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Noise Tracking Using DFT Domain
Subspace Decompositions

Richard C. Hendriks, Jesper Jensen, and Richard Heusdens

Abstract—All discrete Fourier transform (DFT) domain-based
speech enhancement gain functions rely on knowledge of the noise
power spectral density (PSD). Since the noise PSD is unknown
in advance, estimation from the noisy speech signal is necessary.
An overestimation of the noise PSD will lead to a loss in speech
quality, while an underestimation will lead to an unnecessary
high level of residual noise. We present a novel approach for noise
tracking, which updates the noise PSD for each DFT coefficient
in the presence of both speech and noise. This method is based on
the eigenvalue decomposition of correlation matrices that are con-
structed from time series of noisy DFT coefficients. The presented
method is very well capable of tracking gradually changing noise
types. In comparison to state-of-the-art noise tracking algorithms
the proposed method reduces the estimation error between the
estimated and the true noise PSD. In combination with an en-
hancement system the proposed method improves the segmental
SNR with several decibels for gradually changing noise types.
Listening experiments show that the proposed system is preferred
over the state-of-the-art noise tracking algorithm.

Index Terms—Discrete Fourier transform (DFT) domain sub-
space decompositions, noise tracking, speech enhancement.

I. INTRODUCTION

AS a consequence of the increased use of mobile voice
processors in public areas (e.g., hearing aids and cel-

lular phones), there has been an increasing interest for these
systems to work well under noisy conditions. To achieve this,
single-channel speech enhancement methods can be used to
reduce the noise level. Among them is the group of discrete
Fourier transform (DFT)-based methods that have received
significant interest recently because of their relatively low
complexity and good performance. These methods estimate the
clean DFT coefficients by applying either a gain function to the
noisy DFT coefficients or to the magnitude of the noisy DFT
coefficients. Gain functions have been derived under minimum
mean square error (MMSE) and maximum a posteriori (MAP)
criteria, where speech DFT coefficients are assumed to have a
super-Gaussian density [1]–[3]. Recently, estimators based on
Garch models [4] have also been proposed.

All these gain functions rely on knowledge of the noise power
spectral density (PSD), which has to be estimated from the noisy
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speech signal. An overestimation of the noise PSD will lead to
over-suppression and, as a consequence, to a potential loss of
speech quality, while an underestimation will lead to an unnec-
essary high level of residual noise. An accurate tracking of the
noise PSD is therefore essential to obtain proper quality of the
enhanced speech signal. Furthermore, fast tracking is impor-
tant for nonstationary noise. However, both fast and accurate
noise tracking is very challenging, especially under these non-
stationary noise conditions.

A conventional method for estimating the spectral noise vari-
ance is to exploit speech pauses. Here, a voice activity detector
(VAD) [5], [6] is used and only in case of speech absence the
noise PSD is estimated and updated. Although this is effective
when the noise is stationary, it often fails when the noise statis-
tics change during speech presence. Moreover, accurate voice
activity detection under very low signal-to-noise-ratio (SNR)
conditions is not trivial.

Minimum statistics (MS)-based noise trackers [7], [8] offer a
more advanced alternative to VAD based methods. This method
exploits the property that the minimum power level in a partic-
ular frequency bin seen across a sufficiently long time interval
is due to the noise process. From this minimum, the average
noise power can be estimated by applying a bias compensation.
The size of the time interval should be such that there is at least
one noise-only observation within the window. The minimum
size of the time window is therefore dependent on the duration
of speech presence in a frequency bin. If the time window is
chosen too short and speech energy is constantly present in the
search window, MS will track the PSD of the noisy speech in-
stead of the noise PSD. This will lead to an overestimate of the
noise level. If, on the other hand, the time window is chosen too
long, changes in the noise power level are not tracked or can
only be tracked with a large delay.

In this paper, we present a novel approach for noise tracking,
which updates the noise PSD for each DFT coefficient even when
both speech and noise are present. This method is based on the
eigenvalue decomposition of correlation matrices that are con-
structed from time series of noisy DFT coefficients. We exploit
the fact that these correlation matrices can be decomposed using
an eigenvalue decomposition into two submatrices of which the
columns span two mutually orthogonal vector spaces, namely a
signal (+ noise) subspace and a noise-only subspace. We use the
property that speech signals seen in a particular frequency bin can
often be described by a low-rank model, i.e., can be expressed
as a linear combination of a small number of complex exponen-
tials [9]. In that case, the eigenvalues that describe the energy in
the noise-only subspace allow for an update of the noise statis-
tics, even when speech is constantly present. Noise types that are
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described by a low-rank model itself, i.e., deterministic types of
noise, will be represented in the signal subspace as well and need
different measures to be estimated. How to track these deter-
ministic types of noise will be discussed as well.

Notice that a considerable amount of research has been done
on the application of subspace decompositions for speech en-
hancement, e.g., [10]–[12]. Also, it has been proposed to esti-
mate the noise correlation matrix using time-domain subspace
decompositions; see, e.g., [13], [14]. However, the method that
we propose in this paper works in the DFT domain.

The remainder of this paper is organized as follows. In
Section II, we illustrate the potential of the proposed method
of noise tracking. In Section III, we explain the signal model
and the concept of DFT domain subspace decompositions that
we use to derive the noise tracking method. In Section IV, we
consider estimation of the noise PSD based on estimated noisy
correlation matrices. Furthermore, in Section V, we focus on
some implementational aspects of the proposed noise tracking
algorithm. In Section VI, we present experimental results, and
finally in Section VII concluding remarks are given.

II. ILLUSTRATION OF DFT DOMAIN SUBSPACE-BASED

NOISE TRACKING

To illustrate the potential of the proposed method of noise
tracking, we compare our new method to the MS method, which
is known as the state-of-the-art for noise tracking in single-mi-
crophone speech enhancement applications. To do so, we create
a synthetic signal in which the speech signal is modeled by a
sinusoid of approximately 190 Hz. With this simplistic, but rel-
evant model of a speech signal, we can simulate the situation
where speech energy is constantly present and demonstrate that
our proposed method has great potential for tracking of the noise
PSD in the presence of speech. In this example, we use frame
sizes of 256 samples with 50% overlap. In the first 2 s, (125
time frames) the signal consists of white noise only. Then, after
2 s, a sinusoidal component is turned on and remains constantly
present at a certain frequency bin with a global SNR of 5 dB.
This sinusoid simulates the continuous presence of speech en-
ergy. Finally, 0.5 s later, at frame number , the noise
PSD decreases by 6 dB while the sinusoid remains present.
We use both the MS approach and the proposed method to es-
timate the noise PSD. In Fig. 1, we compare their estimated
noise PSDs together with the true noise PSD obtained by recur-
sively smoothed periodogram estimates. The dotted line denotes
the true noise PSD, the dashed-dotted line the noise PSD esti-
mated using minimum statistics, and the dashed line the noise
PSD estimated with the proposed approach, all in the same fre-
quency bin. We see that in the first approximately 156 frames
both methods lead to a fairly good estimate of the true noise
PSD. After 156 frames, the proposed method follows the de-
crease in the noise PSD even though the sinusoid is present,
while the MS method, on the other hand, is not able to follow this
change. Moreover, approximately 100 frames after the sinusoid
is turned on, the MS approach takes the energy of the noisy si-
nusoid as the new minimum and wrongly updates the estimated
noise PSD. To what degree these type of overestimates occur in
practice heavily depends on the size of the search window. By
enlarging the search window, the effect of this problem can be

Fig. 1. Synthetic noise tracking example.

weakened or overcome. However, enlarging the search window
will result in a larger delay and is harmful for tracking changes
in the noise power.

III. SIGNAL MODEL AND DFT DOMAIN

SUBSPACE DECOMPOSITIONS

In this paper, we consider the discrete Fourier transform of
speech signals as being the outcome of a random process. That
is, and are complex random variables
denoting the noisy speech, clean speech, and noise DFT coeffi-
cients of frame and frequency bin , with , and

the total number of frequency bins. We assume the noise to be
additive, i.e., , zero mean and uncor-
related with the clean speech signal, i.e.,

.
We collect DFT coefficients per frequency bin that originate

from the time frames up to frame and form a vector
with . That is

(1)

Let be the noisy speech correlation matrix
related to frequency bin and time frame defined as

(2)

where indicates Hermitian transposition. The construction of
is illustrated in Fig. 2. Similarly, we can define the

speech correlation matrix , that is

(3)

and the noise correlation matrix , that is

(4)

Using the assumption that speech and noise are additive and
uncorrelated we can write the noisy speech correlation matrix

as

(5)
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Fig. 2. Schematic overview of how correlation matrices in the DFT domain are
computed.

Let us assume that , that is, the noise
DFT coefficients in are uncorrelated. This assumption is
valid when frames do not overlap and the correlation time of the
noise is small enough [15]. In case of overlapping frames, this
assumption will be violated. This violation can be overcome by
applying a prewhitening transform, as we describe in Section V.

As mentioned before, the clean speech correlation matrix
is assumed to be of low-rank. In particular, this is

true when speech sounds can be modeled by a sum of complex
exponentials, e.g., voiced speech sounds [9]. Under this signal
model and under assumption that the frame size is long enough,
ideally each frequency bin will observe at most one complex
exponential across time. The clean speech correlation matrix

can therefore be assumed to be of low-rank. When
the noise-only subspace is of full-rank and the speech signal
can be described using such a low-rank signal subspace, the
eigenvalues that describe the energy in the noise-only subspace
allow for an update of the noise PSD, even when speech is
constantly present. A validation of the low-rank assumption of

is given in Section IV-C. Notice that for unvoiced
speech sounds, in general, the speech signal is not of low rank,
which means that for these type of speech sounds only few or
no eigenvalues belong to the noise-only subspace. It is therefore
less likely that the noise PSD can be updated during unvoiced
speech sounds.

Let denote the eigenvalue decom-
position of the clean speech correlation matrix related to fre-
quency bin and time frame . Here, is a uni-
tary matrix and contains the eigenvectors as columns and

, where is the dimension
of the signal subspace, a diagonal matrix with the nonnegative
eigenvalues on the main diag-
onal. Using the assumption that is a scaled diagonal
matrix and and are uncorrelated, we can write
the eigenvalue decomposition of as

(6)

i.e., and have the same eigen-
vectors, and the eigenvalues of are simply obtained
by adding the eigenvalues of and .

The eigenvector matrix can be partitioned as
, where the columns of form a basis

for the signal subspace, and the columns of
form a basis for the noise-only subspace. Assuming that there
indeed exists a low-dimensional signal subspace, i.e., ,
the eigenvalues in the noise-only subspace can be used to
determine the noise PSD , as the noise-only subspace
eigenvalue matrix equals .

IV. ESTIMATION OF

In the previous section, we considered the eigenvalue decom-
position of in order to estimate the noise PSD from the
eigenvalues in the noise-only subspace. However, in practice,
the correlation matrix in (2) is unknown and estimated
based on realizations. Therefore, we consider in this section es-
timation of based on an estimate of the correlation ma-
trix .

The correlation matrix can be estimated from a lim-
ited number of samples by

(7)

where is a Hankel-structured data-matrix defined
as

...
...

(8)

where the small letters indicate realizations of the random
variable .

Let indicate an eigenvalue of the estimated corre-
lation matrix . Given the eigenvalue decomposition
of and the dimension of the signal subspace , it is
shown in Appendix C, that under the assumption that the vector

has a multivariate Gaussian density, a maximum-likeli-
hood estimate of the noise PSD is given by

(9)

That is, the noise PSD is estimated by taking the average of the
eigenvalues in the noise-only subspace.

In order to compute (9), it is necessary to estimate the signal
subspace dimension . Estimation of for noisy signals is
a well-known problem for large data-records and can be per-
formed using, e.g., Akaike information criterium (AIC) [16],
[17], minimum description length (MDL) criterium [17], [18], or
the Bayesian information criterium (BIC) [19]. However, when

is estimated based on a few data samples only, which
is the case in our situation, existing model order estimators lead
to inaccurate estimates of . Moreover, due to the inaccurate
model order estimation and not always clear distinction between
the noise-only and signal subspace, the noise power spectral
estimate may be biased depending on whether the dimension
of the signal subspace is overestimated or underestimated. To
increase the accuracy of the estimated model order, we present an
alternative approach for model order estimation in Section IV-A,
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Fig. 3. Example showing how the noise-only subspace dimension is deter-
mined.

where we assume that some a priori knowledge of the noise
level in each frequency bin is available. In order to correct for a
consistent bias, we introduce a bias compensation factor for the
estimation of in Section IV-B.

A. Model Order Estimation

We consider an alternative approach, where we exploit the
fact that some a priori information of the noise PSD is present.
In this paper, we use the noise PSD estimate of the previous
frame. This implicitly assumes relatively slowly varying noise,
i.e., the DFT-domain noise correlation matrix should
not change too abruptly from one frame to another. However,
this does not limit the practical performance as will be shown in
simulation experiments in Section VI. There it is shown that a
change in the noise level of 15 dB/s can successfully be tracked.
Furthermore, we assume that the eigenvalues in the noise-only
subspace have an exponential distribution. Although we cannot
mathematically show that the distribution is truly exponential,
the choice for an exponential distribution for the noise eigen-
values shows a reasonable fit in validation experiments [20].

A noisy eigenvalue is decided to belong to the signal sub-
space when the probability of observing an eigenvalue equal or
larger than is smaller than a prechosen minimum probability

. We can write this as

(10)

where denotes the assumed pdf of the noise eigen-
values with its mean equal to the a priori known noise PSD,
which we will take to be the noise PSD estimate of the pre-
vious frame. The decision procedure is visualized in Fig. 3.
The dotted curve in Fig. 3 denotes the exponential pdf
of the noise eigenvalues belonging to the noise-only subspace.
This approach can be seen within a hypothesis-based framework
where and are defined as

belongs to the noise-only subspace

belongs to the signal subspace (11)

Fig. 4. (a) MDL model order estimator with a priori knowledge on noise vari-
ance. (b) Proposed model order estimator.

Given a threshold is decided when . When
is decided to belong the noise-only subspace.

The hypothesis is evaluated for all eigenvalues in increasing
order until the hypothesis is rejected, which determines
then the dimension of the noise and the signal subspace. The
threshold can be expressed in terms of the false alarm prob-
ability and is given by [21].

Notice that in the case of very low SNRs, the eigenvalues that
fall in the noise-only and the signal subspace may be dominated
by the noise and converge in their value. This is not only the
case for the presented model order estimator, but holds in gen-
eral for model order estimators. However, this was not observed
to be a problem for the noise levels typically used in speech
enhancement.

For evaluation, the proposed model order is compared to an
MDL-based model order estimator. Comparing to the existing
MDL-based model order estimator, [17] is not completely fair
and will be in advantage of the proposed method, because it uses
a priori knowledge on the noise variance while the MDL esti-
mator in [17] does not. Therefore, we derived in Appendix B
a modified MDL model order estimator where a priori knowl-
edge on the noise variance is also taken into account.

For the comparison, a synthetic signal was constructed, con-
sisting of a sinusoid at frequency bin number 11 in additive
white noise. The sinusoid will not only have a contribution to
bin , but to neighboring bins as well, because the period
of the sinusoid is not an integer multiple of the minimum period
visible with the used DFT size. The overall SNR between the si-
nusoid and white noise was 0 dB. For each frequency bin, we es-
timate a correlation matrix and use either the
proposed approach or the modified MDL method to estimate the
dimension of the noise-only subspace. At those frequency bins
where the sinusoid is present, a noise-only subspace dimension
of 6 is expected, while at all other bins a noise-only subspace
dimension of 7 is expected.

In Fig. 4, the outcome of the comparison between modi-
fied MDL derived in Appendix B and the proposed method
are shown with estimated based on a
data-matrix . For each successive frequency bin, the
model order is estimated. This is repeated for many frames.
The average noise-only subspace dimension and the variance
of noise-only subspace dimension are shown in Fig. 4. We see
that the modified MDL approach leads to a larger variance in
the estimated model order than the proposed approach.
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We use in the following the proposed approach to estimate the
model order of the noise-only subspace because of its smaller
variance.

B. Bias Compensation of

When the dimension of the signal subspace is overesti-
mated or underestimated, evaluating (9) can result in the in-
troduction of a bias in the noise PSD estimate. To correct for
such a bias in the estimated noise PSD as a result of consistent
over or underestimates of , we introduce a signal subspace
dimension dependent bias compensation factor and com-
pute as

(12)

The argumentation that we use to define the bias compensation
factor is similar to the one introduced in [22].

The use of this bias compensation factor is based on
the fact that

(13)

is proportional to . We therefore write

(14)

with

(15)

In order to compute the bias compensation factor ,
for , we approximate (15) by making use of
a training procedure based on speech data degraded by white
noise with a known variance . Let
be defined as

(16)

Let be the set of time–frequency points in the training
data for which the signal subspace dimension is estimated to
be . , is then computed by averaging

over the set leading to

(17)

where is the cardinality of the set . Notice that
computing the bias compensation factor in the training phase
using the same signal subspace dimension estimator as when
used in practice has the advantage that it can help to overcome

Fig. 5. (a) Clean speech signal. (b) Dimension of the signal subspace Q for
each time-frequency point (k; i). Q is estimated by measuring in how many of
the M eigenvalues 95% of the energy is distributed. (c) Color legend.

systematic errors due to the signal subspace dimension esti-
mator. Further, notice that can show some dependency
on the SNR of the training data. This can be taken into account
by computing also as a function of SNR.

C. Dimension of

A requirement for the noise-only subspace to exist is that the
signal subspace is not of full rank. For many speech sounds, it
holds that they can be modeled using a (limited) number of basis
functions. Consider, for example, the voiced speech sounds that
can be modeled using a sum of complex exponentials. In that
case, a particular frequency bin containing a harmonic will only
observe a small number of complex exponentials and results in a
low-dimensional signal subspace. The dimension of the correla-
tion matrix can then be chosen such that the noise-only subspace
has sufficiently high dimension to make an accurate estimate
of the noise variance. To show that the dimension of the signal
subspace is usually relatively low, we estimated the model order
of clean speech signals. To do so, we estimated for each DFT
coefficient in the time–frequency plane the correlation matrix

with . For each estimated correlation
matrix, we defined the model order as the number of eigenvalues
neededtocontainat least95%of theenergy. InFig.5,weillustrate
thisexperiment.Thecleanspeechsignal isshowninFig.5(a).The
sentence that is used originates from the Noizeus database [23]
and reads the text “He wrote down a long list of items.” For each
time–frequency point, the estimated model order is indicated
in Fig. 5(b) using colors from the legend in Fig. 5(c). The white
color in the legend indicates speech absence, i.e., . Time–
frequency points are classified as speech absence when their en-
ergy is 40 dB below the DFT coefficient with maximum energy.
We see that in general the dimension of the signal subspace
is relatively low, especially at the harmonic tracks. Further, we
see that is a sufficient dimension for the correlation
matrix, since the model order of 5 is hardly exceeded.
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V. IMPLEMENTATIONAL ASPECTS

In this section, we focus on some implementational aspects
and present a summary of the proposed algorithm.

A. Prewhitening

In Section III, the assumption was made that
. Although this assumption holds as long as the DFT

coefficients in are computed from time frames that are
not overlapping and/or when the correlation time of the noise
is small enough [15], this assumption becomes less valid when
an overlap is introduced. In this section, we show how the inter-
frame correlation is affected by the window overlap and indi-
cate how a prewhitening matrix can be obtained such that the
aforementioned assumption is fulfilled.

Let denote a time domain sample considered as a
random variable, let indicate complex conjugation of

, and let denote the frame shift. Let de-
note the correlation between a noise DFT coefficient
and with frame lag . The correlation can
then be written as shown by (18)–(21) at the bottom of the
page. We conclude that the correlation consists of
two components: a term and a term .

contains all the cross-terms and is dependent on the
cross-correlation between the time samples. In general, it holds
that decreases for increasing . Also, the shorter
the correlation time in the noise, the smaller be-
comes. For with , it follows from (21) that
even if the time domain process is completely uncorre-
lated , unless , which means no
overlap between consecutive frames.

Using simulations with white noise training data, we can es-
timate the first term for a given overlap. The second
term is signal dependent and is therefore in general
unknown.

We can write in Toeplitz matrix form similar as
(2), that is

...
. . .

(22)

Let the relative error between the two correlation matrices
and be defined as

(23)

with the Frobenius norm [24]. In a simulation environ-
ment, we can then compute the error that would have been made
between and by neglecting the second cor-
relation term .

To investigate the influence of neglecting the second cor-
relation term , we conducted an experiment where

and , i.e., the overlap between time frames
was 87.5%. Then we computed for three different nonwhite
noise sources that originate from the Noisex-92-database [25],
i.e., babble noise, factory noise 1 and factory noise 2, the true
correlation matrix , and computed based on
white noise. Factory noise 1 and 2 are two rather different noise
types; factory noise 2 has more low-frequency spectral compo-
nents, while factory noise 1 contains more high-frequency spec-
tral components and has a somewhat broader spectrum. The rel-
ative error that is made by replacing

by based on white noise and averaged over
all frequency bins is shown in Table I. We see that the rela-
tive error is always lower than . This indicates that
neglecting the the cross-terms leads to a relatively small error
for these type of noise sources and that is mainly

(18)

(19)

(20)

(21)
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TABLE I
RELATIVE ERROR FOR THREE NONWHITE NOISE SOURCES

determined by . In the experimental results presented
in Section VI, we will therefore neglect the correlation term

and use a correlation matrix trained on
white noise to whiten possibly colored noise in .

Let denote the principle square root of a matrix
[26]. The whitening of a vector can then be written as

(24)

is then used in (2). We denote the noise PSD when
estimated in the whitened domain by . Notice, that if

is estimated in the whitened domain, we have to correct
with a scaling factor , with the trace op-
erator [26], to obtain the noise PSD estimate in the nonwhitened
domain.

For some highly correlated noise types, i.e., with long cor-
relation time, the aforementioned assumption of neglecting the
correlation term might be less valid. In that case,
(24) is not sufficient to whiten the noise process. A possible so-
lution is to estimate the whitening transform matrix
online during speech absence using a VAD. A somewhat more
advanced method would be to exploit signal subspace dimen-
sion estimator and update the estimated correlation matrix when
the estimated noise-only subspace is full rank, i.e., . How-
ever, the experimental results that are presented in Section VI
are obtained using (24).

B. Algorithm Summary

In order to apply the proposed algorithm, the following steps
should be taken.
Step 1) Compute using (7) and (8). The DFT coef-

ficients necessary to form data-matrix in (8) are
computed using an FFT of frames with a predefined
overlap. The choice for this overlap is a tradeoff be-
tween variance reduction of and station-
arity of the data in the data-matrix.

Step 2) Apply prewhitening using (24) to remove the corre-
lation in the noise introduced in Step 1.

Step 3) Compute the eigenvalue decomposition of the
prewhitened correlation matrix.

Step 4) Estimate the noise PSD using (12).
Step 5) Correct for scaling due to the prewhitening in Step 2

(25)

VI. EXPERIMENTAL RESULTS

For performance evaluation, we compare the proposed
method with the minimum statistics-based noise tracking
algorithm implemented as described in [8] and with the situ-
ation where the noise PSD is computed using an ideal VAD,
i.e., during silence intervals preceding speech activity. The

Fig. 6. (a) Noisy speech signal degraded by nonstationary train noise at an
overall input SNR of 5 dB. (b) Comparison between proposed method and min-
imum statistics. The estimated noise levels are shown for bin k = 20.

speech and noise signals originate from the Noizeus [23]
database. This database was extended with stationary com-
puter generated white Gaussian noise, babble noise from the
Noisex-92-database [25], noise originating from a passing
train, and nonstationary white Gaussian noise, respectively.
Noisy signals are constructed synthetically at input SNRs of 0,
5, 10, and 15 dB. For the nonstationary white Gaussian noise,
the initial noise level is 0, 5, 10, and 15 dB, respectively, and
then gradually increases in 1 s by 15 dB where it stays at that
level for 2 s after which it decreases again by 15 dB in 1 s.
All signals are filtered at telephone bandwidth and sampled at
8 kHz. The noisy time domain signals are divided in frames of
256 samples with 50% overlap. For both analysis and synthesis
a square root Hann window is used. The DFT coefficients that
are used to form the data-matrix originate from time frames
taken with an overlap of 87.5%. The dimensions of were
chosen as and . The estimated noise
PSDs are smoothed using an exponential smoother
with adaptive smoothing factors [8].

A. Performance Evaluation

To illustrate the noise tracking performance of the proposed
approach within a typical example of noisy speech, we concate-
nated four speech signals and degraded this by noise originating
from a passing train at 5-dB global SNR. In Fig. 6, the estimated
noise PSDs are shown for the proposed approach and the MS
approach together with the true noise variance for a single fre-
quency bin . This bin index corresponds to a frequency
band centered around 625 Hz. We see that the proposed ap-
proach follows the increase in the noise level much better than
the minimum statistics approach. This is due to the fact that the
proposed approach can track changes in the noise level during
speech presence. The MS approach on the other hand is limited
in its update rate due to its search window and the fact that it
can not track the noise when speech is continuously present in
a bin. This results for MS in the delayed tracking of a rising
noise level in Fig. 6. When the noise level decreases, we see
that both methods track approximately equally well. This dif-
ference in behavior of minimum statistics towards increasing
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Fig. 7. (a) Noisy speech signal degraded by nonstationary white noise. (b)
Comparison between proposed method and minimum statistics. The estimated
noise levels are shown for bin k = 20.

and decreasing noise levels is due to the fact that MS tries to
find the minimum. For a decreasing noise level, the minimum
will in general be found among the most recent samples in the
search window resulting in a much smaller additional delay for
decreasing noise levels than for increasing noise levels.

In Fig. 7, another example is shown where the same speech
signal is degraded by the nonstationary white noise described
above. The initial part of the speech signal is degraded at an
SNR of 10 dB. We again see that the proposed approach tracks
the increase in noise level much faster than the MS approach.

1) Objective Performance Evaluation: For further objective
performance evaluation, we use the segmental relative estima-
tion error defined in [27] as

(26)

where is the total number of frames in the signal and where
is the ideal noise PSD measured using noise peri-

odograms smoothed over time using an exponential window,
i.e.,

(27)

with a smoothing factor [8]. The measure is
nonsymmetric and is more sensitive to overestimates than to
underestimates. Therefore, we propose a symmetric segmental
logarithmic estimation error, defined as

(28)

In order to evaluate the influence of the proposed noise tracking
algorithm on speech enhancement performance, we use the esti-
mated noise PSDs within a DFT domain-based speech enhance-
ment algorithm. In Fig. 8, a blockscheme of the used DFT-do-
main enhancement algorithm is shown. This algorithm works on
a frame-by-frame basis, where per frame the clean speech DFT

Fig. 8. Blockdiagram of DFT-domain-based enhancement algorithm.

coefficients are estimated. As an estimator, we use the MMSE
amplitude estimator under the generalized Gamma model as
presented in [28], [3] with and . The max-
imum suppression was limited to 0.1 for perceptual reasons. For
a priori SNR estimation, we use the decision-directed (DD) ap-
proach [29] where a smoothing factor was used as
proposed in [29]. For a performance comparison, we use seg-
mental SNR, i.e.,

(29)

where is a realization of a clean speech DFT and
is its clean speech DFT estimate, respectively. Notice that the
performance measured using is unlike
and not only influenced by the noise tracking algorithm,
but also by the chosen gain function and a priori SNR estimator.

In Tables II–IV, we show performance evaluations for several
noise types averaged over speech signals originating from the
Noizeus database. We compare noise tracking using VAD, MS,
and the proposed approach. We see that in general for all three
objective measures, the performance is increased when using
the proposed approach. Especially for noise sources that are
characterized by a gradual change in the noise power (passing
train and nonstationary white Gaussian noise), we see that the
proposed approach outperforms MS and VAD. This is mainly
due to the fact that a continuous update of the noise PSD allows
for a faster update of changes in the noise power.

2) Subjective Performance Evaluation: For subjective
evaluation, an OAB listening test was performed with eight par-
ticipants, the authors not included. Here, O is the original clean
speechsignal, andAandBare twonoisysignals that areenhanced
using the scheme in Fig. 8 with two different methods for noise
tracking.MethodA uses the proposednoise tracking method, and
method B uses the minimum statistics approach. The listeners
were presented first the original signal followed by the two dif-
ferent enhanced signals A and B played in random order. The
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TABLE II
PERFORMANCE IN TERMS OF Err

TABLE III
PERFORMANCE IN TERMS OF LOG�Err

participants had to indicate their preference for excerpt A or B.
Each series was repeated four times, with each time a randomized
order of the signals A and B. In this listening test, we used four
different types of additive noise at two different SNRs, namely,
white noise, street noise, noise originating from a passing train,
and nonstationary white noise at SNRs of 5 and 15 dB. For each
noise type and noise power level, we presented the listeners two
female sentences and two male sentences. The average prefer-
ence for method A under each test condition is shown in Table V.
Under all test conditions, the proposed method for noise
tracking was preferred over the minimum statistics approach.

TABLE IV
PERFORMANCE IN TERMS OF SNR (DB)

TABLE V
LISTENING TEST RESULTS

B. Deterministic Noise

Deterministic noise components can in principle not be
tracked with the proposed method, since they will appear in the
signal subspace and not in the noise-only subspace. The noise is
thus implicitly assumed to be stochastic. This is not only a prop-
erty of the proposed method. Minimum statistics [8] implicitly
assumes the noise to be stochastic as well. More specifically, the
bias-compensation that is applied within minimum statistics is
based on the assumption that the noise is stochastic. However, it
is applied to deterministic components as well. A consequence
of this is that after bias-compensation the deterministic noise
components are in general slightly overestimated. However, in
practice, minimum statistics is less sensitive than the proposed
method when violating this assumption.

When deterministic noise components are present, they are
often mixed with stochastic noise components. Therefore, it is
not obvious how to estimate them. One way to estimate the de-
terministic noise components as well is to make use of the fact
that for stochastic noise the minimum of the last minimum
statistics-based noise PSD estimates is always smaller
or equal than the current noise PSD estimate made by the pro-
posed noise tracker (12), i.e.,

(30)
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Fig. 9. (a) Noise tracking performed with DFT domain subspace decomposi-
tions only. (b) Noise tracking performed with DFT domain subspace decompo-
sitions combined with a tracker for deterministic components.

TABLE VI
PERFORMANCE IN TERMS OF LOG�Err TO COMPARE

THE INFLUENCE OF A DETERMINISTIC NOISE TRACKER

Whenever this minimum is larger than , it is due to
the fact that deterministic noise components are present. In that
case, we can estimate the deterministic part of by

(31)

where is the bias-compensation as used in the minimum
statistics method and which is used here to correct for the
wrongly applied bias compensation on the deterministic com-
ponent. The total estimate of is then given by adding

and the estimate obtained by the proposed method
in (12).

In Fig. 9(a), a comparison is shown where a speech signal was
degraded by white noise (filtered at telephone bandwidth) at an
SNR of 5 dB. As deterministic noise, a signal consisting of a
sum of three harmonically related sinusoids with fundamental
frequency of 656 Hz was added at an SNR of 10 dB with re-
spect to the original clean speech signal. We see in Fig. 9(a)
that with the DFT domain subspace noise tracking approach,
it is not possible to estimate the sinusoidal noise components.
In Fig. 9(b), we combine DFT domain subspace noise tracking
method with (31) and see that we also determine the determin-
istic noise components. In Table VI, we show a comparison in
terms of for speech signals degraded by the above
described noise. Here, the SNR between the stochastic noise and
the speech signal is 5 dB, and the SNR between the deterministic
noise and the speech signal is 0, 5, 10, and 15 dB, respectively.

Moreover, we also show a comparison for the natural noise
source Destroyer operations room background noise that origi-
nates from the Noisex-92 database [25]. This is a noise source
containing both stochastic and some deterministic components.
The comparison is made between minimum statistics, the pro-
posed DFT domain subspace noise tracking approach, and the
DFT domain subspace noise tracking method combined with
(31). The obtained distortion for these partly deterministic noise
types is decreased by combining the proposed noise tracker with
(31). Notice that the experimental results in Section VI-A are
based on the use of the DFT domain subspace noise tracker
without the use of a deterministic noise tracker.

VII. CONCLUDING REMARKS

In this paper, we presented a novel approach for noise
tracking. The method is based on construction of correlation
matrices in the DFT domain per time-frequency point. Each
correlation matrix can be decomposed into a signal subspace
and a noise-only subspace. When the signal subspace is not
full rank, the noise-only subspace can be used to estimate the
noise PSD. The advantage of this approach is that the noise
PSD can be updated for a DFT coefficient where both speech
and noise are present. Comparisons showed that the presented
method decreases the error between the true noise and the
estimated noise spectrum. Further, enhancement performance
is improved, especially for speech signals degraded by noise
types that change gradually in power. Deterministic noise
sources appear in the signal subspace and cannot be estimated
by observing the noise-only subspace. However, these noise
components can be tracked by observing last minimum
statistics-based noise PSD estimates.

The improved noise tracking performance of the proposed
DFT subspace domain noise tracker over minimum statistics
comes with an increase in the computational complexity. Al-
though the dimensions of the correlation matrices are rather
small, most of the computation time is spent on eigenvalue de-
compositions of the noisy correlation matrices. However, the
MATLAB implementation of the proposed algorithm runs ap-
proximately two times real time on a PC with a Pentium 4
processor.

APPENDIX A
DERIVATION OF MDL-BASED MODEL ORDER ESTIMATOR

WITHOUT A PRIORI KNOWLEDGE ON THE NOISE LEVEL

For completeness, the most important steps in deriving the
standard MDL model order estimator as derived in [17] (as-
suming no knowledge of the noise variance) are given here.

The MDL criterion is defined as [17]

(32)

where are i.i.d. zero mean -dimensional
multivariate Gaussian observation vectors, a parameter
vector of the model under consideration, and the degree
of freedom. Let be the parameter vector of the assumed
model, i.e., , where ,
with are the eigenvalues in the signal subspace,

is the noise variance, and , with , are
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the eigenvectors in the signal subspace. The joint probability
density can then be written as

(33)

The log likelihood of (33) is then given by

(34)

where is the estimate of the correlation matrix

is now substituted with ML estimates

(35)

where is a diagonal matrix with the esti-
mated eigenvalues with of the assumed

-dimensional signal subspace on the main diagonal. Fur-
ther, is a ML estimate of the eigenvector matrix and

is the ML estimate of the
noise under the assumed -dimensional signal subspace. That

, and are ML estimates
of the eigenvector matrix, the signal subspace eigenvalues, and
noise-only subspace eigenvalues will be shown in Appendix C.

Using the relation

(36)

(37)

it can be shown that can be written as

(38)

Equation (38) agrees with the result in [17].

APPENDIX B
MDL MODEL ORDER ESTIMATOR WITH

A PRIORI KNOWLEDGE ON

When a priori information on the noise level is present
in (33) is substituted with

(39)

then becomes

(40)

Part A

(41)

(42)

using the relation:

we obtain

(43)

(44)

Part B

(45)

(46)

(47)

(48)

Combining Parts A and B gives

(49)
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(50)

(51)

where we left out the constant , since that does not
influence the maximum of .

APPENDIX C
ML ESTIMATES FOR MDL AND MODIFIED MDL ESTIMATOR

In this Appendix, we derive maximum-likelihood estimates
for the noise variance , the eigenvectors , and the eigen-
values , for .

The ML estimate can be
derived by maximization of (34) with respect to , that is

(52)

(53)

which leads when solving for to
.

ML estimates of the eigenvectors and signal subspace eigen-
values of can be derived by considering the EV decompo-
sition of

(54)

Since we use a priori information on the noise level, we can
write . To find ML estimates of the eigen-
vectors we consider the log-likelihood of (33), i.e.,

(55)

(56)

(57)

Let . The matrix is now an orthog-
onal matrix and the eigenvalue decomposition of

. Now we can write

...
...

. . .
...

...
. . .

(58)

(59)

and

(60)

ML estimates of are then found as

(61)

which gives .
Inserting this in leads to

(62)

To maximize , we need to minimize . To find this
minimum, we use Hadamards inequality

(63)

with equality if and only if is diagonal and should be posi-
tive definite. We know that . The orthogonal
matrix does not influence the determinant of . Therefore,
we can choose such that Hadamards inequality leads to
equality.

Let us now use the fact that are ML estimates of . ML
estimates of the eigenvalues of can then be computed by
taking partial derivatives of (55), i.e.,

(64)

so that

(67)
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