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Preface

It is at this point that normal language gives up,
and goes and has a drink.

Terry Pratchett, The Color of Magic

In pop culture the human race is often glorified as "explorers", boldly chasing the horizon. Songwriters,
movie-makers, poets - all love to romanticize sailors conquering the vast seas underneath skies full of stars.
Our society longs for and despairs about the lack of new frontiers to conquer - all from within the safety of
their chairs.

It takes a lot to explore. Boldness, dedication, determination, skill, luck will get your ship out of the port
and into the open sea and will help you tackle the storms. But sometimes you will find yourself drifting with
no wind in sails, directionless and lost in emptiness. It takes true personal strength to convert the inevitable
creeping desperation into fuel and to find the wind again.

I consider the period that I have been working on this project as the hardest in my life so far. The project
involved many interlocked numerical, programming and physical problems, rocking the foundations of my
ship. I would get boogled down in details to no end and would swarm myself with multiple questions - too
many to be answered at once - and then promptly fail to answer them all at the same time. Whenever I’d try
to get some perspective I’d see myself amidst doldrums.

Now that I am finally approaching land again I realized that the original credo of the project "Flow charts
makes for cool plots. Let’s make some." indeed led me to the most rewarding parts - and I wish I hadn’t lost
sight of this truth throughout the journey. If the reader enjoys the figures at least a fraction of as much as I
enjoyed making it - then I can happily consider my struggles to be worth it.

With all of this in mind, I’d like to express words of gratitude to some of the people (in no particular order)
that have helped me along the way:
The many office mates that I have seen come and go over time - for great input in each others work, for a
sense of camaraderie and for keeping each other sane simply by talking;
Elena for being there for me and trying to keep me motivated throughout all of this;
Anton for somehow being able to see the direction for the ship to take - and for making sure this thesis is
about physics;
Joe for having a huge impact on the code - without you, I’d still be trying to figure it out;
Dennis and Jesse for all of the hours spend cracking heads over cards, games and the horrors of my grammar
- thank you for reading the raw version of this document!;
And to all great people, I have met here in Delft - thanks to you all I have never doubted starting this random
walk known as studying.

Piotr Benedysiuk
Delft, March 2019
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1
Introduction

Graphene is one of the more exotic materials in the field of condensed matter physics. This two-dimensional
honeycomb shaped crystal of carbon atoms is a textbook example of a Dirac material. Dirac materials are
characterized by linear dispersion relation of the charge carriers and vanishing density of states at the Dirac
point [21] [17][9].

Graphene can be fabricated extremely clean [6] and therefore the transport properties of graphene aren’t
determined by impurities scattering. Around room temperature charge carriers scatter more often with each
other than with phonons. Thus the theory describing transport is one of electron-electron and electron-
hole interactions, making graphene very useful in trying to understand particle interactions within Dirac
materials. Within this regime, the dynamics become similar to very viscous fluids, where flow is subjected to
internal friction.

Recently, in 2016, there has been an experimental breakthrough in the field. A device has been made with
which it became possible to measure negative local resistance [5] - a signature of electrons flowing backward
at the sides of the channel due to viscosity effects. Suddenly, viscous flow of electrons in graphene became
more than a prediction.

This discovery started a small frenzy within the theoretical community. One of the attempts to explain the
interactions was based on the Navier-Stokes equations [10]. This approach describes the local dynamics of
conserved quantities. As the Coloumb interaction can be long ranged it’s unclear if a local theory is sufficient.

Another prominent approach is a model using the Boltzmann transport equation [8]. This equation de-
scribes particle distribution functions and how they change in time. Being a statistical-physics approach it
can be used in thermodynamical limit only - and therefore it’s unclear if one can use it if for low particle
numbers.

We propose a third theoretical approach to this problem. Molecular dynamics is a numerical method for
approximating the time evolution of the N-body problem. It allows us to compute dynamics of each particle
in the system - and as such it is not bounded by the locality of the interactions or number of particles as the
previous approaches had been.

The goal of my thesis is to show how to model and simulate charge transport in graphene in the hydro-
dynamic regime. We will show the theoretical model in Chapter 2, followed by implementation of a device in
the framework of molecular dynamics in Chapter 3. Both of these considerations will pay off in the Chapter 4
where we show the effects of interactions on charge transport and the emergence of long-range correlations
between charge carriers. Concluding remarks can be found in the Chapter 5 where we conclude the findings
and discuss adaptability of the software in order to investigate the prospective options in the field.
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2
Theory

In the Section 2.1 I will introduce the effective dispersion relation of graphene and we will understand which
particles carry charge within the system. The Coulomb interaction term between these particles will be in-
troduced in the Section 2.2 and we shall see why it’s important to introduce this interaction. We will then take
a step back in Section 2.3 in order to understand how the interactions scales with relation to temperature and
chemical bias, resulting in emergence of two distinct interaction regimes. Lastly in Section 2.4 an explanation
will be provided of possible signatures of interactions on the current flow. A curious reader is encouraged to
look at the Appendix A for more thorough derivations of all the concepts.

2.1. Dispersion of graphene
The effective Hamiltonian of graphene is well known [19]. It is given by H =±ħvF |k| with ħ the Planck con-
stant and vF = 1×106 ms−1 the astonishingly high Fermi velocity of charge carriers in graphene. The spec-
trum consists out of two linear bands touching at E = 0. For unbiased graphene the Fermi energy - also
referred to as Charge Neutrality Point (CNP) - is exactly the touching point of the two bands. Note the lack of
a Fermi surface at the CNP, but unlike an insulator, a small temperature is enough to excite charge carriers -
holes for the lower band and electrons for the upper. As we are going to look at transport properties we are
only concerned with these positive energy excitations and we write:

H = ∑
e, h

ħvF |k| , (2.1)

for the effective Hamiltonian used. If we now calculate the group velocity of this dispersion we find δE
ħδk = vF k̂

for all values of k, therefore the charge carried by excitations is carried fast in well-defined directions.
Another way to make graphene conducting is by applying a (arbitrary) small chemical potential. Shifting the
Fermi energy up or down will give rise to linearly a growing Fermi surface - unlike conventional 2D metals
where the density of states will remain constant. Therefore, applying a chemical potential will create more
excitations - and not change how those excitations behave.

Lastly we can recognize this spectrum as a special case of Einsteins energy equation:

E 2 = m2c4 +p2c2,

for the case m = 0. Indeed, careful [21] computations of the effective mass in graphene gives us m∗ = 0. The
connection to relativistic physics will become more apparent when we consider the equations of motion in
the chapter 2.

2.2. Coulomb interaction
As stated before, charge carriers in graphene are electrons and holes carrying opposite charges. In most stud-
ies [9] the particle-particle interactions are ignored within their models. However in this section I hope to give
an intuitive explanation as to why such interactions are relevant. First start by introducing the 3 dimensional
Coulomb interaction potential [2]:

Vi j = 1

4πε0

qi q j

ri j
, (2.2)
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4 2. Theory

with ε0 the vacuum permittivity and q the charge. The total Hamiltonian (after re-scaling by ħvF ) becomes:

H =∑
i
|k|+∑

i , j
α
±i j

ri j
(2.3)

with ±i j = −1 if i and j differ in charge and 1 otherwise. The dimensionless parameter α = e2

4πε0ħvF
is called

the coupling constant. It plays the same role as the fine-structure constant in Quantum Field Theory - it
characterizes the strength of charge interactions. In fact the two relate to each other as: α= c

vF
αQF T ≈ 300

137 .
In order to get intuitive understanding of the role of α let us consider a (semi) one dimensional strip of

graphene of length L. Typical momentum will scale as k ∼ 1
L and typical particle to particle distance lpp will

be proportional to L. Comparing typical kinetic and typical potential energy results in:

V

Eki n
∼ e2

4πε0L
· L

ħvF
=α.

Therefore, naive models tell us that potential energy are of the same order as kinetic. We shall look into the
details of this scaling in Section 2.3.

Another relevant aspect is the interplay between the 3D potential and the fact that graphene is a 2D ma-
terial. In general, screening properties of lower-dimensional systems are suppressed (as compared to higher
dimensional systems) [14][17]. Furthermore, the linearity of the spectrum in graphene suppresses the screen-
ing. In particular the absence of a Fermi surface at the charge neutrality point leaves us with no states to
screen with. As the chemical potential increases the size of Fermi surface increases linearly - as opposed to
2D metals where the Fermi surface is constant everywhere. The important aspect for this work is that the
charge carriers can’t screen other particles fully. Therefore the potential of a charge carrier interacts with
many other particles - making excitations a many-body phenomena.

All of the above considerations show that interactions can form correlations between particles. In more
common materials such correlations can still be broken by scattering with impurities. In fact, first theoretical
predictions on this topic date all the way back to 1963 [3] - but this result has been mostly forgotten due to lack
of clean graphene flakes back in the day. Nowadays it’s possible to fabricate extremely clean graphene where
the typical mean free path is in the order of 1µm [6] giving a bound on impurity density of 1×108 cm−2. We
will see later that charge carrier density is orders of magnitude bigger than impurity density, making particle
- particle collisions the main scattering source.

When we consider our system to be at (near) charge neutrality electron - hole pairs need to be considered.
For a pair of electrons the interaction potential pushes them away, lowering (towards zero) the potential
energy. For an electron - hole pair the potential energy is lowered (towards negative infinity) but that happens
by pulling the pairs in together (and thus increasing the absolute value of the potential!). This concept can be
seen in Figure 2.1 B. In such situations the interactions become even more important for the description of
the physics.

2.3. Bulk density and scaling
Physical properties of interactive models such as Equation (2.3) are challenging to compute. In particular,
as seen in the previous chapter, the perturbation due to the Coulomb potential is too big for the applica-
tion of perturbation theory. Furthermore, straightforward diagonalization of the Hamiltonian isn’t possible
due to huge Hilbert space associated with the system. Lastly, typical tools used in statistical physics are con-
strained to classical (kinetic energy quadratic in momenta) or weakly-interacting (kinetic energy dominating
over the potential) systems. Therefore, in order to build some intuition into physical laws governing interac-
tive graphene systems, we start at the noninteractive Hamiltonian Equation (2.1) and compute the number
of charge carriers, charge imbalance and kinetic energy distributions of particles. For exact computations see
Appendix A.

To set the stage we first introduce the Density of States (DoS), by computing the change in the number of
particles N as we change the energy ε→ ε+∆ε, normalized by an area of A:

DoS := 1

A

∂N

∂ε
= 1

A

∂N

∂|k|
∂|k|
∂ε

= 2s 2v

4π2 ×2π|k|× 1

vFħ
= 2s 2v |E |

2π (vFħ)2 , (2.4)

with the factors of 2 being due to spin and valley degeneracy. In order to include temperature T and chemical
potential µ effects to the electron (hole) density ne (nh), we use the Fermi-Dirac distribution fD (1 − fD )
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Figure 2.1: A: Graphene’s dispersion relation. We show the linear (conic) spectrum and the effects of temperature - exciting charge
carriers in each of the two bands. The typical potential between particles is bigger than the energy scale kB T (see Equation (2.7)) however
it is still comparable to the typical kinetic energy. Furthermore, even for low energy excitations this potential is not necessarily the
dominant energy scale - interactions with next-nearest particles can change the equations of motions substantially. B: Effects of potential
interactions between particles of the same type (top) and opposite type (bottom). The attractive potential between e-h causes the pairs
to get closer to each other and the corresponding force between them pulls them in harder as they approach each other. The magnitude
of the typical e-h potential will therefore be much higher than Vpp .

defined as:

fD := 1

exp
(
β

(
ε−µ))+1

, (2.5)

with β= (kB T )−1 and kB the Boltzmann constant. Typical effective distribution of states can be seen in figure
2.2

Figure 2.2: Effective DoS for three different cases. First we have the CNP with no chemical potential. The density of holes and electrons
is symmetric about zero energy. The second plot is biased with µ = 200kB and we observe the distribution at 100K centering around
the chemical potential. Furthermore, most of the excited state are electrons, density of holes is suppressed. Last plot is biased with
µ = 800kB . Here we see all 3 effective DoS centered around µ. Note that higher temperature ones have bigger spread around µ. Lastly,
observe the full suppression of hole excitation.

By straightforwardly integrating the density of states we calculate the total density of charge carriers as
the sum of electron and hole contributions.

ne +nh = 2s 2v

4π

(
kB T

vFħ
)2 ((

µ

kB T

)2

+ π2

3

)
. (2.6)

To get a feel for the numbers its useful to realize that for µ
kB T < 1 we can simplify even further and state

ne +nh ≈ Ctot T 2 with Ctot = 1.43×106 cm−2 K−2. Therefore, in for T in between 100 and 300 we shall see
O

(
1×1010 cm−2

)
charge carriers.

The typical distance between two particles, l−1
pp :=p

ne +nh , will scale as T −1, thus at higher temperatures
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the particles will bounce more often. In addition, the typical potential energy between particles will be:

V (lpp ) ≈αkB T +α µ

2πkB T
µ. (2.7)

The second term show a very weak dependence on chemical potential. For comparison’s sake we compute
the typical kinetic energy of this model:

Eki n ≈ 2.2kB T +0.1
µ

2πkB T
µ. (2.8)

Two observations are crucial here. First, the noninteractive model does not obey the Equipartition the-
orem. This is caused by linearity of the spectrum. Therefore we can’t assume that potential energy of the
interactive model will obey this theorem. In fact, the energy distribution might change significantly due to
interactions. Second, at low bias, the ratio of the two energies is roughly 1 - and it moves towards α as µ in-
creases. Note also that changing the temperature does not change the ratio of these two energies - it is only
the chemical potential that influences the ratio. However, this does not necessarily mean that interactions
are less important at low µ.

In order to understand why interactions remain relevant at low µ, let us consider the charge imbalance of
the model. We compute the difference in hole and electron densities:

nh −ne ≈ 2s 2v

2π

(
kB T

vFħ
)2 (

log(4)
µ

kB T

)
. (2.9)

The scaling is proportional to the product of kB T and µ. Thus the relative charge imbalance nh−ne
nh+ne

we see

that it scales as µ
kB T . As µ → 0 we will see a lower charge imbalance - meaning more interactions will be

attractive instead of repulsive. As a result, at low µ, electron and holes will come closer to each other than lpp

and therefore they will enhance the typical potential interaction. It is not clear how to compute this effective
electron-hole length scale leh .

It is however clear that this effect depends on the chemical bias and temperature. We can conclude this by
considering possible pairs of charge carriers. For leh to be the most important length scale we need to have
many strongly bounded e-h pairs. The number of available charge carriers of both types depends on µ and if
we increase it we simply will have less pairs. Therefore at higher µ the effects of negative potential won’t be
pronounced. This gives rise to different regimes of interactions within graphene - for µ

kB T >> 1 we obtain a

electron/hole Fermi Fluid where potential is an positive quantity and for µ
kB T < 1 we find a Dirac Fluid where

the potential is negative.

2.4. Observables
Interactions between particles leads to the rise of viscous flow within graphene. Most of the literature [7][8][10][5]
focuses on the Fermi Fluid regime, however we will remark upon possible observations within the Dirac
regime too.

Approximations from hydrodynamical theory [19] in Fermi liquid regime for a narrow rectangular channel
gives a conductance of

G = n2ω3

12η
, (2.10)

with ω the width of the channel, n the density of charge carriers and η the viscosity. Within the Fermi regime
[19] the resistance (inverse conductance) of a channel should get lowered by temperature - phenomena re-
ferred to as the Gurzhi effect [3] - as the viscosity scales roughly as T −2. Analytically this result is a direct cause
of the no-slip boundary approximation - velocity vanishes at the boundary.

Another proposal [11] is to observe flow through narrow openings (into bigger spaces) or narrow constric-
tions (between two bigger spaces). There, again in the Fermi regime, hydrodynamics [19] comes up at:

G = πe2n2ω2

32η
, (2.11)

which is a very similar result to Eq (2.10) - except for the powers ofω. Remarkably for this analysis the bound-
ary conditions are hard-walls - flow is simply required not to leave the sample. Therefore, the viscosity effects
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here are a direct manifestation of particle-particle interactions caused by the fluid being funneled into the
constraint. The velocity profile in the constriction itself is expected to have a parabolic shape - result known
in classical hydrodynamics as Poissele flow. Lastly, near the opening we expect the flow to interact with the
funneled flow on the other side. Therefore, there we expect a vortex to appear [11] on outskirts of the main
flow through the constriction. Charge carriers in the vortex would move against the current causing (locally)
the resistance to be negative. Lastly, constriction geometry is most relevant experimentally - it forces the flow
to be dominated by viscosity effects instead other transport mechanism [19] so we will focus on it.

Within the Dirac Fluid regime the charge transfer is more subtle. In particular, it is no longer density
of charge carriers and bias voltage that define control the current flow but temperature and energy density.
Temperature gradient in particular can cause current flow in graphene which breaks down the Wiedemann-
Franz law [19]. We will (briefly) describe how to model temperature gradients within our method in later
chapters but it is not the focus of this thesis. However, we will try to simulate current flow by applying a bias
(similarly to approach used in Fermi regime) and see if the resulting behaviour of charge flow (as opposed to
particle flow which isn’t he same thing in Dirac regime) obeys the Poissele flow shape.





3
Methods

We give a short description of the Molecular Dynamics framework used. We derive the equations of motion
(Section 3.1) and discuss most important numerical concerns (Section 3.2). We move on to showing how to
model physical necessities for transport such as boundaries (Section 3.3) leads (Section 3.4) and experimental
setups where interactions will be visible (Section 3.5). We finish with an innovative approach to computing
local values for physical observables (Section 3.6.

3.1. Equations of motion
We model the eigenstates of Hamiltonian (2.3) in the semi-classical approximation, meaning all particles
obey the statistical properties given by the dispersion relation but have well defined energies, position and
momenta. We also remodel the electron-hole degree of freedom into charge degree of freedom meaning all
particles have well-defined charge (positive for holes and negative for electrons). The Hamiltonian locally
conserves energy, charge, momentum and angular momentum. Later sections of this chapter will reveal how
numerical considerations break these conservation laws.
In our approximation, time-evolution (of the system) is not given by the typical Schrodinger’s equation but
rather by the Hamilton equations of motion. We already choose to measure energy in ħvF , if we now also
measure time in terms of vF and using p =ħk we can write:{ dki

d t :=− ∂H
∂ri

=α∑
j

±i j

|rij|2 r̂ij,
dri
d t := ∂H

∂ki
= k̂i.

(3.1)

The right hand side of Eq (3.1) represents the force (Fi ) acting on particle i and the velocity (vi ) respec-
tively. Now the connection to relativistic physics emerges - the velocity of all particles is constant and fully
determined by the direction of the wave vector exactly like movement of photons at speed of light. Fur-
thermore, forces acting upon a particle can only change the direction of the particle propagation - never it’s
speed. In order to compute (time) propagation of the system we approximate the time derivative with discrete
time-steps. One should note that the change in momentum is coupled to the positions of all other particles,
therefore it’s not possible to straightforwardly integrate the PDE (3.1). Furthermore, numerically computing
the right hand side of Eq (3.1) involves computing distances between all particles - requiring in the order of
O (N 2) flops. Similarly, computing the values of ±i j for all particles is also an O (N 2) operation. All of the other
terms are O (N ) operations and thus aren’t the main bottleneck for performance. In order for the simulations
to be efficient the numerical scheme needs to minimize amount of times force is calculated. Therefore we
are looking for an integrator that remains stable even for large time-steps ∆t (to minimize the total number
of steps) and requires only one calculation of force per time-step.

The integration algorithm is the Leapfrog scheme [12][4]. In this scheme we alternate between updating
the velocity and position. Let tn be the n’th time step and ki and ri refer to momenta and positions respec-
tively. The update formulae are given by:

ki(tn+1/2) = ki(tn)+Fi (tn)∆t
2

ri(tn+1) = ri(tn)+ vi∆t

ki(tn+1) = ki(tn+1/2)+Fi (tn+1)∆t
2 .

(3.2)

9



10 3. Methods

It can be understood as a predictor-corrector approach. We predict the new momentum using the old force,
use this new momentum to push positions forward in time and then correct the momentum using the newly
computed force. Attentive readers might notice that even though we use the force twice per iteration, the
"new" force calculated becomes the "old" force in next iteration. Therefore we only need to compute force
once per iteration. Minimal memory footprint of this integration scheme is 6 floats (two each for position,
momentum and force) and one integer (charge) per particle. Leapfrog belongs to the class of sympletic algo-
rithms allowing for energy conservation on long timescales. More in depth description of the properties of
Leapfrog can be found in the Appendix B.

3.2. Negative potential domination
The inter-particle potential Eq (2.2) diverges as ri j → 0. In case of e-e (or h-h) interaction this divergence
isn’t relevant as conservation of energy pushes the particles away, preventing them from ever reaching the
singularity. However e-h interaction is attractive and thus particles do tend to get closer to each other. In
principle conservation of momentum and angular momentum should keep such pairs from collapsing onto
each other, but due to discrete time stepping in numerical integration it becomes possible for non-physical
solutions to occur. In particular, whenever particles come close the magnitude of forces acting on the parti-
cles becomes very large. The issue is that regardless of the momentum the particles move at constant velocity
- and thus during the timesteps the numerical error made by updating the positions and the momenta out of
sync (instead of continuously) accumulates violating the conservation of energy. This phenomena is called a
breakdown of stability - and in case of diverging potential it’s notoriously hard to derive any sensible bounds
on ∆t in order to prevent it [13].

Figure 3.1: Density of charge carriers in a periodic boundary condition (see Subsection 3.3) setting if we allow for annihilation of pairs. In
this particular example the pairs were annihilated if respective distance was smaller than the cut off distance rcut and their total energy
was sufficiently negative. The rate of annihilation is high in the beginning but as the density drops it slows down. We can understand
this effect - as the density of particles becomes lower the average distance between particles becomes bigger. Therefore, e-h pairs will
come close less often.

Therefore we need a "hands-on" physical approach in order to ensure the stability of numerical time
integration. Since e-h pair tend to get close to each other, one would naively like to let the pairs recombine
whenever they come within some distance from each other (rcut - that is, annihilate them both by creating
an phonon and photon to carry the resulting momentum and energy. However, within the framework of
this simulation this will cause energy loss - we don’t simulate any particles except for the charge carriers.
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However the main issue with this approach is enormous resulting rate of annihilation. Typical annihilation
time in graphene is somewhere around 150−400ns [22]. Figure 3.1 tracks number of particles in a graphene
box where we allow the annihilation of particles. The typical timescale of annihilation we observe is many
orders of magnitudes higher than the physical expectation.

The interpretation of this fact is quite straightforward - it is not enough to be "close" for pairs to recom-
bine. The actual annihilation mechanism is more involved and beyond the scope of this work. We propose a
different mechanism in order to deal with the stability issues due to e-h pairs. Most pairs of particles would
simply move around each other, gaining momenta and then move away with huge kinetic energy. Since the
numerical integration diverges from physical trajectories in these cases we need to "collide" the pairs "by
hand". This process happens when two particles are rcut away from each other with relative velocity that will
make the pair closer together. The kinetic energy, momentum and angular momentum are all conserved in
this approach. In order to conserve the angular momentum we are forced to change only the momentum par-
allel to the distance vector between the respective particles. The exact expression can be found in Appendix
B.

Physically the pair would move away from each other and interact with other charge carriers in the sys-
tem - effectively "forgetting" the bond with it’s counterpart. In typical graphene systems it is believed that no
strong bonds will form due to this effect. However, in our implementation a particle does not gain an enor-
mous amount of kinetic energy by orbiting it’s partner - and therefore is unable to move away (spatially) from
it’s counterpart and interact with other particles. Particles might remain bounded to it’s counterpart due to
this effect. To avoid this unphysical phenomena we set the force between the two particles to zero for one it-
eration after collision. This ensures that the strong bounds break but it also cases a spike in energy in the next
iteration as the potential energy reappears. Theses spikes are local (in time) and we can give the worst case
change by imagining a situation where two particles were going straight at each other and then got turned
away. Then their distance will increase by 2∆t and we can write:

∆V =−α
(

1

rcut +2∆t
− 1

rcut

)
= 2α∆t

rcut (rcut +2∆t )
. (3.3)

Note the sign of the change - it is positive therefore the energy of the pair moves towards the positive values.
The real-space cut off rcut becomes the second parameter controlling the stability of the numerical scheme.

In order to have a physical description at certain length scales (for example lee ) we need rcut to be way smaller
than than this length scale. This increases computational effort as the ∆t parameter needs to be lowered if
rcut becomes lower in order to ensure stability (and approximate energy conservation). Therefore more itera-
tions are needed and thus more computations. Finding the right balance between these two parameters will
be done empirically and will be presented as part of the results in the Section 4.1.

3.3. Boundary conditions
If one is interested in the bulk properties of a material (such as correlation time, viscosity and energy-distributions)
one would like to simulate a big, roughly uniform system. We approximate that by simulating a test volume
and stating that general neighbourhood of this bulk volume mirrors the test volume - making the periodic
boundary conditions (PBC). Another mechanism used to simulate the neighbourhood of the test volume is
to keep track of so called nearest image convention. When computing particle-particle interactions between
particle A and B we need to "copy" the test volume 8 times - one for each possible neighbours of our (rectan-
gular) test volume. This gives rise to interaction between A and B ,B ′,B ′′... etc. We keep only the interaction
with nearest image of B. One can think of it as simulating not a "test volume of N particles" but rather "N test
volumes centered at each particles". It might seem like very expensive operation - 8 times more calculations
at least. However, as it turns out it is quite cheap as we only need to find the distance in the frame centered
around the particle A. For a rectangle (L×W ) system we simply need to compute:

rAB =
(
∆x
∆y

)
→

(
∆x +L/2 mod L
∆y +W /2 mod W

)
− 1

2

(
L

W

)
. (3.4)

Note that we can choose to make the system periodic in only one direction too. This implementation of
periodic boundary conditions conserves the momentum and energy (due to Eq (3.4)) but it does not conserve
angular momentum (as the boundaries move particles w.r.t. the test volume).

In order to simulate transport however we need a system describing a physical device. In particular, the
boundaries used in analytic approaches [19][18][16] have big influence on the physics near the boundary.
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A

B

B'

rAB

Figure 3.2: The concept of the Nearest Image. The dotted lines represent "copies" of the original system in the middle. We define the
distance vector between A and B to be the shortest distance between A and one of the mirrors of B. Here it’s shown in green. Note that
while the Eq (3.4) ensures smooth changes in the magnitude of the potential it might cause huge changes in the direction of the force.

Two different approaches are the hard-walls and no-slip boundaries. Both are ways of modeling the end of
graphene - an area where the charge carriers can’t go - be it an insulator or simply vacuum.
The hard walls approach is to enforce no flux through the boundary. Naively, this can be done by simply
bouncing the particles as they hit the boundary - that is to change the momentum orthogonal to the boundary
to point away from it the moment the particles touch the boundary. Conservation of kinetic energy is trivial
to show as the bounce is just a change k⊥ →−k⊥ but if we let the wall simply move the particle back into the
system we will change it’s potential energy - changing the potential energy of all particles in the process. We
propose a different approach that will still keep particles inside of the system but won’t change the potential
energy directly. We let the particles escape the system - and then flip their momenta only if they are outside
the the system and if their current velocity points away from the system. That way no particles potential
energy is changed by the boundary (therefore conserving total energy). The hard wall now has a thickness of
about ∆t as particles can travel "outside" of the system for an time step.

 

force move BCstart

Energy

ΔV

ΔV

Δp

Δp

Δε

A B

Figure 3.3: Example of two possible implementations of hard wall BC. In Figure A we see the trajectories of particles approaching the
hard wall. On the right (red) we see a typical implementation of hard wall - a trajectory that gets reflected by the wall both in momenta
and position. The left (blue) particle will go through the boundary but only it’s momentum will get reflected by the wall. This ensures the
particles return into the system and thus the this BC does keep particles inside of the system. In Figure B we see corresponding changes in
total energy. Both particles move according to Eq (3.2) however for the red case the hard wall applies a force onto the particle by pushing
it back into the system (therefore moving it w.r.t. potential field of other particles).
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The second condition - the no-slip condition - ensures zero velocity on the boundary and meant to model
particles being "stuck" to the boundary of graphene edge. Within the context of Molecular Dynamics it is
hard to model a fitting algorithm ensuring this behaviour. In particular, it is not possible to simulate the
mechanism responsible for the slow down as the edge states in graphene do indeed move slower [23] due to
different dispersion relation. Directly changing the dispersion relation of the particles near the system edges
would be complex and (computationally) slow process. Luckily this effect decays quickly as we move away
from the boundary so we will focus on physics that don’t require this phenomena to occur.

3.4. Leads
In order to make transport simulations possible we need to discuss a special boundary condition - the lead.
Leads allows us to inject particles into the system in order to change the chemical potential of the system or
apply a potential difference to the particles inside of the system. In the first case we compute injection rate
per iteration Ninject as:

Ninject =
(
nh

(
µ,T

)+ne
(
µ,T

))×Wlead ×∆t , (3.5)

and inject particles according to distribution given by the product of Eq (2.4) and Eq (2.5). The particles can
also leave the system - if they go into the lead. The injection of particles will clearly change the number of
particles - and this is a computationally challenging as the memory allocation needs to change often in order
to keep track of the particles. In order to simplify the computational effort we propose a method that will
simulate charge flow but will keep the number of particles constant. Whenever a particle goes into the lead, a
new particle will appear on the other side of the lead - therefore fixing the number of particles. Note that this
approach doesn’t generalize to system with multiple leads.

The charge and kinetic energy is determined using a non-interactive dispersion therefore it does not nec-
essarily obey the kinetic energy distribution of interactive particles (see Section 2.3). The physical properties
of particles entering the system will thus differ from real properties of charge carriers in hydrodynamical
graphene. Furthermore, charge appearing at the edge will change the potential energy of particles near it.
Therefore we need to realize that, within the framework of this simulation, the region near the leads will al-
ways be perturbed. It is hard to specify any characteristic length scales for this propriety a priori but we will
see an approach to deal with this unknown in Section 3.6.

Note that we can put different leads at different biases. This bias difference can be translated into an
applied voltage µbias = eVbias, which we further translate into an electric field E = Vbias

L . We can thus apply
an extra force to the particles in the system in order to simulate voltage bias - an essential tool needed to
investigate I-V properties of the system. It is also possible to set the leads to different temperatures, in or-
der to simulate charge current through temperature gradient mechanism - but there is little to no way to
enforce smooth thermalization within the system. Therefore, we have no real way of simulating continuous
temperature gradient through a graphene sample.

Measurements of current are done by counting all charge flow crossing some line over time. Typically,
this value will oscillate significantly due to shot noise so we need to average these signals in order to achieve a
reasonably consistent results. Furthermore, measuring current near a lead will result in bigger oscillations of
instantaneous current as the particles are very likely to go back and forth through a current line. By repeating
the experiment and averaging the results a consistent value is obtained.

3.5. Geometries
Within the framework of molecular dynamics simulations, creating a hard wall constriction (see Figure 3.4)
results in a mechanism to relax momentum along the channel (px ). It is expected that current flow near
the edges of such constriction will create vortices [11] which would be observable in our simulations. Such
vortices haven’t been studied extensively (other than the fact of their possible existence).

One can imagine that the constriction is a major source of resistance in the system. Therefore if a particle
starts crossing the constriction its very likely to actually contribute to the current through the whole device (as
opposed to drifting back and forth as happens in the non constricted bulk more often). Therefore the current
measurements in the narrowing will have lower variance (variance in this sense refers to the oscillations of
the instantaneous current). Lastly, more interactions between particles means that near the narrowing the
charge carriers will approach the local equilibrium quicker. This helps with the perturbations caused by the
leads.



14 3. Methods
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Figure 3.4: Our proposed experimental geometry consists of two leads of width W and distance L apart, kept at different µ and/or T .
In between the leads a scattering region is introduced - the constriction of dimension Lc ×Wc . We show typical flow pattern - top and
bottom regions will create bounded states as charge carriers come out of lead with high momenta in the direction along the channel,
scatter of the constriction and travel back towards the lead. The middle region will feature highly perturbed flow as some particles from
the top and bottom parts of the junction will funnel into the constriction opening. It is possible that vortices will appear near the edges
of the channel - but they will not necessarily be symmetric and/ro at both sides of the constriction. This is definitely an effect depending
on the actual properties of the flow. Lastly, lines A and B show examples of reference lines to keep track of the current between the leads.
Note, however, that each charge traveling through line B contributes to total current in this flow diagram while crossing of line A might
be very noisy because of the vortexes and bound states appearing away from the constriction.

3.6. Physical observables as functions of spatial coordinates
Within the framework of MD simulation one often uses the principle of ergodicity, essentially stating that
we can interchange ensemble averages with time averages. This allows us to use the time-evolution in order
to compute physical quantities such as viscosity and energy distribution. As we have seen we are building
towards measuring quantities that occur in specific places, namely away from leads, near the borders of con-
striction and within the constriction itself. Therefore the framework used to computed local quantities, such
as density or current, is introduced in this chapter.

The simplest approach would be to define a grid and bin all the particles according to their positions. Each
physical quantity A can be then locally calculated by computing

∑
particles Apδ

(
particle in the bin

)
for each of

the bins. Let us consider density of particles ρ (so A = 1). A high resolution image of local properties would
require numerous (and therefore small) grid cells. If the size of grid cells becomes comparable to particle-
particle distance then the cells are so small that slightly changing the position of a particle will change the
value of local density in the grid point and it’s neighbour significantly thus creating a big variance between
sites and resulting in noisy plots. In Appendix C we investigate this concept in more detail.

The idea is to change the delta-peak like contribution of a particle towards the local quantity. An averaging
method is introduced by changing it to an integral over a Gaussian peak with standard deviation σ and mean
equal to the position of the particle, so that the local value of variable A at grid point i becomes:

Ai :=
p
πσ2

2
p

2V

∑
p∈Particles

ap

[
erf

(
xp −xp

2σ2

)
erf

(
yp − yp

2σ2

)]
gridi

(3.6)

where the V is the volume of a bin. The only free parameter σ is chosen to be a fraction of the p-p distance
lpp . Physically one can think about it as the wave function of charge carriers being constrained to an area of
roughly l 2

pp . This way the variance between neighbouring sites will be substantially lower and a higher signal
to noise ratio will be obtained.

Noteworthy the resolution of this procedure can be improved while lowering the cost of calculating the
value. Prior, we needed to calculate the density of each particle and sum it, therefore the calculation scales
as O

(
Nparticles ×Ngrid points ×Ntimesteps

)
. Now, if we increase the number of grid points such that the distance

between two points is on the order of σ we can simply ignore the position of a particle within the grid square
(and assume it’s on the center of it). The result is the computational complexity of O

(
Nparticles ×Ntimesteps +Ngrid

)
- a vast improvement.

Finally we would like to present a typical density plot in PBC setting. For this we simulate a small rectan-
gular sample with sides of 5×102 nm at T = 50K and µ= 3.5kB T (density of 3.5×1010 cm−2). In this setup we
expect the density to be constant throughout the system. We use this macroscopic quantity as the benchmark
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for the method. Figure 3.5 a shows the approximation of the density by data binning. Figure 3.5 b shows the
smoothed out density obtained by setting ap = 1 in Equation (3.6). The superiority of this approach can be
understood by looking at Figure 3.5 c showcasing the relative std between two methods.

(a) (b)

(c)

Figure 3.5: (a). The approximate density obtained by binning of particles averaged over 400 samples, as a function of position within the
system. The color map is in units of 1×1010 cm−2. The magnitude of density varies w.r.t. its nearest neighbour, making the plot very
noisy. Furthermore, we observe big variance with respect to the expected value of 3.5×1010 cm−2. (b). Approximate density of particles
obtained by Gaussian smoothing, averaged over 400 samples, as a function of position within the system. The color map is in units of
1×1010 cm−2. The expected value of density in the bulk corresponds to the actual density in the system, while near the boundary it
drops off. This is due to smoothing procedure not handling the periodic boundary conditions in the computations. (c). The variance
between the grid points relative to the (approximated) mean value of the density, on a logarithmic scale as a function of the number of
samples. We see a quick drop of variance for both approaches but Gaussian smoothing begins and remains orders of magnitude better.
Furthermore, the leveling off of the variance has to do with improper handling of the grid points near the boundary of the system, effect
irrelevant in physical systems where we work with hard walls.





4
Results

4.1. Stability of the numerical approach
In this section the optimal choice of stability-controlling parameters ∆t and rcut is reported. We handle the
case of Dirac and Fermi fluids separately, since the two regimes vary vastly. Both simulations are done in rect-
angular PBC setups and on timescales orders of magnitude longer than lpp . Two observables are crucial here:
the lack of energy drift on long time scales and small fluctuation of the energy. Two metrics are used, we re-
port on total energy of the system after a long time and the typical fluctuations relative to the total energy. The
energy is expected to grow over time if ∆t

rcut
gets above some threshold and the fluctuations increase whenever

rcut grows as per Eq (3.3). Note that these results will change as the density within the system changes.

4.1.1. Fermi regime
All of the results in this section were done at T = 50K , µ = 100K , N = 124 and a density of 1.9×1010 cm−2.
First we present behaviour of the total energy of the system on long timescales. Some choices of parameters
lead to divergence of the energy, leading to nonphysical results.

Figure 4.1: Total (average) energy as a function of rcut on the y axis and ∆t
rcut

on the x axis. We cut the values off at 70 and 50 (in arbitrary
units), therefore all the deep red correspond to energy escalating due to instability. White empty space corresponds to NaN value due
to overflow. The area left of ∆t

rcut
= 0.3 remains within the bounds of the energy. One can observe how changing the stability parameters

changes the physical properties of the system, in this case the total energy is slightly higher between ∆t
rcut

= 0.2 and 0.3. Seeming lack of
dependence on the rcut in the stable part of the plot suggest that particles never come within the distance of 40 nm within the simulation.

Secondly we report the fluctuations of the energy in time. Big fluctuations can be a sign of the conserved
pseudo Hamiltonian not being close to the original Hamiltonian of the system Eq (2.3). In order to understand

17
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why energy oscillations appear we urge the reader to see Appendix B.

Figure 4.2: The relative fluctuations in total energy due to numerical approximation as a function of rcut on the y axis and ∆t
rcut

on the x
axis. We cut off all of the values at 1% margin in deep red. There is a sharp interface between fluctuating and non fluctuating regions. We
can observe a roughly linear relation between rcut and ∆t

rcut
marking the boundary. All of the grey point are left of ∆t

rcut
= 0.3 and therefore

are valid simulation parameters. Above the boundary simulations fluctuate more abruptly. This is caused by bigger ∆t creating bigger
difference between discrete trajectories and continuous ones.

We observe a large triangular region of stability in terms of rcut and ∆t
rcut

. The outermost stable points are
rcut = 40nm, ∆t = 3.8fs and rcut = 7nm, ∆t = 1.5fs allowing us to vary rcut according to specific needs while
keeping the time step reasonably high.

4.1.2. Dirac regime
The simulations were performed at T = 100, µ = 0 , N = 95 and a density of 1.5×1010 cm−2. The reasons for
showing these plots are the same as in previous section and therefore won’t be restated.

Figure 4.3: Total (average) energy as a function of rcut on the y axis and ∆t
rcut

on the x axis. We cut the values off at 10, therefore all the
deep red correspond to energy escalating due to instability. Note the difference w.r.t. the previous subsection, all of the energies are
vastly lower due to the negative potential. The values of ∆t are vastly lower compared to the previous section, left of ∆t

rcut
= 0.01 the

values of energy don’t seem to diverge although one needs to be aware of some instability for low rcut visible in that region.

In Figure 4.3 we observe a breakdown of the stability at combinations of rcut and ∆t that would be stable
in Fermi regime. The magnitude of the p-p potential at rcut is exactly the same for both cases therefore it must
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be the sign of the potential causing it. It is unclear if this effect is due to particles not reaching the distance
rcut when the potential is positive or due to error terms canceling out for the negative case.

Figure 4.4: The relative fluctuations in total energy due to numerical approximation as a function of rcut on the y axis and ∆t
rcut

on the
x axis. We must focus on a much smaller region than the Figure 4.3. There are two effects at play causing this behaviour, both of them
originating in negative potential domination. First the total energy is lower compared the Figure 4.1 and therefore the fluctuations are
more pronounced. Second, e-h interactions attract particles together, causing bigger fluctuations as can be seen in Eq (B.6). One can
speak of low fluctuations for data points left of ∆t

rcut
= 0.0015 and there is not a clear boundary for the regio.

We observe far more stringent constraints on ∆t . In particular, one needs to look at values 2 order of
magnitude lower than in the case of the Fermi regime. Also, the energy of the system varies more as a function
of rcut . The stability region is less well defined, but we can postulate values of rcut = 5.6nm, ∆t = 11.5as and
rcut = 25.8nm, ∆t = 91.7as as possible candidates for simulations.

4.2. Viscosity effects
In this section spatial charge velocity correlations are shown. The simulations are done in the Dirac Fluid
regime and are meant as a qualitative arguments rather quantitative description of phenomena shown. Due
to restrictions on the time step shown in last section it was not feasible to simulate charge transport over
any sufficient time scale. However, we were able to simulate for times long enough to obtain consistent local
values (see Section 3.6) of particle and charge density and velocity. Figure 4.5 shows a variety of rich physical
phenomena that can be probed in this regime. All of the plots were made in a constriction geometry (as seen
in Figure 3.4).

4.3. I-V characteristics at high bias
In the Fermi regime it becomes possible to simulate long enough for transport to equilibrate. All experiments
in this sections were done in a constriction geometry shown in Figure 3.4 with: spatial dimensions L = 1.2µm,
W = 500nm, Lc = 200nm and Wc = 150nm, stability parameters ∆t = 500as and rcut. We set the leads to 50K
and a chemical potential of 15meV± eVbias with negative voltage for left and positive voltage for the right
lead. We will vary the bias voltage (with a maximal bias of eVbias = 3meV) in order to simulate transport. Each
simulation has been done multiple times, starting from the same initial condition but with a different random
seed in order to approximate the variance due to randomness.

4.3.1. Typical particle drift velocity
We start by showing typical density and velocity in the x direction distributions. In the Fermi regime the
charge carrier density and drift velocity vdrift directly relate to current via j = nev so these macroscopic quan-
tities are a good first approximation for the current expected. We start by showing a result for eVbias = 6µeV in
Figure 4.6. Afterwards we focus the attention on effects of bias voltage. The idea is that applying electric field
will force the flow to go through the constriction. Figure 4.7 shows the effects that external applied electric
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Figure 4.5: Top left corner: charge drift velocity near the entrance of the constriction. The flow in the on the bottom of the plot becomes
bigger as we approach the entrance. Towards the right upper corner we can see effects of viscosity, as the current into the constriction
slowly changes sign due to the hardwall boundary. Effects of long range correlations can be observed in the sign flipping of the current
on the left side of the plot. Top right corner: charge drift through the constriction with a background of the charge imbalance. In this
setup an voltage bias was applied forcing the charge carriers to travel coherently through the constriction. We can see typical Poiseuille
flow velocity profile within the constriction. Note the slight funneling effect around 600 nm. It occurs correlates with a slight local charge
imbalance. On the edges of constriction we can see boundary effects changing the flow. Bottom corner: charge drift near the exit of a
constriction. The background is the local charge imbalance. We see negatively charged region, with a vortex trapped inside of it. Viscous
forces of the current around it push the charge carriers towards the inside of the vortex, canceling out the repulsive forces between
particles in the vortex.

field has on the current flow.

4.3.2. Conductance correlation at different bias
We investigate the conductance of the constriction channels in more structured way by considering the be-
haviour of conductance correlation. Usually one investigates the current correlation but for fixed voltage (as
in our case) the two differ by a prefactor only. In equilibrated system the correlation should drop exponen-
tially with some characteristic time scale tcorrelation. Figure 4.8 contains the conductance plots and correlation
as a function of time for systems discussed in previous section.

4.3.3. Viscosity and conductance correlation
Lastly we show values of viscosity (computed as per [15]) calculated away from leads between x = 0.2µm
and x = 1µm and compute the conductance from hydrodynamical theory Eq. (2.11). Value of conductance
determined by counting charge passing through the constriction is also shown in Figure 4.9. The errorbars
are obtained by calculating standard deviation between different realizations of the same simulation.
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Figure 4.6: Subplot a: Drift velocity within the sample. Unexpectedly we observe the velocity change sign 4 times in between the leads.
The value of drift velocity changes slowly within the constriction but near the leads we see an abrupt sign flip. The middle of the lead
pumps particles into the system and the top and bottom suck it out. The velocity profile is roughly symmetric around the middle of
constriction. Subplot b: Flow diagram of the system with a background of density in units of 1×1010 cm−2. Indeed, near the leads the
particles go in circular motions. As described in Section 3.4 the leads keep the density in the system constant by moving particles leaving
through it to the other lead. This explains the closed loops forming near the lead, as particles go into the system, bounce of the bulk
density at around x = 0.2µm and x = 1µm, return into the lead and repeat the same procedure on the other side of the system. For this
reason we see a higher density near the leads. However, the bulk of the system has constant density, implying that the flow separated
into a section around leads and a section around the bulk of the system. Each of these sections prevents mixing with the others via
applying pressure. The sections don’t collapse under this pressure most likely due to internal pressure caused by the bouncing approach
and hardwalls. Flow within the bulk is very noisy and chaotic. There is little to no flow through the constriction, as opposed to the
expectation. Lastly, note that the flow-lines outside the bounds of the constriction are simply a by product of quiver plotting procedure.
On the plot a we can see extremely low values of velocity there, as it should be since it is empty.

Figure 4.7: Subplot a: Drift velocity within the sample at eVbias = 3meV. We see again the sharp sign changes near the leads but now the
drift is clearly more pronounced in the bulk, especially in the constriction. It is possible to observe Y shaped flow within this sample.
Subplot b: Flow lines with a density background. We indeed see coherent flow through the constriction. Again, the effect of closed loops
on both sides of the leads persists. Notably the area where both flows meet, x = 0.2µm and x = 1µm moved to the left by about 0.01µm.
It is best to redefine thermalized system to be between these two lines and consider the rest of it as larger leads. Near the right entrance
of the constriction we can see effects of viscosity in the shape of current "hugging" the wall as in goes into the constriction. On the left
side however, we see vortices appear due to interaction between inter-particle forces and boundary conditions. The density within the
system is roughly constant in the bulk and elevated near the leads. We expect higher current through this device as the drift velocity in
the constriction is higher.
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Figure 4.8: Subplot a: the conductance at low bias voltage for multiple random seeds as a function of time. We observe enormous
fluctuations of conductance and the sign changing. This is unexpected behaviour, as we expect the conductance to remain around zero
for the low bias device. One possible explanation for this is the system equilibrating to a state where two charge densities bounce of each
other, one going into the lead and arriving at the other side and the other traveling through the constriction to the other side where the
process repeats. This phenomena would cause big (and sign changing) fluctuations in the charge transport through the constriction.
Subplot b: conductance correlation for multiple realizations as a function of time supports this phenomena. We see an quickly dropping
correlation followed by a oscillation. Oscillations in the correlation function are a sign of system not equilibrating. Subplot c: the
conductance at high voltage for multiple realizations. We see stable conductance with small oscillations. It is questionable why the
conductance is this low however. Value of few conductance quanta is expected out of quantum dots and not nano sized channels.
Subplot d: conductance correlation at high bias. We again see oscillations in the correlation, related to the behaviour near the leads.

Figure 4.9: Left: The viscosity (units of Pascal second) of charge carriers within graphene as a function of applied bias voltage (in the
units of meV). The value is in the right order of magnitude [5], for comparison honey has a viscosity of about 10 Pa s. However, the
uncertainty in the data points and general lack of coherence between data points forces us to conclude that this statistical property
can’t be derived from our model as postulated. Right: Conductance of the channel in terms of conductance quanta. Orange line is the
theoretical prediction from hydrodynamical theory, based on the viscosity calculation. Given the values found for viscosity we do not
expect this curve to be right. We again see values smaller than the standard deviation error. Blue line is a result from straightforward
computation of the charge passing through the constriction. One can observe consistent values with small errors at high bias. At low
bias the error again becomes bigger than the value. It is noteworthy that the pattern of minima and maxima of both curves (at low bias)
coincides. It is reasonable to speculate that poor perfomance of both methods (viscosity calculation and counting of charge) has orgin
in exactly the same phenomena.



5
Conclusion

In this work we have presented a model of Coulomb interactions between charge carriers of graphene. We
have shown the importance of incorporating this potential energy scale when considering charge carriers at
low and high chemical bias µ. By considering the statistical properties of Eq 2.1 we understood the effects
adding Coulomb interaction will have. Specifically have characterized two different regimes within hydrody-
namical graphene, the Fermi Liquid regime with µ

kB T À 1 where charge carriers are of the same type and the

potential energy is positive and the Dirac Liquid regime µ
kB T < 1 where the charge flow consists of electrons

and holes and the interaction is attractive, making the potential negative. Proper energy dispersion in the
presence of interactions is an open question theoretically.

We simulated the dynamics of our model in the framework of Molecular Dynamics approach using the
sympletic Leapfrog algorithm. The diverging Coulomb potential proved to be problematic numerically, lead-
ing to development of bouncing mechanism characterized by a length scale rcut. The parameter rcut became
the second parameter ensuring stability and lack of long time energy drift of the system, next to timestep ∆t .
Physical devices have been modeled in terms of boundary conditions and ways to bias the system. We have
introduced a creative approach for calculating local physical (single particle) observables such as density or
drift velocity. The approach has been shown to converge quickly to proper macroscopical average of relevant
quantities.

The main result of this work are the stability analysis of the Leapfrog method for this particular potential
and the display of long range correlations between particles. We find the Dirac regime to require very low ∆t
in the order of tens of atto seconds. The Fermi reqime performs orders of magnitude better by remaining sta-
ble at timestep of few femto seconds. We were able to show the velocity of change signs as a result of viscous
interactions both in Fermi and Dirac fluids. However, statistical-physics based methods used to compute
viscosity and current did not perform well. The outcomes of experiments are subjected to substantial devi-
ations, therefore it was impossible to reproduce any physical properties reported in literature. Furthermore,
the system did not reach a thermal equilibrium due to non-interactive energy dispersion of the leads.

The conclusion forces itself: modeling of specific devices by addition of leads introduces perturbation
big enough as to make full thermalization impossible. However the parts of the project working well, that
is computation of time evolution of the system and describing the macroscopic properties of the system
within just few timesteps open the door to a different approach. The idea is to implement random sample
generation in hybrid Molecular Dynamics - Monte Carlo algorithm. This approach lets the system evolve in
a MD fashion for short times (long enough to gather information about local observables however) and then
introduce random perturbations to the system, followed by thermalization time period. The perturbation can
be chosen in such a way as to simulate transport via averaging over local perturbation response properties
leading to a novel approach to transport simulations.
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A
DoS derivations

A.1. Structure of graphene
A.1.1. Lattice structure
Graphene is a 2 dimensional material consisting of carbon atoms in a honey-comb structure. The displace-
ment between two neighbouring atoms given by:

e1 =±ax̂,

e2 =±a
−x̂−p

3ŷ

2
,

e3 =±a
−x̂+p

3ŷ

2
.

(A.1)

With a the atom-atom distance equal to 0.142nm. The ± sign is due to two different atoms, see Figure A.1.
This gives rise to two triangular sub-lattices per unit cell with the lattice vectors e1 − e2 and e1 − e3. The
k−space vectors are easily found by looking for vectors such that the dot product equals an integer multiple
of 2π. We come up with:

kn,m = 4π

3
p

3a

(p
3(n +m)

2
x̂+ n −m

2
ŷ

)
, (A.2)

with n,m being arbitrary integers.
The nearest neighbours are held together by the hybridized sp2 orbitals. The, in plane, px , py and s or-

bitals form σ bounds and remaining, out of plane, pz orbital forms π bounds. The σ bonds are strong and
therefore the electrons in them tend to stay put. As a result theory of transport in graphene is based on nearly
free π orbitals creating the π (valence) and π∗ (conduction) bands.

A.1.2. Tight binding model
The tight binding model of π and π∗ bands is given by hoping terms between the two sublattices (A and
B) characterized by energy scale t ≈ 2.8eV and on site chemical potential µ describing offset to the charge
neutrality point [9]. One should note that nearest neighbours are always on two different sub-lattices so we
write:

H =−t
∑

σ,<i j>

(
a†
σ,i b

σ, j +H.c.
)
−µ∑

σ,i

(
a†
σ,i a

σ,i +b†
σ,i b

σ,i

)
, (A.3)

with σ the spin (↑,↓) degree of freedom, < i , j > refers to all pairs of nearest neighbours, a and b are creation
operators on the A and B sub-lattices respectively. Note that the second term goes over all lattice points. Since
each lattice belongs to either A or B one of the terms will always be zero (per definition of an operator acting
only on specific sublattice) and the other will simply give us the number of particles at given site. Hamiltonian
(A.3) is an example of a Hubbard model Hamiltonian. Methods to solve this kind of problems are well known
[20]. After taking the Fourier transform the we can see that the spectrum is simply given by:

E(k) =±t |exp(i k ·e1)+exp(i k ·e2)+exp(i k ·e3)|−µ. (A.4)
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 a= 0.142 nm 

e1

e2

e3

sublattice A
sublattice B
sp2 orbitals
π orbitals

Figure A.1: The crystal structure of graphene. We show the bonding sp2 orbitals and the conductive π orbital. The π orbital only reaches
the nearest neighbour, hence there is no need for a second-to-nearest term in the Hamiltonian (2.1). We show only few of the π orbitals
for readability sake.

The charge neutrality point can be found by setting µ= 0 and calculating k such that the resting term has zero
energy. It turns out there are infinitely many solutions to this equation but they are all related to each other
by the reciprocal lattice vectors Eq (A.2). Since we have a sublattice degree of freedom we shall state two of
the solutions that will be also the lattice points included in the Brillouin zone.

K = k1,0 = 4π

3
p

3a

(p
3

2
x̂+ 1

2
ŷ

)
,

K′ = k0,1 = 4π

3
p

3a

(p
3

2
x̂− 1

2
ŷ

)
.

(A.5)

Henceforth the sublattice degree of freedom will be referred too as valley degeneracy. Lets now look at the
spectrum near the K point. Linearization gives:

E(k) =±vFħ|k|+µ (A.6)

with the Fermi velocity defined vF = 3
2 t a ≈ 1×106 ms−1, just a factor 300 lower than the speed of light c.

A.2. Scaling properties
We start by counting charge carriers in the systems as a sum over modes, weighted by the Fermi-Dirac distri-
bution f (E ,T,V ) where the functional dependence is omitted for sake of readability:

N = ∑
kx ,ky

f = 1

∆kx∆ky

∑
kx ,ky

f ∆kx∆ky = A

4π2

∑
kx ,ky

f ∆kx∆ky

=⇒ n = 1

4π2

∑
kx ,ky

f ∆kx∆ky ≈ 1

4π2

Ï
f d

(
kx ky

)= 1

2π

∫
f kdk.

(A.7)

In the last step we changed to polar coordinates so k refers there to the norm of k. One should realize that the
above expression is valid for electron states E ∈ [0,2.5eV] - the holes E ∈ [−2.5eV,0] are distributed with 1− f
instead. Now, by putting β= kB T and k = E

vF ħ we can write:

ne = 1

2π

(
1

vFħ
)2 2.5eV∫

0

f E dE = 1

2π

(
1

vFħ
)2 2.5eV∫

0

E

exp
(
β(E −eV )

)+1
dE , (A.8)
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and similarly

nh = 1

2π

(
1

vFħ
)2 0∫

−2.5eV

|E |
exp

(
β(eV −E)

)+1
dE . (A.9)

The final approximation comes from the specific regime that we work in. Since we are interested in βV <
O (1) the temperature becomes the main energy scale. The range of temperatures is O (meV) - meaning that
charge carriers with energies bigger than 1eV don’t get excited. In particular for energies larger than 1eV the
integrand goes to zero exponentially. We can then write:

ne ≈ 1

2π

(
1

vFħ
)2 ∞∫

0

E

exp
(
β(E −eV )

)+1
dE = 1

2π

(
1

βvFħ
)2 ∞∫

0

x

exp
(
x −βeV

)+1
d x,

= −1

2π

(
kB T

vFħ
)2

Li2
(−exp

(
βeV

))
.

(A.10)

The second step in this equation involves the substitution x = βE and in the last step we use a well known
result known as a complete Fermi - Dirac integral [24]. The Li2 is the poly-logarithm function of order 2.

Similar derivation can be done for holes, resulting in:

nh ≈ 1

2π

(
1

vFħ
)2 0∫

−∞

|E |
exp

(
β(eV −E)

)+1
dE = 1

2π

(
1

βvFħ
)2 0∫

−∞

|x|
exp

(
βeV −x

)+1
d x,

= −1

2π

(
kB T

vFħ
)2

Li2
(−exp

(−βeV
))

.

(A.11)

Adding the two contributions together we see (including factors of 2 due to spin and valley degeneracy):

ne +nh = 2s 2v

4π

(
kB T

vFħ
)2 ((

eV

kB T

)2

+ π2

3

)
. (A.12)

To get a feel for the numbers its useful to realize that since eV
kB T <O (1) we can simplify even further and state

ne +nh ≈ Ctot T 2 with Ctot = 1.43×106 cm−2 K−2. Therefore, in the temperature range of [100,300] we shall
see O

(
1×1010 cm−2

)
charge carriers.

Another important quantity is the charge imbalance. Here we compute:

nh −ne ≈ 2s 2v

2π

(
kB T

vFħ
)2 (

log(4)
eV

kB T
+O

(
V 3

T 3

))
≈Ci mbT V , with Ci mb ≈ 1.45×1010 K−1 V−1 cm−2, (A.13)

one can see that the charge polarization ρpol (ratio of charge imbalance and total charge) reads:

ρpol =
Ci mb

Ctot

V

T
≈ V

T
×104. (A.14)

Since temperature is O (100) we must have the voltage being O
(
10−3

)
in order for the results to be lower than

1. If we restate this result in terms of energy, that is the ratio of (bias) potential and thermal energy we recover
our regime defining statement ρpol ≈ eV

kB T < 1.
Lastly lets compute the average (kinetic) energy, starting from the total energy. We will use the same

substitution as before and the same approximations:

Etot ≈ 2s 2v

2π

(
1

vFħ
)2

 0∫
−∞

|E |2
exp

(
β(eV −E)

)+1
dE +

∞∫
0

E 2

exp
(
β(E −eV )

)+1
dE


= 2s 2v

2π

(kB T )3

(vFħ)2

 0∫
−∞

x2

exp
(
βeV −x

)+1
d x +

∞∫
0

x2

exp
(
x −βeV

)+1
d x


= 2s 2v

2π

(kB T )3

(vFħ)2

(−2Li3(−exp
(−βeV

)
)−2Li3(−exp

(
βeV

)
))

)
≈ 2s 2v

2π

(kB T )3

(vFħ)2

(
3ζ(3)+2log(2)

(
eV

kB T

)2

+O

(
V 4

T 4

))
.

(A.15)
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Figure A.2: The density of the charge carriers per square cm. The case of µ < kB T is shown such that typical densities are of the order
1×1010 cm−2. Typical values in the case of µ> kB T are 1×1012 cm−2 hoewever this region is not regarded within this context.

In the last line the Riemann Zeta function ζ [24] makes an appearance. From here we compute the average
kinetic energy as:

< E >= Etot /(ne +nh) = 2kB T

(
9ζ(3)+6log(2)x2

π2 +3x2

)
,

≈ 2.2kB T +0.1
(eV )2

kB T
+O

(
V 4

T 3

)
.

(A.16)

This might be a somewhat puzzling result. One would expect a typical 1
2 kB T per degree of freedom, in

accordance with the equipartition theorem. This is not the case for Graphene because the kinetic energy
term is linear in momentum.
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Figure A.3: The density of the charge per square cm. At higher chemical potentials this value coincides exactly with the charge carrier
density. However at low µ the netto charge is low because we have two types of charge carriers. This quantity is of imporantance when
considering the type of interaction - at low imbalance most of the interactions will be attractive and as we go up we shall see more
repulsive ones.

Figure A.4: The average kinetic energy as function of T and µ. While the T dependency is roughly linear we do see slight additional µ
effects. When µ> kB T this relation will change - the dependency will be mostly quadratic in µ with slight temperature dependence.





B
Leapfrog properties and stability

Isn’t that ingenious? I borrowed it straight from
Newton. It comes right out of the Principia,
diagram and all.

R. Feynman 1965

B.1. Mathematical background of the numerical integration scheme
This section will be based on [4] and [12]. Author would like to thank users of mathstackexchange for con-
tributing to understanding of these topics.
Consider a function f of parameters r and p. Then we can express the time derivative as:

d

d t
f
(
p(t ),r (t )

)= (
ṗ
∂

∂p
+ ṙ

∂

∂r

)
f
(
p(t ),r (t )

)
. (B.1)

If we now introduce the momentum and position shift operators - operators moving the coordinates forward
in time as i Lp t = ṗ ∂

∂p t and i Lr = ṙ ∂
∂r t respectively, then it’s clear to see that the proper solution of B.1 reads:

f
(
p(t ),r (t )

)= exp
(
i t

(
Lp +LR

))
f
(
p(0),r (0)

)
.

Note that this has not solved the equation in any way or shape. We simply restated the problem of finding
a solution to a PDE into one of determining the action of an exponential operator. In particular, since Lp

and Lr don’t commute we can not split this exponential into separate ones. Luckily, in the 1950’s Trotter [1]
introduced a handy identity:

e A+B = lim
N→∞

(
e A/2N eB/N e A/2N )N

. (B.2)

More relevantl, for any finite N we have e A+B = (
e A/2N eB/N e A/2N

)N
eO(N−2). Now set A = i tLp , B = i tLr and

t = N∆t we recover:

exp
(
i Lp t + i Lr t

)≈ (
exp

(
i Lp∆t/2

)
exp(i Lr∆t )exp

(
i Lp∆t/2

))N . (B.3)

This last expression should be familiar, it is exactly the alternating pattern of updating momentum and
position from Equation (3.2). The sympletic property, conservation of Hamiltonian, can be now under-
stood. The error term reads expO(∆t 2) ≈ 1. Simpler methods like the Euler-Forward method (based on the

Baker–Campbell–Hausdorff formula [12] exp(A+B) = lim
N→∞

(
exp A/N expB/N

)N ) do not have such nice error

properties and will thus drift in energy on long timescales.

B.2. Error terms
One should realize that Equation (B.2) only holds for bounded operators A and B . In case they are not
bounded, we get something called breakdown of stability. This causes the energy, and in our case momen-
tum, to suddenly grow to a huge number. According to [13] it is extremely hard to find any bound on ∆t that
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will ensure the stability of the algorithm in the case of unbounded Hamiltonian analytically. We will, however,
try to give some intuition as to what goes wrong and why graphene tends to break stability while typically for
H = p2 +1/r the simulations remain stable. The one timestep approximation can be written as:

exp
(
i Lp∆t/2

)
exp(i Lr∆t )exp

(
i Lp∆t/2

)= exp
(
i Lr∆t + i Lp∆t +ε), (B.4)

with ε a term containing all odd numbered (starting from 3) commutators of i Lr∆t and i Lp∆t . That is we do
not conserve the Hamiltonian. Rather, we conserve a quantity that tends to be near our Hamiltonian since
all the terms in ε are at least O(∆t 3). However, we will show that when particles get close to each other this
quantity needs not to be small. It may in fact dominate the operator. Using a approach similar to [13] and
working on separable Hamiltonian H = K (p)+V (r ) we can write the leading term of ε out as:

ε≈ (∆t )3
(

1

24

[
i Lr ,

[
i Lr , i Lp

]]+ 1

12

[
i Lp ,

[
i Lr , i Lp

]])≈ (∆t )3
(

1

24
V 2

r Kpp + 1

12
Vr r K 2

p

)
. (B.5)

Lets now give crude approximations of the product of derivatives Vr ,Vr r ,Kp and Kpp in terms of powers
of p and r . Remember, we consider the case of two particles being attracted towards each other therefore
p ∼ 1

r for graphene and p2 ∼ 1
r for 2DEG. For graphene we have:

ε∼∆t 3
(

1

r 3

)
∼ ∆t 3

r 3 (B.6)

while for 2DEG we obtain:

ε∼∆t 3
(

1

r 4 + p2

r 3

)
∼ ∆t 3

r 4 . (B.7)

Therefore, for ε to be small we need ∆t ¿ r for graphene while 2DEG only requires ∆t ¿ r 4/3 - a constraint
trivially fulfilled by requiring the particles to move less than half of the distance in between particles. The case
for graphene is harder, it is not clear what the relevant prefactor needs to be. Furthermore, looking at higher
order terms of ε complicates things even further.

Figure B.1: E-H interactions in a classical system (kinetic energy quadratic in momentum). The left panel shows energy (in a.u.) con-
servation. The middle and right panels show the time-evolution of the system. One can correlate the high potential energy to proximity
between particles, we see full stability of the integration method as perdicted by Eq (B.7).

B.3. Bouncing
We write the momentum of the pair in the basis of vector between the particles ri j and a vector orthogonal
to it r⊥. So we write:

pi =
(

a
b

)
, p j =

(
c
d

)
. (B.8)

The velocity still equals the direction of momentum so if a
|pi | −

c
|p j | < 0 the particles are moving towards each

other. Our goal is to find a transformation such that the new velocities point away from each other. Conserva-
tion of momentum tell us that if pi is changed by [x, y] then the opposite must be done for p j . Furthermore, if
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Figure B.2: E-H interactions in a graphene, kinetic energy linear in momentum without the bouncing mechanism. The left panel shows
energy (in a.u.) as a function of time. Two collision events are visible. The first one is conserving energy and second one is not. Middle
and right panels the show time-evolution of the system. The curvature of paths leaving in the right (non-conserving) collision show the
stability break down - the particles gained extra momentum due to Eq (B.6).

we choose the origin to be exactly between the two particles, the conservation of angular momentum allows
only for changes to be made in the direction of ri j and thus y = 0.

All that is left is the conservation of (kinetic) energy. We write:√
a2 +b2 +

√
c2 +d 2 =

√
(a −x)2 +b2 +

√
(c +x)2 +d 2. (B.9)

The equation is trivially solved by x = 0 but there exists a more impressive solution:

x = A

B
with

A = 2(2a3d 2 −b2c|pi ||p j |−ab2|pi ||p j |+
cd 2|pi ||p j |+ad 2|pi ||p j |+a2b2c+
a2cd 2 −ab2c2 +ab2d 2 −ac2d 2 −ad 4+
b4c −2b2c3 −b2cd 2)

B =4a2d 2 +4ab2c +4acd 2 −b4 +4b2c2 +2b2d 2 −d 4.

We postulate (without proving it) that this transformation does indeed flip the velocities away from each
other.





C
Smoothing of local observables

C.1. Physical observables as functions of spatial coordinates
In the semiclassical approach, we consider point-particles. The "point" part of the name refers to the idea of
the particles being located in one specific point in phase space. Therefore, classically when we discuss the
quantity of "density" we usually define some test volume Vtest and compute:

ρ = 1

Vtest

Ï
Vtest

DoS(x)dx with DoS(x) := ∑
p∈Particles

δ(x−xp). (C.1)

Such defined density ρ works very well in big systems. In particular, if there are many particles and they
are somewhat uniformly spread out, the density will not change rapidly if we change the test volume, making
the quantity well defined.

Local density is definitely a quantity of interest for my system. Yet, the scale of the problem makes finding
right Vtest difficult. Consider a toy model: a system with only one particle. Subdividing such a system into
a grid of test volumes would give a local density of zeros almost everywhere and ρ = 1

Vtest
in one of the grid

points. This would result in a serious discontinuity in the local density function at the border of the test
volume with the particle in it and its neighbours. Furthermore, as we look at behavior in the limit Vtest → 0
the jump would only get worse!

One might argue that the problems aren’t relevant because the concept of "density" is rather meaningless
for such a system. To this I would like to propose another layer to the toy model. Lets now say that this one
particle is a random walker and that we record the local density for each time, denoted by ρ(x, t ). Since this
particle will now travel the system randomly we expect

lim
T→∞

1

T

T∫
0

ρ(x, t )d t = 1

A

with A being the total area of the system. That is, the time average simply states "there are no areas with
more density than others". Similar ideas can be introduced when considering ensemble averages. Ensemble
averaging is the process of taking the average over all possible configurations of a system. Surely if we average
over all possible positions of our particle, we would obtain the exact same result as time averaging. Within
the framework of this project we shall exchange ensemble averaging by time averaging due to ergodicity of
the system.

In the example of a one-time step and one particle we see a huge variance between grid spaces. Let us
quantify this by making the random walker jump between grid points, each with chance p = Vtest

A . Particle
being on specific grid i is then a Bernoulli variable with parameter p. The expected value of the local density
on grid point i would be E(ρi ) = p 1

Vtest
+ (1−p) ·0 = 1

A , as shown before. The variance will read

σ2(ρi ) = p

(
1

Vtest

)2

−
(

1

A

)2

= 1

A

(
A−Vtest

AVtest

)
≈ 1

A

1

Vtest
(C.2)
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where in the last line we use A À Vtest. Since σ2 goes down as t−1 with t the number of samples, we would
need to wait until tVtest À 1 for variance to decrease. In the framework of this project the situation is even
more dire because particles are not random walkers but correlated movers, they take a finite amount of time
to move between grid sides.

Wince we know that the outcome equals 1
A we can define a new, smoothed out DoS in such that the con-

vergence rate of the density is speed up. The optimal shape of this smoothed out DoS is a difficult question
but it isn’t of actual relevance to us, since the physical phenomena arising from the exact shape of the wave
function will not be visible within this model anyway. We can simply propose a reasonable shape of a Gaus-
sian peak, as it reassembles a Dirac peak (in the limit σ→ 0). This changes the DoS:

∑
p∈Particles

δ(x−xp) → ∑
p∈Particles

1p
2πσ2

exp

(
− (x−xp)2

2σ2

)
(C.3)

We can now reevaluate equation C.1.

ρi = 1

V

Ï
Vtest

DoS(x)dx = 1p
2πσ2V

∑
p∈Particles

(∫
exp

(
− (x −xp )2

2σ2

)
d x

)(∫
exp

(
− (y − yp )2

2σ2

)
d y

)

=
p
πσ2

2
p

2V

∑
p∈Particles

[
erf

(
xp −xp

2σ2

)][
erf

(
yp − yp

2σ2

)] (C.4)

where the evaluation of the integral is over the test volume. The only free parameter left in this expression is
σ. A physically good choice is a fraction of typical particle-particle distance lpp .

Using the local density we can now compute any local quantity A on grid point i as :

Ai :=
p
πσ2

2
p

2V

∑
p∈Particles

Ap

[
erf

(
xp −xp

2σ2

)][
erf

(
yp − yp

2σ2

)]
with Ai ,per particle := Ai /ρi .

(C.5)
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