
Truck Routing for an Online
Grocer
Solving a Pickup and Delivery Problem
with Resource Constraints

Master Thesis Computer Science
Thomas Barendse

Truck Routing for an
Online Grocer

Solving a Pickup and Delivery Problem
with Resource Constraints

by

Thomas Barendse

To obtain the degree of Master of Science
at Delft University of Technology

to be publicly defended on April 21st, 2022 at 10:00 a.m.

Committee

Dr. N. Yorke‐Smith Supervisor TU Delft

G.C. Konijnendijk, MSc Supervisor Picnic

Dr. ir. J.T. van Essen Committee member

Dr. J. Alonso‐Mora Committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Demand for online grocer Picnic has increased exponentially over the past years, and their truck
transport operation must scale with it. Given the resource constraints at all warehouses, as well
as other specific restrictions, this poses a Multi Depot Pickup and Delivery Problem with Resource
Constraints, for which no good solutions are found to date. The goal of this thesis is to develop an
algorithm that provides good solutions to this problem within 30 minutes.

This thesis presents three solution methods to solve this problem. The first is an Adaptive Large
Neighbourhood Search (ALNS) algorithm closely related to earlier research. We propose a mechanism
with only linear time additional complexity to impose the resource constraint. We also demonstrate
ways to take additional constraints into account, such as minimum route duration and driver switches.
For the second method, dubbed ALNS+LS, we extend the ALNS with local search heuristics to enhance
its performance. As a third method, we propose a matheuristic novel to this specific problem class.
This consists of the ALNS+LS algorithm applied to the problem without resource constraints in the
first phase, and imposing the constraints using a Constraint Programming model in the second phase.
We show that the ALNS+LS outperforms the other two algorithms on a real‐life‐inspired benchmark
set, and that the matheuristic comes close to the ALNS+LS for small instances. We finally show that
the full problem is best solved by decomposing it into four parts and solving these separately.

iii

Acknowledgements

I am thrilled to present to you the work that marks the end of 7,5 years of studying at TU Delft. These
years have brought me from a BSc in Mechanical Engineering to a year of building a hydrogen‐powered
race car to an MSc in Computer Science, which I now conclude with a thesis aimed at improving truck
planning at Picnic.

In light of the latter, I first want to thank my TU Delft supervisor Neil Yorke‐Smith. You have given
me the freedom to shape this project, and always provided me with valuable ideas, pointers and
insights. I look back fondly on our collaboration for the past 9 months.

A second word of gratitude goes out to the people at Picnic, the company who gave me the oppor‐
tunity to work on this project. I want to thank in particular my Picnic supervisor Geert Konijnendijk.
You proved to be a great sparring partner, a calm, observant and smart person excellent at giving
feedback. I truly enjoyed working with you. Besides that, I want to thank the DIST team for embrac‐
ing me as a true team member. You, along with so many more people at Picnic, have made the past
9 months a lot of fun.

A final thank‐you goes out to my family and friends. To my parents in particular for their unconditional
pride, for always keeping me sharp to obtain the best results and for their continuous support.

All I now have left to say is: have fun reading.

Thomas Barendse
Delft, April 2022

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem statement. 1
1.2 Goal and research questions. 2
1.3 Data anonimisation. 3
1.4 Outline of the thesis . 3

2 Background and problem statement 5
2.1 Picnic’s supply chain . 5

2.1.1 Size of the operation. 6
2.1.2 Regular and Morning Outbounds. 6
2.1.3 The Outbound picking line. 7
2.1.4 Shipment characteristics . 7
2.1.5 Hub‐FC combinations . 8
2.1.6 Site‐Located Trucks and associated costs. 8

2.2 Additional restrictions . 8
2.2.1 Capacity constraints and combining shipments 8
2.2.2 Time Windows . 9
2.2.3 Route duration . 9
2.2.4 Driver switching . 9
2.2.5 Synchronising trucks visiting the same location 10
2.2.6 Implementation restrictions . 10

2.3 Optimisation objective . 10
2.4 The problem in a CP model . 10

2.4.1 Solving the CP model . 13
2.5 Current practice, limitations and potential . 13

2.5.1 Planning Outbounds: FMS . 13
2.5.2 Planning Inbounds . 13
2.5.3 Limitations of the current practice . 13
2.5.4 Expected areas of potential . 14

2.6 Data(sets) and adaptations . 14
2.6.1 Outbound data . 14
2.6.2 Inbound data . 15
2.6.3 Representative instances . 15

3 Related work 17
3.1 Routing problems. 17

3.1.1 TSP, VRP and PDP. 17
3.1.2 Common extensions to routing problems . 18
3.1.3 Resource constraints in routing problems . 19

3.2 Constraint Programming . 19
3.2.1 Constraint Programming for VRPs . 20
3.2.2 MiniZinc and OR‐Tools . 20

vii

viii Contents

3.3 Heuristic solution methods . 20
3.3.1 Local search . 20
3.3.2 Large neighbourhood search. 22

3.4 Matheuristics . 24
3.5 Most relevant papers. 24

4 An ALNS approach 25
4.1 Adaptations to the resource constraint. 25

4.1.1 Theoretical comparison to Grimault’s procedure 28
4.2 ALNS heuristics . 30

4.2.1 Removal heuristics . 30
4.2.2 Insertion heuristics. 30

4.3 Initial solution and vehicle minimisation . 31
4.4 Further adaptations . 31

4.4.1 Minimum route duration incorporated in the cost function 31
4.4.2 Driver switching . 32
4.4.3 Dealing with multiple depots and empty routes 32
4.4.4 Adaptive parameters. 33

4.5 Summarising the ALNS . 34
4.6 Running experiments. 34
4.7 Evaluation . 35

4.7.1 Tuning relevant parameters . 35
4.7.2 Partitioning instances . 37
4.7.3 Concluding remarks . 38

5 Extending the ALNS with local search 39
5.1 Local search heuristics. 39

5.1.1 Relocate . 40
5.1.2 Exchange . 40
5.1.3 Crossover . 40
5.1.4 Excluded heuristics. 40

5.2 Local search and the resource constraint . 41
5.3 General framework . 41
5.4 Evaluation . 42
5.5 Concluding remarks . 44

6 A Matheuristic approach 45
6.1 The CP model. 45
6.2 The matheuristic framework . 46

6.2.1 Reducing the number of CP evaluations . 46
6.3 First evaluation. 47
6.4 Promoting feasibility . 47

6.4.1 First ideas: inter‐route penalties . 48
6.4.2 Promoting slack . 48
6.4.3 Enforcing more routes . 49
6.4.4 Evaluation after applying feasibility promotion 49

6.5 Concluding remarks . 50

7 Final evaluation 51
7.1 Comparing the best versions of the different algorithms 51
7.2 Five full problem instances . 52
7.3 Solving small instances using the CP solver. 54
7.4 Comparison to FMS . 54

Contents ix

7.5 Full instances and decompositions . 55
7.5.1 Incorporating Inbounds vs. keeping them separate 57

7.6 Concluding remarks . 59

8 Discussion 61
8.1 ALNS. 61
8.2 ALNS+LS. 62
8.3 Matheuristic . 62
8.4 Final evaluation . 63

9 Conclusions and recommendations 65
9.1 Conclusions . 65
9.2 Recommendations to Picnic . 66
9.3 Future research . 66

References 71

A Paper outline 73
A.1 Introduction . 73
A.2 Related work . 74
A.3 Problem formulation . 74
A.4 Solution method . 74
A.5 Computational results . 74
A.6 Conclusion . 74

B Tables and figures 75

1
Introduction

Transport problems come in all flavours, and while they all trace back to the same core problems,
each has its own characteristics and subtleties that make it different from ones studied before.
Picnic’s truck planning problem is no exception, as this introduction will clarify.

Picnic is the fastest growing online(‐only) supermarket in the Netherlands [52], and possibly beyond
those borders. Picnic also is a quintessential example of a company with an intricate logistical
operation. Their proposition to the customer is to deliver groceries to your doorstep within 24 hours,
guaranteeing lowest prices and free delivery. First of all, Picnic has no physical stores to pay for, and
secondly, they have set up a distribution model unhindered by existing store‐oriented infrastructure.
This distribution network is split into two stages: the last‐mile delivery, i.e. the delivery to the
customer, and the truck transport, which covers everything before that. This thesis takes the latter
as a use case for solving a variant of the vehicle routing problem with a few specific constraints.

1.1. Problem statement
Picnic’s truck planning problem specifically entails creating a truck schedule such that all shipments
between its warehouses on a given day are shipped in time. Shipments have an origin warehouse, a
destination warehouse and a time window in which they must be shipped. Since a substantial part
of these time windows are tight compared to the time horizon (a few hours at most on a horizon of a
full day), and because shipments are large compared to truck capacity (often almost full, sometimes
less than half full), a basic Vehicle Routing Problem [10] does not capture the essence of the problem.
Rather, we cast the problem as a Pickup and Delivery Problem (PDP) [14]. In this model, shipments
are defined by two nodes: a pickup node and a delivery node. Both of these nodes have a location
and a service (loading/unloading) time, and a time window ([earliest start service time, latest start
service time]). Hundreds of shipments are to be shipped on any given day, which is reasonably large
compared to benchmark instances of PDPs in the literature. The variation in this number is sizable,
as it is strongly influenced by how many people order groceries on that day. One can imagine that
some days of the week are preferred over others, and that peaks arise around e.g. national holidays.

The objective function that we aim to minimise is the monetary costs associated with the generated
schedule. Costs in this case are made up of distance costs and driving hour costs. Distance costs
are the costs per driven kilometre, which naturally consists of fuel costs, truck depreciation, etc.
Driving hour costs are the wages paid to the truck drivers. Since both costs can be expressed in Euros
directly, they can be added up and hence we end up with a single objective.

1

2 Chapter 1. Introduction

The major aspect that sets this problem apart from others is the resource constraint we are dealing
with at the warehouses. Since the delivery locations generally have a single dock, only one truck
can be serviced at a time. Pickup locations have to deal with the fact that no two trucks can depart
right after one another for operational reasons. Both of these restrictions lead to the fact that
routes become dependent on one another, which adds considerably to the complexity of the problem.
Most other constraints are simpler of nature, and include lower and upper bounds on working hours,
switching drivers on a truck halfway through the day, and more.

What makes this problem somewhat more specific is that pickups and deliveries appear somewhat
clustered. The majority of the shipments consists of groceries that are picked at fulfillment centres
(FCs, large central warehouses), and delivered to hubs (local transfer warehouses). Shipments are
composed such that a hub is usually supplied from its closest fulfillment centre. An important ques‐
tion that arises is whether it is better to consider all shipments together, or a decomposition of the
shipments by fulfillment centre. This trade‐off is one between complexity and potential synergy:
planning shipments with close by pickup locations together may be beneficial from combinatorial
perspective. However, planning shipments from FCs that lie far apart will hardly be beneficial, and
will suffer from increased complexity due to the increase in size.

Finally, it must be noted that this truck planning problem is one of many links in Picnic’s daily planning
process of the entire supply chain. Therefore, the time we have to solve this problem is limited. For
this thesis, also considering the implementation specifics, we limit ourselves to a runtime of 30
minutes.

The scientific contribution of this thesis lies in the fact that the pickup and delivery problem we are
dealing with combined with the location constraint has not been subject to a lot of research, but
is likely to be encountered more often. It is interesting to see how existing solution methods are
applicable to this problem, and what adaptations have to be made for this problem’s specific needs
and to better solve it. The limited runtime is also a significant factor in this regard. The business
contribution of this project is also clear, in the sense that we aim to improve on Picnic’s current
planning methods in order to improve efficiency.

1.2. Goal and research questions
Having set the scene for the problem we are looking at, we can define the goal of this thesis:

Develop an algorithm that finds a solution to Picnic’s truck planning problem with the lowest possi‐
ble costs within 30 minutes

To this end, we intend to answer the following research questions:

• Which vehicle routing/scheduling model suits Picnic’s use case best, and how should such ex‐
isting models be extended to account for specific constraints from Picnic’s operations?

• What exact solving technique, if any, can be used to obtain a good solution to the problem in
the specified time?

• What inexact solving technique(s) can be used to obtain a good solution to the problem in the
specified time?

• Can we solve full instances effectively, or does it pay off to decompose the problem into sub‐
problems and solve those separately?

1.3. Data anonimisation 3

1.3. Data anonimisation
For confidentiality reasons, some of the data used throughout this thesis has been obfuscated. All
objective values are multiplied by a constant such that true costs are not made clear. Also, the
fulfillment centers are characterised by a letter, while Picnic numbers the FCs, in a different order.
Also, two sections have been moved to a separate document as they contained too much sensitive
information.

1.4. Outline of the thesis
The remainder of this thesis is structured as follows: Chapter 2 provides a detailed background of
Picnic’s supply chain, problem specifics and current solution methods. We also formalise the problem
in a mathematical model in this chapter. We explore the state‐of‐the‐art regarding similar routing
problems in Chapter 3. Chapters 4 through 6 describe the three algorithmic approaches we have
developed to solve the problem, and evaluate their performances. Chapter 7 compares the best
configurations of the three algorithms and presents experimental results on full day instances. In
Chapter 8 we discuss our work, and in Chapter 9 we draw conclusions and provide recommendations
for future work.

2
Background and problem statement

To obtain a complete understanding of the problem at hand, we dedicate this chapter to all back‐
ground and context related to it. Section 2.1 describes the relevant parts of Picnic’s supply chain in
detail, and introduces all relevant concepts and terms. Section 2.2 lists all restrictions implicated
by other parts of the operation and section 2.3 introduces the optimisation objective. Section 2.4
formally defines a mathematical model for the problem, whereas section 2.5 outlines Picnic’s current
methods for solving it. Finally, section 2.6 discusses the data we use, the assumptions and adapta‐
tions we make to that, and a set of instances we use throughout this thesis to assess the performance
of our algorithms.

2.1. Picnic’s supply chain
In essence, Picnic collects groceries from its suppliers, and delivers these to their customers. To
make this flow of goods work efficiently, Picnic employs mainly three different types of warehouses:
Distribution Centres (DCs), Fulfillment Centres (FCs) and Hubs. Some products are shipped in bulk
directly from suppliers to FCs. Others, usually those that go in smaller quantities, are first shipped
to DCs, and later distributed over FCs. Order picking for the customer is done centrally at the FC:
products are put in bags which go in totes, such that a bag will always contain groceries belonging
to a single customer. The totes are then placed in Dispatch Frames, such that a frame contains
deliveries destined to a single Hub. In fact, all totes that go in the same dispatch frame will be
delivered in the same last‐mile delivery trip. The frames are hence distributed by trucks over the
Hubs, from where the orders get delivered to the customers.

This thesis considers all truck transport between (see Figure 2.1):

• Suppliers and FCs

• Suppliers and DCs

• FCs and DCs

• FCs and Hubs

An important note regarding suppliers is that Picnic does not plan all transport belonging to those.
Most suppliers have their own distribution network, trucks and schedules, and Picnic is often bound
by this. There are a few exceptions where Picnic closely collaborates with its suppliers, and the
transport of which it has in its own hands. Part of the transport is also the (back)flow of empty load
carriers such as pallets and roll containers, packaging materials, etc. This also explains why there is
a need to plan trips from FCs back to DCs.

5

6 Chapter 2. Background and problem statement

Figure 2.1: Picnic’s transport flows

Since the FCs lie at the heart of Picnic’s supply chain, all truck transport is considered from an FC’s
perspective. All transport between FCs and Hubs, i.e., picked orders in dispatch frames destined
for hubs and possible backflow, are categorised as FC Outbound or Outbound shipments. All other
transport, i.e. between any two locations excluding Hubs, is considered FC Inbound or Inbound
shipments. As Figure 2.1 points out, this also includes a few shipments between DCs and suppliers.
Throughout this thesis, we will use these terms consistently with this definition to make a distinction
between transport flow types.

2.1.1. Size of the operation
Picnic’s operation is growing at a high pace. At the start of writing this thesis, the numbers of the
different warehouse types are as follows:

• 7 FCs

• 2 DCs

• 53 Hubs

• 5 Other

The geographical locations are shown on the map in Figure 2.2. Other locations include suppliers,
truck depots, etc. The number of shipments can vary significantly on a daily basis. For instance, the
day of the week on its own has a noticeable impact.

The complexity of vehicle routing problems, as with many optimisation problems, grows exponentially
in the number of shipments. Generally this number is referred to as the instance size, where the
instance is defined as the set of shipments we are looking at at any point.

2.1.2. Regular and Morning Outbounds
The Outbounds can be specified further. This is not so much a specification by definition, but rather
follows from how Picnic operates. Originally, Picnic would deliver groceries only in the afternoon or
evening, which would allow them to do order picking at FCs in the morning or early afternoon. As
Picnic grew along with its customer base, the operation had to scale up. Picnic therefore decided to
start delivering in the morning also. This required them to do order picking and Outbound transport
on the evening before, or in the early morning. To this day, these shipments are planned separately
and are known as Morning Outbounds, as opposed to the Regular Outbounds. Throughout this thesis
we use this terms when referring to either of the two, whereas we use Outbouds as an overarching
term.

2.1. Picnic’s supply chain 7

Figure 2.2: Picnic warehouses in NL

2.1.3. The Outbound picking line
When an Outbound shipment is ready to be picked up is determined by when it is picked, i.e., by the
order of the picking line. The picking of shipments is almost a sequential process, and for this thesis
we assume that it is. This means that throughout the day new shipments are ready to be picked up,
and Picnic can freely determine this order, as long as the shipment can be transported to the hub in
time. Picnic’s current planning algorithm (see section 2.5) actually integrates picking line scheduling
with truck planning.

2.1.4. Shipment characteristics
For planning purposes, any shipment in this context can be fully described by the following attributes:

• Pickup and delivery location
The locations where a shipment is to be picked up and delivered respectively.

• Earliest pickup time and latest delivery time
These times are determined by other parts of the operation (see also the previous subsection).
For the scope of this thesis, we separate these processes from the routing, so we assume that
these times are fixed.

• Size
The size defines what part of a truck is filled by the shipment. Shipments may be combined to
create a more efficient schedule, provided that they fit together in one truck.

• Pickup and delivery service time
These are equivalent to the loading and unloading times of a shipment at its pickup and delivery
location respectively. Service times consist of a fixed component, and a component variable
in terms of shipment size. This can be explained most easily by the fact that a truck will need
time for parking, docking, etc. regardless of the size of its load, and time per unit of load for
loading/unloading.

Throughout this thesis, we may use the terms pickup time and departure time interchangeably. The
same goes for the terms delivery time and arrival time.

8 Chapter 2. Background and problem statement

2.1.5. Hub‐FC combinations
To prevent having to transport groceries from one end of the country to the other, Picnic strategically
positions their FCs evenly across it. As a natural consequence, Hubs can often be supplied from the
FC closest to it. This creates a rather decentralized network of Hubs and FCs, in which it makes
sense to plan truck schedules per FC: it will hardly ever be beneficial to have a truck transporting
shipments from an FC on one end of the country, and then drive to an FC on the other end to pick
up and deliver a shipment. On the other hand, some FCs are relatively close to one another, and it
may be advantageous to plan their shipments jointly.

2.1.6. Site‐Located Trucks and associated costs
The trucks that Picnic uses for this transport operation are owned by multiple third party logistics
(3PL) providers, henceforth referred to as the 3PLs. The situation is such that the 3PLs station an
agreed upon number of vehicles at each of Picnic’s FCs and DCs. Picnic refers to these trucks as
Site‐Located Trucks, or SLTs. The cost that Picnic incurs for the truck use is in reality a non‐linear
function of the number of SLTs used and driven kilometres. But while it is desirable to keep this
number low, it does not pay off to minimise this on a daily basis given the number of available SLTs.
For simplicity’s sake, we reduced these costs to a fixed price per kilometre. In spite of the actual
complex cost function, this fixed price reasonably reflects the true price.

There is an important side benefit to having trucks stationed at FCs and DCs. Since most truck routes
will start with a pickup at their depot, a truck driver can start his schedule when the truck is ready
to leave, i.e., after loading the shipment. In case a truck is not stationed at its first pickup location,
it should first drive to that location, and then wait until loading is finished, adding significantly to
the cost of this routing. Throughout the rest of the thesis, we will use the term truck instead of SLT
for simplicity’s sake.

2.2. Additional restrictions
Besides the problem characteristics that follow from the previous sections, there are a few extra
constraints that are to be taken into account. They are described in this section.

2.2.1. Capacity constraints and combining shipments
In some vehicle routing problems, there is no limit on the number of deliveries a vehicle can do be‐
fore having to return to its depot. When maximum capacity is infinite, or in practice never reached,
this is something that does not even have to be taken into consideration. An example could be a
parcel delivery service.
With our truck planning problem, we find ourselves almost on the other side of the spectrum. Cur‐
rently, Picnic generally picks up a single truckload, delivers it to its destination, picks up a new load,
and so on. Most truckloads are at least half full, such that putting multiple shipments together will
hardly be possible in practice. Moreover, Picnic implicitly assumes that a truck transports backflow
(empty dispatch frames or other load carriers) back to its origin location. For our problem, we will
allow combining at most two shipments as long as capacity constraints allow it. As we demonstrate
later, this will also decrease the computational complexity of our problem.

How combining shipments affects service times
When combining two shipments with same origin, i.e., performing two subsequent pickups at the
same location, we can disregard the fixed service time of the second pickup. Naturally, a truck does
not have to dock twice in this case. The total pickup time becomes the sum of once the fixed service
time of the origin and the variable service times of both pickups.

2.2. Additional restrictions 9

2.2.2. Time Windows
We already discussed the concepts of earliest pickup time and latest departure time, but we for‐
malise this further in terms of time windows. Warehouse operations and planning determine when
a shipment is ready to be picked up, i.e., its earliest pickup time. Similarly, a shipment has a latest
delivery time. Latest pickup time lpickup follows from the latest delivery time minus the pickup ser‐
vice time minus the driving time. Earliest delivery time edelivery follows from earliest pickup time
along the same lines:

lpickup = ldelivery − stdelivery − dtpickup−delivery (2.1)

edelivery = epickup + stpickup + dtpickup−delivery (2.2)

A time window (TW) is then defined as the interval [epickup, lpickup] for a pickup, and, not surprisingly,
[edelivery, ldelivery] for a delivery. Throughout this thesis, whenever we talk about time windows and
optimal times, we refer to start service times, unless otherwise specified.

2.2.3. Route duration
The number of hours a driver can work each day, and each week, are bounded by law. Laws also exist
for the number and duration of breaks that a driver should take. Finally, a driver is only allowed to
work so many hours on a weekly basis. Picnic naturally has to abide by these laws, but the nature of
the driver schedules allows us to disregard break times in this case. This is because trucks spend a
relatively big part of their time standing still (un)loading at warehouses. Also, we will not consider
weekly limits, assuming that the 3PLs can always schedule drivers to trucks such that these laws are
respected.
The rules for daily working hours are as follows:

• Case 1: Schedule starts at or after 5:15H.

– The total schedule duration must be ≤ 15 hours

– The total driving duration must be ≤ 9 hours

• Case 2: Schedule starts before 5:15H

– The total schedule duration must be ≤ 13.5 hours

– The total driving duration must be ≤ 9 hours

Again, due to the many stops, the 9 hour driving time limit is never reached in practice, and hence
disregarded. Picnic does not plan schedules of duration close to the upper bound, as delays may
make drives exceed these bounds. We therefore adopt upper limits of 13.5 and 11 hours for Case 1
and 2 respectively.
On the other hand, drivers have to work a minimum number of hours per day. We take this minimum
to be 8. Important to note here is that this is not a hard constraint. A schedule may be shorter than
8 hours, but then the driver is still paid for 8 hours of work. While this is not desirable in general,
there may be cases where this is preferred.

2.2.4. Driver switching
Picnic’s transport is currently not a 24/7 operation, but every day the earliest trucks will depart
around 4 a.m. and the latest will return by midnight. This means that a truck schedule could be as
long as 20 hours, but this would be rendered infeasible by the maximum schedule duration described
above. To make optimal use of the available trucks however, we can plan two drivers to a single truck.
A truck schedule is eligible for a driver switch under the condition that the truck visits its depot during
the day such that switching drivers at this visit splits the schedule into two sub‐schedules which both
have a duration below the maximum duration. Again, this may yield one or even two sub‐schedules
that last shorter than the soft minimum, but this is not forbidden.

10 Chapter 2. Background and problem statement

2.2.5. Synchronising trucks visiting the same location
Finally, there are restrictions regarding trucks that visit the same locations applying to both Hubs and
FCs/DCs. Even though they differ from an operational perspective, they are conceptually surprisingly
equivalent.

• Hub restrictions
Many Hubs can only service one truck at a time, because Hubs generally only have one dock.
Should a truck arrive while another one is being serviced, it simply has to wait. There are
exceptions to this, but for generality’s sake, we assume this is always the case.

• FC/DC constraints
At FCs and DCs, the number of docks is assumed to never be limiting, so arriving trucks should
never have to wait. However, operations require that there is at least 10 minutes between any
two consecutive departing trucks.

This means that for Hubs, the arrival times of two consecutive trucks should be at least the service
time of the first truck apart. For FCs/DCs the departure times (=pickup time + service duration) of
two consecutive trucks should be at least 10 minutes apart. As we later demonstrate, this restriction
has a major impact on building truck schedules. Because of this restriction, truck schedules visiting
the same locations become dependent on one another. All other restrictions mentioned before did
not introduce this phenomenon. From now on, we will refer to this restriction as the resource
constraint, in line with existing literature.

2.2.6. Implementation restrictions
For the algorithm to fit in Picnic’s existing planning procedure, we require it to run in no more than
30 minutes. This time restriction has an impact on the parameter configuration of the algorithm, as
we later demonstrate.

2.3. Optimisation objective
Some vehicle routing problems require the total distance travelled to be minimized. Others intend
to minimize travel time, and yet others aim to find the smallest number of vehicles required. Com‐
binations of the above also exist, resulting in a multi‐objective optimisation problem.

We are looking at minimizing total cost, expressed in terms of both distance and time. The cost per
driven kilometre is assumed to be known, as well as the cost per working hour for drivers. Together
these form a single cost objective. In addition to that, we incorporate the desired minimum route
duration into the objective. This essentially penalises schedules that are shorter than this duration,
and hence functions as a soft constraint. Also, this does truly represent the cost function, as Picnic
is obliged to pay truck drivers for this minimum duration. As mentioned, we are indifferent to the
number of trucks used given the number of available trucks. Under the reasonable assumption of a
fixed price per kilometre, and no fixed costs per truck used, the cost function for a route therefore
is expressed as:

ctot = rd ∗ d+ rt ∗max(t, tmin) (2.3)

where d is distance, rd is the rate per distance unit, t is route duration, tmin is the minimum route
duration, rt is rate per time unit and ctot is total route cost.

2.4. The problem in a CP model
We formally define the problem in a Constraint Programming (CP) model (see section 3.2 for back‐
ground on CP). We describe the model in terms of input parameters, decision variables, the objective
function and the constraints. CP models for VRPs have been defined before, among others by Kilby
[28]. We expand upon this model given our problem specifics.

2.4. The problem in a CP model 11

Parameters

P Set of pickup nodes, each of which corresponds to exactly one shipment (|P | = x)

D Set of delivery nodes, each of which corresponds to exactly one shipment (|D| = x)

Es Set of depot start nodes, each of which corresponds to exactly one truck (|Es| = m)

Ee Set of depot end nodes, each of which corresponds to exactly one truck (|Ee| = m)

Ns Nodes having a successor: union of sets P, D and Es

Np Nodes having a predecessor: union of sets P, D and Ee

N All nodes: union of sets P, D, Es and Ee

M Set of trucks (|M | = m)

H Set of hub locations. Many pickup/delivery node actually coincide in the same
location

Hj Set of nodes belong to hub location j

F Set of non‐hub locations

Fj Set of nodes belong to non‐hub location j

tij Driving time from node i to node j

distij Driving time from node i to node j

stfixi Fixed service time at node i

stvari Variable service time at node i

(ai, bi) Time window for pickup/delivery at node i

C Truck capacity. Since we assume a homogeneous fleet, this is the same for all trucks

qi Size of the request of node i. Positive for pickup, negative for delivery

ui Location index of node i

il Idle time between two departures at location l

tmin Minimal driver day duration

tmax,j(t2∗x+j) Maximal driver day duration for truck j, depending on start time t2∗x+j

tmax Maximal driver day duration for truck j, independent of start time.

km_rate Cost for driving one distance unit

hour_rate Cost for employing a driver for one time unit

Decision Variables

s Successor node for each node in Ns

p Predecessor node for each node in Np

r Array indicating for each node in N which truck visits that node

t Visiting (arrival) time for each node in N

c Load of vehicle after visiting each node in N

d Node index where truck switches driver, zero if no switch

12 Chapter 2. Background and problem statement

Constraints

alldifferent(s) Ensure each shipment is shipped exactly once

alldifferent(p) Ensure each shipment is shipped exactly once

spi
= i ∀i ∈ Ns Consistency between s and p

psi = i ∀i ∈ Np Consistency between s and p

si = i+ x ∨ ssi = i+ x Ensure that at most two shipments are
shipped simultaneously

pi = i− x ∨ ppi
= i− x Ensure that at most two shipments are

shipped simultaneously

ri = rsi ∀i ∈ Ns Successive visits must be done by same truck

ri = rpi
∀i ∈ Np Successive visits must be done by same truck

rn−k = rn−m− k = k ∀k ∈M Fix truck to depot

ri = ri+x ∀i ∈ P Pickup truck and delivery truck must be the
same

ti + sti + ti,i+x <= ti+x ∀i ∈ P Pickup must be done before delivery

if ui = usi then ti + stfixi + ti,si <= tsi else ti +

stfixi + stvari + ti,si <= tsi ∀i ∈ Ns

Successive visits must be time consistent.
Variable service time is not considered when
truck stays at the same location.

if ui = upi then tpi + stfixpi
+ tpi,i <= ti else tpi +

stfixpi
+ stvarpi

+ tpi,i <= ti ∀i ∈ Ns

Successive visits must be time consistent.
Variable service time is not considered when
truck stays at the same location.

ai ≤ ti ≤ bi ∀i ∈ N Time windows must be respected

if di = 0 then tmin <= t2∗x+m+j − t2∗x+j <= tmax,j

else tmin <= tdj − t2∗x+j <= tmax,j ∧ tmin <=

t2∗x+m+jtdj
<= tmax

Schedule length restrictions

0 <= ci + qsi = csi <= C ∀i ∈ Ns Loads must be consistent and within bounds

ci = 0 ∀i ∈ Es ∪ Ee Loads at depots must be zero

ldk
== l2∗x+k if dk > 0 ∀k ∈M Driver switches must take place at depot

rdk
== k if dk > 0 ∀k ∈M Driver switch node must be on trucks route

disjunctive([ti ∀i ∈ Hj | si ∀i ∈ Hj]) ∀j ∈ H 1 A hub can service one truck at a time

disjunctive([ti + si ∀i ∈ Hj | ii ∀i ∈ Fj]) ∀j ∈ F 1 Any two trucks cannot leave the same non‐
hub location within the required idle time

Objective

min
∑

i∈Es∪P∪D disti,si ∗ km_rate+
∑

j∈M (t2∗x+m+j − t2∗x+j) ∗ hour_rate

01The disjunctive(xi | yi ∀i ∈ I) predicate ensures that no xj ∀j ∈ I \ {i} lies in the interval [xi, xi + yi].

2.5. Current practice, limitations and potential 13

2.4.1. Solving the CP model
We attempted to solve this model using an exact solver. Themodel was coded in the MiniZinc language
[38], and the Google OR‐Tools solver [21] was used for solving (see section 3.2). We found that this
would not yield competitive results quickly, due to the problem size and the several non‐linearities
in the problem. We did manage to solve very small instances of the problem though, which we come
back to in Chapter 7. For solving the full problem, we proceeded with different solving techniques.

2.5. Current practice, limitations and potential
To further motivate this thesis, we outline Picnic’s current practice regarding truck planning, demon‐
strate how it is limiting both practically and in terms of efficiency, and highlight potential gains.
As we touched upon before, all shipments are categorised in three groups: Day Outbound, Morning
Outbound and Inbound. For each of these three groups, Picnic has a separate planning procedure.
These are put together to form one grand daily planning.

2.5.1. Planning Outbounds: FMS
Picnic’s current planning procedure for Outbound shipments is the Freight Management System (FMS).
FMS takes as input the set of daily Dispatch Frames (DFs) and outputs a feasible truck planning. In
fact, FMS is a two‐stage procedure which first composes truck loads (shipments) from these DFs, and
then schedules these shipments to trucks. FMS operates per FC, and runs separately for Morning
Outbounds and Regular Outbounds. The two resulting plannings do not communicate and are thus
very unlikely to form nicely joint schedules by themselves. Moreover, FMS does not take into account
warehouse opening times. This poses a problem for Morning Outbounds: FMS will schedule these
shipments throughout the night, which is operationally infeasible. This is not a problem for Regular
Outbounds, which are by construction scheduled during the day.

2.5.2. Planning Inbounds
At the time of writing this thesis, Inbound planning is done manually. The planners have the freedom
to plan an Inbound shipment to an Outbound schedule when they see fit, but generally this is a
separate planning altogether.

2.5.3. Limitations of the current practice
The current planning procedure has a number of drawbacks:

• Planning per FC is sensible from operational perspective, as many hubs are supplied from the
FC closest to it. However, this drastically reduces the combinations of trips that can be made
compared to the case of planning all FCs combined.

• Taking the Day Outbounds as a given before scheduling Morning Outbounds is also limiting on
the possible combination. Some manual rearranging may occur in practice, but is still limited.

• The number of shipments planned per FC per flow type is small, so chances are that trucks are
used inefficiently to make up for some ‘remnant’ shipment. For instance, when the shipments
just cannot be scheduled to three trucks, a fourth is added, but the resulting schedule becomes
inefficient.

• Inbounds and Outbounds are planned in separate processes, so there is little synergy among
these schedules. Operationally however, there is no reason to separate these flows.

• The large amount of manual planning is labour‐intensive and therefore costly.

14 Chapter 2. Background and problem statement

2.5.4. Expected areas of potential
The presented drawbacks lead us to believe that there is potential in developing an overarching
algorithm that can plan all shipments regardless of the flow type they belong to. The gains logically
follow from the drawbacks of the current practice presented above:

• Putting Morning and Regular Outbounds and Inbounds together in a single planning instance
could result in a much more synergised planning.

• The same goes for putting multiple FCs together in a single instance. Note however that this
effect may be limited, since far away FCs are highly unlikely to yield a more efficient planning
when put together.

• The need for manual planning should decrease significantly

As with all combinatorial optimisation problems, the increased number of possible combinations
comes at a cost. The complexity of the problem grows exponentially in instance size, meaning that
it quickly becomes very hard to find good solutions. Add to that the resource constraint we have to
take into account, and the problem becomes one that has not been solved before as such in existing
literature.

2.6. Data(sets) and adaptations
For running experiments on our algorithms, we have Picnic’s data readily available. Outbound ship‐
ments follow from FMS, and Inbound data from the 3PLs and suppliers. This data requires some
tweaking where information is missing, which we will elaborate on in this section. We then present
a set of representative instances we will use to run experiments on, before running our algorithms
on full day instances.

2.6.1. Outbound data
The astute reader may have noticed that we did not consider composing shipments before the pre‐
vious section, but that it is in fact an integral part of the current FMS planning procedure. Not only
does FMS put single Dispatch Frames together in shipments, it can also determine the picking line or‐
der to optimise for earliest departure time. Shipment picking is assumed to be done sequentially and
is limited by FC workforce. In case we want to pick a shipment earlier, another has to be picked at
a later time. For the scope of this thesis however, we separate shipment composition and shipment
planning for two reasons:

1. We intend to build a general planning algorithm regardless of whether a shipment is Inbound
or Outbound. Since composing Inbounds is also done by a separate process, it makes sense to
separate Outbound shipment composition from planning.

2. By considering significantly bigger instances than FMS, the complexity of the problem becomes
such that integrating shipment composition into the grand scheme will make it very unlikely to
solve such instances (close to) optimally.

This means that we have to determine the shipment composition and earliest departure times a
priori. We take shipment composition directly from FMS, but FMS does not explicitly give us earliest
departure times. Instead, we have to come up with a rule to do so. This goes as follows for Regular
Outbounds:

1. We know for each shipments the latest arrival time at the Hub. By subtracting the driving time
from FC to Hub, we know the latest departure time from the FC. We order all shipments by
increasing latest departure time, such that the shipment with the earliest earliest departure
time is picked first.

2. From FC operations, we know that all orders are picked between picking_start_time and
picking_end_time. This gives an average picking time per DF of

2.6. Data(sets) and adaptations 15

picking_timeavg = (picking_end_time− picking_start_time)/#DFs

3. Given the order of shipments in step 1, we can determine the time required to pick each ship‐
ment. Since we assume shipments are picked sequentially, this gives us an earliest departure
time for each shipment.

4. For operational reasons, a shipment cannot depart earlier 8:30H. In case step 3 yields a depar‐
ture time earlier than that, it is overridden to 8:30H.

Ordering on latest departure time leads to rather evenly distributed time window lengths. In fact,
this guarantees that the minimum time window size among the shipments is maximised. This is does
not say anything about how easy it is to thereafter schedule the shipments, but seems sensible when
we have no further knowledge on how the time window length affects the scheduling process.
Since Morning Outbounds are picked in the late afternoon of the day before, we do not have to
consider such a rule regarding earliest departure times. We assume that these will always be ready
early enough. On the other hand, the earliest delivery time, and hence earliest departure time, is
limited by the time that the Hub opens in the morning, which is usually around 6:00H.

2.6.2. Inbound data
The Inbound data requires less pre‐processing. We can use the time windows provided to us as is. It
does however occur that two shipments with the same origin have the same fixed departure times,
which is in direct violation with the resource constraint. In these cases, we give the shipments a 30
minute time window so that the algorithm can still impose the constraint. This is acceptable from a
business perspective.

A second point is that shipment sizes are often undefined. Picnic assumes that Inbound shipments
will never be combined with other shipments, in which case size is not an issue. Only the number
of shipments going from location A to location B is known. We on the other hand do want to find
out if combining shipments is beneficial when the opportunity is there. From a business perspective,
it is interesting to see what routes are created when we do allow this. We therefore defined the
following rule:

1. When there are n shipments with the same origin A and destination B on a given day, we assume
that n − 1 shipments are 100% full. Otherwise it is very likely that a more efficient allocation
of the cargo exists.

2. The nth shipment can be of any size. We make the simple assumption that it is 50% full.

A final remark has to be made about partitioning Inbounds over FCs. When an Inbound shipment
is between an FC and another non‐FC location, we assign it to the set of shipments of that FC.
When an Inbound shipment is between FCs (usually around 2 per day), we simply assign it to the
lexicographically lowest FC. When an Inbound is between two non‐FCs, we assign it to FC‐E, which
makes most sense from a geographical perspective.

2.6.3. Representative instances
To be able to show robustness in our results, we put together a diverse set of test instances derived
from operational data. These instances are always a subset of a set of shipments from a particular
day, such that we choose a subset of FCs, and take all shipments belonging to those FCs on that day.
The choices for these instances were made based on the following rules:

• Diversity in terms of instance size

• Diversity in the FCs

• Diversity in flow type (= Morning Outbounds / Regular Outbounds / Inbounds)

16 Chapter 2. Background and problem statement

Table 2.1: Test instances. M=Morning Outbound, R=Regular Outbound, I=Inbound.

Name FCs Flows #shipments

fcG_r_18 G R 18
fcG_mr_26 G MR 26
fcFG_r_37 F, G R 37
fcFG_mr_56 F, G MR 56
fcACE_r_50 A, C, E R 50
fcACE_mr_67 A, C, E MR 67
fcACEFG_r_87 A, C, E, F, G R 87
fcACEFG_mr_123 A, C, E, F, G MR 123

fcB_ri_32 B RI 32
fcB_mri_44 B MRI 44
fcDE_ri_49 D, E RI 49
fcDE_mri_61 D, E MRI 61
fcBDE_ri_81 B, D, E RI 81
fcBDE_mri_105 B, D, E MRI 105

We derived these instances from Picnic data from relatively busy days. Hence we expect more
shipments to the same Hubs, and thus a stronger influence of the resource constraint. The instances
are displayed in Table 2.1. The instance names are all in the format
fc[fc_letters]_[flows]_[instance_size]. Note that some instances are subsets of other instances,e.g.
instances fcFG_mr_56 and fcACE_mr_87 together form instance fcACEFG_mr_123. This allows us to
observe how two sub‐instances are solved compared to their union.

3
Related work

This chapter provides a comprehensive study of related work. Section 3.1 walks through the historical
literature of routing problems relevant to our case. We start at the very beginning with the Travelling
Salesman Problem, moving on to the famous Vehicle Routing Problem and then the more general
Pickup and Delivery Problem. We then explore literature related to the specific constraints we
encounter in our problem. We find examples of what aspects of our problem have been solved
before, and what aspects are new or unsolved.
In the second part, we dive into the relevant solution methods, both exact and heuristic. We explore
the paradigm of Constraint Programming as an exact solving method in section 3.2, then continue to
inexact methods such as (Adaptive) Large Neighbourhood Search and Local Search in 3.3, and discuss
the realm of matheuristics in section 3.4. We end the chapter by summarising the most relevant
papers in section 3.5.

3.1. Routing problems
3.1.1. TSP, VRP and PDP
Routing problems are as old as the road to Rome, as the Dutch would say. Along those lines, the
Travelling Salesman Problem (TSP) is the Romulus of them all. Conceived a little later, in the 19th
century, and formalised in 1930 [34], the TSP laid the foundation of what would become one of the
most studied problems in combinatorial optimisation. The goal is for a salesman to travel to all cities
to sell his goods, then return home, covering the smallest possible distance. As elegantly simple as
this sounds, solving this problem is not trivial. In fact, given that there are n cities, the number of
possible solutions is in the order of n!. The TSP is NP‐complete, meaning that it is believed to be
unsolvable in polynomial time.

Hardly 30 years later, Dantzig and Ramser [10] extended the TSP to what they called the Truck
Dispatching Problem, later dubbed Vehicle Routing Problem (VRP). Rather than a single salesman,
or vehicle for that matter, they generalise to a multi‐vehicle setting. How can multiple trucks be
routed such that all locations (cities) are visited, and distance is minimized? TSP is reduced to VRP
when only one truck is used, and therefore VRP is NP‐hard.

The VRP is among others applicable to settings where one needs to deliver goods to customers after
doing one single pickup up front, which can be disregarded when solving the problem. An example
could be a parcel delivery service. A subsequent generalisation extends VRP to the setting where
we do not just visit locations to deliver goods after a single pickup, but integrate the pickups per
delivery in the problem. This may be necessary for a variety of reasons, such as capacity constraints

17

18 Chapter 3. Related work

or the lack of a single pickup location. In this case, for each pickup‐and‐delivery, or request, both the
pickup location and the delivery location are taken into account, effectively doubling the instance
size. Constraints that follow naturally from this definition is that a pickup node must be visited
before its corresponding delivery node, and both nodes must be visited by the same vehicle. This
Pickup and Delivery Problem (PDP) was first introduced by Dumas et al. [14], and generalised further
by Savelsbergh and Sol (1995) [49].

3.1.2. Common extensions to routing problems
Braekers et al. (2016) [4] and later Elshaer et al. [16] have surveyed the large realm of VRPs and
their solution methods. The best‐known survey on PDPs dates back further to Parragh et al. (2008)
[42]. This section describes the most common extensions to these problems and refers to relevant
papers. Some of these extensions turn out to be relevant to our problem also.

Time Windows
An issue frequently encountered in delivering goods, or any routing problem for that matter, is that
the delivery cannot be done just at anytime. Often, delivery (and pickup) times are bounded by other
parts of the logistic operation, or customers can specify a time window (TW) in which they want to
be visited. A time window is specified by an earliest and latest pickup/delivery time. Essentially,
the visit needs to be performed somewhere in this range. Cordeau et al. [7] surveyed VRPs with
time windows extensively. Most research treats problems with hard time windows, meaning that it
is impossible to service customers outside of their time windows. Others concern themselves with
soft time windows, where a penalty is incurred for service outside of the time window [31].

Minimizing duration
As discussed, the original routing problems aim to minimize just the distance covered by the vehi‐
cles. Arguably more important is the time spent by the drivers. Minimizing total route duration was
first introduced by Savelsbergh [48]. While this would introduce more complexity to the problem,
Savelsbergh presents the concept of forward slack to efficiently search the solution space and keep
track of minimum duration.

Capacity constraints
As soon as the delivered cargo becomes of considerable size compared to the transporting vehicle,
capacity constraints become relevant. Capacitated VRPs, or CVRPs, are among the oldest extensions
to VRPs since their introduction [43] For VRPs, this influences which/how many deliveries a vehicle
can carry upon leaving its depot. For PDPs, this affects which requests may possibly be picked up in
succession, and when a request must first be delivered in order to make room for new pickups. On
the other side of the spectrum we find full‐truckload PDPs, where vehicles only have unit capacity,
and no two shipments can be combined. Desrosiers et al. [12] were among the first to introduce this
problem formally.

Multiple depots
Classical VRP assumes that there exists a single depot where all trucks depart at the start of the day,
and return at the end. In many cases however, one is dealing with multiple depots. Sometimes, this
means that each depot has a finite number of trucks that all depart from and return to this depot
[53, 33, 8]. It could also occur that vehicles can be assigned to depots arbitrarily, that vehicles can
return to any depot, or do not have to return to a depot at all (the Open VRP) [47].

Driver regulations
For routing problems with a time span of at least one day, driver regulations may factor into the
equation. This entails ensuring that maximum driving times, working times and break times are
respected. Among others, Goel and Gruhn [19] and Kok et al. [30] look at such problems extensively,
in relation to international regulations.

3.2. Constraint Programming 19

Heterogeneous fleet
A final extension we discuss in this paragraph is that of the heterogeneous fleet. At times, the
vehicles at hand may differ in terms of size, range or some other attribute. Some vehicles may only
transport a specific type of good, or may be unsuitable for some good. In terms of Picnic, one could
consider trucks designated to transport cooled or frozen products only. Heterogeneous fleets for
VRPs were introduced by Golden et al. [20].

3.1.3. Resource constraints in routing problems
Apart from the extensions treated in the previous section, we discuss resource constraints in routing
problems. We devote a separate section to this constraint, because in contrast to those mentioned
before, this constraint has a major impact on problem complexity. Also, as pointed out in Chapter
2, this constraint plays a central role in our research.

A resource constraint implies the presence of some entity that can only be used by a limited number
of trucks at any given time, or a central consumable entity of which a limited quantity is available.
Fundamental to resource constraints is that it makes the vehicles and their routes dependent on one
another. In many cases, resource constraints induce temporal constraints. No two vehicles can dock
to the same dock at the same time, no two electric vehicles can charge at the same charging station
simultaneously, and so on. This means that service times of one vehicle are affected by those of
others. In fact, the validity and/or cost associated with a vehicle can no longer be determined from
its route itself, but is rather a function of (a subset of) all routes. Drexl [13] has extensively surveyed
synchronisation, or inter‐route constraints, in routing problems, of which resource synchronisation is
a specific variant. Other variants include task, operation, load and movement synchronisation. The
reader is deferred to this survey for more details on those variants. In an earlier paper, Hempsch
and Irnich [25] define resource extension functions as a general framework for dealing with resource
constraints for VRPs. They provide a local search procedure to solve their problem.

Hachemi et al. [15] and Grimault et al. [24] investigate the log truck scheduling problem with re‐
source constraints on all locations, such that only one truck can be serviced at any point in time
per location. Hachemi et al. employ a constraint programming model and a constraint‐based local
search, whereas Grimault et al. develop an ALNS procedure. Hojabri et al. [26] investigate a delivery
problem with synchronised visits and employ an ALNS also, but perform insertion using a CP model.
Sarasola and Doerner [46] also treat a PDP with resource synchronisation at the customer, and solve
this using an ALNS. Grangier et al. [22] and Grangier et al. [23] treat a VRP with cross‐docking, where
the cross dock is resource constrained. They solve a relaxed version of the problem, without the con‐
straint, and later impose the constraint using a CP model. They also add a second phase where they
construct solutions from earlier obtained routes using a set partitioning and matching procedure.

3.2. Constraint Programming
Constraint programming (CP) is, according to [45], “a powerful paradigm for solving combinatorial
search problems that draws on a wide range of techniques from artificial intelligence, computer
science, and operations research”. The user defines a set of variables, domains and constraints
to describe a problem and the characteristics of its feasible solutions. The user does not define
the solution method: this is left to solvers specifically designed to solve problems written in a CP
language. Such solvers generally rely on techniques such as backtracking, constraint propagation
and branch‐and‐bound.

CP can be compared to (M)ILP [27], in the sense that the user defines the problem, and solving
it is left to a (black‐box) solver. But while MILPs are formulated purely mathematically, the CP
language is more high‐level, and better readable. Decision variables can be (arrays of) any values,
often bounded by corresponding user‐defined domains. While constraints can be arithmetic, they
can also be expressed using logical predicates. A well‐known example is the AllDifferent constraint,

20 Chapter 3. Related work

which dictates that each element of an array should be unique. Because of this high‐level language,
complex models can usually be described much more concisely than MILPs, and are also easier to
understand.

3.2.1. Constraint Programming for VRPs
Since VRPs are quintessential combinatorial optimisation problems, they are very suitable to be
written in a CP language. Shaw (1998) [51] was the first to formally define such a model. Kilby
provided a very extensive tutorial on CP for VRPs in 2013 [28], which discusses CP for basic VRP
and all its extensions, as well as those for which CP is not suitable. The core idea revolves around
defining an array of length equal to the number of nodes. Each index represents a node, and the
value at the index represents the index of the node succeeding this node in its route. Observe that
this representation is much more concise (linear in the number of nodes) compared to an edge‐based
representation often encountered in ILPs (quadratic in the number of nodes). We refer the reader
to this tutorial for further details on this formulation.

3.2.2. MiniZinc and OR‐Tools
Multiple CP languages exist, of which the MiniZinc [38] language is an actively‐developed open source
modelling language. According to their own annual challenge [39], the state‐of‐the‐art solver for
problems in this language is the Google OR‐Tools solver [21]. The solver is especially effective on
multiple cores, and is able to find effective search strategies on its own by enabling free search. For
this reason, we attempted to solve problem instances with this language, solver and settings as part
of this thesis.

3.3. Heuristic solution methods
Over the decades, these many VRP descendants have also brought about a large variety of solu‐
tion methods. The two main flavours are exact and heuristic solution methods. The survey papers
mentioned before treat all of these methods extensively. This section goes over the most relevant
heuristic methods.

3.3.1. Local search
Local search operators are perhaps the most common type of heuristics used in non‐exact algorithms
for solving VRPs. Braysy and Gendreau [5] have extensively surveyed the realm of such heuristics.
Local search is based on the concepts of neighbourhoods: Given a solution and a local search operator,
the neighbourhood of a solution is the set of solutions that can be obtained by applying the given
operator in all possible ways. A strategy could then be to look at all possible solutions in the set,
choose the best one, and then apply the next operator. A quicker, but less exact strategy could be
to accept the first improving move once it is found. These strategies are known as best‐accept and
first‐accept respectively. At some point, one will run into the situation where no improving moves
can be found. A so‐called local optimum is reached. Generally, algorithms will have a mechanism
(a metaheuristic) to escape local optima, for instance by perturbing the solution (often making it
worse).

We will first demonstrate the most well‐known local search operators, and then go over a few common
local search metaheuristics.

Local search operators
We will describe the relocate, exchange, crossover, k‐Opt and Or‐Opt operators, since these are the
most common. We illustrate the moves from both edge‐exchange and node‐exchange perspective.
The former is more widely accepted, while the latter is at times more suitable to our problem.
Chapter 5 describes these operators in context of our problem.

3.3. Heuristic solution methods 21

Figure 3.1: Relocate Figure 3.2: Exchange

Figure 3.3: 2‐opt*

• Relocate
The relocate operator attempts to move a node from its current route and position to another
one. It may be moved to another position in the same route, in which case relocate works
as an intra‐route operator. Otherwise, when moved to a different route, the operation is of
inter‐route nature. Relocate causes a total of three edges to be replaced (Figure 3.1).

• Exchange
Similar to relocate is the exchange operator. In fact, exchange performs two relocates simul‐
taneously. Two nodes are removed from their respective routes (possibly the same route), and
reinserted in the position of the other node. This could be beneficial over two consecutive relo‐
cates when neither relocatemove is improving, or even feasible, by itself. Exchange effectively
replaces four edges, as can be seen in Figure 3.2.

• k‐Opt and Or‐Opt
The k‐Opt operator is an intra‐route operator that replaces k edges in a route in order to find a
better one. 2‐opt is the simplest form, where two edges are replaced. The sequence of nodes
between these two edges will consequently be reversed in the route. k‐opt with k > 2 gives rise
to more complex restructurings, which often also contain such reversals. Evaluating all k‐Opt
moves takes O(nkr) time and hence scales badly in size, especially for longer routes. Or‐Opt
[41] is an inter‐route variation to 2‐Opt, where a sequence of nodes is removed from one route
and inserted into another. The order of the sequence is preserved, not reversed as with 2‐Opt.
Note that relocate is a special case of Or‐Opt where the length of the moved sequence is 1.

• Crossover and 2‐Opt*
Combining Or‐Opt and exchange yields the crossover operator, where two sequences of nodes
are swapped between their routes. When a route contains nr nodes, it naturally has n2r se‐
quences of nodes (nr possible start nodes and nr possible end nodes). Consequently, crossover
scales more badly than both Or‐Opt and exchange. A special case is the 2‐Opt* operator, which
exchanges the tails of two routes. The number of ‘swappable’ sequences reduces to nr again,
and this heuristic is a lot more manageable because of this. This 2‐Opt* is illustrated in Figure
3.3, where only two edges are replaced.

LS metaheuristics
The grand procedure in which local search operators, or any operators for that matter, are applied, is
usually referred to as a metaheuristic. These dictate the operator choice for each iteration, when to
accept a newly proposed solution, how to escape local minima and so on. We highlight Tabu Search,
Simulated Annealing and Guided Local Search in this section.

22 Chapter 3. Related work

• Tabu Search
Tabu search essentially forms a set of rules by which local minima are escaped and a larger
part of the search space can be explored. As with straightforward local search strategies,
improving moves are always accepted by first‐accept or best‐accept strategies. However, when
no improving moves exist, tabu search allows to accept a worsening move to escape the local
optimum. Next to that, a list of recently explored solutions is maintained. This prevents the
algorithm to revisit such solutions. Without this mechanism, the algorithm may instantly move
back to the local optimum it just moved out of. The length of said list, or in other words, the
size of the memory, influences this procedure. A larger memory usually leads to more diverse
search.

• Guided Local Search
Guided local search (GLS) [54] also attempts to escape local minima, but rather does so by
changing the cost function. Whenever a local optimum is reached, GLS penalises features of
this solution such that they are less likely to appear in subsequently found solutions. For VRPs,
these features are usually the edges present in the solution. Features that remain present in
locally optimal solutions (and are likely to be desirable) are penalised less heavily upon each
appearance. Newly found solutions under the penalty function should be evaluated without
penalty to see if these are actually improved solutions.

• Simulated Annealing
A final well‐known metaheuristic is Simulated Annealing (SA) [29]. It is inspired by the process
of heating and then cooling a material in a controlled manner (annealing) in order to alter its
physical characteristics. Similarly, the algorithm starts with a high ‘temperature’, meaning
that worse solutions are often accepted. Rather than always finding a local optimum first,
any worsening move will be accepted with a certain probability. The probability is usually
dependent on how much worse the proposed solution is compared to the current one. A slightly
worse solution has a higher probability of being accepted than a much worse one. As time
progresses, the algorithm is ‘cooled down’ by some cooling rate, such that fewer and fewer
worsening solutions are accepted. The idea is that the algorithm has moved to the best parts
of the search space by this time.

3.3.2. Large neighbourhood search
Shaw [50] introduced Large Neighbourhood Search (LNS) for VRPs for the first time in 1997. He
considered this a variant of local search, but nowadays LNS is viewed as an entirely separate group
of algorithms. Especially over the last years, LNS has received increasing attention for solving VRPs
[16].

Given a feasible solution to start with, LNS iteratively removes and reinserts requests from and
into this solution in order to obtain new, and hopefully better ones. More specifically, one defines so‐
called removal and insertion heuristics, or operators, which heuristically determine which requests to
remove/insert. A multitude of such heuristics have been crafted over the years, the most important
of which we outline below:

Removal heuristics
Along with the concept of LNS, Shaw was the first to introduce removal heuristics. Ever since, many
more have been developed, often aimed at specific characteristics of a problem. We list the most
common ones below.

• Random Removal. The simplest of all removal heuristics, where requests are removed at
random. This is especially effective from a diversity point of view.

• Worst Removal. Worst removal [44] checks for each request by how much the objective de‐
creases upon removing it. It will then remove the one which does so the most. It continues in

3.3. Heuristic solution methods 23

this fashion until a satisfactory number of requests are removed.

• Shaw Removal. Named after its founding father, Shaw removal tries to remove similar requests.
Requests can be similar in terms of geographical location, time window or size. The similarity
function is usually a weighted function of the three. For details, the reader is referred to the
original paper.

• Related Route Removal. Attempts to remove routes that are related. This relation is usually
in terms of geographical proximity. Removing routes lying close together may allow for more
possibilities upon recombination. A random route is removed first, and while more requests
should be removed, a route close to it is removed. (Related) route removal is frequently used
in other research [11, 35, 24].

• Related Location Removal. Rather than removing routes, a location removal heuristic removes
all requests with the same origin or destination. A subsequent nearby location can be selected
when more nodes need to be removed. A variant of (related) location removal is presented
among others in [11, 35, 24] also.

Insertion heuristics
Early LNS papers such as Shaw and also Bent and Van Hentenryck [2] employ relatively complicated
branch‐and‐bound techniques. Ropke and Pisinger [44] opt for simpler heuristics, which are outlined
below. The list of insertion heuristics has grown through subsequent research.

• Cheapest (Greedy) Insertion. Attempts to insert each removed request in every route, and
inserts the one which makes the objective increase by the least amount. Some of these values
will need to be recalculated before the next insertion, since they may have become outdated.
An insertion may even no longer be possible after the previous one.

• Regret Insertion. Regret insertion is essentially a greedy strategy also, but does look ahead.
It compares the cost of inserting a request in the best route to the cost of inserting it in the
next‐best route. The request for which this difference is largest will be inserted first. We refer
the reader to Ropke and Pisinger (2006) for details. Again, values have to be recalculated after
each insert.

• Insertion with noise. As an extension to other insertion heuristics, noise may be added to
the insertion costs determined by the heuristic. This should favour diversity in the search by
preventing the same requests to be inserted first all the time.

Whenever one uses multiple heuristics in either category, one of either heuristics is picked at random
for each iteration, in order to promote diversity in the search.

Another important parameter to set is the number of requests to remove in each iteration. This is
usually a fixed percentage of the total number of requests, or a distribution (usually uniform) from
which a percentage is drawn. Several papers that implement some form of an LNS investigate the
optimal value for this parameter in their experiments [44, 24].

A major development in the LNS area was made by Ropke and Pisinger, who introduced Adaptive Large
Neighbourhood Search (ALNS). Rather than selecting a heuristic using a fixed probability distribution,
they came up with a procedure to adjust the probabilities per heuristics based on how successful they
turn out to be. For each heuristic, a score is maintained which indicates its performance. Heuristics
finding new and better solutions have their scores increased, which translate to higher weights and
hence a higher probability of being selected in subsequent iterations. To date, ALNS is seen as one of
the most successful heuristic algorithms to solve all kinds of VRPs. A state‐of‐the‐art algorithm for
solving PDPs is given by Curtois et al. [9]. They combine local search and LNS procedures, together
with a guided ejection search and hold several best‐known solutions to benchmark instances at the
moment of writing.

24 Chapter 3. Related work

3.4. Matheuristics
A final type of algorithms we discuss are so‐called matheuristics [3]. This class of algorithms incor‐
porate an exact solving component in a larger heuristic scheme, and has gained popularity in recent
years. The exact component can be an algorithm, or even a solver solving a subproblem formulated
as a MIP or a CP. In fact, the LNS algorithms of both Shaw and Bent and Van Hentenryck can be consid‐
ered matheuristics of the former type, as their reinsertion is based on a branch‐and‐bound algorithm.
In a similar vein, Hojabri at el. perform reinsertion using a CP model [26]. Grangier et al. [23] use a
CP for imposing the resource constraint, after solving a relaxed version of their problem with an LNS
procedure. They follow this up by a set partitioning and matching procedure to further improve their
solution, which is a second exact component in the algorithm. Kramer et al. [32] employ a similar
procedure for their pollution routing problem. Froger et al. [17] also first solve a relaxed version
of their electric VRP with capacitated charging stations, and then use a CP model to find solution
from routes generated by the previous step, while taking the resource constraint into account. For
further research on matheuristics for VRPs we refer the reader to the survey by Archetti et al. [1].

3.5. Most relevant papers
We end this chapter by highlighting aforementioned papers which are most relevant to our problem.
Where applicable, we compare characteristics of their problems to ours.

• Ropke and Pisinger (2006) lay the foundation for Adaptive Large Neighbourhood Search, build‐
ing on Shaw’s LNS procedure. They introduce insertion heuristics and the adaptive heuristic
selection that have been used widely since.

• Grimault et al. (2017) treat a problem most similar to ours in literature at the moment of
writing. They consider a PDP where no two trucks can visit any location simultaneously, and
provide a graph‐based ALNS to solve this. Shipment combining is left out altogether, so they do
not have to consider capacity constraints. They show that the increased complexity makes this
problem substantially harder to solve than a PDP without such an inter‐route constraint. The
largest instance they solve is of size 85, which is significantly smaller than our instances. They
have runtimes up to an hour and implemented the algorithm in C++.

• Curtois et al. (2018) hold at the moment of writing this thesis several records for benchmark
instances of the PDP. They propose a multi‐stage LNS+LS+Guided Ejection Search by which they
effectively obtain low‐cost routes with a low number of vehicles.

• Sarasola and Doerner (2020) also treat a PDP with resource constraints, though only at the
customer. Next to preventing subsequent deliveries from overlapping, they also set an upper
bound on the time between such deliveries. Customers have 2‐3 deliveries on average, which
is slightly less than our hubs, but far less than our FCs/DCs.

• Grangier et al. (2021) treat a PDP with cross‐docking, which is a resource constraint also, but
at a single location only. They solve the problem without the dock constraint using an LNS, and
then check feasibility with respect to the constraint using either a CP model or a scheduling
heuristic. This allows for the LNS to be faster compared to an LNS designed on the constrained
problem.

4
An ALNS approach

In section 3.3.2 we discussed that ALNS techniques have shown to be effective when solving pickup
and delivery problems, which is why we choose to apply them in this thesis. Having explained the
general concept of ALNS for vehicle routing problems in Chapter 3, we dive into the adaptations
required to make this work for our problem.

As explained, ALNS takes a feasible solution and iteratively partly destroys and repairs it. In the case
of VRPs, this means removing a set of requests such that a partial solution is left, and removed re‐
quests are stored in the request bank. These requests are then inserted back into the partial solution
to obtain a new feasible solution. Of course, the goal is to find better solutions by removing requests
that are costly, and reinserting these in a more efficient manner. It is crucial to this procedure that
the (partial) solution is feasible at all times. Whenever a (partial) solution becomes infeasible, there
is no guarantee that a subsequent removal/insertion will render it feasible again.

We first devote specific attention to how we impose the resource constraint in section 4.1, and
the global effect this constraint has on guaranteeing feasibility. We discuss the destroy and repair
heuristics we employ in section 4.2. Constructing initial solutions is discussed in section 4.3, while
section 4.4 elaborates on adaptations we made to the cost function, for dealing with multiple depots
and driver switches, and some adaptations to the meta‐heuristics described by Ropke and Pisinger
(2006). We will refer to this paper as R&P for brevity throughout the rest of this thesis. Section 4.5
summarises the earlier sections, and in section 4.7 we evaluate the performance of the ALNS.

4.1. Adaptations to the resource constraint
Since we intend to minimise route duration, we have to keep track of it. Savelsbergh [48] showed
how one can keep track of earliest start service times, latest start service times and slack times
to achieve this, while ensuring that checking feasibility is efficient. He also showed how shortest
route duration can be derived from these variables without increasing computational complexity.
Also, without resource constraints, inserting/removing a request in one route will leave all other
routes unaffected. Therefore, updating the costs of subsequent insertions requires only recalculating
those for the affected route. Masson [37] and later Grimault et al. [24] (referred to as Grimault
throughout this chapter) have extended this model to the PDPTW with resource constraints, where
these variables are maintained for both routes and resources. Requests are represented by their
two nodes in a graph, with edges connecting nodes that are subsequent either in a route, or on a
resource (Figure 4.1). This usually leads to a connected graph where changing said variables for
one node impacts an arbitrary number of other nodes. In other words, inserting or removing a node

25

26 Chapter 4. An ALNS approach

Figure 4.1: The graph structure used by Grimault for efficient feasibility checking (from Grimault et al. [24])

requires us to recalculate the values of these variables for all other nodes.

To circumvent this problem, we opt for an alternative approach. We developed this procedure our‐
selves, but found later that Sarasola and Doerner [46] employ one that looks rather similar. We
return to this in the discussion in Chapter 8. Upon inserting a node in a route, we recalculate the
optimal start service time for each node in this route. This is done as follows (see also Algorithm 1):

1. Iteratively schedule each node as late as possible, starting from the last (delivery) node in the
route.

2. Fix the first (pickup) node after the depot at this latest time

3. Iteratively schedule each node after the first as early as possible

Algorithm 1 Calculating start service times

1: function CalculateStartServiceTimes(r)
2: for each node n in route r, in reverse order do
3: sn ← succeeding node of n in r
4: stn ← service time of n
5: tn,sn ← driving time from n to sn
6: ln ← latest service time of n (=upper bound TW)
7: tn ← min(tsn − stn − tn,sn , ln)
8: if GetStartServiceTimeUnderRC(n, asap=False) returns False then
9: Revert latest insertion in r
10: return
11: for each node n in r except the first, in regular order do ▷ By not considering the first

node, we keep it fixed at its
latest possible start time

12: pn ← preceding node of n in r
13: stpn ← service time of pn
14: tpn,n ← driving time from n to sn
15: en ← earliest service time of n (=lower bound TW)
16: tn ← max(en, tpn + stpn + tpn,n)

17: if GetStartServiceTimeUnderRC(n, asap=True) returns False then
18: Revert latest insertion in r
19: return
20: return

4.1. Adaptations to the resource constraint 27

Figure 4.2: An example of calculating start service times for a route of 4 nodes

Figure 4.2 shows a graphical example. This procedure guarantees two properties:

1. The resulting schedule is as short as possible

2. The resulting schedule starts as late as possible

The second property follows directly from the fact that all nodes are scheduled as late as possible
initially. The first property follows from the fact that the first node is scheduled as late as possible,
and the last node as early as possible given the as‐early‐as‐possible scheduling of all but the first
node. The first guarantee is important because we want to minimize costs, which follows directly
from minimizing duration. The second guarantee is desirable because it maximizes the chances of a
schedule starting later than 5:15H, hence allowing a longer maximum duration.

While this procedure has a higher runtime complexity than Savelsbergh’s [48], it sets us up to incor‐
porate the resource constraint. Upon inserting a node in a route, we have a start service time value
for all nodes in all other routes, which we keep fixed. At the same time, we keep for each location
(resource) a list of its corresponding nodes sorted by their start service time. Upon calculating start
service times for the new route, the GetStartServiceTimeUnderRC function (Algorithm 2) is incorpo‐
rated in Algorithm 1 (lines 8 and 17). This function takes as an input node n along with its proposed
start (end) service time, and checks for each other node n′ on the same resource in turn whether
the proposed time for n interferes with the scheduling of n′. If it does, node n is scheduled earlier
(later) such that it no longer interferes with n′. Figure 4.3 illustrates this procedure for a single node
and resource. Next, the subsequent node on the resource is checked, until either a feasible time for
n is found, or it is determined that no feasible time exists. In the latter case, the pending insertion
has to be reverted. The function also takes a boolean asap that states whether the start service time
may only be decreased or increased. Algorithm 2 describes this procedure for asap = False, but the
procedure for asap = True follows naturally from this.

28 Chapter 4. An ALNS approach

Figure 4.3: An example of adjusting the start service time for a node under the resource constraint.

Upon the introduction of the resource constraint, we need to reconsider the properties we guaran‐
teed before. The second guarantee still holds, as all nodes are still scheduled as late as possible
in step 1. Step 3 moves nodes as far back in time as possible, but may be hindered by other nodes
scheduled on the same resource. Implicitly, this yields a scheduling of nodes on the resources. The
first property still holds given the schedule we obtained, but a shorter route duration might be pos‐
sible if we move the first node backwards in time and reschedule some nodes on their resource.
Since checking all such options comes at the cost of increased complexity, we do not consider such
possibilities.

4.1.1. Theoretical comparison to Grimault’s procedure
This thesis does not empirically compare our procedure to Grimault’s, but below we argue why we
favour ours on four relevant parts. The actual comparison is left for future work.

• Checking insertion feasibility
Extending Masson’s approach [37], Grimault checks feasibility of inserting a request in a specific
position in a route and as specific position on a resource in constant time. We can check
feasibility for a position in a route also in constant time, but when this check passes, we require
worst case O(k ∗ |r|) time to check resource feasibility. Here, k denotes the maximum number
of requests per resource, and |r| denotes the route length, i.e., the number of nodes in the
route. Note that this does give us the best position on the resource for the request. Grimault
does need to check all resource positions (linear time) to obtain this result.

4.1. Adaptations to the resource constraint 29

Algorithm 2 Adjusting start service times under the resource constraint

1: function GetStartServiceTimeUnderRC(n, asap=False) ▷ if asap is True, we may only increase
tn, otherwise we may only decrease it

2: res← resource of n
3: δ ← unavailability duration
4: for node n′ on res in reversed order do
5: if tn > ln then
6: return False ▷ n cannot be scheduled on res within its

TW, so route is invalid
7: else if tn + δ ≤ tn′ then
8: continue ▷ n′ is scheduled after n and does not in‐

terfere, continue to next node
9: else if tn + δ > tn′ then

10: break ▷ n′ is scheduled before n and does not
interfere, tn is feasible

11: else
12: tn ← tn′ − δ ▷ Make sure n fits right before n′ on res

13: return True ▷ A valid tn was found

• Calculating insertion cost
Having established insertion feasibility, Grimault requires O(n3) time to calculate the new
solution cost, required to know insertion cost. In our procedure, the insertion feasibility check,
while more computationally expensive by itself, already yields the insertion cost. This part of
our procedure is therefore much less time consuming. One question that stands, is how often an
insertion turns out infeasible on a resource, when deemed feasible from the route perspective.
While we have not done an extensive analysis, we have seen that this happens far less than 50%
of the time. Note that this may be highly use case‐specific.

• Recalculating obsolete insertion costs
Very often, a repair heuristic is cost‐based, e.g. doing the cheapest insert possible. For each
route and unplaced request, the value for this metric is stored in a matrix. After each insertion,
this matrix has to be updated as some insertions that were possible before now have a different
cost, or may no longer be possible at all. Consider the route that most recently had a request
inserted as the last‐changed route. Without inter‐route constraints, only the matrix entries
belonging to the last‐changed route have to be updated, since routes are not interdependent.
This changes when an inter‐route constraint is introduced. Grimault’s graph structure (Figure
4.1) requires the entire matrix to be recalculated. We only need to recalculate the values for
those routes, which share at least one common resource with the route that was inserted into.
This may be all routes in the worst case, but is often fewer. Recall that recalculating a value
refers to recalculating costs as described above.

• Order of inserting requests
By Grimault’s graph structure and global variables, a solution is unique by its routes and re‐
source schedule, regardless of the order in which requests were inserted. Since we fix our
start service times during the insertion process and do not allow rescheduling of already in‐
serted nodes, insertion order does affect our final solution. This is a compromise we make
when opting for the speed‐up of our procedure.

Note that all of the above also holds for removing a request from a route. While an insertion may turn
out to be infeasible under the resource constraint, a removal is always guaranteed to be feasible.
This is because all remaining nodes in a route may keep their old start service times, which were
known to be feasible. Often however, a better set of times exists, and these will be found using this
same procedure.

30 Chapter 4. An ALNS approach

4.2. ALNS heuristics
Below we outline the removal and insertion heuristics we used. Most of these are taken from previous
work outlined in Chapter 3 or inspired by those.

4.2.1. Removal heuristics
• Random removal
Remove requests at random.

• Worst removal
Remove the most expensive requests

• Relative worst removal
Extends worst removal by normalising the cost for the default cost. This cost is defined as the
cost of picking up the request at the origin, driving to the destination, delivering the request
and driving back to the origin.

• Shaw removal
Removes related requests as explained in Chapter 3.

• Distance related removal. Like Shaw removal, but only considering the distance component.
Also employed by Grimault.

• Time related removal
Like Shaw removal, but only considering the time component. Also employed by Grimault.

• Related route removal
Selects a first request at random and removes the route this request is in from the solution.
As long as more requests should be removed, a next route is picked at random from the set of
routes with at least one common location, and is also fully removed.

• Location removal
Selects a location at random, and removes all requests with a pickup or delivery at this location.
Continues until enough requests are removed.

The rationale behind relative worst removal is that trucks often do a single delivery and then move
on to the next pickup. This heuristic tends to remove requests which are followed by another request
relatively far away. Conversely, it tends to leave request with a subsequent nearby pickup in place,
as well as request that are part of a combined request.

4.2.2. Insertion heuristics
• Cheapest insertion
Inserts the request with the lowest insertion cost at that moment.

• Relative cheapest insertion
Similarly to relative worst removal, insertion costs are normalised by the default cost. This
should prevent lengthy trips from being inserted last, which are usually harder to fit into routes
than short trips.

• k‐regret insertion
As explained in Chapter 3, regret insertion compares insertion cost in the best route to the
cost of inserting in up to the kth best route. This favours hard‐to‐insert requests earlier on,
to prevent inefficient routing towards the end of the insertion procedure. Following R&P and
subsequent research, we opt for values of k of 2, 3 and 4.

4.3. Initial solution and vehicle minimisation 31

4.3. Initial solution and vehicle minimisation
Several VRP algorithms start by building a quick initial solution, followed by some vehicle minimisa‐
tion phase, and finally the actual objective optimisation [2, 6, 9, 44]. Oftentimes, these algorithms
are applied to problems where the number of vehicles is part of the objective function. R&P for
example define a route minimisation stage where the ALNS procedure is applied given n available ve‐
hicles. As soon as a solution is found, one vehicle is removed, ALNS is applied again until all requests
are served by n − 1 vehicles, and so on. Since one can never know when the minimum is reached,
the only stopping criterion possible is time or number of iterations.

In contrast to much of the literature, we are not interested in the lowest number of vehicles per se.
However, as discussed in section 2.3 we do take minimum route duration into account. Section 4.4
further elaborates on this. When the number of routes in a solution is well above the minimum, we
likely end up with many routes with too short a duration.

Since finding the minimum number of routes is not crucial, and the route minimisation phase may
take up a considerable amount of the available runtime, we opt for a different strategy. We simply
apply the regret heuristic (with k = 4) described above on the empty solution. This may be slower
in finding an initial solution than a quick greedy construction, but already gives us a solution with a
reasonably low number of vehicles from the start. Not employing a vehicle minimisation phase more
than compensates for that somewhat higher runtime.

4.4. Further adaptations
This section lists additional adaptations we made to the original ALNS procedure. These include the
cost function, driver switching, depot switching and making some parameters adaptive to runtime.

4.4.1. Minimum route duration incorporated in the cost function
As stated in Chapter 2, we employ a non‐linear cost function (Equation 4.1), which incorporates the
minimum route duration. We can directly transfer this cost function to our ALNS implementation. As
Shaw [50] stated, the LNS procedure eminently allows more complex cost functions or constraints.

ctot = rd ∗ d+ rt ∗max(t, tmin) (4.1)

Besides the fact that this actually represents the cost function, this has the following benefits over
enforcing minimum route duration as a constraint:

• Placing a first request into a route becomes very expensive
Empty routes, i.e. unused vehicles, naturally add no cost to the total costs. Given our non‐
linear cost function, it becomes very expensive to start using a truck by adding a first request to
its schedule, since we immediately have to pay for the full minimum duration. As the marginal
cost of adding a request to an empty route is so high, the algorithm will almost exclusively do
so when the request cannot be placed in any of the non‐empty routes. This keeps the number
of vehicles low, which is generally desirable, even though we do not optimise for the number
of trucks.

• Placing requests in routes with a duration lower than the minimum is cheap
Conversely, when the minimum duration is not reached, the marginal cost of adding a request
to a route is low. It only consists of the distance costs, and at most part of the time costs in
case adding requests makes the route duration exceed the minimum duration. The algorithm
will therefore favour adding requests to routes with short duration, before those with longer
ones.

• Minimum duration remains a soft constraint
Even though we do not want to pay for unused time, there may be cases where a route with
duration below the minimum is part of the optimal solution. We therefore do not want to

32 Chapter 4. An ALNS approach

Figure 4.4: Schematic representation of including a driver switch

restrict ourselves exclusively to routes with duration greater than the soft minimum. The fact
that the constraint is soft ensures this.

4.4.2. Driver switching
We discussed in section 2.2.4 how we want to incorporate driver switching when checking for route
feasibility. Upon checking whether a route is feasible, we first check whether the route is feasible
for a single driver. If it is not, because the maximum route duration is exceeded, we have to check
whether it is feasible for two drivers. This depends solely on whether the route contains at least
one eligible switch node, a node with the same location as the depot, such that the resulting routes
are both below the maximum route duration. If it does, and there are at least two of such nodes,
we choose to make the “cut” where the difference between the duration of two resulting routes is
smallest. Figure 4.4 shows this schematically. Note how the first driver ends their shift after driving
to the switch node, but the second driver only starts at departure. The service time in between is
“saved”. The same goes for the service time at the start of the route, in case the first pickup is at
the depot (see section 2.1.6).

4.4.3. Dealing with multiple depots and empty routes
Recalculating insertion costs during the insertion phase is the most costly part of the algorithm. Since
a route is unique as soon as it contains at least one request, this cannot be circumvented for non‐
empty routes. For empty routes, however, this is a different story. We introduce the concepts of a
route pool and depot switching to prevent doing unnecessary calculations on empty routes, and to
efficiently assign the best depot to a route.

The truck pool
When building an initial solution using the regret heuristic, it would be very costly to calculate
insertion costs for each empty route belonging to the same depot. After all, assigning a first request
to any truck belonging to the same depot will be equally costly. Instead, we start by only calculating
costs for one truck per depot, while storing the remaining trucks in the truck pool. The truck pool is
a set of empty routes for each depot. As soon as a truck from a depot gets its first request assigned,
we move an empty route from the truck pool to the set of active trucks, keeping the number of
empty routes per depot at 1 at all times, unless all truck from that depot are already in use. After
constructing the initial solution, we remove empty trucks from the set of active routes until less than
10% of the trucks in the active set are empty. This showed to be a good trade off between keeping

4.4. Further adaptations 33

the number of empty routes low and giving the algorithm the flexibility to assign requests to empty
routes when necessary.

Depot switching
As mentioned in section 2.2, there is a substantial benefit to a truck doing its first pickup at its depot.
During the repair phase however, it may occur that a request is inserted at the start or at the end
of a route, such that the depot location and the location of the first pickup are no longer the same.
When that happens, we allow the algorithm to check whether it is advantageous to switch depot to
the new first pickup location, provided that we have an empty truck at that depot still. If this is the
case, we always make the switch. In case the first pickup location is not a depot, we check if we
can switch to the closest depot. Even though we cannot circumvent waiting on the loading, we may
still cut driving time.
Note that depot switching cannot render a route infeasible, provided that the depot nodes have no
time windows associated with them. All other nodes will simply retain the same start service times
as before.

4.4.4. Adaptive parameters
R&P show that most of the parameter values they use are robust to different problem instances. Sub‐
sequent research generally confirms this [24]. We therefore choose not to do an extensive research
on all of these parameters, but instead put our focus on other aspects. We take many of their values
as a starting point as much as possible. We do make two noteworthy alterations though, based on
the fact that as a result of runtime limits, we often do not reach the 25,000 iterations they use.

Segment length
Assuming 25,000 iterations, R&P introduce segments of 100 iterations after which they update ALNS
parameters. For larger instances, we may run significantly fewer iterations, in which case the algo‐
rithm hardly updates the parameters and the adaptiveness will likely lose its power. To counteract
this, we evaluate the expected number of iterations after each segment, and set segment length to
1/250th of this value. We take an initial segment length of 10.

Cooling rate
R&P propose a simulated annealing (SA) procedure for solution acceptance. We also adopt this
procedure, but with an adaptation to the cooling rate c. This parameter dictates how quickly the
temperature of the SA decreases, i.e. how quickly worse solutions are no longer accepted. The
value they use was based on performing 25,000 iterations also. When running fewer iterations while
keeping the cooling rate the same, the algorithm will not have ‘cooled’ enough upon termination.
This means that it is still accepting many worse solutions while it should be converging. We adjust
for this by also updating the cooling rate after each segment, again based on the expected number
of iterations. We intend to keep the relative cooling rate the same, such that the probability of
accepting a worse solution towards the end is similar compared to a run of 25,000 iterations with
the original cooling rate.
Given a start temperature T and cooling rate c, the temperature after 25,000 iterations equals
T ∗ c25000. With a default of c = 0.99975 by R&P, this yields T ∗ 0.9997525000 ≈ 0.0019 ∗ T . This is
the temperature we aim to obtain by the end of our runs, regardless of the number of iterations.
Algorithm 3 demonstrates how this is done, and Table ?? explains the variables in question.

Algorithm 3 Updating the cooling rate c after each segment

tavg ←runtime so far / #iterations so far
iexp ← min(maximum runtime / tavg, 25000)

c← 0.0019(1 / iexp)

34 Chapter 4. An ALNS approach

4.5. Summarising the ALNS
We summarise our ALNS choices and adaptations concisely below:

• ALNS heuristics. We opt mainly for proven heuristics from literature, especially from Grimault
because of its close relation to our problem. We came up with the relative worst removal and
relative cheapest insertion as these are expected to suit our problem well.

• Resource constraint. We developed our own procedure for dealing with the resource constraint.
Upon inserting a request into a route, we fix the start service times of all other requests, and
plan requests on resources accordingly. This might lead to rejecting insertions that would be
possible when rescheduling is allowed, but such rescheduling would greatly increase complexity,
which is why we choose not to allow this. We show that route duration is optimal given the
fixed resource schedules.

• Initial solution. We simply obtain the initial solution by applying the regret heuristic on the
empty solution. We are not interested in the minimum number of vehicles, so we do not spend
excessive time on finding this number.

• Route pool. We maintain a pool of ‘idle’ vehicles such that we do not excessively compute
costs for identical empty vehicles. This pool also allows for greedy depot switching of routes.

• Adaptive parameters. Since we expect to do significantly fewer iterations compared to related
research, we made the segment length of the ALNS and cooling rate of the SA adaptive to the
expected number of iterations, such that the parameters they control behave accordingly in a
relative sense.

To see how the resource constraint affects the complexity of the problem, we ran the algorithm with
and without the constraint implemented on the benchmark set. Figure 4.5 shows that the relative
complexity increase seems to be linear in the number of nodes. This supports the observation that
e.g. Grimault had difficulty solving larger instances.

4.6. Running experiments
We will now start to evaluate the performance of our algorithm. All algorithms were written in
Python and run on a single core. All runs were performed on Linux using 8 Intel Xeon Gold 6148 CPU
@ 2.40GHz cores. All runs were capped by 30 minutes of runtime or 25,000 iterations, as per R&P. We
did not employ a number of iterations without improvement as another stopping criterion, because
this does not influence the results in the end and allows for fairer comparison. Each run of each

Figure 4.5: Average factor of runtime increase for resource constrained ALNS compared to unconstrained ALNS, for
different instance sizes.

4.7. Evaluation 35

instance is performed 10 times. This is because the algorithm is non‐deterministic, and we want to
be able to draw conclusions with some certainty. All of the above holds for all following experiments,
unless otherwise specified.

4.7. Evaluation
In this section we evaluate the performance of the ALNS with the resource constraint and other
adaptations described in this chapter. As a starting point, we take the parameters as defined by
Ropke and Pisinger, with three exceptions:

• We disregard the loads in Shaw removal since our capacity constraints are so tight, so ψ = 0.

• We make the cooling rate c adaptive as explained in Section 4.4.4, but we do take their default
of 0.99975 as a starting value.

• We do not apply noise, so η = 0. Grimault also found that adding noise has little effect.

This leads to the set of parameters as defined in Table 4.1. The reader is referred to the R&P paper
for their exact definitions for as far as we do not repeat them here.

Table 4.1: The parameters for the ALNS

ϕ χ ψ ω p pworst w c σ1 σ2 σ3 r η ξ

9 3 0 5 6 3 0.05 0.99975 33 9 13 0.1 0 0.4

4.7.1. Tuning relevant parameters
We investigate robustness against the destroy percentage ξ of the ALNS, and simulated annealing
parameter w. These two parameters could influence the performance of the algorithm, according
to initial experiments.

• ξ defines what part of the requests is removed in the destroy phase of the ALNS. It is therefore
a value in the interval [0, 1]. Later papers, such as Grimault, experiment with ranges of values.
In this case, on each iteration a value is chosen randomly from a uniform distribution in the
given range.

• w dictates worse solution acceptance in the simulated annealing procedure. More specifically,
it states that at the start of a run, a solution with an objective value that is a factor 1 + w

worse than the current solution’s is accepted with 0.5 probability. This probability decreases
because of the cooling rate c described before as time goes by.

We start by investigating the influence of ξ, setting w = 0.05 by R&P’s default. The results are
presented in Table 4.2. This shows that values of 0.1, [0.1, 0.2] and [0.1, 0.3] are generally most
favourable in this setting. This is lower than the value of ξ = 0.4 that R&P report, and more in
line with the results of Grimault. We explain this by noting that setting ξ = 0.4 will make a single
iteration take much longer, hence we can do fewer iterations in the given time. Also, removing
such a big portion of the requests means making big leaps throughout the search space, possibly not
converging to local minima. Finally, since Grimault treats a problem more similar to ours than R&P,
it feels intuitive to observe that the best values correspond.

We take these values to our next experiments, where we look at the influence of w. Recall that
setting w = 0.05 means that initially the algorithm may accept solution that are 5% worse cost‐wise
with 0.5 probability. Hence the algorithm will spend a lot of time accepting bad solutions, and it
may be more favourable to move to good solutions more quickly. We experiment with values for
w of 0.05, 0.03, 0.01 and 0. Note that w = 0 is equivalent to not using simulated annealing at
all, but simply accepting improving solutions only. The final results are presented in Table 4.3, for

36 Chapter 4. An ALNS approach

Table 4.2: Varying ξ for different instances. w = 0.05. Results are averages of 10 independent runs. Best results per
instance are in bold.

Instance 0.1 [0.1, 0.2] [0.1, 0.3] 0.2 0.3 0.4

fc6_r_18 116.27 115.57 115.45 115.57 115.45 115.45
fc6_mr_26 170.29 169.77 169.63 169.59 169.58 169.77
fc46_r_37 213.25 212.93 212.91 212.93 213.48 214.51
fc127_r_50 296.13 295.79 296.15 296.18 298.15 301.86
fc46_mr_56 324.45 324.34 324.72 325.42 327.43 329.76
fc127_mr_67 399.57 399.96 401.88 400.71 403.69 407.43
fc12467_r_87 511.38 513.13 515.99 518.72 529.38 534.83
fc12467_mr_123 732.42 738.34 744.76 745.72 757.85 785.94

fc3_ri_32 239.83 239.10 238.71 239.23 239.27 239.25
fc3_mri_44 345.61 344.41 343.50 343.86 345.23 348.27
fc15_ri_49 272.93 271.70 271.82 271.91 272.53 274.58
fc15_mri_61 338.88 339.98 338.70 342.22 341.88 345.12
fc135_ri_81 513.36 513.11 515.56 516.21 526.16 537.48
fc135_mri_105 688.99 693.57 700.09 701.50 715.93 730.15

ξ = [0.1, 0.2], which gave the best results over 0.1, [0.1, 0.2] and [0.1, 0.3]. Although the trend is
not very pronounced, we do see better results on average for lower values of w, which we attribute
to our assumption. More interesting are the curves presented in Figure 4.6, displaying how the best
solution improves over time on average. These show that a lower value for w makes the average
objective decrease more quickly. This is most logically explained by realising that fewer worsening
solutions are accepted for lower w, especially early on. If a relatively good solution is desired in
short time, then setting w = 0 (disabling SA) is the way to go. We do see, especially in Figure 4.6a,
that one runs a higher risk of getting stuck in local optima. The curve plateaus, but clearly not for
the optimal value.

We do not investigate different combinations of ALNS heuristics. Such experiments can scale enor‐
mously given the number of heuristics we have, and the rationale behind the adaptive component of
ALNS, is that the algorithm will use the better performing heuristics more often automatically. Also,
several papers indicate that omitting heuristics will hardly affect performance [24, 44].

(a) Instance fc127_r_50 (b) Instance fc12467_r_87

Figure 4.6: Best found solution vs. runtime for two of the instances, for different values of w. Graphs represent averages
over 10 independent runs.

4.7. Evaluation 37

Table 4.3: Varying w for ξ = [0.1, 0.2] for different instances. Results are averages of 10 independent runs. Best results per
instance are in bold.

Instance 0.00 0.01 0.03 0.05

fc6_r_18 115.70 115.63 115.62 115.58

fc6_mr_26 170.42 169.56 169.70 169.78

fc46_r_37 213.14 212.77 213.00 212.93

fc127_r_50 297.61 295.36 295.73 295.79

fc46_mr_56 324.90 323.65 323.86 324.34

fc127_mr_67 400.29 399.54 399.27 399.96

fc12467_r_87 513.01 511.99 512.62 513.13

fc12467_mr_123 732.13 733.22 737.58 738.34

fc3_ri_32 240.21 239.14 238.79 239.10

fc3_mri_44 346.33 344.68 344.23 344.41

fc15_ri_49 273.76 271.68 272.32 271.70

fc15_mri_61 341.38 339.37 338.70 339.98

fc135_ri_81 517.01 512.12 512.87 513.11

fc135_mri_105 695.99 690.11 694.17 693.57

4.7.2. Partitioning instances
As noted in section 2.6, some of these instances are the union of two others. Table 4.5 shows how
well each of these instances are solved jointly versus when split up and solved separately. Note that
this split is somewhat arbitrary, so we refrain from drawing conclusions from this observation. It
does however suggest that the potential of solving the joint instance is outweighed by the increased
complexity. For this set of four instances, the difference grows with instance size, which suggests
that runtime complexity in relation to instance size plays a role. Chapter 7 goes into more detail on
partitioning instances.

Table 4.4: Comparing results of joint vs decomposed instances. ξ = [0.1, 0.2] and w = 0.01

Joint instance Decomposed in‐
stances

Joint objective Sum of separate
objectives

Diff (%)

fc12467_r_87 fc46_r_37 511.99 508.12 ‐0.76

fc127_r_50

fc12467_mr_123 fc46_mr_56 733.22 723.18 ‐1.37

fc127_mr_67

fc135_ri_81 fc15_ri_49 512.12 510.82 ‐0.23

fc3_ri_32

fc135_mri_105 fc15_mri_61 690.11 684.05 ‐0.88

fc3_mri_44

38 Chapter 4. An ALNS approach

4.7.3. Concluding remarks
From these results, we list some takeaways given our instances and runtime limit:

• Smaller values for the destroy percentage parameter ξ are generally more favourable. This
leads us to believe that making many small steps through the search space is better than making
fewer large ones.

• The value for SA parameter w has little influence on the final results. It turns out that smaller
values for w, especially w = 0, lead to finding relatively good solutions quickly. When time
limits are even tighter, this can be taken into consideration.

• The results indicate that there may be cases when partitioning instances into smaller ones is
favourable for the final solution. In such cases it seems that the potential of solving the joint
instance is outweighed by the increased complexity.

5
Extending the ALNS with local search

In the previous chapter we demonstrated the ALNS to solve our problem. In section 4.7 we showed
however that larger instances were better solved when partitioned and solved separately. This indi‐
cates that the algorithm does not solve these larger instances optimally. What is more, we cannot
know if the smaller instances themselves are solved close to optimality.

In a search for improvements, we suggest the use of local search. Local search heuristics, or op‐
erators, were among the first non‐exact solution methods for routing problems [18]. Yet they are
used less frequently on pickup and delivery problems, relatively speaking. A likely explanation is
that many edge‐based local search methods cannot be directly applied to these problems, as they
will break the pickup‐and‐delivery constraint (a pickup and delivery must be performed by the same
vehicle). Essentially, an edge exchange can only be performed when the vehicles in question are
empty at the nodes before the to‐be‐exchanged edges. In many cases, e.g. when capacity is not so
limiting, this is not often the case. When possible edge exchanges are limited, the power of local
search quickly decreases. In our highly capacity constrained case however, vehicles are frequently
emptied completely, and this leaves enough space for edge exchanges. Also, some local search op‐
erators can be applied to PDP with only small alterations, as is done in earlier research by e.g. Lim
et al. [36]. Given the success of local search methods and the apparent applicability to our problem,
we choose to apply them.

In this chapter, we demonstrate how we expand upon the ALNS presented in the previous chapter. In
section 5.1 we introduce three local search heuristics which we apply to our problem and argue why
we chose these heuristics, and chose not to implement others. We show how local search is affected
by the resource constraint in section 5.2, and how the chosen heuristics are applied in the overall
procedure in section 5.3. Finally, we perform a new set of experiments building on the ones from
the previous chapter in section 5.4. We again investigate the destroy percentage, and perform an
ablation study on the local search heuristics introduced. We end the chapter with some concluding
remarks in section 5.5.

5.1. Local search heuristics
This section describes the three local search heuristics (relocate, exchange and crossover) we em‐
ploy in our new algorithm, why we chose them, and how they were tweaked to suit our specific
problem. We end this section with a paragraph arguing why we chose not to include some other
popular heuristics.

39

40 Chapter 5. Extending the ALNS with local search

5.1.1. Relocate
The relocate heuristic tries to move a node from one route to another. In the case of our PDP,
this means that both the pickup and delivery node have to be moved, or the pickup‐and‐delivery
constraint is violated. Where this heuristic can be viewed as an edge exchange in VRP, we view it
purely as a node exchange. Upon trying to move a request from one route to another, we test all
potentially valid positions of the two nodes in the new route. The move to the best possible pair of
positions is executed, when at least one exists. The relocate heuristic scales roughly quadratically
in the number of nodes, since every request can be placed after every other request in the solution.
Because the relocate heuristic is relatively fast, we employ a best‐accept strategy to find better
solutions more quickly.

5.1.2. Exchange
Similar to relocate, exchange tries to move single requests to a different route. However, it considers
swapping a pair of nodes simultaneously, rather than relocating a single node. Both nodes of a tested
pair are removed from their current routes, and tried being inserted in the other route. Since the
operator considers pairs of nodes (O(n2)), the neighbourhood of this operator scales faster than
that of relocate (O(n)). Note further that this exchange operator examines more options than the
regular edge‐based exchange. The latter is limited to swapping nodes such that the new node takes
the position of the old node in its route. This inherently limits the number of node pair that can
be exchanged. Our procedure provides greater flexibility in this regard. This does mean that our
exchange operator has an even larger neighbourhood compared to other operators, and it is therefore
expensive in terms of runtime to exhaust it. For this reason, we accept solutions on a first‐accept
basis for this operator.

5.1.3. Crossover
The crossover operator is purely an edge‐based one, making it generally hard to adapt to PDPs as a
vehicle has to be empty at the crossover point. As mentioned before, our trucks are often empty
throughout their routes, giving us plenty of crossover potential. Note that the crossover we describe
here is in fact the 2‐Opt* operator as described in Chapter 3. We prefer to use the term crossover as
it falls in line more nicely with relocate and exchange.

Crossover works by cutting two routes in half (in places where the trucks are empty), conversely
combining the two halves, and evaluating whether this yields routes with a combined lower cost.
The nodes in a route after which the truck is empty are considered eligible crossover nodes. The
number of eligible crossover nodes is at most half the number of nodes in a route, since this can
only occur after a delivery node. Given two routes and two cut nodes, there is only a single way to
recombine the four resulting half‐routes. Hence, the crossover neighbourhood is significantly smaller
than e.g. that of exchange, and therefore more quickly exhausted. We employ a best‐accept strategy
because of this.

5.1.4. Excluded heuristics
We finally go over some common heuristics that we did not implement, and argue why.

Intra‐route heuristics
One may have observed that all local search heuristics we implemented are inter‐route heuristics
that involve two routes. Common heuristics like intra‐route 2‐opt, k‐opt and Or‐opt are not explicitly
implemented, the reason being that we believe them not to be effective in many cases. First of all,
relocate partly covers these cases when it tries to relocate a node in its current route. As for more
complex intra‐route operations, such as reversing part of the routes or recombining sequences of
nodes, this will be often invalid because of the tightness of the time windows. While implementing
these operators anyway might not have hurt, we chose to focus on the more promising ones.

5.2. Local search and the resource constraint 41

‘Full’ crossover
The main reason to exclude crossover as described in Chapter 3 is its runtime complexity. As pointed
out earlier, it replaces four edges rather than the two in our crossover (2‐Opt*) operator. The latter,
as well as the exchange operator, are special cases of this operator, and we believe that many of its
moves are covered by the operators we do use.

5.2. Local search and the resource constraint
Savelsbergh [48] demonstrated how local search can be done efficiently for VRPs with route dura‐
tion minimisation. The foundation of his approach lies in the notion of slack times, which can be
efficiently kept track of when exhausting a neighbourhood in lexicographical order. It is built on
the assumption that start service times are not fixed. Therefore, transferring this procedure to our
setting with the resource constraint and fixed start service times is not trivial. We are bound to
recalculate new start service times for any route that changes as a result of a local search move,
making the time complexity of calculating the cost for such a move linear in route length rather
than constant time as Savelsbergh achieves. This is an inherent drawback of our method, and inves‐
tigating ways to overcome this would be a very interesting avenue of research. This also supports
our argument to not implement the more complex local search operators described in the previous
section.

5.3. General framework
We now set out to find a way to incorporate the local search heuristics into a grander scheme. Such
heuristics require a framework in which an initial solution is constructed, as well as a way to escape
local optima. It turns out that our ALNS algorithm can serve both these purposes. The initial solution
is again obtained by applying the regret heuristic on the empty solution. It may occur that a single
pass cannot place all shipments in the solution, and we are left with a partial (feasible) solution.
Our local search heuristics are not designed to turn such solutions into feasible ones, so instead we
apply ALNS iterations until we obtain a feasible solution. As soon as we obtain a feasible solution,
we move to the local search phase. When this phase is finished, we can apply another iteration of
ALNS to perturb the solution. We then move to the local search phase again, and so on. Figure 5.1
presents a schematic view of the entire framework, dubbed the ALNS+LS.

We now only need a procedure for the LS phase itself. One of the most common procedures is a
Variable Neighbourhood Search [40] (VNS), where one LS operator is applied until no improvement
can be made using this operator. It has reached a local optimum with respect to this operator. The
next operator, which has a different neighbourhood, may be applied to find a new local optimum,
until no operator can improve the solution anymore. We apply this procedure, with the exception
that we do not exhaust an LS operator, but rather apply it once, and then move on to the next, until
none of the operators can improve the solution. Preliminary experiments showed that this was a
better trade‐off between runtime and performance. Algorithm 4 describes this procedure.

Algorithm 4 The LS procedure

1: h← list of LS operators
2: i, fail_count ← 0

3: while fail_count < len(h) do
4: execute hi
5: fail_count ← fail_count +1

6: if hi improved solution then
7: fail_count ← 0

8: i← (i+ 1) mod len(h) ▷ To select next operator

42 Chapter 5. Extending the ALNS with local search

Figure 5.1: Flowchart of the ALNS+LS framework

5.4. Evaluation
As for the ALNS algorithm, we intend to find out which configuration of the ALNS+LS algorithm per‐
forms best. An important thing to note beforehand is that an iteration as defined in the previous
section takes significantly more time. Besides the ALNS step, we do a number of LS moves until
convergence, which is unknown in advance. Recall from the previous chapter that a higher value
for SA parameter w would lead to slower convergence of the objective. Since we now expect fewer
iterations, we do not investigate the influence of this parameter on the performance, but instead
take w = 0.01. We do not set w = 0 since preliminary experiments showed that this would still limit
search diversity too much.

We do investigate destroy parameter ξ again. We argued before that a higher value for ξ leads to
larger steps through the search space. We expect therefore more LS steps per iteration also, which
would weigh even heavier on the time per iteration. On the other hand, the combination between
larger perturbations and local search could be more effective than making smaller steps.

The results for the analysis on ξ are presented in Table 5.1. Clearly, the results lie rather close
together over the investigated values, suggesting that this algorithm is actually robust against this
parameter, in contrast to the ALNS algorithm. This could be because the local search phase finds
similar local optima regardless of how ‘big’ the ALNS move is. It just may take more LS steps to find
it.

In addition to the values of the parameters, we are interested in the effectiveness of the LS operators.
Since runtime is limiting, we would want to exclude operators that do not contribute towards a better
objective. To that end, we perform an ablation study on the three operators for each of the destroy
parameter settings. Table 5.2 presents the results for ξ = [0.1, 0.2], which most often gave the best
result over the benchmark instances. For each of the 4 configurations (all three heuristics (RCE),
and the three combinations of two heuristics, (RE, RC and CE)), we present the average objective
over 10 runs together with the coefficient of variation CV. The CV is defined in Equation 5.1 where
µ denotes the mean of the objectives of the 10 runs, and σ the standard deviation.

CV =
σ

µ
(5.1)

The CV was chosen as it normalises for the mean, which makes it easier and fairer to compare across
instances. A CV value of 1.00 in the table should be interpreted as the standard deviation being
1.00% of the mean.

The best values per instance are marked in bold. Across all instances, the RCE configuration most
often yields the best results. For instances where this is not the case, RCE is often only slightly
worse than the best one. For all instances, the CV is (much) less than 1% of the average, which
demonstrates the robustness of the algorithm.

5.4. Evaluation 43

Table 5.1: Varying ξ for the ALNS+LS algorithm

Instance [0.1, 0.1] [0.1, 0.2] [0.1, 0.3] [0.2, 0.2] [0.3, 0.3]

fc6_r_18 115.58 115.45 115.45 115.45 115.45

fc6_mr_26 169.31 169.23 169.23 169.23 169.23

fc46_r_37 212.29 212.21 212.28 212.23 212.26

fc127_r_50 295.70 294.93 294.95 295.05 295.07

fc46_mr_56 321.76 321.64 321.92 322.15 322.52

fc127_mr_67 397.42 397.05 396.99 397.33 397.97

fc12467_r_87 513.19 510.31 510.69 510.69 509.93

fc12467_mr_123 724.55 723.81 724.99 727.15 726.78

fc3_ri_32 239.15 238.82 238.50 238.60 238.45

fc3_mri_44 342.61 342.36 342.75 342.49 342.76

fc15_ri_49 270.37 269.93 269.01 269.80 270.07

fc15_mri_61 336.80 336.04 336.10 336.29 337.24

fc135_ri_81 511.18 509.69 510.39 511.04 511.99

fc135_mri_105 685.41 686.08 685.79 687.54 689.18

Table 5.2: Ablation study on the local search heuristics. Best averages and standard deviations per configuration are
presented in bold. ξ = [0.1, 0.2].

ls RCE RE RC CE

Instance avg CV (x100) avg CV (x100) avg CV (x100) avg CV (x100)

fc6_r_18 115.45 0.00 115.45 0.00 115.56 0.20 115.45 0.00

fc6_mr_26 169.23 0.00 169.30 0.07 169.50 0.11 169.24 0.02

fc46_r_37 212.21 0.05 212.34 0.05 212.34 0.05 212.22 0.02

fc127_r_50 294.93 0.08 295.31 0.12 295.11 0.07 295.00 0.08

fc46_mr_56 321.64 0.09 322.36 0.13 322.24 0.12 321.99 0.12

fc127_mr_67 397.05 0.14 397.72 0.21 397.76 0.31 397.32 0.15

fc12467_r_87 510.31 0.70 511.21 0.35 509.70 0.28 510.55 0.33

fc12467_mr_123 723.81 0.22 726.07 0.25 727.00 0.26 726.99 0.41

fc3_ri_32 238.82 0.21 238.82 0.21 238.71 0.18 238.97 0.24

fc3_mri_44 342.36 0.16 342.70 0.19 342.39 0.18 342.72 0.24

fc15_ri_49 269.93 0.26 271.12 0.56 269.97 0.34 270.34 0.23

fc15_mri_61 336.04 0.25 337.13 0.29 336.12 0.28 338.46 0.61

fc135_ri_81 509.69 0.39 513.29 0.48 509.89 0.27 514.75 0.44

fc135_mri_105 686.08 0.42 688.65 0.56 685.94 0.50 689.49 0.25

44 Chapter 5. Extending the ALNS with local search

5.5. Concluding remarks
In this chapter we implemented local search into the ALNS algorithm from the previous chapter. In
earlier research to closely related problems, local search was often not used. We however demon‐
strate how local search methods impact the performance of our algorithm. We summarise our findings
below:

• We chose to implement three LS heuristics, the neighbourhoods of which do not scale too badly
in instance size. We looked at how the three heuristics contributed to the performance, and
found that putting all three together yields the best results.

• Omitting any of the LS heuristics gave results that are close to the configuration with all three
operators. While we may lose a set of good neighbourhood moves by doing so, we apparently
achieve similar results by being able to apply the other two operators more often.

• We showed how the ALNS+LS algorithm was more robust to the destroy parameter ξ.

• A closer look at Tables 5.1 and 5.2 suggests that large instances are still better solved when
decomposed.

6
A Matheuristic approach

Since we still do not solve larger instances optimally, we continue to look for solution methods for our
problem. Figure 4.5 demonstrated how runtime complexity scales with instance size as a result of the
resource constraint. We therefore present a matheuristic in this chapter that relaxes the resource
constraint initially in the ALNS+LS procedure, and later enforces it using a CP model. Grangier et al.
[23] did this for a different routing problem with resource constraints at a single transfer location.
Relaxing the constraint is expected to increase the possible number of iterations given our runtime
limits. We should only make sure that enforcing the constraint can be done quickly such that we
keep this advantage in the end. Note that instead of a CP model one can also employ a scheduling
heuristic. We chose not to take this path as developing such a heuristic is not trivial, and naturally
suffers from the fact that it may reject feasible solutions by its heuristic nature. On the other hand,
the CP model we developed is concise and solved relatively quickly using the right solver and settings.
The model is presented in the first section of this chapter.

We present the CP model in section 6.1. Section 6.2 describes the matheuristic framework, and we
do a first evaluation in section 6.3. It is important to note that a candidate solution obtained by
the ALNS+LS phase is not guaranteed to be feasible. As it turns out, it often is not, especially when
instance size and solution intricacy increases. Therefore, section 6.4 presents two adjustments to
the ALNS+LS phase that aim to guide the candidate solutions towards being feasible. This section
also evaluates the matheuristic with these adjustments. The chapter is concluded in section 6.5.

6.1. The CP model
As discussed, the CP model imposes the resource constraint on a candidate solution produced by
the ALNS+LS step. The model takes as input the routes of the solution, and outputs an optimal
scheduling to this solution if and only if one exists. The array of start service times for all nodes
is the only decision variable of the problem. This means that the routes themselves remain fixed,
i.e., no nodes can be swapped within a route or between routes. In fact, the fixed routes serve as
precedence constraints on the nodes: each node must be serviced at a time such that its succeeding
node can also be serviced in time. This highly constrains the problem, making it very suitable for a
CP solver to solve [45]. Time windows impose another constraint on this service time. Finally and
most importantly, the resource constraint is imposed by a disjunctive constraint, similar to the one
in the model described in section 2.4. The model is presented below.

45

46 Chapter 6. A Matheuristic approach

Parameters

N Set of all pickup/delivery nodes
F Set of first pickup nodes for each route
D Set of last delivery nodes for each route
L Set of locations (resources)
(ai, bi) Time window for node i
si Duration for which node i occupies its resource
ri Service time plus driving time to successive node for node i
δi Service time to add for non‐hub nodes, for which departure times should be disjoint.

Zero for hub nodes
Lj Set of nodes with location j
tmin Minimal driver day duration

Decision Variables

ti Start service time for node i

Constraints

ai ≤ ti ≤ bi ∀i ∈ N Node i must be serviced within its time win‐
dow

ti ≤ tpi
+ rpi

∀i ∈ N \ F Precedence constraints on node i. Not appli‐
cable to first pickup nodes

disjunctive([ti + δi ∀i ∈ Lj | si ∀i ∈ Lj]) ∀j ∈ L Resource constraint

Objective

min
∑

i∈D ti −
∑

j∈F tj Minimize schedule duration, which equates to minimizing the
summed differences between times of last delivery and first
pickup.

6.2. The matheuristic framework
We leave the first part of the algorithm, the ALNS+LS procedure, mostly untouched. We remove
the mechanism introduced in section 4.1, and after inserting a request into a route we only have
to re‐evaluate insertion costs for that route. This is the major time‐saver in this step. Figure 6.1
outlines the full procedure schematically.

6.2.1. Reducing the number of CP evaluations
Since CP evaluations do not come for free, we want to avoid unnecessary evaluations where possible.
We propose two ways by which we can do so.

Note that enforcing the constraint will never decrease the total solution cost. In case we obtain a
candidate solution after the ALNS+LS step with a cost higher than the best known feasible solution,
we already know that this candidate solution can never improve on the best solution. In that case,
we simply discard this solution. We skip the CP step and immediately move on to the next iteration.
This speedup becomes more significant as our solution improves, since more and more candidate
solutions will be rejected.

6.3. First evaluation 47

Secondly, recall that the CP model can freely reschedule node visits on resources as long as it pre‐
serves the routes themselves. Thus, a resource‐unconstrained schedule given as input will always
yield the same optimal resource‐constrained schedule as output. This means that there is no need
to evaluate a schedule more than once. We therefore store representations of evaluated schedules
in a set, and check before a CP evaluation whether this schedule was evaluated before. If so, then
we skip the CP step and move back to the ALNS+LS procedure.

Figure 6.1: Flowchart of the matheuristic framework

6.3. First evaluation
Table 6.1 presents the results of the matheuristic on the benchmark set. While we leave a full
comparison between the different algorithms for Chapter 7, we do present the ALNS+LS results
here for comparing the number of trucks used. We return to this in the next section. The table
also presents the number of failed runs for each instance. We say that a run has failed when no
feasible solution has been found at all, which is highly undesirable. For instances fcACEFG_r_87 and
fcBDE_mri_105, none of the 10 runs yield a feasible solution. The apparent difficulty in finding (good)
solutions for larger instances is most likely explained by the larger number of resources that is to
be accounted for, and the more constrained resource scheduling as a result of many interdependent
routes. Besides the fact that we are not guaranteed to find solutions, the solutions we do find are
not competitive with those of the ALNS+LS algorithm. This suggests that we cannot naively leave out
the resource constraint in the first place and hope to obtain good candidate solutions.

6.4. Promoting feasibility
Given that our first results are unsatisfactory, we make an important observation. Table 6.1 shows
us that the solutions provided by the matheuristic use fewer trucks than those given by ALNS+LS on
average. Apparently the matheuristic attempts, and succeeds, to put more shipments in a route. This
can be explained by noting that under the resource constraint, it occurs more often that a shipment
cannot be inserted in a route that already contains many shipments. After all, the resource constraint
limits the insertion options. The ALNS+LS with resource constraints will more often require to use
an extra route to plan all shipments. Put differently, routes with fewer shipments should have more
slack. Recall that slack is expressed as the time by which a node can be shifted in time without
making the route duration longer.

Conversely, a candidate solution with fewer routes and less slack may be less likely to be feasible than
one with more routes and slack. It may therefore be advantageous to guide the candidate solutions

48 Chapter 6. A Matheuristic approach

Table 6.1: Results for the basic matheuristic. ξ = [0.1, 0.2], next to the best ALNS+LS results. ’‐’ indicates when no feasible
solution was found in 10 runs.

Instance
Matheuristic ALNS+LS

avg #fails avg #trucks avg avg #trucks

fcG_r_18 115.45 0 6.0 115.45 6.0

fcG_mr_26 170.31 0 6.0 169.23 6.0

fcFG_r_37 212.21 0 11.0 212.21 11.0

fcACE_r_50 296.76 4 14.0 294.93 15.0

fcFG_mr_56 323.91 0 11.0 321.64 13.6

fcACE_mr_67 401.37 0 15.0 397.05 16.4

fcACEFG_r_87 ‐ 10 ‐ 510.31 26.5

fcACEFG_mr_123 739.19 4 26.0 723.81 1.22

fcB_ri_32 237.97 0 10.0 238.82 10.1

fcB_mri_44 342.96 0 11.0 342.36 12.7

fcDE_ri_49 274.65 0 12.5 269.93 12.9

fcDE_mri_61 339.37 0 12.8 336.04 14.4

fcBDE_ri_81 520.03 0 22.0 509.69 23.5

fcBDE_mri_105 ‐ 10 ‐ 686.08 26.4

to being more feasible somehow, i.e., have more routes and more slack. This section describes the
two adjustments we made to the ALNS+LS step to try to achieve this. First however, we discuss two
ideas that felt intuitive but did not work well.

6.4.1. First ideas: inter‐route penalties
Recall that the resource constraint effectively disallows nodes to overlap at a location. In order
to minimise this potential overlap, we tried adding a weighted penalty to the objective function.
Shipments that overlap at a resource could be penalised for the time that they overlap. While this
may have less overhead than the procedure as explained in Chapter 4, we would again introduce
interdependence among the routes. Inserting or removing a shipment would require reassessing the
penalty function for all affected routes and resources, and updating insertion cost for the remaining
uninserted shipments for all these routes before the next insertion. Overall, we would not gain
enough complexity decrease and speedup.

A second idea was to create for each resource a discrete timeline, and allow only one shipment per
time step. We attempted to implement this, but this suffers from the very same issue. We concluded
that the adjustments that we make should not add complexity to the problem, or we would gain too
little from it compared to the extra overhead of enforcing the constraint.

6.4.2. Promoting slack
Adding a penalty to the objective function can be a good strategy to promote certain solution charac‐
teristics. We only must take care that we penalise attributes belonging to a single route, rather than
global attributes, or ones that depend on other routes. This limits the possibilities, but one attribute
that could be of interest is slack, discussed in Chapter 3. Recall that the forward slack of a route
defines how much we can shift a route forward in time, without making its duration longer. Since
we schedule our routes as late as possible as shown in section 4.1, and thus may only move it earlier,
we will consider backward slack. The intuition behind favouring more slack is as follows: When two

6.4. Promoting feasibility 49

routes without slack visit the same resource simultaneously, there is no possibility of moving either
route backward in time. The overlap cannot be adjusted for, and the solution will be infeasible.
When slack in routes is large, adjusting for overlap is expected to be easier. We therefore introduce
the slack penalty into the objective function, which now is:

ctot = rd ∗max(d, dmin) + rt ∗ t+ ws ∗ s (6.1)

Rather than simply subtracting the slack value of the route, we define s as

s = 1−minn∈R
atwend − atwstart

twend − twstart
(6.2)

where tw denotes the original time window of the node, wheres atw denotes the adjusted (shortened)
time window as a consequence of the other nodes in the route. In words, we take the minimal ratio
of actual slack over maximum slack over all nodes as a metric. Normalising for maximum slack makes
us indifferent to the fact that some routes simply have little slack because some node it contains has
a small time window from itself. The value for ws has to be determined empirically.

6.4.3. Enforcing more routes
A second observation regarding candidate solutions is that they tend to use fewer routes on average
than solutions obtained by the ALNS+LS algorithms. While this may seem beneficial, it could also
mean that the relaxed problem can be solved with fewer routes than the constrained problem. This
may lead to many infeasible candidate solutions. To counteract this, we introduce a route splitting
step between the ALNS and LS steps. This splits the longest route in the solution into two routes.
However, it may vary from one instance to another whether fewer routes is better. In order to
promote diversity in this search, we decided to only apply this step with a 0.5 probability.

6.4.4. Evaluation after applying feasibility promotion
We evaluated the performance of the matheuristic with the presented adjustments, and present the
results in Table 6.2. After some initial runs, we used weights of 0 (no penalty), 10 and 100 for our
experiments, all with truck splitting. Note that the performance of the penalty weights depends on
how we defined the slack penalty function in Equation 6.2.

Let us first compare the results for ws = 0 without route splits (Figure 6.1) and with route splits
(Figure 6.2). We see that the average objective decreased for the nine largest instances. For the
smaller ones, they are mostly only insignificantly worse. Interestingly, the number of trucks used on
average is clearly bigger, and much more in line with the ALNS+LS results in Figure 6.1. This suggests
that the route splitting achieves what it was meant to do. Also, the total number of failed runs
decreased from 28 to 15. Instance 87 is still never solved.

Next, we take a look at what increasing the penalty value gives us. First of all, the number of
failed runs decreases further, to 4 for ws = 10 and 0 for ws = 100. This suggests that higher slack
penalties indeed better guide candidate solutions towards a feasible solution. Further, we observe
that the number of routes for each solution has increased on average to values much closer to those
of the ALNS+LS results presented in Table 6.1. In terms of average objective, we see that the results
improve up to 1% across the benchmark set compared to the ‘naive’ matheuristic. We do observe
slightly worse average objectives for ws = 100. When the penalty component weighs heavier on
the objective function, its focus shifts away from the true routing objective. This could explain this
observation, but more experiments would be required to draw conclusions.

50 Chapter 6. A Matheuristic approach

Table 6.2: Results for the matheuristic for different penalty values. With route splitting. ξ = [0.1, 0.2]. Instance names are
abbreviated to their sizes. ’‐’ indicates when no feasible solution was found in 10 runs.

ws 0 10 100

Instance avg #fails #trucks avg #fails #trucks avg #fails #trucks

fc6_r_18 115.45 0 6.0 115.45 0 6.0 115.45 0 6.0
fc6_mr_26 170.39 0 6.0 170.31 0 6.0 170.36 0 6.0
fc46_r_37 212.18 0 11.0 212.20 0 11.0 212.32 0 11.0
fc127_r_50 295.87 0 15.1 295.26 0 15.0 295.21 0 15.0
fc46_mr_56 322.01 0 13.6 321.74 0 13.7 322.81 0 13.2
fc127_mr_67 398.95 0 17.1 398.76 0 16.7 398.85 0 16.3
fc12467_r_87 ‐ 10 ‐ 512.16 3 26.3 510.00 0 25.9
fc12467_mr_123 734.63 1 28.6 735.61 1 29.3 733.57 0 29.5

fc3_ri_32 238.26 0 10.1 237.94 0 10.0 238.26 0 10.1
fc3_mri_44 343.47 0 11.2 342.92 0 11.0 343.96 0 11.2
fc15_ri_49 269.54 0 13.0 270.90 0 13 271.85 0 12.9
fc15_mri_61 338.51 0 14.8 337.98 0 14.3 340.28 0 14.2
fc135_ri_81 518.58 0 23.8 515.12 0 23.4 516.40 0 23.2
fc135_mri_105 698.55 4 25.7 695.77 0 26.1 700.01 0 27.1

6.5. Concluding remarks
We have presented a matheuristic for our problem which has to the best of our knowledge not been
presented in this form in earlier research. We address the most important points below.

• Simply splitting up the algorithm in an unconstrained routing phase, and a resource constraint
imposing CP phase, yields results that are not competitive with our ALNS+LS algorithm. Without
any guidance towards the resource constraint, the routing phase does not provide good quality
candidate solutions. Sometimes it fails to find a solution at all. Often, this is because the
routing phase returns candidate solutions with too few routes. For some instances, it does not
find solutions at all, which is very undesirable.

• The slack penalties and route splitting we introduce improve the performance of the matheuris‐
tic noticeably, such that it approaches the performance of the ALNS+LS algorithm on smaller
instances. On larger instances, the matheuristic solution quality degrades, likely because the
resource constraint becomes more constraining when the number of routes and requests grows.

• While we show the use of slack penalties, the best weight of the penalty is hard to determine.
There are signs that a higher penalty makes the algorithm more robust against failure, but at
the cost of a higher objective. More research can be put into this, and possibly this weight
can be a function of problem characteristics (e.g., problem size). Alternatively, the weight
could be made adaptive: depending on how well the algorithm finds feasible solutions, it can
be decreased or increased dynamically.

• In terms of guaranteeing finding solutions, an interesting direction would be to hybridise the
matheuristic with the constrained ALNS+LS procedure. Besides finding feasible solutions in the
first place, we might be able to combine the best of both algorithms and increase performance
further.

7
Final evaluation

The ultimate goal of this thesis is to find out how to best solve the problem at hand. In this chapter
we take the best version of our algorithms and investigate its performance on a dataset of five full
days of shipments.

First, we compare the best versions of our algorithms on the benchmark set in section 7.1. Section
7.2 presents the datasets of the five days we take for empirical study. Section 7.4 makes an as‐good‐
as‐possible comparison between the existing Picnic FMS and our best algorithm. Lastly, section 7.5
aims to find out whether we should decompose the problem to best solve it, and if so, how.

7.1. Comparing the best versions of the different algorithms
In this section we take the best configurations of the three presented algorithms in terms of average
objective and robustness across the different instances, and compare their performance in more
detail.

The algorithm configurations are presented in Table 7.1, and follow from the results in the previous
chapters. Table 7.2 shows the average objective, the average gap to the best found solution (BFS,
second column), and the coefficient of variation (CV, as defined in Chapter 5) for these configurations
as a means to compare the three. Interestingly, but in line with earlier resutls, the BFSs of the three
largest instances are actually found by solving two parts of a partition separately.

On all instances except fcB_ri_32 the ALNS+LS outperforms the other two. Furthermore, we observe
that ALNS outperforms the matheuristic on the four largest instances, but the matheuristic outper‐
forms ALNS on the smaller ones. On average, we see that ALNS+LS clearly outperforms the other two
on the benchmark set, both on average gap and CV. This makes ALNS+LS both the best performing
and most consistent and robust algorithm to solve these instances.

Table 7.1: The three algorithm configurations

Algorithm ξ w LS heur. ws route split

ALNS [0.1, 0.2] 0.01 n/a n/a n/a

ALNS+LS [0.1, 0.2] 0.01 RCE n/a n/a

Matheuristic [0.1, 0.2] 0.00 RCE 10 yes

51

52 Chapter 7. Final evaluation

Table 7.2: Comparing averages of preferred configuration per algorithm. Best found solutions (BFS) across all simulations are
presented in the rightmost column. In case the best solution was found by solving a partition of the instance, it is marked
with an *. Average gaps to BFS and coefficients of variation (CV) over the 10 runs are also given. Best results per instance
are marked bold. Objectives are rounded to integer values for readability. Instance names are abbreviated to their size.

Instance BFS
ALNS ALNS+LS Matheuristic

Obj. CV (x100) Gap (%) Obj. CV (x100) Gap (%) Obj. CV (x100) Gap (%)

18 115.45 115.64 0.15 0.16 115.45 0.00 0.00 115.45 0.00 0.00

26 169.24 169.56 0.20 0.10 169.24 0.00 0.00 170.32 0.64 0.17

37 212.08 212.76 0.32 0.05 212.20 0.06 0.05 212.20 0.06 0.04

50 294.68 295.36 0.23 0.09 294.92 0.08 0.08 295.24 0.19 0.14

56 320.88 323.64 0.86 0.15 321.64 0.24 0.09 321.72 0.26 0.16

67 396.00 399.52 0.87 0.27 397.04 0.26 0.14 398.76 0.70 0.16

87 506.76* 511.96 1.01 0.42 510.28 0.69 0.70 512.16 1.07 0.30

123 716.88* 733.20 2.28 0.35 723.80 0.97 0.22 735.60 2.61 1.67

32 237.68 239.16 0.62 0.16 238.80 0.47 0.21 237.96 0.12 0.02

44 341.24 344.68 1.01 0.39 342.36 0.47 0.16 342.92 0.49 0.23

49 267.08 271.68 1.72 0.38 269.92 1.06 0.26 270.88 1.57 1.07

61 334.00 339.36 1.63 0.39 336.04 0.60 0.25 337.96 1.16 0.52

81 505.68 512.12 1.27 0.56 509.68 0.79 0.39 515.12 1.87 0.80

105 675.24* 693.56 2.71 0.40 686.08 1.61 0.42 695.76 3.04 1.07

avg. ‐ ‐ 1.06 0.28 ‐ 0.52 0.21 ‐ 0.98 0.45

We dive into the results further by analysing the average objective throughout time for some of
the instances in Figure 7.1. We observe that the matheuristic performs even slightly better on the
fc46_r_37 instance than the ALNS+LS, whereas ALNS lags behind. This is most likely because the
resource constraint weighs less heavily on such a small instance. For the two larger instances in
Figures 7.1b and 7.1c, the matheuristic performs increasingly worse. The schedules obtained by the
routing step are increasingly less likely to be feasible, which takes its toll on performance. The
boxplots show that the variation for the solutions by the matheuristic increases with instance size,
which shows less robustness for such instances. The algorithm still seems to have trouble guiding
towards good feasible solutions consistently, likely because the scheduling on resources becomes
more intricate and the constraint weighs heavier. Finally, it must be noted that these results exclude
the failed runs for the matheuristic.

The performances of ALNS and ALNS+LS are rather consistent across the instances, with ALNS+LS
steadily outperforming ALNS. Overall, the ALNS+LS with this configuration gives the best and most
consistent results on the benchmark set, so we choose to perform the final set of experiments with
this algorithm. For the remainder of this chapter, the ALNS+LS algorithm is referred to as the algo‐
rithm.

7.2. Five full problem instances
The reader is referred to the Thesis Confidential Supplement for this section, which presents the
instances for Day 1 through Day 5.

7.2. Five full problem instances 53

(a) fc46_r_37

(b) fc127_mr_67

(c) fc135_mri_105

Figure 7.1: Average cumulative objective and boxplots for the three algorithms on three instances

54 Chapter 7. Final evaluation

Table 7.3: Single FC, Regular Outbound, Day 1. Worst solutions across 4 runs. The last column states whether the solver
found the same solution. This is marked bold when the solution is proven optimal.

Instance FMS ALNS+LS without MH Gap (%) ALNS+LS with MH Gap (%) Equal to BFS CP?

Day 1 FCA 96.78 95.71 ‐1.1 93.36 ‐3.5 yes

Day 1 FCB 193.24 182.80 ‐5.4 179.01 ‐7.4 yes

Day 1 FCC 143.14 134.90 ‐5.8 134.90 ‐5.8 yes

Day 1 FCD 133.84 131.75 ‐1.6 128.22 ‐4.2 yes

Day 1 FCE 75.76 66.83 ‐12.4 66.83 ‐12.4 yes

Day 1 FCF 109.10 103.08 ‐5.5 101.32 ‐7.1 yes

Day 1 FCG 120.28 115.45 ‐4.0 115.45 ‐4.0 yes

Total 872.13 830.52 ‐4.8 819.09 ‐6.1 ‐

7.3. Solving small instances using the CP solver
In the upcoming sections, small instances are also evaluated using the CP solver. As mentioned in
section 3.2, the model was coded in MiniZinc and solved using the state‐of‐the‐art Google OR‐Tools
solver. Free search was enabled as this is recommended by Google, and the model was run from the
same machine as the other experiments, using 8 cores in parallel. The results for the solver in this
chapter were obtained after 600s.

7.4. Comparison to FMS
To make the comparison between FMS and our algorithm as fair as possible, we need to take the
following into account:

• FMS only generates feasible schedules for Regular Outbounds, so we run our algorithm on Reg‐
ular Outbounds only too.

• FMS does not take minimum route duration into account, but this is an integral part of our
objective function. We run our algorithm with this objective function, but evaluate the final
cost without taking the minimum route duration into account

• FMS can only combine shipments for a few predefined pairs of hubs, whereas our algorithm can
do so for any two hubs. For this comparison, we disable such multihub shipments (MH) for FMS,
and run our algorithm with and without multihub shipments enabled.

We ran our ALNS+LS algorithm on these instances in the configuration presented in section 7.1, but
with ξ = [0.1, 0.4], since a larger value for ξ is beneficial for small instances as previous experiments
showed. We did four runs of the algorithm for 300s each, on each instance. For each instance, with
an without multihubs, we observed very consistent results. These are shown in Table 7.3 for Day 1,
where we report the worst result across the four runs. The results for the other days can be found
in Table B.1. Moreover, CP solver finds the same results in 600s for all instances. Some of these are
also proven optimal. We observe that our algorithm outperforms FMS by 3.7‐5.8% without multihub
shipments, and 5.6‐10.4% with multihub shipments. As discussed in section 2.6, a few notions have
to be made regarding this comparison:

• FMS has the freedom to change the picking line order to favour the routing process. We use a
rule of thumb to determine the picking line order (see section 2.6) which we keep fixed. All in
all, we have one fewer degree of freedom, which speaks in our favour.

• FMS discretises time to 5‐minute time steps. However, it rounds both down and up, so we
cannot say for sure how this influences the results.

7.5. Full instances and decompositions 55

Table 7.4: Single FC, Regular + Morning Outbound, Day 1, 10 runs each. BFS CP is marked bold if proven optimal.

Instance n
ALNS+LS

BFS CP
Avg Best Worst

Day 1 FCA 15 119.38 119.38 119.38 119.38

Day 1 FCB 35 284.75 284.69 284.82 285.38

Day 1 FCC 31 177.59 177.39 177.95 178.33

Day 1 FCD 20 153.48 153.48 153.48 153.48

Day 1 FCE 17 105.35 105.35 105.35 105.35

Day 1 FCF 30 160.58 160.41 160.73 161.26

Day 1 FCG 26 169.23 169.23 169.29 169.29

• FMS applies longer driving durations during busy e.g. rush hour, which may skew the results in
our favour. We do not evaluate the full impact, but we estimate that correcting for this would
result in a gap which is 1 or 2 percentage points smaller.

7.5. Full instances and decompositions
Now that we have shown that we outperform FMS on single‐FC Regular Outbound instances, we
intend to find out how we can best solve the full instances. The first step we take is to add Morning
Outbounds to the Regular Outbounds. Picnic currently does this by hand, and unfortunately we
cannot compare this planning to the solutions we obtain. Instead, we run our algorithm on single
FC, Morning + Regular Outbound instances to see how consistent our results are there. We also run
the CP solver on these instances. Table 7.4 shows these results for Day 1. Note that from now on,
we always enable multihub shipments, and all runs of our algorithm are limited at 30 minutes again.
We also evaluate all results with the minimum route duration again.

We see that the three smallest instances (FCs A, D and E) are solved to the same result 10 out of 10
times, and also equals the BFS found by the CP solver. All other instances are solved to within at most
0.32% between the best and worst solution, showing consistent performance across the different runs.
They also outperform the CP solver 10 out of 10 times.

We will now consider combining single‐FC instances. We argued before how combining instances
could give more combinatorial opportunities, but could also make the problem (too) complex to
solve. We consider partitions across FCs of the full instance of different sizes, based on what is
geographically sensible. The partitions we consider are presented in Table 7.5. We consider three
combinations of flows, namely Morning + Regular Outbound (MR), Inbound only (I), and all three
together (MRI). It is interesting to see whether it is beneficial to combine Inbounds and Outbounds,
or keep them separate. Separating Morning from Regular Outbounds makes no sense operationally,
regardless of whether we add Inbounds to that. We consider a subset of the partitions for each
combination of flows, which we present in Table 7.6.

56 Chapter 7. Final evaluation

Table 7.5: Partitions over FCs

FC partitions Explanation

I {A, B, C, D, E, F, G} The full instance

II {A, C, D, E}, {B, F, G} Split into a northern and southern half

III {A, C, F, G}, {B, D, E} Split into an eastern and western half

IV {D, E}, {A, C}, {F, G}, {B} A geographically sensible clustering into 4 parts

V {A}, {B}, {C}, {D}, {E}, {F}, {G} All separate

For each partition, we run the algorithm on each subset for 30 minutes. We then add the results per
partition to see which yields the best total result. Even though we effectively give more computation
time to the partitions with more subsets, this is the most relevant comparison for Picnic: the different
parts can be run in parallel, while a joint instance cannot be parallelised.

We present the average cumulative objective throughout the 30 minutes for all flows and correspond‐
ing partitions of Day 1 and Day 3 in Figures 7.2a through 7.2f. The results for the other days can be
found in Figures B.1a ‐ B.1i. Table 7.7 summarises the 30 minute final results for all days, flows and
partitions. We walk through the three flow combinations in turn.

• MR: Figures 7.2a and 7.2b show the performance on the different partitions through time for
the Outbound instances. Clearly, evaluating single FCs (partition V) is not the way to go. The
instances are too small to be able to find efficient schedules. We observed in the generated
schedules that the minimum duration is often not reached, which creates additional costs.
Table 7.7 shows how partition III is always (close to) the best partition for MR. This east‐west
split is apparently beneficial over the north‐south split.

• I: Table 7.7 suggests that the three partitions evaluated for Inbounds yield results that lie close
together. Figures 7.2c and 7.2d do show that partitions II and III yield better solutions more
quickly than partition I. This is most likely because partition I is harder to solve because it is
generally twice as large.

• MRI: The integrated instances show a very clear trend, stating that partition IV outperforms the
others 4 out of 5 times, and is very close on Day 3. Furthermore, Figures 7.2e, 7.2f and Appendix
figures show how partition IV outperforms the other regardless of how long the algorithm is
running. In other words, they are very robust with respect to runtime. Apparently, larger
subsets of FCs become too hard to solve, whereas single FCs suffer from too few combinatorial
possibilities.

Table 7.6: Considered partitions per flow

Flows Acronym Considered
partitions

Remarks

Morning + Regu‐
lar Outbounds

MR I, II, III, IV, V ‐

Inbounds I I, II, III Partitions IV and V will generally give too
small instances to efficiently solve

All Outbounds +
Inbounds

MRI II, III, IV, V The full instance proved to be too hard to
solve and gave no meaningful results. A sin‐
gle iteration generally takes over 60s.

7.5. Full instances and decompositions 57

Table 7.7: Relative performance after 30min of each partition, for MOB/OB, IB and MOB/OB/IB, for the 5 days. Best
partition is marked with a ‐. Values indicate percentual difference compared to best partition.

Date
MR I MRI

I II III IV V I II III II III IV V

Day 1 1.79 0.43 0.37 ‐ 1.57 0.43 0.05 ‐ 1.24 1.11 ‐ 2.47

Day 2 0.90 0.84 ‐ 2.17 4.21 1.88 ‐ 0.62 1.25 0.13 ‐ 1.54

Day 3 1.48 0.81 ‐ 0.50 1.99 0.28 ‐ 0.67 0.89 ‐ 0.04 1.70

Day 4 0.82 0.54 ‐ 1.40 2.58 ‐ 0.62 1.63 1.58 0.40 ‐ 1.35

Day 5 1.66 0.40 0.08 ‐ 1.50 0.23 ‐ 0.69 1.28 0.36 ‐ 1.19

7.5.1. Incorporating Inbounds vs. keeping them separate
As a final step in our evaluation, we want to see whether it pays off to solve Inbound instances
separately, or integrate them in the Outbound instances. We take for each day the best strategy
(i.e. partition(s)) for MR + I, and MRI, and see how the summed objectives relate to one another.
Table 7.8 shows the best strategy per day for both combinations, the (summed) objectives and the
percentual difference, with the separate instance as a base. MRI clearly outperforms MR + I on all
days. Interestingly, there appears to be a positive correlation between the instance size and this
difference. This suggests that integrating Inbounds when the number of MR shipments per FC is
lower pays off more. Also, a lack of MOB shipments could cause more schedules to be shorter than
the minimum route duration.

Table 7.8: Comparing Inbound and Outbound separated vs. combined

Date
MR + I MRI

Diff (%)
Best strategy Obj. Best strategy Obj.

Day 1 IV + III 1524.28 IV 1483.40 ‐2.68

Day 2 III + II 1372.08 IV 1307.32 ‐4.72

Day 3 III + II 1108.68 III 1052.56 ‐5.06

Day 4 III + I 1476.56 IV 1410.96 ‐4.44

Day 5 IV + II 1649.16 IV 1597.80 ‐3.11

58 Chapter 7. Final evaluation

(a) Day 1 MR (b) Day 3 MR

(c) Day 1 I (d) Day 3 I

(e) Day 1 MRI (f) Day 3 MRI

Figure 7.2: Average cumulative objective for partitions, Day 1 and Day 3

7.6. Concluding remarks 59

7.6. Concluding remarks
This chapter examined the multiple algorithmic approaches developed by means of benchmarking
on actual data from Picnic. We paid attention to also making a comparison with the existing Picnic
algorithm as fairly as possible.

• Section 7.1 shows that the ALNS+LS algorithm outperforms the ALNS and the matheuristic on
almost all benchmark set instances. We therefore use this algorithm in our final analysis.

• Section 7.3 recalls that the exact CP approach does not scale.

• Section 7.4 shows that the ALNS+LS algorithm outperforms Picnic’s current FMS by 4.8%. We do
present a few reasons as to why this comparison is not watertight.

• Section 7.5 shows that the ALNS+LS algorithm can solve single FC MR instances very consistently,
showing that we do not seem to lose much performance as a result of the instance size growing.
We argued before why combining MOB with OB makes sense.

• Section 7.5 also shows that combining single‐FC instances into multi‐FC instances can yield
better results. Solving all FCs together proves to be too hard a task, so making smart partitions
is advantageous.

• Section 7.5 ultimately shows that partition IV on the MRI instances yields the best results overall,
outperforming MR + I by 2.68–5.06% on the five days we analysed.

8
Discussion

Having presented our algorithms and the design decisions behind it, and seen empirically its per‐
formance, we now take the opportunity to reflect upon the work. We address each algorithmic
approach in turn, discuss its advantages and drawbacks, and assess where we might have done things
differently with the knowledge at the time of writing. We also discuss our final empirical evaluation.

8.1. ALNS
We opted for the ALNS in the first place since it was often used for Pickup and Delivery Problems in
literature. Especially problems that lie conceptually close to ours such as Grimault et al. [24] and
Sarasola and Doerner [46] used such methods also. It was however halfway through our research that
we came across these papers. By that time, we had already independently come up with our method
for dealing with the resource constraint. This method seems to be very close to that of Sarasola and
Doerner, but their paper does not present the technical details to an extent that we can be sure.
We contacted Grimault, who was willing to help but no longer had his source code. We argued how
our method compares to Grimault’s, and decided that while there is scientific value in experimental
comparison, we preferred to focus on more novel approaches instead.

Regarding the ALNS itself, Shaw [50] showed in his original paper how the framework lends itself well
for incorporating additional constraints. Looking ahead at how Picnic may build on this algorithm in
the future (see section 9.2) makes this approach a favourable one.

We did some experiments regarding parameter optimisation, where we found that the value for
the destroy parameter strongly influenced performance. Results were in line with earlier research.
Simulated annealing proved to be less effective for us. In fact, disabling it led to significantly better
solutions early on, but did run the risk of getting stuck in local optima. A lower initial temperature
compared to related research proved to be the better trade‐off.

There are many more parameters associated to the ALNS, which we chose not to investigate specif‐
ically. Opinions on the use in doing so differ throughout the literature, with some showing consid‐
erable improvements by tuning these, where others show no significant influence whatsoever. We
deemed such investigations less interesting than venturing in different research directions.

61

62 Chapter 8. Discussion

8.2. ALNS+LS
In an attempt to improve on the ALNS algorithm, we opted to include local search heuristics. These
are less often used for PDPs, likely because many VRP LS operators would become less effective, or
even ineffective on PDPs. Note how a crossover operation can only be performed when both the
pickup node and the delivery node remain in the same route segment. In other words, a crossover
can only be performed at a point where the truck is empty, which for many PDPs is hardly the case.
Since it is the case for our problem, we can employ it. We also argued how other operators can
become useful from a node‐based perspective. This suggests that Savelsbergh’s efficient local search
evaluation is no longer possible, or at least requires reworking. Since this technique becomes even
harder to use when routes are interdependent under the resource constraint, we did not attempt to
incorporate these techniques. This may in fact be subject to research on its own. It does mean that
the local search phase is costly: upon each LS iteration, the costs for all possible moves have to be
reevaluated. However, we do observe a better performance under the same runtime limits, which
demonstrates the power of local search heuristics.

As we had the ALNS algorithm as a basis, we incorporated local search in the existing framework. The
ALNS provided a way to obtain an initial solution, and to escape local optima. We did not consider
alternate techniques, such as Tabu Search or Guided Local Search, but these could very well be
applicable too. Our hypothesis is that it would not significantly improve the results, but we have no
evidence to back this up.

The ablation study we performed on the three local search operators showed that especially the
‘cheap’ relocate and crossover operators together are very close in terms of performance to using
all three. This supports our decision to leave out other operators with higher complexity, but we
cannot guarantee that our set of operators is optimal.

8.3. Matheuristic
The matheuristic was inspired by Grangier et al. [23], who relaxed the resource constraint on their
transfer point, to later impose it using a CP model. We transferred this idea to our problem with
resource constraints on all locations. We showed that doing this naively would not give satisfactory
results, but we proposed to alterations to improve this. The rationale behind this was to guide the
candidate solutions to be more like feasible solutions without actually imposing the constraint. We
argued that it is important to keep the problem complexity low, or we would lose the speedup we
got from the relaxation. Both route splitting and slack penalties serve this purpose, but there may
be other innovations that can do so. Especially large instances remain difficult to solve.

We opted for a CP approach because the subproblem of resource scheduling was highly constrained
by routing precedences, making CP suitable according to its strengths. Further, we were familiar
with the technique as we tried solving the full problem with CP too. One could try other techniques
such as MIP, but any exact technique is unlikely to meet the runtime constraints. We saw that, while
the CP solver was generally quick (within tenths of a second), much time was lost in setting up the
solver each time, and in other overhead. A scheduling heuristic could also be a faster alternative,
but this suffers from potentially rejecting feasible solutions.

Finally, we note that as we relaxed the problem for the ALNS+LS step, Savelsbergh’s constant time
evaluation techniques could be implemented for further speed‐up. While this is definitely worth‐
while, we believe that improving solution quality for large instances is not achieved by such speed‐up
only.

8.4. Final evaluation 63

8.4. Final evaluation
In our final evaluation, we first observe that ALNS+LS yields the best results on average and with least
variation. It outperforms ALNS on all benchmark instances, which is not necessarily as expected,
since ALNS shows to be very effective throughout literature. We do believe that greedily applying
local search heuristics after an ALNS step can only improve the solutions, and doing this rather than
doing many more ALNS‐only steps is apparently beneficial. We cannot rule out the possibility that
our ALNS heuristics are not tailored optimally to our problem, even though they are largely based
on related research. It could even be that our non‐linear objective function plays a role in this; this
possibility could be investigated.

The matheuristic comes remarkably close to the ALNS+LS’s performance on smaller instances of the
benchmark set. It starts to lag behind on larger ones. For such instances, the increased number
of routes and shipments inherently increase the number of precedence constraints in the CP model.
With this growing number, a candidate solution is ought to be less likely to be feasible.

Regarding solving full Picnic instances, we tested several static decompositions of the problem, and
found that groups of two FCs would give the best results. We did not exhaust the space of possible
partitions, but rather chose a subset based on common sense. Combining shipments from FCs that
lie close together should give the best combinatorial potential. We propose ways to improve on this
in the next chapter.

9
Conclusions and recommendations

We end this thesis by presenting the most important conclusions of our work in section 9.1, and by
making recommendations both to Picnic and for future research in sections 9.2 and 9.3.

9.1. Conclusions
Picnic’s fast‐growing supply chain and increasingly challenging truck planning problem served as a
motivation to write this thesis. We defined our research goal as:

Develop an algorithm that finds a solution to Picnic’s truck planning problemwith the lowest possible
costs within 30 minutes

We walk through the subquestions as posed in Chapter 1 in order:

• Which vehicle routing/scheduling model suits Picnic’s use case best, and how should such
existing models be extended to account for specific constraints from Picnic’s operations?
We found that the use case was best described by a Pickup and Delivery Problem formulation.
This formulation prescribes that, in addition to regular VRP constraints, a shipment is described
by two nodes, such that the pickup node is service before the delivery node by the same vehicle.
The resource constraint we consider causes routes in a solution to become interdependent,
which adds to the problem complexity. Other intra‐route constraints could be added more
easily.

• What exact solving technique, if any, can be used to obtain a good solution to the problem
in the specified time?
We defined an exact CP model in Chapter 2, which we implemented in MiniZinc and attempted
to solve. In Chapter 7 we used this model to obtain solutions to small instances, which some‐
times equalled our best heuristic results. Performance quickly degraded for larger instances,
making this approach not useful in the end.

• What inexact solving technique(s) can be used to obtain a good solution to the problem in
the specified time?
We proposed three heuristic approaches to solve our problem. The ALNS was is closely related
to that of Grimault et al. [24], whereas the ALNS+LS and matheuristic applied techniques used
on less related problems. We found that the ALNS+LS algorithm performs consistently as good
or better than the other two approaches, on a representative benchmark set of 14 real‐life
instances.

65

66 Chapter 9. Conclusions and recommendations

• Can we solve full instances effectively, or does it pay off to decompose the problem into
subproblems and solve those separately?
First of all, we show that, albeit under many assumptions, we outperform Picnic’s current
practice on a subset of the shipments. Ultimately, when looking at full instances, we found
that solving a decomposition of the studied instances often yields better results than solving
the full instances at once. We attribute this to the trade‐off between increasing problem
size and decreasing combinatorial potential when combining more FCs. We finally found that
integrating the different transport flows (Inbounds and Outbounds) yield 2.6–5.0% better results
on the instance set compared to keeping these separated.

Coming back to our main goal, we conclude that our ALNS+LS approach on a decomposition of the
problem yields the best results, and outperforms Picnic’s current approach. Local search methods
are not often applied to PDPs, but we showed that under some conditions they can still be powerful.

9.2. Recommendations to Picnic
The reader is referred to the Thesis Confidential Supplement for this section.

9.3. Future research
All points mentioned in the previous section would open up new research areas to some extent, or
tie in with existing ones. Besides these, we discuss future research areas more closely related to the
algorithms we designed and implemented for this thesis.

• Comparison to existing research
The ALNS with the resource constraint we employ is very closely related to that by Grimault et
al. [24], but we did not have the opportunity to compare against it.

• Further experiments on configurations
Due to limited time, we chose to focus on only a subset of the tunable parameters and config‐
urations that the algorithms (can) have. A good example would be to assess the performance
of the different LNS heuristics, as well as the influence of the adaptive aspect. The same goes
for trying other local search heuristics in that part of the algorithm.

• Improving the matheuristic
While the matheuristic we present shows promising results on smaller instances, it can be
improved in several ways still. First of all, since the resource constraint is removed from
the ALNS+LS step, we could incorporate Savelsbergh’s [48] techniques for more efficient local
search. Also, the CP solver still takes considerable time, mostly due to overhead. Different
solvers, possibly integrated in the code base, could be considered, as well as heuristic schedul‐
ing methods.

The slack penalties we introduce positively influence the results, but our analysis is limited to
only a few values. More research can be put into these values, possibly making them a function
of problem parameters, or adaptive based on performance.

Finally, recall that the greatest drawback of the matheuristic is that it does not guarantee a
feasible solution. Hybridising the matheuristic with resource‐constrained ALNS could solve this,
and might even yield better overall solutions.

• Solving full instances
We ultimately found that our full problem instances were solved best by decomposing them
into smaller chunks. This is effectively a manual way of clustering shipments, which leads to
believe that this could be done automatically. Fixing clusters manually may not be robust to all

9.3. Future research 67

(future) instances, whereas an automated clustering procedure could account for differences
in instance characteristics.

In a similar vein, an ALNS algorithm could for each iteration cluster its routes in k clusters, and
apply its heuristics per cluster, rather than on the whole problem. This process could also be
parallellised.

References

[1] Claudia Archetti and M Grazia Speranza. “A survey on matheuristics for routing problems”. In:
EURO Journal on Computational Optimization 2.4 (2014), pp. 223–246.

[2] Russell Bent and Pascal Van Hentenryck. “A two‐stage hybrid algorithm for pickup and deliv‐
ery vehicle routing problems with time windows”. In: Computers & Operations Research 33.4
(2006), pp. 875–893.

[3] Marco A Boschetti et al. “Matheuristics: Optimization, simulation and control”. In: Interna‐
tional Workshop on Hybrid Metaheuristics. Springer. 2009, pp. 171–177.

[4] Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. “The vehicle routing problem:
State of the art classification and review”. In: Computers & Industrial Engineering 99 (2016),
pp. 300–313.

[5] Olli Bräysy and Michel Gendreau. “Vehicle routing problem with time windows, Part I: Route
construction and local search algorithms”. In: Transportation science 39.1 (2005), pp. 104–118.

[6] Jan Christiaens and Greet Vanden Berghe. “Slack induction by string removals for vehicle rout‐
ing problems”. In: Transportation Science 54.2 (2020), pp. 417–433.

[7] Jean‐Francois Cordeau and Québec) Groupe d’études et de recherche en analyse des déci‐
sions (Montréal. The VRP with time windows. Groupe d’études et de recherche en analyse des
décisions Montréal, 2000.

[8] Jean‐François Cordeau, Michel Gendreau, and Gilbert Laporte. “A tabu search heuristic for
periodic and multi‐depot vehicle routing problems”. In: Networks: An International Journal
30.2 (1997), pp. 105–119.

[9] Timothy Curtois et al. “Large neighbourhood search with adaptive guided ejection search for
the pickup and delivery problem with time windows”. In: EURO Journal on Transportation and
Logistics 7.2 (2018), pp. 151–192.

[10] George B Dantzig and John H Ramser. “The truck dispatching problem”. In:Management science
6.1 (1959), pp. 80–91.

[11] Emrah Demir, Tolga Bektaş, and Gilbert Laporte. “An adaptive large neighborhood search
heuristic for the pollution‐routing problem”. In: European Journal of Operational Research
223.2 (2012), pp. 346–359.

[12] Jacques Desrosiers et al. “Vehicle routing with full loads”. In: Computers & Operations Re‐
search 15.3 (1988), pp. 219–226.

[13] Michael Drexl. “Synchronization in vehicle routing—a survey of VRPs with multiple synchroniza‐
tion constraints”. In: Transportation Science 46.3 (2012), pp. 297–316.

[14] Yvan Dumas, Jacques Desrosiers, and Francois Soumis. “The pickup and delivery problem with
time windows”. In: European journal of operational research 54.1 (1991), pp. 7–22.

[15] Nizar El Hachemi, Michel Gendreau, and Louis‐Martin Rousseau. “A heuristic to solve the syn‐
chronized log‐truck scheduling problem”. In: Computers & Operations Research 40.3 (2013).
Transport Scheduling, pp. 666–673. issn: 0305‐0548. doi: https://doi.org/10.1016/j.cor.
2011.02.002. url: https://www.sciencedirect.com/science/article/pii/S0305054811000
426.

[16] Raafat Elshaer and Hadeer Awad. “A taxonomic review of metaheuristic algorithms for solving
the vehicle routing problem and its variants”. In: Computers & Industrial Engineering 140
(2020), p. 106242.

69

https://doi.org/https://doi.org/10.1016/j.cor.2011.02.002
https://doi.org/https://doi.org/10.1016/j.cor.2011.02.002
https://www.sciencedirect.com/science/article/pii/S0305054811000426
https://www.sciencedirect.com/science/article/pii/S0305054811000426

70 References

[17] Aurélien Froger et al. “A matheuristic for the electric vehicle routing problem with capaci‐
tated charging stations”. PhD thesis. Centre interuniversitaire de recherche sur les reseaux
d’entreprise, la …, 2017.

[18] Birger Funke, Tore Grünert, and Stefan Irnich. “Local search for vehicle routing and scheduling
problems: Review and conceptual integration”. In: Journal of heuristics 11.4 (2005), pp. 267–
306.

[19] Asvin Goel. “Truck driver scheduling in the European Union”. In: Transportation Science 44.4
(2010), pp. 429–441.

[20] Bruce Golden et al. “The fleet size and mix vehicle routing problem”. In: Computers & Oper‐
ations Research 11.1 (1984), pp. 49–66.

[21] Google OR‐Tools. https://developers.google.com/optimization. Accessed: 2022‐03‐30.
[22] Philippe Grangier et al. “A matheuristic based on large neighborhood search for the vehicle

routing problem with cross‐docking”. In: Computers & Operations Research 84 (2017), pp. 116–
126. issn: 0305‐0548. doi: https://doi.org/10.1016/j.cor.2017.03.004. url: https:
//www.sciencedirect.com/science/article/pii/S0305054817300631.

[23] Philippe Grangier et al. “The vehicle routing problem with cross‐docking and resource con‐
straints”. In: Journal of Heuristics 27.1 (2021), pp. 31–61.

[24] Axel Grimault, Nathalie Bostel, and Fabien Lehuédé. “An adaptive large neighborhood search
for the full truckload pickup and delivery problem with resource synchronization”. In: Comput‐
ers & Operations Research 88 (2017), pp. 1–14.

[25] Christoph Hempsch and Stefan Irnich. “Vehicle routing problems with inter‐tour resource con‐
straints”. In: The vehicle routing problem: latest advances and new challenges. Springer, 2008,
pp. 421–444.

[26] Hossein Hojabri et al. “Large neighborhood search with constraint programming for a vehicle
routing problem with synchronization constraints”. In: Computers & Operations Research 92
(2018), pp. 87–97.

[27] Integer programming. https://en.wikipedia.org/wiki/Integer_programming. Accessed:
2022‐03‐30.

[28] Philip Kilby. “Tutorial: Constraint Programming for the Vehicle Routing Problem (slides)”. In:
Sept. 2013.

[29] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. “Optimization by simulated anneal‐
ing”. In: science 220.4598 (1983), pp. 671–680.

[30] Adrianus Leendert Kok et al. “A dynamic programming heuristic for the vehicle routing problem
with time windows and European Community social legislation”. In: Transportation Science 44.4
(2010), pp. 442–454.

[31] Yiannis A Koskosidis, Warren B Powell, and Marius M Solomon. “An optimization‐based heuris‐
tic for vehicle routing and scheduling with soft time window constraints”. In: Transportation
science 26.2 (1992), pp. 69–85.

[32] Raphael Kramer et al. “A matheuristic approach for the pollution‐routing problem”. In: Euro‐
pean Journal of Operational Research 243.2 (2015), pp. 523–539.

[33] Gilbert Laporte. “Optimal solutions to capacitated multidepot vehicle routing problems”. In:
Congressus Nemerantium 4 (1984), pp. 283–292.

[34] E.L. Lawler. The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization.
Wiley‐Interscience series in discrete mathematics and optimization. John Wiley & Sons, 1985.
url: https://books.google.nl/books?id=qbFlMwEACAAJ.

[35] Fabien Lehuédé et al. “A multi‐criteria large neighbourhood search for the transportation of
disabled people”. In: Journal of the Operational Research Society 65.7 (2014), pp. 983–1000.

[36] Hongping Lim, Andrew Lim, and Brian Rodrigues. “Solving the pickup and delivery problem
with time windows using” Squeaky Wheel” optimization with local search”. In: AIS. 2002.

https://developers.google.com/optimization
https://doi.org/https://doi.org/10.1016/j.cor.2017.03.004
https://www.sciencedirect.com/science/article/pii/S0305054817300631
https://www.sciencedirect.com/science/article/pii/S0305054817300631
https://en.wikipedia.org/wiki/Integer_programming
https://books.google.nl/books?id=qbFlMwEACAAJ

References 71

[37] Renaud Masson, Fabien Lehuédé, and Olivier Péton. “Efficient feasibility testing for request
insertion in the pickup and delivery problem with transfers”. In: Operations Research Letters
41.3 (2013), pp. 211–215.

[38] MiniZinc. https://www.minizinc.org/. Accessed: 2022‐03‐30.
[39] MiniZinc Challenge. https://www.minizinc.org/challenge.html. Accessed: 2022‐03‐30.
[40] Nenad Mladenović and Pierre Hansen. “Variable neighborhood search”. In: Computers & oper‐

ations research 24.11 (1997), pp. 1097–1100.
[41] Ilhan Or. “Traveling salesman‐type combinatorial problems and their relation to the logistics of

blood banking”. In: PhD thesis (Department of Industrial Engineering and Management Science,
Northwestern University) (1976).

[42] Sophie N Parragh, Karl F Doerner, and Richard F Hartl. “A survey on pickup and delivery prob‐
lems”. In: Journal für Betriebswirtschaft 58.1 (2008), pp. 21–51.

[43] Ted K Ralphs et al. “On the capacitated vehicle routing problem”. In: Mathematical program‐
ming 94.2 (2003), pp. 343–359.

[44] Stefan Ropke and David Pisinger. “An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows”. In: Transportation science 40.4 (2006),
pp. 455–472.

[45] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming. Else‐
vier, 2006.

[46] Briseida Sarasola and Karl F Doerner. “Adaptive large neighborhood search for the vehicle
routing problem with synchronization constraints at the delivery location”. In: Networks 75.1
(2020), pp. 64–85.

[47] Dimitrios Sariklis and Susan Powell. “A heuristic method for the open vehicle routing problem”.
In: Journal of the Operational Research Society 51.5 (2000), pp. 564–573.

[48] Martin WP Savelsbergh. “The vehicle routing problem with time windows: Minimizing route
duration”. In: ORSA journal on computing 4.2 (1992), pp. 146–154.

[49] Martin WP Savelsbergh and Marc Sol. “The general pickup and delivery problem”. In: Trans‐
portation science 29.1 (1995), pp. 17–29.

[50] Paul Shaw. “A new local search algorithm providing high quality solutions to vehicle routing
problems”. In: APES Group, Dept of Computer Science, University of Strathclyde, Glasgow,
Scotland, UK 46 (1997).

[51] Paul Shaw. “Using constraint programming and local search methods to solve vehicle routing
problems”. In: International conference on principles and practice of constraint programming.
Springer. 1998, pp. 417–431.

[52] Supermarkt & Ruimte. https://www.supermarktenruimte.nl/wp-content/uploads/2021/
05/Supermarktomzet-op-waarde-geschat.pdf. Accessed: 2022‐04‐05.

[53] Frank A Tillman. “The multiple terminal delivery problem with probabilistic demands”. In:
Transportation Science 3.3 (1969), pp. 192–204.

[54] Christos Voudouris. “Guided local search for combinatorial optimisation problems.” PhD thesis.
University of Essex, 1997.

https://www.minizinc.org/
https://www.minizinc.org/challenge.html
https://www.supermarktenruimte.nl/wp-content/uploads/2021/05/Supermarktomzet-op-waarde-geschat.pdf
https://www.supermarktenruimte.nl/wp-content/uploads/2021/05/Supermarktomzet-op-waarde-geschat.pdf

A
Paper outline

A Multi‐Stage Metaheuristic Approach for Multi‐Depot Pickup and Delivery Problems with Re‐
source Constraints

A.1. Introduction
Picnic is the fastest growing online(‐only) supermarket in the Netherlands [52], and possibly beyond
those borders. Picnic also is a quintessential example of a company with an intricate logistical
operation, consisting of two stages: the last‐mile delivery, i.e. the delivery to the customer, and the
truck transport, which covers everything before that. This paper takes the latter as a use case for
solving a specific multi‐depot pickup and delivery problem with resource constraints.

Picnic’s truck planning problem specifically entails creating a truck schedule such that all shipments
between its warehouses on a given day are shipped in time. Hundreds of shipments are to be shipped
on any given day, which is reasonably large compared to benchmark instances of PDPs in the literature.
On top of that, Picnic has to deal with resource constraint at its warehouses. This leads to routes
becoming dependent on one another, which adds considerably to the complexity of the problem.
Grimault et al. [24] attempt to solve a similar problem, but show how even medium‐sized instances
are hard to solve.

What makes this use case more specific, is that the distribution network is partly decentralised.
The number of pickup locations is limited, and delivery locations are generally close to their pickup
locations. The problem can therefore be decomposed rather naturally, which can be taken advantage
of. Furthermore, we face several intra‐route constraints, including lower and upper bounds on
working hours and switching drivers on a truck halfway through the day.

We propose an algorithm that alternates between Adaptive Large Neighbourhood Search and Local
Search operators (ALNS+LS), while taking into account the resource constraint using ordered list struc‐
tures. We compare this to an ALNS‐only approach and show how the addition of local search improves
solution quality by benchmarking both approaches on a subset of real‐life‐inspired instances. We also
show how full instances are best solved when decomposed and solved separately using ALNS+LS.

The remainder of this paper is structured as follows. Section A.2 explores relevant research in this
area, and section A.3 defines the problem formally. Section A.4 describes our solution method in
detail, the results are presented in section A.5 and we draw our conclusions in section A.6

73

74 Appendix A. Paper outline

A.2. Related work
A condensed version of Chapter 3.

A.3. Problem formulation
Relevant parts of Chapter 2, including section 2.4

A.4. Solution method
• The general ALNS procedure

• The mechanism to impose the resource constraint

• Considerations regarding the additional constraints

• The local search extensions

A.5. Computational results
A combination of sections 4.7 and 5.4, and Chapter 7.

A.6. Conclusion

B
Tables and figures

75

76 Appendix B. Tables and figures

(a) Day 2 MR (b) Day 4 MR

(c) Day 2 I (d) Day 4 I

(e) Day 2 MRI (f) Day 4 MRI

77

(g) Day 5 MR

(h) Day 5 I

(i) Day 5 MRI

Figure B.1: Average cumulative objective for partitions, Day 2, 4 and 5

78 Appendix B. Tables and figures

Table B.1: Single FC, Regular Outbound, Days 2‐5. Worst solutions across 4 runs. The last column states whether the solver
found the same solution. This is marked bold when the solution is proven optimal.

Instance FMS ALNS+LS without MH Gap (%) ALNS+LS with MH Gap (%) Equal to BFS CP?

Day 2 FCA 92.19 88.84 ‐3.6 86.67 ‐6.0 yes

Day 2 FCB 157.69 146.76 ‐6.9 141.45 ‐10.3 yes

Day 2 FCC 133.10 127.06 ‐4.5 120.77 ‐9.3 yes

Day 2 FCD 101.94 99.47 ‐2.4 99.47 ‐2.4 yes

Day 2 FCE 70.27 69.05 ‐1.7 69.05 ‐1.7 yes

Day 2 FCF 137.41 135.06 ‐1.7 133.29 ‐3.0 yes

Day 2 FCG 104.41 101.62 ‐2.7 101.62 ‐2.7 yes

Total 797.02 767.86 ‐3.7 752.32 ‐5.6 ‐

Day 3 FCA 99.97 95.96 ‐4.0 84.95 ‐15.0 yes

Day 3 FCB 164.60 154.26 ‐6.3 145.83 ‐11.4 yes

Day 3 FCC 121.31 112.60 ‐7.2 106.06 ‐12.6 yes

Day 3 FCD 89.44 82.58 ‐7.7 76.18 ‐14.8 yes

Day 3 FCE 58.39 54.94 ‐5.9 54.94 ‐5.9 yes

Day 3 FCF 118.51 113.31 ‐4.4 110.34 ‐6.9 yes

Day 3 FCG 101.89 97.54 ‐4.3 97.54 ‐4.3 yes

Total 754.11 711.19 ‐5.7 675.83 ‐10.4 ‐

Day 4 FCA 97.23 94.66 ‐2.6 92.31 ‐5.1 yes

Day 4 FCC 121.31 112.88 ‐6.9 108.96 ‐10.2 yes

Day 4 FCD 117.37 114.14 ‐2.7 114.14 ‐2.7 yes

Day 4 FCE 71.77 70.64 ‐1.6 70.64 ‐1.6 yes

Day 4 FCF 136.16 135.16 ‐0.7 135.16 ‐0.7 yes

Day 4 FCG 101.39 93.93 ‐7.4 93.93 ‐7.4 yes

Total 645.22 621.41 ‐3.7 615.14 ‐4.7 ‐

Day 5 FCA 94.81 91.15 ‐3.9 87.71 ‐7.5 yes

Day 5 FCB 199.70 184.98 ‐7.4 184.98 ‐7.4 yes

Day 5 FCC 129.90 120.25 ‐7.4 117.56 ‐9.5 yes

Day 5 FCD 108.07 100.52 ‐7.0 100.52 ‐7.0 yes

Day 5 FCE 100.45 92.20 ‐8.2 92.20 ‐8.2 yes

Day 5 FCF 149.42 145.56 ‐2.6 145.56 ‐2.6 yes

Day 5 FCG 131.71 126.19 ‐4.2 126.19 ‐4.2 yes

Total 914.06 860.86 ‐5.8 854.73 ‐6.5 ‐

	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Goal and research questions
	Data anonimisation
	Outline of the thesis

	Background and problem statement
	Picnic's supply chain
	Size of the operation
	Regular and Morning Outbounds
	The Outbound picking line
	Shipment characteristics
	Hub-FC combinations
	Site-Located Trucks and associated costs

	Additional restrictions
	Capacity constraints and combining shipments
	Time Windows
	Route duration
	Driver switching
	Synchronising trucks visiting the same location
	Implementation restrictions

	Optimisation objective
	The problem in a CP model
	Solving the CP model

	Current practice, limitations and potential
	Planning Outbounds: FMS
	Planning Inbounds
	Limitations of the current practice
	Expected areas of potential

	Data(sets) and adaptations
	Outbound data
	Inbound data
	Representative instances

	Related work
	Routing problems
	TSP, VRP and PDP
	Common extensions to routing problems
	Resource constraints in routing problems

	Constraint Programming
	Constraint Programming for VRPs
	MiniZinc and OR-Tools

	Heuristic solution methods
	Local search
	Large neighbourhood search

	Matheuristics
	Most relevant papers

	An ALNS approach
	Adaptations to the resource constraint
	Theoretical comparison to Grimault's procedure

	ALNS heuristics
	Removal heuristics
	Insertion heuristics

	Initial solution and vehicle minimisation
	Further adaptations
	Minimum route duration incorporated in the cost function
	Driver switching
	Dealing with multiple depots and empty routes
	Adaptive parameters

	Summarising the ALNS
	Running experiments
	Evaluation
	Tuning relevant parameters
	Partitioning instances
	Concluding remarks

	Extending the ALNS with local search
	Local search heuristics
	Relocate
	Exchange
	Crossover
	Excluded heuristics

	Local search and the resource constraint
	General framework
	Evaluation
	Concluding remarks

	A Matheuristic approach
	The CP model
	The matheuristic framework
	Reducing the number of CP evaluations

	First evaluation
	Promoting feasibility
	First ideas: inter-route penalties
	Promoting slack
	Enforcing more routes
	Evaluation after applying feasibility promotion

	Concluding remarks

	Final evaluation
	Comparing the best versions of the different algorithms
	Five full problem instances
	Solving small instances using the CP solver
	Comparison to FMS
	Full instances and decompositions
	Incorporating Inbounds vs. keeping them separate

	Concluding remarks

	Discussion
	ALNS
	ALNS+LS
	Matheuristic
	Final evaluation

	Conclusions and recommendations
	Conclusions
	Recommendations to Picnic
	Future research

	References
	Paper outline
	Introduction
	Related work
	Problem formulation
	Solution method
	Computational results
	Conclusion

	Tables and figures

