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A B S T R A C T

Alkali–silica reaction (ASR) in concrete causes expansion and degradation of the material, which might give
adverse structural consequences. From the structural engineer point view, the greatest concern is if ASR leads
to loss of structural integrity. Two natural questions arise when assessing existing concrete structures affected
by ASR: (1) how to calculate the ASR-induced stresses, and (2), when the ASR-induced stresses are calculated,
what is the residual capacity when accounting for the material deterioration caused by ASR? This study aimed
to contribute in answering the first question.

The ASR-induced stresses can be calculated in a structural analysis that includes a concrete material model
that incorporates the effects of ASR on the material behaviour, i.e. expansion and material deterioration. Many
such models exist. However, these models rely on predefined field variables, e.g. moisture and temperature,
which are (generally speaking) unknowns for an existing structure. Consequently, structural analysis of
ASR-affected concrete structures involves dealing with unknown field variables. From this background, we
developed a material model and a suitable structural analysis method. The material model relies on only one
predefined, howbeit unknown, field variable —the free ASR expansion. The structural analysis method is based
on solving an inverse problem, which is to back-calculate the free ASR expansion field from a set of measured
displacements.

The material model and the structural analysis method were applied in a structural analysis of an ordinary
reinforced beam bridge in Norway. Then, the imposed deformations and stresses due to ASR were investigated
to increase the understanding of the structural consequences of ASR in ordinary reinforced continuous beam
bridges.
. Introduction

The effects of alkali–silica reaction (ASR) in concrete are expansion
nd degradation of the material [1–4]. At the structural level, the
ost visible signs of ASR are surface cracks and displacements. For

ridges, displacements may lead to a reduction of expansion joints
nd inclined columns (an angle to the vertical position) due to the
longation of bridge superstructure [5]. From the structural mechanical
oint of view, this concrete expansion can be considered and modelled
s an imposed strain (additional strain), denoted ASR expansion. From
ther imposed strains, like thermal and shrinkage strain, we know
hat they cause stresses either if the imposed strain field is strain

∗ Corresponding author at: Oslo Metropolitan University, Pilestredet 35, 0130 Oslo, Norway.
E-mail address: simkon@oslomet.no (S.S. Kongshaug).
URL: https://oslomet.no (S.S. Kongshaug).

1 An imposed strain field is strain incompatible if it does not satisfy the Saint-Venant’s compatibility conditions.

incompatible,1 or if the resulting displacements are restrained by the
displacement boundary conditions, where the latter only happens for
statically indeterminate structures. In ASR-affected reinforced concrete
(RC) structures, the ASR expansion field only applies to the concrete,
and therefore, it is always strain incompatible as the embedded rein-
forcement is non-expanding. Consequently, tensile stresses develop in
the reinforcement, and compressive stresses in the concrete, which is
often referred to as the pre-stressing effect. Again, additional stresses
occur if the imposed ASR expansion field leads to displacements that
are restrained by the displacement boundary conditions, as in contin-
uous beam bridges [6]. In this paper, the incompatibility of the ASR
vailable online 24 May 2022
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expansion refers both to the strain incompatibility, e.g. the internal
restraint from reinforcement, the non-linear ASR expansion fields over
the height and width of a bridge, and the external restraint from
boundary conditions, all leading to additional stresses in the structure.

For the structural engineer, put to task to conduct a structural
assessment of an ASR-affected RC structure, two natural questions arise:
(1) how to calculate the ASR-induced stresses, and (2), when the ASR-
induced stresses are calculated, what is the residual capacity when
accounting for the material deterioration caused by ASR?

The ASR-induced stresses may be calculated in a structural analysis
that incorporates a concrete material model that includes ASR-induced
concrete expansion. However, the correctness of the calculated stresses
depends on the correctness of the imposed ASR strain field, which is
(in general) unknown for an existing structure. Indeed, any structural
application of any advanced material model that includes the effects of
ASR will face the issue of identifying the imposed ASR expansion field,
which may lead to substantial stresses, and which may substantially
influence the prediction of the capacity. Although the model accounts
for the effect of moisture and temperature on the ASR expansion, the
problem is passed on to identify the moisture and temperature history
(the variation in both space and time).

In the context of structural mechanics, any ASR related structural
problem (solved using any concrete material model that incorporates
the effects of ASR expansion) can be grouped into two kinds based on
the knowledge of the input fields (predefined fields):

1. The direct problem, when the boundary and initial conditions for
all the field variables (e.g. temperature and moisture) necessary
to compute the ASR-induced expansion field are known a priori;

2. The inverse problem, when the history of the field variables is
unknown, and must be deduced/reconstructed from field obser-
vations and measurements.

In well controlled experiments, the direct problem can be solved. In
this case, the correctness of the solution, measured by the discrepancies
between the solution of the structural problem and the experimental
results, depends on the material model and the choice of material
parameters. The best fit material parameters are the ones that reduce
these discrepancies (which is another inverse problem). On the other
hand, the structural analysis of an existing ASR-affected RC structure
involves solving the inverse problem as the history of field variables is
unknown. It is emphasized that the correctness of the solution of the
inverse problem relies on a proper material model with known material
parameters, i.e. it gives good predictions of the structural behaviour for
the direct problem.

In this study, a state-of-the art concrete material model was used,
which includes ASR expansion that relies on the input of a free ASR
strain 𝜀asr,f ree; it is interpreted as the ASR strain that would have
occurred without stress (thus free).

The objective was to develop a suitable structural analysis approach
to answer the first question stated above, i.e. finding the ASR-induced
stresses. This method includes solving the inverse problem, where
the task is to identify/reconstruct the time varying free ASR strain
field 𝜀asr,f ree(𝒙, 𝑡), such that the structural analysis match some field
measurements and observations. This is in general a mathematically
ill-posed problem, as many such fields may lead to the same sets of
measurements, but by limiting the solution space for 𝜀asr,f ree(𝒙, 𝑡), one
can find a solution.

We developed an approach where the free ASR expansion field
𝜀asr,f ree(𝒙, 𝑡) is expressed as a linear combination of (predefined) func-
tions, that in number is less than or equal to the number of dis-
placement measurements. Many such fields can be stated and solved.
Then, the calculated cracks can be used to assess the correctness of the
assumed expansion field.

The material model and the structural analysis method were applied
in a finite element analysis of a continuous beam bridge in Norway,
2

Elgeseter bridge. The elongation of the bridge was used as the main (
observable, as part of solving the inverse problem, and the calculated
cracks were used as the secondary observables in the assessment of the
correctness. The results from the analysis of Elgeseter bridge were stud-
ied to increase the understanding of ASR-induced stresses in ordinary
RC beam bridges.

2. 3D material model of ASR-affected concrete

The material model we used is a 3D generalization of a 1D model,
proposed in our earlier work [6]. Among the different categories of ASR
modelling approaches [7], this model falls in the category of models
that depart from imposing an ASR expansion (strain) in concrete.
The model includes the effect of ASR expansion, ASR-induced stiff-
ness and tensile strength reduction, cracking, creep and compressive
damage. These different concrete material effects are included by a
decomposition of total strain2 of the concrete into

𝜺 = 𝜺asr + 𝜺𝜎 + 𝜺cr + 𝜺creep; (1)

𝜺asr is the imposed ASR strain. It is a function of the free
ASR strain 𝜀asr,f ree (field variable), and stress, see
Section 2.1 for the description of the constitutive
model;

𝜺𝜎 is the elastic strain, and represents the short term
mechanical deformation. It is immediately reversible
when the material is unloaded, thus elastic. This
strain will be given by an isotropic stiffness relation
for an undamaged material, while a rotating
orthotropic stiffness relation is used for an
ASR-damaged material. The constitutive model is
described in Section 2.2;

𝜺cr is the smeared crack strain, with the physical
interpretation as a weaker/softer material that
develops between the sound material. When a crack
closes, the crack strain vanishes and the stiffness is
recovered. The constitutive model is described in
Section 2.3;

𝜺creep is the creep strain. This is the time dependent
deformation due to stress; for a constant stress it
increases with time. The constitutive model is
described in Section 2.4.

Similar decomposition of concrete strain, including creep strain, can
be found in the work by van Zijl et al. [8,9].

To model compressive damage, we used an isotropic damage for-
mulation, which is based on the concept of an effective stress. In this
way, the stress is related to the effective stress by

𝝈 = (1 − 𝜔c)𝝈eff , (2)

where 𝝈eff is the effective stress, and 𝜔c is a damage variable ranging
from 0 for an undamaged state to 1 for a completely damaged state,
further elaborated in Section 2.5. Some of the strains listed above are
related to the stress 𝝈, while others are related to the effective stress
𝝈eff .

2.1. ASR expansion model

We used an expansion based model similar to a model proposed by
Wen [10], which is based on the following assumptions:

2 Column matrix/vector representations of stress and strain tensors are used
Voigt notation). Matrices and vectors are written in bold.
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Fig. 1. 𝑊 (𝜎) expresses the imposed ASR expansion rate relative to the free ASR
expansion rate (in any of the principal stress directions). The function proposed by
Charlwood et al. [11] is assumed.

1. The free ASR expansion 𝜀asr,f ree—different from the imposed
one—is a predefined field variable (input for the structural
analysis). It is a scalar valued function of space and time, which
is known for the direct problem and unknown for the inverse
problem. It is a measure that represents the ASR strain that
would occur without stress.

2. The imposed ASR expansion rate depends on the stress state,
given by the instantaneous stress-expansion relationship

�̇�asr = 𝑾 (𝝈) �̇�asr,f ree. (3)

In Eq. (3), the over-dot denotes the time derivative, and 𝑾 is a
vector valued function of the stresses.

3. The imposed ASR expansion rate in any of the principal stress
directions (with unit vectors �̄�1, �̄�2 and �̄�3) depends only on the
principal stress in the same direction. It is also assumed that the
ASR shear strain rates in the principal stress coordinates are zero.
These assumptions leads to the following expression for the ASR
expansion rate in the principal stress coordinates:
̇̄𝜺asr = �̄� (�̄�) �̇�asr,f ree

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑊 (�̄�1)

𝑊 (�̄�2)

𝑊 (�̄�3)

0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�̇�asr,f ree
(4)

4. The instantaneous stress-expansion relationship 𝑊 is given by
the logarithmic function proposed by Charlwood et al. [11]
(illustrated in Fig. 1), given by

𝑊 (𝜎) =

⎧

⎪

⎨

⎪

⎩

1 if 𝜎 ≥ −𝜎L
1 − log(𝜎∕−𝜎L)

log(𝜎u∕𝜎L)
if −𝜎u ≤ 𝜎 < −𝜎L

0 if 𝜎 < −𝜎u

(5)

where the material constant 𝜎u is the compressive stress for
which the ASR expansion rate vanish, and the material constant
𝜎L is the compressive stress for which the ASR expansion rate
equals the free ASR expansion rate. These material constants are
uncertain and depend, among other things, on the concrete mix,
and must be determined from restrained expansion experiments.

The validity of the third assumption depends (among other) on
the concrete mix as different anisotropic expansion behaviours have
been reported in the literature. Four expansion behaviours can be
3

Fig. 2. Illustration of the series model for ASR-affected concrete: (a) concrete fibre of
initial length 𝐿, (b) expands 𝜀asr𝐿 due to ASR, and (c) it strains 𝜀𝜎 due to stress 𝜎. A
(3D) illustration of the series model is shown in (d).

identified—if at least one direction is free of stress: (1) total transfer
of expansion to the stress-free directions, i.e. volumetric expansion is
preserved [2,12–14], (2) partial transfer of expansion [15–17], (3) no
or negligible transfer to the stress-free directions [18,19], and (4) the
expansion in the stress-free directions is reduced [20,21]. The expan-
sion model, used in this study, is compliant with expansion behaviour
(3).

The induced strain rate is transformed to the global coordinates by
the relation:

�̇�asr = �̄� T
𝜎
̇̄𝜺asr , (6)

where �̄� 𝜎 is the stress transformation matrix from global coordinates
to principal stress coordinates, given by the relation �̄� = �̄� 𝜎𝝈.

2.2. Elastic compliance relation accounting for ASR stiffness damage

In this study, the elastic strain 𝜀𝜎 represents the instant deformation
due to stress, and it is given by the following compliance relation
(expressed in global coordinates):

𝜺𝜎 = 𝑪𝜎𝝈eff . (7)

To account for the increase in compliance (or reduction in stiffness) due
to ASR, a series model inspired by the work of Wen [10] is developed,
where the ASR-affected concrete is considered as being composed of
sound concrete and ASR damaged concrete in series, see Fig. 2 for an
illustration. The figure shows (1D) a material fibre with initial length
𝐿 (Fig. 2a), which elongates 𝐿asr = 𝜀asr𝐿 due ASR (Fig. 2b). The sound
concrete has a stiffness equal to the modulus of elasticity 𝐸0, and the
damaged concrete has a reduced modulus of elasticity 𝐸asr = 𝛽asrE 𝐸0,
where 𝛽asrE is a coefficient. The elongation 𝜀𝜎𝐿 due to stress (Fig. 2c) is
composed of two parts: the elongation of the sound material, and that
of the ASR damaged material, both assumed linearly related to stress,
see Eq. (8).

𝜀𝜎𝐿 = 𝜀𝜎,sound𝐿 + 𝜀𝜎,asr𝐿asr

= 𝜎eff

𝐸0
𝐿 + 𝜎eff

𝛽asrE 𝐸0
𝜀asr𝐿

𝜀𝜎 =
(

1
𝐸0

+ 𝜀asr

𝛽asrE 𝐸0

)

𝜎eff

(8)

The above expression for ASR-induced increase in compliance (or
equivalently reduction in stiffness), is also used in the works of [22–
25], where the value of 𝛽asrE = 0.003 was used. In the experimental
investigation by Kongshaug et al. [26], 𝛽asrE = 0.0033 gave the best fit.

In this work, the 1D series model is generalized to 3D, see Fig. 2d for
an illustration. The model can be characterized as a rotating orthotropic
elastic damage law, with material directions aligned with the principal
ASR strain directions with unit vectors ̄̄𝒏 . In the coordinates aligned
𝑖
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with the principal ASR strain directions, the compliance relation reads

̄̄𝑪𝜎 = 𝑪el + ̄̄𝑪𝜎,asr , (9)

where 𝑪el is the isotropic elastic compliance matrix, defined by the two
independent material constants modulus of elasticity 𝐸0 and Poisson’s
atio 𝜈, and ̄̄𝑪𝜎,asr is an orthotropic compliance matrix, given by
̄̄ 𝜎,asr =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̄̄𝜀asr1
𝛽asrE 𝐸0

0 0 0 0 0

0
̄̄𝜀asr2

𝛽asrE 𝐸0
0 0 0 0

0 0
̄̄𝜀asr3

𝛽asrE 𝐸0
0 0 0

0 0 0
̄̄𝜀asr1 + ̄̄𝜀asr2
𝛽asrG 𝐺0

0 0

0 0 0 0
̄̄𝜀asr1 + ̄̄𝜀asr3
𝛽asrG 𝐺0

0

0 0 0 0 0
̄̄𝜀asr2 + ̄̄𝜀asr3
𝛽asrG 𝐺0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
(10)

here ̄̄𝜀asr𝑖 (for 𝑖 = 1, 2, 3) are the principal ASR strains. The coefficient
asr
G determines the rate of increase in shear compliance. Due to lack of
echanical testing on determining its value, we assume that the two

oefficients are equal 𝛽asrG = 𝛽asrE .
The expression for the compliance relation, expressed in global

oordinates (Eq. (7)) is now written
𝜎 = ̄̄𝑻 T

𝜎
̄̄𝜺𝜎

= ̄̄𝑻 T
𝜎
̄̄𝑪𝜎 ̄̄𝑻 𝜎𝝈eff

=
[

𝑪el + ̄̄𝑻 T
𝜎
̄̄𝑪𝜎,asr ̄̄𝑻 𝜎

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑪𝜎 in (7)

𝝈eff
(11)

here ̄̄𝑻 𝜎 is the stress transformation matrix from global to principal
SR strain coordinates.

.3. Fixed orthotropic smeared crack model for stress induced macro crack

A sufficient tensile stretching of concrete leads to strain localization
ver a characteristic length, denoted crack band, which finally results
n development of a macro crack. In the crack band and in the macro
rack, softening occurs, i.e. decreasing stress with increasing strains,
hile the material on each side experiences elastic unloading. This can
e modelled by a continuum approach with the concept of a smeared
rack strain, and a softening material law.

Strain localization will also occur in a numerical solution by use
f the displacement based finite element method (FEM) when the
aterial is softening. Then, the strain localizes in a numerical crack

and, which in length typically equals the length of the finite element
if linear interpolation is used). Consequently, the solution depends
n the mesh refinement. To make the solution objective with respect
o mesh refinement, the crack band method [27] is applied. In this
pproach, the material model (in tension) depends on the size and order
f the finite element such that the dissipated energy (fracture energy)
s less mesh size dependent.

The material model should also depend on the expected number of
racks within each finite element. This is important when modelling
C structures where several cracks might be expected depending on

he crack spacing. For numerical solutions with the displacement based
inite element method, the numerical crack band width should be
hosen based on the size and order of the finite element, and the
rack spacing. Discussion on upper and lower bounds of the numerical
rack band width (localization limiters) are discussed in [28]. In more
dvanced crack band models, the material model also depends on the
rientation of cracks wrt mesh [29,30], and [31]. This refinement is
ot adopted here.
4

The relation between crack strain and effective stress in the fixed
ocal orthogonal crack coordinate system is given by the compliance
elation
̄̄̄cr = ̄̄̄𝑪cr ̄̄̄𝝈eff , (12)

here compliance matrix is assumed as follows:

̄̄̄ cr =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̄̄̄𝐶cr
11 0 0 0 0 0
0 ̄̄̄𝐶cr

22 0 0 0 0
0 0 ̄̄̄𝐶cr

33 0 0 0
0 0 0 ̄̄̄𝐶cr

44 0 0
0 0 0 0 ̄̄̄𝐶cr

55 0
0 0 0 0 0 ̄̄̄𝐶cr

66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (13)

ith

̄̄̄ cr
𝑖𝑖 =

𝛼cr𝑖 𝐻( ̄̄̄𝜎𝑖)
𝜎cr𝑖 (𝛼

cr
𝑖 )

for 𝑖 = 1, 2, 3

̄̄̄ cr
44 = max{ ̄̄̄𝐶cr

11,
̄̄̄𝐶cr
22}∕𝑟𝑔

̄̄̄ cr
55 = max{ ̄̄̄𝐶cr

11,
̄̄̄𝐶cr
33}∕𝑟𝑔

̄̄̄ cr
66 = max{ ̄̄̄𝐶cr

22,
̄̄̄𝐶cr
33}∕𝑟𝑔 .

𝛼cr𝑖 is the maximum crack strain obtained for crack 𝑖 with crack
ormal ̄̄̄𝒏𝑖, and 𝜎cr𝑖 (𝛼

cr
𝑖 ) is the corresponding crack strength. 𝑟𝑔 is similar

o the crack shear stiffness coefficient in Ref. [32], which recommends
value between 1 and 10. ̄̄̄𝒏1 is the normal of the first crack, and

s determined as the maximum principal stress direction at the onset
f cracking. ̄̄̄𝒏2 is determined by violation of the crack criterion in a
irection orthogonal to ̄̄̄𝒏1, and ̄̄̄𝒏3 is determined from ̄̄̄𝒏1 and ̄̄̄𝒏2 (by
he condition of orthogonality). The heavy side function 𝐻 is used to
estore the initial stiffness (or zero crack compliance) for closed cracks.

The maximum crack opening of crack 𝑖 𝑤cr
𝑖 is equal the maximum

rack strain 𝛼cr𝑖 multiplied with the numerical crack bandwidth ℎ (size
f the finite element):
cr
𝑖 = 𝛼cr𝑖 ℎ ; 𝛼cr𝑖 = max( ̄̄̄𝜀cr𝑖 ). (14)

In this way, the tensile strength of the concrete 𝜎cr𝑖 (for crack 𝑖) can
be expressed as a decreasing/softening function of the maximum crack
opening, e.g., the function proposed by [33].

For large scale unreinforced structures, analysed using large ele-
ments, a solution to avoid snap-back is to use the brittle crack model,
Eq. (15), but it is emphasized that this approach is not objective with
mesh refinement as the dissipated energy is proportional with the
characteristic size of the cracked elements.

𝑓br =
{

𝑓ct0 if 𝛼cr = 0
0.01𝑓ct0 if 𝛼cr > 0

(15)

For large scale reinforced concrete structures, analysed using large
elements, the post peak behaviour is usually not dominated by a
single crack within each element, but rather distributed cracking due
to the bond action between concrete and reinforcement, termed the
tension-stiffening effect. This effect can be included by modification of
the softening behaviour of the concrete in the neighbourhood of the
reinforcement [34], but this is, however, not adopted in this study.

The micro cracking due to ASR reduces the tensile strength of the
material. This was modelled by an isotropic damage law given by the
same damage law as for the stiffness reduction. The softening law now
reads:

𝜎cr𝑖 =

(

1 −
𝜀asrmax

𝜀asrmax + 𝛽
asr
fct

)

𝑓br , (16)

where 𝜀asrmax = max{ ̄̄𝜀asr𝑖
|

|

|𝑡cr
∶ 𝑖 = 1, 2, 3}, where 𝑡cr is the time at

cracking, and 𝛽asrfct
is a coefficient fitted to the experimental results of
Smaoui et al. [35], see Fig. 3. They measured the direct tensile strength
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Fig. 3. The evolution of relative modulus of elasticity in Refs. [26,35] are similar; the
curve fit (least square method) is only applied to the data from Ref. [35], which gives
𝛽asrE = 0.003. The curve fit on the relative tensile strength adapted from Ref. [35] gives
𝛽asrfct

= 0.001.

and modulus of elasticity for an ASR-affected concrete with similar
evolution for modulus of elasticity as in [26].

Cracking (�̇�cr𝑖 ≥ 0) is controlled by a Rankine fracture criterion for
ach crack 𝑖 = 1, 2, 3, given by
cr
𝑖 = ̄̄̄𝜎eff𝑖 − 𝜎cr𝑖 (𝑤

cr
𝑖 (𝛼

cr
𝑖 )) ≤ 0 , (17)

with the conditions

�̇�cr𝑖 ≥ 0, 𝐹 cr
𝑖 �̇�cr𝑖 = 0. (18)

The crack compliance relation in global coordinates is

𝜺cr = ̄̄̄𝑻 T
𝜎
̄̄̄𝑪cr ̄̄̄𝑻 𝜎 𝝈eff (19)

where ̄̄̄𝑻 𝜎 is the stress transformation matrix from global to the fixed
crack coordinate system.

2.4. Creep model

Concrete creep is modelled using ageing isotropic linear viscoelas-
icity, for which the creep strain at time3 𝑡 is given by

creep(𝑡) = �̂� ∫

𝑡

𝜏=0
𝐶creep(𝑡, 𝜏)�̇�𝑑𝜏, (20)

here �̂� is a dimensionless matrix, given in Eq. (21), which establishes
he three dimensional effect of creep, and 𝐶creep(𝑡, 𝜏) is a creep function
hich gives the creep strain at time 𝑡 for a unit stress applied at time
.
̂ = 𝐸0𝑪el =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −𝜈 −𝜈 0 0 0
−𝜈 1 −𝜈 0 0 0
−𝜈 −𝜈 1 0 0 0
0 0 0 2(1 + 𝜈) 0 0
0 0 0 0 2(1 + 𝜈) 0
0 0 0 0 0 2(1 + 𝜈)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

3 We assume that the structure is stress free up to concrete age of 28 days,
nd therefore, the choose the time variables 𝑡 and 𝜏 to measure the time, in
ays [d], from 28 days after casting.
5

𝜆

We used the creep function given in Eurocode [36], 𝐶creep(𝑡, 𝜏) =
𝜙
𝐸0

, where the function 𝜙 denotes the creep coefficient. To achieve a
umerically efficient solution procedure, a five-unit Kelvin chain is first
itted to the Eurocode creep function. The procedure of function fitting
s described in Ref. [6].

.5. Isotropic damage model for compressive crushing

Concrete in compression experience strain localization due to soft-
ning instability, which result in a size effect as for tension. As ex-
lained for tensile cracking, numerical simulation with the FEM with
compressive softening material requires a suitable regularization

echnique to obtain mesh objective energy dissipation. The approach
y [37], denoted ‘‘crush band method’’ is used. This is an extension of
he crack band theory [27] to compressive behaviour; it is assumed that
ompressive fracture energy 𝐺c is a material property, and that strains
ocalize into a numerical crush band, ℎc. Damage due to compression

is modelled with a Drucker Prager isotropic damage law. The scalar
damage variable 𝜔c relates the stress to the effective stress, see Eq. (2).
It is a function of a monotonic increasing scalar state variable 𝜀c,max,
which is the maximum obtained value of a strain-like measure 𝜀c;

c,max = max(𝜀c) (22)

𝑐 =
0.2
𝐸0

𝐼𝜎
eff

1 + 1.2
𝐸0

√

3𝐽𝜎eff2 (23)

The strain-like measure 𝜀c equals, in absolute sense, the elastic strain of
the sound material, for uniaxial compression loading, i.e. if the material
is loaded in �̄�1-direction, then 𝜀c =

|

|

|

�̄�𝜎,sound1
|

|

|

. In Eq. (23), 𝐼𝜎eff1 is the first
invariant of the effective stress, and 𝐽𝜎eff2 is the second invariant of the
deviatoric effective stress. These are expressed in terms of the principal
effective stresses in Eq. (24).

𝐼𝜎
eff

1 = �̄�eff1 + �̄�eff2 + �̄�eff3

𝐽𝜎
eff

2 = 1
6
[

(�̄�eff1 − �̄�eff2 )2 + (�̄�eff2 − �̄�eff3 )2 + (�̄�eff3 − �̄�eff1 )2
]

(24)

It is assumed that damage starts evolving at a threshold 𝜀c0, so
c = 0 when 𝜀c,max ≤ 𝜀c0. After damage initiation, the stress strain
elation in uniaxial compression is assumed to have a parabolic form,
ee Fig. 4, which leads to the expression in Eq. (25) for the scalar
ompressive damage variable (see Eq. (25) in Box I).

It should be noticed that the above damage law is also defined
or tension loading (because 𝜀c is not vanishing for tension), but will,
owever, not be activated for tension dominated loading. This is be-
ause the three Rankine criteria will be activated first, and hence limit
he effective stress. In Fig. 5, the initial and peak compressive damage
urfaces (converted to stress space) have been plotted for biaxial radial
oading.4 Only the part of the isotropic damage surface that might be
iolated is shown, in addition to the Rankine criteria/surface.

The influence of ASR on the compressive strength is neglected in
his model. Experimental studies show divergent and only minor effects
f ASR on the compressive strength, in particular for expansion levels
bserved in real structures.

. Method for identifying the ASR-induced stresses: the inverse
tructural ASR problem, the solution procedure and the structural
rack evaluation

A method was developed to identify the ASR-induced stresses,
hich involves (1) stating one or multiple inverse problem(s), (2)

olution procedure for the inverse problem(s), and (3) an evaluation
f calculated crack pattern.

4 Radial loading means that the stress 𝝈 is increased/decreased by a scalar
, given by 𝝈 = 𝜆𝝈 , where 𝝈 is a constant vector.
initial initial
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𝜔c =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if 𝜀c,max < 𝜀c0

1 − 𝜀c0
𝜀c,max

(

1 + 4 𝜀c,max−𝜀c0
𝜀cp−𝜀c0

− 2
(

𝜀c,max−𝜀c0
𝜀cp−𝜀c0

)2
)

if 𝜀c0 < 𝜀c,max ≤ 𝜀cp

1 − 3 𝜀c0
𝜀c,max

(

1 −
(

𝜀c,max−𝜀cp
𝜀cu−𝜀cp

)2
)

if 𝜀cp < 𝜀c,max ≤ 𝜀cu

1 if 𝜀cu < 𝜀c,max

𝜀c0 =
𝑓c
3𝐸0

; 𝜀cp = 5 𝜀c0; 𝜀cu = 𝜀cp +
3𝐺c

2ℎc 𝑓c

(25)

Box I.
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Fig. 4. Stress–strain relationship for uniaxial compression loading, and the evolution
of the scalar damage variable.

Fig. 5. The evolution of damage surface in principal stress space for biaxial radial
loading. It evolves from the initial to the peak damage surface, before contraction due
to compressive softening.

The inverse problem. Field measured displacements are used as the
main observations in the inverse problem. To construct a well-posed
inverse problem of identifying the free ASR expansion field (from field
observations), the solution space of 𝜀asr,f ree is limited to a function
with a finite number of unknown coefficients 𝛽 , 𝑗 = 1, 2,… , 𝑛, in
6

𝑗

which number 𝑛 is less than or equal to the number 𝑚 of measured
displacements, i.e. 𝑛 ≤ 𝑚. The free ASR expansion field 𝜀asr,f ree is
ssumed as a linear combination of functions 𝜓𝑗 (𝑥1, 𝑥2, 𝑥3) of the spatial
oordinates 𝑥𝑖, given by

asr,f ree(𝒙, 𝑡) = 𝑡
𝑡end

𝑛
∑

𝑗=1
𝛽𝑗𝜓𝑗 (𝑥1, 𝑥2, 𝑥3) =

𝑡
𝑡end

𝜷T𝝍 . (26)

It is noticed that the field is linear in time 𝑡, despite the s-shaped
evolution of ASR expansion often observed for experiments in highly
ASR-accelerated environments. The inverse problem is to determine
the unknown vector of coefficients 𝜷, such that some field measured
displacements, collected in a vector 𝒅obs, are close to the corresponding
calculated displacements 𝒅s = 𝒂obs 𝒅 from the finite element analysis.
Here, 𝒂obs is a topology matrix (of ones and zeros), which extracts the
corresponding displacements (𝒅s) from the structural displacement vec-
tor evaluated at the end time (𝑡end) of the structural analysis 𝒅 = 𝒅|𝑡end .
It is emphasized that the structural displacement vector 𝒅 depends on
the unknown parameters 𝜷. To measure the closeness, we establish an
objective function that measures the error between simulation and field
measurements:

𝑠 =
𝑚
∑

𝑖=1
𝑟2𝑖 =

𝑚
∑

𝑖=1
(𝑑obs𝑖 − 𝑑s𝑖 )

2 = ‖𝒅obs − 𝒂obs𝒅‖2 (27)

he objective is now to find the parameters that minimize the error 𝑠,
hich reads

min
𝜷∈

𝑠;  ⊂ R𝑛 dim(𝒅obs) = 𝑚 ≥ 𝑛 = dim(𝜷) (28)

here the construction of the functions 𝜓𝑗 , determine the reasonable
ounds for the set .

olution procedure. If the inverse problem involves only one or two
bservations (in 𝒅obs) and unknown coefficients (in 𝜷), a brute-force
earch might be an option (either by automatic or manual update of
he unknown coefficients). The brute-force search becomes very time
onsuming for additional unknowns as it involves many trials of 𝜷,
here for each trial, a time consuming non-linear finite element anal-
sis is conducted. A more sophisticated solution procedure is needed
hen several observations and unknown coefficients are involved. In
ppendix, a Gauss–Newton algorithm to solve the inverse problem

Eq. (28)) is presented, where an analytical expression for the Jacobian
= − 𝜕𝒓

𝜕𝜷 is derived.

Structural crack evaluation/assessment. The cracks are seen as sec-
ondary observations, which are not used in solving the inverse problem,
but which are used for verifying the correctness of the assumed free
ASR expansion field. Or rather, one can only falsify the correctness of
the assumptions.

Multiple inverse problems, i.e. alternative free ASR expansion fields,
can be stated and solved. Then, the calculated cracks can be compared
with the field observations to come closer to the real ASR-induced
expansion field, and thus, the ASR-induced stresses. The choice of the
solution space for the causal variable 𝜀asr , i.e. the choice of functions
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Fig. 6. Drawing of Elegeseter bridge. The locations of large cracks (crack widths up to 6mm) are marked with red arrows.
Source: Adapted from [38].
Fig. 7. There is a sign of water penetration of the bridge deck in outermost region of the bridge. The image shows the western outer and western inner beam. Image courtesy of
Dr. Ing. A. Aas-Jakobsen AS.
𝝍 in Eq. (26), should not be arbitrary, but based on information of
the structure. This can be signs or tests indicating a certain moisture
distribution.

4. Application to a real case: Elgeseter Bridge in Norway

4.1. Elgeseter Bridge

Our study was inspired and motivated by a real case, Elgeseter
Bridge in Norway, which is affected by ASR. It is a 200m long ordinary
RC beam bridge of nine spans. The bridge deck is carried by four
longitudinal beams, which are supported by slender columns, see Fig. 6;
everything is made of monolithically cast reinforced concrete. In the
recent years, the structural effects of ASR expansion of the bridge
superstructure have become the primary concern [39,40]. ASR has
resulted in an elongation of the bridge, which has been quantified
through measurements of the width of the only expansion joint in the
north end of the bridge, designed to be 200 mm wide. In 2003, the
7

width was reduced to near zero, which made repair of the expansion
joint necessary. Based on the expansion joint measurements from 1962
to 2001, reported in [39], the current elongation of the bridge is
estimated at 200mm, which gives an average expansion of 0.1%. In
an inspection of the bridge in 2012 [38], it was observed that water
penetrated though the bridge deck, likely due to punctuation of the
water sealing, in the outermost part of the bridge on both sides, and
throughout the bridge length, see Fig. 7. It has been believed, that this
has resulted in a spatial moisture variation over both the height and the
width, and therefore, variations in ASR expansion [39]. A variation in
water content along the width of the bridge deck is documented [41].

In the same bridge inspection [38], large vertical cracks (up to
6mm) in the inner beams were observed, see Fig. 8 for close-ups. The
locations of these large cracks are shown in Fig. 6. In the span between
axes 3 and 4 and in the span between axes 4 and 5, the large cracks
are located only in the western inner beam. In the span between axes
6 and 7 and in the span between axes 8 and 9, the large cracks are
located only in the eastern inner beam. All cracks have occurred 4.5m
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Fig. 8. Vertical crack in a region with low amount of reinforcement in an inner beam
(a), which is measured in (b). Image courtesy of Dr. Ing. A. Aas-Jakobsen AS.

from the columns, where the amount of reinforcement is low, see Fig. 9.
Based on the drawings, these cross sections consist of only three 𝜙32
bars as longitudinal reinforcement. Nevertheless, if the reinforcement
work was conducted with minor extensions and/or movements (in
total <150 mm) of some reinforcing bars in these areas (resulting in
overlapping), the amount of reinforcement in these sections can be
considerably greater, which might explain the arbitrarily positioning
of the large cracks. In the Norwegian Public Roads Administration
(NPRA)’s digital database for bridges (‘‘Brutus’’), it is described that the
inner beams in all spans have cracks widths up to 3mm approximately
5m from the columns, except the spans from axis 3 to 4 and 6 to 7
(which have the largest cracks up to 6mm).
8

Table 1
The reinforcement intensity, area per unit width [mm2∕mm], for sections P1 to P7
(bridge deck); t,x denotes the top layer in x direction, and b,y the bottom layer in y
direction.

P1 P2 P3 P4 P5 P6 P7

t,x 0 0.781 0.221 0.221 0.221 0.791 0.791
t,y 0 1.005 1.005 0.603 1.407 1.91 1.005
b,x 0.791 0.791 0.442 0.442 0.442 0 0
b,y 1.915 1.25 0.804 0.804 2 1.327 1.327

Table 2
The reinforcement intensity, area per unit width [mm2∕mm], for sections B1 to B19
(bridge beams); t,x denotes the top layer in x direction, and b,y the bottom layer in y
direction.

B1 B2 B3 B4 B4W B5 B6

t,x 34.18 34.18 34.18 34.18 34.18 5.026 5.026
t,y 1.809 1.809 1.809 1.809 1.809 1.809 1.809
b,x 15.08 9.05 7.04 6.032 3.016 6.032 10.56
b,y 0.402 0.402 0.402 0.402 0.402 0.402 0.402

B7 B8 B9 B10 B11 B12 B13

t,x 5.026 5.026 5.026 5.026 38.2 38.2 38.2
t,y 1.809 1.809 1.809 1.809 1.809 1.809 1.809
b,x 13.57 15.58 18.6 20.61 6.032 13.07 15.08
b,y 0.402 0.402 0.402 0.402 0.402 0.402 0.402

B14 B15 B16 B17 B18 B19

t,x 38.2 5.026 5.026 5.026 5.026 5.026
t,y 1.809 1.809 1.809 1.809 1.809 1.809
b,x 21.11 11.058 15.08 25.13 17.09 12.06
b,y 0.402 0.402 0.402 0.402 0.402 0.402

4.2. Finite element model

Elgeseter bridge was analysed using the finite element analysis
software ABAQUS. Only the bridge superstructure (bridge deck and
beams) was modelled, and it was discretized with 4-node shell elements
(S4R). Based on the visual inspection [38] (described in Section 4.1),
it was assumed that the free ASR expansion field is symmetric about
the vertical centre plane of the bridge (the 𝑥𝑧-plane along the bridge),
and that it is constant along the bridge length. As a result of these
assumptions, we modelled only the half of the cross section with
symmetry displacement boundary conditions along the centre plane,
see Figs. 10 and 11. The top surface was used as the reference surface
for all shell elements. In this way, the correct offset of the beams wrt the
bridge slab is accounted for in the model. The thicknesses of the shell
elements was chosen to be 310mm for the bridge deck, and 1740mm
for the beams. We chose five integration points in the bridge deck,
and 11 points for the beams. Additional integration points were used
for the reinforcement. The reinforcement was included with the ‘‘rebar
layer’’-feature (in the section definition for the shell). In this way the
reinforcement is perfectly embedded (no slip) and the material model
of the reinforcement is 1D in the specified direction of the rebar layer.
The reinforcement layout was simplified to four layers: longitudinal
(x) and transverse (y) in both the top and the bottom of each shell
cross section. Both the top and bottom rebar layers were placed 59mm
from the top and bottom shell surface for both beam and deck. The
reinforcement amount varies over the bridge, so the model was split
into several regions which were assigned different reinforcement areas
in the shell section definition. In the bridge deck, the reinforcement
only varies in the transverse direction (y). The deck was divided into
seven regions, which were assigned different sections labelled P1 to P7,
see Fig. 11, where the reinforcement amounts are given in Table 1. In
the beams, the reinforcement varies only in the longitudinal direction
(x), see Fig. 12 and Table 2 for the modelled sections.

The concrete material model, described in Section 2, was imple-
mented in ABAQUS with the user-defined material subroutine UMAT.
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Fig. 9. Drawing of the reinforcement in the mid span beams of Elegeseter bridge [39]. The cross sections with low amount of reinforcement are marked in red. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The dimension of the finite element model, and the displacement boundary conditions; the displacement in and rotation about the 𝑥-direction are denoted 𝑢1 and 𝑢𝑟1,
respectively (subindex 2 in 𝑦-direction and subindex 3 in 𝑧-direction).

Fig. 11. The dimensions of half the cross section of bridge. The different colours indicate different section definitions with different reinforcement amount. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. The beams are divided into regions and assigned different shell sections with different reinforcement amounts. In span 2-8, one week section, B4W, is included with only
three 𝜙32 bars in the bottom of the beam (approx 4.5m from the columns, as observed on the bridge).
Fig. 13. The half bridge cross section was divided into an inner and an outer section, where each was assigned a vertically linearly varying free ASR expansion. The applied fields
are expressed in terms of four (dependent) parameters, the bottom and top expansions in the inner and outer section: 𝜀asr,f reein,b , 𝜀asr,f reein,t , 𝜀asr,f reeout,b and 𝜀asr,f reeout,t .
Table 3
Values for the material properties used in the structural analyses.

Material property Symbol Value

Concrete
Concrete cylinder compressive strength 𝑓c 28 N∕mm2

Modulus of elasticity at an age of 28 days 𝐸0 23 313 N/mm2

Concrete tensile strength 𝑓ct0 2.2 N∕mm2

ASR expansion parameter 𝜎u 6 N∕mm2

ASR expansion parameter 𝜎L 0.2 N∕mm2

ASR stiffness reduction parameter 𝛽asrE 0.0033
ASR tensile strength reduction parameter 𝛽asrfct

0.001
Steel
Modulus of elasticity 𝐸s 200 000 N/mm2

Initial yield stress 𝑓sy 340 N∕mm2

Hardening modulus 𝑆 0.0001 ⋅ 𝐸0 [N∕mm2]

Note: Material data are based on design information given on drawings. The concrete
and the reinforcement steel are equivalent to class C25 (cube strength) and St 52,
respectively, in the previous Norwegian code for design of concrete structures (NS
3473) [42], which still is used for assessment of existing structures.

We used the brittle crack model, as relatively large elements were
used and the cracking occurred very locally. The reinforcement was
modelled using the plasticity model in the ABAQUS material library.
The value of the material properties that were used are summerized in
Table 3.

Each FE analysis was divided into two analysis steps (load steps),
where self-weight equal to 25 kN∕m3 was applied in the first step, and
the free ASR expansion in the second step. The duration of each step
and the number fixed time increments are summarized in Table 4.
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Table 4
The duration (in days) and the number of fixed time increments of each analysis step
(load step).

Analysis step Duration [days] Increments

Step 1: Self-weight 1 20
Step 2: ASR expansion 25 185 100

4.3. The inverse problem, the solution procedure and the crack assessment
of Elgeseter Bridge

Inverse problem. We assumed that we have only one main observable:
the elongation of the bridge equal to (200mm). In engineering practice,
a global ASR expansion of a structure is often the most reliable and
indisputable observation. The average displacement of the end nodes
of the FE model was used to match the bridge elongation. As we
have only one main observable, the assumed free ASR strain field can
only include a single unknown 𝛽 (in Eq. (26)) to make the inverse
problem (Eq. (28)) well-posed. We investigated four alternative free
ASR expansion fields (all expressed in only one unknown 𝛽), i.e. four
independent inverse problems, which define four load combinations
(LC), see Table 5 with further reference to Fig. 13. Similar variations
in the free ASR expansion field were investigated in Refs. [6,39,40].
It is emphasized that the fields are hardly realistic, as the fields that
influence ASR (moisture and temperature) are continuous.

Solution procedure. The inverse problem (Eq. (28)) was solved by cal-
ibrating the structural model, i.e. tuning the parameter 𝛽, to give the
observed elongation of the bridge (brute-force search).



Engineering Structures 263 (2022) 114337S.S. Kongshaug et al.
Fig. 14. ASR free expansion field LC 4. Crack width in mm (crack strain multiplied with FE length) in the 𝑥-direction on the bottom of the shells. The largest cracks occur in the
beams.
Table 5
The four investigated free ASR expansion fields (LC 1-4).

𝜀asr,f reein,b 𝜀asr,f reein,t 𝜀asr,f reeout,b 𝜀asr,f reeout,t

LC 1 𝛽 𝛽 𝛽 𝛽
LC 2 𝛽 2𝛽 2𝛽 3𝛽
LC 3 𝛽 𝛽 2𝛽 2𝛽
LC 4 𝛽 𝛽 4𝛽 4𝛽

Crack assessment. The calculated crack pattern for all of the load
combinations was used for verifying the correctness of the different
assumed ASR expansion fields. We could only falsify the correctness
of these assumptions.

4.4. The solution of the inverse problems and the crack evaluation

The solutions of the four inverse problems, LC 1 to 4, are given in
Table 6.

The ASR-induced structural cracks occurred mainly in the weak
sections of the beams (B4W), approx. 4.5m from the columns, see
Fig. 14, which shows the crack widths (in mm) in the bottom of the
shells for LC 4. No ASR-induced structural cracks occurred in the bridge
deck, except in LC 4, where some cracks went through the thickness, see
Fig. 15. The crack widths were calculated as the crack strain multiplied
with the characteristic length of the elements. Fig. 16 summarizes the
calculated crack widths through the height of the weak sections of inner
beams for all LCs. From the inspection report of the bridge [38], the
observed cracks in these sections extends from the bottom of the beams
to the bridge deck, with a maximum crack opening of 6mm. Based
on the magnitude and the extension of the observed cracks, the free
11
Table 6
The solution of the four inverse problems, LC 1-4.

𝜀asr,f reein,b 𝜀asr,f reein,t 𝜀asr,f reeout,b 𝜀asr,f reeout,t

LC 1 0.002 0.002 0.002 0.002
LC 2 0.00092 0.00184 0.00184 0.00276
LC 3 0.0014 0.0014 0.0028 0.0028
LC 4 0.00096 0.00096 0.00384 0.00384

expansion fields in LC 1 and LC 3 were falsified, because the calculated
crack widths are too small.

4.5. Comparison of the ASR-induced strains and stresses

For each LC, the calculated results in each span 1 to 7 were very
much the same, while the results in span 8 and 9 differed from the rest.
In the following, most of the results were taken from span 3 (between
axes 3 and 4).

Because it is the imposed ASR expansion which causes the ASR-
induced stresses, it was of interest to compare the calculated strains
for the different load combinations. The imposed 𝜀asr𝑥 and the free ASR
expansion 𝜀asr,f ree in the beams of span 3 are shown in Fig. 17 for
the outer beam, and Fig. 18 for the inner beam. In Fig. 19, the same
variables are plotted along transverse paths, 𝑦-direction, in (a) the mid
span and (b) over the support/columns. We can observe the following:

• Even though there was a substantial difference between the free
ASR expansion for LC 1–4, the imposed ASR expansion in the
longitudinal direction (𝜀asr𝑥 ) was similar for all LCs. Note that the
imposed ASR in the shell normal direction 𝜀asr𝑧 remained equal to
the free ASR expansion due to the plane stress assumption.
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Fig. 15. ASR free expansion field LC 4. Crack width in mm (crack strain multiplied with FE length) in the 𝑥-direction at the top of the shells.
• The great jumps in the free ASR expansion between the inner and
outer sections vanished for the imposed expansion, see Fig. 19.

• The greatest difference in the imposed ASR expansion (𝜀asr𝑥 ) be-
tween inner and outer beams were observed for LC 2 and LC 4.
In these LCs, the imposed and the free ASR expansion were at
some places almost coincident, which means that these regions
experienced tension (or very small compressive stresses) during
the history, i.e. 𝑊 was close to 1 during the expansion process.
Put differently, in these regions the imposed ASR expansion rate
was limited by the free ASR expansion rate, and not the stress.

• The imposed expansion along the beams varied inversely to the
reinforcement amount, see Fig. 20. This is clearly shown at the top
of the beams in sub-figures (a) of Figs. 17 and 18, where a positive
step in expansion coincides with a negative step in reinforcement
amount.

The ASR-induced stress, 𝛥asr𝝈, was measured as the difference be-
tween the stress at the end of the two analysis steps—self-weight in step
1 and ASR expansion in step 2. Figs. 21 and 22 show the ASR-induced
stress in the 𝑥-direction (𝛥asr𝜎𝑥) in the concrete and reinforcement,
respectively, for the beams in span 3 for LC 4. The pre-stressing effect is
clearly observed with an increase in compressive stress in the concrete
and tensile stress in the reinforcement. Moreover, the figures show
that the ASR-induced stress in the concrete varied inversely to the
stresses from self-weight alone. For instance, over the support, self-
weight gave tensile stresses at the top and compressive stresses at the
bottom of the beam sections, while the ASR-induced stress 𝛥asr𝜎𝑥 had
the opposite sign. The ASR-induced reinforcement stresses (Fig. 22)
were very large, especially where the reinforcement amount was small.
At some locations the reinforcement yielded. The reinforcement yielded
even at locations with no cracks, as in the weak sections of the outer
beam in LC 4, see Fig. 23.
12
Even if the imposed ASR expansion became similar for all LCs, the
differences were still sufficient to produce different crack widths as
illustrated in Fig. 16. This holds in particular for the sections with low
amount of reinforcement. This is supported by the calculated stresses
in Fig. 21, which shows considerably larger tensile stresses in the inner
than in the outer beam.

5. Discussion

Concrete material model and the method for identifying the ASR-induced
stresses. The most sophisticated concrete material models that include
the effects of ASR rely on many fields such as temperature, moisture
and alkali content. In these advanced formulations (e.g. [25]) those
fields are usually computed in time domain for the assumed boundary
and initial conditions. Nevertheless, the boundary and initial condi-
tions are (generally speaking) unknown for an existing structure, and
consequently, limit the direct applicability of these models.

The concrete material model, presented in Section 2, and the
method, presented in Section 3, give a suitable framework for assessing
existing ASR-affected concrete structures. The ASR expansion model is
based on only one scalar field variable, which is the free ASR expansion
𝜀asr,f ree, and therefore, only one unknown field. This simplifies the
solution process. It should also be emphasized that the free ASR
expansion is a sufficient starting point for modelling the material and
structural effects of ASR. If one considers the more advanced models
that depart from imposing an additional strain on the material level
(e.g. [25] and Ref. [7] for an overview of such models), other fields as
temperature, moisture and alkali content are, anyway, used to calculate
the free ASR expansion as an intermediate step that is uncoupled from
the mechanical problem.
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Fig. 16. Sub-figures (a)–(d) show the crack widths in LC 1–LC 4, in the weak sections (B4W) of the beams; the positions are marked with red arrows in (e).
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It is emphasized that ASR expansion model (Section 2.1) in com-
ination with the assumed linear evolution in time of the free ASR
xpansion (presented in Section 3) contradict experimental evidence
howing a non-linear evolution in time. This means that we neglect
at least) two aspects which give rise to a non-linear expansion: (1)
he influence of temperature on ASR rate, which in practice gives
ignificant seasonal variations in expansion rate, and (2) the decrease of
SR rate due to exhaustion of the chemical reaction. The evolution of
xpansion (linear or non-linear) will influence the rate at which ASR-
nduced stresses are imposed, and consequently, the rate of creep. In
eneral, creep has a stress-reducing effect on an imposed strain. In case
f ASR, this might be counteracted by a greater imposed ASR expansion
due to the stress dependency). As a result, the final calculated stress,
ith or without the effect of creep, might similar. We believe that the

mportance of including creep increases when the sensitivity of the
mposed ASR expansion to stress decreases.

he ASR expansion knowledge from the analysis of Elgeseter Bridge. Even
though there is a substantial difference in free ASR expansion rate
13

n

between the outer and inner beam, the difference in imposed expan-
sion rate in the longitudinal direction will after a certain time vanish
because of the build-up of more compressive stress in the outer part
than the inner part (said differently, after a certain time, both the inner
and outer section will expand with the same rate).

The greater the sensitivity of the expansion to compressive stress
(expressed by the shape of 𝑊 (𝜎) and the value 𝜎u), the more the
mposed field changes/adapts from the shape of the free ASR expansion
o a field giving lower stresses [6]. Since the sensitivity of compressive
tress is so high, with 𝑊 equal to the logarithmic function proposed by
harlwood et al. [11] and with 𝜎u = 6 MPa, the imposed ASR expansion

n the longitudinal direction is similar for all of the four alternative
ree ASR expansion fields studied in Section 4. Consequently, the ASR-
nduced stresses are similar. The differences are still significant to
ause different cracking behaviour. It is emphasized that this is not
he case for the imposed ASR expansion in the direction normal to
he bridge deck 𝜀asr𝑧 , which equals to the free ASR expansion because
f the plane stress assumption. Although the ASR-induced stresses are

ot very sensitive to the shape of the free ASR expansion field, the
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Fig. 17. Imposed ASR expansion in longitudinal direction 𝑥 (𝜀asr𝑥 ) in the outer beam of span 3 for all load combinations. Dashed lines are the corresponding free ASR expansion
(𝜀asr,f ree).
Fig. 18. Imposed ASR expansion in longitudinal direction 𝑥 (𝜀asr𝑥 ) in the inner beam of span 3 for all load combinations. Dashed lines are the corresponding free ASR expansion
𝜀asr,f ree).
ariation in material deterioration might be substantially different, and
onsequently, the variation in load bearing capacity might be of great
mportance.

The amount of reinforcement controls the variation of the imposed
SR expansion in the longitudinal direction of the bridge. The more
einforcement, the greater becomes the concrete compressive stress
or a given expansion, and consequently, the imposed expansion is
educed.

In the proposed model, the absence of ASR expansion transfer
etween principal directions could explain the too large dependence
f the expansion on stress. In particular, this might be of importance
n case of 3D confinement, where the sensitivity to compressive stress
ight be substantially reduced, and Charlwood’s law no longer is ap-
licable. In this case, the obtained results are not conservative (reduced
mposed stresses), because the reduction without lateral transfer or
14
other mechanism of gel absorption corresponds to a disappear of alkali
gel.

6. Conclusions and further research

A concrete material model, which includes the effect of ASR ex-
pansion, ASR-induced stiffness and tensile strength reduction, cracking,
creep and compressive damage, was developed (presented in Section 2).
In this model, the ASR expansion relies on the input of only one
predefined field variable—the free ASR expansion—interpreted as the
expansion that would have occurred without stress. This field, and for
the record any other ASR dependent field quantities, are in general
unknown for an existing structure. So, a structural analysis method
was developed, which is an approach to identify the unknown free ASR

expansion, and thus the ASR-induced stresses (presented in Section 3).
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Fig. 19. Imposed ASR expansion in longitudinal direction (𝑥) at the top of the bridge deck along two paths in span 3: (a) in the middle of the span, and (b) at the support.
Dashed lines are the corresponding free ASR expansion (𝜀asr,f ree).
Fig. 20. Reinforcement distribution in the beams in span 2 to 7; given in total reinforcement area 𝐴s over the beam width of (800 mm).
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his method involves solving an inverse problem, which is to calculate
he unknown free ASR expansion field from a set of field (in situ)
easured displacements, and then use the calculated structural cracks

n a final validation step. For practical calculations, an inverse analysis
s a reasonable approach to compensate for flaws in the model.

The material model and the structural analysis method were applied
n a real case, Elgeseter bridge in Norway. Four different shapes of
he free ASR expansion field were investigated, with focus on the
SR-induced stresses.

The following conclusions were drawn from this study:

• The free ASR expansion is a suitable starting point for the mod-
elling of the ASR expansion, especially when used in conjunction
with the proposed structural analysis method;

• Even though the free ASR expansion is highly incompatible, i.e.
highly non-linear (e.g. strain jumps), the imposed ASR expansion
adapts to a strain field that gives less stresses. The ability to adapt
15

r

is controlled by the sensitivity of ASR expansion to compressive
stress;

• Consequently, the influence of stress on the imposed ASR ex-
pansion is of great importance for accurate predictions of the
ASR-induced stresses. Further studies on the effect of restraint on
expansion are highly supported, especially by use of large scale
specimens;

• With the instantaneous stress-expansion relationship 𝑊 used in
this work, the four alternative free ASR expansion fields resulted
in differences in stresses that were significant to cause differences
in cracking behaviour. Based on the cracking behaviour, we could
falsify two of the alternative expansion fields.

The results in this study were obtained based on an ASR expan-
ion model that treats each principal stress directions independently.
urther studies on the importance of including the directional cou-
ling (in the expansion model) when analysing similar structures are
ecommended.
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Fig. 21. LC 4. ASR-induced stress (in MPa) in the concrete at the top and the bottom of the beams in span 3.
Fig. 22. LC 4. ASR-induced stress (in MPa) at the top and bottom reinforcement in the beams in span 3.
Finally, it is encouraged to further develop an assessment method
hat merges multiple information on displacement, moisture, tempera-
ure, expansion and material properties, in which the information can
e used in three ways: (a) as the main observable in the inverse problem
the displacement measurements in this study), (b) as part of the choice
f the solution space of the causal variable, or (c) as the part of the
alidation step (the cracking in this work).
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Fig. 23. LC 4. 3D view from beneath, where the largest crack occur. The crack width (in mm) is plotted in (a), and the reinforcement plastic strain in (b). The thickness of the
shell elements is rendered. The colour scale in (b) is set to a relatively small upper limit of 0.001 to show that plasticity (in the reinforcing bar) at a location where there is no
crack. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Appendix. Solution procedure for the inverse problem

The conditions for minimum of 𝑠—the solution of (28)—are
𝜕𝑠
𝜕𝛽𝑗

= 0 for 𝑗 = 1, 2,… , 𝑛 (A.1)

When Eq. (27) is inserted into the minimum conditions (A.1), one
achieve the following

− 2
𝑚
∑

𝑖=1
(𝑑obs𝑖 − 𝑎obs𝑖𝑘 𝑑𝑘)𝑎

obs
𝑖𝑙
𝜕𝑑𝑙
𝜕𝛽𝑗

= 0 (sum over 𝑘 and 𝑙)

⇒ 𝑱T𝒓 = 𝟎;

𝐽𝑖𝑗 = 𝑎obs𝑖𝑙
𝜕𝑑𝑙
𝜕𝛽𝑗

(sum over 𝑙)

𝑟𝑖 = 𝑑obs𝑖 − 𝑎obs𝑖𝑘 𝑑𝑘 (sum over 𝑘)

(A.2)

The structural displacement vector 𝒅 is non-linear in 𝜷, and Eq. (A.2) is
solved with the Gauss–Newton method. The initial guess on the vector
of parameters is 0𝜷, and it is updated iteratively by

𝑛+1𝜷 = 𝑛𝜷 + 𝛿𝜷;
[ T ]−1 T

(A.3)
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𝛿𝜷 = 𝑱 𝑱 𝑱 𝒓.
The expression for 𝛿𝜷 is found from the setting the first order Taylor
expansion of the left hand side of Eq. (A.2) to the zero vector:

𝑱T𝒓 + 𝜕(𝑱T𝒓)
𝜕𝜷

𝛿𝜷 = 𝟎

𝑱T𝒓 +
(

𝜕𝑱T

𝜕𝜷
𝒓 + 𝑱T 𝜕𝒓

𝜕𝜷

)

𝛿𝜷 = 𝟎
(A.4)

In the Gauss–Newton method, the expression in the parenthesis (second
line of Eq. (A.4)) is approximated by neglecting the first term, which
involves second order derivatives of 𝜷. Recognizing that 𝜕𝒓

𝜕𝜷 = −𝑱 , and
then solve with respect to 𝛿𝜷 one achieves the second line of Eq. (A.3).

The matrix 𝑱 needs some more elaboration, as it involves partial
derivative of the displacements (at time 𝑡end) 𝒅 with respect to 𝜷. To
find 𝑱 , we need the numerical solution used to calculate 𝒅. The dis-
placements 𝒅 are calculated with non-linear FEM with an incremental
iterative solution procedure, i.e. for each increment in time, Newton–
Raphson iterations in the corresponding increment of displacements
are invoked to achieve a state close enough to equilibrium (converged
state). The closeness/error to equilibrium is expressed in terms of an
out of balance force vector 𝒈 between external nodal forces 𝑹ext and
internal nodal forces 𝑹int , given by

𝒈 = 𝑹 −𝑹 , (A.5)
ext int
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Fig. A.24. Flowchart of the solution procedure for the inverse structural ASR problem; iterative non-linear finite element analysis (NLFEA) where 𝜷 is updated for each analysis
until the residual is less than a tolerance value 𝑡𝑜𝑙.
where 𝒈 = 𝟎 is a state of equilibrium. At the final time 𝑡end, we assume
hat equilibrium is achieved. The change in the out of balance force
ector due to a small change in the parameters 𝛿𝜷 and a small change
n displacements 𝛿𝒅 is approximated by a first order Taylor expansion:

(𝜷 + 𝛿𝜷,𝒅 + 𝛿𝒅) = 𝒈(𝜷,𝒅) +
𝜕𝒈
𝜕𝜷
𝛿𝜷 +

𝜕𝒈
𝜕𝒅
𝛿𝒅. (A.6)

Recognizing that the first term on the right hand side is the zero vector,
and by setting the whole expression equal the zero vector to require
equilibrium, we achieve
𝜕𝒈
𝜕𝜷
𝛿𝜷 +

𝜕𝒈
𝜕𝒅
𝛿𝒅 = 𝟎. (A.7)

The structural tangent stiffness matrix 𝑲 can be identified in the second
term. The equation is then solved with respect to the displacements:

𝛿𝒅 = 𝑲−1 𝜕𝒈
𝜕𝜷
𝛿𝜷 (A.8)

The partial derivative of the displacement with respect to the parame-
ters can now be identified as
𝜕𝒅 = 𝑲−1 𝜕𝒈 . (A.9)
18

𝜕𝜷 𝜕𝜷
The last step in the elaboration of 𝑱 is to find the expression for the
partial derivative of the out of balance force vector with respect to the
parameters (𝜷):

𝜕𝒈
𝜕𝜷

= −
𝜕𝑹𝑖𝑛𝑡
𝜕𝜷

= −∫𝑉
𝑩T 𝜕𝝈

𝜕𝜷
dV (A.10)

where 𝑩 is the unit displacement strain matrix. For the ease of reading,
the additive split of the integration over the domain 𝑉 (summation over
each finite element) is not expressed in the above equation. Notice that
it is only the internal nodal force vector that depends on 𝜷. To find
the partial derivative of the stress 𝝈 with respect to the 𝜷, we need an
expression for the stress. Combining Eqs. (1), (2) and (7) gives:

𝝈 = (1 − 𝜔c)
[

𝑪𝜎
]−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑫𝑠

(𝜺 − 𝜺asr − 𝜺creep) (A.11)

In the partial derivative with respect to 𝜷, we neglect that the secant
stiffness 𝑫s depends on 𝜷. Including Eqs. (3) and (26), and noticing
that the derivative is taken at 𝑡 = 𝑡end, one achieves

𝜕𝝈 = −𝑫s
𝜕𝜺asr = −𝑫s𝑾 𝝍T (A.12)
𝜕𝜷 𝜕𝜷
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The final expression for 𝑱 is found by inserting Eqs. (A.9), (A.10) and
(A.12) into Eq. (A.2), which gives

𝑱 = 𝒂obs𝑲−1
∫𝑉

𝑩T𝑫s𝑾 𝝍T dV (A.13)

The solution procedure is illustrated in the flowchart in Fig. A.24.
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