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Concurrent multiscale finite element analysis (FE2) is a powerful approach for high-
fidelity modeling of materials for which a suitable macroscopic constitutive model is 
not available. However, the extreme computational effort associated with computing a 
nested micromodel at every macroscopic integration point makes FE2 prohibitive for 
most practical applications. Constructing surrogate models able to efficiently compute the 
microscopic constitutive response is therefore a promising approach in enabling concurrent 
multiscale modeling. This work presents a reduction framework for adaptively constructing 
surrogate models for FE2 based on statistical learning. The nested micromodels are replaced 
by a machine learning surrogate model based on Gaussian Processes (GP). The need 
for offline data collection is bypassed by training the GP models online based on data 
coming from a small set of fully-solved anchor micromodels that undergo the same strain 
history as their associated macroscopic integration points. The Bayesian formalism inherent 
to GP models provides a natural tool for online uncertainty estimation through which 
new observations or inclusion of new anchor micromodels are triggered. The surrogate 
constitutive manifold is constructed with as few micromechanical evaluations as possible 
by enhancing the GP models with gradient information and the solution scheme is made 
robust through a greedy data selection approach embedded within the conventional finite 
element solution loop for nonlinear analysis. The sensitivity to model parameters is studied 
with a tapered bar example with plasticity and the framework is further demonstrated 
with the elastoplastic analysis of a plate with multiple cutouts and with a crack growth 
example for mixed-mode bending. Although not able to handle non-monotonic strain paths 
in its current form, the framework is found to be a promising approach in reducing 
the computational cost of FE2, with significant efficiency gains being obtained without 
resorting to offline training.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

There is a growing demand for high-fidelity numerical techniques capable of describing material behavior across spatial 
scales. With recent advances in additive manufacturing allowing for the development of novel materials with highly-tailored 
microstructures [1], multiscale modeling techniques will become increasingly relevant in the design of novel materials 
and structures. One popular approach for concurrent multiscale modeling is the so-called FE2 approach [2,3], in which 
macroscopic material response is directly upscaled from embedded micromodels without introducing additional constitutive 
assumptions. FE2 is a powerful and versatile technique used in a number of solid mechanics applications, from continuous 
[4] and discontinuous [5] mechanical equilibrium to multiphysics problems involving heat and mass transfer [6] and material 
degradation due to aging [7,8]. However, FE2 has the major drawback of being associated with extreme computational costs, 
hindering its application in actual design scenarios. Enabling the use of FE2 in many practical applications that would benefit 
from its accuracy and versatility is therefore highly contingent on being able to reduce its computational cost to tractable 
levels.

A promising approach in accelerating FE2 models consists in constructing surrogate models that take the place of the 
original high-fidelity micromodels at each macroscopic integration point. When building surrogates, the goal is to maintain 
as much of the generality offered by the original micromodel while eliminating as much computational complexity as 
possible. One option is to employ unsupervised learning on a number of full-order solution snapshots in order to define 
lower-dimensional solution manifolds for both displacements [9,10] and internal forces [11,12] at the microscale [13–15]. 
Alternatively, a supervised learning approach can be taken by using snapshots of the homogenized micromodel response 
to directly define a data-driven regression model for the macroscopic constitutive behavior [16–21]. Although resulting in 
models of distinct natures, both approaches rely on the existence of an observation database on the behavior of the original 
micromodel that is usually obtained offline (before deployment on a multiscale setting) and should cover every possible 
scenario the surrogate is expected to approximate online.

However, building such a database of model snapshots can be a challenging task (see [20,22] for interesting approaches 
based on Design of Experiments and [14] for a data-driven training framework based on Bayesian Optimization). For mi-
cromodels employing path-dependent materials, this offline training process entails sampling a highly-complex constitutive 
manifold that depends on an arbitrarily long strain history and can therefore be excessively sensitive to small changes in 
boundary conditions (e.g. strain localization and crack propagation problems). Furthermore, training a surrogate with such 
a complex dataset often requires additional partitioning techniques in order to avoid computationally inefficient reduced 
models [23,24]. An alternative to the conventional offline-online approach that has been gaining popularity is the use of 
adaptive reduction frameworks that either preclude the need for offline training altogether [25,26] or combine different 
reduction techniques into a single framework with only limited offline effort while employing online error indicators to con-
tinuously assess the quality of the approximation and trigger a refinement of the surrogates when necessary. Nevertheless, 
obtaining consistent adaptivity criteria for either hyper-reduced models [25] or machine learning models based on least-
squares solutions [19,27] is not straightforward. At the other end of the spectrum, works dealing with constitutive models 
based on Bayesian regression techniques, that provide a natural way to estimate error [28–30], do not often take advantage 
of their potential for creating adaptive frameworks (see [31,32] for an interesting framework specifically tailored to crystal 
plasticity). There is a need, therefore, for the development of fully-online approaches for general FE2 models with reliable 
adaptivity strategies based on sequential learning techniques and on error estimation methods with robust probabilistic 
foundations.

This work presents an adaptive probabilistic framework for constructing surrogate constitutive models for nonlinear con-
current multiscale analysis. The approach is based on substituting the original models associated to macroscopic integration 
points with a machine learning surrogate. In order to bypass the need for an offline training phase, a small number of fully-
solved models associated to representative macroscopic integration points are used to generate constitutive data online. 
Because these models are not directly used to make predictions at every macroscopic iteration but only provide an indirect 
coupling between the scales, we denote them as anchor models (Fig. 1). Stress and stiffness data resulting from subjecting 
the anchor models to the same strain histories seen by their respective anchoring points is used to build a surrogate model 
based on the Gaussian Process (GP) regression technique. The framework preserves the generality of FE2 by not assuming 
the existence of any internal variables at the macroscale and builds surrogates that take only strains as input. However, this 
implies a one-to-one mapping between stresses and strains, making the framework in its current form unsuitable for treat-
ing non-monotonic load paths. This can be addressed in future extensions of the framework by employing autoregressive 
GPs [33,34].

The accuracy of this reduced-order solution is controlled with uncertainty information that arises naturally from the 
Bayesian formalism of the GP models. The resultant material model is embedded within a conventional finite element 
solution in a way that ensures the macroscopic solution is numerically robust and limits the sampling of new data as much 
as possible in order to maximize efficiency. The framework is demonstrated with a set of numerical tests including both 
bulk strain localization and crack propagation in order to assess its accuracy, efficiency and versatility.
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Fig. 1. Schematic representation of the online adaptive reduction framework presented in this work. A small number of anchor models — in this case a 
matrix reinforced with circular inclusions — are used to train a machine learning surrogate that evolves as the macroscopic structure is loaded. Adaptive 
sampling guarantees that anchor models operating at novel regions in parameter space — illustrated here by plastic strain bands shown in orange and red 
— will populate the dataset D more often.

2. Concurrent multiscale analysis

2.1. Macroscopic problem

We begin by briefly introducing the concurrent multiscale equilibrium problem that we seek to accelerate. Let � de-
fine the macroscopic domain being modeled. We wish to find the displacement field u� resulting from a set of Dirichlet 
and Neumann boundary conditions applied to the surface � that bounds �. Under the assumption of small strains, the 
equilibrium solution is found by satisfying:

div
(
σ�

)
= 0 ε� = 1

2

(
∇u� +

(
∇u�

)T
)

(1)

where div (·) is the divergence operator, σ and ε are respectively the stress and strain tensors and body forces have been 
neglected. In order to solve for u� , a constitutive model M that relates σ� and ε� must be introduced:

σ� = M
(
ε�,ε�

h

)
(2)

where ε�
h is a history term that accounts for strain path dependency. In the context of multiscale analysis, the model 

M can be seen as a homogenization operator that lumps all physical processes happening at scales lower than � into a 
homogeneous medium with equivalent behavior. Depending on how complex the microscopic behavior is, M can range 
from having a relatively simple form (e.g. linear elasticity) to being next to impossible to formulate explicitly.

2.2. Microscopic problem

In a concurrent multiscale approach, we do not formulate M directly and instead opt for upscaling microscopic behavior 
from micromodels embedded at each macroscopic material point. Let ω be a Representative Volume Element (RVE) of the 
microscopic material features whose behavior we would like to upscale. Assuming the principle of separation of scales is 
valid (ω � �), we can link the two scales by enforcing:

uω = ε�xω + ũ (3)

where the response is decomposed into a linear displacement field imposed by the presence of macroscopic strains (xω are 
the microscopic spatial coordinates) and a fluctuation field ũ that accounts for microscopic inhomogeneities.

In order to obtain σ� , we first find an equilibrium solution for uω by satisfying:

div
(
σω

) = 0 εω = 1 (
∇uω + (∇uω

)T
)

(4)

2
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where we see that once more the need arises for the definition of a constitutive model, this time relating εω with σω . 
Underlying the choice for a multiscale approach is the assumption that constitutive behavior can be represented by models 
of decreasing complexity as one descends to lower scales. It is therefore common to employ regular constitutive models 
(e.g. (visco)elasticity, (visco)plasticity, damage) for material components at the microscale [4,6–8]. However, the framework 
is flexible in allowing for models on an even lower third scale to be embedded to material points in ω (at the cost of even 
higher computational effort).

2.3. Bulk homogenization

With a solution for uω under the constraint that the fluctuation field ũ must be periodic, we can use the Hill-Mandel 
principle [35] to obtain homogenization expressions for the macroscopic stresses σ� and consistent tangent stiffness D�:

σ� = 1

ω

∫
ω

σωdω D� = P
(
Kω

)
(5)

from which we obtain the intuitive result that the macroscopic stresses are simply the volume average of the microscopic 
ones. Finally, the macroscopic constitutive tangent stiffness is computed through a probing operator P applied on the global 
microscopic tangent stiffness matrix Kω [5].

2.4. Cohesive homogenization

Although the preceding formulation allows for general microscopic constitutive behavior to be upscaled, the response 
loses objectivity with respect to the RVE size after the onset of global microscopic softening [36], i.e. when the determinant 
of the acoustic tensor is zero along a given direction n:

det
(

nTD�n
)

= 0 (6)

This non-objectivity arises because the volume ωd of the strain localization band that causes the softening does not scale 
with the RVE size, an observation that motivates the use of a modified version of the Hill-Mandel principle [5,36]:

1

w
τ�δ�v�� = 1

wh

∫
ωd

σωδεωdω (7)

where w and h are geometric RVE parameters that depend on the localization band orientation, τ� is a macroscopic traction 
and �v�� is a shifted displacement jump that allows for an initially-rigid cohesive response. Note that the homogenization 
is now performed towards a cohesive traction acting on a macroscopic surface that defines a discontinuity in u� .

The development of a consistent strategy for continuous-discontinuous scale linking in FE2 is an open issue that is left 
out of the scope of the present discussion, with a number of different approaches being found, for instance, in [5,36–39]. 
For the purpose of building surrogate models for the RVE response, it suffices to acknowledge that two distinct models 
should be trained for bulk and cohesive responses, as the underlying constitutive manifolds have dimensions with different 
physical interpretations (strain/stress versus jump/traction).

2.5. Acceleration strategy

Assuming FEM is used to solve the mechanical problems at both scales, we can approximate the computational cost of a 
single macroscopic iteration as:

Cost ≈
(

N�
dof

)x + N�
ipNω

iter

(
Nω

dof

)x (8)

where Ndof represents the number of degrees of freedom of the model, N�
ip is the number of macroscopic integration points 

and Nω
iter is the number of iterations necessary for convergence of the microscopic BVP. We assume for simplicity that the 

bulk of the effort comes from solving the linearized systems of equations involving K� and Kω for nodal displacements, 
where the complexity exponent x depends on the solver used. It can be seen that the second term, associated with solving 
the microscopic equilibrium problems, quickly outweighs the first and becomes a performance bottleneck as Nω

dof increases, 
especially since the number of macroscopic integration points N�

ip increases together with N�
dof. Constructing a surrogate 

that replaces the original constitutive model M of Eq. (2) is therefore an effective approach to accelerating FE2.
However, constructing such a surrogate offline is a challenging undertaking, otherwise there would not have been need 

for a multiscale approach in the first place. From Eq. (2) we see that the constitutive manifold to be reproduced can have 
an arbitrarily high dimensionality due to the dependency on ε�

h . This is equivalent to stating that the shape of the ε�-σ�

manifold can change after each load step. Sampling this high-dimensional input space offline in order to have a surrogate 
4
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that is accurate for arbitrary strain histories seems to be an intractable problem that, to the best of our knowledge, has still 
not been tackled in a satisfactory way.

This issue can be avoided by exploiting the fact that ε� (and therefore ε�
h ) are often highly constrained by the ge-

ometry and boundary conditions of the macroscopic structure being modeled [24]. We therefore opt for constructing a 
highly-tailored surrogate model S online based on a dataset D of observations coming from a small number of fully-solved 
micromodels:

σ� = S
(
ε�,D

)
(9)

which can then be used to compute the constitutive response for a fraction of the cost. When trying to keep D as small 
as possible for the case at hand, it is crucial to have a means for quantifying the uncertainty in probing S for any given 
ε� . In this work, a Bayesian approach is adopted to assess online whether D is large enough to provide the desired level of 
confidence in S at a given ε� .

3. Bayesian surrogate modeling

In this section we introduce the Bayesian regression approach used to construct surrogate constitutive models, beginning 
from parametric versions of the surrogate model S — i.e. by encapsulating the constitutive information in D into a set of 
parameters w — and eventually moving to a non-parametric model based on Gaussian Processes (GP) that uses the data in 
D directly in order to make predictions. Our goal here is to appeal to the reader who might be unfamiliar with probabilistic 
regression models by starting from classical least-squares regression and gradually moving towards a Bayesian approach. 
Nevertheless, the discussion is kept as brief and focused as possible. The interested reader can find richer discussions on 
the subject in [40,41].

3.1. Least-squares regression

We start by building a parametric model y (w,x) that approximates a scalar target response t by fitting w with a dataset 
D of N observations to at Xo = [xo1 · · ·xoN ]. We therefore assume that the target t can be written as:

t = y (w,x) + ε with y (w,x) =
M∑
j

w jφ j (x) and p (ε) = N
(
ε|0,σ 2

n

)
(10)

where the noise ε is given by a zero-mean Gaussian distribution with variance σ 2
n and y is linear with respect to its M

weights, gathered in the vector w. Note that the assumption of a linear model does not limit its fitting capabilities since the 
basis functions φ define a feature space that can be nonlinear in x. In the context of this work, t can be a single stress or 
traction component, but the discussion is equally applicable to the problem of modeling individual model components (e.g. 
yield parameters).

In order to find values for w, we compute the likelihood function of the model, i.e. how likely the model is to produce 
the values to in D given w:

p
(

to|w,σ 2
n

)
=

N∏
i

N
(

toi |wTφ (xoi) ,σ 2
n

)
(11)

which is a product of the probabilities of each point in isolation because we assume that each sample toi is sampled from 
the conditional distribution p (t|y) independently. We can find an optimum data fit for w by maximizing the likelihood and 
assuming that the shapes of φ are fixed a priori:

∇w p
(

to|w,σ 2
n

)
= 0 ⇒ wML = (

�T�
)−1

�Tto and σ 2
n = 1

N

N∑
i

(
toi − wT

MLφ (xoi)
)2

(12)

where � ∈ RN×M is a matrix with basis function values φi, j = φi
(
xo j

)
evaluated at each point in D. Note that this is 

equivalent to minimizing the sum of squared differences between y and t , so wML is the same parameter vector obtained 
by the classical least squares approach and σ 2

n quantifies the spread of t around y.
Here we do not opt for a least-squares approach for three reasons. Firstly, it can suffer from severe overfitting when the 

dataset D is small — which is the case in the present work since we have no offline training and only a small number of 
fully-solved micromodels to sample from. Secondly, the uncertainty associated with σ 2

n is constant throughout the input 
space x and does not provide an indication that the model is being used at a location far from data points (which could 
then be used to trigger a refinement of D). Finally, performing model selection in the least-squares framework, using cross-
validation for instance, is rather tedious compared to performing model selection in the context of Bayesian regression 
methods [40].
5
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3.2. Bayesian parametric regression

In the Bayesian approach to regression, we not only assume an uncertainty over the target t but also over the weights w. 
We initially assume a prior probability over w that represents our initial model assumptions before any data is encountered:

p (w) = N
(

w|0,σ 2
wI

)
(13)

where σ 2
w is the variance parameter associated with the uncertainty over values of w. Information from D is incorporated 

by using Bayes’ theorem to obtain a posterior probability distribution for w:

p (w|to) = p (to|w) p (w)

p (to)
with p (to) =

∫
p (to|w) p (w)dw (14)

where p (to|w) is the likelihood function of Eq. (11) and p (to) is the marginal likelihood of the model (i.e. the probability of 
producing the dataset D). Because both w and t|w are Gaussian variables, an analytical solution exists for p (w|to) [40]:

p (w|to) = N (w|wN,SN) with wN = 1

σ 2
n

SN�Tto and SN =
(

1

σ 2
w

I + 1

σ 2
n

�T�

)−1

(15)

Note that the expected value of w now depends on both the data points in D and on our initial beliefs about w represented 
by the prior distribution. Given this posterior, the best guess for w is the one with the highest p (w|to). This is the so-called 
Maximum A Posteriori (MAP) value and, for a Gaussian posterior, wMAP = wN. This estimation for w is equivalent to a 
least-squares prediction with a quadratic regularization term proportional to σ 2

w which helps reducing the negative effects 
of overfitting.

However, in a fully Bayesian treatment of linear regression, we do not choose one specific value for w but rather make 
a prediction for a new target value t∗ by averaging over all possible values of w:

p
(

t∗|to,σ
2
n ,σ 2

w

)
=

∫
p

(
t∗|w,σ 2

n

)
p

(
w|to,σ

2
w,σ 2

n

)
dw (16)

In order to set the stage for Gaussian Processes, it is also interesting to represent the expectation of t∗ as:

E [t∗|x∗] =
N∑
i

k (xoi,x∗) toi with k
(
xp,xq

) = 1

σ 2
n

φT (
xp

)
SNφ

(
xq

)
(17)

where w has now vanished and the new prediction is cast as a linear combination of values from D, where k 
(
xp,xq

)
is a 

kernel that measures the similarity between two points in input space.
The Bayesian approach to the (generalized) linear model circumvents the problem of overfitting and provides confidence 

intervals. However, the linear model has the drawback of having a fixed number of basis functions φ whose shapes need to 
be chosen before D is observed. This can be circumvented by either allowing φ to change in shape during training (e.g. in a 
neural network, where φ are neuron values coming from the last hidden layer) or by explicitly choosing a kernel k 

(
xp,xq

)
and adopting a distribution over functions instead of over weights, as in Gaussian Process regression models.

3.3. Gaussian Process (GP) regression

Since the regression function y is a function of w, adopting a prior distribution over w (Eq. (13)) implicitly leads to a 
distribution over function values y. This is the basis of Gaussian Process (GP) models. Here we assume these function values 
are jointly Gaussian:

p (y) = N (y|0, K (X,X)) (18)

where a zero mean is assumed without loss of generality and K (X,X) is the so-called Gram matrix that defines the covari-
ance between the input values X associated with y through a kernel k 

(
xp,xq

)
:

K pq = k
(
xp,xq

) = σ 2
f exp

(
− 1

2	2

∥∥xp − xq
∥∥2

)
(19)

where instead of first defining a prior over weights and deriving an equivalent kernel as in Eq. (17) we directly assume a 
kernel — in this case the squared exponential kernel [41] defined by a variance σ 2

f and a length scale 	 — which determines 
the level of correlation between points in input space. It can be shown that adopting the squared exponential kernel is 
equivalent to formulating a parametric model with an infinite number of basis functions φ or a Bayesian neural network 
with one hidden layer with an infinite number of neurons [40,41].

With this definition for the covariance structure between function values, we can obtain the joint distribution of training 
targets to by marginalizing (averaging) over all possible values of yo:
6
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Fig. 2. GP predictions for the function t = sin(x) constructed with two observations. Inclusion of derivative observations improves predictions around 
training points and reduces uncertainty.

p (to) =
∫

p (to|yo) p (yo)dy = N
(

to|0, K (Xo,Xo) + σ 2
n I

)
(20)

which allows us to incorporate information from D by defining a joint distribution between training values and new pre-
dictions for the function value:

p

([
to
y∗

])
= N

([
to
y∗

] ∣∣∣∣∣0,

[
K (Xo,Xo) + σ 2

n I K (Xo,X∗)
K (X∗,Xo) K (X∗,X∗)

])
(21)

and subsequently find the conditional probability p (y∗|to) of the new function values given that values coming from D are 
known:

p (y∗|to) = N (y∗|m∗,S∗) (22)

which is again a Gaussian distribution with mean and covariance given by [40,41]:

m∗ = K (X∗,Xo)
(

K (Xo,Xo) + σ 2
n I

)−1
to (23)

S∗ = K (X∗,X∗) − K (X∗,Xo)
(

K (Xo,Xo) + σ 2
n I

)−1
K (Xo,X∗) (24)

Defining k∗ = K (Xo,x∗) ∈ RN×1 and Ko = K (Xo,Xo) ∈ RN×N , we can arrive at shorter expressions for the expectation 
and variance of the function value at a single new point x∗:

E [y∗|x∗] = kT∗
(

Ko + σ 2
n I

)−1
to (25)

V [y∗|x∗] = k (x∗,x∗) − kT∗
(

Ko + σ 2
n I

)−1
k∗ (26)

Note that here we opt for directly using the function value y∗ instead of its noisy version t∗ to define our surrogate models. 
This effectively makes the adaptive components of the acceleration framework, which are driven by increases in the variance 
given by Eq. (26), less sensitive to changes in σ 2

n .
In Fig. 2a we demonstrate a GP model by plotting predictions based on two observations of the noiseless target function 

t = sin(x). The conditioning of Eq. (22) guarantees that y∗ coincides with the observations at the training points Xo. Away 
from the training space D the GP returns to its zero-mean prior with high variance. This behavior is desirable for our 
application, since this uncertainty can be used as a trigger to either making new observations at the existing full-order 
integration points or adding new points to the full-order set when necessary.

3.4. Predicting derivatives and including derivative observations

In building constitutive model surrogates, in addition to predicting new function values (Eq. (25)), their derivatives with 
respect to the input x∗ are also needed. These can be computed by differentiating Eq. (25):

∂

∂x∗
E [y∗|x∗] =

N∑
ai

∂

∂x∗
k (x∗,xi) (27)
i

7
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where ai is the i-th component of the vector a = (
K + σ 2

n I
)−1

t and the derivative of the kernel is given by:

k′ (xp,xq
) ≡ ∂

∂xp
k
(
xp,xq

) = − 1

	2

(
xp − xq

)
k
(
xp,xq

)
(28)

However, since we can also observe these derivatives (in the form of D� from Eq. (5)) at the anchor models, it is also 
interesting to include this information in the GP in order to improve its predictions. This is achieved by recognizing that the 
derivative of a GP remains Gaussian and defining the covariance between function values and derivatives as [42]:

cov
(
y′

p, yq
) = ∂

∂xp
k
(
xp,xq

)
cov

(
y′

p,y′
q

) = ∂2

∂xq∂xp
k
(
xp,xq

) + σ 2
d (29)

where σ 2
d is a noise parameter that represents the uncertainty associated to observing the derivatives, the first-order deriva-

tive of the kernel is given in Eq. (28) and its second derivative is a matrix given by:

k′′ (xp,xq
) ≡ ∂2

∂xqxp
k
(
xp,xq

) = 1

	2

(
I − 1

	2

(
xp − xq

) (
xp − xq

)T
)

k
(
xp,xq

)
(30)

With these definitions, the joint prior distribution of training targets becomes [43]:

p

([
to
t′o

])
= N

([
to
t′o

] ∣∣∣∣∣0,

[
Ko + σ 2

n I Ktd
KT

td Kdd

])
≡ N

([
to
t′o

] ∣∣∣∣∣0,Ko

)
(31)

where Ko is the same kernel matrix appearing in Eq. (25) and Ktd ∈ RN×N D and Kdd ∈ RN D×N D are composed of blocks 
of k′ (xp,xq

)
and k′′ (xp,xq

)
, respectively, with Ko being the resultant N(D + 1) × N(D + 1) covariance matrix (D is the 

dimensionality of x). Making point predictions is done in a similar way as in Eq. (25):

k∗ = [
k∗ k′ (x1,x∗) · · · k′ (xN ,x∗)

]T (32)

E [y∗|x∗] = k
T
∗K

−1
o to V [y∗|x∗] = k (x∗,x∗) − k

T
∗K

−1
o k∗ + σ 2

n (33)

where the target vector now includes the observed derivatives:

to = [
to1 · · · toN t′o1 · · · t′oN

]T (34)

and predictions for the tangent are done as in Eq. (27) but now by differentiating k∗ instead of k∗ . Fig. 2 shows GP 
predictions for t = sin(x) with two training points with and without including derivative observations. Now the conditioning 
not only constrains the predictions to agree with the target values in D but also with their derivatives. This makes effective 
use of the limited amount of information coming from a small number of online observations, as making a single gradient 
observation is equivalent to adding D extra function observations around the target value.

3.5. Hyperparameter optimization

The process variance σ 2
f and length scale 	 that compose the kernel and the target noise σ 2

n are hyperparameters that 
should be learned from the dataset D. Since a full Bayesian treatment for these parameters — introducing a prior, deriving 
a posterior and marginalizing — usually demands the use of expensive numerical techniques such as Markov Chain Monte 
Carlo (MCMC), here we opt for a maximum likelihood solution in order to minimize the computational overhead associated 
with the online calibration of the GP models. Furthermore, due to the limited amount of data available for estimation, here 
we refrain from optimizing for the derivative noise σ 2

d and instead assume derivative observations are noiseless.
The aim here is to maximize the marginal likelihood, obtained by averaging the probability that the model reproduces 

the training targets over all possible values of yo associated with to:

p
(

to|σ 2
f ,σ 2

n , 	
)

=
∫

p
(

to|yo,σ
2
n

)
p

(
yo|σ 2

f , 	
)

dyo (35)

which is a function that depends only on the hyperparameters. We optimize this marginal likelihood with a BFGS algorithm 
[44], which requires the computation of the gradient of p 

(
t
)
. Taking the natural logarithm of both sides of Eq. (35) and 

differentiating with respect to Ko yields an expression for the gradient:

∇ ln p
(
to

) = −1

2
tr

(
K

−1
o ∇Ko

)
+ 1

2
tT

oK
−1
o ∇Koto (36)

and ∇Ko can be obtained in a straightforward manner by differentiating Eqs. (19), (28) and (30) with respect to each 
hyperparameter and reassembling the matrix as in Eq. (31).
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4. Surrogate modeling framework

In this section, we use the techniques of Section 3.2 to build an adaptive surrogate modeling framework for FE2. Follow-
ing Fig. 1, we introduce a surrogate model S trained on a set of constitutive observations D obtained from a small number 
of fully-solved anchor models (gathered in the set A) subjected to the strain histories from their respective anchoring 
integration points. For bulk homogenization, we define S as:

σ�
(
ε�,D

)
= D�

e ε� +E
[
σ̂�

(
ε�,D

)]
(37)

where D�
e is an initial stiffness obtained from the first computed integration point and σ̂ is a stress correction given by the 

mean GP response, with the variance being used exclusively for adaptivity purposes. The consistent tangent stiffness is the 
combination of D�

e and the derivatives of the expected stress corrections (Eq. (27)). The dataset D is populated with stress 
and stiffness values coming from points with the highest values for the uncertainty over any component of σ̂ .

We opt for modeling each component of σ̂ (three components for the 2D examples treated here, with which we implic-
itly enforce symmetry to the stress tensor) independently, each with its own zero-mean GP model. This strategy implicitly 
states that components of the stress tensor are a priori uncorrelated, which greatly simplifies the structure of the covariance 
matrix of the GP models and reduces the number of hyperparameters to be estimated. Furthermore, we assume for now 
that σ̂ depends only on the current strain value ε� , which means that the GP model loads, unloads and reloads along the 
same path. This is a limitation to be addressed in future versions of the framework that currently hinders its ability to treat 
general non-monotonic load paths.1 It is worth mentioning, however, that path dependency is already partially accounted 
for since different strain histories will lead to the construction of different surrogates.

Note that the generality of the S model given by Eq. (37) is not compromised by the elastic-correction additive de-
composition since σ̂ can take any shape, but for initially linear-elastic materials this split improves the robustness of the 
surrogate in two ways. Firstly, it helps the GP in reproducing the initial elastic behavior at a moment when the surrogate 
models have very little data to work with. Secondly, it aids in preventing the occurrence of spurious strain localization as 
the GP moves back to its zero prior: away from the training points, the model of Eq. (37) returns instead to a linear-elastic 
response.

At this point, it is relevant to distinguish the present approach from other interesting active learning strategies for 
constitutive modeling proposed in literature [45]. In [31,32], the authors construct a constitutive database from which ob-
servations are adaptively selected and used to build surrogate GP constitutive models both for stresses and for a number 
of assumed macroscopic internal variables, creating a one-to-one mapping between inputs and outputs. Here we opt for 
a more general approach and do not assume the existence of macroscopic internal variables. This choice is motivated by 
the basic FE2 premise that microscopic behavior is too complex to conform to an a priori assumed macroscopic constitutive 
model and leads to a non-unique mapping involving exclusively stresses and strains. This effectively amounts to a reduction 
in dimensionality of the feature space of the surrogates that allows us to employ the same framework for completely dis-
tinct constitutive models (c.f. Eqs. (37) and (43)). This dimensionality reduction implicitly creates the need for the existence 
of anchor models and for subjecting them to the strain paths seen by their respective anchoring points, allowing the micro-
scopic internal variables — which are not observed by the surrogate — to influence the macroscopic stress-strain response 
and compensate for the loss of information incurred when avoiding making assumptions on macroscopic internal variables.2

In order to position the present active learning approach within a general FEM implementation, it is useful to recall 
the main steps involved in finding equilibrium solutions for nonlinear finite element models. These are shown in Fig. 3. A 
solution for u is obtained iteratively by minimizing a global force residual r computed from the material response at every 
integration point (materialUpdate). Upon convergence and before moving to the next time step, the current solution is 
checked (checkSolution) and can be rejected if there is a need to adapt the model (e.g. nucleate/propagate cracks, refine 
the mesh, change constitutive models). Once the solution is converged and accepted, material history is updated (commit) 
and the model moves to the next time step.

In an FE2 model, Fig. 3 can represent the macroscopic solution loop and the micromodels can be seen as a material-like 
entity, which leads to another similar solution loop being embedded within the materialUpdate routine. Here we exploit 
this modularity and discuss the implementation of the learning approach as a surrogate to an arbitrary material model 
denoted as fullModel. We can therefore implement the approach as a material wrapper that encapsulates fullModel
and handles learning and prediction tasks. Algorithms 1, 2, 4 and 5 show how the material routines marked in bold in 
Fig. 3 are implemented for this wrapper. In the following, we elaborate on each of these components and present the main 
implementational aspects of the framework in detail.

1 This can be addressed by augmenting the input space, the most straightforward way being using both ε� and �ε� as inputs to the GP models [33,34].
2 The noise hyperparameter σ 2

f learned during the analysis implicitly accounts for the dimensionality reduction error incurred by assuming two anchor 
models operating at the same strain level but with different microscopic internal states have the same stress response.
9
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Fig. 3. Schematic analysis flow for finite element problems involving nonlinear material behavior. The subscripts o and n refer to old (converged) and new 
(current) values, respectively. The proposed acceleration framework focuses on the steps marked in bold.

4.1. Initial sampling

Since there is no offline training, the surrogate model starts with no prior information on the constitutive behavior being 
approximated (D = ∅) and no anchor models initially present (A = ∅). We therefore introduce an initialization step by 
solving the first time increment under the assumption that all integration points are deforming elastically in order to obtain 
an initial strain distribution which we use to initialize A and D. During this step, we use the fully-solved model only 
once in order to obtain the initial stiffness De and we assume all other points have the same stiffness in order to avoid 
further full-order computations (Algorithm 1). As we will see shortly, this is not a limiting assumption since this first elastic 
approximation is rejected and the first time step is revisited after the GP models and initial anchors are initialized.

Algorithm 1: The materialUpdate routine.

Input: strain ε at the integration point p
Output: stress σ and stiffness D at the integration point

1 if initialization step :
2 if De is not initialized (i.e. p is the first point ever computed) :
3 use original constitutive model:(σ ,D) ← fullModel :: materialUpdate (ε);
4 initialize elastic stiffness: De ← D;
5 else
6 assume p has the same stiffness as the first computed point: σ ← Deε; D ← De;

7 else
8 compute elastic stresses: σ e ← Deε;
9 use GP to predict a constitutive correction: (E [

σ̂ , D̂
]
,V [σ̂ ]

) ← GP (ε);
10 approximate the response: σ ← σ e +E [σ̂ ] , D ← De +E [D̂

]
;

11 compute the uncertainty indicator γ as in Eq. (38);
12 if γ > γcancel :
13 cancel time step (Algorithm 5);

14 if softening is detected (Dii < 0) :
15 penalize point uncertainty: γ ← γ − Dii ;

16 if last step has been cancelled :
17 switch to a modified Newton-Raphson strategy: D ← De;

18 store values for this point: εn
p ← ε; γ n

p ← γ ;

19 return σ , D

After this first approximation for the solution is obtained, the checkSolution routine of Algorithm 2 is called. Since 
the strains at every integration point are stored, an informed initial choice for A can be made by clustering the integration 
points using a k-means clustering algorithm [46]. For each cluster, the point closest to the cluster centroid is chosen, added 
to A and immediately sampled. The GP models (one for each stress component) are then prepared to make predictions by 
computing and storing factorized versions of their covariance matrices.

Initial values for the hyperparameters σ 2
f , σ 2

n and 	 can either be provided by the user based on prior knowledge (e.g. 
from using the same material on other models)3 or be estimated online with an initial training procedure. We do this 
here by creating a fictitious anchor model for each cluster and loading it monotonically in the strain direction seen by the 

3 Hyperparameters reflect intrinsic patterns in the constitutive manifold being inferred and should therefore be fairly insensitive to the macroscopic 
model being solved.
10
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Algorithm 2: The checkSolution routine.

1 if first time step :
2 initialize dataset and anchor point set: D ←∅, A ←∅;
3 divide the integration points into k clusters in strain space: (C,εn) ← KMC

(
εn,k

)
;

4 for every cluster Ci ∈C :

5 find representative point p = arg min
j∈Ci

∥∥∥εn
j − εn

i

∥∥∥;

6 anchor a fully-solved model at point p: A ←A ∪ p;
7 solve the newly-created full model once: (σ ,D) ← fullModel :: materialUpdate (

εn
p

)
;

8 compute corrections and add data: σ̂ ← σ − Deεn
p; D̂ ← D − De; D ← D ∪ (

εn
p ,

[
σ̂ D̂

])
;

9 update GP and store marginal likelihood: updateGP (D) ; L ← ln p (y|x);
10 reject solution (revisit the first time step);
11 else
12 update D based on the tolerance γtol using Algorithm 3: D ← D ∪ addData (γtol);
13 if T has not changed :
14 accept solution as is (Algorithm 4);
15 else
16 refactor covariance matrix: updateGP (D);
17 if

∥∥L/ ln p
(
t
)∥∥ > Lretrain :

18 recompute GP hyperparameters: retrainGP (D) ; L ← ln p (t
)
;

19 reject solution (continue on the same time step);

point closest to the cluster centroid. In order to avoid redundancy (e.g. adding linear-elastic data coming from multiple 
models), we first initialize the GP with the standard hyperparameter values σ 2

f = 1.0 MPa2, 	 = 1.0 × 10−2, σ 2
n = 0.0 MPa2

and use a variance threshold as a dosing mechanism to ensure the added data is uniformly spaced. After optimizing for 
the hyperparameters, we discard the data obtained from the fictitious anchors since there is no guarantee any of the real 
integration points will follow the same strain history. Once D and A are initialized, the first time step is then revisited by 
rejecting the initial elastic approximation done in Algorithm 1. Note that this happens only once at the beginning of the 
analysis.

4.2. Active learning

After the initialization step, the GP surrogates are used to compute σ̂ and the response is approximated as in Eq. (37)
(refer to Fig. 3 for the analysis flow of a single load increment). Since an independent GP model is used for each stress 
component, we adopt a single uncertainty indicator γ given by:

γ = nσ
max

i

(√
V [σ̂i]

)
(38)

with nσ being the number of stress components, and use it to drive the adaptive components of the framework. The 
indicator γ is therefore an absolute measure of uncertainty (expressed in units of stress). We empirically find this choice 
of indicator to offer the best performance in the examples treated in this work. Nevertheless, other alternatives might 
perform better depending on the problem being solved — e.g. normalizing V [σ̂i] with the process variance, which for the 
present examples we find to adversely affect the performance of the framework when σ 2

f is periodically re-estimated. The 
literature on active learning and greedy GP approximations can also provide the interested reader with further alternatives 
for defining γ (refer for instance to Section 8.3.3 of [41] and references within).

Values of γ for all integration points are updated at every global Newton-Raphson iteration (Algorithm 1) and their final 
values γ n (upon global convergence) are used to drive a greedy refinement of the GP models (Algorithm 2) and ensure 
the surrogate model remains accurate. This is enforced by the tolerance parameter γtol through the addData routine of 
Algorithm 3. Here we define an additional set T of tracked anchors that contains the models for which data has been added 
during the present time step. The set T is used both to avoid repeatedly adding data from a single anchor model at any 
given time step and to make sure the single added data point is updated to reflect the latest equilibrium solution (since 
from Fig. 3, multiple materialUpdate→ checkSolution→ continue cycles can occur before history is committed).

The uncertainty level γ is checked at every integration point and the anchor model associated with the point having the 
highest value is chosen for sampling. In order to keep the number of models in A to a minimum, addData gives priority 
to models already in A and only considers other potential anchoring points if every model in A with an uncertainty 
higher than γtol has already been sampled on the current time step. Since the macroscopic problem being solved imposes a 
degree of similarity between integration points, the idea is that adding data from points in A should also help reduce the 
uncertainty of nearby integration points. This can therefore be seen as a greedy data selection approach [41] that aims at 
keeping both A and D as small as possible. If all models in A have already been sampled and a new anchoring point must 
be chosen, we first recover the material history of the newly-created model by making it revisit the complete cumulative 
strain history εp of its anchoring point p. Also note that we avoid adding data from models in A undergoing unloading or 
h
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reloading. This is a consequence of assuming a unique relationship between strains and stresses: data coming from anchor 
models unloading through a different path would be erroneously interpreted by the GP models as noise.

Algorithm 3: The addData routine.

Input: A tolerance γtol
Output: A single data point to be included in D

1 update data sampled from T to reflect the new equilibrium strains εn
p∈T ;

2 update GP models and uncertainty indicators: updateGP (D) ; γ n ← γ εn
;

3 try to find an untracked anchor point to sample: p = arg max
p∈A,p /∈T

γ n
p |γ n

p > γtol;

4 if p cannot be found :
5 try to find a new anchoring point: p = arg max

p /∈A,p /∈T
γ n

p |γ n
p > γtol ;

6 update list of tracked points: T ← T ∪ p;
7 update list of anchor points: A ←A ∪ p if p /∈ A;

8 call fullModel :: materialUpdate(εh
p) to gradually bring the anchor at p to the current time step;

9 compute model response at εn
p : (σ ,D) ← fullModel :: materialUpdate

(
εn

p

)
;

10 compute corrections: σ̂ n
p ← σ − Deεn

p; D̂n
p ← D − De;

11 return
(
εt

p,
[
σ̂ t

p D̂t
p

])
with t being the latest step on which p is not unloading/reloading;

Upon making changes to D, the covariance matrices of all GP models are updated and refactored. The addition of a 
new observation also leads to a change in marginal likelihood (Eq. (35)). We therefore allow for a re-estimation of the 
hyperparameters to take place once the likelihood reaches a value Lretrain times lower than the one computed after the latest 
estimation. If T has not changed during the latest call to addData, the current solution is accepted as it is. Otherwise we 
continue with the same time step by rejecting the current solution, which will cause the global Newton-Raphson solver to 
keep searching for an equilibrium solution (refer to Fig. 3) but now with updated GP models.

Two additional adaptivity safeguards are put in place in the materialUpdate routine of Algorithm 1. Firstly, the time 
step can be canceled if the uncertainty is higher than a threshold γcancel in order to avoid considering equilibrium solutions 
that are excessively far from the constitutive behavior being approximated. As we will discuss in Section 4.3, canceling the 
current load step does not mean giving up on the analysis, with new solution attempts being made after including extra 
anchor models in A and retraining the GP models. Secondly, the diagonal of the tangent stiffness matrix is checked for 
possible negative values, providing an indication of softening. This would indicate a switch from stresses to tractions is in 
order, but the decision for such a constitutive model switch should always be based on accurate information obtained from 
models in A. Therefore, we flag the point for sampling by penalizing its uncertainty.4

Apart from the very first update computed in order to obtain De, the expensive full-order model is never computed 
during materialUpdate (Algorithm 1). An alternative to this approach would be to actually call the models in A every 
time stresses at the anchoring points are computed. We do not opt for this alternative for two reasons. Firstly, using a 
single constitutive model (the surrogate S) for the whole mesh avoids potential non-uniqueness issues that would arise, 
for instance, if points in A are switching between different constitutive regimes (loading/unloading/softening). Secondly, 
refraining from constantly updating the models in A results in significant gains in terms of acceleration by making the 
reduced model insensitive to the number of global Newton-Raphson iterations needed for convergence and allowing full-
order models in A to become dormant and essentially be removed from the analysis for as long as the uncertainty at 
the associated anchoring point does not increase. However, it is worth mentioning in passing that the more expensive 
alternative has the merit of allowing for an extra novelty detection safeguard to be employed through which the deviation 
between predictions for σ coming from the full-order and surrogate models can be kept in check.

4.3. Solution robustness

Algorithms 2 and 3 ensure that only a single data point is added to D at a time. This is done in order to avoid large 
perturbations to the current equilibrium solution caused by changes in the constitutive response.5 Once a new observation is 
added, the current (now unconverged) solution is kept but the algorithm continues on the same time step until equilibrium 
is reestablished, at which point checkSolution is once again called (refer to Fig. 3 for the order in which these routines 
are called within a single analysis step). This process is repeated until γ n is lower than γtol everywhere. The resulting 
cycle of carefully adding data without significantly drifting away from equilibrium helps keeping the global solution scheme 
robust.

4 In the examples of this paper we do not treat models for which such a switch from bulk to cohesive behavior would be necessary. The safeguard is 
therefore only triggered in rare occasions when the GP is trying to approximate a perfectly-plastic response.

5 Adding data to the GP affects the response of all points within a hypersphere in strain space with a radius that depends on 	. The resulting change in 
global response may cause the solver to diverge.
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Algorithm 4: The commit routine.

1 clear list of tracked models: T ← ∅;
2 store converged values: γ o ← γ n;

3 update persistent strain history: εh ← [
εh εn

]
;

4 go to next time step;

When the solution converges and γ n < γtol for all integration points, the commit routine is called (Algorithm 4). Before 
moving to the next step, converged values for γ are updated. If the global solver fails to converge or if the additional 
uncertainty threshold γcancel of Algorithm 1 is violated, the solution for the current time step is canceled (Algorithm 5). 
Before making a new solution attempt, converged values are recovered and Algorithm 3 is used to sample the model with 
highest uncertainty even if its value for γ is lower than γtol . Furthermore, we switch to a secant solution strategy by 
fixing the stiffness matrix to De (Algorithm 1). We empirically notice that, for certain combinations of hyperparameters, the 
surrogate model causes the global Newton-Raphson solver to lose robustness due to rapid changes in stiffness. Switching 
to a secant strategy after a canceled step assures a solution is found under this scenario, albeit with a lower convergence 
rate.

Algorithm 5: The cancel routine.

1 recover converged values: γ n ← γ o;
2 add data from the point with the highest variance (Algorithm 3): D ← D ∪ addData (0);
3 refactor covariance matrix: updateGP (D);
4 if

∥∥L/ ln p
(
t
)∥∥ > Lretrain :

5 recompute GP hyperparameters: retrainGP (D) ; L ← ln p (t
)
;

6 go back to the beginning of the time step;

5. Numerical examples

In this section, we put the proposed framework to the test on a number of numerical examples. The algorithms of 
Section 4 have been implemented in an in-house Finite Element code using the open-source Jem/Jive C++ numerical analysis 
library [47]. We begin by demonstrating the applicability of the framework for FE2 analysis and move on to performing an 
in-depth investigation of its performance with fast single-scale homogeneous examples that allow for extensive parametric 
studies to be performed. It is emphasized that, although it is our vision to use the surrogate model in a multiscale context, 
it does not matter for the purpose of testing the active learning framework whether the material update of the full model 
involves solving a micromechanical BVP or just evaluating a nonlinear constitutive relation.

5.1. FE2 demonstration

The first example concerns a fiber-reinforced composite tapered specimen loaded in transverse tension. The geometry, 
mesh and boundary conditions are shown in Fig. 4. A 4-fiber RVE model is embedded at each macroscopic integration point. 
The geometry and mesh of the micromodel are also shown in Fig. 4. The fibers are modeled as linear elastic with properties 
E = 74000 MPa and ν = 0.2. For the matrix we employ the pressure-dependent elastoplastic model proposed by Melro et 
al. [48], with E = 3130 MPa, ν = 0.37, νp = 0.32 (plastic Poisson’s ratio) and yield stresses given by:

σt = 64.80 − 33.6e−ε
p
eq/0.003407 − 10.21e−ε

p
eq/0.06493 (39)

σc = 81.00 − 42.0e−ε
p
eq/0.003407 − 12.77e−ε

p
eq/0.06493 (40)

where εp
eq is the equivalent plastic strain. The model is solved for 100 load steps, at which point the global macroscopic 

response is almost perfectly plastic and the strain localizes around the center of the specimen.
We run the reduced model with k = 1, γtol = 0.3 MPa, γcancel = 20 MPa and with hyperparameters estimated using a 

single micromodel loaded in the direction of the single k-means clustering centroid (in this case the average strain in the 
specimen). The analysis starts with A = ∅ and D = ∅ and ends with a total of 14 anchor models in A (out of a total of 
134 points) and |D| = 73 data points.

We plot the resultant load-displacement response for both full- and reduced-order models in Fig. 5. The active learning 
approach is able to capture the correct global model response with negligible loss of accuracy while running 22 times 
faster than the full-order model. Of the 35 s execution time of the reduced model, a total of 15 s is spent on updating 
the GP models and using them for new predictions. For larger micromodels with denser meshes, the execution time of 
the reduced model will be dominated by computing the few micromodels included in A and the overhead associated with 
the GP models will become negligible. For the full-order model, 99% of the execution time is spent solving the embedded 
micromodels, confirming the bottleneck assumption of Eq. (8). In Fig. 6 we plot the horizontal stress distribution along 
13
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Fig. 4. FE2 demonstration: A composite tapered bar loaded in transverse tension.

Fig. 5. Load-displacement curves obtained with the full-order FE2 approach and with our reduction framework. The reduced model runs 22 times faster 
with only negligible loss of accuracy.

Fig. 6. FE2 tapered bar: Stress fields at the end of the analysis for both full-order and reduced models. Our active learning approach predicts a stress 
distribution indistinguishable from the full-order one.

the specimen at the last time step for both models. No discernible differences between the two stress distributions can be 
seen.

5.2. Performance and parametric sensitivity

The implementation of Section 4 allows for the active learning framework to supplant any full-order constitutive model. 
In the example of Section 5.1, this full-order model is the embedded RVE model of Fig. 4. We now switch to a single-
scale model with the homogeneous and elastoplastic material used in the previous example. This allows for an in-depth 
investigation on the performance of the reduction framework to be performed without loss of generality and without 
resorting to running a large number of expensive FE2 simulations.

We start the investigation by further simplifying the macroscopic model to the one-dimensional bar with variable 
cross-section area shown in Fig. 7, reducing the dimensionality of the constitutive space being approximated to only two 
dimensions (εxx −σxx). This change allows for the full model being inferred to be easily visualized and reduces the number 
of hyperparameters from nine for the two-dimensional case to only three.6 The original tapered geometry is simulated by 
making the cross-sectional area of the bar depend on the x coordinate:

6 For each stress component we have three hyperparameters to be determined, namely σ 2
f , σ 2

n and 	.
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Fig. 7. Homogeneous models used to study the parametric sensitivity of the framework. The additional simplification to a bar problem allows for the 
constitutive space to be visualized in two dimensions (εxx-σxx).

Fig. 8. Evolution of the GP constitutive model as data is gradually added. Dashed lines show the full-order response being approximated. The observations 
in D are plotted as crosses.

A(x) = 0.8 − 2.0
(

0.0534x − 0.000418x2
)

(41)

5.2.1. Evolution of the GP regression
We run the reduced model with k = 1, γtol = 0.4 MPa, γcancel = 20 MPa and Lretrain = 10, with hyperparameter values 

obtained by loading a single material point in the k-means centroid direction. We can visualize the gradual improvement 
of the surrogate model as data is added by plotting the GP predictions together with the exact constitutive response being 
approximated at different moments throughout the analysis. This can be seen in Fig. 8, which shows snapshots made at 
four different time steps.

As we start with an empty dataset, at first the GP model predicts linear-elastic behavior for the complete strain range, 
but with an uncertainty that quickly increases away from the observations (marked as crosses in Fig. 8). This increase is the 
mechanism that triggers the sampling of extra information from models in A. As more data is added to D, the GP model is 
gradually refined and is able to reproduce the target full-order response with excellent accuracy, although we observe that 
even though the perfectly plastic response has a simple and constant shape, the GP is never able to extrapolate it. Away 
from the sampling points the GP predictions will always return to the prior with zero mean. By the end of the analysis, four 
models are present in A and |D| = 39.
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Fig. 9. Cumulative number of constitutive updates obtained with the full-order and reduced models. The shaded region represents the effective acceleration 
associated with the reduction framework.

5.2.2. Reduction ratio
In Section 2 we argued that the computational bottleneck of FE2 lies on macroscopic constitutive model evaluations 

(Eq. (8)). We can therefore have an indication of the acceleration promoted by the active learning approach simply by 
counting the number of full-order model evaluations. We plot in Fig. 9 the evolution of the cumulative number of constitu-
tive updates for the example of the previous section together with the number of updates obtained by using the full-order 
model at every integration point.

We see that the total number of material updates performed by the reduced model is significantly higher than that of 
the reference full-order model. Two different reasons for this increase can be identified. Firstly, four time step cancels occur 
after which the model switches to a secant approach that requires more iterations for convergence. Secondly, extra iterations 
are triggered every time a new observation is added to D and the solution deviates from equilibrium (Algorithms 2 and 3).

However, given that the bottleneck assumption of Eq. (8) holds, the effective acceleration brought by the adaptive re-
duction approach is only related to the number of times the anchor models are computed, and is therefore related to the 
shaded area shown in Fig. 9. Here we define R as the ratio between full model evaluations of the reference (full-order) and 
reduced-order models:

R = nf
ref

nf
GP

(42)

and use it as a measure of acceleration. For the model of Fig. 9, the ratio at the end of 100 time steps is R = 27.9.

5.2.3. Influence of γtol
The uncertainty tolerance γtol is the main parameter controlling the active learning procedure: lower values of γtol

should lead to a higher sampling frequency while higher values should lead to smaller cardinalities for D and A at the 
cost of solution accuracy. In this section we put these claims to the test and investigate how much control can actually be 
exerted over the solution algorithm by changing γtol .

Going back to the one-dimensional example of the previous section, we solve the problem for multiple values of γtol
between 0.3 MPa and 10.0 MPa. In Fig. 10 we plot the evolution of the cardinality of the dataset D for six different γtol
values. We see that γtol indeed influences the number of observations added to D, but only to a limited extent. This is due to 
the presence of the remaining adaptive components of the framework, namely the time step cancelling mechanism related 
to γcancel, the sampling of data with zero threshold after a canceled step and the hyperparameter retraining procedure 
linked to Lretrain. This combination of safeguards leads to datasets of similar sizes for most of the γtol values adopted here. 
It is interesting to note how the curve for γtol = 0.3 MPa sharply increases in slope after time step 40, a moment when the 
hyperparameters are reoptimized and generate a modified model in which γtol is crossed more often. This indicates that the 
γtol level necessary to achieve a given sampling frequency is also influenced by the hyperparameter values.

Similar observations can be made by looking at the degree of control that can be exerted over the acceleration level 
provided by the framework, which we quantify through the reduction ratio R of Eq. (42). For each model we compute the 
evolution of the reduction ratio R with the time steps and plot them in Fig. 11a. During the first time steps, γtol has the 
expected influence on the acceleration level, with ratios as high as 150 being obtained for γtol = 10.0 MPa. When new data 
is sampled, which requires a number of full-order computations to be performed, the reduction ratio experiences drops that 
become sharper for higher values of γtol. From time step 40, as the model approaches a perfectly-plastic regime and the 
sampling frequency increases (see Fig. 10), all models converge to reduction ratios between 12 and 30. Adjusting γtol in 
order to achieve a desired acceleration level is therefore not possible. Indeed, using higher values lead to lower accuracy — 
as can be seen in the load-displacement curves of Fig. 11b — without consistent gains in efficiency.
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Fig. 10. Evolution of the cardinality of D for different values of γtol . A stricter uncertainty tolerance leads to a high sampling frequency.

Fig. 11. Evolution of the reduction ratio and the number of fully-solved steps for models with different values of γtol . Model efficiency cannot be directly 
controlled by the uncertainty tolerance.

Fig. 12. Acceleration performance when using the hybrid constitutive model to solve the one-dimensional bar problem for different values of Lretrain and 
γtol .

5.2.4. Effect of re-estimating the hyperparameters
Up until this point, the hyperparameters σ 2

f , σ 2
n and 	 have been estimated at the beginning of the analysis and updated 

with a log marginal likelihood ratio threshold Lretrain = 10. For the next example, we return to the one-dimensional model 
of the previous sections but now using different values of Lretrain. Since the sampling frequency dictated by γtol is also 
influenced by the hyperparameters, we show results for two different values of γtol. The evolution of the reduction ratio R
for these eight models is shown in Fig. 12.

Here we see two distinct behaviors depending on the uncertainty threshold level. For γtol = 1.0 MPa, allowing for a 
higher hyperparameter retraining frequency leads to higher acceleration factors up to time step 80. For the lower value of 
γtol = 0.4 MPa, retraining the hyperparameters has a detrimental effect on efficiency by leading to a much higher sampling 
frequency, with this change in behavior happening earlier for lower values of Lretrain. These results suggest there is no clear 
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Fig. 13. Reduction ratios and load-displacement curves for 10 models with different initial hyperparameter values (γtol = 0.4 MPa, Lretrain = 10.0). A large 
spread in performance can be observed.

Fig. 14. Performance of the reduction framework for different levels of mesh discretization (two-dimensional bar problem). The amount of constitutive 
information necessary to build an accurate surrogate is independent of the total number of integration points in the model.

recommendation to be made on the optimum hyperparameter retraining frequency, as model performance is dictated by a 
complex interaction between γtol , the multiple adaptive model components and the hyperparameter values.

We show one last example before returning to the two-dimensional version of the model. We now keep both the re-
training threshold Lretrain = 10.0 and the uncertainty tolerance γtol = 0.4 MPa fixed and run 10 models with different seeds 
being given to the pseudo-random number generator used to initialize the BFGS optimizer that finds the hyperparameter 
values. Results in terms of reduction ratios and load-displacement curves are shown in Fig. 13. With the different initial-
izations, the optimizer finds different local marginal likelihood maxima corresponding to different sets of hyperparameters. 
This in turn leads to a large spread in acceleration levels between models, once again demonstrating the sensitivity of the 
framework to the hyperparameter values and to their interaction with γtol . Nevertheless, all 10 models approximate the 
reference response with excellent accuracy due to the fairly strict value adopted for γtol .

5.2.5. Acceleration versus mesh density
We now return to the two-dimensional model shown in Fig. 7 in order to investigate how model performance scales with 

the level of mesh discretization. We solve the model with multiple different mesh densities with characteristic element 
sizes ranging from 16 mm (32-element mesh) to 0.8 mm (3020-element mesh). All meshes are composed of constant-
strain triangles with one integration point each. The model parameters are the same as in the previous examples and the 
uncertainty threshold is fixed at γtol = 1.0 MPa. Furthermore, and in order to keep the comparison between meshes as 
consistent as possible, we first use the 3020-element model to estimate the hyperparameters once at the beginning of the 
study (by loading monotonically along the k-means direction), set them as initial values for all other meshes and keep them 
fixed by adopting a high value for Lretrain. This avoids the possibility of GP surrogates from models with different meshes 
converging to different local maxima of the likelihood function with distinct behaviors (see Fig. 13) due to small fluctuations 
in stress values.

The relative changes in |D| and |A| as well as in the average force error with respect to the reference solution are plotted 
against the discretization level in Fig. 14. It can be seen that the amount of information needed by the model in order to 
maintain accuracy is independent of the mesh density, with both |D| and |A| showing only relatively minor fluctuations 
as the mesh is refined. This is a consequence of the greedy approach employed here: even though the total number of 
integration points can be large, points are only sampled or added to A if their uncertainty is higher than γtol .
18



Fig. 15. Final reduction ratios for the two-dimensional bar problem with different levels of mesh discretization. The efficiency of the reduction framework 
increases significantly as denser meshes are used.

Since models with different meshes are approximating the same underlying solution, it is intuitive to expect the sampling 
effort to be similar: even though the constitutive manifold is more densely evaluated if a denser mesh is used, these 
evaluations consist of closely-packed clusters in strain space whose response can be accurately approximated by a small 
number of GP observations.7 As a consequence, the reduction ratio R (and therefore the speed-up) increases dramatically 
with mesh density, as can be seen in Fig. 15. Recalling that the same example has been used with FE2 in Section 5.1, we 
can therefore expect that opting for the densest mesh used here would lead to a reduced model almost 3000 times faster 
than its full-order counterpart without resorting to offline training.

5.2.6. Initial number of fully-solved points
As one final parametric study on the two-dimensional model of Fig. 7, we investigate the effect of changing the clustering 

parameter k that determines the initial number of points in A. Fig. 16 shows a set of heatmaps plotting the total number 
of times each anchor point is sampled during the analysis for three different values of k. For k = 1, we start with a point 
midway between the load application face and the center of the bar and the greedy data selection approach promptly 
locates the point at the center of the bar undergoing the largest strains. Additional points are eventually added due to 
a number of canceled steps, but the model nevertheless concentrates most of the sampling effort at the center and the 
remaining points remain dormant for the rest of the analysis. The same happens for the models with k = 5 and k = 10: the 
model starts with k anchor models that remain dormant and immediately adds another one at the center of the bar from 
where most of the training data is obtained. Due to the relatively simple strain path of this specific example, increasing k
does not seem to be beneficial. However, the greedy framework is able to naturally disregard the redundant information 
and concentrate the sampling effort where it is needed. All three models have, therefore, similar accuracy and acceleration 
levels.

5.3. Two-dimensional plate with multiple cutouts

We now move to an example with complex geometry in order to investigate how the reduction framework fares in 
approximating a larger portion of the original full-order constitutive manifold. The example employs the same elastoplastic 
material as before but now concerns the plate with multiple cutouts with boundary conditions and final plastic strain 
distribution shown on Fig. 17. Due to the presence of the cutouts, the stress distribution is considerably more complex 
than for the previous examples. As the load increases, plastic strain arises at the stress concentration regions between 
cutouts and forms a strain localization band spanning the complete height of the model. The plate is discretized with 754
constant-strain triangles with one integration point each.

We solve the problem with k = 10, γtol = 2.0 MPa, Lretrain = 10 and γcancel = 80 MPa for a total of 100 time steps. As 
in the previous examples, the initial hyperparameters are estimated by sampling the initial k-means directions. We plot 
the evolution of the reduction ratio R and the size of the fully-solved set A in Fig. 18. While the model of Fig. 16 is able 
to rely on the information coming from a single anchor model to accurately describe its constrained constitutive space, 
the complex stress distribution of the current example demands the sampling of a significantly higher number of points. 
The acceleration is therefore smaller than for the previous cases, with a reduction ratio of approximately 63 at the end of 
the analysis. This result is not unexpected, since the reduction framework relies on the assumption that the macroscopic 
geometry and boundary conditions constrain the constitutive response to lie on a manifold of much lower complexity. The 
complex stress state treated here challenges this assumption.

7 This is a natural consequence of our choice of kernel, which quantifies the similarity between points by their distance in strain space.
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Fig. 16. Heatmaps of the total number of samplings of points in A for different values of k. The numbers next to the points indicate the order at which 
the points are added to A. For each case, the first k points are initially present.

Fig. 17. Geometry, boundary conditions and final equivalent plastic strain distribution for the two-dimensional cutout example.

Fig. 18. Evolution of the reduced-order solution of the two-dimensional plate problem with cutouts. With a more complex constitutive behavior to approx-
imate, the size of the A set is larger for this example.
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Fig. 19. Strain paths seen by each of the 754 integration points of the reduced model, plotted together with the observations stored in D. The complex 
geometry of the example leads to a large number of distinct strain paths that must be learned by the GP models.

Fig. 20. Zoomed-in view of the strain paths of Fig. 19. Since most points do not undergo strain localization, they can be readily represented by the trained 
GP models without extensive sampling.

Fig. 21. Strain paths associated with the five integration points with the largest strain norm at the end of the analysis. Paths resulting from the full-order 
and reduced models are plotted.

This complexity can be visualized by plotting the strain paths seen by different integration points of the reduced model 
together with the dataset D in Fig. 19. In contrast with previous examples, on which every point on the mesh follows 
approximately the same path, here we different points moving towards distinct regions of the parameter space. Looking at 
the sampling points (marked as black circles in Fig. 19), we see that the framework automatically assigns anchor models 
to points with diverging paths. For the remaining points, whose strain paths have a higher degree of similarity, the GP 
surrogates are capable of taking over without extensive sampling, as can be seen in the zoomed region shown in Fig. 20.

Comparing the paths seen by individual points of the full-order and reduced models, the behavior shown in Fig. 21 for 
the five integration points with the highest final strain norm is obtained. Since the strain path is ultimately determined 
by the global displacement field, which in turn depends on the performance of the surrogate models, the full-order and 
reduced paths do not exactly agree, although we still obtain a fairly accurate response.

It is also interesting to plot the heatmap of GP observations in order to visualize which points are being sampled. Results 
can be seen in Fig. 22. In contrast with the model of Fig. 16, sampling is performed on a larger number of points. This 
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Fig. 22. Heatmaps of the total number of samplings of points in A for the two-dimensional cutout example taken at four different moments throughout 
the analysis. The adaptive model automatically concentrates the sampling effort at regions undergoing strain localization.

indicates that different parts of the mesh experience significantly different strain paths. Comparing Fig. 22 with the plastic 
strain field of Fig. 17, we see that the point distribution is closely related to how plastic strain is distributed throughout 
the domain. The framework is therefore able to direct computational effort to regions in the mesh where it is most needed 
while employing an efficient approximation for the rest of the domain.

The fact that most initial anchors in Fig. 22 are never sampled after the first step suggests the model of Fig. 17 is 
also rather insensitive to the choice of clustering parameter k. However, even though the sampling strategy adaptively 
adds new anchors where needed and lets anchors with redundant information remain dormant, the value of k affects the 
initial estimates for the hyperparameters, as can be seen in Fig. 23. Since the present example features a richer variety of 
strain paths, the initial estimation for the hyperparameters benefits from information coming from a larger set of fictitious 
anchors. Finally, the load-displacement curves of the full-order and reduced models are shown in Fig. 24. Again a satisfactory 
agreement is obtained at a fraction of the number of full model evaluations.

It is worth mentioning, however, that this more complex example is less numerically stable than the previous ones. 
Running the model with higher values of γtol leads to convergence issues as new data coming from the anchor models leads 
to large jumps between equilibrium solutions that push the stability of the Newton-Raphson solver to its limit. Additionally, 
a model with reasonable stability could only be obtained by forcibly increasing the smoothness of the GP approximation 
by increasing the lower bound of σ 2

n to 1.0 MPa2. Further research effort is therefore necessary in order to improve the 
stability of the present approach when faced with highly-complex strain distributions.8

8 Adopting prior distributions for σ 2
f , 	 and σ 2

n might also help in regularizing the GP response and improving solver stability. This merits further 
investigation.
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Fig. 23. Initial values for the variance and length scale hyperparameters of the GP models for different values of the clustering parameter k. Although the 
hyperparameters are adaptively re-estimated during the analysis, different initial values can affect the overall performance of the reduced model.

Fig. 24. Load-displacement curves for the two-dimensional plate with cutouts obtained with the full- and reduced-order models.

5.4. Mixed-mode cohesive crack propagation

We close the present discussion with one final example exploring the use of the framework to approximate a traction-
separation response. In Section 2.4, we argue that bulk homogenization in FE2 loses objectivity upon global softening at 
the microscale, at which point switching to a cohesive homogenization strategy becomes necessary. Here we construct a 
surrogate model for the associated macroscopic cohesive material by using the framework of Section 4 but now defining S
as:

τ�
(
τ�

eff,D
)

= E
[
τ̂

(
τ�

eff,D
)]

(43)

where τ�
eff is an effective traction computed from the displacement jump �u� and the stress at crack initiation that accounts 

for the singular nature of the initially-rigid cohesive law and takes the place of the shifted jump �v�� of Eq. (7) as input 
variable [49]. Note that, in contrast to Eq. (37), assuming a correction from elasticity ceases to be interesting here and we 
therefore build a direct regression for the tractions with one GP model for each component of the surrogate traction vector 
τ� . Furthermore, we exploit the knowledge that decohesion is an irreversible process by switching to the trivial solution 
τ = 0 after the GP confidently predicts zero traction for the first time:

for a given point p, if ‖E [τ̂ ]‖p ≤ σn and γ o
p ≤ γtol ⇒ switch to τ� = 0 | ∀τ�

eff > 0 (44)

After the switch, we stop using the GP approximation for the integration point in question. This modification improves 
efficiency because we avoid having to train the GP to reproduce the fully-damaged branch of the cohesive law.9

The example concerns the mixed-mode bending test shown in Fig. 25 and is taken from [49], where the same structure 
is solved for multiple mode-mixity ratios. Here we opt for a single ratio α = G II/ (G I + G II) = 0.5 and therefore only deal 

9 The GP prediction naturally moves to its zero-traction prior away from D, but retraining would still be periodically triggered due to the variance 
increase.
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Fig. 25. Mixed-mode crack propagation example: Geometry, loads and boundary conditions.

Fig. 26. Mixed-mode crack propagation example: Evolution of the learning process in terms of the sizes of the A and D sets. No learning occurs during 
most of the crack propagation process. The framework also refrains from computing the full-order cohesive model for most of the analysis.

Fig. 27. Evolution of the reduction ratio R for the mixed-mode crack propagation example. The fact that D is not growing for most of the analysis allows 
for high acceleration ratios to be obtained.

with the specific ratio between applied forces shown in Fig. 25 and with a single initial notch length of 30 mm. In an FE2

approach, both the bulk material behavior and the cohesive softening response would be derived from embedded RVEs by 
employing Eqs. (5) and (7). Without loss of generality and in keeping with the original model of [49], in this demonstration 
we instead use a linear-elastic orthotropic model for the bulk material and a bulk stress-constrained cohesive zone law to 
model the traction-separation behavior of the propagating crack. The model is solved in plane stress and initially discretized 
with 3107 4-node quadrilateral elements with 4 integration points each. Cohesive segments are inserted on the fly by 
using the Phantom Node method [50] (later renamed CutFEM [51]), with elements being duplicated in order to describe a 
displacement jump running through the elements as the crack propagates from the tip of the notch.

In order to keep the discussion simple, we only use the GP framework to approximate the response at cohesive integra-
tion points, but extending the example to also use GP for the bulk response would be straightforward. We run the reduced 
model with γtol = 1.0 MPa, γcancel = 100 MPa and fixed hyperparameters obtained from sampling a fictitious anchor model 
in the initial effective traction direction seen by the first cohesive point. Note that in this case we cannot rely on the 
k-means strategy from the previous examples since the analysis starts with no cohesive integration points.

The solution process is tracked by plotting the evolution of the A and D sets on Fig. 26. During the first five time steps, 
the structure is loaded until the onset of crack propagation. As no cohesive points exist at this stage, A and D remain 
empty. The first cohesive integration points created when the crack starts to propagate are added to A and their responses 
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Fig. 28. Load-displacement curves for the mixed-mode crack propagation example. The active learning framework shows excellent agreement with the 
full-order response.

Fig. 29. Evolution of the mixed-mode decohesion of an integration point computed by the GP model during the analysis phase on which D is not growing.

are sampled into D. From that moment on, the framework is left to decide which points are added. Since the crack tip can 
be seen as a moving source travelling through the domain, points created after time step 20 can be accurately approximated 
with information obtained from points closer to the notch. Since the decohesion process follows almost exactly the same 
path in these subsequent integration points and we switch to a trivial solution with zero traction for fully-damaged points 
(Eq. (44)), no new data is needed in D for the rest of the analysis. The greedy algorithm is able to detect this and interrupt 
the learning process, with the 7 anchor models in A remaining dormant for the rest of the analysis and no more full-order 
updates being computed. This results in the high values for the reduction ratio plotted in Fig. 27.

The load-displacement curves obtained with the full and hybrid models are shown in Fig. 28, where we plot absolute 
forces and displacements from the two load locations shown in Fig. 25. It can be seen that the global response obtained with 
the active learning approach is virtually indistinguishable from the full-order one. Finally, we can observe how accurate the 
local traction approximation is by plotting in Fig. 29 the traction-separation curves for a cohesive integration point created 
and completely solved after the anchor models become dormant. We see that the complete mixed-mode softening process 
is correctly predicted by the GP models based solely on the response of earlier points.

6. Conclusions

This work introduces an adaptive probabilistic learning framework for the online construction of surrogate constitutive 
models for concurrent multiscale analysis. The framework eliminates the need to sample a potentially infinitely-dimensional 
input space offline and instead fits a set of Gaussian Process (GP) models with data sampled online from a small number 
of fully-solved anchor models. The approach incorporates additional physics information by enhancing the conventional GP 
regression with tangent stiffness observations coming from the anchor models. A greedy data selection procedure ensures 
the surrogate response is kept accurate, efficient and independent of the time step size and of the macroscopic discretization 
level.

The reduction approach was described in detail and its performance was assessed with an extensive set of numerical 
examples. The ability of the framework of reducing the computational effort associated with FE2 was demonstrated with 
a preliminary example, after which a detailed parametric study was performed on single-scale models without loss of 
generality. The uncertainty tolerance parameter used to control the GP sampling frequency was found to provide only a 
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limited degree of control on the balance between accuracy and efficiency of the reduced response due to the presence of 
other model components that can also trigger a refinement of the GP approximations (e.g. canceled solutions). Using a larger 
initial set of fully-solved points or allowing for the GP hyperparameters to be re-estimated during the analysis were found 
to exert little influence on the performance of the model, at least for the specific examples treated here. The acceleration 
brought by the greedy learning strategy was found to drastically increase as the macroscopic mesh is refined, with reduction 
ratios as high as 2800 times being obtained.

An additional example was used to demonstrate the ability of the reduction approach to handle models with complex 
stress distributions. Although the acceleration was lower in this case due to the complexity of the constitutive manifold be-
ing approximated, the greedy sampling strategy successfully concentrated the learning effort on the most informative mesh 
regions. One final model involving mixed-mode crack propagation was presented. In contrast with the previous examples, 
the nature of the crack propagation problem allowed the GP to reuse previously obtained information rather than continu-
ously growing the dataset. Acceleration ratios of up to 250 times were obtained and the GP surrogate was able to take over 
the entire set of integration points from the original full-order model for most of the analysis.

The presented results suggest the framework is a promising approach in reducing the computational effort of nonlinear 
concurrent multiscale modeling and circumventing the curse of dimensionality associated with the offline construction of 
surrogates for path-dependent materials. Nevertheless, further model development is necessary in order to allow for non-
monotonic load paths including unloading/reloading behavior since the adopted GP formulation assumes a unique mapping 
between strains and stresses. Although path dependency is accounted for in the sense that macroscopic models with differ-
ent strain paths will construct different surrogates, an accurate approximation is not guaranteed for models that visit points 
in strain space more than once during their loading paths.
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