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Abstract: The nonlinear wave shape, expressed by skewness and asymmetry, can be calculated from
surface elevation or pressure time series using bispectral analysis. Here, it is shown that the same
analysis technique can be used to calculate the bound superharmonic wave height. Using measured
near-bed pressures from three different field experiments, it is demonstrated that there is a clear
relationship between this bound wave height and the nonlinear wave shape, independent of the
measurement time and location. This implies that knowledge on the spatially varying bound wave
height can be used to improve wave shape-induced sediment transport predictions. Given the
frequency-directional sea-swell wave spectrum, the bound wave height can be predicted using
second order wave theory. This paper shows that in relatively deep water, where conditions are not
too nonlinear, this theory can accurately predict the bispectrally estimated bound superharmonic
wave height. However, in relatively shallow water, the mismatch between observed and predicted
bound wave height increases significantly due to wave breaking, strong currents, and increased wave
nonlinearity. These processes are often included in phase-averaged wind-wave models that predict
the evolution of the frequency-directional spectrum over variable bathymetry through source terms
in a wave action balance, including the transfer of energy to bound super harmonics. The possibility
to calculate and compare with the observed bound super harmonic wave height opens the door
to improved model predictions of the bound wave height, nonlinear wave shape and associated
sediment transport in large-scale morphodynamic models at low additional computational cost.

Keywords: bound wave height; wave shape; bispectrum; field measurements

1. Introduction

Coastal management decisions, such as nourishment strategies and sea level rise scenarios,
rely more and more on morphodynamic model simulations. Within these simulations, fluxes in
sediment transport, caused by hydrodynamic forcing mechanisms, result in changes in the bathymetry.
An important contribution to the sediment transport fluxes is the wave shape-induced sediment
transport driven by the skewness and asymmetry of the individual waves [1–4]. Although its
instantaneous magnitude is often smaller than other contributions, it can have a considerable net effect
on the bathymetric evolution as the contribution is typically in the dominant wave direction [5,6].
As such, it is important for beach recovery after storm impact [7,8], onshore bar motion [7,9–11] and the
evolution of ebb-tidal shoals (see, e.g., in [12,13]).

Current large-scale morphodynamic modeling approaches generally combine a spectral wave
transformation model [14–18] and a flow model (see, e.g., in [19–23]) to predict the local wave, flow
and sediment transport conditions (see, e.g., in [19,24]). Using a local parameterization based on
the wave height, wave period and water depth the wave skewness, asymmetry, and associated
sediment transport are obtained (see, e.g., in [25–29]). However, as was shown by Rocha et al. [30],
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Rocha et al. [31], and De Wit et al. [32], predicting the wave shape using a local approach has its
limitations, related to the fact that the prior evolution of wave shape is not taken into account. As a
result, the wave shape can be different although the local wave height, period, and water depth are
exactly equal, if, for instance, the bed slope is different [33,34], the conditions are rapidly changing [32],
or the offshore wave steepness is different [31]. Thus, there is a need for a better way to predict the
wave shape that includes the history of the waves before reaching a certain location.

The wave skewness and asymmetry can be computed with a bispectral analysis corresponding
to the sum of the real and imaginary parts of the bispectrum, respectively (see, e.g., in [35,36]).
The bispectrum is a reflection of the coupling between the primary waves and the bound super and
sub harmonics [36,37]. This implies that there is a close connection between the nonlinear wave shape
and the proportion of bound wave energy.

The bound portion of energy in the super harmonics within a directionally spread sea-swell
wave field can be predicted with the second order theory of Hasselmann [38] based on a local
equilibrium over a horizontal bed. However, in the presence of a variable bathymetry and thus
spatially evolving sea-swell wave field this may lead to an erroneous estimate as demonstrated
by Herbers and Burton [39]. On the other hand, spectral wind-wave models often include a source
term to describe the transfer of wave energy from the primary wind-waves to bound super harmonics
through triad sum interactions over variable bathymetry [37,40,41]. The modeled bound fraction
of superharmonic wave energy is an integration of the source term in the down-wave direction
showing up as an additional spectral peak at twice the primary frequencies (see, e.g., in [37,42]).
However, to speed up the computations to enable morphodynamic computations at realistic time
scales, the phase information is ignored and even though the spatially evolving fraction of bound
energy is implicitly predicted, the accompanying skewness and asymmetry are not known.

Examining the three-dimensional (3D) wavenumber-frequency spectrum is a relatively
straightforward way to discriminate between the bound and free wave energy as these follow different
dispersion relations (see, e.g., in [43]). However, estimating the full 3D wave spectrum requires
high-resolution spatial information that is rarely available in the field (see, e.g., in [44] for one of
the exceptions). Alternatively, bispectra can be used to characterize the portion of bound energy
in a given frequency range. Most efforts to quantify and analyze bound harmonic energy have
focussed on the sub-harmonic range (see, e.g., in [45–51]) following the work of Herbers et al. [52] who
demonstrated that the bound fraction of subharmonic (i.e., infragravity) energy could be obtained
from the difference interactions in the bispectrum. Significantly less attention has been devoted to
quantifying the bound energy in the super harmonic range, with the most notable contributions being
the work by Herbers and Guza [53,54] and Herbers et al. [55] who examined bound wave energy in
intermediate water depths.

The aforementioned studies [53–55] showed that triad sum interactions between wave
components with large difference angle of propagation can contribute significantly to the bound
near-bed pressure variance at these depths. Interestingly, these are typically associated to negative
interaction coefficients according to the theory of Hasselmann [38], while the more classical sum
interactions between wave components with small difference in angle of propagation have a positive
contribution. Thus, for a given sum frequency in the superharmonic range, both positive and negative
contributions from primary wave pairs can occur such as the bispectrum is expected to yield a lower
limit of the bound super harmonic energy. Several authors [36,56,57] additionally mention, based on the
work of McComas and Briscoe [58], that estimating the bound super harmonics from the bispectrum in
a broad-banded spectrum is not straightforward. This inhibits a direct comparison with the predictions
of the wind-wave spectral models. Notably, Herbers et al. [55] did find a good match between
predictions by the theory of Hasselmann [38] and observations in a case of narrow-banded energetic
swell conditions (their Figure 10d) in contrast to conditions with crossing sea states (their Figure 10a–c).
This raises the question to what extent the bispectral estimate of the bound super harmonic fraction
can work for sea-swell conditions.
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In the following, we therefore construct a method to first estimate the bound portion of the
energy in the super harmonics in a realistic directionally spread wave field and secondly to use
this as a predictor of the nonlinear wave shape controlling wave skewness and asymmetry. To that
end, the velocity and pressure data obtained at nine locations on the Ameland ebb-tidal delta from
the CoastalGenesis2/SEAWAD field campaign in September 2017 are examined using bispectral
analysis. The bound superharmonic fraction is expressed as an equivalent observed bound wave
height that is compared with the predicted bound wave height obtained from the equilibrium theory
of Hasselmann [38] to explore its spatial evolution. Next, the correspondence between the bound
wave height and nonlinear wave shape is examined to explore the potential of using a wave shape
parameterization based on the predicted bound wave height instead of a local parameterization. This is
followed up with a discussion on the general applicability of such an approach and the necessary steps
in spectral wave modeling to enable these predictions.

2. Background

2.1. The Spectrum

The surface elevation is represented as a summation of discrete frequencies as

η(t) =
N

∑
m=−N

1
2

A( fm)e−2πi fmt +
1
2

A∗( fm)e2πi fmt (1)

in which A( fm) is the complex amplitude at discrete frequency fm = m∆ f with ∆ f being the frequency
resolution, A∗( fm) indicates the complex conjugate of A( fm), i is the imaginary number, and t is time.
The number of discrete spectral estimates is 2N + 1, which are bound by the Nyquist frequencies:
± fN = ± fs/2, in which fs is the discrete sampling frequency of the surface elevation time series.
The complex amplitudes are obtained by applying a discrete fast Fourier transformation on the surface
elevation. Subsequently, the (double-sided) variance spectrum1 is defined as

P( fm) = E[A( fm)A∗( fm)] for:− N ≤ m ≤ N (2)

in which E[...] denotes the expected value. If besides pressure, also collocated x- and y-velocities are
present, the 2D frequency-directional variance spectrum can be computed:

P2D( fm, θm) = P( fm)Θ( fm, θm) (3)

in which Θ( fm, θ) is the directional distribution over the discrete number of directional bins Nθ

resulting in a directional resolution ∆θ = 2π/Nθ .
Second-order statistics are derived from the variance spectrum, such as the sea-swell significant

wave height:

Hm0 = 4

√√√√ N

∑
m=mmin

2P( fm) (4)

in which mmin corresponds to the index of the first discrete frequency in the sea-swell range. The factor 2
in Equation (4) arises from the fact that the double-sided variance spectrum is only summed over the
positive frequencies.

1 Note that different conventions are found in literature. In this paper, the double-sided spectrum is presented, because the
bispectrum (Equation (5)) is commonly also presented in a double-sided form and we want to prevent mixing up single-
and double-sided spectra. Furthermore, for readability purposes, we present all equations as a function of the variance
instead of the variance density. The variance density spectrum can be obtained by dividing the variance spectrum by ∆ f .
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2.2. The Bispectrum

The bispectrum is a spectral representation of third-order statistics that can be used to analyze
the nonlinear interactions between a triad of frequencies fm, fn and fp that satisfies fm + fn = fp.
The discrete variance bispectrum is defined as

B( fm, fn) = E[A( fm)A( fn)A∗( fp)] for:− N ≤ m, n, p ≤ N (5)

If the three components are statistically independent, there is no phase correlation and B( fm, fn) =

0. In that case, the third component fp is not bound to fm and fn but freely propagating. On the
other hand, a non-zero bispectrum B( fm, fn) indicates that (part of) the variance at fp is bound to the
energies at fm and fn.

In contrast to the variance spectrum, the bispectrum is complex. The normalized magnitude and
phase of the bispectrum are the bicoherence b2 and the biphase β, given by

b2( fm, fn) =
|B( fm, fn)|2

P( fm)P( fn)P( fp)
(6)

β( fm, fn) = tan−1
(
=(B( fm, fn))

<(B( fm, fn))

)
(7)

in which < and = denote the real and imaginary parts, respectively. According to Kim and
Powers [59], the bicoherence characterizes the relative degree of coupling between three waves
at fm, fn, and fp, which can be used to determine the bound variance at fp. Different equations
to calculate the bicoherence have been presented in literature, all slightly differing in the way the
bispectrum is normalized. Here, the equation of Haubrich [60] is presented, as was later also applied
by Herbers et al. [52]. Furthermore, Elgar and Guza [61] showed that the statistical reliability of the
bicoherence is insensitive to the normalization method. The intensity of the imaginary part of the
bispectrum is indicative for the strength of the nonlinear energy transfers, which result in temporal or
spatial changes in the spectrum (see, e.g., in [39,62]). The real and imaginary parts of the bispectrum
are also closely related to the wave shape, as will be described in Section 2.3.

Every triad interaction appears in the bispectrum multiple times. Due to symmetry in
the bispectrum, it is redundant to calculate and analyze the full bispectrum, but all sum and
difference interactions are present in the triangle in ( fm, fn)-space bounded by ( fm = 0, fn = 0),
( fm = fN/2, fn = fN/2), and ( fm = fN , fn = 0). For a detailed description of the symmetry regions in
the bispectrum the reader is referred to Kim and Powers [59].

2.3. Wave Shape

The nonlinear shape of a wave can be described by its skewness (asymmetry w.r.t. the vertical
axis) and asymmetry (asymmetry w.r.t. the horizontal axis). Skewness Sk and asymmetry As are
third-order statistics [36], which are proportional to the real and imaginary parts of the bispectrum,
normalized by the variance. The sea-swell Sk and As are computed as

Sk =

(
6

N/2

∑
m=mmin

<(B( fm, fm)) + 12
N/2

∑
n=mmin

N−n

∑
m=n+1

<(B( fm, fn))

)/(
N

∑
m=mmin

2P( fm)

)3/2

(8)

As =

(
6

N/2

∑
m=mmin

=(B( fm, fm)) + 12
N/2

∑
n=mmin

N−n

∑
m=n+1

=(B( fm, fn))

)/(
N

∑
m=mmin

2P( fm)

)3/2

(9)

The factors 6 and 12 arise from the fact that the previously introduced bispectrum triangle
covers 1/6 of the bispectral diagonals and 1/12 of the remaining bispectral area. The factor 2 in
the denominator arises from the fact that the double-sided variance spectrum (Equation (2)) is only
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summed over the positive frequency range in order to determine the variance. Sk and As can be
combined in the nonlinear wave shape parameter S [28]:

S =
√

Sk2 + As2 (10)

3. Bound Variance

This section outlines the method to obtain both the predicted as well as the observed bound wave
variances, and the equivalent bound wave heights, from measurements.

3.1. Predicted Bound Variance for Equilibrium Conditions

Using second-order finite depth theory, the variance associated with the bound super harmonics
can be predicted [38]. Based on this theory, the bound variance at a given frequency fp resulting from
all sum interactions between primary sea-swell components which contribute to the variance at fp is
calculated as

Pb,pred( fp) =
Nθ

∑
r=1

Nθ

∑
s=1

p

∑
n=mmin

P2D( fp−n, θr)P2D( fn, θs)D2( fp−n, fn, θr, θs, d) (11)

in which r and s are discrete indices defining the directional bins such that θr = r∆θ and θs = s∆θ. D is
the nonlinear coupling coefficient for seafloor pressure given by Herbers et al. [52] and d is the mean
water depth. The corresponding bound super harmonic wave height is computed as

Hb,pred = 4

√√√√2
N

∑
p=2mmin

Pb,pred( fp) (12)

As only sum interactions between primary sea-swell frequencies (of indices ≥ mmin) are
considered in the calculation of Pb,pred, the index of the first frequency where bound variance is
present is 2mmin.

3.2. Observed Bound Variance from the Bispectrum

As was mentioned in Section 2.2, Kim and Powers [59]2 pointed out that the proportion of bound
variance is related to the bicoherence. Integrating the bicoherence over all triad sum interactions
contributing to frequency fp gives the proportion of variance at fp which is bound:

Pb,obs,KP79( fp)

P( fp)
=

p

∑
n=mmin

b2( fp−n, fn)

=
p

∑
n=mmin

|B( fp−n, fn)|2

P( fp−n)P( fn)P( fp)
(13)

The observed bound variance in the super harmonics can be written as

N

∑
p=2mmin

Pb,obs,KP79( fp) =
N

∑
p=2mmin

p

∑
n=mmin

|B( fp−n, fn)|2

P( fp−n)P( fn)
. (14)

2 KP79 refers to the methods and equations from Kim and Powers [59].
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The observed bound wave height is subsequently computed as

Hb,obs,KP79 = 4

√√√√2
N

∑
p=2mmin

Pb,obs,KP79( fp) (15)

Herbers et al. [52]3 proposed an expression for the observed bound proportion of variance in the
infragravity wave range due to difference interactions between primary sea-swell waves using the
bispectrum. In a similar way, we define the observed bound proportion of variance at frequency fp

associated with the sum interactions (i.e., bound super harmonics) as

∑N
p=2mmin

Pb,obs,HEG94( fp)

∑N
p=2mmin

P( fp)
= α( fp)

∣∣∣∣∣∣ ∑N
p=2mmin ∑

p
n=mmin B( fp−n, fn)√

∑N
p=2mmin ∑

p
n=mmin P( fp−n)P( fn)∑N

p=2mmin
P( fp)

∣∣∣∣∣∣
2

(16)

in which α( fp) is a weighting factor to account for differences in interaction strength between all triads
contributing to frequency fp. As discussed by Herbers et al. [52], however, this effect is small for
sea-swell waves and α can be assumed to be 1. Subsequently, the bound wave variance is expressed as

N

∑
p=2mmin

Pb,obs,HEG94( fp) =

∣∣∣∑N
p=2mmin ∑

p
n=mmin B( fp−n, fn)

∣∣∣2
∑N

p=2mmin ∑
p
n=mmin P( fp−n)P( fn)

. (17)

Finally, the resulting bound wave height is computed as

Hb,obs,HEG94 = 4

√√√√2
N

∑
p=2mmin

Pb,obs,HEG94( fp) (18)

Comparing Equations (14) and (17) illustrates the differences between the two methods to compute
the bound wave variance. While Kim and Powers [59] first calculate all individual bicoherences before
summing them, Herbers et al. [52] first sum over the bispectrum and the cross products of the spectrum,
subsequently square the absolute value of the summed bispectrum, and finally calculate the ratio.
In Appendix A, the performance of both methods is investigated as a function of the statistical
reliability of the expected values of the spectrum and bispectrum (Equations (2) and (5)). From this,
it is decided to use the HEG94 formulation to compute the observed bound wave height, because it
provides the most reliable estimate for a low number of degrees of freedom. This is of key importance
in order to be applicable to field data in which the time series duration is usually limited in order to
satisfy stationary conditions. Essentially, by first summing the bispectrum and spectral cross terms
individually, additional averaging is applied which results in a statistically more reliable spectrum
for the same duration. It should be noted that this additional way of averaging is only valid if the
part of the bispectrum over which is summed is dominated by positive sum interactions, because
otherwise the contributions of the sum and difference interactions cancel each other out. Thus, in the
following Hb,obs refers to the observed bound wave height calculated following the HEG94 method
(Equations (17) and (18)).

3 HEG94 refers to the methods and equations from Herbers et al. [52].



J. Mar. Sci. Eng. 2020, 8, 643 7 of 26

4. Data

4.1. CoastalGenesis2/SEAWAD Field Campaign

The 6-week CoastalGenesis2/SEAWAD field campaign was conducted in September and October
2017 by a consortium of universities and research institutes in order to improve the understanding of
physical processes at the Ameland inlet [63,64]. The Ameland Inlet is a tidal inlet between the barrier
islands Terschelling and Ameland at the north of the Netherlands. The barrier islands are located
between the North Sea and the Wadden Sea. Seaward of the Ameland inlet, an ebb-tidal shoal has
formed due to the deceleration of the ebb-tidal flow. During storm conditions with waves incoming
from the north, it is on this shoal that the waves start feeling the bottom, reshape, and eventually break.

This paper focuses on pressure and velocity measurements obtained at nine locations clustered
together on the seaward side of the ebb-tidal shoal (see also [32]). At two measurement frames (F4 and
F5, see red dots in Figure 1), collocated pressure and near-bed velocity measurements were obtained.
This was done using high-resolution, downward looking, Acoustical Doppler Velocity Profilers (ADCP)
that measured the velocity profile over the bottom 50 cm of the water column and concurrent pressure
with a sampling frequency of 4 Hz. At seven other locations surrounding the two frames, standalone
pressure sensors (P1–P8, black dots in Figure 1) were deployed measuring the pressure continuously
with a sampling frequency of 10 Hz. The two frames and three pressure sensors were aligned along a
main transect, while the four other pressure sensors were deployed on side transects to investigate
two-dimensional spatial variability. The mean water depth and the sensor height above the bed is
given for all locations in Table 1.

Figure 1. Left panel: Overview map of the Netherlands with the measurement location of the ebb-tidal
shoal indicated by a red dot (source: Wikepedia Commons). Right panel: Bathymetric map of Ameland
ebb-tidal shoal showing the location of the instrument frames (red circles) and pressure sensors
(black circles). The dotted and dashed lines represent the −5 m and −10 m contour lines, respectively.

Table 1. Overview of measurement locations, the mean depth and sensor height above the bed as
deployed in the field, and the quantities which were measured (p stands for pressure, and u and v are
the horizontal components of the velocity field).

Location Depth (m) Sensor Height (m) Measurement

P1 10.4 0.5 p
P8 9.5 0.5 p
F4 8.5 0.5 p, u, v
P3 8.2 0.5 p
P5 7.9 0.5 p
F5 6.6 0.5 p, u, v
P7 5.3 0.5 p
P2 4.3 0.5 p
P4 4.6 0.5 p
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4.2. Data Processing

Measured pressure is expressed in meters of water column by dividing by ρg, in which ρ is the
density of sea water (=1025 kg/m3) and g the gravitational acceleration (=9.81 m/s2). For two reasons
it is chosen not to reconstruct the surface elevation accounting for wave-induced pressure attenuation
with depth: First, wave shape-induced sediment transport is driven by the near-bed wave shape.
Second, reconstructing the surface elevation from the near-bed pressure requires the use of a transfer
function that generally relies on linear wave theory. This introduces uncertainty, particularly in the
high frequency range, where the bound higher harmonics are found. As a result, wave heights referred
to in this paper are actually pressure-head derived wave heights, meaning that the actual wave height
as would be observed at the surface is slightly larger.

Hourly time series are subdivided in 71 semi-overlapping blocks of 100 s. Subsequently, the
spectrum, bispectrum, and bicoherence are estimated with 142 degrees of freedom (Equations (2),
(5) and (6)). The wave height (Equation (4)) and peak period Tpeak = 1/ fpeak are computed from the
spectrum in which fpeak is the frequency at which the variance is maximum. The observed bound
wave height is computed following the method of HEG94 (Equations (17) and (18)). The focus
is on the bound variance present in the superharmonic frequency range that originates from sum
interactions between frequencies in the sea-swell range. Therefore, interactions involving components
in the infragravity range should be excluded. This is done by using a frequency cut-off separating
sea-swell and infragravity wave frequencies, here defined as fpeak/2 following Roelvink et al. [49].
Hence, the index mmin is defined such that fmmin = fpeak/2.

At F4 and F5, where collocated pressure and velocity signals are present, the 2D
frequency-directional spectrum is computed using the Maximum Entropy Method [65] with ∆θ = 5◦,
from which the energy-weighted mean direction θ and directional spreading σθ are computed. In
this paper, directions are presented in a Cartesian convention, thus the direction in which the wave
is propagating is measured counterclockwise from the east. At the other locations, the normalized
directional distribution of the closest frame is used in order to construct the 2D spectrum from the
measured pressure spectrum using Equation (3). Subsequently, at all locations the predicted bound
wave height is obtained using Equations (11) and (12). In order to make a fair comparison between
the predicted and observed bound wave heights, they need to be calculated over the same frequency
range, such that the same triad interactions are included in both estimates. This is done by using
the same index mmin as described in the previous paragraph. The uncertainty introduced by using a
nearby directional distribution Θ on the calculation of Hb,pred is discussed in Section 6.1.1.

In a few rare occasions, some minimal variance (at most 10% of the total) is present in directional
bins opposing the peak incoming wave direction. These could not be explained by the concurrent
wind conditions nor crossing sea states, and are most likely an artifact of the method used to construct
the frequency-directional spectra. As the nonlinear interaction coefficient can be orders of magnitude
stronger for opposing wave components [66], this minimal amount of variance can adversely affect
the bound wave height prediction. Furthermore, these opposing components do not contribute to the
sea-swell wave shape of interest because their bound wave length is much longer than the primary
waves. Therefore, contributions to the predicted bound wave height for interactions with D < 0 are
not taken into account.

The tidal current is a ubiquitous feature on an ebb-tidal delta. Its presence causes a shift between
the absolute frequency ω and relative frequency σ, the Doppler shift. Formally wave theories, as used
by Hasselmann [38], are valid in a moving frame of reference [67,68], thus using the relative frequency.
This requires, however, that the current magnitude in direction of wave propagation is known, which
is not the case at the seven standalone pressure sensors. Estimating the current in the direction of wave
propagation Un at these locations would require a number of assumptions on wave refraction and the
evolution of the current over the complex bathymetry. Therefore, it is decided to use ω at all sensors
to compute k using the linear dispersion relationship. Subsequently, ω and k are used to determine
D. The mismatch in frequency and wavenumber at the frames where velocities are measured is on
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average 3% and at most 10%. This mismatch is expected to be larger at the shallower sensors where
k and Un are both expected to increase. The uncertainty on Hb,pred introduced by this mismatch is
discussed in Section 6.1.2.

Wave shape parameters (Sk, As, and S) are calculated from the bispectrum
(using Equations (8)–(10)). In order to obtain the wave shape associated with bound superharmonics
and to be consistent with the bound wave height formulations, only interactions in the bispectrum
with f > fpeak/2 are included.

4.3. Data Selection and Overview

For this study, it is chosen to only present cases in which the wave height at P1 exceeds 0.5 m.
Cases with a lower wave height showed a negligible amount of bound variance as well as near-zero Sk
and As, and are therefore disregarded in this paper. After this data selection, a total of 347 one-hour
cases are included in this study. The majority of these cases (287) occurred during two storm events
that coincided with the field campaign. To give an idea of the conditions, the wave height, period,
direction, and mean water level at F4 during these two storms are shown in Figure 2. Another 60 cases
outside of these storms are included, which occurred during four smaller events with 0.5 < Hm0 < 1 m.
For analyses involving all sensors, the total number of data points is 3123.

Figure 2. Overview of Hm0 (a,b), Tp (c,d), θ (e,f), and the mean water level η̄ (g,h) at F4 during storm 1
(left column) and storm 2 (right column).

5. Results

5.1. Spatial Evolution of the Spectrum and Bispectrum

This section discusses the spatial evolution of the spectrum, bispectrum, and associated wave
statistics. First, results are shown for a single burst on 4th October, 12:00 (Figure 3) representing
storm conditions with a Hm0 of 1.9 m, a Tp of 10 s, and a mean direction θ of −72◦ around slack tide.
Subsequently, all bursts are combined in order to analyze general trends and the variability from these
trends for all locations (Figure 4).

Figure 3 shows the wave spectra (panels (a–d)) as well as the real (panels (e–h)), and imaginary
(panels (i–l)) parts of the bispectra at four locations along the main transect (see Figure 3p for the
position of the selected sensors). As expected in these energetic conditions, waves break when they
reach the outer slope of the ebb-tidal shoal resulting in significantly lower variance levels at the
shallowest sensors P2 and P4 (Figure 3c,d) than at F4 and F5 (Figure 3a,b). In addition to the primary
sea-swell peak at fpeak = 0.1 Hz, two secondary peaks can be clearly identified at the deepest selected
locations, one in the infragravity range ( f < fpeak/2), reaching maximum variance below 0.02 Hz, and
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another one around 0.2 Hz, i.e., at 2 fpeak. The large (absolute) values of the real and imaginary part
of the bispectra around ( fm, fn) = (0.1 Hz,0.02 Hz) and (0.1 Hz,0.1 Hz) indicate that variance at these
secondary peaks is, at least partly, nonlinearly coupled to the sea-swell primary peak. In the following,
we focus on interactions between sea-swell frequencies as they are responsible for the buildup of
the bound super harmonic variance. This means that interactions involving infragravity waves are
excluded from further analysis. The importance of properly separating infragravity and sea-swell
variance can be understood by looking at the bispectrum at for instance F4. Including interactions
containing one frequency in the infragravity wave range and one in the sea-swell range (blue part in
Figure 3e and red part in Figure 3i) would lead in this case to a lower (higher) integrated value for
<{B} (={B}), modifying not only skewness and asymmetry but also the bound wave height estimate
(see Equations (8), (9), (17) and (18)).

The magnitude of the real and imaginary parts of the bispectrum varies significantly along the
transect (see changes in color scale in Figure 3e–l). At F4 and F5, the real part of the bispectrum is
positive over the entire sea-swell range and of considerably larger magnitude than the imaginary
part. This suggests that sea-swell waves are skewed, but not asymmetric, which is common for waves
in deeper water that are not close to the breaking limit. At P2, the real and imaginary parts of the
bispectrum are of the same order of magnitude, with <{B} positive over the full sea-swell frequency
range and ={B} mostly negative. This means that waves are both skewed and asymmetric (saw-tooth
shaped) at this location. Moreover, the consistently negative value of ={B} around ( fpeak, fpeak) at
F4, F5, and P2 indicates that variance is being transferred from fpeak to the sum frequency 2 fpeak
along most of the transect4, including at P2 where waves are already breaking. This nonlinear energy
transfer contributes to the observed growth in variance of the first higher harmonic (2 fpeak) from F4
to P2, although other processes, such as (linear) shoaling and the changes in wave-induced pressure
attenuation with depth also play a role. Finally, at P4, i.e., landward of the shallowest point of the
ebb-tidal shoal, the magnitude of both ={B} and <{B} has significantly decreased while the total
variance stays close to the one observed at P2. This suggests a weaker nonlinear coupling, and thus a
decrease in bound wave variance, as well as more linear wave shapes.

These trends are confirmed when looking at the evolution of the integrated wave statistics for all
nine sensors (Figure 3m–o). Initially, the total sea-swell wave height Hm0 very gradually increases from
P1 to F5 before significantly decreasing from F5 to P2 (Figure 3m). The bound superharmonic wave
height, Hb,obs, increases at a much higher rate than Hm0 as waves propagate over decreasing water
depth (Figure 3n), which is consistent with the variance increase observed at 2 fpeak in Figure 3a–c.
Interestingly, Hb,obs keeps increasing beyond F5, while the total sea-swell wave height Hm0 is already
decreasing due to breaking. Hb,obs finally decreases from P2 to P4 while Hm0 stays almost constant.
This suggests a release of bound higher harmonics over the shoal, as was observed under laboratory
conditions by Beji and Battjes [69].

Finally, the evolution of the dimensionless wave shape parameters is visualized in Figure 3o.
The skewness (Sk) gradually increases while moving into shallower water towards a maximum at P2
before it starts decreasing. In contrast, the asymmetry (As) is near-zero for most locations and is only
of significance at P7 and P2, the two locations where the wave height is significantly decreasing and
where the portion of breaking waves is expected to be the largest. As a consequence, the combined
nonlinearity parameter S is close to the Sk except for P7 and P2, where the contribution of the As
makes S slightly higher than Sk.

4 Different sign conventions can be found in the literature for the imaginary part of the bispectrum. In the present paper,
we adopt the same representation as Norheim et al. [33], in which a negative value of ={B( f1, f2)} is indicative of an
energy transfer from f1 and f2 to f1 + f2. Note that the opposite convention is used in, e.g., Herbers and Burton [39]
and De Bakker et al. [51].



J. Mar. Sci. Eng. 2020, 8, 643 11 of 26

Figure 3. Characterization of the wave field for a selected burst on 4 October 2017 at 12:00. Panels (a–l)
show the spectrum (a–d), real part of the bispectrum (e–h) and imaginary part of the bispectrum (i–l)
at locations F4, F5, P2, and P4. Panels (m–p) show the evolution of the sea-swell wave height Hm0

(m); the observed and predicted bound wave height in the super harmonics, Hb,obs and Hb,pred (n);
and dimensionless sea-swell wave shape parameters Sk, As, and S (o) at all locations (see panel (p)
for information on the deployment depths). The dashed lines in the spectra and bispectra indicate
fpeak, the dotted lines fpeak/2 and 2 fpeak. The thick black diagonal lines in the bispectra are the
symmetry lines. Note that the limits of the color scales for the bispectral plots are not all the same.
The bathymetry of the main transects is shown in panel p, with ± one standard deviation indicated
by black dashed lines representing bathymetric variability for cases with non-oblique incoming wave
directions (−45◦ < θ < 45◦). Sensor locations are indicated by the red (if sensor is on main transect)
and white boxes (if sensor is not on main transect; sensor is placed such that the mean depth is the
same as the depth on the main transect).

The data analysis as presented above for the single case on 4th October is performed for all cases
and the wave statistics and their variability is shown in Figure 4. The data is divided in two groups
based on the significant wave height at the most offshore location (P1). Group 1 (black lines in Figure 4)
contains all cases with 1 ≤ Hm0,P1 ≤ 2 m and Group 2 (red lines in Figure 4) contains all cases with
Hm0,P1 ≥ 2 m. As expected, larger offshore waves (Figure 4a) lead to larger bound waves (Figure 4b)
and more nonlinear wave shapes (Figure 4d). This figure also confirms the difference in the spatial
evolution of Hm0 and Hb,obs observed already for the single data burst presented above. It shows that
for the energetic cases (Group 2), the maximum value of Hb,obs is systematically found in the area
where Hm0 is already decaying due to breaking.
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Figure 4. The spatial evolution of averaged wave statistics: Hm0 (a), Hb,obs (b), Hb,pred (c), and S (d)
along the main transect (e) for Group 1 (black lines, 1 m ≤ Hm0,P1 ≤ 2 m) and Group 2 (red lines,
Hm0,P1 ≥ 2 m). The error bars indicate ± one standard deviation. For a description of the bathymetric
transect (e) see the caption of Figure 3.

5.2. Predicted and Observed Bound Wave Height

The evolution of Hb,pred across the measurement transect is displayed in Figure 3n for the earlier
selected burst and in Figure 4c for the entire dataset. From these figures, it can be seen that Hb,pred
increases at a similar rate as Hb,obs up to sensor P7, where they both reach their maximum values
but that the mismatch between predicted and observed bound wave heights increases when the
depth decreases. After P7, the trends exhibited by Hb,obs and Hb,pred differ more significantly, with in
particular a much stronger decrease in Hb,pred than in Hb,obs when waves propagate from P7 to P2.

Overall, these first comparisons suggest that the ability of Hasselmann’s [38] theory to predict the
bound wave height, as implemented in Section 3.1, varies spatially. To examine this in more detail, the
data is clustered in three regions: the shelf (P1, P8, F4, P3, and P5), the seaward slope (F5 and P7), and
the ebb-tidal shoal (P2 and P4). Figure 5 shows the observed bound wave height as a function of the
predicted bound wave height for these different regions.

At the shelf (Figure 5a), the predicted bound wave height is very similar to the observed bound
wave height with a strong correlation coefficient (R2 = 0.94) and a linear regression slope of 0.96
suggesting that the observed bound wave response is in equilibrium with the local sea-swell forcing.
At the steeper seaward slope (Figure 5b), the correlation between the predicted and observed bound
wave height is still high (R2 = 0.93), but the slope of 1.11 reveals a slight overestimation of the
predicted bound wave height. This over prediction is consistent with nonequilibrium conditions
where at the steeper part of the slope waves experience rapid changes in depth inhibiting the higher
harmonics to fully develop.

On top of the shoal and right behind it (Figure 5c) the predicted bound wave height deviates
significantly from the observed bound wave height (lower correlation coefficient R2 = 0.72 and a
slope of 0.80). Although this linear regression slope indicates an underestimation of the predicted
bound wave height on average, Figure 5c shows that the predicted bound wave height is both under-
and overestimated, depending on the conditions. At these relatively shallow locations the changes in
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sea-swell conditions are controlled by wave breaking, rapid refraction and wave current interaction
and as such the equilibrium theory of Hasselmann [38] is not expected to hold. The errors introduced
by currents, wave breaking, and directionality, and their effects on the predicted bound wave height
are further discussed in Section 6.1.

Figure 5. Predicted bound wave height as a function of the observed bound wave height at the shelf
(panel a: P1, P8, F4, P3, and P5), the seaward slope (panel b: F5 and P7), and the ebb-tidal shoal (panel
c: P2 and P4). The red dashed line has slope 1.

5.3. Wave Shape as a Function of Observed Bound Wave Height

The relationship between the wave shape and bound wave height is examined next.
Figure 6 shows the dimensionless combined wave shape parameter S as a function of the
dimensionless predicted and observed bound wave height over sea-swell wave height ratios
Hb,obs/Hm0 and Hb,pred/Hm0, respectively. There is a very strong correlation, R2 = 0.99, between
the wave shape and the observed bound to total wave height ratio (Figure 6a). This strong relation
between S and Hb,obs/Hm0 was expected, as S and Hb,obs/Hm0 are both computed by summing over
the bispectrum and subsequently normalizing by the variance to some power. More specifically, S is
obtained after dividing by the variance to the power 3/2 (see Equations (8) and (9)), while the bound
wave height ratio is obtained after division by the significant wave height, i.e., the variance to the
power 1/2. The strong relation between S and Hb/Hm0 suggests a mathematical connection between
the two variables that still needs to be established. The small scatter around the best fit line can be
partly explained by the reliability of the estimated spectrum and bispectrum. Additional tests (not
shown) have indeed revealed that the scatter decreases for increasing number of degrees of freedom
(DOFs). Although this relationship between dimensionless wave shape and bound wave height may
seem trivial, to the authors knowledge, it has not been presented before.

The correlation between wave shape and bound wave height deteriorates significantly using
the predicted bound wave height, Hb,pred (right panel of Figure 6) with R2 = 0.80. The observed
scatter is related to the mismatch in predicted bound wave height with respect to the observed
bound wave height (presented in Figure 5). Although scatter is present, the predicted value is
reasonable for cases with a low proportion of predicted bound wave height Hb,pred/Hm0 < 0.15.
For cases with a higher proportion of predicted bound wave height, the scatter increases, and thus the
predictive skill decreases accordingly. It is for those cases where other commonly used wave shape
parametrizations based on equilibrium conditions [25,26,28] also struggle to accurately predict the
wave shape. Here, improvements in wave shape predictions can be readily obtained with better model
predictions of the bound wave height ratio, as is evident from the comparison of the panels in Figure 6.
Once the error in the predicted bound wave ratio is understood, it opens up the avenue for future
modeling perspectives as discussed in the next section.
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Figure 6. Dimensionless wave shape as a function of the dimensionless observed bound wave height
(a) and the dimensionless predicted bound wave height (b).

6. Discussion

6.1. Errors in Determining the Predicted Bound Wave Height

Despite the fact that there is an acceptable agreement between the predicted and observed bound
wave height in deeper water, a significant mismatch between the two is observed once it gets shallower
(see Figure 5). In this latter part, the effects of directional spreading, ambient currents, and wave
breaking on the prediction of the bound wave height are prevalent and discussed next.

6.1.1. Directional Spreading

A source of uncertainty is introduced by the assumptions required to obtain the frequency
directional spectrum at the locations where velocities were not measured. A marginal spatial difference
in directional spreading is observed between F4 and F5 (root mean squared difference is 4◦), from
which it can safely be assumed that the directional distribution at the other deeper located pressure
sensors (P1, P8, P3, and P5) will not be too different. At the shallower locations (P7, P2, and P4),
however, significant changes in depth and currents could lead to both an increase or decrease of
the directional spreading. Easy ways to compute the refraction commonly rely on parallel depth
contours are not applicable in this study due to the complex bathymetry. Therefore, this section
discusses the effect a larger or smaller directional spreading has on the subsequent computation of
Hb,pred (Equation (12)).

A study by Herbers et al. [70] observed a maximum difference in directional spreading of 10◦

along a cross-shore transect in the nearshore zone. This study was conducted in shallower and more
nonlinear environment than our field campaign. Therefore, it is assumed that a mismatch of 10◦ in
directional spreading is an upper limit. The normalized directional distribution Θ is adapted such
that the observed directional spreading is varied by plus or minus 10◦. This is achieved by taking the
observed directional distribution to the power p and subsequently normalize it again to ensure that
the sum of Θ is one for each frequency bin and hence the frequency distribution of the variance is not
being affected:

Θnew =
Θp

∑ Θp . (19)

p > 1 gives more weight to the energetic directional bins, making the directional distribution
narrower and thus decreasing the directional spreading. Conversely, p < 1 results in an increased
directional spreading. For each burst, p is obtained using an optimization routine to obtain the desired
10 degree increase or decrease in the observed directional spreading. Figure 7 shows that an increased
or decreased directional spreading of 10◦ leads to an underestimation of 8% and an overestimation of
9% of Hb,pred, respectively. Because a difference in directional spreading of 10 degrees is expected to
be an upper limit in this location, the error introduced by using a wrong directional distribution is
less than 9%.
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Figure 7. Predicted bound wave height Hb,pred,σθ±10◦ calculated for an increased (red: +10o) and
decreased (blue: −10o) directional spreading over the original bound wave height prediction Hb,pred as
a function of Hb,pred for all sensors.

6.1.2. Current

Tidal inlets are characterized by strong ebb and flood currents. It is known that these currents
affect the wave dynamics due to wave current interaction and lead to a Doppler shift. This Doppler
shift describes the difference between the absolute frequency ω (as observed at one fixed location) and
the relative frequency σ (as observed in a frame of reference moving with the current):

ω = σ + kUn (20)

in which Un is the current magnitude in direction of wave propagation. In absence of an ambient
current σ = ω, whereas in presence of following (Un > 0) and opposing (Un < 0) currents σ < ω and
σ > ω, respectively. A given observed absolute frequency thus results in a smaller wavenumber k for
following than for opposing currents.

The nonlinear interaction coefficient D, as used in Equation (12), is higher for longer waves (lower
σ and k) than for shorter waves. However, as no reliable estimates of the current magnitude and
direction were available at most measurement locations, ω and the corresponding k were used to obtain
Hb,pred without taking into account the tidal current. This could lead to an over or underprediction of
Hb,pred depending on the current direction.

The influence of the current on the over and under prediction of Hb,pred is visualized in Figure 8,
where the color of the data points indicates following currents (red dots: Un > 0.1 m/s), no currents
(gray dots: −0.1 m/s < Un < 0.1 m/s), and opposing currents (blue dots: Un < −0.1 m/s).
The current direction, magnitude, and wave direction at F4 are used to distinguish the different current
conditions because the most reliable directional estimates were obtained at that location.

At the deeper sensor F4, no clear correlation is seen between the over and under prediction of
Hb,pred and Un (Figure 8a). However, the shallower it gets, the more evident the effect of the current on
the over- and underprediction of Hb,pred is (Figure 8b–d). The reason why the influence of the ambient
current is more significant in shallower water, is related to the relative importance of the Doppler shift.
This importance is described by the ratio kUn/σ or as Un/c in which c is the wave celerity. In deeper
water, the current magnitude is lower and the celerity is higher, resulting in a marginal influence of the
current. However, in shallower water, the current magnitude increases whereas the celerity decreases,
making the importance of including the current more and more important.

To separate the possible effect of wave breaking from current effects in shallower water, sensor P4,
located in a deshoaling zone and as such only marginally affected by wave breaking, is examined in
more detail. At P4 (Figure 8d), for cases with a following current, on average the ratio of Hb,pred/Hb,obs
is 0.78, whereas for cases with an opposing current this ratio is 1.38. Therefore, a significant part of
the scatter observed in Figure 5c is related to the under- and overestimation of Hb,pred for opposing
and following conditions, respectively. Hb,pred is under predicted in following current conditions, as
the waves are actually longer than measured at the fixed measurement location. These longer waves
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should have a higher D and thus a higher predicted bound wave height. Vice versa, in opposing
current conditions, the waves are shorter than measured, so Hb,pred is overpredicted.

Figure 8. Hb,pred as a function of Hb,obs at F4 (a), P7 (b), P2 (c), and P4 (d) where the color indicates the
current in direction of wave propagation Un (blue = opposing currents, red = following currents).

6.1.3. Wave Breaking

In the following, (near-)breaking conditions are defined as bursts for which As < −0.2. Using
this criterion most wave breaking is observed at P7 and P2. To eliminate the previously discussed
effect of the current at these two locations, a subset of 175 bursts is considered where the current in
direction of wave propagation is negligible (|Un| < 0.1m/s), of which 53 and 50 meet the breaking
criteria at P7 and P2, respectively. At P7, Hb,pred is higher than Hb,obs for 43 out of 53 breaking cases
with an average over estimation of 13% (see Figure 9a). In contrast, at P2 Hb,pred is lower than Hb,obs
for 47 out of 50 cases with an average under estimation of 23% (see Figure 9b).

Figure 9. Hb,pred as a function of Hb,obs at P7 (a) and P2 (b) for the subset of data with small currents
(|UN | < 0.1 m/s) with black markers for (near-)breaking conditions (As < −0.2) and gray markers for
non-breaking conditions.

A probable cause for the overestimation of the breaking waves at P7 was already discussed
in Section 5.2, where it was explained that the wave shape can not instantly change in the rapidly
changing bathymetry. The underestimation at P2 also seems to be related to the rapidly changing
conditions. Due to wave breaking, significant energy loss is seen in the primary wave components.
As Hb,pred is proportional to the primary wave energy (Equation (12)), it decays at approximately the
same rate as Hm0. It is known, however, that breaking conditions coincide with negative asymmetry,
thus a negative imaginary part of the bispectrum, and as a result nonlinear energy transfers towards
the bound higher harmonics. Therefore, although Hm0 is decaying due to wave breaking, this positive
energy transfer can lead to a growth of Hb,obs. Additional support for this explanation can be found in
Figure 4. Here, for the highly energetic cases (red lines) only a minor decrease in Hb,obs is observed
from P7 towards P2, whereas the decay in Hm0 and Hb,pred is much stronger. The fact that Hb,obs
decreases does not conflict with the earlier mentioned positive nonlinear energy transfer because the
spatial change in variance is also affected by wave breaking, shoaling, and depth attenuation of the
pressure signal.
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6.1.4. Overall Validity of Equilibrium Bound Wave Height Theory

In the previous sections it is shown that a small amount of error in Hb,pred is introduced by the
unknown directional distribution at the shallow sensor but that more error is introduced when strong
currents are present or when conditions are (near-)breaking. However, even when excluding cases
with a strong current or (near-)breaking conditions, still a significant under or over estimation of
Hb,pred is observed. This is related to the validity region of the wave theory used by Hasselmann [38].

Many different definitions can be found in literature for the applicability region of the second
order wave theory. Most of these describe the validity as a function of the Ursell number (see, e.g.,
in [71–73]), a dimensionless nonlinearity parameter. Here, we follow the definition as provided
by Ruessink et al. [28]:

Ur =
3
8

Hm0

k2d3 (21)

Le Méhauté [74] showed that second order theory is only valid for Ur < 0.1. Madsen [75],
Guza and Thornton [76] found a different value of Ur = 0.25, based on the argument that second
order theory performs well as long as the secondary amplitude is at least 4 times smaller than the
primary amplitude. According to Hedges [68], however, second-order Stokes theory can be used until
Ur = 0.38. To investigate the consistency between the second order wave theory validity regions
and the findings from our study, the RMSE between Hb,pred/Hm0 and Hb,obs/Hm0 is calculated for
cases with low nonlinearity (Ur < 0.25) and high nonlinearity (Ur > 0.25). The threshold of 0.25 is
used as it is an average of values found in literature. It is chosen to present the RMSE between the
dimensionless wave height as this is used as a predictor for the wave shape. Cases with ambient
currents and (near-)breaking conditions are excluded for the calculation of the RMSE. The RMSE
between Hb,pred/Hs and Hb,obs/Hs is only 0.012 for cases with Ur < 0.25 whereas it is 0.050 for cases
with Ur > 0.25, showing that the validity of second order wave theory also restricts the predictive
skills of the bound wave shape.

In conclusion, it can be said that the wave shape can be accurately predicted using second order
wave theory as long as waves are not breaking and nonlinearity is not too high. Furthermore, a proper
prediction of the bound wave height requires directional information and, in presence of strong
currents as in this study, information about the current field to properly account for the effect of the
Doppler shift on the wavenumber.

6.2. Applicability in Different Areas

The disadvantage of many wave shape parametrizations is that they are site-specific, which means
that they are only applicable for certain locations or conditions. In order to test the applicability of the
findings of this paper, two additional datasets are analyzed. Although the SEAWAD dataset covers a
wide range of conditions, it is limited in two ways: First, the shallowest sensors were in a mean water
depth of 4 m, which limits kd to a minimum value of 0.4. Second, the wave periods observed during
the campaign were rather short due to the fetch-limited conditions which are typically found in the
North Sea. The two datasets that are used to validate the relationship between bound wave height and
wave shape are the COAST3D [77–79] and SandyDuck [80,81] campaigns.

The COAST3D data was collected during a 6-week field campaign that took place at the beach of
Egmond aan Zee in the Netherlands. It is thus mostly dominated, as SEAWAD, by wind-sea waves
(Tp = 6–12 s) but includes data in shallower depths. The SandyDuck dataset includes on the other
hand 5 weeks of measurement along the North Carolina coast, and is therefore characterized by longer
and more regular swell waves (Tp = 12–20 s).

For both datasets, all bursts corresponding to a mean water depth below 0.5 m are discarded to
exclude data that could be intermittently dry. For COAST3D, this selection results in a total of 5015
one-hour long pressure timeseries collected at nine locations in a mean depth ranging between 2.1
and 5.2 m. For SandyDuck, this means that a total of 1115-hour-long time series from seven pressure
sensors are analyzed, covering a water depth range from 0.7 to 4.0 m.
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The relationship between the dimensionless observed bound wave height and the dimensionless
wave shape is presented in Figure 10 for the three campaigns. Note that observations at multiple
locations are combined per campaign. For all campaigns the correlation coefficients are larger than
0.98, confirming the relationship between the bound wave height and wave shape. Furthermore, the
slope of the linear regression line is fairly similar, between 2.7 and 2.8, indicating that the relationship
between these two parameters is not specific to a certain area or conditions. This shows that the
wave shape is known if it is possible to predict the bound wave height, independently of the area or
conditions. The best linear fits between S and Hb,obs (red lines in Figure 10) are presented for each
field campaign. It can be seen that slightly more scatter is present for data points from the shallower
field campaigns. The points that deviate the most from the relationship are shallow cases, in which
significant infragravity variance was present in the spectrum (not shown).

Figure 10. Dimensionless wave shape as a function of the dimensionless observed bound wave height
for the SEAWAD (a), COAST3D (b), and SandyDuck (c) field campaigns. The red lines are the best
linear fit through the origin per campaign.

6.3. Future Modeling Perspective

This paper shows that there is a direct relationship between the bound wave height and the wave
shape regardless of location or type of conditions (see Figure 6). Therefore, with a properly predicted
spatial and temporal evolution of the bound wave height the wave shape is known, which would in
turn be instrumental for accurate calculations of the wave shape induced sediment transport [1,82,83].
Predictions of the equilibrium-bound wave height using second-order finite depth wave theory [38]
proved to be accurate in relatively linear conditions (Ur . 0.25). In more nonlinear conditions, and
where significant changes in bathymetry and wave conditions are observed, there is a clear mismatch
between the predicted and observed bound wave height. Although using higher order wave theories
to predict the bound wave height might stretch the applicability region, it will not be able to capture
non-local aspects that influence the bound wave height and associated wave shape. This omission
can be overcome by using an evolution equation for the bound wave height taking into account
bathymetric variability. In the following we discriminate between large scale phase-averaged models
and more detailed phase-resolving models.

The effects of waves in large-scale morphodynamic models are commonly accounted for by
phase-averaged spectral models (see, e.g., in [14,16]), which calculate the evolution of the variance
spectrum in time and space. The energy transfers to the higher harmonics due to nonlinear triad
interactions can be included using a source term function Snl3. This source term has been derived
from the bispectral evolution equations and is a function of the variance spectrum and a parametrized
form of the biphase (see, e.g., in [26,84]). The Snl3 source term is extensively studied in recent years
and has led to more and more reliable predictions of the nonlinear energy transfers in spectral wave
models [40,41]. Therefore, essentially, the variance that is transferred to the higher harmonics (bound
variance) is known and the bound wave height can be estimated by integrating this energy transfer in
the down-wave direction. In this way, the evolution of the bound wave height is taken into account
with the expectation that this will lead to a significant improvement of wave shape predictions in
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the shoaling zone, where the proportion of bound harmonics is consistently growing. When the
bound higher harmonics are released and/or their variance decays due to wave breaking, this simple
integrative approach is expected to yield less accurate results. Further improvements in estimating
the wave shape can be achieved by modeling the effects of these processes on both the spectrum
and bispectrum in order to be able to more accurately predict the bound wave height in all areas
and conditions.

Alternatively, the evolution of the bound wave height can be obtained from more detailed
phase-resolving models. These can be divided in time-domain and bispectral models. The former
resolve the spatial evolution of the surface elevation, pressure, and velocities in time (see, e.g.,
in [85–89]). The latter resolve the spatial evolution of the spectrum and bispectrum (see, e.g.,
in [33,37,39]). For these type of models, the computation of the bound wave height as a wave shape
predictor is unnecessary as the skewness and asymmetry can directly be obtained from the time series
or bispectra that are provided by these models. Unfortunately, high computational times of such
models prevent their usage to drive large-scale morphodynamic models. However, these detailed
models can be used to study in detail the release of higher harmonics and (bi)spectral decay due to
wave breaking and their effect on the evolution of the bound wave height. Subsequently, these effects
can be included in the phase-averaged spectral models by modifying the Snl3 source term to improve
bound wave height and wave shape predictions in complex systems where equilibrium conditions do
not hold.

7. Conclusions

This paper shows that bispectral analysis of time series can be used to calculate the observed
bound superharmonic wave height. In this study the method is applied to near-bed pressure time
series, but it is also applicable for surface elevation or velocity time series. Despite several references in
literature that such a methodology is not straightforward [36,56–58], we found that summing over the
bispectrum in a similar way as is done by Herbers et al. [52] for the bound subharmonic wave height,
provides sufficient statistical reliability to obtain the bound superharmonic wave height from one hour
time series. This does require that the methodology is restricted to the sea-swell frequencies and that
this part of the bispectrum is dominated by positive sum interactions determining the bound wave
height. In case difference interactions or negative sum interactions of crossing sea states contribute
significantly to the bispectrum, the methodology should be treated with more care because the positive
and negative contributions to the bispectrum might cancel each other out leading to an underestimation
of the observed bound wave variance.

By using measurements at nine locations in the vicinity of an ebb-tidal shoal, a clear relationship
(R2 = 0.99) is found between the normalized observed bound wave height and the dimensionless
sea-swell wave shape: S ≈ 2.75 Hb,obs

Hm0
. As the same relationship is found for two other datasets that were

collected along sandy beaches respectively dominated by wind-sea and sea-swell wave conditions,
we conclude that it is insensitive to the environmental conditions. Thus, the wave shape is known at
locations where we know the bound wave height. Knowing the wave shape at any given location
would significantly increase morphological modeling capabilities because the wave shape induced
sediment transport is resolved more accurately. However, as time series are not available in commonly
used phase-averaged models, the bound wave height can not directly be computed. As an alternative,
the bound wave height can be predicted using second-order wave theory by assuming equilibrium
conditions [38]. From the analysis of the field data, it is concluded that the method of Hasselmann [38]
is accurate in deeper water, but fails to accurately predict the bound wave height in (near-)breaking
conditions or when nonlinearity is so high that second order wave theory is invalid. The accuracy of the
predicted bound wave height is significantly improved if besides pressure also velocity measurements
are known as the estimates are strongly dependent on the directional spread of the incoming sea-swell
wave field.
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To improve future model capabilities, a next step is to add the evolution equation of the bound
wave variance to spectral wave models. By including this evolution equation the bound wave height
will be better predicted than using the method of Hasselmann [38] because it allows deviations from
equilibrium conditions, which is key when considering wave transformation over rapidly changing
bathymetry. The triad source term Snl3, which is already included in such models, can be used as a
source term for the bound wave variance. One of the challenges ahead is how to take into account the
decrease of bound wave variance due to wave breaking and the release of bound superharmonics.
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Appendix A. Accuracy of Bound Wave Height Formulations

Two formulations were presented in Section 3.2 to estimate the bound superharmonic wave height
from measured wave records, based on the work in [59] (KP79, Equation (15)) and in [52] (HEG94,
Equation (18)). In the following, we evaluate the accuracy of these methods using a synthetic dataset
of known bound variance content. The methodology followed to create the synthetic data is outlined
in Appendix A.1. As both formulations involve integrations over the spectrum and bispectrum, the
outcome is expected to depend on the reliability of the (bi-)spectral estimates and thus on the number of
degrees of freedom (DOFs) in their calculations. The accuracy of the bound wave height formulations
is thus evaluated in Appendix A.2 for varying degrees of freedom.

Appendix A.1. Synthetic Timeseries

Several realizations of a nonlinear sea-state, chosen to be representative of the conditions typically
measured at our field site, are generated using second-order wave theory. Each of these realizations
has a duration of 100 s and is written as:

η(t) = ηprimary(t) + ηsuper(t)

in which ηprimary and ηsuper are the surface elevation time series corresponding to the primary wave
field and its first harmonics, respectively. The primary wave field is generated such that the variance
P( fm) at each discrete frequency fm follows a JONSWAP shape with Hm0 = 1 m, Tp = 6 s, and an
enhancement factor γ = 3.3. From the variance spectrum the complex amplitudes are constructed as
A( fm) = a( fm)eiφm with a( fm) =

√
P( fm) and for each realization the phase at each frequency φm is

randomly picked between −π and π using a random-phase model. Eventually, the primary wave
surface elevation is generated as

ηprimary(t) =
N

∑
m=−N

(
1
2

A( fm)e−2πi fmt +
1
2

A∗( fm)e2πi fmt
)

(A1)
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where fm = m∆ f with ∆ f = 0.01 Hz and N = 500. The super harmonics are then generated using the
second-order theory of [38]:

ηsuper(t) =
N

∑
m=−N

N

∑
n=−N

D( fm, fn, 0, 0, d)
(

1
2

A( fm)A( fn)e−2πi fm+nt +
1
2

A∗( fm)A∗( fn)e2πi fm+nt
)

(A2)

where D is the interaction coefficient introduced in Equation (11), calculated for a depth d = 5 m.
The target bound wave height of the time series is computed as

Hb,t = 4

√√√√ N

∑
m=−N

N

∑
n=−N

D2P( fm)P( fn) (A3)

It should be noted that the bound wave height directly computed from the variance of the
constructed time series (Equation (A2)) slightly deviates from the target bound wave height, because it
is only a single realization of finite duration. However, when averaged over a sufficient amount of
independently constructed time series, the ensemble-averaged bound wave height from those time
series is the same as the target bound wave height.

Appendix A.2. Formulations and Degrees of Freedom

When working with observations, the number of degrees of freedom is typically increased by
subdividing the measured timeseries in blocks before performing the spectral analysis or applying
frequency merging [61,90]. Here, the use of synthetic data allows us to generate several realizations
of our sea-state to estimate the expected values in the spectrum and bispectrum. The number of
degrees of freedom is therefore increased by increasing the number of synthetic time series used in the
calculations. The bound wave heights using Equations (15) and (18) for different DOFs are compared
to the a priori known bound wave height from the time series in Figure A1.

A common way to characterize the statistical reliability of the bispectrum and bicoherence
spectrum is to define the 95% bicoherence confidence interval, calculated as b2

95% =
√

6/d.o. f ..
If b2( fm, fn) > b2

95%, B( fm, fn) and b2( fm, fn) are considered statistically reliable (see, e.g.,
in [50,51,57,91]). To see what the effect of the bicoherence confidence interval is, Equations (15)
and (18) are additionally applied with and without discarding bispectral estimates with b2 < b2

95%
(solid vs dashed lines in Figure A1).

Figure A1. Calculated bound wave height using KP79 (Equation (15); blue line), HEG94 (Equation (18);
red line), KP79 with confidence interval (Equation (15); blue dashed-dotted line), and HEG94 with
confidence interval (Equation (18); red dotted line) as a function of the number of degrees of freedom.
Note that the blue dashed-dotted and red dotted line are on top of each other. The black dashed line
represents the a priori bound wave height.
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It can be seen that the KP79 method (blue lines) needs many more DOFs to converge to the correct
solution than the HEG94 method (red lines). This is because by first summing the bispectrum and
energies individually instead of summing the bicoherences, additional averaging is added, leading to
more reliable estimates for less degrees of freedom. If the bicoherence 95%-confidence interval is used
to discard values, both KP79 and HEG94 underestimate Hb. The underestimation is larger for few
DOFs, because of the large b2

95%-value that leads to the exclusion of many interactions where actual
bound variance is present (all of them for the smallest values). Reasonable estimates of the bound
wave height are only obtained with these methods for extremely large DOF values (>104).

The opposite behavior is seen for KP97 without a confidence interval. In that case the bound
wave height is overestimated for all considered DOF values. This overestimation originates from the
fact that, in this formulation, all interactions are considered, even the non-statistically significant ones,
and that all of these interactions contribute positively to the bound wave height estimate as it depends
on b2 (Equation (13)).
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