by crossover (with crossover rate pc) during Ng successive
generations of constant size Q. The choices of F and pc mainly affect the rate at which
new features are admitted in a new generation. Therefore, they determine the speed at
which the entire parameter space is searched and the extent of this search. However,
these two parameters are merely determined by a compromise between a fast search of the
parameter space and the convergency toward the optimal solution. The number of forward
model calculations Ng ·Q determines both the computational costs and the quality of the
results. For the DE setting it is, therefore, important to find an appropriate setting of these
variables. An optimal setting of DE for a 6-parameter model has been discussed in [58]. For
creating a new generation, it considers a crossover rate of pc = 0.55 and a scaling factor
of F = 0.6. Furthermore, a population size of Q = 16 and Ng = 150 generations are
proposed. This setting is taken as a basis for the current inversion effort. Here, however,
more parameters have to be inverted for. Therefore, DE has also been applied for larger Q
and Ng value combinations. In total, five combinations of Q and Ng are compared for the
synthetic data sets described in Ch. 6.2.1. The chosen settings are listed in Table 6.1.
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Table 6.1: Settings of the DE global optimization tested with synthetic data

Setting Q Ng Ng ·Q
1 16 150 2400

2 16 300 4800

3 16 500 8000

4 32 400 12800

5 32 800 25600

The use of a specific energy function is mainly motivated by the type of signal trans-
mitted. For discrete multi-tone signals, in general, no information about the relative mag-
nitudes and phases of the different frequencies is available. Consequently, signals at the
different frequencies are combined incoherently. The information contained in the signals is
their spatial behavior, expressed in the phase and magnitude variation over depth. To ac-
count for this, the frequency incoherent broadband Bartlett processor is used, as described
in Eq. (6.3). For chirp signals, on the other hand, the relative magnitudes and phases of
the different frequencies are generally known. In order to incorporate this information in
the inversion process, a frequency coherent processing is applied according to Eq. (6.7).

Assuming that the selection of an optimal number of frequencies has already been
made2, in the following, 32 frequencies are accounted for in the inversions of the synthetic
multi-tones and the synthetic chirp signals are sampled at 10 Hz each, corresponding to
50 frequencies in the LF band and 80 in the MF band.

76 78 80 82 84 86 88 90 92 94

10−2

76 78 80 82 84 86 88 90 92 94

10−2

76 78 80 82 84 86 88 90 92 94

10−2

76 78 80 82 84 86 88 90 92 94

10−2

76 78 80 82 84 86 88 90 92 94

10−2

h           [m]source

(a)

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

76 78 80 82 84 86 88 90 92 94

76 78 80 82 84 86 88 90 92 94

76 78 80 82 84 86 88 90 92 94

76 78 80 82 84 86 88 90 92 94

76 78 80 82 84 86 88 90 92 94

h           [m]source

(b)

Figure 6.5: Comparison of the estimates of the source depth for settings 1-5 (see Table 6.1). In

(a) the cost surface is shown and in (b) the related cost-weighted histograms are given. Red lines

indicate the true value.

2The choice of different frequencies is discussed in Ch. 6.2.3.
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Figure 6.6: Histograms of the environmental parameters: (a) sediment sound speed, (b) subbottom

sound speed, (c) sediment density, (d) subbottom density, (e) sediment attenuation, and (f) subbottom

attenuation. Comparison of the estimates for settings 1-5 (top top to bottom) of Table 6.1.
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A function of the lowest cost per generation is shown in Fig. 6.4 for inversions at
800 m and 1400 m source–receiver range, for all settings and signal types. Clearly, the
setting with the smallest number of forward calculations (setting 1) has not fully converged.
As expected, a better convergency is obtained for settings with an increased number of
forward calculations (settings 3-5, in particular). Also evident from Fig. 6.4 is that both
the inversion of the LF chirp signals and multi-tones, which incorporate LF signals as well
as MF signals, show a better convergency behavior than the inversion of the MF chirp
signals.

Further investigations of the LF inversion results show that the cost level decreases for
settings with a larger number of population members and a larger number of generations.
This is documented in Fig. 6.5, which is an extension of Fig. 6.3, showing the cost surfaces
and cost-weighted histograms for the five settings, which are listed in Table 6.1. Also a
better exploration of the search space is evident for the settings with a large number of
forward calculations.

Similar histograms are provided for the environmental parameters of the sediment layer
and subbottom in Fig. 6.6 to point out the accuracy and precision of the distinct parameter
estimates for the different settings. From these histograms, we again observe that settings 1
and 2 generally contain too few forward calculations to converge to the true value. Beyond
this, Fig. 6.6 helps to identify those parameters which can be estimated well. In general,
the environmental parameters are found to be separable into two groups regarding their
accuracy and precision. One group of parameters is approximating the true value with
reasonable accuracy and parameter-dependent precision. This group includes the sound
speed of both layers and the attenuation in the sediment. Estimates of other parameters,
under which the density in both layers and the attenuation in the subbottom, show a
low precision and often as well a low accuracy, resulting in larger deviation from the true
parameter values. We will show later for real data (Ch. 7) that these deviations in the
estimates can be overcome at least partly by applying spatial averaging.

With the knowledge of the accuracy and precision of the distinct parameter estimates,
we now extend the comparison of the inversion strategies to different source–receiver ranges
and different types of signals. The focus is on those settings which promise to provide the
best estimates according to the former analysis. These are settings 3-5. The results of
inverting the synthetic signals using these settings are presented in Figures 6.7–6.9 for the
LF chirps, MF chirps, and multi-tones, respectively. For each range r0 considered, the
parameter combination corresponding to the lowest energy function value is shown.

Comparing the results, we observe a similar trend regarding the possibility of estimating
distinct parameters from these signal types. Only a few parameter estimates match the
true value for all settings, ranges, and signal types. This holds for the tilt θtilt, the source–
receiver range r, and with exceptions for the sound speed in the subbottom cb. Parameters
that often do not reflect the true value are the density of the sediment ρs, the density of the
subbottom ρb, and the attenuation in the subbottom αb, as already observed from Fig. 6.6.
For the other parameters, a benefit of an increased number of forward calculations and,
especially, an increased population size (settings 4–5) is visible for the frequency coherent
inversions of the chirp data. However, the additional benefit of these settings is less
evident for the spatial coherent inversions of the multi-tones. In general, at least 8000
forward calculations are needed, to obtain reasonable results. Although there is not much
difference, a further increase in the population size tends to give slightly better results.
Differences in the quality of the results are observed among the three datasets.
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Figure 6.10: Absolute values of the normalized acoustic pressure field at the four hydrophone

positions at ranges between 600 and 1800 m, calculated for the true parameter values (black dots) and

for the parameter estimates that are obtained according to setting 4 after 12800 forward calculations

(gray circles).

In general, low-frequency inversions (Fig. 6.7) are found to provide better results than
the mid-frequency inversions (Fig. 6.8), using the same setting. For some parameters,
however, a combination of both frequency ranges is beneficial, as observed from the multi-
tone inversions (Fig. 6.9). Further, a range dependence of the inversion quality is evident
for several parameters. These include the water depth hw, sediment thickness hs, and
source depth hsource. Estimates of these parameters are improved for larger ranges, as
expected from considerations in App. D.2.2.

Regardless the extent to which a parameter can be estimated, we show in Fig. 6.10
that the estimates for setting 4 provide an realistic match of the acoustic field at the four
hydrophone positions for all ranges considered. The following analysis is, therefore, based
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on setting 4 (with Q = 32, Ng = 400), keeping in mind that even for a good agreement
between the true and estimated acoustic field deviations in the accuracy and precision
can occur among the parameters. Here, the synthetic inversions can also be employed to
identify those parameters that are well-determined.

6.2.3 Frequency dependence of the inversion results

The number and height of frequencies are directly related to computational speed. As holds
for the setting of the optimization algorithm, the choice of frequencies also influences the
quality of the inversion results. Since for each frequency the wave equation needs to
be solved, the number of forward calculations is directly proportional to the number of
frequencies. Furthermore, the time required for solving the wave equation decreases with
decreasing frequency height. Thus both, a lower frequency range and a lower number of
frequencies are computationally favorable. These, on the other hand, might result in a
less accurate model or incorrect parameter value estimates. Both choices are application
related and might be different for sonar performance tests or coastal engineering projects.

The number of modes Nm is related to the frequency and the environmental conditions,
as described in [59].

Nm =
2(hw + hs)f ln(

√
1− c

cb
+ 1)

c ln 2
+

1

2
(6.8)

Here, hw and hs are the water depth and sediment thickness, respectively. Further, c is
the sound speed averaged over the water column and sediment layer, and cb is the sound
speed of the subbottom. Since a range independent environment is assumed, variations
in Nm will be dominated by frequency changes. For the frequency bands considered, the
number of modes ranges between 9 and 26 for the low-frequencies and can reach up to
114 for the mid-frequencies. Inversions of the LF signals are, therefore, more efficient and
consequently preferred when dealing with large sets of environmental parameters. However,
efficiency is not the only criterion. The capability of the low number of modes, associated
with the LF signals, to resolve differences in the acoustic field due to environmental vari-
ations needs further investigation. Especially, the results are expected to be sensitive with
respect to the number of frequencies accounted for.

For studying the effect of reducing the number of frequencies, inversions of the LF
chirps sampled at 1 Hz, 2 Hz, 10 Hz, and 20 Hz intervals have been carried out. These
are thus accounting for 500, 250, 50 and 25 frequencies for establishing the acoustic field,
respectively. The setting of DE is taken according to Ch. 6.2.2 as setting 4 (pc = 0.55,
F = 0.6, Q = 32, and Ng = 400). Histograms of the estimated environmental parameters
are presented in Fig. 6.11. From these histograms only little difference in both the accuracy
and the precision of the estimates is seen for the different sample rates. There is also no
evidence that parameters which are not estimated well in the inversions with 10 Hz sampling
(Fig. 6.6) benefit from smaller frequency steps. The computational extensive inversions
of the 1 Hz sampled signals are, therefore, no longer considered. In the following, the
remaining sampling rates are compared for a larger set of ranges. Figure 6.12 gives the
best estimates per range for the LF chirp signals sampled at 2 Hz, 10 Hz, and 20 Hz.
From this comparison, it can be concluded that estimates of those parameters which can
be inverted are reasonable for frequency steps up to 10 Hz. A 10-Hz sampling is thus
appropriate for both quality and computational speed.
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Figure 6.11: Histograms of the environmental parameters: (a) sediment sound speed, (b) subbottom

sound speed, (c) sediment density, (d) subbottom density, (e) sediment attenuation, and (f) subbottom

attenuation. Comparison of the estimates for frequency steps of (from top to bottom) 20 Hz, 10 Hz,

2 Hz, and 1 Hz for the low-frequency chirp data.
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6.3 Conclusions

The inversion of synthetic data has provided a strategy that is both computationally fa-
vorable and providing realistic estimates of the acoustic field. This strategy incorporates
normal modes modeling together with differential evolution over 400 generations of a 32-
member strong population, using a cross-over rate of 0.55 and a multiplication factor of
0.6.

One should notice that, even for a good agreement between the true and estimated
acoustic field, not all parameters estimates have the same accuracy and precision. Here,
the investigation of synthetic data also helps to identify those parameters that are well-
determined.

It is shown that the inversions of low-frequency signals are highly efficient and, beyond
that, provide better parameter estimates than the inversions of mid-frequency signals alone.
Some parameters, however, benefit from a combined inversion of low- and mid-frequency
signals. In general, accounting for a large number of frequencies increases the accuracy
and the precision of the inversions. The required precision, however, depends on the
application. The following conclusions are based on the aim of mapping sediment classes.
For the low-frequency chirps it is found that the number of frequencies could at least be
reduced by a factor of 10, compared to the original sampling of 1 Hz. Still, this sampling
rate corresponds to 50 times 12800 forward calculations of the acoustic field during the
optimization process, with each employing 9 to 26 normal modes.





Geoacoustic inversion in practice 7
In the previous chapter, investigations of synthetic acoustic fields have provided an efficient
strategy for inverting parameters of the underwater environment. The aim of the current
chapter is to show the ability of geoacoustic inversion, performed under this strategy using
real data, to distinguish between environments with different properties of the sediment
and subbottom. Primarily, two environmental aspects and their influence on the inversion
results are discussed. These are the presence of gas in the sediment and the effect of an
increased layer thickness.

First, the optimal inversion strategy found for the synthetic data in Ch. 6 is confirmed
to be also suitable for real data in a similar environment. Then, geoacoustic inversion is
performed at two additional locations in order to show its ability to distinguish between
different environments.

Data applied in the current chapter are obtained during the MREA/BP’07 trial, which
is described in Ch. 3.1. Available are measurements of discrete tones (multi-tones) in
the band of 250–1600 Hz and frequency modulated waveforms (chirps) in either the 300–
800 Hz LF band or 800–1600 Hz MF band. These are the same signals as investigated for
the synthetic data.

7.1 Confirmation of the optimal inversion strategy

The inversion strategy introduced in Ch. 6 is based on normal mode modeling (Ap-
pendix D.2) of the acoustic field and differential evolution (DE, Appendix E.2) for finding
the best parameter representation of this field. The settings for DE were then chosen as
given in Table 7.1. Further, a 10-Hz sampling of the LF chirp signals was found to be
sufficient for the current purpose of environmental classification.

For real data, other than for the synthetic data, additional uncertainty will be caused at
least by the presence of noise and slight variations in the ocean environment. This might
require a refinement of the optimal inversion strategy found for the synthetic data.

Table 7.1: Optimal setting of the DE optimization approach.

DE parameter symbol parameter value

cross-over rate pc 0.55

multiplication factor F 0.6

population size Q 32

number of generations Ng 400
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In order to confirm that the settings for DE and the optimal frequency steps, found in
Chs. 6.2.2 and 6.2.3, are also valid for real data, they have been applied to the RUN 2
data of the MREA/BP’07 experiment3 , which formed the basis for creating the synthetic
data. Then, the results are compared to one another and to independent data obtained
from the hydrographic survey (Ch. 3.1), containing depth measurements by echosounding
and measurements of the hydrophone depths by pressure sensors.

7.1.1 Inversion of synthetic vs. real data

For reasons of comparability, the synthetic and the real data inversion are performed in
the exact same manner. This includes the use of the same environmental model, which is
composed of three layers: the water column, a sediment layer, and the subbottom. Also,
the parametrical description of the environment and of the receiving geometry are the
same for the synthetic and real data inversions, as documented in Fig. 6.1. The two main
differences between the synthetic and real scenario are the presence of noise in the real
data and slight deviations of the real environment from the ideal range independent model.
Both aspects have given reason to the actual comparison of synthetic and real parameter
estimates. First, the same steps are taken as with the synthetic data in Ch. 6, covering
an investigation of three different signal types, which are the LF and MF chirp signals and
the multi-tones, and different sample rates. This is to confirm that the selection of the
inversion strategy can be based on the synthetic inversions. Then, a detailed comparison
of the results, obtained from the synthetic and real data inversion, is given.
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Figure 7.1: Averaged environmental parameters between locations ST3 and ST7 estimated by geoa-

coustic inversion of the 300–800 Hz LF chirp signals, sampled at 2 Hz (colored dots, with color

indicating the costs C), 10 Hz (black line), and 20 Hz (red line).

3see Tables 3.2, 3.3, and Fig. 3.2 of Ch. 3.1
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As with the synthetic data, we start with the low-frequency inversions. Figure 7.1 shows
the inversion results of the environmental parameters for LF chirps, sampled at different
frequencies (2 Hz, 10 Hz, and 20 Hz). We focus on those source–receiver ranges for
which the discrete modes are known to contain sufficient information about the acoustic
field, as discussed in Appendix D.2.2. These are ranges larger than 1 km (see Fig. D.4 in
Appendix D.2.2).

Spatial averaging has been applied to the parameter estimates over approximately 30 m,
accounting for six inversion results, which are the parameter estimates with the lowest cost,
at subsequent receiver locations. This is a compromise between accuracy and the reduction
of noise. Here, the averaged results of the 2-Hz sampling are considered as reference. They
are plotted as colored dots, with the color indicating the cost C of the best fit. Results of
the inversion with a 10- and 20-Hz sampling are given as black and red lines, respectively.

From the comparison of the three sampling rates, it is seen that the results are in good
agreement for most of the estimated parameters. However, less sensitive parameters, such
as densities, benefit from a larger number of frequencies.

The influence of the amount of frequencies accounted for is also visible in Fig. 7.2.
This figure compares the acoustic pressure fields estimated in the RUN 2 environment
with the measured ones. Measurements are available with a 1-Hz sampling, while the
estimates either use a 10-Hz or 2-Hz sampling. In both cases, the pressure fields modeled
by the inverted data show patterns closely approximating those observed in the measured
data. However, the data show finer structures than the estimates can represent. These
differences in the resolution between the modeled and measured pressure fields appear to be
only marginally dependend on the sample rate, since similar patterns are found for the 10-
and 2-Hz sampling. Rather, limitations of the model at short ranges are expected to cause
this slightly coarser resolution. From these results, no clear decision in favor of the 10-Hz
or 2-Hz sampling can be made. Finally, the 10-Hz sampling is chosen as a compromise
between efficiency and accuracy.

The following comparison of the low-frequency results to mid-frequency results is meant
to provide information on the additional value of the mid-frequency inversions, either in
form of chirps or multi-tones. The 800-1600 Hz mid-frequency chirps have been sampled
at 10-Hz intervals, thus employing 80 frequencies. The results, which have also been
spatially averaged over approximately 30 m, are presented by the black lines in Fig. 7.3.
Again, the results of the inverted 2-Hz sampled low-frequency chirps, which are the colored
dots taken from Fig. 7.1, are given as reference. Clearly, deviations between the low- and
mid-frequency results are observed in all parameters. Especially noticeable are the values
estimated for the densities of the sediment ρs and of the subbottom ρb. Densities of the
subbottom, in general, should be higher than those of the sediments. However, this is not
the case in the inversions applying the mid-frequency data. This might be due to unknown
source characteristics such as directivity at the mid-frequencies. A further comparison with
the multi-tone inversions (Fig. 7.3, red lines), which contain both low- and mid-frequency
information, confirms deviations in the inversion results, when employing mid-frequency
signals. From these results an additional contribution of the mid-frequency inversions can
neither be confirmed nor rejected. In the following, we therefore focus on the inversion
of LF chirps, using the same inversion strategy as favored for the synthetic data (see
Table 7.1).
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Figure 7.2: Measured (a) and inverted (b and c) pressure fields of RUN 2. Measurements in (a) have

a 1-Hz step in frequency. The pressure fields in (b) and (c) are based on a 10-Hz and a 2-Hz sampling,

respectively. Due to high computational efforts associated with the 2-Hz sampling, a smaller dataset

has been considered.

The results of the real LF data inversion at the RUN 2 location under application of the
setting in Table 7.1 and 10-Hz sampling are shown in Figs. 7.4 and 7.5. They are compared
to the corresponding results of the synthetic data inversion, provided in Figs. 6.2 and 6.7.

Figure 7.4 displays the lowest costs per generation when the setting described in Ta-
ble 7.1 is applied. As a result of the presence of noise, the level of costs appears to be
higher for the real data (red) than for the synthetic data (black). However, the cost func-
tion already converges at 400 generations and additional generations will contribute to a
minor decrease in the costs only. This is an aspect in favor of using the setting given in
Table 7.1. To further decide on this, the inversion results of the environmental parameters
are investigated with regard to their quality. An interpretation of the inverted sediment
parameter values follows in Ch. 7.2.
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Figure 7.3: Comparison between averaged geoacoustic inversion results from low-frequency chirps,

sampled at 2 Hz (colored dots, with color indicating the costs C) to those obtained from either mid-

frequency chirps, sampled at 10 Hz (black line) or 32-frequency multi-tones (red line).
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Figure 7.4: Convergency behavior of the cost function of RUN 2 for inversions of synthetic data

(black line, repeated from Fig. 6.2) and real data (red line). Both results correspond to a source–

receiver range of 1400 m.
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Figure 7.5: Averaged environmental parameters between locations ST3 and ST7 estimated by geoa-

coustic inversion of the 300–800 Hz LF synthetic (red squares) and real (colored dots, with color in-

dicating the costs C) chirp signals, sampled at 10 Hz. Errorbars showing a single standard deviation

are also given for real LF inversions.

Figure 7.5 shows the inverted environmental parameters of the 10-Hz sampled LF data
for both the real scenario (colored dots) and the synthetic one (red squares).4 It is evident
from this figure that the magnitude of agreement between a real estimate and the corre-
sponding synthetic estimate varies per parameter. A possible cause could be the sensitivity
of the environmental model to particular parameters. A lower sensitivity regarding the se-
diment density ρs, the subbottom density ρb, and the attenuation in the subbottom αb has
already been indicated by the synthetic inversion. The errorbars plotted for the real data,
which represent a single standard deviation, confirm the large variation in the inversion
results of these three parameters.

However, not all of the estimates of the synthetic inversion fall into this margin of a single
standard deviation. The sediment density decreases in the real scenario with decreasing
range and reaches a value far lower than that estimated in the synthetic inversion at 1200-
m range. Nevertheless, such a decrease in ρs is expected according to [60] since the
sound speed in the sediment cs is also decreasing. Furthermore, according to Table A.2 in
Appendix A, which is derived from [60–62], this large span of sediment densities for fine
grained sediments (Mz ≤ 9φ) has also been observed at other sites.

Parameters for which the model is more sensitive, such as the water depth hw, the
sediment thickness hs, the attenuation αs and sound speed cs of the sediment layer, and
especially the sound speed cb of the subbottom, show smaller standard deviations. For
these parameters, also the differences between the real and the synthetic estimates often
lie within a single standard deviation and larger deviations are limited to single locations.
An exception forms the subbottom sound speed cb, whose real and synthetic estimates
differ by approximately twice the standard deviation. Still, these differences are small for
cb, compared to all other parameter estimates.

4Note that the colored dots in Fig. 7.5 represent the same inversion results as the black line in Fig. 7.1.
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Differences between the synthetic and real data inversion results might be related to
the assumptions made for creating the synthetic data, including the choice of the initial
values as listed in Fig. 6.1. The synthetic environment is an approximation to the real
environment at the location where the receiving unit starts to drift, which corresponds to
about 1600 m source–receiver range. This environmental description, under the assumption
of range independence, is kept the same at all locations at which synthetic data are created.
Whereas in reality, the receiving unit drifts off the straight path between its initial position
and the stationary source (Fig. 7.6), resulting in the environment to change slightly for each
scenario to be inverted. In the following, such changes in the environment are confirmed
by independent hydrographic data.

7.1.2 Confirmation by hydrographic data

For some of the parameters describing the acoustic field, independent measurements exist
from a hydrographic survey (Ch. 3.1). These data mainly concern the measurement ge-
ometry rather than environmental parameters, which are the focus of the current chapter.
Still, the hydrographic survey provides valuable information on the quality of the inversion
strategy and its results.

The independent measurements available include depth information of the seafloor as
well as depth values of the source and receiver. In the following, depth measurements from
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the 12 kHz SBES survey and the source and receiver geometry from pressure sensors are
considered for comparison with the inverted data. Pressure measurements at the receiver
location have been performed for hydrophone 1 and 4, each about 1 m above the actual
hydrophone depth. These measurements are in situ measurements, whereas the pressure
at the source location is measured at a single time at the beginning of RUN 2, only. Here,
the pressure sensor is located in between the MF-source and the LF-source.

Figure 7.6 shows the locations at which hydrographic information is available. The posi-
tions of the source and receiver are given as black crosses and black dots, respectively, and
the locations of the SBES depth measurements are given as gray dots. Depth measure-
ments considered here are those which lie closest to the RUN 2 location. It is clearly seen
that the distance between the SBES and the receiver increases with the source–receiver
range. Figure 7.7, which displays the actual distance between the receiving array and the
closest depth measurement, shows that these distances reach values up to 95 m. This has
to be considered when comparing the inversion results and the hydrographic data.

Figure 7.8 shows the actual comparison between the inverted values and the hydro-
graphic data. From top to bottom, these lines give the depths of the upper receiver
(hydrophone 4), the lowest receiver (hydrophone 1), the source, and the seafloor. While
the black lines indicate the inversion results at the lowest costs, the gray lines give the
corresponding data obtained from the hydrographic survey. For both receivers, a displace-
ment is seen in the receiver depth. It appears to be nearly constant at source–receiver
ranges larger than 1075 m, matching the approximate 1-m offset between hydrophone and
pressure sensor. Considering this offset between the hydrophones and pressure sensors,
outliers at 1400 m and 1540 m are indicated in the inversion results. What seems to be a
better fit in the receiver depths of both hydrophones between 1000 m and 1075 m range, in
reality does not match this offset of the pressure sensors. Deviations at these short ranges
might be related to an issue discussed in Appendix D.2.2. In Appendix D.2.2 it is shown
that measurements at short ranges suffer from only little interaction of the acoustic signal
with the sea bottom when using the current measurement configuration. Especially ranges
below 1000 m are affected and to a smaller extent also ranges up to 1075 m. Parameter
estimates at these ranges are expected to differ from the real values. This is confirmed by
the estimates of the source depth and water depth being more noisy at these short ranges.

Estimates of the source depth obtained from the LF data are slightly lower than the
value obtained from the pressure sensor. Again, this is expected due to the arrangement of
components within the array, being from top to bottom the MF source, the pressure sensor,
and the LF source. Here, no clear offset between the estimates and the hydrographic data
is seen since for the pressure sensor only a single measurement exists.

For ranges larger than 1075 m, the estimated water depths and the corresponding data
are in good agreement. Other than for the receiver depth, however, the pattern of the
estimated water depth and of the related SBES measurements differ slightly at all ranges,
especially at large ranges. This might be due to the different locations at which the
measurements are obtained, as shown in Figs. 7.6 and 7.7. In addition, differences in
penetration depth of both the SBES signals and chirps used for geoacoustic inversion have
to be considered. This might lead to different structures being revealed from both systems.

Considering all these aspects, a good agreement between the independent hydrographic
measurements and the inversion results has been obtained, which confirms the chosen
inversion strategy to be appropriate.
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Figure 7.9: Matched filtered signals, from left to right, of RUN 2 (a), RUN 3 (b), and RUN 5 (c).

7.2 The effect of environmental variability on the inversion results

The sediment type is known to be related to environmental parameters such as the sediment
sound speed, density, and attenuation [1, 60], which form the basis of the environmental
model employed for geoacoustic inversion. Variations in the environmental parameters,
however, are not necessarily forced by changes in the sediment type. Other causes might
be the presence of gas in the sediment or a variable layer thickness. Their effect on the
estimates need to be fully understood when deducing sediment type from the inverted
parameters.

Both, the sediment type related effects on the inversion results and those effects re-
lated to other environmental properties are investigated in this chapter. For this purpose,
geoacoustic inversion of real data is performed at different locations in the MREA/BP’07
area, representing different environmental conditions. In total, three locations are consid-
ered for the current analysis. The related runs are listed in Tables 3.2 and 3.3 of Ch. 3.1.
They are RUN 2 and RUN 3, both located in the deeper part of the MREA/BP’07 area
at approximately 100 m water depth, as well as RUN 5, representing a shallower part of
the environment at approximately 50 m water depth. In all cases, the source is staying
stationary and the receiving array is drifting toward the source. A first indication of the
variability of the acoustic signals is given in Fig. 7.9, which shows the matched filtered
received signals of the three runs versus range. However, it should be noticed that beside
environmental differences also differences in the source–receiver range occur.

The inversion strategy is taken conform Table 7.1. The parameters to be inverted
are the same as for the synthetic inversions, including both geometrical parameters and
environmental parameters of the water column, sediment layer, and subbottom.

7.2.1 Very soft sediments and the presence of gas

Throughout the entire MREA/BP’07 area, soft sediments are present. However, grain sizes
of 10 φ and more, as present in the deeper part of the area, are of special interest since
they are often not accounted for in environmental models.

In Ch. 7.1, it is already shown that the inversion strategy found for synthetic data is
applicable to the very soft sediments associated with RUN 2. Here, a second transect,
RUN 3, is considered for comparison. It is taken at a nearby location with similar depth
and sediment composition. Results of the inverted environmental parameters at the RUN 2
transect, which have been presented in Fig. 7.5, are repeated in Fig. 7.10. Those of RUN 3
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Figure 7.10: Results of the LF chirp inversions for RUN 2, averaged over approximately 30 m.
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which are associated with the occurrence of gas.
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Figure 7.11: Results of the LF chirp inversions for RUN 3, averaged over approximately 30 m. The
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Figure 7.12: Locations of the geoacoustic inversion runs on top of the seismic profile of the AB

transect as reproduced from Fig. 3.7(a). The red frames indicate regions with decreased sound speed

estimates obtained from the geoacoustic inversion in Figs. 7.10 and 7.11.

are presented in Fig. 7.11. It should be noted that both runs cover different ranges rGPS
between the source and receiver5 , leaving only a small window of 1550–1620 m for the actual
comparison. Parameters estimated within this window are underlaid with gray boxes.

In both cases, the water depth, the sediment thickness, and both sound speeds show a
consistent behavior, as already expected from the synthetic inversions (Ch. 6.2.2). Other
parameters, such as densities and attenuations show a larger variation among adjacent
positions and a trend could only be observed after averaging over approximately 30 m.

In general, inversion results for the two similar environments are in agreement. However,
estimates differ in detail. Slight differences in the sediment thickness hs and in the water
depth hw represent variations in the structure of the sea bottom that are also visible in
the hydrographic data. Furthermore, sediment sound speed estimates reach two distinct
levels, one at approximately 1460 m/s and the other around 1475 m/s. These values are
obtained at both sites. However, the source–receiver range at which they appear differs.
In the RUN 2 environment, low sediment sound speeds are observed at locations close
to the source and high values are seen at ranges around 1600 m. For RUN 3 sediment
sound speeds around 1600 m range are low, instead. They increase in the center part of
RUN 3 and again reach the lower level around 1740 m range. Such a decrease in sound
speed might be related to the presence of gas in the sediment. To further investigate this,
a seismic profile, representative for the two locations, is considered for comparison. It is
given in Fig. 7.12. In this figure, the particular source and receiver positions projected on
the seismic transect are indicated and the regions for which low sediment sound speeds
around 1460 m/s are found are highlighted by red frames. From the extended reflections in
this seismic profile, large parts of the sea bottom at the site of RUN 2 are known to contain

5The source–receiver ranges are available from the two GPS antennas available at the NRV Leonardo,
carrying the source, and the RHIB, carrying the receiver. Locations of the GPS antennas differ from those
of the source and receiver. However, ranges rGPS obtained from the GPS measurements are close to the
exact ranges.
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gas. These coincide with the low estimates of the sediment sound speed, marked by the
red frames. This is not the case for RUN 3. No gas is seen in the seismic profile, while
the sound speed is low at two different parts of the transect. However, while RUN 2 was
performed on almost the same transect as covered by the seismic measurements, RUN 3
touches this transect only at its largest range. For shorter source–receiver ranges of RUN 3,
the receiving array drifts further away from the seismic profile. Therefore, no evidence of
the presence or absence of gas is available in the seismic profile for the RUN 3 location.
Still, Fig. 7.12 shows that gas is present at several surrounding locations. Based on this
and on the observations for RUN 2, it is concluded that also RUN 3 shows evidence of gas.

7.2.2 Environments with a thick sediment layer

The upper sediment layer of the MREA/BP’07 area shows a large variation in thickness,
ranging from a few meters to several tens of meters. Environments treated so far have a
considerably thin layer of soft sediments on top of an even finer subbottom. The current
section is dedicated to the sediment layers with thicknesses of over 40 m, which are found
in the shallow part of the trial area. Opposite to the high variability in sediment thickness,
the variation of the sediment type throughout the trial area is rather small and both thin
sediment layers as well as thick sediment layers are composed of fine grained sediments.
Regardless of the prevailing grain size, the presence of a thick sediment layer poses an
additional challenge to the inversions and might require an adaptation of both the environ-
mental model and inversion strategy. Its influence on the inversion results is investigated in
the following, employing data associated with RUN 5 and comparing the results to those
of the RUN 2 and RUN 3 inversions as described in Ch. 7.2.1.
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Figure 7.14: Measured (a) and inverted (b) pressure fields of RUN 5. In (b) the pressure field is

modeled using the high values for the sediment attenuation as obtained from geoacoustic inversion

(αs ≈ 1 dB/λ).
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Figure 7.15: Inverted pressure fields of RUN 5. The pressure fields shown in (c) are modeled

similarly to those in Fig 7.14(b), however with the attenuation kept constant at αs = 0.2. The basis

for (d) forms an environmental model containing an additional virtual layer.
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Due to the similarity in grain size6 , results of RUN 2, 3, and 5 are expected to be
similar at least for the parameters related to the sediment type, which are the density,
attenuation, and sound speed. However, we have to note that the source–receiver ranges
at the three sites differ. Especially, the RUN 5 data are obtained at very short ranges of
less than 1000 m. This leaves us with another challenge since sufficient interaction with
the sea bottom at these ranges is available at a small angular range, only. Subject to
considerations in Appendix D.2.2 regarding these limitations, we finally decided to focus
on the ranges larger than 900 m. Still, several issues were experienced in the inversion of
the thick sediment layer at these ranges. They have been tackled from different directions,
however, could not be fully solved, yet. In the following, the steps taken up to now are
described. Further investigation and possible adjustment of the environmental model is
needed.

The environmental model at locations with a thick sediment layer is adapted in terms
of modeling the sediment sound speed. For environments with a thin layer of sediment,
a gradient in the sediment sound speed is used. Such a gradient might be realistic for
the upper part of a thick sediment layer as well. However, it might result in unrealistic
high values, when continued throughout the entire sediment body. In the first instance, a
constant sound speed is chosen for the entire sediment layer. The results of the inversion
using a single constant sound speed are presented in Fig. 7.13. In order to still being able
to account for depth dependent changes in the sound speed, a stepwise constant sound
speed profile, consisting of two or more sound speed estimates, might be appropriate.
Investigations toward this, however, could not reveal any benefits of such an extended
model for the current dataset. Therefore, we concentrate on a single constant sound speed
in the sediment layer.

Despite the short ranges, realistic estimates of the depth hw and sediment thickness
hs are obtained from the inversions. Estimates of these two parameters, as given in
Fig. 7.13, are similar to values observed from the hydrographic survey. Parameter
estimates of the subbottom also show good results as can be seen in a comparison
with the values obtained for RUN 2 and RUN 3 in Figs. 7.10 and 7.11. Other than
the estimates at the two locations with a thin sediment layer, the estimates of the
sediment sound speed cs for the environment with a thick sediment layer lie just above
the sound speed of water. According to [60], these are common values for silty clay
environments as present at this location. Two other parameters of the sediment layer
are particularly noticeable: the density ρs and the attenuation αs. Density estimates of
the sediment layer exceed those of the subbottom, indicating that further adaptations
of the model are needed. Furthermore, the attenuation in the sediment layer reaches
unnatural high values. These suggest only little interaction of the acoustic signals with
the subbottom. However, this is not evident from the received matched-filtered signals
in Fig. 7.9(c), which rather show strong late arrivals. Also the estimates at ranges above
700 m are affected by this high attenuation as can be seen from a comparison of the
measured and modeled acoustic field in Fig. 7.14(a–b). Both, a lower attenuation and
a higher sound speed are known to provide stronger returns. In an attempt to obtain
a better match between the acoustic fields, the model has been recalculated using a
more realistic attenuation in the sediment layer of αs = 0.2 dB/λ. However, only little
improvement of the modeled acoustic field could be obtained, as can be seen in Fig. 7.15(c).

6Grain sizes at these three locations range from 9φ to 11φ, only.
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Figure 7.16: Schematic of the environmental model employing a virtual subbottom.

A better fit between the measured and modeled acoustic field might be obtained when
a larger angular range at the source is accounted for. The angular range accounted for in
the model is actually determined by the critical angle between the sediment layer and the
subbottom, as described in Appendix D.2.2. For the current environment, this critical angle
lies between 20◦ and 30◦ incident angle. Only angles below these values are considered
in the model. Limitations in the angular range can be overcome by the introduction of
a virtual subbottom with a large sound speed at a large depth. The actual subbottom
is then treated as an additional layer, as schematized in Fig. 7.16. This, however, comes
at the price of higher computational costs. The modeled acoustic field employing such a
virtual subbottom is presented in Fig. 7.15(d). Again, only little improvement is seen. This
might be due to the fact that, even when a virtual subbottom is applied, the estimates of
the sediment attenuation are close to the upper search boundary of 1 dB/λ. Here, further
research is required.

7.3 Conclusions

Despite the assumed additional uncertainty that is associated with real data, the inversion
strategy chosen based on the synthetic results turned out to be valid for real data as well.
Both, the amount of forward model calculations and the number of frequencies needed could
be determined by fast synthetic inversions. However, when applying the same strategy to
the real data, for most parameters averaging over a few subsequent estimates is needed to
indicate a clear trend.
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The optimal inversion strategy together with a 10-Hz sampling has then been applied
to three environments. It is shown that a large number of parameters can be inverted for
environments with a thin layer (hs < 10 m) of soft sediments. The model employed, which
is valid for grain sizes up to 9φ could be extended to grain sizes up to 11φ. Furthermore,
differences in the sound speed estimates of only 15 m/s could be distinguished, which are
assumed to be related to the presence of gas in the otherwise similar environments.

For environments with a thick sediment layer (hs > 45 m), both the environmental
description and the inversion strategy require adaptation. Here, the estimated parameter
values apparently describe only a minor part of the full signal return since estimates of
the attenuation are unrealistically high. Adaptations employed to the model so far could
not solve this problem. Due to the short source–receiver ranges available for this specific
situation, the application of a different model of the acoustic field such as a parabolic
equation model might be helpful. Hence, further research is needed.



An integrated environmental picture –
conclusions and perspectives 8
The objective of this thesis was to establish a three dimensional environmental picture
that would improve the understanding of the influence of sediment properties on acoustic
signals in shallow water. So far, various surveying and classification techniques have been
analyzed, each performing well in a specific domain. The current chapter is meant to
provide conclusions and recommendations on a possible combination of these techniques,
yielding more information than the separate approaches.

8.1 A combined survey

The analysis of various methods for classifying sea bottom sediments, as presented in
Chs. 4–7, has already indicated possible complementary aspects. Integrating their results
into a three dimensional environmental picture of the sea bottom will not only give a
better understanding of the acoustic behavior in certain environments, it will also allow
concluding on how the different environmental descriptions can support each other. For
efficiency reasons, an appropriate selection of the techniques to be combined is important.
In the following, we highlight some aspects that are advisable to be considered in the
selection process.

Hydrographic surveys performed by standard single- and multibeam echosounders, gen-
erally, employ frequencies in the range of a few tens to a few hundreds of kilohertz. These
are highly attenuated by the sediment layer and, therefore, allow for sensing the upper few
tens of centimeters of the sea bottom only. For the investigation of this upper part of the
sea bottom, in a first instance, MBES data were chosen above SBES data. This decision
was based on the larger coverage of the MBES and the fact that most of the variation
in signal strength that is due to changes in sediment type is observed at grazing angles.
Still, we have shown that signals from an SBES orientated in nadir direction are capable
for classifying a variety of different sediment types, by focusing on their shape rather than
on their amplitude. Moreover, the analysis of the SBES shape parameters and the MBES
backscatter strength independently indicated the existence of the same number of acoustic
classes. Although these acoustic classes cannot be linked directly, their distribution is in
good agreement. This is confirmed by a correlation analysis, providing a correlation coef-
ficient of 0.74, as documented in [63]. From this we can conclude that the classification
results based on these two different echosounder systems are interchangeable, dependent on
the data available. However, the classification results of the surficial part of the sediment
layer are found to require supplementary information for interpretation. Taking sediment
samples as ground truth is standardly applied. Here, we have shown that information on
the occurrence of gas is equally important.

Seismic systems operating at a few kilohertz penetrate the sediment much further than
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high-frequency echosounders. They provide information on the impedance contrast. This
reveals interfaces between sediment layers, from which the layer thickness can be inferred.
Also gas content, which decreases the sediment sound speed, can thus be extracted. While
often used independently and for different purposes, we have shown that echosounders
and seismic systems can complement each other. This is due to the fact that gas, which
apparently affects the acoustic signals of both systems, is only indirectly visible in the
echosounder signals. Basing the interpretation solely on the echosounder classification,
the existence of gas might be mistaken for larger grain sizes. Combining both techniques
could be realized under the same level of surveying efforts since low-frequency seismics and
high-frequency echosounding can be performed simultaneously along the same tracks.

Beside standard hydrographic systems, also dedicated source–receiver systems for ob-
serving the acoustic pressure field have been employed. Geoacoustic inversion of the acous-
tic pressure field is a feasible means for providing detailed information on environmental
parameters. Parameters that can be obtained in high quality are the water depth, sediment
thickness, and the sound speed in both the sediment and subbottom. While geoacoustic
inversion techniques are well suited for moderate sediment thicknesses, further research is
needed on absorbing properties of large sediment deposits. In order to allow for a fast
application at sea, sparse drifting arrays have been employed. In an attempt to compen-
sate their lack in spatial information, a large number of frequencies has been considered.
This, however, further increases the computational costs of the already demanding inver-
sion techniques. To gain practical applicability, we aimed at reducing these costs, while
still keeping an acceptable level of quality. It is shown that the efficiency of geoacoustic
inversion methods can be improved by selecting an optimal inversion strategy and defining
an optimal frequency range. Also employing an environmental picture for selecting areas
with a similar acoustic behavior would be beneficial.

The environmental picture obtained is provided in Fig. 8.1. The colored areas represent
the acoustic classes according to high-frequency systems (mainly MBES), interpolated over
the area under study. The highest backscatter strength is given in red, followed by yellow,
green, and blue for the lowest. The two- and three-colored regions indicate areas in which
two or three types of acoustic classes occur next to each other on a small scale. Information
obtained from grab samples is provided as a reference. The grabs are plotted as squares of
different sizes and colors. While the size reflects the mean grain size, the color represents
the sediment type according to Shepard (Fig. A.1). Also shown is the information extracted
from the seismic profiles, which are the lines of equal sediment thickness and shaded areas
indicating the presence of gas in both the sediment layer and/or subbottom. Due to sparse
sampling, regions in which no gas is shown have to be assessed with caution.The three
sites selected for geoacoustic inversion, here marked in red, are chosen such that they cover
different aspects of the environment.

8.2 Interpretation of the environmental picture

An investigation of the environmental picture in Fig. 8.1 reveals no direct link between
the acoustic classes and the bottom type or mean grain size, although the echosounder
signals are known to contain information on the grain size. Instead, it is revealed that
the echosounder signals contain more complex information on the environment. Figure 8.1
indicates an analogy between the presence of gas in the sediment and an increased MBES
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backscatter strength, as already assumed in Ch. 5. Furthermore, information on structures
of the seafloor are contained in the echosounder signals. We have shown the ability of
the Bayesian approach (see Ch. 5), when applied to the MBES backscatter strength, to
reveal these structures. In the environmental picture they form separate classes, indicating
a distinct acoustic behavior. These classes are marked by two- or three-colored areas. For
example, a regular structure, possibly related to the ocean current in the Ombrone estuary,
is present in two-colored blue-green area of Fig. 8.1. It is revealed in both the slope map
(Fig. 3.5) and the MBES backscatter classes (Fig. 5.5).

The consistency between the environmental characterization obtained from the MBES,
SBES, and seismic measurements is such that we conclude that a combined map as pre-
sented in Fig. 8.1 can serve as a basis for subseafloor sediment classification techniques
such as geoacoustic inversion. The inversion results are shown to be consistent for similar
hydrographic classes at the single sites and, at the same time, variable with changes in
the environment observed by the hydrographic survey. Especially, sediment sound speed
estimates showed a high correlation with the gas found in the sediment body. Gas patches
could be resolved with about the same order of detail as in the seismic profiles. However,
due to limitations in time and resources, an agreement between the classification based on
the hydrographic survey and the inversion results could be confirmed only for a small part
of the MREA/BP’07 area. Here, a similar investigation for additional locations is needed.

So far the following can be concluded: the variability of the inversion results
(Figs. 7.10, 7.11, and 7.13) within a single acoustic class (Fig. 8.1), found from the hy-
drographic survey, is mainly due to variations in the gas content, the water depth, and
the sediment thickness. All three have to be accounted for when choosing locations for
geoacoustic inversion based on a hydrographic survey.

8.3 Perspective

The combined approach presented for environmental classification and mapping is in princi-
ple directly applicable. However, some issues need to be addressed in future work. Model-
based classification approaches need to be extended for both very small and very large
grain sizes by establishing empirical relations between these grain sizes and acoustic prop-
agation effects. Furthermore, including empirical relations for the acoustic behavior in
gaseous environments is highly recommendable. Additional investigations of other non-
standard environments are also needed. Especially, the effect of thick sediment layers on
the geoacoustic inversion results requires further research.

The classification approaches presented in this thesis are mainly based on standard
sediment classes as defined, for example, in the nomenclature of Wentworth (see App. A).
However, offshore industry has a major interest in particular grain sizes. For this purpose,
analyzing the possible refinement of the standard sediment classes would be of interest. In
principle, a refinement of the acoustic classes is possible. Whether these sub-classes indeed
can be related to refined sediment grain sizes needs further investigation. For this purpose,
it is recommendable to support the SBES or MBES data with additional information on
the sediment, as obtained from the seismics. This would allow for a correct interpretation
of the acoustic signal and consequently for a correct derivation of mean grain size.
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Figure 8.1: Environmental picture of the MREA/BP07 area obtained by merging the results from

different devices (MBES, SBES, and seismic). Colors indicate the high-frequency acoustic classes.

Shaded regions indicate the presence of gas, as deduced from seismic profiles. The sediment thick-

ness, also obtained from the seismics, is given as lines of equal thickness (white lines) in steps of 10

m, starting at 5 m. Furthermore, the sites at which geoacoustic inversion is applied are marked in red.

Squares represent the grab samples, providing the mean grain size (size) and sediment type (color).



Sediment characteristics A
Sediment properties are commonly determined by analyzing samples. In classic sediment
classification, sediment types are distinguished by a large quantity of versatile criteria,
describing both the properties of single grains and their grain-to-grain relation within the
sediment body [64]. Most of these criteria are optically differentiable, such as texture and
color of the sediment matrix. However, some of these parameters are also captured by sound
and are therefore relevant for acoustic sediment classification. Basically, the parameters of
interest are the particle size and composition. In case of sound penetrating deeper than a
few centimeters into the sediment body also bulk properties become important.

A.1 Sampling and analysis

Sea bottom sediments are either collected in form of grab or core samples. Whereas
grab samples, for example taken by a Hamon or Van der Veen grabber, collect sediments
from the upper few tens of centimeters only, core samples provide insight into the deeper
sediment body. Cores, contrary to grab samples, preserve the structure of the sea bottom.
This enables the identification of sediment layers and the determination of bulk properties.
The standard property obtained from both grab and core samples, however, is the sediment
composition.

For obtaining the sediment composition, the laboratory analysis of the bottom material,
in general, comprises the following steps. First, the samples are dried. Then, they are sieved
in order to separate the gravel and shells from the finer material. Both the gravel and shell
weight percentage are subsequently determined. For the remaining material, the precise
grain size distribution, as further described in A.2, is determined by optical microscopy.
From these, sediment types can be determined.

A.2 Sediment type definitions

A standard criterion to discriminate between different types of sediments is their grain size.
Grain size is either given in millimeter or φ units, which are related according to

d = − log2D. (A.1)

Here, D denotes the grain diameter in millimeters and d is the corresponding value in φ
units. For the description of the different grain sizes, we follow the nomenclature of [65],
as given in Table A.1.

In general, sea bottom sediment material is a composite. Hence, different grain di-
ameters are present, even at a single location. Therefore, often a mean grain size (Mz),
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Table A.1: Sediment grain sizes according to Wentworth [65].

d [φ] maximum diameter [mm] sediment

-1–0 2 very coarse sand

0–1 1 coarse sand

1–2 1/2 medium sand

2–3 1/4 fine sand

3–4 1/8 very fine sand

4–8 1/16 silt

8–10 1/256 clay

>10 1/1000 colloid

derived from the grain size distribution, is referred to. Different definitions of mean grain
sizes exist, relating Mz to one or more thresholds dp for grain diameters. A threshold dp
indicates the grain size in φ-value at which p% of the grains are smaller by weight.

The simplest definition of Mz is given by the d50 value of the sediment composition,
which is the median diameter. Other conventional definitions average over different values
dp, weighted by factors ap where appropriate.

Mz =

∑
p apdp∑
p ap

(A.2)

Folk [66], for example, suggested the unweighted average of the d16, d50, and d84 thresholds,
as given in Eq. A.3.

Mz =
d16 + d50 + d84

3
(A.3)

Similar definitions are given in [67] or are applied by [16].
For describing sediment compositions, Folk also introduced a nomenclature based on the

ratios of gravel, sand, and mud. They are presented in the ternary diagram of Fig. A.1(a),
reproduced from [68]. Several extensions for the small grain sizes exist [64, 69], based on
the ratios of sand, silt, and clay. We follow the one recommended by [69], as documented
in the ternary diagram of Fig. A.1(b). These grain ratios can be related to Mz values by
empirical relations, as given in [40].
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A.3 Sediment properties affecting acoustic signals

Beside grain size, a large number of related parameters affect sound propagation. These
parameters are either roughness-related properties or bulk properties, such as porosity, den-
sity, sound speed of the compressional and shear waves7 , and the reflection coefficient, as
listed in [1]. Following [1], the relation between mean grain size and other bulk properties
is given in Table A.2. Here, we focus on those properties which are input to the acoustic
models employed in this thesis: the density ρs, the compressional speed cs, and the atten-
uation αs. Instead of providing a single value for the expected order of magnitude as given
in [1], we roughly indicate parameter ranges adopted from [60–62].

Table A.2: Relation between mean grain size and other bulk properties, derived from [60–62].

Mz [φ] ρs [g/cm
3] cs [m/s] αs [dB/λ]

1 1.95-2.15 1800-1880 0.468–1.090

2 1.90-2.15 1740-1840 0.487–1.104

3 1.70-2.05 1640-1820 0.607–1.310

4 1.65-2.00 1600-1750 0.896–1.453

5 1.50-1.95 1560-1720 0.312–1.376

6 1.35-1.90 1530-1650 0.138–0.561

7 1.30-1.75 1510-1600 0.076–0.320

8 1.25-1.70 1490-1560 0.060–0.265

9 1.15-1.65 1480-1540 0.044–0.231

10 1.15-1.55 1470-1530 0.044–0.229

7Shear waves are not accounted for since we treat the sediment layer as a fluid (see Appendix C).



Previous samples taken in the research areas B
B.1 Sediments in the MREA/BP’07 area

The MREA/BP’07 area has already been in the focus of several former experiments. From
these, a collection of core samples is available, supplementing the information on the
sediment distributions obtained from the recently taken grab samples (Ch. 3.1.3).The core
locations and according sediment profiles are displayed in Fig. B.1. Even if taken at different
times and outside the MREA/BP’07 area, the cores are still seen to be representative for
the entire area. In the upper part, the profiles show similar distributions as evident from the
grab samples. Sediments mainly consist of portions silt and clay, with a tendency toward
increased clay fractions in regions with a larger water depth, whereas silt dominates in the
shallower parts. Cores in the vicinity of others show only slight variations in their content.
Most profiles are consistent throughout the different heights in the sediment body. Only a
few profiles show additional sand fractions in their lower parts.
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B.2 Sediments in the CBBC’04 area

No cores are available for the CBBC’04 area. Instead, a geological map is presented in
Fig. B.2, which was taken from [34]. Currently available data from the CBBC’04 experiment
comprise the legs 3–6 in Fig. B.2. The large variety of sediment types indicated by the grab
samples taken in 2000 (Ch. 3.2.3) is confirmed by this map. Furthermore, it is seen that
no large variations occurred in the area under investigation. It can thus be concluded that
both the geological map and the grab samples are still representative for the experiment
conducted in 2004.
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Figure B.2: Overview of the sediment Folk classes in the trial area, taken from [34].





Environmental models C
Propagating sound is influenced by the properties and boundary conditions of the medium,
also referred to as the acoustic waveguide, it is traveling through. Media relevant for
underwater sound propagation are the water column8 and sediment body. For sea bot-
tom classification, especially the sound interactions with the water–sediment interface and
sediment body are important.

Numerous empirically derived environmental models exist that describe sound interaction
with these parts of the underwater environment. These models mainly differ in the degree
of detail accounted for. The choice of an adequate environmental description depends on
the frequency employed, which is directly related to the resolution. A higher frequency
entails a higher resolution, requiring a more detailed model.

Propagation concepts used throughout this thesis are briefly described in the following.
They have been adopted from [1, 40, 70–72].

C.1 Sound propagation in the water column

The direction in which sound propagates is mainly influenced by the sound speed and, of
course, the angle under which it is sent. Often, a standard value of 1500 m/s is used
for describing the sound speed in sea water. However, this is not always sufficient for
precise applications of underwater acoustics. Sound speed shows strong variations over
depth. Additionally, regional and annual variations occur. Empirical relations of different
complexity that couple water column sound speed to pressure (or depth hw), temperature
tw, and salinity sw are given for example by Medwin.

cw = 1449.2 + 4.6tw − 0.055t2w + 0.00029t3w
+(1.34− 0.01tw)(sw − 35) + 0.017hw (C.1)

Changes in sound speed cause refraction. This principle is described by Snel’s law for
incoming sound under an angle θ1 in a region with sound speed c1 that changes direction
into θ2 when penetrating a layer with different sound speed c2.

cos θ1
c1

=
cos θ2
c2

(C.2)

8The sound source is commonly placed in the water column. Exceptions, such as underwater acoustics
based on aircraft noise or the use of buried sources is not treated here.
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C.2 Sound interaction with the water–sediment interface and se-
diment body

Due to the saturation of the sediment with water, the sediment layer is treated as a fluid
layer. This restricts acoustic propagation to primary (compressional) waves.

At the water–sediment interface the acoustic impedance changes, due to the differences
in sound speed and density. Dependent on the frequency of the acoustic signal, part
of it is transmitted into the sediment body whereas the remainder is either reflected or
scattered at the water–sediment interface. This behavior is determined by the roughness
of the seafloor. A smooth, flat bottom will cause part of the acoustic signal to reflect,
whereas a rough bottom will cause scattering. In general, small-scale roughness with
dimensions in the order of the acoustic wavelength λ = c

f
or less causes scattering. Objects

larger than the wavelength, on the other hand, cause reflections. This means that at low
frequencies scattering becomes less important and the sediment body is often modeled as a
layered medium with an impedance contrast between two adjacent layers, whereas models
accounting for scattering are dominant at high frequencies.

Reflection theory comprises the reflection of a part of the signal and the transmission
of the remainder. How much of the signal is penetrating into the sediment is dependent
on the frequency and the angle of incidence and is described by the reflection coefficient
R and the transmission 1 + R. In general, the reflection coefficient is determined by

R =
ρ2c2 sin θ1 − ρ1c1 sin θ2
ρ2c2 sin θ1 + ρ1c1 sin θ2

. (C.3)

Due to the presence of sound speed differences, the transmitted signal is refracted according
to Snel’s law (Eq. C.2). In cases where the sound speed of the undelying medium is higher,
a critical angle of incidence θc exists up to which total reflection (R = 1) holds. This
critical angle is defined by

θc = arccos
c1
c2
. (C.4)

In cases where the sound speed of the underlying medium is lower and where ρ2c2 > ρ1c1
holds, additionally, an angle of intromission θ0 exists, at which no reflection occurs (R=0).
The angle of intromission is defined by

θ0 = arctan

√√√√√√ 1−
(

c2
c1

)2

(
ρ2c2
ρ1c1

)2

− 1
. (C.5)

In cases where the assumption of an ideal flat bottom is no longer sufficient, the part
of the signal not penetrating into the sediment layer is modeled as being scattered. A
simple model for scattering is Lambert’s law. According to Lambert’s law, the strength of
a scattered signal that was sent under a certain angle θ∗ and is received under the same
angle becomes

SbLambert
(θ∗) = 10 log10 μ+ 10 log10 sin

2 θ∗, (C.6)

with μ being the bottom scattering constant and θ∗ = 90◦ − θ the grazing angle of
incidence. Sb is also referred to as the backscatter strength.
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Table C.1: Model parameters of the backscatter cross section and their symbols.

Parameter Symbol

Sediment - water ratio of mass density ρ

Sediment - water ratio of sound speed ν

Imaginary to real wave number ratio δ

Exponent of the bottom relief spectrum γ

Strength of the bottom relief spectrum [cm4] w2

Sediment volume scattering cross section to attenuation coefficient ratio σ2

More detailed models account for variations in the backscatter strength dependent on
the grain size and angle. The model described in [40], which is used throughout this thesis,
additionally distinguishes between the backscatter cross section due to interface roughness
scattering σr and the one due to volume scattering σv. The total scattering cross section
σb is then expressed as

σb(θ
∗) = σr(θ

∗) + σv(θ
∗). (C.7)

The backscatter strength, which is the decibel equivalent of the scattering cross section,
reads

SbAPL
(θ∗) = 10 log10(σb(θ

∗)). (C.8)

This model involves six environmental parameters to determine σr and σv, which are
listed in Table C.1. The backscatter cross section due to interface roughness scattering σr

is obtained by appropriate combination and interpolation of the three following approxima-
tions:

(1) the Kirchhoff approximation σkr,

(2) the composite roughness approximation σcr, and

(3) the large-roughness scattering with a scattering cross section σlr.

The Kirchhoff approximation and composite roughness approximation are both valid for
smooth to moderately rough sediments up to sand-sized grains (< 2 mm, see Table A.1).
However, they cover different angular ranges. Approximating the scattered field by perfect
reflection restricts the validity of the Kirchhoff approximation to angles close to nadir. In
praxis, σkr is set to zero for angles of incidence smaller than 40◦. For these grazing angles,
σcr is used instead. This composite roughness approximation incorporates a shadowing
correction S(θ∗, s) and a slope averaging integral F (θ∗, σpr, s), with s being the root
mean square slope and σpr a small-roughness perturbation approximation of the roughness
scattering cross section. An interpolation of σkr and σcr describes the medium-roughness
scattering, which is combined with the large-roughness scattering to determine σr. The
cross section of the large-roughness scattering σlr is calculated from an empirical expression
which is derived for rough sediments like gravel and rock (grain sizes > 2 mm).
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The description of the backscatter cross section due to volume scattering σv, as given in
[40], is factorized similar to the composite roughness approximation, containing a shadowing
correction S(θ∗, s) and a slope averaging integral F (θ∗, σpv, s). Here, σpv describes the
following approximation of the volume scattering cross section.

σpv(θ
∗) =

5δσ2 |1−R2(θ∗)|2 sin2(θ∗)

ν ln 10 |P (θ∗)|2 Im{P (θ∗)} (C.9)

The parameters comprised are listed in Table C.1. Here, Im denotes the imaginary part.
Further, the reflection coefficient R is given in Eq. C.3 and P can be expressed as

P =
√
κ2 − cos2 θ∗,with (C.10)

κ =
1

ν
(1 + iδ) (C.11)

For more details we refer to [40].
Typical empirical parameter values for grain sizes between −1 φ and 9 φ are given in

Table C.2. Employing these values to determine σr and σv provides a distinct and angular
dependent model description of the backscatter strength for these grain sizes (Eq. C.8).
Figure C.1 gives an extraction of the model results.

In general, the backscatter strength decreases from nadir direction to grazing angles.
This is also reflected in the model, as can be seen from Fig. C.1. Additionally, a variation
of the backscatter strength related to the grain size is included in the model. As expected,
smoother bottoms are modeled such that a large part of the intensity is reflected away
from the incoming direction at grazing angles. For larger grains, which are generally
associated with a rougher surface, the backscatter strength is larger than for soft sediments
at these grazing angles. The opposite, however, does not hold for all grain sizes at angles
close to nadir. Still, a rougher surface, results in larger roughness scattering, reducing
the backscatter strength close to nadir for the larger grain sizes. For mean grain sizes
Mz = −1φ to Mz = 5φ, this is the dominating factor. Therefore, the backscatter strength
close to nadir increases from Mz = −1φ to Mz = 5φ. At smaller grains, the difference
in roughness scattering is less pronounced. Instead, scattering of the compact volumes
becomes more important, again, directing large parts of the energy away from nadir and
resulting in lower backscatter strengths.
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Table C.2: Empirical values of the model parameters.

Mz [φ] ρ [-] ν [-] δ [-] γ [-] w2 [cm4] σ2 [-]

-1.0 2.492 1.337 0.0171 3.25 0.0129 0.002

0.0 2.314 1.278 0.0163 3.25 0.0086 0.002

1.0 2.151 1.224 0.0165 3.25 0.0056 0.002

2.0 1.615 1.140 0.0161 3.25 0.0035 0.002

3.0 1.339 1.080 0.0173 3.25 0.0021 0.002

4.0 1.223 1.036 0.0202 3.25 0.0011 0.002

5.0 1.169 1.000 0.0126 3.25 0.0005 0.002

6.0 1.149 0.987 0.0039 3.25 0.0005 0.001

7.0 1.147 0.985 0.0024 3.25 0.0005 0.001

8.0 1.146 0.982 0.0016 3.25 0.0005 0.001

9.0 1.145 0.980 0.0015 3.25 0.0005 0.001
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Figure C.1: Backscatter strength modeled according to [40], accounting for the interface roughness

scattering and volume scattering.





Modeling the acoustic field D
The propagation of sound within the acoustic field results in pressure changes, which are
described by the acoustic wave equation. Environmental conditions under which this wave
equation has to be solved are often described by empirical relations (see App. C) and are
included in terms of boundary conditions. [73]

The acoustic wave equation is a second order partial differential equation which is derived
from the basic equations of physics: the equations of continuity, motion, and state. [70]
It is often expressed in its linear, homogeneous form as

∇2p(�x, t)− 1

c2
∂2p(�x, t)

∂t2
= 0. (D.1)

Here, p is the unknown pressure in the acoustic field of a sound wave traveling at speed
c, at a location �x and time t. Further, ∇ is the Nabla operator and ∂ describes the
partial differential operator. Equation D.2 is the simplest form of the wave equation in
an environment with constant density. In case of a spatially variable density ρ, which is
common for a layered medium such as an underwater environment, the homogeneous wave
equation rather becomes

ρ∇ ·
(
1

ρ
∇p(�x, t)

)
− 1

c2
∂2p(�x, t)

∂t2
= 0. (D.2)

In active acoustics, additionally, a source term f(�x, t) has to be accounted for, repre-
senting the mass injected by the source at a location �x. This leads to the inhomogeneous
form of the wave equation.

ρ∇ ·
(
1

ρ
∇p(�x, t)

)
− 1

c2
∂2p(�x, t)

∂t2
= f(�x, t) (D.3)

Several techniques exist for solving this differential equation to determine p, under which
methods using ray tracing, parabolic equations, wave number integration, normal modes,
or finite elements. Each of these techniques has its strengths and weak points, making
it the most applicable within specific boundaries. Main selection criteria are the distance
between source and receiver, the frequencies employed, and whether the environment is
treated as range dependent or independent. Also efficiency is important.

In the following, a brief overview over these techniques and their field of application is
given. This information is gathered from [71, 73]. Further, the normal modes model, used
throughout this thesis, is described in more detail.
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D.1 Solving the acoustic wave equation

Solving the wave equation (Eq. D.3) directly is only possible by discretization of either the
wave equation (Finite Difference Method) or the environment (Finite Element Method).
Both methods are most general; they can deal with inhomogeneous environments, com-
plex geometries, and scattering. This, however, comes at the price of time-consuming
calculations. To gain numerical efficiency, Eq. D.3 is often simplified through assumptions
and approximations, thereby losing part of the generality. A common step is the Fourier
transform to a time-independent Helmholtz equation. [71]

ρ∇ ·
(
1

ρ
∇p(�x, ω)

)
+ k2p(�x, ω) = f(�x, ω) (D.4)

Here, k2 = ω2

c2(�x)
is the wave number and ω is the radial frequency.

Techniques for solving the Helmholtz equation either involve ray- or wave theory, depen-
dent on the frequency employed. Ray theory is better suited for high frequencies, whereas
wave theory is rather applied to low frequencies.

Models based on ray theory use Ray Tracing to determine the phase changes in the
acoustic field. For this purpose, amplitude and phase components are separated in Eq. D.4.
Ray tracing methods are fast and able to deal with range dependent environments. How-
ever, they have a lower accuracy and do not account for the source term.

Models based on wave theory include Wavenumber Integration Techniques (Fast Field
Programs), Normal Modes, and Parabolic Equations. Wavenumber Integration Techniques
provide a numerical solution of the acoustic field integral, whereas Normal Modes further
reduce the integral to a sum of residues. Both techniques are, in general, designed for range
independent environments, however, can be extended to variable environments. Parabolic
Equations, which provide an alternative approximation to the wave equation, also can cope
with range dependent environments.

D.2 Normal mode modeling

Normal mode modeling is based on the assumption of a cylindrically symmetric acoustic
field. Instead of using three-dimensional Cartesian coordinates, the acoustic pressure at
each location can then be expressed as a function of depth z and range r, only.

p(�x) → p(z, r) (D.5)

In the following, the source is assumed to be isotropic and located at r0 = 0 and z0 =
hsource, with hs being the source depth. Adding such a source to the cylindrically symmetric
acoustic field and utilizing the fact that the acoustic field must have the same harmonic time
dependence as the source, we obtain the following expression of the Helmholtz equation.

∂2p

∂r2
+

1

r

∂p

∂r
+

∂2p

∂z2
− 1

ρ

dρ

dz

∂p

∂z
+ k2p = −δ(r)δ(z − z0)

2πr
(D.6)

Using the concept of separation of variables, the pressure p is expressed as a product of the
functions Φ(z) and Θ(r), describing the depth- and range dependency, respectively. [59]

p(r, z) = Θ(r)Φ(z) (D.7)
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Replacing p in the homogeneous form of Eq. D.6 by this product, leads to the following
two differential equations.

d2Θ

dr2
+

1

r

dΘ

dr
+ aΘ = 0 (range dependent) (D.8)

d2Φ

dz2
− 1

ρ

dρ

dz

dΦ

dz
+ (k2(z)− a)Φ = 0 (depth dependent) (D.9)

Here, a denotes the unknown separation constant. The depth dependent equation (Eq. D.9)
is also denoted as modal equation. It has an infinite number (n = 1, ...,∞) of solutions
Φ = Φn for distinct values a = an.

In order to determine these solutions for the specific case of an underwater environ-
ment as defined in Fig. D.1, we consider the following mixed Dirichlet-Neumann boundary
conditions.

Φ(0) = 0 (D.10)

dΦ

dz
(ht) = 0 (D.11)

These boundary conditions describe a pressure release boundary at the sea surface (z = 0)
and a perfect rigid boundary at sufficiently great depth z = ht, respectively. The depth at
which the lower boundary is placed is chosen as ht = hw+hs+hb, dependent on the water
depth hw, the sediment thickness hs, and an assumed thickness of the subbottom hb, as
depicted in Fig D.1. The modal equation (Eq. D.9) together with the boundary conditions
(Eqs. D.10 and D.11) poses a Sturm-Liouville eigenvalue problem. This can be seen by
introducing the operator L as

L =
d2

dz2
− 1

ρ

dρ

dz

d

dz
+ k2(z). (D.12)

Eq. D.9 then becomes

LΦ(z) = aΦ(z), (D.13)

with a containing the monotone sequence of eigenvalues an = k2
n and Φ containing the

corresponding eigenfunctions Φn. Since the eigenfunctions form a complete orthonormal
set, the solution of the modal equation can be expressed as

p(r, z) =
∞∑
n=1

Θn(z)Φn(z). (D.14)

The solutions Θn are then determined analytically, dependent on the eigenfunctions Φn.
By inserting Eq. D.14 into the inhomogeneous Eq. D.6, we obtain

Θn(r) =
i

4ρ(z0)
Φn(z0)H

(1)
0 (knr), (D.15)

with H
(1)
0 the zeroth order Hankel function of the first kind.

Derived from Eqs. D.14 and D.15, the normal mode solution of the acoustic pressure
field then becomes

p(r, z) =
e

iπ
4

ρ(z0)
√
8πr

∞∑
n=1

Φn(z0)Φn(z)
eiknr√
kn

. (D.16)
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Figure D.1: The range-independent environment employed for normal modes modeling. The envi-

ronment consists of three layer, the water column, the sediment layer, and the subbottom halfspace.

For modeling purposes, a perfect rigid boundary at sufficiently great depth ht is inserted. Further,

the sound speed profile c, the density ρ, and the attenuation α are given for each of the three layers.

D.2.1 Normal modes in a lossy medium

Loss effects cause waves to abate. They are included in the model by adding a small
complex number to the wavenumber describing the wave.

eiknr → ei(kn+iαn)r = eiknr−αnr (D.17)

Here, αn is the sum of attenuation in all media the sound is propagating through. A lossy
pressure field is thus described by a combination of Eqs. D.18 and D.17.

p(r, z) =
e

iπ
4

ρ(z0)
√
8πr

∞∑
n=1

Φn(z0)Φn(z)
eiknr−αnr

√
kn

. (D.18)

D.2.2 The relevance of modes

The number of modes is infinite. For practical application, however, only a finite set of
modes can be determined. The selection of such a set of modes is guided by the knowledge
about their properties. These properties include monotonicity and completeness, which
imply convergency of the model. Starting at the first eigenfunction and adding the next
higher order mode will thus affect the accuracy of the model, only. Therefore, it is sufficient
to select the first few lower order modes, dependent on the accuracy required.
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continuous modes

discrete modes

critical 
angle

Figure D.2: Schematic of the occurrence of discrete and continuous modes dependent on the critical

angle.

The relevance of higher order modes is especially range dependent. For long-range
application, only a finite set of the first Nm modes is relevant to model the acoustic field.
These are the modes that correspond to sound rays interacting with the sea bottom at
angles smaller than the critical angle, for which total reflection can thus be assumed (see
App. C.2, Eq. C.4). Sound that is traveling at angles larger than the critical angle is
partly leaking into the sea bottom and is negligible at distances in the order of a kilometer
or larger. Modes corresponding to sound traveling at angles below the critical angle are
discrete modes, those traveling at angles above the critical angles are continuous modes.
A schematic is given in Fig. D.2. The discrete modes satisfy

ω

cb
< kn <

ω

cmin

, (D.19)

whereas for the continuous modes holds

0 < kn <
ω

cb
. (D.20)

In the following, we discuss the relevance of continuous modes in the near field, where
only few interactions with the sea bottom are expected and absorption by the sea bottom is
thus reduced. In order to investigate the effect of adding continuous modes to the model,
the reflection coefficient R is calculated according to Eq. C.3 for incident angles that are
larger than the critical angle. Environmental parameters relevant for the calculation of R
are taken according to Fig. D.1. Then, the overall reflection Ro is determined as

Ro(θ, r) = R(θ)NI(θ,r) (D.21)

for a series of ranges r, by accounting for the number of signal interactions NI with the
sea bottom. The number NI is determined according to Fig. D.3 as an equation of the
range r, the angle of incidence θ, the layer thickness H, the source depth hsource, and the
receiver depths hreceiver.

NI =
r · tan θ + hsource + hreceiver

2 ·H (D.22)

The total reflection is calculated under the assumption of an idealized environment with
the water column and sediment layer treated as a single layer. The results are given in
Fig. D.4. Considered are angles above 16◦, which is the critical angle for the environment
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Figure D.3: Visualization of the number of interactions NI of sound with the sediment–subbottom

interface, assuming a simplified model of the environment with the water column and sediment layer

treated as a single layer. Dependent on the angle of incidence θ and layer thickness H , NI can be

determined by equating D = r · tan θ with D = 2 · NI · H − hsource − hreceiver. Here, hsource and

hreceiver are the source and receiver depth respectively.
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described in Fig. D.1. It can be seen that beyond 1200 m the continuous modes have
hardly any effect on the acoustic field. At ranges between 400 m and 1200 m, however,
the lowest order continuous modes still reflect 50% of the acoustic signal. At even smaller
ranges, no interaction with the sea bottom is possible at grazing angles.

The first two data sets (RUN2 and RUN3) considered throughout this thesis feature a
similar environment as considered here. Furthermore, their relevant source–receiver ranges
are larger than 1000 m. The continuous modes can thus be neglected. This does not
hold for the third data set (RUN5), whose ranges lie between 350 m and 800 m. However,
environmental conditions are different at the site of RUN5 and calculations of Ro have to be
based on a different geometry and sediment properties. Still, it is evident from analogous
calculations of Ro that accounting for low order continuous modes might be beneficial for
the accuracy of the model.

Accounting for additional continuous modes can be conducted by adding an additional
virtual layer with high sound speed underneath the current 3-layer system. Increasing the
sound speed in the virtual subbottom results in an increased critical angle and, therefore,
a larger angular range containing the discrete modes. Additionally, the depth of the real
subbottom needs to be large, to avoid interference of the virtual subbottom with the
acoustic field. Large sound speed and a thick subbottom, however, are computationally
demanding. Therefore, careful deliberations are required about whether these efforts are
necessary at intermediate ranges.

D.2.3 Relations between the normal modes and the environment

By means of their phase velocity, normal modes can be assigned to sound waves passing
through a specific regime (layer) of the environment. These phase velocities have been
determined for a frequency of 500 Hz in the same environment as given in Fig. D.1, con-
ditions which are typically encountered throughout this thesis. The phase velocities of the
modes are provided in Fig. D.5 together with the sound speed in the environment. For this
configuration, in total twelve discrete modes are obtained, which are displayed in Fig. D.6.
As can be seen from Fig. D.5, only a single mode exists with a phase velocity between
the minimum and maximum sound speed in the sediment layer. This mode describes the
propagation within the sediment layer. The following 7 modes (modes 2-8) propagate in
the water column, with phase velocities that do not exceed the maximum sound speed of
the water column. They reflect at the water–sediment interface, but do not interact with
the sea surface. Modes 9-12 reach the sediment–subbottom interface, where they reflect
without penetrating into the subbottom.
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Figure D.5: Phase velocities cn = ω
kn

of the normal modes at 500 Hz (ω = 500 · 2 · π) of an under-

water environment as defined in Fig. D.1. Also given is the sound speed profile of the environment.
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Figure D.6: Normal modes of an underwater environment as defined in Fig. D.1.



Global optimization E
Model-based approaches for environmental classification require a physical description of
the environment, often depending on a large set of parameters. The challenge is to find
that parameter value combination from all possible ones that results in the optimal fit
between measurements and model predictions. This aim can be achieved by a successive
search of the parameter space by means of an optimization algorithm.

This Appendix is meant to give an overview over different types of optimization methods.
Since the physical models employed for describing the underwater environment are often
non-linear and local optima are likely, we focus on those optimization methods capable to
find the global optimum.

E.1 Overview of global optimization strategies

Global optimization strategies can be either deterministic or heuristic [74]. Standard deter-
ministic methods, like the brute force search, however, are highly computationally demand-
ing. Probabilistic methods instead use smart strategies to direct the search. They can be
roughly subdivided into Monte Carlo based algorithms, evolutionary algorithms, and such
based on swarm intelligence.

An example of Monte Carlo based algorithms, which is common in underwater acoustics,
is Simulated Annealing (SA), established by [75]. It was first employed to geoacoustic
inversion by [76]. Starting at a single parameter value combination as solution candidate,
it is based on an iterative random displacement and evaluation of energies. The random
displacement is restricted to a small neighborhood. Decisions, whether a newly found point
is accepted, are based on the Boltzman Equation. [75, 76] Acceptance of a higher-energetic
solution is defined by a temperature (in analogy to the heating and cooling process of metal)
and is more likely at the beginning of the search than at an advanced state. A disadvantage
of SA, however, is its step size problem. [77]

Evolutionary algorithms, as described in [78], are also based on iteration. They employ
strategies common to the evolutionary process in nature. A randomly chosen initial set of
solution candidates or population members is altered according to processes like mutation,
cross over, and survival of the fittest. Contrary to SA, a large number of solution candidates
are investigated in a single step. An objective function, which describes the optimization
goal, indicates the fitness of each candidate and is used for selection. Common evolutionary
algorithms in underwater acoustics are the Genetic Algorithm (GA) and Evolutionary Strat-

This appendix is partly based on the following publication.
D. G. Simons, M. Snellen, and K. Siemes: ”The potential of inverting geo-technical and geo-acoustic
sediment parameters from single-beam echosounder returns,” in Proc. of the Underwater Acoustic Mea-
surements (UAM) conference, 2009.
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egy (ES). Their main difference lies in the type of solution candidates they use. Whereas
GA employs bit-string encoded parameters, ES employs numerical parameters, a strategy
which is beneficial for finding the exact optimum.

A typical swarm intelligence algorithm is the Ant Colony Optimization (ACO) developed
by [79], which is based on the behavior of ants. From an initial point, search directions are
chosen randomly. The paths followed by the ants are marked (by pheromones in nature).
These markings strengthen or weaken dependent on the amount of ants passing by. The
probability that a specific path is chosen increases if it leads to a good solution (food) and
if it already has a strong marking. The probability decreases, on the other hand, if the
solution is not the best one anymore. Such algorithms are applicable, if the optimization
problem can be reduced to finding an optimal path [74].

E.2 Differential Evolution (DE)

E.2.1 Optimization strategy

Differential evolution (DE), an efficient global optimization approach introduced by [80]
and further described in [77], is used throughout this thesis. It has similarities with the
GA, however, benefits from the advantages of an ES, operating on numerical, non-encoded
values.

A schematic of the DE optimization strategy is given in Fig. E.1. As an evolutionary
algorithm, DE is based on iteratively altering a population of parameter value combinations
to create new generations of solutions that are fitter than their ancestors. Each generation
g is a collection P�m,g of Q members �mi,g, i = 1, . . . , Q, which represent possible parameter
value combinations.

P�m,g = (�m1,g, . . . , �mQ,g) (E.1)

In total, Ng generations are created in DE. The first generation g = 0 is initialized with
randomly chosen values. A new generation evolves from their ancestors as follows. For
the current population P�m,g, a partner population P�p,g is created by mutation of three
randomly chosen members �mi1,g, �mi2,g, and �mi3,g of P�m,g.

P�p,g = (�p1,g, . . . , �pQ,g) with

�pi,g = �mi1,g + F (�mi2,g − �mi3,g) (E.2)

Here, F ∈ [0, 1] is a multiplication factor, responsible for regulating the difference be-
tween the original population and the partner population. Higher values for F result in
an increasing difference between the two populations, whereas a smaller F results in slight
differences only. [58] A descending generation P�d,g is then determined by crossover of the
original and partner population.

P�d,g = (�d1,g, . . . , �dQ,g) (E.3)

Each descendant �di,g equals the original member �mi,g with pc percent of its parameters
being replaced by those of the partner population �pi,g. The probability pc at which a
parameter is chosen from the partner population is often referred to as the crossover rate.
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At the end of each iteration step, an objective function determines the fitness9 of,
both, the current members and their descendants. Then, those members which have a
lower fitness than their descendants are replaced by their descendants. Often, instead of
maximizing the fitness, the costs for each parameter value combination are minimized.

E.2.2 The performance of DE in inverting sediment properties

Global optimization methods, such as DE, have the potential to invert properties of the
sea bottom even in complex environments. For efficiency reasons, DE has been applied
throughout this thesis. In the following, we demonstrate the convergency behavior of DE
by applying the approach to three sets of synthetic SBES data, created for a shallow–water
environment with a constant water depth of 40 m. The data sets comprise three sediment
types of different roughness and hardness. The first bottom contains sandy gravel, whereas
no gravel is present in the other two bottoms, being composed of either muddy sand or
sandy clay. For each environment, three parameters descriptive for the sediment type are
estimated. These are the mean grain size Mz, the spectral strength w2, and the volume
scattering parameter σ2.

For the performance analysis, a fixed setting of DE is chosen for all three environments.
The multiplication factor and the crossover rate were set to F = 0.6 and pc = 0.55,
respectively. These values form a good compromise between the exploration of the entire
search space and the convergency rate, as already observed by [58]. Furthermore, Ng = 200
generations are created iteratively, each containing Q = 16 parameter value combinations.

The results are shown in Figs. E.2-E.4. Each of these figures contains four different
representations, indicating the performance of the DE.

In Figs. E.2-E.4(a), the development of the cost function over the 200 generations is
given for 10 independent inversion runs. For each generation, the lowest costs are displayed.
Also shown, as a red line, is the average of the 10 cost functions. The costs are ranging
from one to zero, with zero costs representing the optimal fit when modeled parameter
values equal the real ones. It can be seen that the graphs approach zero costs sufficiently
(below an order of magnitude of 10−8) after 150-200 generations for all sediment types
considered. However, outliers might exist, such as in Fig. E.4(a). Results converging to
such high states of costs have to be treated with caution since they do not represent the
optimal fit.

Figures E.2-E.4(b) show the costs for the estimates of the three environmental param-
eters, separately. Here, the development of the costs is given for all population members
throughout all generations, concentrating on a single inversion run. It is evident that
parameter value combinations whose costs lie below 10−8 approach the true values well.
However, this threshold has to be reconsidered for real data, for which a perfect fit is often
prevented by the presence of noise. Another conclusion we can draw from Fig. E.2(b) is
that σ2 cannot be estimated well for sea bottoms with gravel content. This, however,
is based on the sediment characteristics and not on the performance of the optimization
method.

9The fitness describes the goodness of fit between a model calculation, incorporating the current
parameter value combination, and the measurements.
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Figure E.2: Convergency behavior of DE when inverting Mz , w2, and σ2 for a seafloor containing

sandy gravel. Shown are: (a) values of the cost function per generation, (b) values of the cost function

related to the specific parameters, (c) the convergency rate of the estimated parameters, and (d) the

normalized histograms of the parameter estimates weighted by their costs. Red lines indicate in (a)

the average energy and in (b)-(d) the true parameter values.
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Figure E.4: Convergency behavior of DE when inverting Mz , w2, and σ2 for a seafloor containing

sandy clay. Shown are: (a) values of the cost function per generation, (b) values of the cost function

related to the specific parameters, (c) the convergency rate of the estimated parameters, and (d) the

normalized histograms of the parameter estimates weighted by their costs. Red lines indicate in (a)
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The same trend as observed before is visible in Figures E.2-E.4(c), which show the
convergency rate of the three parameters by plotting the best estimates of each generation.
The parameter estimates converge after 150-200 generations, except for σ2 for the sea bed
containing sandy gravel. The estimates of σ2 converge to values higher than the true value.
Increasing the number of generation might be beneficial in this specific case. However, it
is not evident that the estimates of σ2 will approach the true values more closely.

Figures E.2-E.4(d) provide histograms of all parameter value estimates obtained during
a single run. In order to focus on estimates with low costs, a weighing according to the
Boltzmann distribution has be applied. This weighing has been adopted from the SA
approach, where it provides a probability of selection pSA,k of the k-th parameter value
combination �mk dependent on the cost function C or fitness 1− C. [76]

pSA,k =
exp [−(1− C(�mk))/TSA]

Q∗Ng∑
j=1

exp [−(1− C(�mj))/TSA]

(E.4)

Table E.1: Mean grain size [φ]

Sediment type True value Mean Standard deviation

Sandy gravel -1 -0.945 6.803e-002

Muddy sand 3 2.999 9.441e-005

Sandy clay 7 7.000 2.265e-004

Table E.2: Spectral strength [cm4]

Sediment type True value Mean Standard deviation

Sandy gravel 0.012937 0.012901 4.532e-005

Muddy sand 0.002070 0.0020701 1.225e-007

Sandy clay 0.000518 0.000518 1.731e-008

Table E.3: Volume scattering parameter [-]

Sediment type True value Mean Standard deviation

Sandy gravel 0.002 0.002238 2.8975e-004

Muddy sand 0.002 0.001998 2.6392e-006

Sandy clay 0.001 0.000999 1.6939e-007
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The temperature TSA, as defined in SA (see App. E.1), is chosen as the average costs of
all parameter value combinations considered for the Q = 16 population members through-
out Ng = 200 generations. Suppressing those parameter value combinations with high
costs by applying Eq. E.4, the histograms in Figs. E.2-E.4(d), in general, show only a small
spread around the true values. The best estimates can be expected for w2. For Mz, the
peak around the true value is slightly broader and shows a slight deviation from the true
value. Obviously, a large number of estimates lie close to the true value, before finally
converging to it. The opposite is observed for the estimates of σ2. Here, large number
of estimates lies further away from the true values, even at lower cost levels, causing the
wings of the weighted histograms to rise. However, at least for the fine grained sediments
(Fig. E.3 and Fig. E.4), the true value is reached at the lowest cost levels, resulting in a
clearly defined peak.

The mean and standard deviation of the estimated parameters Mz, w2, and σ2 obtained
for the three sediment types sandy gravel, muddy sand and sandy clay are summarized
in Tables E.1-E.3. For this calculation, the best results of ten independent inversions are
considered. It is evident that the performance of the DE method is mainly dependent on
the type of sediment present. The largest differences between mean and true value are
observed for the sediment containing gravel, independent of the estimated parameter.
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Summary

Detailed information about the oceanic environment is essential for many applications in
the field of marine geology, marine biology, coastal engineering, and marine operations.
Especially, knowledge of the properties of the sediment body is often required.

Acoustic remote sensing techniques have become highly attractive for classifying the sea
bottom and for mapping the sediment properties, due to their high coverage capabilities
and low costs compared to common sampling methods. In the last decades, a number of
different acoustic devices and related techniques for analyzing their signals have evolved.
Each sensor has its specific application due to limitations in the frequency range and
resolution. In praxis, often a single acoustic tool is chosen based on the current application,
supported by other non-acoustic data where required. However, different acoustic remote
sensing techniques can supplement each other, as shown in this thesis. Even more, a
combination of complementary approaches can contribute to the proper understanding of
sound propagation, which is essential when using sound for environmental classification
purposes. This includes the knowledge of the relation between acoustics and sediment
properties, the focus of this thesis.

Providing a detailed three dimensional environmental picture that allows for gaining
maximum insight into this relation is aimed at. For this purpose, standard and advanced
techniques for classifying the underwater environment are presented. Systems dealt with
cover both standard hydrographic surveying systems (including a single-beam echosounder
using 12, 38, and 200 kHz, a 300 kHz multibeam echosounder, and two seismic systems in
the range of 0.5–15 kHz) and dedicated measurement configurations consisting of a source
(0.3–1.6 kHz) and a receiver array. Both their field of application and their limitations
are analyzed. Furthermore, special attention has been paid to the efficiency regarding the
collection and processing of the data.

The research presented in this thesis is a part of an interdisciplinary experimental effort
that aims at addressing an integrated concept of Maritime Rapid Environmental Assessment
(MREA). In this context, the MREA/Blue Planet (BP)’07 trial [29], was carried out in
a shallow water environment with fine grained sediments of the Mediterranean Sea in
2007. The data collected throughout this trial form the basis of this thesis. In order
to provide an even more comprehensive analysis of the relation between acoustics and
sediment properties, a second dataset is considered, covering a larger variety of sediment
types. These data are collected in the North Sea in 2004.

After a description of acoustic devices used for surveying the sea bottom in Chapter 2
and an introduction of the two environments in which data are obtained in Chapter 3,
different approaches for analyzing the environmental characteristics are discussed through-
out the thesis. In general, we can distinguish between phenomenological and model based
approaches. The phenomenological approaches employ parameters related to the acoustic



136 Summary

signal, which give information on the presence of acoustic classes, when they are mapped.
Such parameters are, for example, the intensity of the reflected signal under normal in-
cidence or backscatter values in the case of measurements under oblique angles. Also
parameters describing the shape of the signal are relevant. However, a link to sediment
parameters, such as grain size, can only be obtained when using additional ground truth
data. Model based approaches, on the other hand, provide a direct link of the acoustic
signal to sediment properties by fitting a sophisticated physical description of the acoustic
signal to the measured one. However, this comes at the price of high computational ef-
forts. Especially, in cases in which large numbers of model parameters need to be searched
for, an efficient optimization technique is required to search for those parameter values
that maximize the agreement between measured and modeled signal. Throughout this
thesis, differential evolution is used for efficient optimization. This optimization strategy
employs several parameter value combinations at once, which are then iteratively altered
by mutation and combination, creating a better fit.

In Chapter 4, classification methods applicable to the signals of a single-beam
echosounder are analyzed. First, a phenomenological approach is considered. It employs a
number of statistical moments of the acoustic signal to describe its shape, which is known
to be related to the sediment roughness and hardness. Since these statistical moments are
possibly correlated, a principal component analysis is performed conform [36], to transform
these parameters by means of an eigenvalue decomposition of the parameter covariance
matrix into a smaller number of uncorrelated variables. From these principal components,
acoustic classes are obtained by a cluster analysis. A different approach is the modeling of
the received echoes, assuming these to be shaped by the scattering at the rough sediment–
water interface and at inhomogeneities in the sediment volume as proposed by [13]. Here,
model parameters are the sediment–water ratio of mass density, the sediment–water ratio
of sound speed, the imaginary to real wave number ratio, the spectral strength of surface
roughness, and a volume scattering parameter. Empirical relations that couple these pa-
rameters to the mean grain size are used. These are valid for mean grain sizes from −1 φ
to 9 φ. Due to only little variation in these empirical relations for grain sizes between 7 φ
and 9 φ, an extrapolation to even smaller grain sizes (larger φ-values) did not succeed.
Deviations of the empirical relations for the spectral strength and the volume scattering
parameter from the true values, as documented in [40], are confirmed. Beyond this, it is
found that the parameters to be estimated should at least include the mean grain size, the
spectral strength accounting for surface roughness, and a volume scattering parameter. In
an attempt to reduce the computational effort needed, a second model is investigated. It
deduces the reflection coefficient from the echo energy and empirically relates it to the
mean grain size, as proposed by [16]. This approach was found to be hampered by a lim-
ited beamwidth. Even for echosounders with a larger beamwidth, the model is restricted to
medium and large grain sizes since the reflection coefficient is not sensitive to mean grain
sizes larger than 5.5 φ. Overall, only the phenomenological approach could be successfully
applied to the small grain sizes that are present in the MREA/BP’07 area. Still, for the
medium-sized graines in the North Sea, the estimates of the model-based approach which
incorporates the mean grain size, the spectral strength, and the volume scattering show
reasonable agreement with the grab samples.

In Chapter 5, a Bayesian approach as proposed by [8] is applied to classify multibeam
echosounder data. It employs the intensity of the backscattered acoustic signal per beam.
By treating the beams separately, the across-track variations of the sea bottom are ac-



Summary 137

counted for. Adaptations have been made to obtain consistent results at different beam
angles and depths. The Bayesian approach is based on the assumption that the central
limiting theorem holds and the backscatter values are normally distributed. A number of
Gaussians, representing each an acoustic class of the sediment at the beam under consid-
eration, is then fitted to the histogram of these data. Typically, the acoustic classes are
linked to grain size or sediment type. Indeed, the distribution of these classes is shown to
be representative for the distribution of the sediment type. It is also in agreement with the
distribution of single-beam echosounder classes. However, a comparison with ground truth
data obtained from grab samples reveals that parameters other than the grain size, such as
the presence of gas, are also important for interpreting the acoustic classes. Furthermore,
small-scale structures on the seafloor could be revealed by this approach.

Chapters 6 and 7 treat dedicated acoustic systems, consisting of a source and a receiving
array. Here, a drifting sparse vertical line array with four hydrophones and a stationary
source are employed. Matched-filter processing (pulse compression) is applied to the data
obtained at the hydrophone positions. The acoustic field is then modeled by normal modes
and geoacoustic inversion of the parameters that are descriptive for the environment is
applied. The underlying environmental model is composed of three layers: the water
column, a sediment layer, and the subbottom. When modeling the entire acoustic field, one
has to account for a large number of parameters, which results in high computational costs.
Therefore, investigations towards an optimal inversion strategy and optimal frequency band
are carried out. Furthermore, the performance of geoacoustic inversion in three different
environments is investigated. The approach turns out to work well for very small grain
sizes of 10 − 11 φ. It is also shown that the presence of gas can be indicated by the
inverted sediment sound speed. However, the approach is found to be hampered by short
source–receiver ranges of less than a kilometer and by the presence of a sediment layer of
over 40 meters of thickness.

A comparison of all environmental descriptions presented so far confirms the consistency
of the environmental picture established. Furthermore, the ability of the different results
to explain phenomena that could not be related to grain size has become apparent. In
addition, a combination of the classification of the upper sediment layer achieved by hydro-
graphic surveying and the sediment layering obtained from seismic measurements is shown
to be a representative criterion for selecting areas for subseafloor sediment classification by
geoacoustic inversion techniques.





Samenvatting

Gedetailleerde informatie over de omgeving onder de zeespiegel is van essentieel belang voor
vele toepassingen in het gebied van marine geologie, marine biologie, kustontwikkeling en
marine operaties. Vaak is vooral de kennis van de eigenschappen van het sediment vereist.

Akoestische remote sensing technieken zijn, vergeleken met standaard bemonster-
ingsmethoden, aantrekkelijk voor het classificeren van de zeebodem en voor het in kaart
brengen van de sedimenteigenschappen, vanwege hun hoge dekkingsgraad en lage kosten.
In de laatste decennia zijn er verschillende akoestische instrumenten en technieken voor
het analyseren van hun signalen ontwikkeld. Als gevolg van beperkingen in de bandbreedte
en resolutie heeft elke sensor zijn specifieke toepassing. Afhankelijk van de toepassing,
wordt in de praktijk vaak een enkel akoestisch instrument gekozen. Indien nodig wordt dit
ondersteund door andere niet-akoestische metingen.

Verschillende akoestische remote sensing technieken kunnen elkaar echter aanvullen,
zoals in dit proefschrift wordt getoont. Sterker nog, een combinatie van complementaire
benaderingen kunnen bijdragen aan een goed begrip van de geluidspropagatie onder de
zeespiegel, welk van essentieel belang is bij het gebruik van geluid voor de classificatie van
een bepaald oceanisch gebied. Dit betreft kennis van de relatie tussen de akoestiek en de
sediment eigenschappen, hetgeen de focus van dit proefschrift vormt.

Het genereren van een gedetailleerd driedimensionaal beeld met maximaal inzicht in deze
relatie wordt hierbij nagestreefd. Hiervoor worden standaard en geavanceerde technieken
voor het classificeren van een oceanisch gebied gepresenteerd. Behandeld worden zowel
standaard hydrografische systemen (een single-beam echolood met 12, 38 en 200 kHz, een
300 kHz multibeam echolood en twee seismische systemen van 0.5–15 kHz) als speciale
meetconfiguraties bestaand uit een bron (0.3-1.6 kHz) en een array van ontvangers. Zowel
hun gebied van toepassing als hun beperkingen zijn geanalyseerd. Bovendien is er bijzondere
aandacht besteed aan het efficiënte verzamelen en bewerken van de data.

Het onderzoek dat in dit proefschrift wordt gepresenteerd is een onderdeel van een
interdisciplinaire experimentele inspanning die gericht is op het gëıntegreerd concept van
Maritime Rapid Environmental Assessment (MREA). In dit verband is de MREA/Blue
Planet (BP) ’07 trial uitgevoerd in 2007 [29], in een ondiep deel van de Middellandse Zee
dat bekend staat om zijn fijnkorrelige sedimenten. De verzamelde gegevens van deze trial
vormen de basis van dit proefschrift. Om een nog uitgebreidere analyse van de relatie
tussen de akoestiek en de eigenschappen van het sediment te verkrijgen, wordt een tweede
dataset met een groter aantal sedimenttypes beschouwd. Deze gegevens zijn verzameld in
de Noordzee in 2004.

Nadat er in hoofdstuk 2 een beschrijving van de gebruikte akoestische systemen is
gegeven, gevolgd door een introductie van de twee omgevingen waarin gegevens zijn verza-
meld in hoofdstuk 3, worden in het resterende deel van het proefschift de verschillende
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benaderingen voor het analyseren van de gebiedseigenschappen besproken. In het alge-
meen kunnen we fenomenologische en model-gebaseerde benaderingen onderscheiden. De
fenomenologische benadering werkt met parameters die gerelateerd zijn aan het akoestische
signaal. Als deze parameters in kaart worden gebracht, geven zij informatie over de aan-
wezigheid van akoestische klassen. Dergelijke parameters zijn bijvoorbeeld de intensiteit
van het gereflecteerde signaal onder loodrechte invalshoek of backscatter waardes voor
metingen onder een schuine hoek. Ook parameters die de vorm van het signaal beschrijven
zijn relevant. Een link naar sediment parameters, zoals korrelgrootte, kan echter alleen
worden verkregen door het gebruik van aanvullende ground truth data. Model-gebaseerde
benaderingen geven een directe koppeling van het akoestische signaal met de sediment
eigenschappen, door een fysieke beschrijving van het akoestische signaal op de geme-
ten signalen te fitten. Dit vergt veel rekentijd. Vooral in de gevallen waarin het aantal
modelparameters groot is, zijn efficiënte optimalisatiemethodes nodig, om naar die para-
meterwaarden te zoeken, die naar de grootste mogelijke overeenkomst tussen het gemeten
en het gemodelleerde signaal leiden. In dit proefschift wordt gebruik gemaakt van differen-
tial evolution als een efficiënte optimalisatiemethode. Deze optimalisatiemethode gebruikt
verschillende combinaties van parameterwaarden tegelijk, die vervolgens iteratief worden
gewijzigd door mutatie en combinatie om een betere fit te genereren.

In hoofdstuk 4 worden classificatiemethoden voor de signalen van een single-beam
echolood geanalyseerd. Eerst wordt een fenomenologische benadering gevolgd. Deze maakt
gebruik van een aantal statistische momenten die de vorm van het akoestische signaal
beschrijven en gerelateerd aan de ruwheid en hardheid van het sediment zijn. Aangezien
deze statistische momenten mogelijk gecorreleerd zijn, is er een principal component ana-
lysis uitgevoerd conform [36], die deze parameters door middel van een eigenvalue decom-
position van de covariance matrix in een kleiner aantal ongecorreleerde variabelen trans-
formeert. Uit deze hoofdcomponenten (principal components) worden akoestische klassen
verkregen door een cluster analyse. Een andere benadering is het modelleren van de ont-
vangen echo’s onder de aanname dat de signalen worden gevormd door scattering zowel
aan de ruwe grens tussen sediment en water als ook aan inhomogeniteiten in het sediment
volume, zoals voorgesteld door [13]. De gebruikte modelparameters zijn de sediment–water
verhouding van massa dichtheid, de sediment–water verhouding van de geluidssnelheid, de
verhouding van het imaginaire tot het reële golfgetal, de spectral strength van de sediment–
water ruwheid en een volume scattering parameter. Er wordt gebruik gemaakt van em-
pirische relaties die deze parameters aan de gemiddelde korrelgrootte koppelen. Deze zijn
geldig voor gemiddelde korrelgroottes tussen −1 φ en 9 φ. Door slechts weinig variatie
in deze empirische relaties voor korrelgroottes tussen 7 φ en 9 φ is een extrapolatie naar
nog kleinere korrels (grotere φ-waarden) niet gelukt. Afwijkingen van de empirische relaties
van de werkelijke waarden voor de spectral strength en de volume scattering parameter,
die zijn gedocumenteerd in [40], worden bevestigd. Hiernaast is geconstateerd dat de te
schatten parameters ten minste de gemiddelde korrelgrootte, de spectral strength en de
volume scattering parameter zouden moeten omvatten. De spectral strength houdt reken-
ing met de oppervlakteruwheid, terwijl de volume scattering parameter de verstrooiing
binnen de sedimentlagen beschrijft. In een poging om de benodigde rekentijd te beperken,
wordt een tweede model bekeken. In dit model wordt de reflectiecoëfficiënt van de echo en-
ergie afgeleidt en empirisch gerelateerd aan de gemiddelde korrelgrootte, zoals voorgesteld
in [16]. Deze aanpak blijkt beperkt door de openingshoek. Zelfs voor echoloden met een
grote bundelbreedte is het model beperkt tot middelgrote en grote korrelgroottes, aangezien
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de reflectie coëfficiënt niet gevoelig is voor gemiddelde korrelgroottes van meer als 5.5 φ.
De conclusie is dat alleen de fenomenologische benadering goed kan worden toegepast op
de kleine korrelgroottes die bepalend zijn voor het MREA/BP’07 gebied. Toch vertonen
de model-gebaseerde schattingen van de gemiddelde korrelgrootte redelijke overeenkomst
met de monsters voor de middelgrote korrels in de Noordzee, als ook de spectral strength
en de volume scattering parameter worden geschat en niet uit de empirische vergelijkingen
worden berekend.

In hoofdstuk 5 wordt een Bayesian approach, zoals voorgesteld in [8], toegepast om
multibeam echolood data te classificeren. Deze aanpak werkt met de intensiteit van het
verstrooide (scattered) akoestische signaal per bundel. Door de bundels van de multi-
beam echolood afzonderlijk te behandelen, wordt er rekening gehouden met de across-
track variaties van de zeebodem. Aanpassingen zijn gemaakt om consistente resultaten
voor de verschillende hoeken van de bundels en voor verschillende dieptes te verkrijgen.
De Bayesian approach is gebaseerd op de veronderstelling dat de centrale limietstelling
geldt en dat backscatter waarden dus normaal verdeeld zijn. De som van een aantal nor-
male verdelingen, die elk een akoestische klasse van het sediment representeren, wordt
vervolgens aan een histogram van deze backscatter waardes aangepast. Meestal worden
de akoestische klassen aan korrelgrootte of sedimenttype gekoppeld. Inderdaad wordt
getoond dat de verdeling van deze klassen representatief is voor de verdeling van het type
sediment. Het is ook in overeenstemming met de kaart van single-beam echolood klassen.
Uit een vergelijking met ground truth gegevens (monsters) blijkt daarentegen dat voor de
interpretatie van de akoestische klassen andere parameters dan de korrelgrootte, zoals de
aanwezigheid van gas, belangrijk zijn. Verder kunnen kleine structuren op de zeebodem
doormiddel van deze benadering worden aangetoond.

De hoofdstukken 6 en 7 behandelen specifieke akoestische systemen, bestaande uit een
bron en een array van ontvangers. Hier wordt een drijvend vertical line array met slechts vier
hydrofonen en een stationaire bron gebruikt. Matched-filter processing (puls-compressie)
wordt toegepast op de hydrofoon-data. Het akoestische veld wordt vervolgens gemodel-
leerd door normal modes en geo-akoestische inversie wordt toegepast op de parameters
die beschrijvend zijn voor het gebied. Het onderliggende model is opgebouwd uit drie
lagen: de waterkolom, een sedimentlaag en de subbodem. Bij het modelleren van het
gehele akoestische veld moet met een groot aantal parameters rekening worden gehouden,
waardoor een grote rekenkracht is vereist. Daarom is er onderzoek naar een optimale
inversiestrategie en een optimale frequentieband uitgevoerd. De prestatie van de geo-
akoestische inversie is onderzocht in drie verschillende omgevingen. De aanpak blijkt goed
te werken voor zeer kleine korrelgroottes van 10 − 11 φ. Ook wordt aangetoond dat de
aanwezigheid van gas kan worden aangegeven door de gëınverteerde geluidsnelheid in het
sediment. Deze benadering is alleen minder ideaal voor korte bron–ontvanger afstanden
van minder dan een kilometer en in aanwezigheid van een sediment laag van meer dan
40 meter dikte.

Een vergelijking van alle gepresenteerde gebieds-beschrijvingen bevestigt de consistentie
van het verkregen environmental picture. Uit het onderzoek blijkt dat de verschillende resul-
taten fenomenen kunnen verklaren, die niet aan korrelgrootte kunnen worden gerelateerd.
Bovendien is aangetoond dat een combinatie van de classificatie van de bovenste sedi-
mentlaag, door middel van hydrografische metingen, en de gelaagdheid van het sediment,
verkregen uit seismische metingen, representatief is voor de selectie van gebieden voor een
subseafloor -sediment-classificatie door middel van geo-akoestische inversietechnieken.
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