
A Hybrid Approach for Sentence Similarity:
Combining Semantic and Structural Similarity Metrics

Wout Haakman , Pradeep Murukannaiah
TU Delft

Abstract
Predicting similarity between sentence pairs is es-
sential for applications such as recommender sys-
tems and plagiarism detection. There have been
several categories of approaches for predicting sen-
tence similarity. This paper combines approaches
from two categories, semantic and structural sim-
ilarity, to find a hybrid approach that aligns more
closely with how humans determine similarity.
Extensive background research is conducted to un-
derstand the scope of the problem, to be able to
understand human psychology, as well as the ad-
vantages and disadvantages of already existing ap-
proaches. Based on the insights from the back-
ground research, we propose a novel hybrid ap-
proach, combining semantic and structural simi-
larity metrics. The proposed approach is eval-
uated on the STSS-131 and MSRP datasets and
compared with other common approaches and Sen-
tenceBERT, a deep learning algorithm. The pro-
posed approach does not perform as well as Sen-
tenceBERT but makes up for this by being more
explainable and outperforming all other traditional
machine learning approaches in its accuracy in pre-
dicting sentence similarity. This paper also pro-
vides a critical conclusion with recommendations
for further improvements.

1 Introduction
Since the beginning of the computerized and highly con-
nected world, there has been a big growth of information.
And with that came the need to structure all this information.
This was achieved partly due to text similarity, using algo-
rithms 1 like [1] [2] [3], which is to determine how closely
related two pieces of text are. Text similarity could be used
for applications like web search, navigating big data-sets, and
categorization of documents. However, one of the significant
downsides of using text similarity approaches is that they rely

1In this paper the terms ’algorithm’ and ’approach’ are used in-
terchangeably, as both go about how to solve a certain problem, with
the difference being that they indicate a computational process and
a thought process that solve the problem respectively.

on the occurrence and count of particular words. This does
not work for short texts and sentences, as these do not con-
tain a high degree of words which results in a less precise
similarity prediction. Insight in the semantics and structure
of a sentence gets lost, which tell a lot more about short text
and sentences than counting particular words in the sentence.

These algorithms are called sentence similarity, or short
text, algorithms and depend on a different set of features ex-
tracted from a piece of text than text similarity algorithms.
These algorithms take as input a sentence pair or a short text
pair and produce a number that shows how related the two
sentences are, often giving a value between 0.0 and 1.0. Sen-
tence similarity algorithms are increasing in relevance and
importance, as a growing amount of data is user-generated
content [4], which is often shorter text or just one sentence.
Applications of such sentence similarity algorithms are aca-
demic plagiarism detection, recommender systems in social
networks, search in documents, and in specific domains like
clustering biological data [5]. Sentence similarity can also
improve the efficiency of data analysis on big datasets, serv-
ing as a preprocessing step before performing more intensive
algorithms like stance detection [6] to make sure sentences
are always related before their stance is determined.

Therefore, there is a need for a better understanding of sen-
tence similarity, which is more dependent on the semantics of
a specific sentence structure. There have been approaches
to topical clustering of tweets [7], sentence embeddings [8]
and determining sentence similarity based on word alignment
and semantic vector composition [9]. However, these can be
improved in accuracy by emphasizing the sentence structure,
which was also a result of a survey by Farouk (2019) [10].

We seek to answer the following main question and its sub-
questions in this paper.

How can an algorithm determine similarity between sen-
tences using a hybrid approach including semantics and
structure?

1. How does a human determine the similarity between
sentences?

2. What approaches have been tried before and what are
their strong and weak points?

3. How to encode the semantics and structure of a sen-
tence?

4. How to determine similarity between sentences using a

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

given encoding?
5. How well does this similarity algorithm perform com-

pared to human judgement?
6. How well does this similarity algorithm perform com-

pared to other methods?

This paper will present a novel approach to determining
sentence similarity inspired by existing approaches, empha-
sizing the combination of semantic and structure similarity.
It will contribute to the existing research on short text and
sentence similarity to address some of the shortcomings of
existing approaches.

The paper is structured as follows; In Section 2 the con-
text of the project is researched, answering the first two sub-
questions. Human psychology and other common approaches
are discussed to serve as a foundation for the design. In Sec-
tion 3 the design of the novel algorithm is presented, taking
inspiration from approaches mentioned in Section 2. This
section also addresses the 3rd and 4th sub-questions. In Sec-
tion 4 the designed algorithm is put to practice, being com-
pared to a benchmark performed with humans and compared
to existing algorithms to determine its performance. The
methodology and approach are reflected upon in Section 5,
answering the final two sub-questions. Further improvements
and design recommendations are discussed in Section 6, after
which the paper is concluded. The ethical implications and
responsibility of the research are addressed in Section 7.

2 Problem Description
In this section, first, the aim is to understand the human psy-
chology behind determining sentence similarity, describing
the importance of relations in sentences. Then, some com-
mon practices for sentence similarity and several approaches
are discussed, serving as the basis and theory for the design
in the next section.

2.1 Background
Before discussing and understanding how computers deter-
mine the similarity between sentences, it is good to under-
stand how a human might determine the similarity between
sentences. The evaluation of the precision of similarity com-
puted by a computerized approach should predict the similar-
ity a human might assign to two sentences. Because of this,
it makes sense to understand the human psychology on how
people find sentences to be similar.

To determine the similarity between words, there has to
be some alternative representation that makes calculating the
similarity feasible. For instance, determining similarity be-
tween points is analogous to computing the distance, as their
representation is numerical, and such a calculation would
yield a shorter distance for more similar points. This does not
work for words. Implying that similarity can be calculated
using a distance function must mean that the axioms of the
distance representation must hold. But, as discussed by Tver-
sky, 1977 [11], this is not the case. Instead, he proposes a
feature-based representation that enables the vectorization of
words based on features. This is what is used for Word2Vec,
a commonly used model for word embeddings [12].

A more general description of the notion of similarity is de-
scribed in terms of relations, as discussed by several papers
(Gentner (1983) [13]; McRae, Cree, Seidenberg, et al. (2005)
[14]; Jones and Love (2007) [15]). Gentner discussed the
strength of analogical matches to measure the performance
of similarity metrics. He found that determining whether two
sentences are analogous is characterized by the relations be-
tween the sentences instead of the attributes of the sentences.
Sentences can be formulated as a series of predicates that
structure the analogy and explain the relations. Furthermore,
Gentner assessed that ”overlap in relations is necessary for
any strong perception of similarity between two domains.”
(Gentner, 1983, p. 161). Overlap in object attributes, mean-
ing similarity between words, is seen as an appearance match.
Overlap in relations, as described above, is seen as analogi-
cal relatedness. Having overlap in both object-attribute and
relations means that two sentences have a literal similarity.

Relations can be subdivided into intrinsic and extrinsic re-
lations. Intrinsic relations represent features of an item or a
word in isolation. Extrinsic relations capture the relation be-
tween multiple entities. An example of an intrinsic relation-
ship is a description of a word, such as ‘cars have wheels‘ and
‘a week has 7 days’. As Jones and Love (2007) hypothesize,
extrinsic relations play an important role in determining sim-
ilarity. They divide extrinsic relations into three categories.

• Roles: If an object of a relation represents the role it
plays in the sentence, it can be determined to be similar
to another object playing the same role. For instance, a
hammer and a baseball bat can be seen as similar if they
both have the role of hit in a given context.

• Relations: A more general relational notion of similar-
ity then the Roles can be made if two objects are often
found in the same relation. So even though in a given
context they do not have the same role, since they have
often been observed having the same role in other situ-
ations they can be seen as being similar. For example
hammer and baseball bat will always have the common
association of hit, therefore they are similar even if in a
given example their roles are different.

• Scenarios: Objects have a notion of similarity if they
occur in the same relation, exemplifying a direct rela-
tion. For instance, ”The hammer hit the nail”, is an ex-
ample of a scenario based relation where hammer and
nail have an increased similarity because they occur in
the same relation.

Now, how can a human determine the similarity between
sentences, preferably on a numeric scale, so that it can be
compared to some computerized metric? This has been re-
searched by O’Shea, et al. 2013 [16], with a benchmark
dataset called STSS-131 that consists of sentence pairs and a
human rating. Ultimately, deciding similarity is a subjective
task; therefore, formulating the right task to determine sim-
ilarity by participants was important. STSS-131 captures a
representative corpus of the English language sentence pairs
with 10-20 words per sentence. They produced human rat-
ings between 0.0 and 4.0 that can be used to compare with
algorithms to evaluate the accuracy of an algorithm.

2.2 Related Work
There have been several approaches for measuring sentence
similarity, which can be divided into three categories [10].
The first category is word-based similarity, which considers
only word similarity and calculates sentence similarity ac-
cordingly. Second, the structure-based similarity, which as
the name implies relies on the structure of the sentence to de-
termine similarity. The third and last category is vector-based
similarity approaches, which depends on the sentence as a
vector representation to calculate similarity. A closer look
will be taken at a few common practices and approaches for
determining sentence similarity here, which will be useful for
the design and evaluation further on in the paper.

2.2.1 Preprocessing
To improve accuracy of a sentence similarity approach, sev-
eral preprocessing steps can be taken to clean up a sentence
before it is being evaluated. These steps are categorized by
[17] as follows:

• Basic Operations and Cleaning. These are the very
basic mutations of sentences, and based on the medium
these have to be treated differently. These can be simple
things like removing non-ASCII characters, line breaks,
extra blank spaces, and converting words to all lower-
case letters. As exemplified by [17], the use case was
tweets thus things like hashtags and mentions also had
to be removed.

• Emoticons. These are the emoticons made using special
characters, like :) and ;(. These can be substituted by
smile positive and smile negative.

• Negation. The substitution of all negative constructs,
like won’t and can’t by the word not, which by itself is
unlikely but because of this substitution negated state-
ments can be generalized and compared for similarity
more easily.

• Dictionary. As one cannot rely on words to always be
perfectly spelled, a spell check can be used to detect and
correct misspelled words.

• Stemming. The stemming of words will reduce words to
their base construct, ensuring that different formulations
of verbs are similar and superlatives like great, greater,
greatest can be reduced to their smallest form great.

• Stopwords. Stop words are words that are a common
occurrence in sentences but that do not add additional
information to the meaning of the sentence such as pro-
nouns and articles. A commonly used list of stopwords
is from the NLTK library suite[18]. If a stop word is
found in a sentence, it shall be removed to ensure it is
not considered in the model.

From [17] it can be concluded that doing the basic operations
and stemming as preprocessing steps will result in the best
performance, and will be a good way to prepare the sentences
before similarity is computed.

2.2.2 Word Embedding (Word2Vec vs GloVe)
A common approach for calculating sentence similarity is
from the semantic similarity properties derived from the word

embeddings. These approaches are thus word-based similar-
ities. The aim of word embeddings is to encode a word as a
numerical or vectorized representation. Some approaches for
word embeddings can be described as scoring schemes, like
Bag of Words [19] and TF-IDF [20] and do not benefit from
the semantic similarity between words. Instead, pre-trained
models can generate word vectors that capture the semantic
similarity between words. The two most common examples
are Word2Vec [12] and GloVe [21]. The biggest distinction
between these models is that Word2Vec is a predictive model
and GloVe is a count-based model, a difference which is fur-
ther discussed by Baroni et al. 2014 [22].

After retrieving the individual word vectors, the overall
sentence vector can be achieved by taking the mean of all
the word vectors [23]. This approach can be found as a sim-
ple implementation as well, using Gensim’s doc2vec model
[24]. After the sentence vectors have been calculated, simi-
larity can be calculated using the cosine similarity, which is a
measure of similarity between two vectors that is most com-
monly used.

2.2.3 Smooth Inverse Frequency
Taking the mean of all the word vectors as mentioned above
is an easy way to formulate the sentence embedding but fails
to capture the importance of the relevance of words. Even
though stop words might be filtered out, some words are still
more dominant in deciding the similarity between sentences.
Thus, a weight should be attached to each word for its im-
portance in the sentence when calculating the overall sen-
tence embedding. Smooth Inverse Frequency was proposed
by Arora, Liang, and Ma (2019) [25] as a simple approach to
estimate the importance of words by looking at the frequency
of the words in a given corpus.

2.2.4 Word Mover’s Distance
An approach proposed by M.J. Kusner et al. in 2015 [26] is
used as a distance function between text documents. Word
Mover’s Distance (WMD) uses word embeddings from the
Word2Vec model to represent text documents as a point
cloud. The distance is calculated by finding the minimum
cumulative distance between two text documents for one doc-
ument to travel to the other point cloud. WMD can be an in-
triguing approach as it is hyperparameter free, gives an intu-
itive and easy interpretation of distance between documents,
and performs well on text documents.

Its applications are often used for clustering documents,
and its performance is compared in [26] with k-nearest neigh-
bours [27]. Implementation of the algorithm has been made
easy by Gensim [28], making it easy to work with as well.
Given that the distance function, in this case indicating the
similarity, is not a number between 0 and 1, its performance
is more difficult to compare and combine with other ap-
proaches.

2.2.5 Word Order
Going from word-based to structure-based approaches, the
Word Order algorithm is a simple approach to take the order
of words into account. The motivation for finding the word
order is that if two sentences contain the same words, yet in a
different order, the sentence could have a different meaning.

A hybrid approach proposed by Y. Li et al. (2004) [29] takes
the Word Order as one of the two components of sentence
similarity. Their novel approach to calculating Word Order
similarity between two sentences t1 and t2 is to create the
joint word set T that contains all words of t1 and t2, and then
convert the list of words of each sentence by the index of the
word in the set T, creating two integer vectors r1 and r2. Then
the similarity is computed as: Sr = 1− ‖r1−r2‖‖r1+r2‖ .

Word Order can be useful for sentences with similar word
usage and sentence length but falls short on sentences with
different words and lengths, causing the Word Order similar-
ity to be very low even though the semantic similarity might
be high. Y. Li et al. countered this by combining it with a
word similarity metric and having a hyperparameter decide
what weight each similarity metric has on the total similarity.

2.2.6 Sentence Embedding (SentenceBERT)
The last approach that will be considered in this paper is
a vector-based similarity approach and, more specifically, a
sentence-based similarity algorithm. Instead of dealing with
word-based similarity, the sentence as a whole will be repre-
sented as a vector, after which the similarity can again be cal-
culated using the cosine similarity. As outlined by P. Huilgol
(2020) [30], the most promosing approach is SentenceBERT.
Introduced by N. Reimers and I. Gurevych in 2019 [31], Sen-
tenceBERT is a sentence embedding algorithm that uses the
Siamese BERT [32] network.

2.2.7 Combined Semantic and Syntactic Measures
Each approach has its problems, and it depends on the task
at hand what approach is most well suited for a particular ap-
plication. Word-based similarity approaches fail to capture
the structural information of the sentences, and thus use of
relations and order in the sentence does not matter. Structure-
based similarity approaches fail to capture the actual semantic
similarity, where the use of synonyms and related words are
not well addressed. Sentence embedding approaches, as dis-
cussed above, is right in between the two. Depending on how
a model is trained, it could be more sensitive to the seman-
tics or the structure of a sentence and thus behave more like a
word-based or structure-based approach.

3 Design
In this section, a novel algorithm, which is divided into two
parts, is proposed. The first part takes advantage of the se-
mantic similarity, called the SIF Semantic Similarity [25],
to determine sentence similarity. The second part takes ad-
vantage of the structure of a sentence, allowing for compari-
son between sentences based on the occurrence and order of
the words in a sentence. The second part is called the Word
Mover’s Order Similarity, and it is the novel part of the algo-
rithm, as it combines the Word Order [29] with Word Mover’s
Distance [26] algorithm.

The implementation of the algorithm with the respective
preprocessing steps will be explained to ensure further evalu-
ation is reproducible. Since the algorithm comes with a three
hyperparameters (α, ι, and κ), in the final section it will be
discussed how those will be tuned to get the best performance
for the algorithm. This section will thus cover the different

vs(s) =
1

n

n∑
w∈s

α

α+ zipf(w)
· w2v(w) (1)

simsem(s1, s2) =
vs(s1) · vs(s2)

||vs(s1)|| · ||vs(s2)||
(2)

components of the novel algorithm and how it can be imple-
mented and optimized, after which this can be used in the
next section to perform evaluation on it to measure the per-
formance.

3.1 SIF Semantic Similarity
The SIF (Smooth Inverse Frequency) Semantic Similarity de-
termines similarity between two sentences strictly by the cu-
mulative similarity of the words in the sentences. This im-
plementation has been largely inspired by Arora, Liang, and
Ma (2019) [25]. The design relies on a word embedding al-
gorithm to translate the words in a sentence to a vector, after
which these have to be combined such that one vector can
be composed that describes the whole sentence (Equation 1).
In this approach, SIF is used, which was explained in Sec-
tion 2.2.3. With the vector representations of each sentence,
the similarity can be calculated using the cosine similarity
(Equation 2). For the implementation the Word2Vec model
has been used for word embeddings and the zipf frequency
from the wordfreq package is used for weighing words, which
gives the frequency of a word on logarithmic scale. Equa-
tion 1 and Equation 2 are the formulas to calculate the se-
mantic similarity of a sentence pair using the SIF Semantic
Similarity method, which results in a number between 0.0
and 1.0.

3.2 Word Mover’s Order Similarity
The second part of the algorithm takes advantage of the struc-
ture of a sentence to determine the similarity of a sentence
pair. It combines two approaches discussed before, namely
Word Mover’s Distance from Section 2.2.4 and Word Order
from Section 2.2.5. These have been chosen as they both say
something about the structure of a sentence and align with the
notion that a sentence is comprised of relations, showing the
relation of linearity and roles of words in a sentence. How-
ever, both approaches have a big constraint that limit their ac-
curacy to determine similarity. Word Mover’s Distance’s con-
straint, as explained in Section 2.2.4, is that it gives a distance
value which is not between 0.0 and 1.0 and it is therefore not
suitable for evaluation. Word Order, as explained in Section
2.2.5, on the other hand is good at embedding the structure
of a sentence, but only works for words that are exactly the
same and does not take the most similar words into account to
compare ordering. For this reason Word Order is often com-
bined with a semantic similarity approach, as in [29]. As both
approaches have their strong points, our approach sought out
to combine those strong points to be able to take advantage of
the structure of the sentence to improve their performance.

The Word Mover’s Order Similarity metric combines Word
Mover’s Distance and Word Order. The limitation of Word
Order, which is that the words have to be exactly the same,
can be remedied by the attribute of Word Mover’s Distance
that aims to find the most similar pairs of words. Most simi-
lar pairs can be found by constructing a similarity matrix and
eliminating most similar pairs until all words are considered.
If one sentence is longer than the other, the left over words
can be paired with the words of the other sentence that they
are most similar to as well. After the pairs have been found,
Word Order can be applied to calculate the distance between
the positions of the words of a pair in their respective sen-
tence. The final similarity can be calculated by taking the
average of all minimal pairs, after multiplying the similarity
of the words in the pairs with the inverse of the distance of
the words (Equation 3).

simwmo(s1, s2) =

1

n

n∑
pmin(w1,w2)

1

1 + κ · distwo(w1, w2)
· w2v(w1, w2)

(3)

3.3 Total Similarity
The total similarity can now be calculated given the seman-
tic and structural similarity components. The sensitivity to
either similarity metrics can be tweaked using the ι as a hy-
perparameter, which together with the α and κ will be tuned
later on to ensure the algorithm works optimally. The total
algorithm implements Equation 4.

sim(s1, s2) = ι · simsem(s1, s2) + (1− ι) · simwmo(s1, s2)
(4)

3.4 Implementation
The implementation of the novel algorithm proposed in this
paper is publicly available on a GitLab repository from the
TU Delft2. The algorithm has several dependencies and
those will be discussed here to ensure that the research
is reproducible. The algorithm is implemented using the
Python programming language. As mentioned before the al-
gorithm uses Word2Vec [12] for word embeddings, specif-
ically the GoogleNews-vectors-negative300-SLIM.bin3 pre-
trained model. Zipf frequency from the wordfreq Python
package [33] is used for the SIF Semantic Similarity. The co-
sine similarity function from sklearn is used to calculate sim-
ilarity between vectors in the SIF Semantic Similarity part.
All Python package version dependencies can be found in the
requirements.txt file. Installing all of these dependencies is
necessary to be able to run the algorithm.

2https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/
rp-group-65-whaakman

3urlhttps://github.com/eyaler/word2vec-
slim/blob/master/GoogleNews-vectors-negative300-SLIM.bin.gz

Some preprocessing is required before calculating the sim-
ilarity of a sentence pair. In this implementation three pre-
processing steps have been implemented and tested on, which
has been inspired from Section 2.2.1 and [17]. First, all char-
acters in the sentences are converted to lowercase letters. Sec-
ond, all punctuation is removed from the sentence making
sure that comma’s and periods are not considered. After this,
the sentence is tokenized into words by splitting on spaces.
The words can then be stemmed to their word stem. Tokeniz-
ing a sentence is always necessary, and removing punctuation
will make sure that they do not influence the similarity. After
some optimization it turned out stemming words worsened
the performance and is therefore not used for evaluation but
the implementation is still there. Each one of these prepro-
cessing steps can be turned on or off to ensure that either of
these steps will not affect the performance negatively.

3.5 Hyperparameter Tuning
As discussed before, the algorithm contains three hyperpa-
rameters in total, namely α, ι, and κ. These hyperparameters,
just like the preprocessing steps, have to be optimized before
evaluation to ensure the performance of the algorithm is op-
timal. α controls the effect of SIF to the Semantic Similarity.
As the zipf frequency used will give different results than the
one used by Arora, Liang, and Ma [25], the α = 10−3 men-
tioned in that paper cannot be reused. κ is used to control
the sensitivity of Word Mover’s Order to the Word Order dis-
tance. ι is used to control the sensitivity of the total similarity
to both the semantic and structural similarity. It is bounded
between 0.0 and 1.0 as it singifies the percentage one or the
other is used, so 0.3 means that the total similarity is com-
prised for 30% by the SIF Semantic Similarity and 70% by
the Word Mover’s Order Similarity.

Hyperparameter tuning is the process of finding a value
for a given hyperparameter that results in the highest perfor-
mance for the algorithm. Two tuning algorithms have been
tried to find the optimal hyperparameters. In this paper Grid
Search is used to optimize the hyperparameters [34]. The op-
timization was performed on the MSRP sentence pair dataset
[35], consisting of 5800 rows of sentence pairs. The parame-
ters were optimized on the training dataset, and the final per-
formance was found using the test dataset. The performance
is further discussed in Section 4. The optimized hyperparam-
eters are α = 0.6876, κ = 0.09611 and ι = 0.3.

4 Evaluation
The evaluation will be performed on two different datasets.
First the algorithm will be compared against human judge-
ment using the STSS-131 dataset [16]. The algorithm will
also be evaluated on the MSRP dataset [35] to see how it
performs against a broader set of algorithms. In both eval-
uations the proposed algorithm is compared against already
evaluated algorithms and also against SentenceBERT, which
is a sentence embedding approach explained in Section 2.2.6,
using the same preprocessing steps. The reason that Sen-
tenceBERT is used is because it is a deep learning algorithm,
which contrasts with the traditional machine learning algo-
rithm proposed in this paper. Because of this it is expected it

https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/rp-group-65-whaakman
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/rp-group-65-whaakman

will perform better but it is also less explainable, which will
be discussed more in Section 5. At the end of this section it
will be clear how well this novel algorithm performs against
other common approaches.

4.1 Benchmark STSS-131
To evaluate the proposed algorithm against human perfor-
mance the STSS-131 dataset has been used [16], which con-
sists of 66 sentence pairs with a continuous value between 0.0
and 4.0. The values are normalized between 0.0 and 1.0. The
explanation of the dataset can also be found in Section 2.1.
The data provided in the paper has also been used for compar-
ison. To offer another perspective, STSS-131 has also been
used to evaluate SentenceBERT. As the result of the similar-
ity algorithm gives a continuous value between 0.0 and 1.0,
giving performance measures like the accuracy and F1-score
is not possible. However it can be assumed that the actual
similarity and the predicted similarity have a linear relation-
ship so the Pearson correlation coefficient can be calculated
instead. The r value thus gives an indication of the perfor-
mance, and higher values are better. The results are shown
in Table 1. As shown in the table, SentenceBERT has the
highest correlation showing how this sentence embedding ap-
proach works exceptionally better than the other approaches,
and the proposed novel algorithm is around 3 percent and 9
percent better than LSA and STASIS respectively, which are
two approaches not discussed in this paper but used to com-
pare with as they are used by O’shea, Bandar, and Crockett
(2014) [16]. These findings will be further discussed in Sec-
tion 5.

Table 1: Evaluation of proposed algorithm against SentenceBERT,
LSA, and STASIS on STSS-131.

Sentence
Similarity
Measures

STASIS LSA Sentence-
BERT

Proposed
Algo-
rithm

Pearson
Correlation
Coefficient

0.636 0.693 0.936 0.721

4.2 Benchmark MSRP
The proposed algorithm will also be evaluated against other
more common approaches, some of which have been dis-
cussed in Section 2.2. The MSRP dataset 4 from Microsoft
is used for evaluation as Achananuparp, Hu, and Shen [36]
evaluated many common approaches against it. The MSRP
dataset consists of 5800 sentence pairs and each sentence pair
has one value, namely a 0 for dissimilar or 1 for similar. This
means that our proposed algorithm should be reformulated
into a classification problem, converting a continuous value
to either a 0 or 1. This can be achieved by simply rounding
the given similarity value. Given the reformulation, the preci-
sion, recall, F1-score, and accuracy can be calculated. From
the dataset, specifically the test set has been used for evalu-
ation as the training dataset is used for the hyperparameter

4https://www.microsoft.com/en-us/download/details.aspx?id=
52398

tuning. The dataset has also been used to evaluate Sentence-
BERT. The results can be found in table 2. As seen in the
table SentenceBERT has the best F1-score but the proposed
novel algorithm has the highest accuracy. These findings will
be further discussed in Section 5.

Table 2: Evaluation of proposed algorithm against SentenceBERT
and other common approaches on MSRP.

Sentence Similarity
Measures

Prec. Rec. F1 Acc.

simjaccard 0.835 0.603 0.7 0.657
simsem 0.674 0.99 0.802 0.675
simwo 0.681 0.619 0.648 0.554
simsem+wo 0.674 0.977 0.8 0.671
SentenceBERT 0.687 0.994 0.812 0.694
Proposed Algorithm 0.742 0.856 0.795 0.715

5 Discussion
This section will dive further into the results and an expla-
nation will be provided as to why certain results have been
achieved. First an explanation will be provided for why the
tuning of the hyperparameters resulted in the values men-
tioned in this paper, and second the results of the algorithm
on the STSS-131 and MSRP will be discussed. It is note-
worthy that the proposed algorithm is a traditional machine
learning algorithm, not requiring any deep learning, making
the results more explainable. This is in contrast with Sen-
tenceBERT, which was also used for evaluation, as that acts
more like a black box and it is harder to reason on. After this
section it should be clear why the algorithm performs the way
it does, which makes identifying future improvements easier.

5.1 Effects of Hyperparameters
The optimized hyperparameters used by the algorithm are
α = 0.6876, κ = 0.09611, and ι = 0.3 and these values
were achieved by performing grid search as discussed in Sec-
tion 3.5. The question can be posed as to why these values
are what they are and how they effect the performance of the
algorithm. The α value is used to determine the sensitivity to
zipf frequency. In the original paper from Arora, Liang, and
Ma [25] the value of α was 10−3, and therefore the newly
found α is considerably higher. The reason for this is because
the frequency model used in the original paper is different
than zipf frequency used in this paper. κ controls the sensi-
tivity to the word order and is very low in this paper. This
shows that the word order distance used was not very effec-
tive in improving the performance of the algorithm, showing
that it was maybe not very useful. However, ι got a value of
0.3, meaning that the algorithms total similarity is 30 percent
dependent on the SIF Semantic Similarity and 70 percent on
the Word Mover’s Order similarity. This shows that the total
similarity is influenced most by the novel component of the
algorithm, namely the combination of Word Order and Word
Mover’s Distance. This shows how these values affect the
performance of the algorithm and sensitivity to certain com-
ponents in the algorithm.

https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://www.microsoft.com/en-us/download/details.aspx?id=52398

5.2 Results STSS-131
The results have been shown in the evaluation in Section 4.
The algorithm was first evaluated on the STSS-131 dataset,
which consists of only 66 sentence pairs. This dataset does
however contain a lot of different cases and is a good rep-
resentation of the different challenges of determining similar-
ity. SentenceBERT performs exceptionally well, with a 0.936
correlation. This is assumed to be because it is a deep learning
approach which generalizes better and depending on how it is
trained can therefore give much better results than traditional
machine learning approaches. The proposed algorithm per-
forms reasonably better than the other approaches mentioned
in the original paper [16]. For instance, LSA 5 performs with
a correlation of 0.693 and the proposed algorithm with a cor-
relation of 0.721. This increase in performance is probably
due to the combination of several common approaches and
the hyperparameter tuning which was performed.

Relating the results back to the second to last subques-
tion posed in Section 1, the evaluation against STSS-131
shows how the proposed algorithm performs against human
judgmenet. A higher correlation coefficient thus shows that
a given algorithm more closely matches how humans might
determine similarity between sentences. As mentioned be-
fore, SentenceBERT has the highest correlation meaning it
most closely matches the human judgement. Determining
how well an algorithm performs compared to humans is sub-
jective however, as a single value like the correlation coeffi-
cient does not give context to its usefulness. From the results
it can be shown that the proposed algorithm performs best out
of all traditional machine learning approaches.

5.3 Results MSRP
The proposed algorithm was also evaluated on the MSRP
dataset, consisting of 5800 sentence pairs. As the dataset is
formulated as a classification problem, several performance
metrics could be calculated to easily investigate and compare
the performance of several algorithms. The performance of
SentenceBERT was not much better than other approaches,
scoring only an accuracy of 0.694 and an F1 score of 0.812.
The performance of the proposed algorithm was reasonably
better than the other algorithms. The algorithm has an F1
score of 0.795 similar to some of the other higher scores and
the highest accuracy of 0.715. It is also noticeable how simi-
lar all the metrics are to the other approaches like simsem+wo,
which makes sense as this approach uses many of the same
components combining semantic similarity and the Word Or-
der algorithm. After discussing the results of the proposed
algorithm on the STSS-131 and MSRP dataset it can be seen
that the algorithm performs better than other traditional ap-
proaches with a margin, and depending on the application it
can perform better than SentenceBERT although less likely.

Relating the results back to the last subquestion posed in
Section 1, the evaluation against MSRP shows how the pro-
posed algorithm performs against other common approaches.
As shown from the results discussed above the proposed al-
gorithm performed reasonably better in terms of accuracy and

5https://towardsdatascience.com/
latent-semantic-analysis-distributional-semantics-in-nlp-ea84bf686b50

relatively equal in F1 score, indicating that the proposed algo-
rithm performs similar if not better than other approaches.

6 Conclusion and Future Work
This paper proposed a novel algorithm to determine sentence
similarity, combining semantic and structural similarity met-
rics. This paper also presented its implementation, optimiza-
tion, and evaluation, comparing it to several other approaches
showing its performance to be better than other approaches
within a certain degree. Several sub questions were stated in
the introduction in Section 1, which have all been addressed
throughout the sections. An interesting connection has been
made between human psychology and existing similarity al-
gorithms, showing how differently similarity is perceived yet
how human psychology can possibly translate to a comput-
erized approach. This paper showed that the novel algorithm
performs relatively similar if not better than other approaches,
yet it still does not outperform deep learning. The question on
how an algorithm can determine similarity using a hybrid ap-
proach has been answered following the design, and this can
be reproduced by the reader using the resources provided in
this paper.

6.1 Improvements and Recommendations
A few recommendations can be made, after having worked on
this problem and discovering flaws in the proposed algorithm,
to further improve the algorithm. The hyperparameter ι used
to control the influence of semantic and structural similarity
for the total similarity showed that the optimized value is 0.3
meaning that structural similarity is favored. However, κ was
a low value of 0.09611, showing that Word Order was not
used effectively. The way Word Order will be expressed in
a future implementation could be improved as in the current
implementation it’s nearly nullified.

As Grid Search was used to optimize the hyperparameters
it is possible that these values are not the absolute optimum.
For this it is recommended to still try out a better hyperparam-
eter tuning algorithm, like Bayesian Optimization [37]. For
anyone interested in implementing the proposed algorithm,
the question can be posed as to whether it makes sense to use
a traditional machine learning approach as opposed to a deep
learning approach like SentenceBERT. The advantage of us-
ing the proposed algorithm, or other traditional algorithms is
its explainability, compromising on the performance of the
algorithm compared to deep learning approaches. However,
making a conclusive statement on the comparison of tradi-
tional machine learning with deep learning is outside of the
scope of this paper.

7 Responsible Research
The relevance of responsible research is of much importance.
To follow the scientific method 6 it is important that the con-
ducted research is reproducible and verifiable. Besides that,
from the paper it should be clear that a hypothesis is being
tested, and through conducting an experiment, data can be

6https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/
The Scientific Method.svg/1200px-The Scientific Method.svg.png

https://towardsdatascience.com/latent-semantic-analysis-distributional-semantics-in-nlp-ea84bf686b50
https://towardsdatascience.com/latent-semantic-analysis-distributional-semantics-in-nlp-ea84bf686b50
https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/The_Scientific_Method.svg/1200px-The_Scientific_Method.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/The_Scientific_Method.svg/1200px-The_Scientific_Method.svg.png

analyzed which can then support or refute the posed hypoth-
esis. From the structure of this paper it should be clear that
the scientific method was followed. In the introduction 1 the
motivation and research question were introduced. Based on
the background research in the problem description 2, and
the novel algorithm proposed in the design Section 3, an ex-
periment has been conducted in the evaluation stage 4. The
results will be communicated and explained in the discussion
5 and the research will be concluded on in the last Section 6.
The following three sections show the consideration of ethi-
cal aspects on the bias of the algorithm, the reason STSS-131
[16] and MSRP [35] were picked as datasets, and the repro-
ducibility of the research.

7.1 Bias
The performance of the algorithm relies not only on the
design but also on a couple pretrained models and certain
hyperparameters. It is of importance, for fair and ethical
AI, to be aware of any bias in an algorithm, also discussed
by K. Escherich [38], and therefore an overview will be
given of possible bias in the proposed algorithm. In Sec-
tion 3.4 the dependencies of the algorithm have been dis-
cussed, and two pretrained models. For word embeddings
the model GoogleNews-vectors-negative300.bin.gz has been
used, whose data has been obtained from Google News and
consists of 100 billion words. To get the word frequencies
used for SIF the library wordfreq [33] is used. The data was
gathered using Exquisite Corpus7, ”whose goal is to down-
load good, varied, multilingual corpus data, process it appro-
priately, and combine it into unified resources such as word-
freq” [39]. This shows that the data used is relatively general
and there was an effort to minimize bias.

In Section 3.5 the process of tuning the three hyperparame-
ters involved in the algorithm is shown. These hyperparame-
ters are trained on the training dataset of MSRP, making sure
they are not overfitting on the test dataset of MSRP. It is clear
what hyperparameters have been used for the evaluation and
how these values were found. However, it should also be
clear that these chosen hyperparameters directly affect the al-
gorithms sensitivity to certain components. For instance, a
higher ι means that the algorithm is more sensitive to the se-
mantic similarity which could introduce more bias if the word
embedding model used is more biased. Fortunately the algo-
rithm is not a decisive algorithm and will therefore not di-
rectly affect any big decisions made in a system. The ethical
implications depend heavily on how it is used.

7.2 Datasets
In the training of the hyperparameters and the evaluation two
datasets were picked and the results of those were presentend
in 4. Whenever one does research it is important to note the
validity of the results, also showing that the provided results
are not cherry picked to make the algorithm seem to perform
better than other algorithms. The motivation for picking the
STSS-131 dataset was to compare it with human judgment.
The STSS collection of datasets contains sentence pairs that
have been picked and provided with a lot of consideration

7https://github.com/LuminosoInsight/exquisite-corpus

for the fairness and correct representation of how humans de-
termine similarity. The hyperparameters were trained on the
training set of sentence pairs of MSRP. MSRP has been cho-
sen because many other common approaches were evaluated
on this dataset [36]. This makes sure that our evaluation can
be compared with a representative set of other algorithms.
There are not a lot of datasets containing similarities of sen-
tence pairs, and MSRP was by far the biggest one.

7.3 Reproducibility
As the aim for this paper was to propose a novel sentence
similarity algorithm, its usefulness depends on how easy its
implementation is for experimenting and applying in other
projects. The aim for Section 3 was to make the algorithm
explainable and reproducible. The code can also be found
online 8. From the evaluation in Section 4 it is also clear what
datasets have been used and how the evaluation metrics were
achieved.

Acknowledgements
I wish to express my sincere gratitude to the supervisor and
responsible professor of our research project for the course
CSE3000 Research Project, Asst. Prof. Pradeep Murukan-
naiah. Our research group proposed our own research topic
and he decided to supervise us because of his own interest
in the topic. Thanks to his effort to supervise us, the weekly
meetings, and the willingness to always answer questions via
email, I was able to successfully finish my research with sat-
isfactory results.

I am also thankful to my fellow students Abel van Steen-
weghen, Jacob Roeters van Lennep, Kristóf Vass, and Simon
Mariën. Together we formed a research group and we pro-
posed our own research topic. With their support and coop-
eration we were able to elavate each others’ work. Working
together was also very motivating to me personally.

8https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/
rp-group-65-whaakman

https://github.com/LuminosoInsight/exquisite-corpus
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/rp-group-65-whaakman
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/rp-group-65-whaakman

References
[1] A. Strehl, J. Ghosh, and R. Mooney, “Impact of sim-

ilarity measures on web-page clustering,” in Proceed-
ings of the AAAI Workshop on AI for Web Search (AAAI
2000), Austin, TX, USA, 2000, pp. 58–64.

[2] S. Tata and J. M. Patel, “Estimating the selectivity of tf-
idf based cosine similarity predicates,” SIGMOD Rec.,
vol. 36, no. 2, pp. 7–12, Jun. 2007, ISSN: 0163-5808.
DOI: 10.1145/1328854.1328855. [Online]. Available:
https://doi.org/10.1145/1328854.1328855.

[3] S. Albitar, S. Fournier, and B. Espinasse, “An effec-
tive tf/idf-based text-to-text semantic similarity mea-
sure for text classification,” in Web Information Sys-
tems Engineering – WISE 2014, B. Benatallah, A.
Bestavros, Y. Manolopoulos, A. Vakali, and Y. Zhang,
Eds., Cham: Springer International Publishing, 2014,
pp. 105–114, ISBN: 978-3-319-11749-2.

[4] S. Melumad, J. J. Inman, and M. T. Pham, “Selec-
tively emotional: How smartphone use changes user-
generated content,” Journal of Marketing Research,
vol. 56, no. 2, pp. 259–275, 2019. DOI: 10 . 1177 /
0022243718815429. eprint: https://doi.org/10.1177/
0022243718815429. [Online]. Available: https: / /doi .
org/10.1177/0022243718815429.

[5] M. Han, X. Zhang, X. Yuan, J. Jiang, W. Yun, and C.
Gao, “A survey on the techniques, applications, and
performance of short text semantic similarity,” Con-
currency and Computation: Practice and Experience,
vol. 33, no. 5, e5971, 2021. DOI: https://doi.org/10.
1002/cpe.5971. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/cpe.5971. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5971.

[6] D. Küçük and F. Can, “Stance detection: A survey,”
ACM Comput. Surv., vol. 53, no. 1, Feb. 2020, ISSN:
0360-0300. DOI: 10 .1145 /3369026. [Online]. Avail-
able: https://doi.org/10.1145/3369026.

[7] K. Dela Rosa, R. Shah, B. Lin, A. Gershman, and R.
Frederking, “Topical clustering of tweets,” 3Rd Work-
shop on Social Web Search and Mining, Jan. 2011, (ac-
cessed: 19.04.2021).

[8] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco,
R. St. John, N. Constant, M. Guajardo-Cespedes, S.
Yuan, C. Tar, B. Strope, and R. Kurzweil, “Univer-
sal sentence encoder for English,” in Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, Brus-
sels, Belgium: Association for Computational Linguis-
tics, Nov. 2018, pp. 169–174. DOI: 10.18653/v1/D18-
2029. [Online]. Available: https : / /www.aclweb.org/
anthology/D18-2029.

[9] M. A. Sultan, S. Bethard, and T. Sumner, “DLS@CU:
Sentence similarity from word alignment and semantic
vector composition,” in Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015), Denver, Colorado: Association for Computa-
tional Linguistics, Jun. 2015, pp. 148–153. DOI: 10 .

18653/v1/S15-2027. [Online]. Available: https://www.
aclweb.org/anthology/S15-2027.

[10] M. Farouk, “Measuring sentences similarity: A sur-
vey,” vol. 12, pp. 1–11, 25 2019. DOI: https : / / dx .
doi . org / 10 . 17485 / ijst / 2019 / v12i25 / 143977. [On-
line]. Available: https://indjst.org/articles/measuring-
sentences-similarity-a-survey.

[11] A. Tversky, “Features of similarity,” Psychological Re-
view, vol. 84, no. 4, pp. 327–352, 1977. DOI: 10.1037/
0033-295X.84.4.327.

[12] J. Gilyadov. (Mar. 2017). “Word2vec explained,” [On-
line]. Available: https://israelg99.github.io/2017-03-
23-Word2Vec-Explained/.

[13] D. Gentner, “Structure-mapping: A theoretical frame-
work for analogy,” Cognitive Science, vol. 7, no. 2,
pp. 155–170, 1983, ISSN: 0364-0213. DOI: https : / /
doi.org/10.1016/S0364-0213(83)80009-3. [Online].
Available: https : / / www. sciencedirect . com / science /
article/pii/S0364021383800093.

[14] K. McRae, G. Cree, M. Seidenberg, and C. Mcnorgan,
“Semantic feature production norms for a large set of
living and nonliving things,” Behavior research meth-
ods, vol. 37, pp. 547–59, Dec. 2005. DOI: 10 . 3758 /
BF03192726.

[15] M. Jones and B. C. Love, “Beyond common features:
The role of roles in determining similarity,” Cogni-
tive Psychology, vol. 55, no. 3, pp. 196–231, 2007,
ISSN: 0010-0285. DOI: https : / / doi . org / 10 . 1016 / j .
cogpsych . 2006 . 09 . 004. [Online]. Available: https :
/ / www . sciencedirect . com / science / article / pii /
S0010028506000715.

[16] J. O’shea, Z. Bandar, and K. Crockett, “A new
benchmark dataset with production methodology for
short text semantic similarity algorithms,” ACM Trans.
Speech Lang. Process., vol. 10, no. 4, Jan. 2014, ISSN:
1550-4875. DOI: 10 .1145 /2537046. [Online]. Avail-
able: https://doi.org/10.1145/2537046.

[17] F. Magliani, T. Fontanini, P. Fornacciari, S. Mani-
cardi, and E. Iotti, “A comparison between preprocess-
ing techniques for sentiment analysis in twitter,” Dec.
2016.

[18] sebleier. (2010). “Nltk’s list of english stopwords,”
[Online]. Available: https://gist.github.com/sebleier/
554280. (accessed: 03.05.2021).

[19] J. Brownlee. (2019). “A gentle introduction to the
bag-of-words model,” [Online]. Available: https : / /
machinelearningmastery . com / gentle - introduction -
bag-words-model/. (accessed: 03.05.2021).

[20] R. Madan. (2019). “Tf-idf/term frequency technique:
Easiest explanation for text classification in nlp using
python (chatbot training on words),” [Online]. Avail-
able: https : / /medium.com/analytics - vidhya / tf - idf -
term- frequency- technique- easiest - explanation- for-
text- classification- in- nlp- with- code- 8ca3912e58c3.
(accessed: 03.05.2021).

https://doi.org/10.1145/1328854.1328855
https://doi.org/10.1145/1328854.1328855
https://doi.org/10.1177/0022243718815429
https://doi.org/10.1177/0022243718815429
https://doi.org/10.1177/0022243718815429
https://doi.org/10.1177/0022243718815429
https://doi.org/10.1177/0022243718815429
https://doi.org/10.1177/0022243718815429
https://doi.org/https://doi.org/10.1002/cpe.5971
https://doi.org/https://doi.org/10.1002/cpe.5971
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5971
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5971
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5971
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5971
https://doi.org/10.1145/3369026
https://doi.org/10.1145/3369026
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://www.aclweb.org/anthology/D18-2029
https://www.aclweb.org/anthology/D18-2029
https://doi.org/10.18653/v1/S15-2027
https://doi.org/10.18653/v1/S15-2027
https://www.aclweb.org/anthology/S15-2027
https://www.aclweb.org/anthology/S15-2027
https://doi.org/https://dx.doi.org/10.17485/ijst/2019/v12i25/143977
https://doi.org/https://dx.doi.org/10.17485/ijst/2019/v12i25/143977
https://indjst.org/articles/measuring-sentences-similarity-a-survey
https://indjst.org/articles/measuring-sentences-similarity-a-survey
https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.1037/0033-295X.84.4.327
https://israelg99.github.io/2017-03-23-Word2Vec-Explained/
https://israelg99.github.io/2017-03-23-Word2Vec-Explained/
https://doi.org/https://doi.org/10.1016/S0364-0213(83)80009-3
https://doi.org/https://doi.org/10.1016/S0364-0213(83)80009-3
https://www.sciencedirect.com/science/article/pii/S0364021383800093
https://www.sciencedirect.com/science/article/pii/S0364021383800093
https://doi.org/10.3758/BF03192726
https://doi.org/10.3758/BF03192726
https://doi.org/https://doi.org/10.1016/j.cogpsych.2006.09.004
https://doi.org/https://doi.org/10.1016/j.cogpsych.2006.09.004
https://www.sciencedirect.com/science/article/pii/S0010028506000715
https://www.sciencedirect.com/science/article/pii/S0010028506000715
https://www.sciencedirect.com/science/article/pii/S0010028506000715
https://doi.org/10.1145/2537046
https://doi.org/10.1145/2537046
https://gist.github.com/sebleier/554280
https://gist.github.com/sebleier/554280
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3
https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3
https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3

[21] Sciforce. (Aug. 2018). “Word vectors in natural lan-
guage processing: Global vectors (glove),” [Online].
Available: https://medium.com/sciforce/word-vectors-
in-natural-language-processing-global-vectors-glove-
51339db89639.

[22] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count,
predict! a systematic comparison of context-counting
vs. context-predicting semantic vectors,” in Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Baltimore, Maryland: Association for Computational
Linguistics, Jun. 2014, pp. 238–247. DOI: 10.3115/v1/
P14- 1023. [Online]. Available: https://www.aclweb.
org/anthology/P14-1023.

[23] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in Proceedings of the 31st
International Conference on International Conference
on Machine Learning - Volume 32, ser. ICML’14, Bei-
jing, China: JMLR.org, 2014, II–1188–II–1196.

[24] Gensim. (2021). “Doc2vec paragraph embeddings,”
[Online]. Available: https://radimrehurek.com/gensim/
models/doc2vec.html. (accessed: 03.05.2021).

[25] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-
beat baseline for sentence embeddings,” English (US),
5th International Conference on Learning Represen-
tations, ICLR 2017 ; Conference date: 24-04-2017
Through 26-04-2017, Jan. 2019. [Online]. Available:
https://openreview.net/pdf?id=SyK00v5xx.

[26] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Wein-
berger, “From word embeddings to document dis-
tances,” in Proceedings of the 32nd International
Conference on International Conference on Machine
Learning - Volume 37, ser. ICML’15, Lille, France:
JMLR.org, 2015, pp. 957–966.

[27] O. Harrison. (2018). “Machine learning basics with the
k-nearest neighbors algorithm,” [Online]. Available:
https : / / towardsdatascience . com / machine - learning -
basics - with - the - k - nearest - neighbors - algorithm -
6a6e71d01761. (accessed: 03.05.2021).

[28] Gensim. (2009). “Word mover’s distance,” [Online].
Available: https : / / radimrehurek . com / gensim /
auto examples / tutorials / run wmd . html. (accessed:
03.05.2021).

[29] Y. Li, Z. Bandar, D. McLean, and J. O’Shea, “A
method for measuring sentence similarity and its ap-
plication to conversational agents.,” Jan. 2004.

[30] P. Huilgol. (2020). “Top 4 sentence embedding tech-
niques using python!” [Online]. Available: https : / /
www. analyticsvidhya . com / blog / 2020 / 08 / top - 4 -
sentence- embedding- techniques- using- python/. (ac-
cessed: 05.05.2021).

[31] N. Reimers and I. Gurevych. (2019). “Sentence-bert:
Sentence embeddings using siamese bert-networks.”
arXiv: 1908.10084 [cs.CL].

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
(2019). “Bert: Pre-training of deep bidirectional trans-
formers for language understanding.” arXiv: 1810 .
04805 [cs.CL].

[33] R. Speer, J. Chin, A. Lin, S. Jewett, and L. Nathan,
Luminosoinsight/wordfreq: V2.2, Oct. 2018. DOI: 10.
5281 / zenodo . 1443582. [Online]. Available: https : / /
doi.org/10.5281/zenodo.1443582.

[34] R. Joseph. (2018). “Grid search for model tuning,”
[Online]. Available: https://towardsdatascience.com/
grid - search - for - model - tuning - 3319b259367e. (ac-
cessed: 02.06.2021).

[35] W. B. Dolan and C. Brockett, “Automatically con-
structing a corpus of sentential paraphrases,” in Pro-
ceedings of the Third International Workshop on Para-
phrasing (IWP2005), 2005. [Online]. Available: https:
//www.aclweb.org/anthology/I05-5002.

[36] P. Achananuparp, X. Hu, and X. Shen, “The evaluation
of sentence similarity measures,” vol. 5182, Sep. 2008,
pp. 305–316, ISBN: 978-3-540-85835-5. DOI: 10.1007/
978-3-540-85836-2 29.

[37] W. Koehrsen. (2018). “A conceptual explanation
of bayesian hyperparameter optimization for ma-
chine learning,” [Online]. Available: https : / /
towardsdatascience . com / a - conceptual - explanation -
of - bayesian - model - based - hyperparameter -
optimization - for - machine - learning - b8172278050f.
(accessed: 02.06.2021).

[38] K. Escherich. (2019). “Why do we need to talk about
ethics and bias in ai?” [Online]. Available: https : / /
www.ibm.com/blogs/nordic- msp/ethics- and- bias-
in-ai/. (accessed: 06.06.2021).

[39] R. Speer. (2018). “Luminosoinsight/wordfreq: Access
a database of word frequencies, in various natural lan-
guages.,” [Online]. Available: https : / / github . com /
LuminosoInsight/wordfreq/#sources-and- supported-
languages. (accessed: 06.06.2021).

https://medium.com/sciforce/word-vectors-in-natural-language-processing-global-vectors-glove-51339db89639
https://medium.com/sciforce/word-vectors-in-natural-language-processing-global-vectors-glove-51339db89639
https://medium.com/sciforce/word-vectors-in-natural-language-processing-global-vectors-glove-51339db89639
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023
https://www.aclweb.org/anthology/P14-1023
https://www.aclweb.org/anthology/P14-1023
https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/models/doc2vec.html
https://openreview.net/pdf?id=SyK00v5xx
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://radimrehurek.com/gensim/auto_examples/tutorials/run_wmd.html
https://radimrehurek.com/gensim/auto_examples/tutorials/run_wmd.html
https://www.analyticsvidhya.com/blog/2020/08/top-4-sentence-embedding-techniques-using-python/
https://www.analyticsvidhya.com/blog/2020/08/top-4-sentence-embedding-techniques-using-python/
https://www.analyticsvidhya.com/blog/2020/08/top-4-sentence-embedding-techniques-using-python/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.5281/zenodo.1443582
https://towardsdatascience.com/grid-search-for-model-tuning-3319b259367e
https://towardsdatascience.com/grid-search-for-model-tuning-3319b259367e
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://doi.org/10.1007/978-3-540-85836-2_29
https://doi.org/10.1007/978-3-540-85836-2_29
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://www.ibm.com/blogs/nordic-msp/ethics-and-bias-in-ai/
https://www.ibm.com/blogs/nordic-msp/ethics-and-bias-in-ai/
https://www.ibm.com/blogs/nordic-msp/ethics-and-bias-in-ai/
https://github.com/LuminosoInsight/wordfreq/#sources-and-supported-languages
https://github.com/LuminosoInsight/wordfreq/#sources-and-supported-languages
https://github.com/LuminosoInsight/wordfreq/#sources-and-supported-languages

	Introduction
	Problem Description
	Background
	Related Work
	Preprocessing
	Word Embedding (Word2Vec vs GloVe)
	Smooth Inverse Frequency
	Word Mover's Distance
	Word Order
	Sentence Embedding (SentenceBERT)
	Combined Semantic and Syntactic Measures

	Design
	SIF Semantic Similarity
	Word Mover's Order Similarity
	Total Similarity
	Implementation
	Hyperparameter Tuning

	Evaluation
	Benchmark STSS-131
	Benchmark MSRP

	Discussion
	Effects of Hyperparameters
	Results STSS-131
	Results MSRP

	Conclusion and Future Work
	Improvements and Recommendations

	Responsible Research
	Bias
	Datasets
	Reproducibility

