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Abstract

Maintaining navigational channels and infrastructure in large commercial ports is costly and complex. Sedimentation
poses a significant challenge in maintenance by reducing the depth of the channels and basins, thus threatening accessibil-
ity and navigational safety. Traditionally, port authorities rely on bathymetry surveys to guide their dredging operations,
but this approach limits their ability to anticipate sediment accumulation and prevent operational obstructions or naviga-
tional hazards. This research aims to develop Machine Learning (ML) methods to predict Sedimentation Rates (SR) by
analysing patterns in hydrological and meteorological (hydro-meteo) conditions and dredging data. By developing the
SR prediction models, this research can contribute to efficient maintenance operations and improved navigational safety.

The study focuses on the Botlek, a harbour in the tide-dominated Port of Rotterdam (POR) in the Rhine-Meuse estuary.
The Botlek is situated at the transitional border of fresh and saline water. The near-bed currents resulting from the density
gradients between the riverine and saline water are the dominant factor that transport suspended sediment into the Botlek.
Three data types are integrated to capture the dynamic interplay of saline and riverine factors within the harbour. These
types are Multibeam bathymetry surveys, hydro-meteo variables (such as salinity, river discharge, and tidal variation),
and dredging logs. The surveys provide the net sediment accumulation, which is assumed to result from a specific period
of hydro-meteo conditions and dredging. The net accumulation values serve as label for the training samples.

The algorithms evaluated in this research are Linear Regression (LR), Random Forest Regression (RFR), and Support
Vector Regression (SVR). The feature importance scores from the RFR and the accuracy on small datasets of the SVR
were decisive in this selection. The algorithms require one-dimensional arrays as input. Therefore, the hydro-meteo time
series are transposed into lagged features to allow the algorithms to recognise the time dependency of the data. Moreover,
the samples must be of a uniform length. As the Botlek dredging areas with the highest SR are surveyed at an interval of
30 days and the less dynamic regions every 60 days, a selection in considered areas must be made. All 30-day areas and
three 60-day areas are chosen. The three 60-day areas are included to prevent the sample set from being too small. The
downside of this approach is that the SR values of the 60-day interval do not result from a period of 30 days, potentially
leading to inconsistent results.

All algorithms are tested and refined over multiple development phases to determine their predictive accuracy across
different data configurations. The development phases consist of different configurations of features, sample types, and
dependent variables. The sample set also contains samples with a negative SR, indicating erosion. The port authorities
state that large erosion values in the Botlek are unrealistic. Therefore, part of the different development phases is including
or excluding the erosion samples from the dataset. The total number of samples used for model development is 181 with
erosion and 142without. To reduce the risk of overfitting due to the high dimensionality relative to the number of samples,
the hydro-meteo time series are aggregated into daily, weekly, and monthly means.

First, a baseline performance is established by only selecting the dredging data as input. The unit of the dependent
variable SR is set to m3 and m3/day to investigate if normalising SR results in a better performance. In the following
phases, the hydro-meteo variables are included in the feature set in their daily, weekly, and monthly forms to create
three sample types. Including multiple time scales allows for an investigation of the trade-off between preserving the
temporal resolution and managing the size of the feature space. Moreover, the runs are performed over multiple random
states to analyse the performance over different dataset splits. The last development phase will select the best-performing
configurations of the preceding phases and tune the models to achieve optimal performance.

The POR states that the ML models do not have to be able to predict sediment volumes with a small confidence inter-
val to be practical for the port authorities. Instead, the models should be able to accurately predict trends in sediment
accumulation and provide actionable insights to anticipate operational obstructions or navigational hazards. The Asset
Management Department mentions that ±30% is an acceptable error margin for the predicted SR as long as there are no
outliers.

The model runs show that the ML algorithms can reasonably predict SR. The baseline configuration with only dredging
data and SR in m3/day results in a mean R2 of 0.65 for LR and SVR and a mean RMSE of 405.76 and 407.95,
respectively. The RFR models are outperformed in this phase. The next phase (all samples and SR in m3) shows a
significant decrease in performance when adding the hydro-meteo variables to the feature set. Additionally, reducing the
number of hydro-meteo features in this phase does not improve performance, as the runs with daily, weekly, and monthly
sample types all showed varying performances. The results from normalising SR in the next phase are more promising
but still have not reached the baseline performance. The models, particularly the SVR ones, capture the relations better,
and decreasing the number of features allows for better performance as the monthly sample types provide the best mean
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performances for LR, RFR, and SVR. An essential takeaway is that all models consistently predict the negative SR values
as positive, confirming that the erosion samples are unreliable.

The last development phase summarises the intermediate conclusions into the optimal configuration: no erosion samples
and SR inm3/day. With these configurations, the SVR models trained on the monthly samples outperform the baseline
with a mean R2 of 0.69 and a RMSE of 388.78. Analysing the predictions shows that the SVR can generalise well,
as the residuals of extreme SR values are of the same order as smaller SR, except for some outliers. The RFR and
LR outperform their predecessors in the other phases but do not surpass the baseline performance. Consequently, the
RFR feature importance scores from this phase are the most reliable. The dredged volume between surveys, salinity,
discharge in the Nieuwe Maas, and the tidal variation have the highest scores. The scores agree with the previously
described sediment transport process in the Botlek. These variables are selected for a reduced feature set that does not
improve the absolute mean SVR performance but significantly increases the consistency over the different random states.

Across all phases, SVR outperforms LR and RFR, except for the baseline performance where SVR and LR are equal.
Moreover, including the hydro-meteo variables along with the dredging data into the feature space improves the perfor-
mance in the case of RFR and SVR, whereas LR struggles with the higher dimensionality. The monthly mean samples
deliver the best performance, showing that the reduced number of features outweighs the added information of the daily
and weekly samples.

The predictive accuracy of the models varied over the dredging areas, with the 30-day areas as the best performing.
Separating the 30 and 60-day interval areas into two smaller but more specific datasets is the next step in achieving more
reliable predictions. The initial assumption that this would lead to too small datasets is unjust, as the model performance
stagnates well before all training samples are used. Furthermore, the hydro-meteo data is not area-specific, which forces
an interpolation of the data over the Botlek, leading to inaccuracies while capturing local sedimentation dynamics.

Integrating hydro-meteo, dredging, and survey data to predict SR shows promising results, as a significant share of the
predictions fall within the acceptable error margin of±30%. Despite some limitations, the findings demonstrate that ML
models can support sediment management in complex estuarine environments. However, additional development steps
are needed to improve the reliability of the predictive models. Furthermore, research is needed to implement the ML
models into maintenance operations. Developing a data pipeline will be crucial for port authorities to use the predicted
SR values effectively and optimise dredging operations in the future.
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1
Introduction

1.1. Research context
Ports serve as a transfer hub for global trade, facilitating the movement of goods between land and sea. With the growing
demand for transportation, ports are increasingly competing with each other. An aspect of achieving a better competitive
position is providing the highest quality infrastructure, which is why port authorities worldwide continuously explore
maintenance strategies that can optimise their operations (Sepehri et al., 2024). Part of infrastructure maintenance is
monitoring and preserving the depth of the navigational channels and basins affected by sedimentation. Sedimentation
reduces the channel depths, threatening accessibility and navigational safety (Deltares, 2024). To counter this, mainte-
nance dredging can be employed as part of the sediment management strategy.

Understanding the patterns and causes of sedimentation in a port helps the authorities make better-informed decisions,
allowing them to anticipate sediment accumulation. However, sediment dynamics in coastal environments, such as
estuaries, are complex and often not fully understood. The complexity in estuaries can be ascribed to dynamics caused
by river flow, tidal movement, wind and wave forces, and the mixing of fresh and saltwater (Feng et al., 2023). Tidal
movement forces salinewater upstream, where it interacts with the freshwater. This interaction results in a fresh-saltwater
interface that creates pressure gradients due to the density differences. These gradients drive a vertical flow circulation
called the estuarine circulation (Bosboom and Stive, 2023). Ports in estuaries face these challenging conditions while
trying to increase their system knowledge to ensure the safety of visiting vessels and optimise their operational efficiency.

The largest port in Europe is the tide-dominated Port of Rotterdam (POR) (Neumann et al., 2024), located in the Rhine-
Meuse estuary. In this port, 12 to 15 million cubic meters of sediment are dredged annually (Kirichek et al., 2018).
While necessary, dredging is costly and comes with a significant environmental impact. In fact, dredging is responsible
for 46% of the 90 kilotons of CO2 emitted to maintain the POR infrastructure. Significantly more than the 19% for steel
maintenance, the second largest emission (Port of Rotterdam, 2023). The POR authorities aim to be a front-runner in the
energy transition to achieve the international climate goal of limiting global warming. Improving sediment management
efficiency might reduce maintenance costs and contribute to this goal due to its large share of CO2 emissions.

Sediment management in the POR relies on bathymetry surveys of the channels. Surveying vessels equipped with a
Multibeam Sonar provide a detailed and reliable image of the state of the waterbed, allowing the port authorities to
make targeted decisions on dredging operations (Kirichek et al., 2018). However, a rapid indication of the state of the
waterbed to plan a maintenance operation is missing. This delay in information occurs because a surveying vessel can
only be employed when there is an available window in the operational schedule of the port. Without real-time data or
insight into the future state of the waterbed, sedimentation may not be addressed until it has disrupted the port operations.
Having (near) real-time data or sedimentation forecasts would enable more precise planning and avoid unnecessary
surveying or dredging trips, enabling the port to prioritise critical areas and improve maintenance efficiency.

To address the need for accurate and timely data, POR has started the Innovative Sediment Management (PRISMA)
program. This program aims to integrate data and research with experience to increase the knowledge of the hydraulic
systems in the port (TKI Deltatechnologie, 2023). By collaborating with research institutes like Deltares and Delft Uni-
versity of Technology, PRISMA enhances the understanding of sediment dynamics and dredging operations to improve
overall maintenance efficiency. The most recent phase, PRISMA III, consists of four work packages, one being ’Data
science for more efficient dredging trips.’ This package analyses a large dredging trips dataset to investigate trends
and correlations that can be used to improve operations in terms of timing and location. In addition to the trips dataset,
the POR possesses years of information on the environmental conditions in the port region. These hydrological and
meteorological (hydro-meteo) variables are either measured or predicted by the Operationeel Stromingsmodel Rotter-
dam/Operational Flow Model Rotterdam (OSR) (Svasek Hydraulics, 2024) and offer insight into the conditions that
shape the estuary.

1
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The PRISMA effort is part of a worldwide movement towards intelligent port management. As Sepehri et al. (2024) high-
lights, there has been an increase in research on sediment and smart port management with a total of 128 articles published
since 2001, of which 9% is aimed at predictive maintenance improvement. This trend reflects the need for innovative
methods to enhance decision-making processes and optimise operations. One interpretation of predictive maintenance
would be a model that can predict Sedimentation Rates (SR) to allow ports to anticipate sediment buildup, avoid dis-
ruptions, and efficiently deploy their resources. Consequently, the development of such a model would contribute to
answering the overall need for innovation.

1.2. Research problem
Sedimentation processes in ports are determined by the hydrological (Y. Guo, 2022) and meteorological (Gonzalez Ro-
driguez et al., 2023) conditions, along with human interference like dredging operations. Dredging removes sediment
from a system, and the hydro-meteo variables drive the dynamics and processes in the channels and basins. However,
understanding and predicting how these factors influence the sediment dynamics in a complex estuarine environment is
difficult for port authorities. Configuring these factors into models that can accurately predict SR would allow ports to
anticipate sediment buildup and improve their maintenance operations. This approach would be based on the assumption
that the hydro-meteo conditions and the dredging operations within a certain time frame result in a predictable SR. The
challenge of this approach is finding a method that can determine the complex relationships between the variables and
the SR and process these into practical insights for port maintenance. Machine Learning (ML) could present a promising
solution to this challenge. ML is a form of Articial Intellegence (AI) that can iteratively learn from data to discover
patterns and relations without the need for explicit programming (França et al., 2021).

This research investigates how the benefits of ML can be leveraged to develop models that learn the relations between
the mentioned hydro-meteo and dredging data and the sedimentation in an estuarine harbour. Several ML algorithms
and configurations of the different data sources will be evaluated to determine which algorithms can accurately predict
SR to provide port authorities with reliable insights into sedimentation processes.

1.3. Research gap
Given the size of the POR, it is wise to limit the research area. There are many areas in the 12,500 acres of the POR
(Port of Rotterdam, 2022) for which SR could be predicted. Of these areas, the Botlek harbour is of particular interest.
The harbour is situated at the transitional zone of saline and fresh water, thus experiencing the effects of the previously
mentioned fresh-saltwater interface (de Nijs, 2012). Moreover, a study by Bruijn (2018) showed that the SR in the
Botlek are among the highest in the entire port. Developing a method to increase the dredging efficiency in this area
could, therefore, have a significant positive effect on operations, system knowledge, and navigational safety and reduce
the environmental impact of dredging. The POR divides its assets into dredging areas to maintain the channels and basins.
The Botlek dredging areas are shown in Figure 1.1.

Figure 1.1: Dredging compartments of the Botlek Harbour (Port of Rotterdam, 2024)
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Aside from the PRISMA program, other efforts have investigated the hydrodynamic processes for the POR or a specific
area of the POR. These studies provide valuable knowledge and highlight critical sediment transport and accumulation
factors. In recent years, sedimentation and the dynamics in the Botlek have been studied as a dissertation by deNijs (2012)
and as a thesis project by El Hamdi (2012) and Tempel (2019). These studies aimed to clarify part of the dynamics within
the harbour. The transport and sedimentation processes in the Botlek are described by de Nijs (2012) using 3D hydrostatic
models and tracer analyses. The results showed that the previously mentioned density gradients are the dominant factor
in transporting suspended sediment in the Botlek. El Hamdi (2012) focused on how siltation in the Botlek can be reduced,
while Tempel (2019) described the functioning of sediment traps in the Botlek.

In terms of applying ML, Goldstein et al. (2019) reviewed over 60 papers that applied ML for predicting coastal mor-
phodynamics, sediment transport, and coastal morphology. They stated that ML, unlike traditional statistical methods,
does not necessarily require assumptions about the relationships within the data. Instead, the algorithms can automati-
cally search for patterns, making them effective in handling complex and high-dimensional datasets and, in many cases,
successful when implemented for coastal research. Rajaee and Jafari (2020) showed that implementing AI for modelling
sediment concentrations in rivers has made much progress in the past decades, and some methods can replace conven-
tional but time-consuming mathematical techniques. A more recent example is a research project by Latif et al. (2023)
on the Johor River in Malaysia, where the capabilities of different ML techniques were successfully compared to predict
suspended sediment load. Another recent effort is the quantitative forecasting of bed sediment loads in river engineering
by Fuladipanah et al. (2024). They used river characteristics such as flow discharge and depth to predict sediment loads in
multiple rivers. However promising and successful, previous research projects primarily focused on sediment prediction
in upstream sections of rivers or coastal regions. Therefore, the dynamic interactions within estuaries are often left out
of the scope.

From the promising ML studies, some have been applied to estuarine environments. A conceptual prediction of harbour
sedimentation using AI was made on a basin in Ezbet Elborg in Egypt in 2021. The researchers used several methods
to find a relation between varying breakwater parameters and sedimentation volumes in the basin under the influence
of waves and tidal movements (Elnabwy et al., 2022). Another study applied ML methods to predict satellite-captured
morphological variation in the Da Dien estuary in Vietnam, specifically the variation in throat width of the river mouth
(Pham et al., 2019). Both these projects had a location at the shoreline as a focus area. In these areas, the water density
predominately was close to that of seawater, therefore neglecting the gradients that follow from the mixing in an estuary.
A research project from 2023 assumed these gradients as a vital factor in their scope. The study stated that the vertical
mixing of the water could lead to complex turbulent flows. Therefore, salinity was one of the input parameters for their
turbidity prediction model (Kim et al., 2023). The research area was the Guem River Estuary in South Korea, a semi-
closed estuary because of the sea dike in the Guem River and not an open estuary like the Port of Rotterdam. This means
that the mixing of fresh and saline water is no longer a natural process because it depends on artificial discharges from
the dike.

Thementioned projects all have elements relevant to estuaries like the Rhine-Meuse estuary but, logically, are not an exact
fit. There is no global relationship for estuaries; for each estuary, a specific relationship must be developed (Hinwood
and McLean, 2018). Furthermore, studies that include hydro-meteo variables, dredging data, or both into the input space
are limited. From the studies that do, most do not consider the natural mixing of saline and riverine water. By developing
models that integrate these factors to predict SR in the Botlek, this thesis addresses this gap in research and increases the
system knowledge of the Rhine-Meuse estuary.

1.4. Research aim
This research seeks to assist the POR in improving monitoring and maintenance efficiency and contribute to the field
of predictive sediment modelling by achieving two objectives. The first is the development of ML models that can
predict SR in the Botlek area based on the hydro-meteo variables. The second is to accurately describe and analyse
the findings and limitations encountered during the development of these models to provide recommendations and tools
for port authorities and future researchers on improving sediment management practices, including potential changes in
monitoring and surveying approaches.

The research will address the following research question:

To what extent can machine learning methods be utilised in predicting sedimentation rates in an estuarine harbour,
considering the dynamic interplay of marine and riverine influences?
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The research follows the sub-questions described below. This order is followed to structurally describe the process and
requirements needed to develop a predictive model for SR in an estuary:

• What data is available and relevant for predicting sedimentation rates using machine learning in estuarine har-
bours?

• Which machine learning algorithms are most suitable for predicting sedimentation rates?
• How can the selected machine learning algorithms and features be configured to predict sedimentation rates?
• How do the selected machine learning algorithms perform across different configurations?
• What factors could enhance the performance of machine learning models in predicting sedimentation rates?
• What practical insights and implementations can be gained from the model results regarding sediment behaviour
and maintenance efficiency in an estuarine harbour?

1.5. Thesis outline
The literature review in Chapter 2 addresses the general principles behind ML, relevant studies regarding implementing
ML for sediment behaviour prediction, and discusses research regarding the hydro and morphological processes in the
Botlek.

Chapter 2 provides the necessary foundation for Chapter 3 ’Methodology’. This chapter starts with a case study, de-
scribing the Botlek area and the maintenance strategy of the port authorities. Once the case is established, Section 3.2
’Available data’ and Section 3.3 ’Data analysis’ will answer the first research question and provide an overview of all
data used for this study.

The data characteristics, combined with the findings of Section 2.2, provide a basis to select the most suitable ML algo-
rithms for predicting SR in this research. Section 3.4 ’Algorithm Selection’ covers the motivation behind this selection.

After selecting the ML algorithms, the method to capture the trends and correlations between the hydro-meteo variables
and the SR is constructed. Section 3.5 ’Data Processing’ describes how the data is engineered to fit the ML models.
Section 3.6 ’Model engineering’ states how the process behind the hyperparameter tuning and feature engineering. Lastly,
Section 3.6.3 ’Modelling phases’ summarises how the many possible data and ML configurations are divided into model
development phases. These three sections answer the third sub-question.

Chapter 4 ’Results’ will cover the results of the model development phase and answer the fourth sub-question. Section ??
shows the effect of the iterative development steps and displays howwell themodels performed. This section will serve as
input for the last sub-questions in Chapter 5 ’Discussion’. Section 5.1 ’Result analysis’ in this chapter contextualises the
results and analyses the underlying meaning and practical implications. Next, in Section 5.2 ’Limitations’, the limitations
and restrictions of the models are discussed. These two sections form the basis of answering the fifth sub-question in
Section 5.3 ’Model improvement factors’. The discussion chapter ends with the practical implications and usefulness of
the developed models in Section 5.4 ’Practical recommendations and implementations’.

After covering all sub-questions, the main question is answered in Chapter 6 ’Conclusion’. The report is finalised by
including the recommendations for further development and implementation of the results in Chapter 7 ’Recommenda-
tions’.



2
Literature review

The field of sediment behaviour has been extensively studied due to the significant impact that erosion and sedimentation
have on waterways and coastal areas. Traditionally, the behaviour is modelled and predicted by numerical models based
on experience from the authorities or organisations responsible for maintaining the waterways. Efforts to capture sedi-
ment behaviour with alternative methods have increased simultaneously with the rising popularity of AI. ML, a powerful
aspect of AI, is particularly well-suited for capturing the complex and nonlinear relations between environmental factors
within rivers and estuaries.

This literature review discusses the relevant and state-of-the-art literature regarding the use of ML for sedimentation
prediction. As the case area for this master thesis is the Botlek, an area of the POR which lies in an open estuary called
the Rhine-Meuse Estuary, the focus of the chapter is reviewing research and modelling efforts related to open estuaries.
A gap in the literature is expected due to the specific search objective. Therefore, research regarding ML modelling in
rivers and coastlines will be an essential source of information. Another aspect is finding literature that discusses the
influence of hydrological factors on sedimentation within an estuary, including the effects of salinity. This is because the
Botlek lies in an area affected by the fresh-saltwater interface.

The relevant literature has been searched for on Google Scholar, ScienceDirect, Taylor & Francis, and Springer.

2.1. Machine Learning

2.1.1. General principles

The general principles of ML are discussed in this section. These principles are necessary to describe the preceding
literature effectively. MLis a form of AI that uses statistical methods to train models to make predictions or classifications
based on relations within data. Hyperparameters control the process in which the model is trained (IBM, 2024b). The
ML methods that are relevant to this study can be divided into two main archetypes:

1. Supervised Learning: Supervised Learning (SL) uses labelled datasets to train algorithms to recognise patterns
and make predictions. It is called supervised because the labelled datasets supervise algorithms into making accurate
predictions or classifications (IBM, 2024b), and the labelling relies on human input. SL is divided into two categories
(Google Cloud, 2024):

• Classification: These algorithms group data by predicting an output variable or label based on the input data.
• Regression: These algorithms predict an output value by detecting a relationship between variables in the input
data.

The predictive abilities of the regression techniques are essential for this research. For this reason, this literature review
will primarily focus on supervised models involving regression. This does not mean that other methods are not suitable
for predicting SR.

2. Unsupervised Learning: Unsupervised Learning (UL) techniques are algorithms that learn from data without labels
or defined predictions, which is very helpful in discovering underlying unknown relations. However, the accuracy of the
results from UL techniques is difficult to determine since the output is not based on labelled data (Rajoub, 2020). This
makes the output variables difficult to interpret. Therefore, UL is not necessarily applicable to this research, as the goal
is to get an interpretable prediction based on historical data on environmental factors.

5
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Data normalisation

Data normalisation is an essential part of model development when the input variables have varying scales because it
transforms the range of the variables to a standard scale. It enhances the performance and improves the accuracy of ML
models by preventing the domination of larger-scale variables during the learning process. Two common techniques are
Min-Max and Z-score normalisation (D. Singh and B. Singh, 2020).

Ensemble learning

Ensembled Learning combines several weak learning models into a strong learning one. There are three main techniques
for this (Mohammed and Kora, 2023):

• Stacking: Combines various estimators to reduce their biases. The estimator predictions are stacked and used as
input for the final estimator.

• Bagging: Selects random data samples after which the weak learners are trained independently but simultaneously.
The average of the predictions gives the final, more accurate result.

• Boosting: Similar to bagging but trains the models sequentially. Each model tries to improve the error of its
predecessor.

2.1.2. Model evaluation

Supervised MLmethods rely on labelled data to ‘learn’. How well a model will learn depends on the quality and quantity
of that data. It is common practice to split a dataset in the development to be able to evaluate the performance of the
model. The data is often split into three sets: training, validation, and testing (Murphy, 2022). The first is used to fit
the model. The second set provides an unbiased evaluation of the fit of the training while tuning the hyperparameters.
Lastly, the test set is used to unbiasedly evaluate the final fit of the model (Brownlee, 2020b). This section describes the
theory behind model fitting on these datasets.

Regression

Regression is used to determine the relation between input variables and a dependent outcome variable and is often applied
to make predictions within ML (Kadam et al., 2020). The simplest form of regression assumes a linear relationship
between a dependent variable and independent variable(s). In many cases, including this thesis, the relationship between
the variables is nonlinear, causing a possible bad fit. Many types of nonlinear regression algorithms can overcome this
problem. An example is shown below. Here Y is the dependent variable; βn the slopes; β0 the intercept; Xn the
independent variables; and ϵ the random error (Chang and Hsu, 2006):

Polynomial : Y = β0 + β1X1 + · · ·+ βnX
n
p + ϵ (2.1)

Section 2.2 will discuss more complex and advanced regression methods applied in previous research.

Performance metrics

The performance evaluation after training is done by using performance metrics. For the previously mentioned regression
models, the output is a continuous variable. Therefore, the metrics evaluate the difference between the prediction and
the so-called ground truth. The most common metrics are displayed below with yj the ground truth;y̌j the prediction;N
the number of predictions; and SE the squared error (Belyadi and Haghighat, 2021):

Mean Squared Error (MSE) =
1

N

N∑
j=1

(yj − y̌j)
2 (2.2)

Mean Absolute Error (MAE) =
1

N

N∑
j=1

|yj − y̌j | (2.3)

Root Mean Squared Error (RMSE) =

√√√√ 1

N

N∑
j=1

(yj − y̌j)2 (2.4)

R2 Coefficient of Determination = 1− SE(line)
SE(Y̌ )

(2.5)
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Loss and cost function

Loss and cost functions are the same functions as seen above, but there is a difference in application. The functions are
used during training, whereas performance metrics are used afterwards. The loss function refers to the error of a single
prediction, and the cost function refers to the average of the loss functions of the entire training set (Nadeem, 2022). The
goal of training a model is to minimise these functions to achieve better predictions.

Optimisation algorithms

The optimisation problem is finding the set of inputs to a selected cost function that results in minimum offset. It is one
of the big challenges in many ML algorithms. Optimisation algorithms are differential and non-differential (Brownlee,
2021). The most common algorithms in regression problems are differential, the most important being the Gradient
Descent Algorithm. When a problem has a multivariable function, the gradient is a vector consisting of all the partial
derivatives. This would look like (Phillips, 2023):

wj+1 = wj + α∇f(wj) (2.6)

Herewj+1 indicates the updated weight. The last two terms represent the vector of partial derivatives of the cost function
f(wj), and α is the learning rate. The learning rate is the rate at which an algorithm updates the values of an estimate.

2.2. Machine Learning for sediment prediction
This section will discuss how ML methods are implemented for sediment prediction. There is a distinction in literature
because of the difference in input parameters between estuaries and rivers. Most rivers in the relevant literature are
unaffected by tides, changes in salinity or waves, which causes the rivers to have different conditions. There is a smaller
availability of ML research related to sedimentation in estuaries than in rivers. However, the application on estuaries is
the focus of this thesis and will therefore be leading in selecting which methods are relevant. The introduction briefly
mentioned three research projects that considered estuaries. There is a critical distinguishment between the output of the
models in these projects. The Da Dien estuary project predicted whether the river mouth extended or narrowed, a binary
classification (Pham et al., 2019). In the Geum River Estuary, settling and resuspension characteristics in response to
tidal modulations were predicted (Kim et al., 2023). Lastly, in the project in Egypt, Elnabwy et al. (2022) modelled
sedimentation quantities based on changes in the harbour layout. The desired outputs of all three projects deviate from
what is aimed for in this thesis, which is SR. However, the methodologies and models used in these projects are still
relevant as inspiration for setting up the models for the POR.

2.2.1. Artificial Neural Network

An Artificial Neural Network (ANN) is designed after the neurons in a human brain. The networks contain neurons
called nodes. These are sorted into input, hidden, and output layers. The nodes are connected to the layers, and every
node has an assigned weight (Dongare et al., 2012). The weights control the signal between nodes and determine how
much influence the input will have on the output. An additional bias ensures the activation of the neurons. Figure 2.1
shows how the Da Dien researcher structured their ANN and visualises how the weights connect the layers.

Figure 2.1: ANN for morphological classification (Pham et al., 2019)
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Figure 2.1 shows additional important takeaways. The first is the binary classification in the output layer instead of a con-
tinuous variable. Secondly, the activation functions are visible in the centre of the figure. Activation functions are crucial
in ANN as they introduce non-linearity, thus enabling a network to learn complex relations. The functions transform the
input signal of a node into an output signal passed to the next layer (Sharma et al., 2020). For binary classification, the
sigmoid function is often used as activation as this function turns the output into a probability between zero and one.
Here, P is the probability of class 1, often called the positive class. 1-P is the probability of being class 0, the negative
class. The class is classified as positive when P > 0.5 (Matveichev, 2023).

Figure 2.2 shows how Elnabwy et al. (2022) constructed the ANN structure when using regression to predict a singular
continuous variable instead of a classification. The model has two hidden layers, and the input layer consists of harbour
layout and environmental parameters.

Figure 2.2: ANN configuration for a continuous dependent variable (Elnabwy et al., 2022)

Elnabwy et al. conveniently represent the output of Figure 2.2 as eq. 2.7, with Y the output; f the activation function;
wi the weight; xi the input; and b the bias:

Y = f

(
n∑

i=1

wixi + b

)
(2.7)

Pham et al. (2019) converted their wind, swell, and tidal data into independent energy variables like swell or wind
energy, therefore reducing the number of input variables as seen in the input layer in Figure 2.1. This reduction is often
favourable when training an ANN. In the Da Dien case, classifying morphological changes of the river mouth was the
aim, which explains the conversion to input parameters that heavily impact the bathymetry of the coastline. Kim et al.
(2023) intended to predict turbidity distributions, which required the same strategy but with different input parameters.
For example, temperature and salinity were expected to strongly influence the turbidity due to the pressure gradients that
induce vertical mixing in the water column. They combined the two factors into a dimensionless input parameter called
σt that represents a density, thus including both but decreasing the complexity of the model. Combining several factors
into one parameter is an essential takeaway of these studies as it can be relevant in setting up the ML model for the POR.
Lastly, Pham et al. (2019) and Kim et al. (2023) used Min-Max to normalise the input parameters, whereas Elnabwy et al.
(2022) used Z-score standardisation.

Ren et al. (2023) used a Principal Component Analysis (PCA) to further develop a Long Short-TermMemory (LSTM) to
predict surface suspended sediment concentrations after a typhoon in the Yangtze estuary. An LSTM is a more complex
neural network that excels in determining long-term dependencies and relations in data. The PCA method is especially
relevant as PCA can identify the main features in datasets. In this case, the datasets consisted of twelve meteorological
and hydrological features similar to the ones available for the Botlek. However, PCA reduces interpretability because the
principal components are uncorrelated combinations of the original independent variables. Using PCA, unfortunately,
means that information is lost to reduce dimensionality.

2.2.2. Gradient Boost Regression and eXtreme Gradient Boosting

Boosting can be applied for classification and regression. Pham et al. (2019) use two types for their classification: Ad-
aBoost and LogitBoost. AdaBoost assigns a higher weight to misclassified samples in each iteration, allowing the weaker
learners to focus on those samples. LogitBoost adapts to AdaBoost and uses logistic models to predict a classification. It
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is generally not used for regression problems. Instead of classification, Sharafati et al. (2020) apply AdaBoost Regression
(ABR), Gradient Boost Regression (GBR), and Random Forest Regression (RFR) to predict suspended sediment loads
in the Mississippi River. They found that the ensemble ML models could make suspended sediment load predictions for
the Mississippi. All models achieved an R2 score close to 1.0. The RFR model slightly outperformed with aMAE of
1575.734 against 2195.211 for GBR and 2000.133 for ABR. RFR is described in a separate section.

GBR assumes that the best possible model in the sequence minimises the prediction error when combined with previous
models. It is called gradient boosting because the target of the next model is based on the gradient of the prediction error
from its predecessor. GBR can be described as the formula below where ψ(y, F (x)) represents the loss function, F(x)
the prediction function, and δ the gradient of the residual (Sharafati et al., 2020):

F0(x) = argmin
δ

k∑
i=1

ψ(yi, δ) (2.8)

GBR uses decision trees in its boosting process. Decision trees iteratively ask questions to reach a prediction and can
be used for classification and regression but are prone to overfitting. GBR eliminates this issue by assembling multiple
trees (Gaurav, 2022). This method is visualised in Figure 2.3.

Figure 2.3: Conceptual Gradient Boosting Regression (Sharafati et al., 2020)

Another implementation of GBR is eXtreme Gradient Boosting (XGB). XGB uses ridge and lasso regularisation to
penalise overfitting, whereas GBR only minimises the loss function. Additionally, XGB uses parallelisation during
training, which results in a faster process (Belyadi and Haghighat, 2021). A study by Piraei et al. (2023) applied XGB
to predict total sediment loads and compared its performance to other ML methods like ANN, ABR, and RFR. The
comparison was based on six performance metrics and showed that the XGB model slightly outperformed the other
techniques. XGB had an R2 of 0.95, where ANN and RFR scored 0.87 and 0.89. The XGB algorithm is a viable option
for predicting SR in the Botlek because of its high accuracy and ability to capture nonlinear relations. A limitation of
XGB is the complexity of the algorithm due to the high number of hyperparameters. Moreover, XGB is computationally
expensive (Dhumne, 2023).

2.2.3. Random Forest Regression

The RFR algorithm uses decision trees like the boosting algorithms described in the previous section. The difference
lies in the architecture, as RFR is a bagging model that generates predictions in parallel. RFR constructs each tree with
a different bootstrap data sample, after which the average of all predictions is used as the final prediction (Al-Mukhtar,
2019). Some studies on sediment concentrations or river loads show better RFR performance than several other ML
methods. An example is the Mississippi River study, which showed a slight superiority over AdaBoost and GBR. Al-
Mukhtar (2019) used RFR, ANN, and Support Vector Machine (SVM) to model suspended sediment in the Tigris River
and demonstrated that the RFR model had superior prediction capability, with R2 and RMSE values of 0.8 and 130.71,
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respectively, compared to 0.67 and 194.02 for SVM, and 0.68 and 178.3 for ANN. However, the application of RFR
in both these studies deviates from this thesis because the input parameters are only discharge values and suspended
sediment concentrations at different points in time.Walsh et al. (2017) used RFR in a more applicable context. They
used an RF approach to predict the spatial distribution of sediment pollution in an estuary. The researchers stated that
modelling in estuarine systems requires capturing transport and fate dynamics, thus including sediment composition and
bathymetry. Their RF model made predictions that generally agreed with the independent data and published measure-
ments, achieving an R2 of 0.63. Mitchell et al. (2021) comes closest to the goal of this research. They used RFR to
spatially predict sedimentation accumulation rates in the Baltic Sea while using hydrological and spatial parameters like
mean current speed, the orbital velocity at the seabed, and Suspended Particulate Matter (SPM). Their approach resulted
in anR2 of 0.419. On a coarser global scale, Restreppo et al. (2020) achieved a score of 0.89 to predict Oceanic sediment
accumulation rates using a k-nearest neighbour (k-NN) algorithm. K-NN uses parametrically nearest observed data to
predict a probable value for an area without data.

RFR can handle multivariate time series as input, which requires data transformation. In the case of this research, this
means transposing the time series of the conditions in the Botlek into a single row instead of a feature matrix. While
doing so, lagged variables are created. These lagged variables allow the RFR to recognise time dependencies among
the entries in the sample row. The dependent variable is coupled to the transposed row in a target column. Figure 2.4
shows how Mussumeci and Codeço Coelho (2020) transposed a multivariate meteorological feature matrix into a vector
to forecast weekly dengue incidences up to four weeks in multiple cities.

Figure 2.4: Transformed data features for multivariate forecasting (Mussumeci and Codeço Coelho, 2020)

Their application of RFR is an excellent framework for this research. Mainly because their input parameters are similar
to those of this thesis; for example, temperature and humidity are identical to the features in the Botlek scenario, and the
use of multiple locations is comparable to the use of multiple dredging areas. Mussumeci and Codeço Coelho (2020)
showed great forecasting potential and highlighted the ability of RFR to deal with the non-stationary and nonlinear nature
of their problem. However, the RFR was outperformed by LSTM. The advantage RFR has is that it is computationally
less expensive. This is favourable when weekly predictions for multiple locations are required, like in the Botlek.

RFR is highly accurate and provides information on feature importance. The latter is convenient for assessing which
environmental parameters are essential in predicting dredging volumes. This and the promising results in the mentioned
studies make RFR a viable option for this thesis. Disadvantages of RFR are the high sensitivity to noisy input data and
the computational intensity that increases with complexity (Hengl et al., 2018).

2.2.4. Support Vector Regression

Support Vector Regression (SVR) is a variation of SVM and is a technique that finds a model with a margin around the
predicted variables. This margin allows for a balance between fitting and overfitting. It is called SVR because the points
nearest to the regression line define the error margin, and those points are called support vectors (Awad and Khanna,
2015). Elnabwy et al. (2022) use SVR with three different kernel functions: linear, polynomial, and radial basis. The
predictions they made with SVR were close to those of ANN, but ANN still outperformed SVR. The regression problem
is expressed below where eq. 2.9 represents the regression problem and eq. 2.10 the regularised risk function used to
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calculate internal parameters. C represents a weighing parameter, and ξi represents the distance between the boundary
and real values. The SVR aims to minimize the squared weight, ξi and ξ∗i :

y = f(x) =

n∑
i=1

w ∗K(Xi, X) + b (2.9)

Minimise = R(C) :
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ) (2.10)

Doroudi et al. (2021) reviewed thirteen studies that applied SVR to predict suspended sediment loads with discharge and
suspended sediment as input variables. They stated that SVR can be a fitting choice for modelling suspended sediment
loads in rivers as it can solve common problems in hydrological datasets such as high dimensionality or small sample
sizes. The characteristic of fitting small sample sizes could be relevant for modelling the sediment in the Botlek as
parameters such as dredged volumes and bed level are measured monthly or weekly. The best performing SVR models
showed a R2 score around 0.94. A downside of SVR is that it is highly sensitive to hyperparameter changes, making
tuning a challenging task (Yan et al., 2019).

SVR can be combined with PCA to reduce the dependencies between the features. Noori et al. (2022) implemented PCA
on SVRmodels to model the total sediment load in rivers in g/L, achieving aRMSE of 0.87. The PCAmethod assumes
a linear correlation between the input parameters, so they use polynomial, sigmoid, and radial basis type functions to
transform the input parameters to a nonlinear feature space. It was found that the PCA-based SVR model with the radial
basis function outperformed the other kernel functions.
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2.3. Environmental factors and sediment behaviour in the Botlek

The hydrodynamics in an estuary are complex and influence the sediment in many ways. The interface of riverine and
marine systems results in an always-changing environment that causes resuspension, transport, or settling of sediment.
Identifying and evaluating the critical factors within this environment is essential to selecting the correct features for
developing the ML models.

The dissertation of de Nijs (2012) used the Botlek harbour as the area of interest to describe the transport and sedimen-
tation processes of SPM in a stratified tidally energetic estuary. His work explains the internal flow structures and the
transport of salt and sediment in the Botlek and is highly relevant to this research.

2.3.1. Tidal forcing and sediment transport

Tidal characteristics

Bosboom and Stive (2023) state that M2 (semi-diurnal, 12.42-hour period) is the tidal-current constituent that is the
dominant condition in most tidal basins in the Netherlands. Moreover, the Rhine-Meuse estuary can be classified as a
meso-tidal estuary, which means a tidal range between 2 and 4 meters (Van den Berg et al., 2007). Figure 2.5 shows the
tidal variation at the radar station in the Geulhaven, a harbour inside the Botlek. The semi-diurnal characteristics and
the beating of neap and spring tide are visible. The vertical dashed lines approximate the spring and neap periods. The
range at spring tide can be up to 2.5 meters, showing the meso-tidal character. For neap, this is closer to 1 meter.

Figure 2.5: Spring and neap tide variation in the Botlek (Port of Rotterdam, 2024b)

Forming of the Estuarine Turbidity Maximum

Tidal forcing and river flow are the main parameters responsible for the dynamics in an estuary and, thus, for the POR.
Tidal forcing results in saltwater intrusion, which ranges according to the height of the tidal cycles. The movement of
suspended sediment and water in estuaries is controlled by the density gradients between salt and fresh water, which
cause circulation. The variations in density are caused by the relative mixing rates that are a ratio of river and tidal flow
(Allen et al., 1980). Regarding this, de Nijs (2012) stated that the tidal advection in the Rotterdam Waterway controls
the phase at which turbid and saline water reaches the Botlek. Measurements showed that the shear during tidal cycles
is not high enough to induce interfacial mixing, resulting in a stable advection of the salt wedge up to the mouth of
the Botlek. Consequently, the stratification at the pycnocline (the density boundary between the fresh and saline water)
(Britannica, 2024) limits how high the bed-generated turbulence can spread in the water column. The damping effect of
the pycnocline traps SPM at the tip of the salt wedge, thereby forming a SPM balance beneath the pycnocline which is
called the Estuarine Turbidity Maximum (ETM) (Geyer, 1993).



2.3. Environmental factors and sediment behaviour in the Botlek 13

Sediment transport in the Botlek

The advection of the ETM determines the availability of SPM that can be exchanged with the harbours in the Rotter-
dam Waterway, a process that is determined by the saltwater intrusion length (Nijs et al., 2010). The harbour basins in
the Rotterdam Waterway located near the salt intrusion limit are filled and emptied throughout tidal cycles. The SPM
transported in the ETM can be exchanged with the harbour basis as a result of these exchange flows (Geraeds, 2020).
In his dissertation, de Nijs (2012) concludes that the near-bed density currents, induced by the density gradients, are the
dominant factor in the transport of SPM relatively far into the Botlek. The lack of vertical mixing due to the stratified
water column makes it so that the SPM can settle, resulting in a trapping efficiency of nearly 100%.

2.3.2. Sediment properties and origin

The deposited sediment in the Botlek is primarily of fluvial origin (de Nijs, 2012). Differential advection during ebb
causes fluvial SPM to be transported over the salt wedge. The SPM in the fresher upper part of the water column is able
to settle because the stratification damps turbulence during the tidal cycle. 3D hydrostatic numeric modelling predicted
that the fluvial SPM in the wedge is advected into the harbours along the waterway and settles there. Tracer analyses
and sediment budgets substantiated this. The fact that fluvial SPM is the primary sediment source could already indicate
that the discharge in the Rotterdam waterways is a critical parameter for this research.

Dredging material from the Botlek is predominately silt (Port of Rotterdam, 2022). There is a distinction between the
transport of fine and coarse sediment. The hydrodynamic conditions at the point of consideration primarily determine the
transport of coarse sediment. For fine sediment, the flow conditions upstream and in the past also influence the transport.
This causes an essential difference in the tidal dynamics of coarse and fine sediment. For example, the timescale for
sand is an order of magnitude smaller than the tidal period, which is why an instantaneous response can be assumed.
In contrast, silt has a similar timescale (Bosboom and Stive, 2023). Therefore, the direction and stream velocity of the
Botlek tide could be important. These variables vary over the basin during the tidal cycles, resulting in an inhomogeneous
suspended sediment response.

Another effect of salinity on sediment properties is flocculation. Mhasshah et al. (2017) showed that the interaction
between suspended sediment concentration and salinity controls flocculation size and settling velocity. Faster settling
occurred at higher concentrations when salinity was low. This situation was reversed when the salinity was higher, but
the concentration was lower. However, Eisma et al. (1991) concluded that flocculation is unimportant as observations
showed that sediment is already aggregated in freshwater regions of the POR.



3
Methodology

This chapter describes the methodology for answering the main research question. Chapter 3 consists of six sections that
all contribute to answering the first three sub-questions of this thesis:

• What data is available and relevant for predicting SR using ML in estuarine harbours?
• Which ML algorithms are most suitable for predicting SR?
• How should the selected ML algorithms and features be configured to predict SR?

This chapter starts with a case study, describing the study area and the maintenance strategy of the POR. Next, in Sections
3.2 and 3.3, the data available for this research is outlined and analysed with an Exploratory Data Analysis (EDA). The
EDA increases the understanding of the data by providing insight into outliers and missing values. These two sections
cover the first sub-question.

Section 3.4 will select the most suitable ML methods for predicting SR in the Botlek, thus answering the second sub-
question. It does so by evaluating the ML algorithms covered in the literature review on criteria that are based on the
limitations of this study. Together with the findings from the case study and the EDA, a well-considered choice in ML
algorithms can be made.

Following selecting the appropriate algorithms and cleaning the available data, Section 3.5 and 3.6 explain the method
behind configuring these into models that can predict SR. Section 3.5 focuses on overcoming any remaining problems
with the data and the process of engineering the data into samples to train the ML models. Section 3.6 outlines the
iterative steps of developing the selected ML models and the hyperparameter tuning process. The model development
will be divided into modelling phases that build upon each other and implement the steps from Section 3.6 to reach the
optimal configurations to predict SR. These phases are explained in Section 3.6.3. With these three sections finished, the
third sub-question is covered.

The materials and methods acquired and developed in this chapter will provide the foundation to produce reliable results.
Chapter 4 will display these results, answering the fourth sub-question. The discussion in Chapter 5 covers the result
analysis, study evaluation, and the last sub-questions. Chapter 6 covers the general findings and the conclusion to the
main question. Finally, in Chapter 7 the recommendations on further research and model improvements are presented.
To summarise the complete workflow of this study, Figure 3.1 provides an overview of intermediate steps on the next
page. The methodology is finished after the ’Algorithm Selection & Model Engineering’ sections.
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Figure 3.1: Flowchart research methodology



3.1. Case study 16

3.1. Case study
The area of interest of this thesis is the Botlek. The Botlek Harbour is a basin of the POR that is primarily dedicated to
the chemical industry. The entrance of the Botlek lies in the transition zone from saline to fresh water, approximately
18 km upstream from where the Nieuwe Waterweg flows into the North Sea at Hoek van Holland. Section 2.3 showed
that the basin is under a strong influence of the salt wedge induced by tidal advection and that this is the dominant factor
in the high SR in the Botlek. The resulting conditions require frequent survey and dredging operations to ensure the
navigational safety of the vessels. The SR here are so high that the Botlek accounts for most maintenance dredging costs
(SOURCE). A detailed overview of the dynamics within the Botlek has already been covered in Section 2.3.

Understanding and predicting sediment behaviour under environmental conditions is valuable for port authorities as this
can increase maintenance efficiency. It can prevent unnecessary surveying or dredging operations by providing missing
information in decision-making. Moreover, possessing a predictivemodel can help anticipate sedimentation after extreme
weather events. This research aims to develop these models to contribute to more efficient sediment management in the
Botlek and, eventually, the rest of the POR.

3.1.1. Surveying and dredging in the Botlek

The information regarding the maintenance strategy was mainly acquired by interviews with Edwin Hupkes (project
manager at Port Development and manager of the PRISMA program) and Andre van Hassent (Asset Management (AM)).

The port authority divided the riverbed into surveying areas to manage them as seperate assets. Figure 3.2 shows the
seven areas relevant to this study delimited by the dotted lines in PortMaps, a software available to POR employees. The
coloured regions within the surveying areas are dredging areas. The cutoff in the Botlek mond+zwaaikom is because the
maintenance responsibility transfers to Rijkswaterstaat (RWS).

Figure 3.2: The surveying areas of the Botlek harbour (Port of Rotterdam, 2024c). The areas are separated by the dashed lines.

The three areas that experience the highest sedimentation are the 3e Petroleumhaven, Botlek centrale geul, and Botlek
mond+zwaaikom. Consequently, the authorities survey these areas most frequently. The surveying interval for each area
is relevant for developing the models. Variance in the interval leads to an inconsistent time series length for every pair
of sequential surveys. Ideally, this length is identical as the ML algorithms from Section 2.2 require samples of the same
shape. Uneven spacing, therefore, leads to unnecessary removal or padding of data, which results in a noisy dataset.
Unfortunately, maintaining a constant interval is impossible as authorities rely on factors such as the traffic inside their
port, equipment availability, occupied berths, and environmental conditions. Even so, the average survey intervals for
the primary areas are close to exactly 31 days. The areas and their respective intervals are displayed in Table 3.1. The
codes explained in the caption are essential in the modelling phase as these serve as sample labels.
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Table 3.1: Overview of dredging locations and number of surveys per location. The ’Function place’ columns provide the code used to refer to the
surveying areas. ’Number’ is the number of surveys recorded since January 1st, 2018 till April 31, 2024

Name location Function place Dredging location Number Average
survey interval

Botlek Centrale Geul H-L-N-BT-004-PLV-009 H-L-N-BT-004-BGV-ABG 69 30 days

Botlek mond H-L-N-BT-004-PLV-014 H-L-N-BT-004-BGV-ABH 31 31 daysH-L-N-BT-004-BGV-ABK

Botlek Vak 3 H-L-N-BT-004-PLV-017

H-L-N-BT-139-BGV-AOZ

33 64 days
H-L-N-BT-004-BGV-ACM
H-L-N-BT-128-BGV-AFO
H-L-N-BT-004-BGV-AAW
H-L-N-BT-128-BGV-ABF

3e Petroleumhaven H-L-N-BT-096-PLV-003
H-L-N-BT-096-BGV-AAM

69 31 daysH-L-N-BT-096-BGV-AAN
H-L-N-BT-096-BGV-AAO

Welplaathaven H-L-N-BT-145-PLV-027 H-L-N-BT-145-BGV-AJE 10 213 daysH-L-N-BT-145-BGV-AJO
1e Werkhaven H-L-N-BT-167-PLV-001 H-L-N-BT-167-BGV-AAF 44 50 days
2e Werkhaven H-L-N-BT-168-PLV-002 H-L-N-BT-168-BGV-AAL 34 64 days

Maintenance dredging operations do not follow the same pattern as survey operations. The first reason for this is that
some surveying areas consist of multiple dredging areas (see Table 3.1). A dredging operation is sometimes limited
to a single area, dependent on the level of urgency of the surrounding areas. For example, the two purple areas in the
3e Petroleumhaven are less prone to sedimentation than the upper blue area. It is then likely that only the blue area is
dredged even though the survey covers all areas. The second reason is that the surveys not always indicate a reason to
dredge. If AM analyses the bathymetry survey and notices that the channels are still below the NGD, then dredging is
not necessary. When the NGD is breached, AM creates a dredging order for that area that can take several days and
sometimes longer before it is completed. Again this depends on factors like equipment availability and traffic. These
inconsistencies and dependencies make maintenance dredging a continuous process that does not follow the exact timing
of the surveys.

Dredging area analysis

Knowledge on the individual dredging areas can provide initial insights into SR in the different areas of the Botlek. The
dredging and surveying data is analysed and processed in Sections 3.2, 3.3, and 3.5. Therefore, a review of the SR and
conditions of the individual areas is performed once the data is cleaned and processed. The areas are covered in Section
3.5.3. Figure 3.4 in the next section shows all individual dredging areas and their respective location code, along with
the measurement stations in the Botlek.
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3.1.2. Bathymetry

The port must adapt its infrastructure to the continuously growing vessel size to keep its competitive position. The most
significant alteration to the study area was the deepening of the Nieuwe Waterweg and Botlek from 2018 to 2019. The
new depth of -15.9 meters NAP assured the navigational safety of Aframax and the, at the time, new Panamax vessels.
The deepening is essential for this research because it changed the conditions in the Botlek. The implications of these
changes are discussed in Section 3.2. The -15.9 meters NAP is currently still maintained in the channels. Figure 3.3
displays the bathymetries of the entrance (3.3a), the central channel (3.3b) up the center of Botlek Vak 3 (3.3c), and
part of 3e Petroleumhaven (3.3d). The Multibeam surveys were taken in April 2024. The navigational channels of
approximately -15.9 meters NAP are distinguishable by their dark blue colour. The east side of the central channel
harbours a sediment trap with a maximum depth of -19 meters NAP. The trap is visible in the figure 3.3b.

(a) Botlek mond+zwaaikom (b) Botlek centrale geul

(c) Botlek Vak 3 (d) 3e Petroleumhaven

Figure 3.3: Multibeam bathymetry surveys of the Botlek. The colour bar shows the depth in meters.
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3.2. Available data
The literature review mentioned the algorithms commonly applied for sediment prediction and their corresponding char-
acteristics. The data provided by the POR and other sources is essential for developing these ML models because the
quantity and quality of the data determines which algorithms can be applied and what the model development approach
must be. This section will provide a detailed overview of the data and serve as input for Section 3.4 and 3.6 as these
will expand more on the algorithm selection and model development. Along with the EDA in Section 3.3, the first
sub-question is covered and finally answered in a conclusive section:

What data is available and relevant for predicting SR using ML in estuarine harbours?

The data that is available can be divided into three groups:

• Geospatial Multibeam surveys of all areas in the Botlek harbour
• Dredging logs of all operations commissioned by the POR authorities
• 10-minute interval measurements or forecasts of all available hydro-meteo variables

This data was acquired from October 9, 2018, until May 2024 because October 9, 2018, is the first recorded day in
the POR database for many variables. Moreover, 2018 marks the start of the deepening of the Nieuwe Waterweg and
Botlek that was mentioned in the bathymetry section of 3.1.1. The asset management department highlighted that this
infrastructural intervention impacted the sedimentation behaviour. Consequently, environmental data collected before
October 2018 is not helpful for model training, as the ML models would attempt to capture trends and correlations that
are representative of the present situation. However, October 2018 is not chosen as the starting period of the survey data
collection to prevent unnecessary data loss. Instead, the surveys are acquired from the start of 2018 as these can provide
insight into the changes in bathymetry after the deepening. The last deepening operation was completed in May 2019.
When selecting suitable input data, the surveys before May 2019 will likely be discarded as unreliable labels.

3.2.1. Multibeam surveys

The surveys are conducted with a Multibeam sonar by the surveying vessels from the port authorities and converted into
high-resolution data, allowing for a detailed visualisation (Figure 3.3). A survey is conducted within a surveying area
and linked to its specific area code, denoted by the Function place column from Table 3.1. Additionally, each survey has
a unique order number. The surveys are stored in the POR Spark Database and can be extracted by specifying a Spark
SQL query. A list of all order numbers linked to a survey conducted in the Botlek was constructed. By specifying the
order number and date of surveying, all relevant surveys stored since 2018 could be extracted using the information in
the list. Table A.1 in Appendix A shows an example of this list.

A survey from the Multibeam can be classified as geospatial point data. Geospatial data combines location information
(coordinates) with attribute information (depth) (IBM, 2024a). The POR uses the EPSG:28992 Amersfoort system for the
location information, also known as the Rijksrectangularcoordinate (RD) system. This system projects xy-coordinates
into meters and covers The Netherlands and the Dutch Exclusive Economic Zone of the North Sea (NSGI, 2024).

The ’Number’ column in Table 3.1 contains 290 surveys. Section 3.5.1 explains the method behind exporting and storing
all these surveys.

3.2.2. Dredging data

The dredging data consists of the detailed on all maintenance dredging operations in the POR jurisdiction since 2007. A
dredging operation is denoted with the year and week it took place, a dredging location code from Table 3.1, the volume
that was dredged, and the time it took to complete the operation. Through the dredging area code, each region can be
coupled to its respective surveying area.

3.2.3. Hydrological and meteorological variables

The hydro-meteo conditions are monitored throughout the port area. In cooperation with RWS, the POR manages the
’Weather, Tides and Water Depth’ portal, providing all current conditions needed to navigate the port safely (Port of
Rotterdam, 2024a). The POR authorities have measurement stations in all harbours and channels, RWS covers the main
navigational channels (Nieuwe Waterweg, Nieuwe Maas, Het Scheur), and the meteorological conditions are monitored
by the Royal Netherlands Meteorological Institute (KNMI) (KNMI, 2024). Additionally, the OSR provides highly de-
tailed forecasts of water level and flow dynamics. OSR refers to the numerical model developed by Svasek Hydraulics.
The model is built upon the WAQUA (Water Movement and Water Quality modelling) in the SIMONA platform from
RWS and is used to solve 2D shallow water equations (Svasek Hydraulics, 2024).
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POR employees can access and download all historical data, including RWS data, through the Historic Data Store (HDS)
HydroMeteo. The historical data can be exported as a CSV file containing the time series of the selected variables. Table
3.2 shows an overview of the available variables. All variables are measured every 10 minutes, except for precipitation,
which is recorded hourly.

Table 3.2: Overview of available modelling variables in the Botlek. The ’Code’ column provides the code names of the conditions. ’Measurements
Locations’ refers to the name codes of the measurement locations (see Table A.2). The ’Method’ indicates whether the variable is measured or

predicted by the OSR model. The ’Source’ column either contains RWS, POR, or KNMI as entry

Variable Unit Code Measurement Locations Method Source
Discharge m3/s Q10 LOBITH measured RWS

Height of tide m H10 RP10 measured RWS

Depth averaged tidal direction deg PTSDDA10 BOTCGO, BOTM,
BOTNM OSR POR

Depth averaged tidal stream m/s PTSRDA10 BOTCGO, BOTM,
BOTNM OSR POR

Precipitation mm/hr RH RP10 measured KNMI

Salinity g/kg PSAB10 RP10, BOTCGW,
2WERKH OSR POR

Water temperature C◦ WT10 HARK, RIJNH,
HOEK, LEKH measured POR

Wind direction deg WD10 RP10 measured POR
Wind velocity m/s WV10 RP10 measured POR

The measurement and OSR locations are divided over the port to cover all relevant areas and are recognisable by a name
code in the table above. A critical observation is that the number of variables measured at each location differs. For
example, salinity is modelled by OSR at the Botlek Centrale GeulWest (BOTCGW) but not at the BotlekMond (BOTM).
The actual names and area of these locations are provided by Table A.2, Figure A.1, and Figure A.2 in Appendix A.

For the data analysis in Section 3.3.1, all variables at their respective measurement locations have been exported from
October 1, 2018 until April 29, 2024.

Figure 3.4: The dredging areas in the Botlek and their respective area codes. The area codes are the last three letters from ’Dredging locations’ in
Table 3.1. The blue codes are the measurement stations from Table 3.2.
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3.3. Data analysis
This section covers the analysis and preprocessing steps of the data from Section 3.2. These steps are necessary to
provide a reliable dataset for the model development. An EDA is performed to summarise the main characteristics of the
datasets. This analysis will increase the understanding of underlying distributions of individual input and identify outliers
and missing data. The EDA was performed in Python with the Pandas, matplotlib, and Seaborn packages. Appendix B
contains the plots, distributions, and tables with characteristics of all variables and will often be referred to.

3.3.1. EDA and processing of hydro-meteo variables

An EDA increases the understanding of the data. It consists, among other things, of the following steps (Brownlee,
2020a): descriptive statistics summary, visualisation by line charts and histograms, correlation matrices, and bivariate
plots. The pandas.describe() function provides an overview of the descriptive statistics of a dataset. The function returns
the count, mean, standard deviation (STD), minimum, quantiles, and maximum of the set. The plots can be made with
the matplotlib package and the correlation matrices and bivariate plots with Seaborn.

Each variable could need engineering to solve issues with missing values or outliers identified by the EDA. This section
describes the EDA and preprocessing steps.

Missing values and Large p, Small n

Section 3.2 states that all data beforeMay 2019 will likely not be used for modelling. Therefore, missing data and outliers
before this date are not interpolated or filled with other methods.

During model training, keeping the number of input features (p) below the number of samples (n) is preferred. When p
>> n, the performance of the models can be poor because the training sample size is relatively small compared to the
features vector size, resulting in possible over-fitting. This problem is called the ’Large p, Small n issue’ (Huynh et al.,
2020). This research aims to use the hydro-meteo time series as features while the surveys provide the labels for the
samples. The total of 290 surveys is significantly smaller than p if the 10-minute measurements are chosen as features.
For example, if the mean interval of 31 days between surveys is selected as time series length, the sequence would have
a length of 4.464 features for a single variable. To prevent p >> n, the time series will be resampled to daily, weekly,
or monthly averages to reduce the number of features. Before resampling, stand-alone missing values are filled with
appropriate methods. More extended periods with missing values will be discarded.

Discharge (Q10)

The discharge is measured at Lobith by RWS. According to the port authorities, the water takes approximately four days
to travel from Lobith to the Botlek (Port of Rotterdam, 2024a). Therefore, the data is shifted by four days to be more
accurate. Figure B.1 provides the first noticeable outlier. The minimum discharge in the set was recorded at -3604.98
m3/s. A negative discharge is not possible in the Rhine. Historically, the discharge in the Rhine at Lobith has never
been below 620m3/s (H20, 2022). The line chart in Figure B.1 shows multiple spikes towards zero or below, indicating
more outliers. All values below the realistic minimum discharge of 620m3/s are set to NaN to remove the measurement
errors. Figure B.2a shows the resulting line chart with many missing values before April 2019. All NaN-values after
April 2019 are interpolated.

Height of tide (H10)

The tidal variation in Figure B.3a shows a fluctuation around a mean water level of + 0.19 meters NAP. The measurement
station is located in the Geulhaven with a depth of -6 meters NAP (Port of Rotterdam, 2024c). The high and low water
(HW/LW) of each tidal cycle are recorded separately, as seen in Figure B.3b). At these moments, H10 is supposed to
denote a NaN-value, but this process is ineffective. The time index of HW and LW does not follow the 10-minute interval,
and the maximum or minimum value often does not coincide with the actual water level. Therefore, filling the H10 with
its respective LW or HW value is unreliable and handling all tidal cycles manually takes time. Instead, the missing values
in H10 are interpolated with the forward fill method.

Precipitation (RH)

The Precipitation dataset provided by the KNMI does not contain missing values (KNMI, 2024). It is the only variable
from Table 3.2 measured as an hourly cumulative in 0.1 mm/hr. When the hourly precipitation was below 0.05 mm/hr,
the KNMI denoted a -1, as seen in FigureB.9a. For this study, these values were replaced with zeros, and the unit was
converted to mm/hr.
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Salinity (PSA10)

Salinity is modelled by OSR at the surface (PSAS), middle (PSAM), and bottom (PSAB) of the water column for three
locations in the Botlek. Figure B.10 shows the difference between these layers, with the bottom layer containing the
denser, more saline water. The mean values at BOTCGW and 2e Werkhaven (2WERKH) do not significantly deviate
from each other. displays lower levels of salinity, which could be ascribed to the fact that the location is stationed in the
shallower Geulhaven. The data contains minimal missing values and no prolonged periods. Therefore, the NaN-values
can be interpolated without extra steps.

Water temperature (WT10)

Thewater temperature is measured at multiple locations across the port. Figure B.14 provided the statistics of all locations.
The mean temperatures across the different locations do not deviate much more than 0.1 degrees Celsius, except for
HOEK, located near the shoreline. Figures B.15 and B.16 show the line charts of the seasonal temperature fluctuations.
The periods of missing values are visible in all charts except for the HARK location.

The Botlek is situated between LEKH and HOEK. Ideally, these two locations would be interpolated to estimate the
temperature at the Botlek. This is not possible due to the significant periods of missing values at both locations. Of all
locations, HARK is the most reliable source. The missing values in the HARK data still have to be interpolated.

Wind direction/velocity (WD10/WV10)

The wind is measured at RP10. Figure B.17a shows the distribution of WD10 and is as expected for the Netherlands.
The dominant south-to-southwest wind direction (Janssen, 2024) is visible by the prominent peaks at 180 to 270 degrees.
The WD10/WV10 data did not show significant periods of missing data.

3.3.2. Survey analysis

Section 3.2.1 describes the first steps in exporting the surveys towards usable data. An SQL query is needed to access
the surveys. If only the order number is specified, all data points are exported. The minimum and maximum coordinates
define the grid size, which is filled by the depth values, resulting in the bathymetries in Figure 3.5.

(a) January 1, 2024 (b) February 2, 2024

Figure 3.5: Example of misalignment in survey borders and coordinates at BOTCGO

An immediate observation is the difference between Figure 3.5a and 3.5b. The surveys are not conducted over the same
area, as the edges of the channel are captured differently for both surveys. Consequently, the number of data points in
both surveys is not identical. This can be seen in Figure B.18 where survey 3.5a consists of 227,134 points and survey
3.5b of 238,997. The mismatch means that rasters of the same area are not evenly filled. Therefore, performing a raster
substraction to find the change in bed level will cause down or upward spikes, as shown in Figure 3.6. The colour map
shows a bed level change ranging from +15 to -14 meters, implying that some sections either rise or fall almost the entire
depth of the channel within a month. This is not realistic.



3.3. Data analysis 23

Figure 3.6: Change in bed level between survey 3.5a and 3.5b between January 1, 2024 and February 2, 2024.

The variation in bed level between two surveys can be determined once the surveys are mapped over the same grid.
Section 3.5.1 will cover the steps that are taken to acquire reliable survey information.

3.3.3. Conclusion available data analysis

The sub-question that Sections 3.2 and 3.3 answer is:

What data is available and relevant for predicting SR using ML in estuarine harbours?

The data analysis indicates that there is sufficient data to train ML models on not only dredging data but also the hydro-
meteo conditions. Multibeam surveys, dredging, and hydro-meteo data is available and all three data types are necessary
for constructing reliable samples to trainMLmodels to predict SR. The data has been exported fromOctober 9, 2018, until
May 2024. However, due to the deepening operations in the Botlek, all data before May 2019 will likely be discarded as
unreliable as the deepening was finished in May. The surveys are essential in providing detailed changes in bathymetry,
while the dredging logs add context to howmuch sediment leaves the system. Table 3.2 summarises the available number
of hydro-meteo variables and the locations where these are measured. The multiple locations allow for (somewhat
generalised) dredging area-specific hydro-meteo conditions.

The data still needs extensive engineering before it is usable. First, the survey grid problem from Figure 3.6 must be
overcome to provide the sedimentation between two surveys. Secondly, the time series of the hydro-meteo variables and
the dredging data need to be linked to the dates on which the surveys were conducted. Section 3.5 explains the detailed
method behind this approach.
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3.4. Algorithm selection
Section 2.2 discussed ANN, XGB, RFR, and SVR as applied methods within the field of sedimentation modelling. All
methods showed promising results, but the time restrictions of this study limit the application of all algorithms. Therefore,
a selection must be made. With this selection, the second sub-question is answered:

Which ML algorithms are most suitable for predicting SR?

The Goldstein et al. (2019) review paper on ML applications to coastal sediment transport stated that comparing ML
predictors is often impossible because information on the final predictor is not provided, and the datasets differ. This is
the case even when the same research question is investigated. Nonetheless, each ML algorithm has its own character-
istics that can fit the goal of this study, and the reviewed literature shows proof of concepts or working models that can
substantiate the choice for a particular algorithm. The simplest model that is selected to set a baseline performance is a
Linear Regression (LR).

The additional ML algorithms are selected based on the goals and restrictions of this study:

1. Interpretability of the decision-making process and output of the algorithm. Interpretability is essential for formu-
lating practical insights regarding sediment behaviour in the Botlek.

2. The limited number of surveys results in a small dataset. Therefore, the algorithmmust be able to make predictions
without overfitting on the small training set.

3. Ideally, the literature review shows that the algorithm can deal with the study restrictions while maintaining a high
predictive accuracy on a dependent variable similar to or equal to SR.

Restrictions one and two are considered as the most essential points. The first reason is that the amount of data available
for the Botlek is nearly unchangeable for this project. Surveys are added to the dataset at a monthly rate. Therefore, the
set will not significantly increase in size throughout this thesis. Secondly, this effort to predict SR with ML algorithms is
the first in the Botlek. Interpretability of the outcome and insight into the impact of hydro-meteo variables are essential
in further developing the models and providing practical insights into the maintenance strategy of the POR.

Interpretability

Within ML, a distinction between black-box and white-box models can be made. ANN and SVR can be labelled as
black-box as these contain complex distance functions and representation spaces that are hard to explain and understand
in practical applications. Tree and pattern-based models like RFR and XGB are labelled as white-box, as these can
provide a more interpretable model that is closer to human language (Loyola-González, 2019).

Sections 2.2.2 and 2.2.3 mentioned that XGB and RFR can provide a feature importance overview directly. The im-
portance score shows the value each feature contributes to reducing the prediction error. Moreover, the RFR decision
trees can be visualised, showing the decision-making process. The scores assist in improving the model performance
as insignificant features can be identified and removed from the input set. This also increases the practical application
of the models as the relation between the individual hydro-meteo variables and the SR is shown. Feature importance
analysis for an ANN is possible but more complex. This would involve changing input features and recording changes
in predictions or through backpropagation (Musolf et al., 2022). For SVR, Üstün et al. (2007) developed a method to vi-
sualise the information from the kernel matrix to interpret the optimised SVR model. The downside of these approaches
is that both require additional modelling efforts, whereas RFR and XGB have this readily available in their packages.

Sample size and overfitting

Overfitting occurs when a model fits the training data too well, including the noise in the set. This results in poor
performance on the test set as the model cannot generalise to unseen data. One of the main reasons for overfitting is a
small training set (Ying, 2020).

Of the considered algorithms, SVR can handle smaller datasets well. N. Guo et al. (2020) applied and compared RFR,
SVR, and GBR to predict energy consumption and mentioned that many researchers stated the superiority of SVR on
smaller datasets. Moreover, SVR can tackle the standard problem of overfitting, especially for multivariate problems
(Basak et al., 2007). Section 2.2.4 mentions that the tuning process is challenging and SVR is sensitive to hyperparameter
changes. Prevention of overfitting is, therefore, not a given when implementing SVR.

RFR and XGB are both tree-based ensemble algorithms but differ in approach. The bagging technique used in RF
decreases the risk of overfitting by taking random subsets of the input for every decision tree and averaging the predicted
output, resulting in a lower variance (Belyadi and Haghighat, 2021). RF is often applied in medical research because
it can handle low data availability in a high-dimensional feature space (Qi, 2012). Section 2.2.3 did highlight that RF
requires high-quality data. Zhang et al. (2024) state that the sequential boosting approach of XGB and the regularisation
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term in the cost function can prevent overfitting. Despite these advantages, the tuning process is more complex than RF
due to the many hyperparameters. Therefore, XGB is still susceptible to overfitting.

When considering performance on small datasets, ANN is not the ideal candidate as ANN often requires large quantities
of data to prevent overfitting (Goodfellow et al., 2016). Nda et al. (2023) state that ANN is becoming increasingly popular
in sediment prediction because of its ability to model complex relations, but highlight that overfitting poses a challenge
without enough data.

Predictive accuracy

The accuracy of the proposed algorithms can be evaluated based on the results of the studies from the literature review.
Table 3.3 summarises the performance metrics and dependent variables of all papers. Even though most of these studies
did not consider SR as the dependent variable, they still offer great insight into the predictive performances of the different
algorithms. The paper by Doroudi et al. (2021) covered thirteen studies that implemented SVR, which is why the ’R2’
column consists of a range of scores. The ’Input variables’ column does not include the lagged or engineered features
constructed from the unique input variables. How many additional features were used to develop the models is often
unclear. The k-NN from the Restreppo et al. (2020) study is included because the dependent variable is similar to the
one of this study.

Table 3.3: Summary of studies from Section 2.2. ’Algorithms’ contains the ML methods used in the study. The three performance indicators mention
the scores in the same order as the abbreviations in the ’Algorithms’ column. ’Type’ either contains classification or regression to indicate the

purpose of the model. ’Input variables’ shows the number of unique variables used for modelling. ’Dependent Variable’ shows the output variable,
and ’Unit’ is the unit of that variable.

Source Algorithm(s) R2 RMSE MSE Type Input
variables

Dependent
variable Unit

(Walsh et al., 2017) RFR 0.63 - 0.49 Regression 7 TCS
concentration %TOC

(Al-Mukhtar, 2019) ANN, RFR,
SVM

0.68, 0.8,
0.67

194, 130,
178 - Regression 1 SSC mg/L

(Pham et al., 2019) ANN - 0.47 - Classification 6 Throat width m
(Sharafati et al., 2020) RFR 0.995 1575 - Regression 3 SSL ton/day
(Restreppo et al., 2020) k-NN 0.89 - - Regression - SAR cm/year
(Doroudi et al., 2021) SVR 0.81-0.95 - - Regression 1-3 SSL mg/L
(Mitchell et al., 2021) RFR 0.419 - 0.12 Regression 7 SAR cm/year

(Elnabwy et al., 2022) ANN, SVR 0.99, 0.95 930, 2215 - Regression 9 Sediment
Volume m3

(Kim et al., 2023) ANN 0.99 - 15.01 Regression 7 Turbidity FTU

(Piraei et al., 2023) ANN, RFR
XGB

0.87, 0.89,
0.95

316, 299,
216 - Regression 6 SSL kg/s

All four algorithms show varying degrees of success when looking at their performance indicators and dependent vari-
ables. As stated before, comparing the performance of algorithms applied in different settings is complex but not redun-
dant. For example, ANN reaches a near-perfect R2 score of 0.99 for Elnabwy et al. (2022), outperforming SVR by 0.04.
RFR slightly outperforms ANN in both reviewed studies from Table 3.3 that include the two algorithms. Additionally,
RFR scores are near-perfect for Sharafati et al. (2020) in terms ofR2. Doroudi et al. (2021) showed that SVR can perform
at a high level in thirteen studies considering SSL with a minimum score of 0.81, indicating a reliable performance level.
Lastly, Piraei et al. (2023) state that XGB scores best on both R2 and RMSE within their framework.

3.4.1. Selected Algorithms

A summary of the advantages and disadvantages of the four covered algorithms and LR is constructed in Table 3.4 to
support the algorithm selection process. Looking at the overview for ANN, it can be concluded that the need for large
datasets and the lack of interpretability eliminates the algorithm as a candidate. These are the most essential criteria, and
ANN scores low on both. The LR will be selected to produce a baseline performance. That leaves RFR, SVR, and XGB.

SVR is selected as one of two additional algorithms. The literature has shown that SVR is often superior for smaller
datasets. This, together with the overall reliable level of performance in Table 3.3, makes SVR a suitable choice for
predicting SR. Table 3.4 does show that SVR can be complex and uninterpretable. Therefore, taking SVR as a starting
point is not practical. Without feature importance, it is challenging to eliminate insignificant hydro-meteo variables
as input and formulate practical insights. Both RFR and XGB are strong contestants to complement SVR because of
their ability to provide feature importance scores, but only one of these is chosen to be able to fit the time restriction.
XGB is shown to be highly accurate but does require complex tuning to prevent overfitting. It is not ideal when both
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of the selected algorithms are complex to tune and developed. Therefore, RFR is more suitable to provide a baseline
performance and identify the most significant variables. Once the RFR feature analysis has been performed, the new set
can serve as input for the SVR or the LR models.

Table 3.4: Overview of advantages and disadvantages of the ML algorithms considered for modelling SR. The entries in ’Advantages’ and
’Disadvantages’ are either mentioned in Section 2.2 or Section 3.4. The selected models are in bold.

Algorithm Advantages Disadvantages

ANN
Captures complex relations well

Flexible architecture
High accuracy

Requires large datasets
Risk to overfitting
Difficult to interpret

LR Simple Implementation
Low computational costs Limited to linear relations

RFR
Provides feature importance scores
Relatively straightforward tuning
Bagging reduces risk to overfitting

Can be computationally expensive
Sensitive to low quality data
Prone to overfit noisy data

SVR
Effective on small datasets
Less prone to overfitting

Ability to handle multivariate problems

Sensitive to hyperparameters
Complex tuning can cause underperformance

Difficult to interpret

XGB
High predictive accuracy

Regularisation prevents overfitting
Provides feature importance scores

Computationally expensive
Complex hyperparameter tuning

Susceptible to overfitting with poor tuning
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3.5. Data processing
The previous sections covered the data cleaning and the motivation behind the selected ML algorithms. The output of
these two sections must be combined into models that can accurately predict SR. By describing the method of modelling,
the third sub-question is answered:

How can the selected ML algorithms and features be configured to predict SR?

Sections 3.5.1 through 3.5.3 describe how the surveys and hydro-meteo variables are engineered into samples that can
serve as train and test data. Then, in Section 3.6, the possible feature engineering steps and hyperparameter tuning process
are outlined. The entireML training process is constructed of different phases that all consist of different configurations of
samples, feature spaces, and dependent variables. The phase are described in Section 3.6.3. All findings are summarised
into a conclusion to the third sub-question in Section 3.6.4.

3.5.1. Survey formatting

An accurate estimation of the bed level change is needed to provide information on the SR. The grid problems resulting
in Figure 3.6 must be solved to achieve this. Removing the differences at the edges of the channels can be overcome by
defining a polygon in the survey area. The polygon must capture the most critical aspects of the surveying area, such
as the channels and the slope to the edges. It should be precise enough to ensure that nearly all surveys cover the full
extent of the polygon. An inaccurate polygon still leads to deviations similar to the ones in Figure B.19. Combining
a well-defined polygon with the WITHIN function of Spark SQL eventually leads to the desired result. The WITHIN
function only extracts the survey data points within the defined area. The polygons used for this study are presented in
Table B.1 and visualised in Figure B.20.

The polygons solve the inconsistent edge problem, but the coordinate mismatch from Figure B.18 remains. This can
be overcome by interpolating over a grid. The grids are formed by the numpy.meshgrid() function. Meshgrid creates a
rectangular grid with Cartesian indexing, the index being the xy-coordinates (ESPG:2289) that are defined for each data
point within a survey. The data points do not cover all grid points within the mesh grid. Therefore, the scipy.griddata()
function is used to interpolate between the grid points to fill missing values linearly. The results are visually identical
survey areas as seen in Figure 3.7a and 3.7b. In reality, the grids are not identical due to the difference in the minimum
and maximum xy-coordinates of the two surveys. The spikes in bed level change in Figure 3.7c prove this. Therefore,
the last step must define a predetermined grid for each dredging area polygon. This grid is defined by the xy-coordinates
of the first survey exported for that area, after which the following surveys can be interpolated as well. Now, when the
bed level change is calculated, there are no spikes, resulting in a realistic image as seen in Figure 3.7d.

(a) Survey 70360214 (b) Survey 70362350

(c) Bed level change when using two coordinate grids (d) Bed level change when using same coordinate grid

Figure 3.7: Two sequential surveys rasterised over same polygon. Figure 3.7c shows the result of subtracting the surveys if the rasters are not
interpolated over the same coordinate grid. Figure 3.7d shows the result of subtracting after interpolating over the same coordinate grid.
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3.5.2. Sample creation

The literature review showed that SL ML models are trained with labelled data samples. These samples are not readily
available prior to this research and must be constructed manually. The data available for the samples consists of the
surveys, hydro-meteo variables, and logs on dredging operations discussed in this section. Of these three data types,
surveying is the only one that grants insight into the morphological variation below the water surface. Therefore, the
surveys will form the basis for a sample as they determine which period of conditions are taken as input and what
the value of the dependent variable is. The period is to be determined by the previously mentioned interval between
sequential surveys and, ideally, is constant. In this research, two sequential surveys at identical locations are called pairs.
The sedimentation of a pair can be derived by rasterising the surveys, interpolating over the grid, and then taking the
difference in bed level. The detailed reasoning behind this approach is discussed in the previous section.

To illustrate this approach, Botlek Centrale Geul is surveyed on January 1, 2024, and February 1, 2024, resulting in a start
and end date. The conditions at the survey location between these dates, including the dredging volumes, are extracted
from a dataset and ascribed to that pair. The rasterisation step provides the net sedimentation in m3 in this period,
resulting in a labelled sample. SR in m3/day is determined by dividing the difference between the net sedimentation
and the dredging volumes by the time between the survey pairs. In this case, that time is 31 days. This choice is explained
in the next subsection. The resulting equation is:

SR =
∆Sedimentation−∆Dredging

T ime interval
(3.1)

These steps are taken for all pairs until a complete set is created, as shown in Figure 3.8. Since most hydro-meteo
variables are measured at multiple locations, the variables of the measurement location closest to the dredging area are
selected. Table B.2 shows which measurement locations are ascribed to which dredging area.

Figure 3.8: Overview of the method used to create samples.

Section 2.2 showed that RFR models require the samples to be shaped as a single row in a Pandas DataFrame when time
series are considered. For SVR, the input must be shaped as an array. Therefore, the time series between two sequential
surveys must be transposed into lagged variables to allow the algorithms to capture temporal dependencies. This is shown
by including the day number in the column names in Figure 3.8. The resulting table is similar to the one Mussumeci and
Codeço Coelho (2020) implemented in Figure 2.4.

Interval selection

It has already been mentioned that the interval between surveys influences the number of features per sample. For every
extra day in between surveys, an extra feature per hydro-meteo variable is added. This is visible in Figure 3.8 where the
last entry in the time series is denoted with ’_dayX’. The time interval between sequential surveys is different for every
pair but SVR and RFR require samples of constant length. That is why a suitable interval value must be determined.

Figure 3.9 shows the interval distribution between sequential surveys. The median and peak at 32.5 days show that
the surveys (Table 3.1) taken at the high-priority areas from Section 3.1.1 are the dominant factor in determining this
interval. The problem opposed by selecting a constant interval is represented by the second peak in Figure 3.9. This
peak represents the 111 surveys with an average spacing of 58.7 days. Therefore, selecting the median interval will
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remove approximately 25 days of conditions for a substantial portion of the survey pairs. The interval length is seen as
an influential variable, and setting the fitting value is part of the model development in Section 3.6.

Figure 3.9: The distribution of the survey intervals of all dredging areas in the Botlek.

The first set of samples is created by assuming a mean survey interval of 31 days. This interval is close to the average
of the three main surveying areas from Table 3.1 and aligns with the peak in Figure 3.9. This approach results in a total
number of 205 samples. It is evident that 205 samples is lower than the 290 surveys available. The 1e Werkhaven, 2e
Werkhaven, and Welplaathaven are left out of the first sample set because the average survey intervals for these areas are
50, 64, and 213 days, respectively. Including these surveys in the sample set will skew the assumed interval of 30 days
for Botlek Centrale Geul, Botlek Mond, Botlek Vak 3, and 3e Petroleumhaven. Botlek Vak 3 also has an average survey
interval of 64 days but is considered more relevant in maintenance dredging, which is why it is included.

3.5.3. Sample and dredging data cleaning

The samples contain both the dredging and sedimentation volumes of the period of the sample. Returning to the example
from the previous section, this means that all dredging operations in January 2024 at Botlek Centrale Geul are accumu-
lated and added to the sample row. The dredging volumes are added as a negative value, given that sediment leaves
the system. The dredging data is manually registered in the maintenance records. However, some dredging operations
are not registered as these are not considered maintenance but infrastructural operations, meaning that, for example, the
NGD is permanently changed or a channel is widened. This results in a misalignment between what the survey and the
dredging records show. Figure 3.10 shows the sedimentation and dredging volume per sample, both inm3. The orange
dots denote the dredging volumes, and the blue dots denote the net sedimentation acquired from subtracting two surveys.

(a) Botlek Mond 1 (b) 3e Petroleumhaven North

Figure 3.10: Net sedimentation and dredging volumes from samples linked to the dredging areas Botlek Mond 1 (3.10a) and 3e Petroleumhaven
North (3.10b). The x-axis provides the sample number. The sedimentation values are the net bed level changes between the sequential surveys in a
sample pair inm3. The dredged volume is the amount of sediment dredged in between the surveys inm3. A red line indicates if the sedimentation is

lower than the dredged volume.
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The dredging data has not been thoroughly analysed before the sample creation because the sedimentation acquired from
the surveys was needed to provide context. According to the Asset Management department of the POR, sedimentation
cannot be significantly lower than dredging volume as this implies unrealistic erosion. In these cases, the dashed lines
are red to indicate a possible inaccuracy. Figure 3.10a shows the samples at the Botlek Mond 1 dredging area. Almost
all samples have higher sedimentation than dredging, which is good. However, the second sample (sample number 129)
contains a high dredging volume with only a moderate negative value for sedimentation. This can be ascribed to the
deepening operations being finished around that time. The polygon from Botlek Mond 1 cuts off before het Scheur,
thus not showing the significant change in depth due to dredging (see FigureB.21a). Figure 3.10b shows the results for
3e Petroleumhaven North. Here, the first and third samples show a different behaviour because the sedimentation is
significantly lower than the dredged volume. In these cases, all sediment around a cable was removed (see Figure B.21b)
but not registered as a maintenance operation, leading to a mismatch.

The same plots for all dredging areas are shown in Figure B.22 and B.23. The same outlier analysis as described above
was possible for all plots given that the total number of samples is limited to 205. Only outliers that showed a significant
difference between the SR and the dredged volume were removed. This resulted in a remaining total of 181 samples.
Among these, there are still samples that imply ’erosion’ with a negative SR.

3.5.4. Dredging areas in sample set
This section provides a concise overview of the characteristics of the dredging areas used in the sample set. The goal of
this overview is to provide better context to the results from Chapter 4. From now on in this report, the dredging areas
will be mentioned by their respective area codes. The general areas only have acronyms if they contain a measurement
station (see Figure 3.4. Figure 3.11 visualises which code belongs to which area. ACM, ABF, and AFO make up Botlek
Vak 3. Botlek Centrale Geul Oost (BOTCGO) is referred to as ABG. AAO and AAM are situated in 3e Petroleumhaven
and ABH and ABK in BOTM.

Figure 3.11: The yellow-bordered Dredging areas are included in the sample set.

Table 3.5 displays factors that contextualise the areas. The areas are ranked from highest mean SR (SR) to lowest. The
means are calculated with the SR values of the sample set. Generally, the areas closest to the Botlek entrance experience
the highest SR with the exception of ABF in the central channel. ABF even outranks ABG while ABG is closer to the
entrance. This inconsistency in SR for ABG is caused by the missing dredging data seen in Figure B.22d and explained
in Section 5.2.
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Table 3.5: Dredging areas ranked from highest to lowest ’SR’. ’SR’ is the mean SR inm3/day of the samples of that area. ’Mean dredged volume’
is the mean volume dredged in the samples of the specific area inm3. ’Distance to entrance’ is the euclidean distance from the center of the dredging
area to the center of the Nieuwe Maas channel in front of the Botlek entrance. The ’Surface area’ column shows the area of the polygons from Figure

B.20 inm2 and ’Number of samples’ the number of area specific samples in the total set of 181 samples.

Dredging
area SR

Mean dredged
Volume

Distance to
Entrance

Surface area
dredging polygon

Number of
samples

AAM 1226.3 -33680.7 1180 160439 27
ABH 959.37 -26592.03 495 85279 30
ABF 772.4 -16313.9 2180 200583 13
ABG 673.61 -1501.3 1300 239829 27
ABK 590.69 -155531.2 577 125157 31
AAO 519.2 -11110.8 1730 87039 27
AFO 461.49 -6511.2 2440 217689 13
ACM 307.9 -3898.08 3010 124499 13

Conditional variation

Aside from the information in Table 3.5, it is challenging to contextualise the differences between the areas. Figure
3.4 and Table 3.2 already showed that the hydro-meteo variables are not area specific. Therefore, investigating the
differences in slack water, stream direction, or variation in salinity across all areas in the Botlek is not possible, mainly
because the 3e Petroleumhaven is not represented in the OSR or measurements. However, the measurement stations
BOTCGW, 2WERKH, and BOTM do provide information on the variation in hydro-meteo conditions between some
areas. For example, Figure 3.12 shows the fluctuation of salinity in the Botlek. 2WERKH has a slightly higher salinity
than BOTCGW for the majority of the time. This is logical given its closer proximity to the entrance.

Figure 3.12: Salinity levels in April 2024 in the two areas of the Botlek. BOTCGW is located in ACM while 2WERKH is closer to the entrance in
AAL (see Figure 3.11).

Amore evident difference in conditions across the Botlek is noticeable in the tidal stream rate and direction in Figure 3.13.
The stream rates at the entrance (BOTM) are significantly higher than the rates at the channel (BOTCGO), indicating a
dissipation of tidal energy as the flow propagates into the basin. The cause of this dissipation likely is the bifurcation of
the entrance flow into BOTCGO and the 3e Petroleumhaven. Moreover, there is a delay in flow reversal as BOTCGO
has a lagged response compared to BOTM.
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(a) Depth averaged stream rate [m/s] (b) Depth averaged tidal stream direction [degree]

Figure 3.13: A visualisation of the fluctuation in tidal stream rates (3.13a) and direction (3.13b) in two areas of the Botlek. BOTCGO is located in
ABG and BOTM in ABK.
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3.6. Model engineering
The model engineering process aims to develop RFR and SVR models that can accurately predict SR. This process con-
sists of feature engineering, hyperparameter tuning, and performance evaluation. Section 2.1 mentions that the common
practice train-test split is 80% train and 20% test data. This split will be the standard during the entire modelling process.

3.6.1. Feature engineering

Input correlation and feature importance

Figure 3.8 shows the variables discharge and water level as examples. What subset of variables will result in the most
accurate predictions is unknown and is a vital part of this research. Section 2.3 already provided tidal variation, salinity,
and fluvial discharge as the dominant variables for sedimentation in the Botlek. The volume that is dredged in between
surveys could also be influential, as removing sediment has a direct impact on the bed level. However, whether the
developed models will perform optimally with this set of variables as input cannot be assumed and must be shown by
performing model runs with different subsets. These subsets can be selected based on expected performance through
literature, feature importance analysis provided by RFR, or a combination of both. The variable selection determines the
length of a sample as every chosen parameter includes all lagged time series values of that parameter. A single entry in
a sample row is called a feature, and reducing the number of features is generally favourable when training ML models
(see Section 3.3). Therefore, analysing the importance of each parameter and its correlation to the dependent variable is
an essential step in model development. It can show which features are redundant and assist in selecting smaller, more
efficient subsets of parameters that could improve model performance. This process is mostly an iterative process during
model development. However, the correlation matrix in Figure 3.14 already provides insight into which variables might
be redundant due to a high mutual correlation.

Figure 3.14: Pearson correlation matrix of all hydro-meteo variables

Depending on the measurement station, DENS10 and PSAB10 have a correlation ranging from 0.92 to 0.98. These high
values are logical given that DENS10 was calculated with the GSW TEOS-10 package (TEOS-10 Developers, 2024)
that converts water temperature (C◦) and salinity (g/kg) into density (kg/m3). Choosing DENS10 or PSAB10 helps
reduce the number of features without losing significant information. Another noticeable aspect of the matrix is the
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strong negative correlation between Q10 and DENS10/PSAB10. The apparent explanation is that a higher freshwater
discharge means less salt in the Botlek. The same can be said for the correlation between the PTSDDA10/PTSRDA10
and the DENS10/PSAB10 variables. The direction and stream velocity of the tide affect the salinity levels, bringing
either fresh or saltwater inside the Botlek basin. The mutual high correlation between the different PTSRDA10 stations
does not necessarily mean that only one station must be chosen as different stations are used for different samples (see
Section 3.5.2).

Averaging

The smallest possible measurement frequency of all variables, except RH10, is 10 minutes. It is already discussed that
this frequency results in too many features. A method to solve this is taking the average of that variable over a certain
period. Whether that should be, for example, a daily or monthly average is unclear as the effect on the model performance
must be determined. The downside of averaging is the significant loss of information. A daily average provides a reliable
indication of the value of most variables like Q10, WT10, or WV10, but the longer the period becomes, the more detail
is averaged out. Moreover, the monthly average of harmonic tidal movements results in a mean water level and does not
show spring or neap tides. Reducing the number of features or preventing information loss is an important trade-off. The
effect of this trade-off on the model performance needs to be analysed during development.

3.6.2. Hyperparameter tuning

The Scikit-learn (sklearn) library (Pedregosa et al., 2011) contains both RFR and SVR. Therefore, the model development
will be done using sklearn. The hyperparameters in this report are denoted as defined by sklearn.

Parameter grids

Sklearn offers functions that make the overall tuning process less complex and time-consuming. Two of these functions
are GridSearchCV and RandomizedSearchCV. The functions require a parameter grid containing the relevant hyperpa-
rameters of the chosen estimator, in this case, RFR and SVR. SearchCV then applies these parameters and finds the best
combination possible by fitting on the training set and finding the combination that results in the highest cross-validation
score. RandomSearchCV is usually less computationally expansive because it randomly samples from the grid. It is a
reasonable starting point when there is no indication of the range of suitable hyperparameters. GridSearchCV tries all
combinations, making it more suitable when the parameter space is smaller. It is often beneficial to start with the random
approach to narrow the search space and then apply a grid search on a more detailed grid to investigate if that improves
performance (Holihah, 2023).

Random states

The random state parameter controls the shuffling applied to a dataset before it is split. Therefore, choosing the same
value will result in a reproducible output. This is relevant during development because it allows the application of
different algorithms with different parameter grids on the same data split. Another angle is maintaining the same grid
but changing the random state to show how a model performs on different subsets of the data.

Analysing the performance of different random states will be part of the model training. The random state should not be
optimised. Therefore, it is not tuned like the hyperparameters. However, this approach does provide a comprehensive
view of the average performance. The number of runs on different random states is limited by the length of the training
time. For example, when the daily averages of all hydro-meteo variables are chosen as input, the runtime could be much
longer than when the monthly average of a few variables is chosen.

RFR hyperparameters

The decision trees in an RFR repeatedly split the dataset into smaller datasets that reduce the variance in the dependent
variable. The decisions to split the dataset are made in internal nodes, starting at the root node. When a split will not
reduce the variance further, the internal node will not split and become a leaf node. The node is then called pure. The
following hyperparameters influence this process:

• N_estimators: number of decision trees.
• Max_depth: the longest path between the root node and leaf node. When max_depth is not specified, the tree
grows until all leaf nodes are pure, which can lead to overfitting.

• Min_samples_split: minimum number of samples required to split a node. When the value is too low, the tree
splits the nodes until all nodes are pure.

• Min_samples_leaf : minimum number of samples required at the leaf node. By setting a higher value, only the
final nodes with the minimum number of samples are considered leaf nodes.
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• Max_features: number of features to consider when looking for the best split. Max_features can be defined by
sqrt(n_features), log2(n_features), or None. In the case of None, max_features = n_features.

SVR hyperparameters

SVR try to find an optimal hyperplane that fits all training samples. It does so by finding a function as flat (simple)
as possible while allowing a certain margin of error on the training data. The margin of error is called ϵ (epsilon). By
ignoring values within that certain threshold, the algorithm is robust to outliers(MathWorks, 2024). SVR can handle
nonlinear data by using different kernel functions. The following hyperparameters will be considered:

• Kernel: Specifies the kernel type for the algorithm. The default is a radial basis function (RBF). The other possi-
bilities are sigmoid, precomputed, linear, or polynomial (poly).

• Gamma: Kernel coefficient for ’rbf’, ’poly’, and ’sigmoid’. It controls the influence of individual data points and
determines how flexible the fit of the model is.

• Epsilon: Specifies the epsilon-tube. The tube is a margin of tolerance where no penalty is given for errors.
• C: Determines the penalty for errors larger than the epsilon margin. It is a regularisation parameter that controls the
trade-off between minimising the prediction error and maximising the margin. A lower C means a wider margin
that allows more errors, resulting in a simpler model, while a larger C leads to a complex model.

Below is the default RBF as defined by Anisa et al. (2024), with γ (Gamma) as kernel coefficient and ∥xi − xj∥2 the
eucledian distance between two feature vectors:

K(xi, xj) = exp(−γ∥xi − xj∥2) (3.2)

Performance indicators

Hyperparameter tuning is not possible without an indication of the performance of a certain setting. Section 2.1 already
mentioned common practice indicators. Their functions can be found there. For this study, the following indicators are
chosen:

• R2: the coefficient of determination. It measures the total variance in the dependent variable explained by the
independent variables. It indicates how well the model captures the trends within the data.

• RMSE: the square root of the average squared error. RMSE is more interpretable than MSE because it has the
same unit as the dependent variable.

• MSE: the average squared error. Because the residuals are squared,MSE emphasises larger errors.

The evaluation will primarily be done on theR2 andRMSE scores. TheMSE is added to provide extra context on the
outlier errors.

3.6.3. Modelling phases

This section describes the phases undertaken to develop accurate LR, SVR and RFR prediction models. The model runs
will be performed on the sample set with erosion samples and without, to investigate the impact of removing the erosion
samples. Moreover, the models are trained using two dependent variables: SR inm3 orm3/day. The first unit is more
practical for the POR. The second unit normalises the dependent variable which might result in better predictions. The
phases build upon each other to refine the performance.

Phase 1.0: model training on dredging data only

In the first phase, ’Phase 1.0’, The LR, RFR, and SVR will be trained on only ’hoeveelheid_total’ and ’location_number’
first to illustrate whether adding hydro-meteo variables results in a better performance. Hoeveelheid_total is the name
code for the total dredged volume in a sample. The ’location_number’ is a number ascribed to a certain dredging area.
The LR and SVR will be run on three random states. The RFR will only run the best performing configuration due
to runtime. These runs are performed for both dependent variables with all samples included and without the erosion
samples. This phase already gives a clear indication on which dependent variable results in the best performance.

Phase 1.1 to 1.3: model training with hydro-meteo variables

After Phase 1.0, the hydro-meteo variables are added. All three algorithms will be trained on all features but with different
time scales. All features means all lagged values of all hydro-meteo variables from Table 3.2, ’hoeveelheid_total’, and
’location_number’. By selecting daily, weekly, andmonthly averages as features, the sample length for the three scenarios
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will differ by 302, 52, and 12 features, respectively. It is complex to estimate whether decreasing the number of features
but losing information by averaging has a positive or negative impact on the performance. For this reason, all three
sample types are used.

’Phase 1.1’ refers to the runs where the dependent variable is the total aggregated volume in m3, as this is the most
usable unit for the POR. In ’Phase 1.2’, SR is inm3/day because this normalises the dependent variable. The runs will
be performed with random_state set to 0, 20, and 42 to provide a general performance indication. This approach results
in 54 runs, 18 for LR, RFR, and SVR each. The hyperparameter grids do not change during the different runs, and the
grid search is done using RandomSearchCV. The grids for both SVR and RFR can be found in Table C.1 and C.2.

Phase 1.1 and 1.2 are run with all samples, including the ones containing erosion (see Figure 3.10), to investigate the
impact of using these samples. After establishing the performance on all samples, ’Phase 1.3’ will rerun the SVRwithout
the erosion samples (142) with either the SR inm3 orm3/day, depending on which unit provided the best performances.
The runs in Phase 1.3 are first donewith SVR and LR because preliminary runs showed that the runtimes were amaximum
of a few seconds, whereas the RFR could take 30-40 minutes. RFR will also be rerun if the models from Phase 1.3
significantly outperforms 1.1 and 1.2.

Every RFR run provides new feature importance scores because of the difference in random state shuffling and length of
the samples. All scores will be gathered and transformed into easy-to-analyse plots and overviews. These plots will help
substantiate the choices in cutting certain features from the feature space in the following phases. The end of Phase 1 will
be an analysis of the performance indicators, the hyperparameters chosen by RandomSearchCV, the feature importance
scores, and the actual predicted SR values from the best and worst-performing models.

3.6.4. Conclusion data processing and model engineering

Sections 3.5 and 3.6 describe how the data and LR, RFR, and SVR models must be engineered to predict SR. Therefore,
the third sub-question is answered:

How can the selected ML algorithms and features be configured to predict SR?

The development of the ML models starts with creating samples that align the dredging logs, survey data, and hydro-
meteo variables. Each sample consists of the lagged time series of the hydro-meteo conditions between two sequential
surveys at the same dredging area. The samples need to have a constant length. Therefore, a length of 31 days of
conditions is chosen. This coincides with the surveying interval of the high-priority dredging areas. The dredged volume
between these surveys shows how much sediment leaves the system. The label is the net bed level change in m3 over
two surveys. There are three sample types: daily, weekly, and monthly means of the hydro-meteo conditions. The
number of features decreases each time scale from 302 to 52 to 12, respectively. Additionally, two dependent variables
are considered during modelling. The first is SR inm3 as this is the most practical unit for the POR. The second is SR in
m3/day because normalising the dependent variable is expected to improve model performance. Finally, the decision is
made to train the ML models on sample sets with and without erosion. The many possible configurations are structured
into phases:

1. Phase 1.0: The models are trained on dredging data only
2. Phase 1.1 - 1.3: The hydro-meteo variables are introduced while the different units of SR are tested.

The phases are summarised in Table 3.6. The performance of the configurations is tested over multiple random states to
provide a more conclusive indication of the ML model performance.

Table 3.6: Summary of the ML training phases. The columns indicate what is included in each specific phase. ’Dependent variable’ in Phase 1.0
contains both units, while Phase 1.3 selects the best-performing unit of all preceding phases. The (RFR) and (+8) in the Phase 1.3 row are in brackets

because the RFR is only included if the configurations from Phase 1.3 result in a better performance than the other phases.

Algorithms Hydro-meteo
variables

Dependent
variable

Random
states

Number of
Samples Sample type(s) Total runs

Phase 1.0 LR, RFR, SVR hoeveelheid_total +
location_number

m3 ,
m3/day

0, 20, 42 181 (with erosion),
142 (without erosion)

daily, weekly,
monthly 27

Phase 1.1 LR, RFR, SVR All m3 0, 20, 42 181 (with erosion) daily, weekly,
monthly 27

Phase 1.2 LR, RFR, SVR All m3/day 0, 20, 42 181 (with eosion) daily, weekly,
monthly 27

Phase 1.3 LR, SVR, (RFR) All Best
performing

0, 20,
42, 60 142 (without erosion) daily, weekly,

monthly 24 (+8)



4
Results

Chapter 4 covers the results provided by following the steps in the methodology. By doing so, it answers the following
sub-question:

How do the selected ML algorithms perform across different configurations?

The configurations refer to the iterative modelling phases described in Section 3.6.3. This section explains that Phase 1.1
refers to the runs withm3 as the dependent variable and Phase 1.2 tom3/day. The mean performance over three random
states and two dependent variables will indicate what feature and hyperparameter spaces can improve performance. Table
4.1 and 4.2 show the difference between the datasets for both independent variables.

Table 4.1: Dataset statistics of the test set where the dependent variable
has unitm3. The ’S̃R’ represents the median of the test set.

random
state S̃R SRmax SRmin

0 -2149.13 67481.52 -33025.22
20 -1657.42 18356.05 -35247.27
42 2380.04 46426.87 -35247.27

Table 4.2: Dataset statistics of the test sets where the dependent variable
has unitm3/day.

random
state S̃R SRmax SRmin

0 342.13 2612.67 -851.355
20 412.78 1880.91 -1174.91
42 331.57 1965.06 -1174.91

The large SRmin values in Table 4.1 indicate that samples still have a negative SR, meaning erosion. Phase 1.3 will rerun
the best-performing dependent variable without these erosion samples. Phase 1.0 runs LR and SVR models on the same
configurations as the phases described above but without the hydro-meteo variables and only on the dredging volumes.
The results from this phase provide excellent context in determining if adding the hydro-meteo variables improves the
performance.

The leading performance indicator is R2, given that RMSE and MSE depend on the different random states and
dependent variables because these result in data splits with different statistics. The results for the RFR and SVR will
contain plots with the predicted values, as this helps contextualise the impact of the hyperparameters. LR models do not
have tuning, so only the LR results that have a similar or better performance than the other RFR or SVR runs will be
shown in this chapter.

4.1. Phase 1.0: only dredging data in feature space
This section covers the runs of the LR, RFR, and SVR that are only trained on the dredging volumes (hoeveelheid_total)
and a location number (location_number). Table 4.3 displays the mean performances of the runs where the dependent
variable was SR inm3. The individual runs can be found in Appendix C.1.1. None of the runs scores high on any of the
performance indicators which means that the models are not usable in a practical application. A useful takeaway is that
removing the erosion samples does improve the performance.

Table 4.3: Mean performance of LR and SVR models from Phase 1.0 with SR inm3. This table summarises the tables in Appendix C.1.1.

Model Erosion Samples R2 RMSE MSE
LR Yes 0.05±0.10 1.49∗104±1.83∗103 2.25∗108±5.24∗107
SVR Yes 0.07±0.08 1.48∗104±2.05∗103 2.23∗108±5.77∗107
LR No 0.14±0.13 1.22∗104±1.17∗103 1.49∗108±2.57∗107
SVR No 0.17±0.12 1.19∗104±8.92∗102 1.42∗108±2.53∗107
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Table 4.3 displays the mean performances of the runs where the dependent variable was SR inm3/day. The individual
runs can be found in Appendix C.1.2. The performance improves significantly when the dependent variable is normalised.
Especially the LR and SVR runs without the erosion samples are noticeable.

Table 4.4: Mean performance of LR, RFR, and SVR models from Phase 1.0 with SR inm3/day. This table summarises the tables in Appendix
C.1.2.

Model Erosion Samples R2 RMSE MSE
LR Yes 0.47±0.14 496.61±55.46 2.17∗105±5.31∗104
SVR Yes 0.47±0.16 496.00±62.13 2.17∗105±6.23∗104
LR No 0.65±0.06 405.76±42.27 1.65∗105±3.10∗104
SVR No 0.65±0.02 407.95±29.27 1.66∗105±2.38∗104
RFR No 0.55±0.06 460.08±19.00 2.12∗105±1.68∗104

Table 4.5 displays the best individual runs per algorithm from Phase 1.0. Given the variety in results for different random
states, the mean performances are a better indication. Nonetheless, the LR and SVR show that the best performingmodels
are already able to produce usable indications on SR.

Table 4.5: Best LR, SVR, and RFR models from Phase 1.0.

Algorithm R2 RMSE MSE
LR 0.73 350.90 1.23∗105
RFR 0.59 467.31 2.18∗105
SVR 0.68 379.81 1.44∗105

(a) Best performance LR (R2 = 0.73) (b) Best performance SVR(R2 = 0.68)

Figure 4.1: Scatter plot of the predictions of the best performing LR (4.1a) and SVR (4.1b) models from Table 4.5 plotted against the actual SR from
the test set. Better model performance means that the points are clustered near the Identity Line (IL). The colour codes indicate the dredging area for

which the model predicts the sedimentation and refer to the last three letters from the area codes from Figure B.20.

4.2. Phase 1.1: dependent variable in m3

4.2.1. Results RFR

Table 4.6 displays the mean performances of the RFRmodels for all three sample types. The individual performances are
in Appendix C.2. Sample type refers to the averaging interval and determines the number of features. This is explained in
more detail in Section 3.6.3. The R2 scores are underwhelming for all sample types and show a relatively large standard
deviation, indicating an inconsistent performance. The weekly runs outperform daily and monthly on all three indicators
but show a more significant standard deviation on RMSE andMSE.
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Table 4.6: Summary of the performance of RFR models from Phase 1.1. This table summarises the RFR tables in Appendix C.2. ’Sample type’
refers to the averaging interval and determines the number of features as explained in Section 3.6.3. The overbar indicates that these are the mean

scores per sample type. Each entry represents the mean of three separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Daily 0.13±0.2 1.40∗104±7.55∗102 1.97∗108±2.12∗108
Weekly 0.18±0.16 1.37∗104±1.18∗103 1.89∗108±2.92∗107
Monthly 0.09±0.31 1.43∗104±8.79∗102 2.03∗108±2.75∗107

Another observation from Table 4.6 is that, in this case, the mean performance does not become better when fewer
features are involved. The monthly runs have the worst mean performance indicators out of all. This can be attributed
to the fact that the highest and lowest scores came from the monthly runs. These are shown in Table 4.7. The difference
between the two runs explains the high standard deviation and results in the lower mean.

The best RFR of this section has a max_depth of 50, allowing it to capture more complex relations, while the min_leaf
of 6 helps avoid overfitting by preventing the trees from growing too deep. The worst run even ends with a negative R2,
meaning that a linear fitted line would predict sediment volumes better than the RFR. The min_leaf of 1 indicates that
the model overfitted by allowing small tree splits.

Table 4.7: Best and worst performing RFR models from Phase 1.1.

Performance R2 RMSE MSE n_est min_split min_leaf max_depth random_state
Best 0.38 1.40∗104 1.97∗108 300 2 6 50 0
Worst -0.23 1.35∗104 1.82∗108 450 2 1 10 20

Figure 4.2 shows the predictions from the best and worst models. The predictions from Figure 4.2b do not remotely
follow the IL and are scattered around the graph. Especially the outliers from ABG significantly deviate. In Figure 4.2a,
the predictions follow a pattern closer to the IL except for the AAM outlier and some negative samples. These outliers
have a more substantial effect on the RMSE, especially when there is such a significant difference between the outliers
and the mean sedimentation volumes.

(a) Best performance (R2 = 0.38) (b)Worst performance (R2 = −0.23)

Figure 4.2: Scatter plot of the predictions of the best (4.2a) and worst (4.2b) performing RFR models from Table 4.7 plotted against the actual
volume from the test set. Better model performance means that the points are clustered near the IL. The colour codes indicate the dredging area for

which the model predicts the sedimentation and refer to the last three letters from the area codes from Figure B.20.

4.2.2. Results SVR

Table 4.8 displays the mean performances of the SVR models for all three sample types. The individual performances
are in Appendix C.2. Again, the scores are underwhelming for all sample types. However, in Phase 1.1, the SVR models
outperform the RFR and show improved consistency for R2. There is less difference in the performance of the three
sample types, but the weekly runs still outperform daily and monthly, similar to the RFR.
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Table 4.8: Summary of the performance of SVR models in Phase 1.1. This table summarises the SVR tables in Appendix C.2. The overbar indicates
the mean scores per sample type. Each entry represents the mean of three separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Daily 0.17±0.04 1.40∗104±2.22∗103 1.99∗108±5.34∗107
Weekly 0.22±0.05 1.35∗104±2.14∗103 1.92∗108±5.94∗107
Monthly 0.18±0.07 1.39∗104±2.53∗103 1.94∗108±5.88∗107

Table 4.8 shows a slight improvement with fewer features and this time, monthly is not ranked lowest. Still, weekly has
more features and outperforms monthly. The best-performing model from Table 4.9 resulted from a weekly run, while
the worst, again, resulted from a monthly. The difference in R2 scores between RFR and SVR in Phase 1.1 is noticeable.
RFR scores 0.10 higher on the best performance, while the gap between the worst SVR and RFR is 0.35 in favour of
SVR.

Table 4.9: Best and worst performing SVR in Phase 1.1

Performance R2 RMSE MSE C epsilon gamma random_state
Best 0.27 1.52∗104 2.32∗108 5 0.3 0.001 0
Worst 0.12 1.52∗104 2.23∗108 5 0.3 0.01 42

C and epsilon are equal for the best and worst SVR. Therefore, the gamma, random state, and sample type made a
difference. The higher gamma for worst performance means that the SVR was less flexible in fitting and likely overfitted
on the training data. The difference in predicted values between both SVR models in Figure 4.3 is not as straightforward
as for the RFR models in Figure 4.2. The values around zero are clustered around the IL, but most values, especially the
outliers, are still off. The best performances in Phase 1.1 occurred with the random state equal to 0. Comparing Figure
4.2a and 4.3a shows that SVR and RFR predicted the outliers from this split approximately the same.

(a) Best performance (R2 = 0.27) (b)Worst performance (R2 = 0.12)

Figure 4.3: Scatter plot of the predictions of the best (4.3a) and worst (4.3b) performing SVR models from Table 4.9, plotted against the actual
volume from the test set. Better model performance means that the points are clustered near the IL.

4.2.3. Results LR

The individual Phase 1.1 LR runs from Appendix C.2 are summarised in Table 4.10. LR was not able to capture any
relations as the three performance indicators show even worse results that the SVR and RFR from this phase. For this
reason, the LR results are not further elaborated in this section.

Table 4.10: Summary of the performance of LR models in Phase 1.1. The overbar indicates the mean scores per sample type. This table summarises
the LR tables in Appendix C.2. Each entry represents the mean of three separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Daily -1.03±0.54 2.14∗104±9.79∗102 4.57∗108±3.68∗107
Weekly -0.34±0.081 1.72∗104±2.08∗103 2.98∗108±6.05∗107
Monthly 0.063±0.24 1.45∗104±1.50∗103 2.14∗108±5.02∗107
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4.3. Phase 1.2: dependent variable in m3/day

4.3.1. Results RFR

Table 4.11 summarises the RFR performances for Phase 1.2. The individual performances are in Appendix C.2.1. Scal-
ing the dependent variable from volume to SR improved the R2 compared to the RFR and SVR from Phase 1.1. The
consistency did not improve much as the standard deviation is comparable. For RMSE andMSE, the consistency of
the Phase 1.2 RFR models is worse as the standard deviation range is relatively more extensive than those of Phase 1.1.
The monthly runs resulted in the best mean performance. The errors are slightly larger than in the daily and weekly runs,
but the standard deviation is much lower. Even though monthly performed best, the effect of decreasing the number of
features on the RFR models is, again, not remarkable.

Table 4.11: Summary of the performance of RFR models in Phase 1.2. This table summarises the RFR tables in Appendix C.2.1. The overbar
indicates the mean scores per sample type. Each entry represents the mean of three separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Daily 0.39±0.21 531.64±67.00 2.85∗105±5.68∗104
Weekly 0.39±0.21 514.94±72.82 2.69∗105±7.34∗104
Monthly 0.43±0.17 519.09±38.89 2.71∗105±3.90∗104

The performance increase for both Phase 1.2 RFRmodels from Table 4.12 compared to Table 4.7 is significant. A weekly
run produced the best-performing model, slightly beating a monthly run on RMSE andMSE (see Table C.26). The
worst performance came from a daily run.

Table 4.12: Best and worst performing RFR models from Phase 1.2

Performance R2 RMSE MSE n_est min_split min_leaf max_depth random_state
Best 0.57 532.27 2.83∗105 400 8 2 40 0
Worst 0.13 587.74 3.45∗105 100 8 4 10 42

The higher number of decision trees allowed the best-performing model to generalise better as the output is averaged over
more trees. The lack of depth in the worst-performing model likely prevented the RFR from capturing the more complex
relations. The prediction difference is visible in Figure 4.4. The outliers in Figure 4.4a follow the IL much better than in
Phase 1.1 and have similar residuals to the samples with a smaller SR. The more even spread shows that the model has
a better generalisation. Both models struggle with predicting negative SR, as most predictions are positive. This is an
essential observation as it indicates that the models cannot discover clear patterns in samples that contain erosion as the
dependent variable, proving that these samples are unreliable.

(a) Best performance (R2 = 0.57) (b)Worst performance (R2 = 0.13)

Figure 4.4: Scatter plot of the predictions of the best (4.4a) and worst (4.4b) performing RFR models from Table 4.12, plotted against the actual SR
from the test set. Better model performance means that the points are clustered near the IL.

4.3.2. Results SVR

Table 4.13 summarises the SVR performances for Phase 1.2. All model runs can be found in Appendix C.2.1. The Phase
1.2 SVR models outperformed all others from Phase 1.1 and 1.2 so far. Phase 1.2 SVR did become less consistent than
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Phase 1.1 regarding the R2. In return, the consistency in the errors became relatively better than those of the Phase 1.1
SVR (Table 4.8). The monthly runs show the most promising results, outperforming daily and weekly on all performance
indicators.

Table 4.13: Summary of the performance of SVR models in Phase 1.2. This table summarises the SVR tables in Appendix C.2.1. The overbar
indicates the mean scores per sample type. Each entry represents the mean of three separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Daily 0.43±0.16 511.30±15.92 2.62∗105±1.36∗104
Weekly 0.48±0.16 490.98±38.99 2.42∗105±3.05∗104
Monthly 0.51±0.22 474.84±63.20 2.29∗105±7.34∗104

The best and worst performing models in Table 4.14 are unique in Phase 1 because both resulted from monthly runs, and
the hyperparameters are the same. However, the runs were performed on different random states: 0 and 42. Looking
at Tables 4.7, 4.9, and 4.12, it can be concluded that 0 always resulted in the best performance, both for Phase 1.1 and
1.2. The bias towards a specific random state should be investigated by taking a larger variety of random states. This
provides a more generalised performance indication over the entire dataset.

Table 4.14: Best and worst performing SVR models from Phase 1.2

Performance R2 RMSE MSE C epsilon gamma random_state
Best 0.67 468.21 2.19∗105 50 0.001 0.001 0
Worst 0.23 553.95 3.07∗105 50 0.001 0.001 42

Figure 4.5a shows the improved predictive accuracy. The points are clustered closer to the IL than all models before. The
SVR can predict some outliers nearly perfectly compared to Figure 4.4a but still struggles with generalising. The grouping
of the points around 0 to 500 m3/day is also much closer to the IL. Again, the negative SR values are misinterpreted
and predicted as positives or near zero.

(a) Best performance (R2 = 0.67) (b)Worst performance (R2 = 0.23)

Figure 4.5: Scatter plot of the predictions of the best (4.5a) and worst (4.5b) performing SVR models from Table 4.12 plotted against the actual SR
from the test set. Better model performance means that the points are clustered near the IL.

4.3.3. Results LR

Table 4.15 shows the same performance improvement as for the RFR and SVR in this phase. The individual runs can
be found in Appendix C.2.1. The daily samples still prove to be difficult, even when the SR is normalised. The monthly
runs are only just outperformed by the SVR from Table 4.13.

Table 4.15: Summary of the performance of LR models in Phase 1.2. This table summarises the LR tables in Appendix C.2.1. The overbar indicates
the mean scores per sample type. Each entry represents the mean of three separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Daily -0.069±0.17 711.72±27.43 5.08∗105±4.72∗104
Weekly 0.34±0.25 551.21±63.38 3.06∗105±5.75∗104
Monthly 0.48±0.22 484.09±48.48 2.38∗105±4.97∗104
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4.4. Phase 1.3: excluding erosion samples and SR in m3/day
It is clear from the summarising tables in Section 4.2 and 4.3 that the performances from Phase 1.2 are better than Phase
1.1. Therefore, the runs in Phase 1.3 are performed with SR in unitm3/day. An extra random state is added to provide
a better general performance as Section 4.3 showed that a bias towards a specific random state can occur. Additionally,
the parameter grid is slightly extended (Table C.30) because the short runtime of SVR allows running more iterations.
The statistics of the random states used in this phase are shown in Table 4.16.

Table 4.16: Dataset statistics of test sets without the erosion samples.

random
state S̃R SRmax SRmin

0 452.28 2612.66 59.05
20 587.50 2544.97 30.366
42 570.15 2456.23 44.076
60 553.01 2544.97 8.31

4.4.1. Results SVR

Table 4.17 summarises the SVR performances for Phase 1.3. All model runs can be found in Appendix C.3. The results
have improved significantly compared to Phase 1.2. Again, the monthly runs perform best on all three performance
indicators. The standard deviation in R2 across the different sample types is relatively small compared to Phase 1.2,
whereas the error deviation is comparable. Moreover, the results are better than the best baseline performances from LR
and SVR in Phase 1.0.

Table 4.17: Summary of the performance of SVR models trained in Phase 1.3. This table summarises the SVR tables in Appendix C.3. The overbar
indicates the mean scores per sample type. Each entry represents the mean of four separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Daily 0.58±0.059 455.98±9.81 2.08∗105±8.38∗103
Weekly 0.63±0.10 426.93±52.47 1.84∗105±4.66∗104
Monthly 0.69±0.053 388.78±27.59 1.52∗105±2.35∗104

The two best-performing models are highlighted in Table 4.18 instead of focusing on the best and worst-performing
models like the previous sections. Both models are produced by a monthly run. The reason for the focus on the best
performing is the similarity in theR2 scores but the difference in errors. The best-performing model stems from a random
state equal to 60 and has a RMSE 33.8 higher than the second-best model from a random state equal to 20.

Table 4.18: Best performing SVR models from Phase 1.3.

Performance R2 RMSE MSE C epsilon gamma random_state
Best 0.74 382.91 1.47∗105 1000 0.1 0.001 60

2nd Best 0.73 349.11 1.22∗105 50 0.001 0.001 20

The prediction plots in Figure 4.6 visualise the difference in errors. Both SVR models show that the predictions are
relatively close to the IL compared to the previous phases. The difference in RMSE could be ascribed to the three
severely mispredicted outliers in Figure 4.6a. Aside from these outliers, the models show to have generalised better than
the previous phases.
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(a) Best performance (R2 = 0.74) (b) Second best performance (R2 = 0.73)

Figure 4.6: Scatter plot of the predictions of the best (4.5a) and second best (4.5b) performing SVR models from Table 4.18, plotted against the
actual SR from the test sets. Better model performance means that the points are clustered near the IL.

4.4.2. Result RFR

Table 4.19 summarises the RFR performances for Phase 1.3. All model runs can be found in Appendix C.3. Daily runs are
not performed here as the monthly and weekly performances already showed that the SVR from Phase 1.3 significantly
outperforms the RFR and the daily RFR runs take approximately 30 minutes. The overall scores did improve compared
to the RFR and SVR from Phase 1.2. The monthly runs showed the best mean performance.

Table 4.19: Summary of the performance of RFR models in Phase 1.3. This table summarises the RFR tables in Appendix C.3. The overbar
indicates the mean scores per sample type. Each entry represents the mean of four separate runs. The standard deviation is included as well.

Sample type R2 RMSE MSE
Weekly 0.51±0.07 489.36±18.08 2.40∗105±1.47∗104
Monthly 0.55±0.07 454.15±23.33 2.07∗105±2.43∗104

The best performing RFR in Table 4.20 outperforms its predecessors in Phase 1.1 and 1.2 but not the SVR from this and
the previous phase. Figure 4.7 shows that the RFR still struggles with the outliers.

Table 4.20: Best and worst performing RFR models from Phase 1.3

Performance R2 RMSE MSE n_est min_split min_leaf max_depth random_state
Best 0.62 449.92 2.02∗105 300 10 4 50 0

Figure 4.7: Scatter plot of the predictions of the best performing RFR model (R2 = 0.62) from Table 4.20, plotted against the actual SR from the
test sets. Better model performance means that the points are clustered near the IL.
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4.4.3. Results LR

Table 4.21 summarises the LR performances of Phase 1.3. The individual model runs can be found in Appendix C.3.
LR still struggles with larger number of features. The monthly runs are closer to the results from Phase 1.0 and the SVR
from this phase.

Table 4.21: Summary of the performance of LR models in Phase 1.3. This table summarises the LR tables in Appendix C.3. The overbar indicates
the mean scores per sample type. Each entry represents the mean of four separate runs, and the standard deviation is included as well.

Sample type R2 RMSE MSE
Daily 0.28±0.23 588.38±64.45 3.49∗105±7.80∗104
Weekly 0.44±0.096 542.68±41.30 2.96∗105±4.35∗104
Monthly 0.60±0.071 441.58±15.01 1.95∗105±1.28∗104

Figure 4.8 visualises the predictions of the best performing LR from Phase 1.3. The SVR from Figure 4.6a was trained
on the same random state and performed better overal. The LR is able to predict the higher SR values closer to the IL
while the SVR does better on the lower values.

Figure 4.8: Scatter plot of the predictions of the best performing LR model (R2 = 0.69) from Phase 1.3, plotted against the actual SR inm3/day
from the test sets. Better model performance means that the points are clustered near the IL.

4.4.4. Predictive accuracy per dredging area

The prediction versus actual SR plots show a colour code for each specific area but are challenging to analyse due to the
many points. That is why the mean performance per area is calculated to indicate which areas are predicted the best. The
runs were performed with SVR, monthly samples, and the Phase 1.3 configurations, as this combination has resulted in
the best performance so far. Table 5.1 in the next chapter shows the results.

These scores do not agree with the mean score of the monthly runs from Table 4.17. There are two reasons for this:

• Sklearn can only calculate theR2 for more than two values; otherwise, it returns a Nan-value. Some random states
only added one or two samples of a particular area to the test set, resulting in the loss of test samples.

• Some areas can have significant negative R2 scores similar to the LR in Phase 1.1. All negative R2 scores were
set to zero to prevent these areas from skewing the mean.

For these reasons, the scores from Table 5.1 provide an indication but not a definitive answer to the best predicted areas.
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4.5. Feature importance scores
The mean feature importance scores resulting from all three phases are plotted in Figure 4.9. Each bar represents the
mean of the nine runs from its respective phase except for the Phase 1.3 bars, as Phase 1.3 only trained RFR on weekly
and monthly samples. An essential note is that Sklearn indicates that the predictive performance of the RFR should be
high enough to get reliable feature importance scores (Sklearn, 2024a). Phase 1.3 produced the most accurate models
and is, therefore, leading.Phase 1.3 produced the most accurate models. Therefore, the hydro-meteo variables are ranked
from high to low based on the Phase 1.3 scores. In this study, the score is an aggregated score, meaning that for the daily
and weekly runs, the scores of all lagged features of a specific hydro-meteo variable are aggregated into one value. The
scores per phase can be found in Appendix C.3.1 and Figure 5.2.

Figure 4.9: Mean feature importance scores of Phase 1. Each bar represent the mean of all 9 runs in a phase. ’Hoeveelheid_total’ represents the total
volume that is dredged in between two sequential surveys. The codes represent the hydro-meteo variables from 3.2.

The analysis on the feature importance scores acquired from the RFR models will be done in Section 5.1.4 in the next
chapter.

4.5.1. Reduced feature set runs

The effect of removing hydro-meteo variables will be covered by Section 5.3. Table 4.22 shows the result of the first
iteration where only PSAB10, H10, Q10, WV10, hoeveelheid_total, and location_number were used as features. The
runs were performed on monthly samples as these consistently produce the highest performance. The tables summarises
the individual runs from Appendix C.3.2.

Table 4.22: Summary of the performance of runs with less features and monthly samples

Algorithm R2 RMSE MSE
RFR 0.64±0.01 415.08±18.26 1.73∗105±1.66∗104
SVR 0.68±0.02 387.09±33.18 1.51∗105±2.52∗104
LR 0.60±0.03 437.25±14.73 1.91∗105±1.38∗104
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4.6. Conclusion results
The results demonstrated the performance of LR, SVR, and RFR for predicting SR in the Botlek while using hydro-
meteo variables and dredging volumes as input. If properly trained, the models should be able to predict how much
sediment accumulated after a month of conditions and dredging. The models were evaluated across several phases that
had changing configurations. Table 3.6 summarises the configurations of these phases.

Phase 1.0 provided a benchmark performance by training the models on dredging volumes only but with the configura-
tions of the phases that follow. The best performance was produced by LR and SVR models that were trained to predict
SR in m3/day and without the samples with a negative SR (erosion). Both models reached a mean R2 score of 0.65
across three random states.

In Phase 1.1, the hydro-meteo variables were added as input. None of the algorithms reached the performance of Phase
1.0. The SR inm3 proved to be a challenge, especially for the LR. The SVR showed the best mean performance. However,
the maximum R2 of 0.22 showed that the results are not usable. There was no clear trend in reducing the number of
features as the daily, weekly, and monthly samples types all showed varying performances.

Normalising the SR tom3/day significantly improved the performance in Phase 1.2. Again, the SVRwas able to produce
the best performance. The best R2 score reached in this phase was 0.67 and produced by a monthly run. The reduction
in features resulted in an evident performance improvements. The less complex setup of Phase 1.0 still outperformed
Phase 1.2. The prediction scatter plots showed that the models started to generalise better with each iterative modelling
step, except for the erosion samples in the test set. The best working models structurally predicted negative SR values
as positive, thus showing that these samples do not contribute to a better performance.

All runs in Phase 1.3 were performed with SR in m3/day as Phase 1.2 proved that this resulted in a higher accuracy.
Removing the erosion samples improved the performance of all three algorithms compared to the other phases. The SVR
models trained on monthly samples from Phase 1.3 are able to beat Phase 1.0 on mean performance while weekly comes
close. Moreover, LR and RFR, similar to the preceding phases, do not reach the same performance level as SVR or Phase
1.0.

The feature importance scores and location specific performance scores provide a basis for feature elimination and further
model tuning. The implications of these scores and feature removal are discussed in the next chapter.

Table 4.23 summarises the findings of this chapter and shows the best performing configurations so far.

Table 4.23: Summary of best performing configurations. The ’Sample Type’ rows of the two runner ups contain a ’-’ because no hydro-meteo
variables were included as features. Hoeveelheid_total and location_number are uniform accros all sample types.

Algorithm Sample
Type Unit SR Input R2 RMSE

Best
performing SVR monthly m3/day

All variables
+

’hoeveelheid_total’
0.69±0.053 388.78±27.59

Runner up SVR - m3/day
’hoeveelheid_total’

+
’location_number’

0.65±0.02 407.95±29.27

Runner up LR - m3/day
’hoeveelheid_total’

+
’location_number’

0.65±0.06 405.76±42.27



5
Discussion

The results from Chapter 4 are contextualised into technical and practical insights. In Section 5.1, the performance
accuracy, feature importance scores, reducing the feature space, and hyperparameter configurations are further analysed.
Next, the limitations of the modelling approach are outlined. By linking the limitations and the overall performance,
suggestions on what can improve the accuracy of the hydro-meteo prediction models can be formed in Section 5.3. This
answers the fifth sub-question:

What factors could enhance the performance of ML methods in predicting SR?

The value of this study for the POR is that any developed models have a practical implementation. The findings of this
research process can assist in improving the efficiency of the maintenance operations. Therefore, the final sub-question
is answered in Section 5.4:

What practical insights and implementations can be gained from the model results regarding sediment behaviour and
maintenance efficiency in an estuarine harbour?

5.1. Result analysis
The conclusion on the results from Section 4.6 is observational. The underlying meaning and practical implication of
these results are analysed in this section.

5.1.1. Accuracy

The R2 was the leading performance indicator until now. The RMSE is more challenging to compare when the errors
are calculated on different random states. Nonetheless, theRMSE can provide a better context to the actual predictions
than the R2 score. Take the residuals in Figure 5.1 of the best-performing SVR, for example.

Figure 5.1: The residuals of the predictions of the best performing SVR model from Figure 4.6a. The dashed line represents an error of zero. The
colour codes again refer to the dredging areas.

48
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TheR2 score of this model is 0.74, which indicates a reasonably strong fit. This is evident from the many points scattered
around the zero line. Most residuals do not exceed 300 to 350, except for some significant outliers. Although the R2

suggests a reasonable fit on a daily scale, on a monthly scale, these errors can accumulate into 9,000 to 10,500 m3. In
context, the mean hoeveelheid_total per dredging area in the sample set ranges from 4,728 to 35,727m3.

An important takeaway is the generalisation of the model. Besides the extremes, the high SR values show the same
error margin as the smaller values. The few outliers result in the RMSE of 382.91m3/day while theMAE is 245.03.
Percentage-wise, the relative monthly error will be lower for high SR. Despite this generalisation, the model consistently
underestimates the high SR values because of the positive residuals. Themajority of the lower SR have negative residuals,
indicating overestimation. This phenomenon occurs in most prediction scatter plots in Chapter 4. When an SVR model
is implemented, these findings can be integrated into the predictions by adjusting the low and high SR accordingly.

Accuracy per area

Section 4.4.4 mentioned that the mean accuracy per area was calculated with the best-performing SVR configurations
and explained the reason why the R2 scores do not coincide with the ones from Table 4.23. Table 5.1 shows that the
two best-predicted areas are ABH and ABK, both situated at the entrance of the Botlek. Overall, it seems that smaller
dredging areas are predicted more accurately. ABG and ABF, both areas in the central channel, showed the worst overall
performance by far.

Table 5.1: The mean performance per dredging area of 10 SVR runs with different random states. ’Dredging area’ refers to the last three letters of the
dredging codes, as seen in Figure B.20. ’SR’ is the mean SR inm3/day for samples corresponding to the dredging area and its standard deviation.

’Surface area dredging polygon’ is the area inm2 of the dredging area polygons from Figure B.20. The areas are ranked from best to worst.

Dredging area R2 RMSE SR
Surface area

dredging polygon
ABH 0.73 337.57 957.37±757.46 85279
ABK 0.55 344.83 590.69±483.41 125157
AAO 0.51 240.28 519.2±459.52 87039
ACM 0.44 84.85 307.9±319.24 124499
AAM 0.41 240.69 1226.3±774.79 160439
AFO 0.40 135.87 461.49±381.02 217689
ABF 0.00 528.70 772.40±603.78 200583
ABG 0.00 943.40 673.61±776.02 239829

The first argument for the difference in performance is that the data quality varies over the areas. Figure B.22d visualises
the poor match between the dredging volumes and the sedimentation for ABG. The dredging volumes are often zero, and
the sedimentation dots show inconsistent behaviour. The reason for this is a practical oversight. The sediment trap in the
central channel is dredged separately from the channel. This dredging area is called ABJ and is not shown on PortMaps
which is why it was not noticed until the final phase of the research. The ABJ volumes are much higher than the ABG
volumes and match the sedimentation trends in the ABG samples. On the contrary, Figure B.22e shows a clean data
pattern for ABH.

Areas ABH to AFO all show a relatively reliable data pattern. Another reason for the performance differences could be
the selected sample length of 31 days. ABH, ABK, and AAO are surveyed every 31 days, while the interval for ACM,
AAM andAFO (Botlek Vak 3) is closer to 60 days. The samples fit the interval of the three best-performing areas, thereby
better capturing the conditions leading up to the SR within the samples. Another consequence of the shorter interval is
more surveys and, therefore, more samples representing these areas.

5.1.2. Complexity and performance

Phase 1.0 shows that simpler models do not necessarily perform significantly worse in predicting SR. The mean perfor-
mances of the LR and SVR trained on dredging data were not that inferior to the SVR models from Phase 1.3. Simpler
models are more suitable for direct implementation into the daily operations of port authorities from a practical point of
view. For instance, processing the dredging data into input features instead of all hydro-meteo variables would be less
time-consuming. Additionally, fewer features and simpler configurations require less computational resources. Section
3.6.3 already explained that taking the monthly means results in fewer features but a significant loss of information. This
loss does not seem to impact the performance of the models. Aside from Phase 1.1, the monthly sample types consis-
tently outperformed daily and weekly. However, considering the ’Large p, Small n’ issue of Section 3.3.1, the daily and
weekly SVR models from Phase 1.3 do not perform incredibly poorly.
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With or without hydro-meteo variables

The performance similarities between the simple and complex models raise the question of whether including the hydro-
meteo variables makes sense. It certainly does when considering the noticeable decrease in errors in Table 4.23. Here, the
complex SVR model with all features has a lower RMSE than the simple model. The previous section highlighted that
minor improvements in errors still significantly impact the total predicted accumulation when scaled back to monthly
rates. Another reason for including the hydro-meteo variables follows from this argument: only limited tuning has
been done in this study due to time restrictions. The simple LR from Phase 1.0 are basically at maximum performance
and already outperformed by the Phase 1.3 SVR models, while these could still be improved by feature selection and
hyperparameter tuning. This process could make the difference in errors even more significant and the results more
usable.

An additional argument is that there is room for improvement in the quality and quantity of the hydro-meteo data. This
will be discussed in Sections 5.1.4 and 5.2. Lastly, not including the hydro-meteo variables removes a significant part of
the practical implementations of the SR forecast model. The practical implementations are covered later in this chapter.

5.1.3. Optimal hyperparameters

The parameter grids used for SVR and RFR were constant throughout Phases 1.1 and 1.2. In Phase 1.3, additional
parameters were added to the SVR grid. The selected hyperparameters can provide context to how the algorithms learned
from the data. The varying effect across the random states suggested that the data splits impact the performance. Still,
insights can be gathered by considering the general results from the RandomSearchCV for RFR and GridSearchCV for
SVR in Appendix C.1.

RFR

The first two noticeable hyperparameters are max_depth and n_estimators. Usually, a larger number of trees reduces
the variance as the prediction is averaged over more estimators (Hub, 2023). The results agree with this, as the better-
performing models with a lower score variance generally had more trees, ranging from 300 to 500. The max_depth was
also higher for these models, indicating deeper trees that can better capture complex relations. Deeper trees can lead
to overfitting, which can be prevented by setting the min_samples_split parameter high enough. The better-performing
models tend to have a value between 4 to 10. The min_samples_leaf parameter varies over all results. In Phase 1.3,
where the RFR scored best, the hyperparameter varies from 1 to 6.

SVR

The regularisation parameter C for the best-performing models in Phase 1.0 is 500 to 1000. When the hydro-meteo
variables are added, RandomSearchCV ends up with 10, 50 or 100. A higher Cmeans outliers are more heavily penalised,
which could lead to overfitting. However, gamma is consistently 0.001 or 0.01, making the SVR less flexible and
preventing overfitting. The epsilon parameter is often smaller as well. This is visible in the scatter plot of Figure 4.6
where the SVR captured the overall trend to a certain extend. The most accurate models with the lowestRMSE usually
have 0.001 or 0.1 as epsilon. This means that even smaller errors are not ignored by the SVR models, which is beneficial
for increasing the practical use of the model.

5.1.4. Feature importance score analysis

The results show that the models can partially learn relations and patterns when all hydro-meteo variables are included.
The best-performing models were all trained on monthly sample types, indicating that fewer features resulted in better
performance. The feature importance scores from the RFR runs in Phase 1 might offer support in decreasing the number
of features even more to boost performance. The importance score indicates how much a feature decreases the impurity
of a node in a decision tree. The scores from Phase 1.3 are shown in the figure below, as these scores are the most reliable.
The four highest scores will be analysed based on the literature from Section 2.3.
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Figure 5.2: Mean feature importance scores of the RFR models from Phase 1.3. The hydro-meteo variables are ranked from highest to lowest score.

1. Hoeveelheid_total

The RFR models ascribe the highest importance scores to ’Hoeveelheid_total’ in m3. Section 4.1 already showed the
importance of the dredging data as Phase 1.0 resulted in reasonably performing models that the Phase 1.3 SVR model
outperformed. The high importance score was expected as dredging removes large amounts of sediment from the system,
thus significantly influencing the bathymetry. In Figure 4.9, it is visible that Phase 1.1 did ascribe a much lower score
compared to Phase 1.2 and 1.3. A probable reason for this is that Phase 1.1 had a very low accuracy compared to the
other phases, thereby misinterpreting its relevance. Another explanation is that SR is normalised in Phases 1.2 and 1.3,
resulting in a large difference between SR and hoeveelheid_total. The RFR models could ascribe a higher score due to
this difference. Separate runs where hoeveelheid_total was normalised into a daily dredging rate (m3/day) show that
this is not the case. These runs resulted in approximately identical feature importance scores. Figure D.2 shows two of
these runs.

2. Predicted Salinity at Bottom (PSAB10)

Section 2.3.1 stated that, according to the dissertation of De Nijs (de Nijs, 2012), the near-bed density currents are the
dominant factor in the transport of SPM into the Botlek and that the stratified water column allows the SPM to settle.
The position of the salt wedge is, therefore, an essential factor for sedimentation. The RFR models seem to be able to
find this relation within the data and ascribed the second highest importance score to PSAB10. Unfortunately, there are
only two locations where PSAB10 is predicted inside the Botlek. Table B.2 shows which stations were ascribed to which
dredging area. There is a noticeable difference between the two locations as the mean PSAB10 at 2WERKH is 10.29
g/kg and 9.66 g/kg at BOTCGW. These salinity levels had to be generalised over a larger area, meaning that specific
information on the location of the salt wedge inside the Botlek was not present. While the RFR still acknowledges the
importance of this variable, dredging area-specific PSAB10 could show the variation of salinity across the Botlek and
might result in a better performance per area.

3. Discharge (Q10)

Q10 has the third highest importance score. Q10 is not measured in or near the Botlek. Instead, Q10 is the discharge at
Lobith delayed by four days (see section 3.3.1). Q10 is different from PSAB10 and other variables because Q10 refers
to the discharge in the Nieuwe Maas and is not a variable inside the Botlek. Section 2.3.2 states that the accumulated
sediment in the Botlek is primarily of fluvial origin. This does not necessarily imply that a high discharge results in more
SPM and, therefore, more sedimentation in the Botlek. De Nijs (de Nijs, 2012) highlights the importance of the salt
wedge location and the ETM on SR. A high river discharge mitigates the salt intrusion process (Huismans et al., 2024),
thus changing the position of the salt wedge. The RFR recognises the interplay between these factors through the high
importance scores for Q10 and PSAB10.
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4. Tidal variation (H10)

H10 is given the fourth highest importance score. The coupling of PSAB10, Q10, and H10 by the RFR models is logical,
as the mentioned interplay of the salt wedge and the river results from the tidal and riverine forcing. Section 2.3.1 stated
that tidal advection controls the phase at which turbid and saline water reach the Botlek. However, the monthly mean of
H10 represents the mean water level. With the averaging, the short-term effects of the tidal excursions or wind setup are
smoothed out. RFR models notice that the water level variation affects SR as the importance scores for the weekly runs
are higher for both H10 and Q10. The weekly mean shows the variation better than the monthly.

H10 also has the same shortcoming as PSAB10 because H10 is measured only at RP10, a radar post near the entrance of
the Botlek. This means that variation across the Botlek is not considered with this hydro-meteo variable. Nonetheless,
the minor fluctuations in the monthly means are enough to learn the effect that H10 has on SR partially.

5.1.5. Impact of reduced feature set

The general conclusion of the results is that reducing the number of features by taking monthly means improves the
performance. This implies that the reduction in complexity outweighs the loss of information on hydro-meteo fluctuations.
Following this assumption, further reducing the number of features by removing insignificant hydro-meteo variables
could boost performance even more. Section 5.1.5 displayed the results that test this hypothesis. Table 4.22 from that
section shows the mean performances of all algorithms on monthly sample sets that only had PSAB10, H10, Q10, WV10,
hoeveelheid_total, and ’location_number’ as input instead of all variables. These variables were selected because they
were ranked highest on their feature importance score.

Starting with the significant improvement of the RFR models, the results indicate that removing variables can boost
performance. The R2 goes up almost 0.1 and the errors decrease compared to the Phase 1.3 RFR. There is almost no
notable difference in the absolute performance scores compared to Phase 1.3 for the LR and SVR. The effect on the
RFR could be larger because RFR is an ensemble technique. The prediction is the average of many decision trees. This
is elaborated in Section 2.1. Removing the chance that irrelevant features are selected for leaf nodes makes each tree
more reliable before the average prediction is constructed. This not only decreases variance in performance but also
boosts accuracy. The performance variance is the second noticeable aspect of Table 4.22. The standard deviation of the
R2 across all algorithms is lower, meaning that the different random states produce a more consistent accuracy. One
explanation could be that removing the variables with a lower importance score reduced the noise more than it removed
information.

The change to the original feature set is only the first iterative modelling step inspired by the feature importance scores.
The many other configurations of including or excluding certain features could lead to an even more consistent and
accurate performance of one or all algorithms.
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5.2. Model limitations
The model development methodology is based on a few assumptions to overcome practical or theoretical limitations.
These limitations stem from data availability, model structure, and practical challenges caused by the complexity of
maintaining the infrastructure of a large port.

5.2.1. Data availability and quality

The available data enabled the development of a model that can be applied to the majority of the Botlek. Section 5.4 will
contextualise that the accuracy is within an acceptable range, but the better the performance, the higher the practical use.
The best-performing sample set had a total of 142 samples. A suggestion to boost the performance would be to add more
data to the training set, as this might help to prevent overfitting. The reason for this argument is that small training sets
are one of the main reasons for overfitting (Ying, 2020). However, Figure 5.3 indicates that adding more data might not
be the solution for the Botlek prediction model.

Figure 5.3: Learning curve of the best performing SVR (R2=0.73). The curve is plotted using the standard learning_curve() function of Sklearn.
The training score indicates how well the model fits the training data. The CV-score shows if the model can generalise on unseen validation sets

within the training data.

The CV-score stabilises at 0.6 when half of the training examples are used, indicating that adding more training samples
does not necessarily improve the accuracy (Sklearn, 2024b). The learning curve would be an argument to shift the focus
to other model improvement factors like feature engineering. Despite this conclusion, Table 5.1 showed that this accuracy
varies significantly over the dredging areas. In this area, the model can be refined by adding more data. The practical
use of the model would be much higher if the model were able to predict SR with the same confidence interval for every
area. Improvement of area-specific accuracy is partially reliant on the factors below.

Surveys

The level to which individual areas can be considered depends on how many samples can be labelled. The surveys are
the only data source that provide the actual SR. This limits the possibility of training the ML models for individual areas.
If it were not for the deepening in 2018 and 2019, the number of surveys that represent the bathymetry in the present
conditions would be large enough to train the models on seperate or similar areas.

Hydro-meteo stations

The number of hydro-meteo stations across the Botlek is limited. This influences the quality of hydro-meteo data specific
to a dredging area. Section 5.1.4 already mentioned that the data loses its temporal nature when averaged over more
extended periods. Still, the models can learn from these weekly and monthly values. The variation is even further
reduced by generalising the limited stations over the entire Botlek, precisely when minor differences between areas
could improve the ability to learn site-specific relations.
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Missing variables

Another limitation within the data influences the overall performance: the absence of turbidity data. De Nijs (de Nijs,
2012) stated the significant role of the ETM in transporting sediment into the Botlek. Turbidity could provide an essential
context of the availability of SPM in the time frame leading up to a particular SR.

A potentially important variable that is available but not used is vessel traffic. Frequent traffic could stir up sediment,
which can then be transported elsewhere. The vessel traffic could be incorporated by including AIS data or operation
logs of the terminals in the Botlek.

5.2.2. Dredging area grouping

The decision to train the models on multiple areas was imposed by the need for more available survey data. It resulted in
the performance differences in Table 5.1. Aside from area-specific performance, it also affects general performance. Even
though the locations were distinguished by their respective numbers, the ability to learn patterns specific to individual
areas was likely reduced. There could be a few explanations for this.

Sample interval

A uniform surveying interval of 31 days was assumed. This coincides with the survey interval of the areas expected
to have a higher SR (see Table 3.1). The interval is essential in the sample creation as it determines the time frame of
conditions that are ascribed to a certain SR. The dredging areas in Botlek Vak 3 (60 day interval) were added to the sample
set under the assumption that there would otherwise not be enough data to learn from. Of the 142 samples in the most
reliable set, 27 have an actual surveying interval of 60 days. The SR values of these samples are not adjusted by dividing
them into two months, and the dredging data is also collected over two months. Only the hydro-meteo conditions span
the chosen 30 days. Dividing the SR by two to scale the sedimentation could have provided a more realistic value for
the models to train on.

Removing Vak 3 from the current training set could have been another development step. However, with the already low
quantity of samples, this is not efficient. Instead, the choice of excluding the remaining dredging areas with a 60-day
interval could have been changed by including them and then splitting all areas into two groups based on the intervals.
The expectation was that the two sets would be too small and need more training data, which is why this approach was
not selected in the first place. Figure I am running a few minutes late; my previous meeting is running over.5.3 shows
that this assumption was unjust, as the performance of the SVR stagnated before all training samples were used.

Location within the Botlek

The positioning of each dredging area within the Botlek significantly influences sedimentation dynamics. Table 3.5
in Section 3.5.4 ranked the dredging areas with the highest SR. AAM and ABH are both close to the entrance and
experience the highest SR while AFO and ACM have the lowest SR and are positioned furthest away. Note that the SR
of ACM, ABF, and AFO should be lower due to the interval inconsistency mentioned in the previous paragraph.

The table is meant to illustrate the impact of the positioning of the dredging areas on SR. In the current setup, merging
these areas does not benefit the performance. The lack of area-specific hydro-meteo data and the missing dredging
volumes of some areas might worsen the impact of merging even more. If all areas are represented evenly and in larger
quantities in the training set, theMLmodels could perhaps capture separate patterns. Otherwise, grouping dredging areas
based on their respective locations and characteristics could help the models to generalise the patterns within the data.
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5.3. Conclusion model improvement factors
Sections 5.1 and 5.2 offer a great insight into why the models perform as they do. It is expected that the accuracy and
consistency of the models can be improved by adjusting the modelling approach and through further tuning. The time
limit of this study restricts further model development for now. The conclusion to the fifth sub-question can provide the
guidelines for future development efforts. The question that is answered is:

What factors could enhance the performance of ML models in predicting SR?

Feature engineering and data quality

The initial model runs showed that incorporating the complete set of hydro-meteo variables as input improved perfor-
mance compared to only training on dredging data. This aligns with the expectation that theMLmodels can recognise the
impact of the variables on SR. Next, Section 5.1.4 proved that reducing the feature space by selecting the most essential
variables contributes to a more consistent performance across the dataset. While this is promising, many combinations of
variables, including those not currently available, like turbidity, can still be tested. Of all three algorithms, RFR benefited
most from this feature space engineering.

Increasing the coverage of the hydro-meteo stations builds upon adding potentially meaningful variables. The current
setupmeans that some dredging areas are not represented in the OSR or in measurements, which forces a generalisation of
the data across the Botlek. This diminishes the variation between areas, preventing the models from capturing the subtle
differences between the areas. This variation can be introduced by increasing the number of measurement stations.

The oversight of dredging area ABJ (see section 5.1.1) resulted in unreliable samples for ABG, a critical area in the
Botlek. Adding the dredging volumes to better match the SR in the samples makes the dataset more reliable and increase
the area specific accuracy.

Model adjustments

The current models are based on a sample set that includes dredging areas with varying surveying intervals (30 or 60
days), while the chosen time frame for the samples is set to 30 days. This introduces inconsistencies as the SR of more
extended periods are treated the same as the 30-day SR values. Moreover, the areas are not filtered based on their position
within the Botlek. It was shown that this results in a significant difference in accuracy per dredging area.

In addition to the area-specific hydro-meteo data, more uniform sample sets can be constructed if a clear division between
areas with the same characteristics can bemade. This would allow training separatemodels on these sub-groups to capture
the location-coupled patterns better.

Hyperparameter tuning and ML selection

The hyperparameter grids used during training were coarse and not specified on commonly reoccurring values. The RFR
grid only allowed the Default max_features and the kernel function of the SVR was consistently set as a radial basis
function. The computational time of the SVR was only a few seconds. The RFR has shown to less flexible in increasing
the grid size. The monthly runs did significantly reduce the runtime from almost 40 minutes to a few. These run times
allow for a more detailed and focused GridSearchCV operation, especially with the Databricks resources of the POR.

LR, RFR, and SVR are the only algorithms applied in this study. In Section 3.4, XGBwas discarded as the tuning process
is regarded more complex. This section also highlighted the high accuracy provided by XGB. Adding this algorithm to
the development process might result in a model that can beat the best performing SVR.
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5.4. Practical implementation
The results have been shared with the POR AM department and the two thesis supervisors. A. van Hassent spoke
on behalf of the dredging desk at AM, while E.B.J. Hupkes and J.E. Vettorato represent PRISMA and the POR Data
Science department, respectively. By discussing the method behind the model development and contextualising the
results, conclusions can be made regarding the practical use of an SR prediction model. This entire section serves as the
conclusion to the last sub-question:

What practical insights and implementations can be gained from the model results regarding sediment behaviour and
maintenance efficiency in an estuarine harbour?

The introduction explained that the port authority does not have real-time information on bathymetry or expected high SR.
The bathymetry surveys are the only indication they have of the state of the waterbed, and the frequency of these surveys
is monthly or bimonthly. Nonetheless, AM states that surveys are indispensable as they provide the most detailed image
for the PortMaps used by the customers, thereby improving navigational safety. Moreover, the dredging vessels need the
surveys to remove sediment efficiently. While a model will not replace dredging, it can still significantly contribute to
proactive dredging, an aspect of maintenance that AM labels essential.

5.4.1. Proactive dredging

Proactive dredging means the authorities can anticipate where and when high SR levels are likely to occur. This is
something that a predictive model could enable. The OSR already forecasts many hydro-meteo variables, including the
critical PSAB10. The tidal variation H10 is periodical, so the tidal cycle can be predicted to a certain extent. Q10 is
another essential variable that can be anticipated at least four days ahead (see Section 3.3.1) or even further based on
seasonality.

A trend-based SR forecast system can be developed by integrating the predictive models with the information from the
OSR. Rather than focusing on the absolute sediment volumes, the goal would be to identify trends in accumulation in the
near future. To contextualise, AM considers a deviation of ±30% in predicted volume still operationally useful. This is
enough to identify potential navigational dangers or obstructions of operations. Figure 5.4 shows that a significant share
of the predictions from the best performing SVR fall well within this range.

Figure 5.4: The scatter plot of the best performing SVR from Figure 4.6a. The green envelop is added to show the desired margin of error of ±30%.

From all predicted values, only six points can be considered to be far out of the range. This number could be reduced
further through model tuning and when the consistent underestimation of high SR and overestimation of low SR (Section
5.1.1) are adjusted before the results are implemented. When the outliers are smoothed out, the developed models could
already be integrated into the operational day-to-day.

An early-warning system in the form of the SR prediction model increases the ability to be proactive in channel mainte-
nance. The dredging activities can be anticipated before the images of the surveys come through, making the operations
more efficient and preventing the workload from piling up. Improving the operational efficiency by using trend-based
predictions is practical in at least two other areas: navigational safety and finances.
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Navigational safety

The navigational safety in any port depends, among other things, on a reliable NGD. Vessels should be able to enter the
channels without worrying about grounding. Currently, the images provided by the surveys visualise the bathymetry on a
(bi)monthly interval. This gives a periodic but not real-time understanding of the sediment accumulation. This limitation
can create challenges if an unexpected period of extreme SR occurs. The predictive model, especially when integrated
with the hydro-meteo forecasts, would allow the POR to anticipate these events.

With real-time information, the port authorities can mitigate the risk of encountering unknown shoals or shallow areas.
AM indicated that the surveys are practical for the dredging vessels but not necessary. If the model can provide a sedi-
ment accumulation within the acceptable margin of error, the dredging vessels can remove the expected bumps without
surveying first. This directly improves safety because the grounding risk has decreased. Moreover, the operational flow
of the POR remains smooth because the risk was eliminated before the surveys were conducted. A smooth operational
flow without bottlenecks in the channels also contributes to safety.

Financial benefits

Currently, the dredging budget is evenly divided over the year, with some flexibility for the months where more dredging
activities are expected. The actual costs are adjusted monthly to anticipate any budgetary shortcomings. By integrating
a trend-based prediction model, the POR can anticipate peak dredging periods more accurately. This would allow AM to
distribute its resources efficiently. Budget adjustments can be made when dredging is needed during unexpected critical
periods. Moreover, the ability to predict SR can also improve the dredging efficiency in the shorter term. AM can plan the
dredging activities more effectively when high SR is anticipated. This could prevent redundant trips that cost resources
and obstruct the operation flow.

Another benefit highlighted by the POR is the potential reduction of insurance premiums. A properly working SR
prediction model increases navigational safety by reducing the risk of vessel grounding or vessel delays. This can help
negotiate lower rates by demonstrating improved risk management. Aside from insurance, a reliable port could attract
traffic and more clients to invest in long-term contracts.

5.4.2. Maintenance recommendations

This research resulted in the predictive models. The process behind the development provided some valuable insights
regarding the maintenance operations and the possible integration of the predictive models. The integration recommen-
dations do not cover the steps to improve the accuracy and consistency of the models as these are mentioned in Section
5.3 and Chapter 7.

Monitoring improvements

The measurement stations in the POR currently cover the general area, but the station density could be increased. If
an SR prediction model were to be integrated, its performance would benefit from dredging-area-specific hydro-meteo
conditions. The differences between the bordering dredging areas could be insignificant, but they show the variation
across a basin. Also, the visiting vessels navigate the port with the assistance of the OSR forecasts. Increasing the level
of detail in the OSR would contribute to the already mentioned navigational safety.

The data analysis showed that dredging data, particularly around the deepening operations of the Botlek, can be incon-
sistent or incomplete. The figures in Section B.3 show that the sedimentation acquired from the surveys does not always
match the pattern of the dredging volumes. Of course, the sedimentation volumes are calculated based on the polygon
areas and not over the entire dredging areas, so a margin of error cannot be prevented. Despite this error margin, the dif-
ference between the dredged volumes and the sedimentation was, in many cases, still significant and, therefore, unusable
for the SR prediction model.

Model integration

This study focused on developing a model for the dredging areas in the Botlek. Currently, the code that trained the LR,
RFR, and SVR algorithms does not allow a direct application of the best-performing model. The main reason is that
no data pipeline feeds up-to-date information to predict SR. For this to happen, the following components need to be
developed:

• ContinuousOSR information: The data had to bemanually exported from theHystorical Data StoreHydroMeteo,
the data lake, and the dredging database to create the training samples. An automated data pipeline should be
developed to ensure that the SR model can make real-time or frequent predictions.
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• Automated data processing: A system must be able to preprocess the data from the automated pipeline auto-
matically. This includes normalising the input and cleaning missing values. Moreover, hydro-meteo variables
must be processed into daily, weekly, or monthly means, depending on which performs best after further model
development.

• Forecast interface: A user-friendly interface must be developed to make the models accessible for AM. The
interface could display the SR trends along with the confidence interval. The results can assist them in proactive
maintenance.

• Historical data integration: The SR prediction model can improve if retrained with updated historical data. The
model performance can be refined by integrating newly gathered hydro-meteo, dredging, and sedimentation data.

By implementing these components, the predictive models could operate in real time. The models can then be used
to support decision-making around dredging operations and navigational safety and improve the overall maintenance
strategy of the POR.



6
Conclusion

This research aims to enhance the efficiency of the POR maintenance operations by developing ML models capable of
predicting SR by learning patterns in hydro-meteo conditions and dredging data. Therefore, the main research question
of this thesis was:

To what extent can ML methods be utilised in predicting SR in an estuarine harbour, considering the dynamic interplay
of marine and riverine influences?

The estuarine harbour of interest is the Botlek because this harbour experiences high SR and is situated at the transition
from fresh to saline water. The method and findings behind developing SR prediction models were captured into six
sub-questions, starting with:

What data is available and relevant for predicting SR using ML in estuarine harbours?

The research identified three main data types that provide critical insights into sediment accumulation and the environ-
mental conditions: Multibeam bathymetry surveys, hydro-meteo variables, and dredging data. The surveys are essential
in determining the sediment build-up over time and are dredging area-specific. The areas in the Botlek are surveyed every
30 or 60 days, depending on if an area is considered high priority due to high SR. Hydro-meteo variables such as salinity,
river discharge, and tidal variation partially explain the conditions contributing to sedimentation. The variables are mea-
sured or predicted at multiple locations throughout the Botlek. Lastly, the dredging data provides historical records of
dredging operations between surveys. The dredging volumes can, therefore, explain inconsistent sedimentation patterns
in the surveys. Integrating these data types is the key to developing ML models that can accurately predict SR.

Which ML algorithms are most suitable for predicting SR?

The limited data availability and the goal of developing a practical SR prediction model make it that the ML algorithms
must be able to handle small datasets, have an interpretable process and result, and have shown high predictive accuracy
in similar applications. The algorithms that are viable candidates based on the literature in Section 3.4 are ANN, RFR,
SVR, and XGB. By reviewing the criteria, RFR and SVR are considered the most suitable algorithms for predicting SR
within the scope of this thesis. Additionally, LR can provide a baseline performance.

The choice for RFR was based on its ability to produce feature importance scores. The scores can contribute to in-
terpretability and assist in determining which hydro-meteo variables have an essential influence on SR. Moreover, the
ensemble nature of RFR reduces the risk of overfitting, a common challenge when working with small datasets. SVR is
a more complex algorithm, but Section 3.4 highlights its effectiveness on small datasets and non-linear relations. Com-
bining RFR and SVR ensures interpretability and a robust approach to predicting SR in the Botlek.

How can the selected ML algorithms and features be configured to predict SR?

Configuring the ML algorithms and data to predict SR starts with constructing training samples that align the survey data,
hydro-meteo variables, and the dredging logs. Two sequential surveys at the same dredging area can provide the net bed
level change, which can be converted into an SR value. This SR is the label of a sample.

The interval between the sequential surveys provides the time frame over which the hydro-meteo time series can be
extracted. This is based on the assumption that the conditions in this time frame correlate with the observed bed level
change. RFR and SVR require the training data to be shaped as a one-dimensional array. Therefore, the time series were
transposed into lagged features to maintain the temporal dependencies of the data. Finally, the total volume dredged
between the surveys was added to the sample row. The hydro-meteo variables were aggregated into daily, weekly and
monthly mean values to create three sample types and reduce the sample length. This is because decreasing the number
of features reduces model complexity and might boost the predictive accuracy. The trade-off is that averaging results in
a loss of periodic variation in the hydro-meteo variables.
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The varying survey interval limits the proposed sample creation method. Since RFR and SVR require uniform sample
lengths, a constant survey interval must be selected. The downside to a constant value is that including too many areas
with varying intervals would introduce inconsistencies. This study set the interval to 30 days to comply with the high-
priority areas. The 60-day areas, except for three areas in Botlek Vak 3, were excluded from the sample set to prevent
skewing the model. The three areas were added to compensate for the loss in data quantity.

The ML model development was split into phases to investigate the impact of different data configurations. In every
phase, all three sample types were tested:

• Phase 1.0: designed to establish a baseline by training models on dredging data without hydro-meteo variables.
This approach assesses how much of SR variability can be explained by dredging alone.

• Phase 1.1: introduced hydro-meteo variables to test if this would enhance the predictive accuracy. The dependent
variable in this phase was SR inm3 as this is the most practical unit for the port authorities.

• Phase 1.2: used the same input but normalised the dependent variable into SR in m3/day to explore whether
normalisation would improve the performance.

• Phase 1.3: builds upon the preceding phases by selecting the best-performing configurations and applying them
to the most reliable sample set. In Phases 1.1 and 1.2, the dataset contained samples with a negative SR (erosion).

The systematic approach ensured that each aspect of the data and model configurations can be tested. This increases the
understanding of the factors influencing model performance and the sedimentation process in the Botlek.

How do the selected ML algorithms perform across different configurations?

The performance of theML algorithms varied significantly across the different phases. Overall, the best performance was
achieved in Phase 1.3. The combination of SVR with SR inm3/day, the monthly sample types, hydro-meteo variables,
the dredging data, and excluding negative SR values results in the best performance with an R2 of 0.69 and a RMSE
of 388.78 over four different dataset splits. SVR outperforms LR and RFR not only in Phase 1.3 but in every phase.

Removing the erosion samples and normalising SR had a crucial role in improving the accuracy and consistency of the
models. Phase 1.0 already provided a performance close to the one achieved in Phase 1.3. Adding the hydro-meteo
variables did not improve the performance as much as the normalisation. However, it showed that it contributes to higher
predictive accuracy and consistency, especially considering that the models from Phase 1.3 can still be tuned.

The RFR provided feature importance scores that form a basis for further feature reduction. The Phase 1.3 RFR models
have the highest performance, which is why these scores are the most reliable for eliminating redundant hydro-meteo
variables. The input variables with the highest importance scores are dredging volumes, salinity, discharge in the Nieuwe
Maas, and tidal variation. This ranking is in agreement with the findings from the literature in Section 2.3. A first iterative
model run was performed with only the highest-ranked variables. The RFR significantly benefits from this initial step,
while the absolute mean performance scores of LR and SVR remain constant. However, it can be concluded that the
continued decrease in features improves the consistency of all algorithms across the different dataset splits.

What factors could enhance the performance of ML models in predicting SR?

The results show a significant variance in performance between individual dredging areas. By analysing the area-specific
accuracy, it is evident that this relies on the selected interval length and the position of the dredging area in the Botlek.

Dredging areas with a 30-day survey interval performed significantly better, except for the areas in the central channel.
This underperformance is likely caused by the poor dredging data quality for this region and perhaps the sediment trap
in the channel. While the ML models can partially capture the patterns and correlations for the 60-day areas in Vak 3,
their performance is not as accurate as for the 30-day areas.

A logical step forward would be to group the dredging areas with the same survey interval into separate training sets.
This can prevent the models from unnecessarily generalising area-specific patterns over the Botlek. Furthermore, this
improvement can be strengthened by providing hydro-meteo data specific to each dredging area. Currently, the limited
number of measurement stations does not allow specific conditions. Instead, the information has to be generalised over
the Botlek, which diminishes the local variations between dredging areas. Incorporating these suggestionsmight decrease
the difference in performance between areas.

What practical insights and implementations can be gained from the model results regarding sediment behaviour and
maintenance efficiency in an estuarine harbour?

The SR prediction models enable proactive dredging and improve navigational safety. The POR indicates that trend-
based predictions with a confidence interval of ±30% are enough to be of practical use. Most predictions in this study,
with the exception of outliers, fall within this range.
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Currently, the dredging operations rely on the images provided by the (bi)monthly surveys. Forecasting SR will allow
the authorities to anticipate when and where high SR is likely to occur in real time. This prevents unexpected peaks in
workload and allows for more efficient operations. This proactive method assists in effectively distributing the resources,
thereby avoiding operational shortcomings during seasons with high SR or at the end of the year. Moreover, with en-
hanced system knowledge and the ability to forecast SR, the risk of bottlenecks and vessel grounding is significantly
reduced, ensuring smoother and safer port operations.

With all sub-questions covered, an answer to the main research question can be given:

To what extent can ML methods be utilised in predicting SR in an estuarine harbour, considering the dynamic
interplay of marine and riverine influences?

The research demonstrates that the developed ML models can be utilised to predict SR in estuarine harbours to a certain
extent. Among the tested algorithms, SVR emerged as the most reliable algorithm, consistently outperforming RFR and
LR in almost every research phase. This success is likely due to its ability to handle small datasets and high-dimensional
relations.

The most straightforward model configuration, which focused on dredging data only, already produced somewhat rea-
sonable predictions. However, incorporating the estuary dynamics by including the hydro-meteo variables enhanced
model performance. The larger feature space allowed the models to better capture the conditions influencing the sed-
imentation process. Feature importance scores provided by the RFR ranked salinity, discharge, and tidal variation as
essential factors in the sedimentation process, aligning with the findings of preceding research on the dynamics in the
Botlek. Furthermore, the models showed that using monthly means of the hydro-meteo conditions currently results in the
most accurate predictions. Excluding non-essential variables resulted in less variance across the different dataset splits.
This indicates that a reduced, more refined selection of hydro-meteo features benefits the performance. A variable that
is currently unavailable but potentially influential in the feature set is turbidity.

The models achieved promising accuracy with a significant share of the predictions already within or near the±30% error
margin mentioned by the POR. However, additional work is required to integrate them into the maintenance operations.
Challenges such as refining dredging area-specific models and expanding the coverage of the hydro-meteo stations need
to be addressed. Moreover, developing a real-time data pipeline is crucial if the models are to be added to the decision-
making process of the asset management department. The research shows that, with further development and research,
ML can deliver high-potential results that can be used as a practical SR prediction tool for port maintenance.
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Recommendations

This chapter outlines several recommendations based on the findings of this research. These recommendations aim to
improve the predictive accuracy of SR prediction models, assist in integrating the models into maintenance operations,
and expand the application to different regions within the POR. Extensive coverage of the practical recommendations
and model limitations can be found in Sections 5.2 and 5.3.

Retraining on different sub groups

The research shows significant differences in model performance based on dredging areas, particularly between regions
with 30-day and 60-day survey intervals. Splitting the training data based on these intervals is recommended. Grouping
dredging areas with similar intervals could reduce the variability in performance and allow the models to better cap-
ture patterns specific to that group or area. Location-based grouping can also be effective, considering the effect the
positioning within the Botlek has on sedimentation.

Additionally, the assumption that splitting data into smaller groups would result in training sets that were too small was
not necessarily valid. The results showed that the accuracy becomes constant halfway through the training process of the
best-performing models. The remaining training data was, therefore, redundant. The suggestion is to use all available
data by including the 2e Werkhaven and 1e Werkhaven. These areas should not be incorporated into the existing sample
set. Instead, add these to the 60-day interval sets and retrain the models on the two separate, more reliable sample sets
to potentially achieve better model performance.

Model accuracy and additional algorithms

The current models were developed with limited hyperparameter tuning. The focus was primarily on a coarse grid search
rather than a detailed exploration of the hyperparameter space. Given the available computing resources of the POR,
more extensive and detailed hyperparameter tuning for RFR and SVR is recommended.

Moreover, feature engineering could still result in improvements. The feature importance scores from the RFR currently
resulted in only one iterative run with a reduced feature set. Therefore, it is recommended to test the many available
feature combinations. An additional engineering step could be to explore the possibility of creating a sample set using
biweekly means. This would reduce the period over which the variables are averaged while still ensuring a minimum
amount of features.

Finally, incorporating new algorithms like XGB should be considered. The literature review has shown that XGB has
already been applied for sedimentation prediction. Moreover, it indicates its high accuracy. XGB may outperform SVR
and RFR when applied to the context of this study.

Model integration

Integrating the developed models into the maintenance operations will require several development steps. First, estab-
lishing a real-time data pipeline is crucial before continuous monitoring to predict SR is possible. The pipeline should
automate the collection of the bathymetry surveys, hydro-meteo data, and dredging logs. Additionally, automated data
preprocessing tools need to be incorporated into the pipeline. These tools must handle data cleaning, normalisation (for
the SVR), and the transformation of the hydro-meteo variables into the daily, weekly, or monthly averages.

To make the models accessible, a user-friendly interface must be created so that the SR predictions are readily available
for AM. The interface could display the predicted SR trends, the confidence intervals of the predictions, and locations at
risk of high accumulations.
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Finally, it is recommended to implement continuous learning to ensure long-term and constantly improving accuracy of
the models. As more dredging, hydro-meteo, and survey data become available, a feedback loop would allow the model
to evolve and refine its predictions. Any significant changes in infrastructure or bathymetry might limit the continuous
learning loop.

Include turbidity and time of year

Two features that could add essential information are turbidity and a number that refers to the time of year. Including a
feature that represents the month in which the surveys have been conducted might allow the ML models to capture the
seasonal variation of SR. The availability of SPM is crucial for sedimentation in the Botlek. The current hydro-meteo
data does not include a factor that represents this. Measuring turbidity levels can provide an indirect measure of the SPM
and add crucial information on SPM availability for the ML models.

Project predictions over bathymetry

The predicted SR values are specific to a dredging area but do not specify where the sedimentation will likely occur.
Additionally, translating an SR value into actual bathymetry changes is challenging without a visual aid. It would be
valuable to map the expected SR over the bathymetry while considering area-specific patterns to make the model output
more insightful. Instead of projecting a uniform increase in bathymetry, the expected accumulation can be ascribed to
areas prone to sedimentation. The development of this approach would take up a significant amount of time as the sedi-
mentation patterns of every dredging area must be analysed and configured into maps with sedimentation probabilities.

Dredging data Botlek Centrale Geul

When discussing the results with AM, it was discovered that the ABJ dredging data for the central channel was overseen.
Most sediment in the central channel is removed from the sediment trap called ABJ. However, the sediment trap is not
visualised in PortMaps as a dredging area, so it was not noticed. The majority of the dredging operations are done in the
trap and not in the ABG area. This resulted in a mismatch between the sediment accumulation required from the surveys
and the dredging volumes. The dredging volumes were often zero.

The area-specific accuracy analysis identified ABG as underperforming. The oversight of ABJ is the reason for this. The
ABJ data should be added to the samples to create a more accurate dataset. Incorporating the dredging volumes into the
samples with the developed sample pipeline is straightforward. This is expected to boost the performance, especially
when the revised ABG samples are included in a 30-day-only sample set.
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A.1. Data description
Table A.1: Examples of surveys and order number (’Order’). The ’Function Place’ is the code that specifies a surveying zone. ’Completion date’

indicates the moment that the survey is conducted and processed.

Order Ordertype Start date Description Functieplaats Completion date
70166190 ZM04 24-1-2018 Botlek Centrale Geul H-L-N-BT-004-PLV-009 2-2-2018
70166666 ZM04 29-1-2018 Botlek Vak 3 H-L-N-BT-004-PLV-017 8-2-2018
70168704 ZM04 8-2-2018 Botlek mond + steinwegkade H-L-N-BT-004-PLV-014 13-2-2018
70169004 ZM04 14-2-2018 1e Werkhaven H-L-N-BT-167-PLV-001 20-2-2018
70169857 ZM04 21-2-2018 2e Werkhaven H-L-N-BT-168-PLV-002 27-2-2018
70169858 ZM04 22-2-2018 3e Petroleumhaven H-L-N-BT-096-PLV-003 22-2-2018
70170267 ZM04 2-3-2018 Botlek Centrale Geul H-L-N-BT-004-PLV-009 20-3-2018
70170859 ZM04 13-3-2018 Botlek mond + steinwegkade H-L-N-BT-004-PLV-014 21-3-2018
70171849 ZM04 5-4-2018 Botlek Vak 3 H-L-N-BT-004-PLV-017 16-4-2018
70172388 ZM04 4-4-2018 Welplaathaven H-L-N-BT-145-PLV-027 19-4-2018
70172675 ZM04 10-4-2018 1e Werkhaven H-L-N-BT-167-PLV-001 12-4-2018
70172676 ZM04 22-3-2018 3e Petroleumhaven H-L-N-BT-096-PLV-003 26-3-2018

... ... ... ... ... ...

Table A.2: Names of measurements stations and their name codes.

Name location Location code
Botlek Centrale Geul Oost BOTCGO
Botlek Centrale Geul West BOTCGW
Botlek mond + zwaaikom BOTM
Botlek mond Nieuwe Maas BOTNM

Hartelkering HARK
Hoek van Holland HOEK
Radarpost 10 RP10
Rijnhaven RIJNH
Lekhaven LEKH
Scheurkade SCHEUK
2e Werkhaven 2WERKH
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Figure A.2: Locations of temperature measurement stations. The red circle highlighst the Botlek harbour.

Figure A.1: Measurement and OSR prediction locations in Botlek harbour
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B.1. Parameter characteristics
B.1.1. Discharge

Figure B.1: Interpolated all missing values and outliers below minimum discharge of 400 m3/s

(a) (b)

Figure B.2: Discharge time series (a) and distribution (b)
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B.1.2. Height of tide

(a) (b)

Figure B.3: Tidal variation (a) and characteristics (b)

B.1.3. Tidal stream and direction

Figure B.4: Characteristics PTSR10 and PTSD10 at BOTCGO.

Figure B.5: Characteristics PTSR10 and PTSD10 at BOTNM and BOTM.
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BOTCGO

Figure B.6: Time series of PTSR10 and PTSD10 for BOTCGO and their accompanying distributions. The red line indicates the mean.

BOTM

Figure B.7: Time series of PTSR10 and PTSD10 for BOTM and their accompanying distributions. The red line indicates the mean.

BOTNM

Figure B.8: Time series of PTSR10 and PTSD10 for BOTNM and their accompanying distributions. The red line indicates the mean.
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B.1.4. Precipitation

(a) (b)

Figure B.9: Hourly cumulative rainfall at RP10 (a) and characteristics (b)

B.1.5. Salinity

Figure B.10: Characteristics salinty

BOTCGW

Figure B.11: Time series salinity at BOTCGW and its accompanying distributions. The red line indicates the mean.
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RP10

Figure B.12: Time series salinity at RP10 and its accompanying distributions. The red line indicates the mean.

2WERKH

Figure B.13: Time series salinity at 2WERKH and its accompanying distributions. The red line indicates the mean.

B.1.6. Water temperature

Figure B.14: Characteristics water temperature at HARK, RIJNH, LEKH, and HOEK. The DENS10 columns are a construct of WT10 and PSAB10
(see Section 3.6).
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HARK, RIJNH, AND HOEK

Figure B.15: Time series of water temperate at HARK,RIJNH, and HOEK and the accompanying distributions. The red line indicates the mean.

Lekhaven

Figure B.16: Time series water temperature at LEKH and the accompanying distributions.
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B.1.7. Wind direction and velocity

(a) (b)

Figure B.17: Time series wind speed and direction at RP10 and the accompanying distributions (a) and the characteristics (b)

B.2. Survey formatting

(a) Survey 70360214 (b) Survey 70362350

Figure B.18: Surveys extracted over same polygon edges NOT WHITIN. The data points are sorted from the smallest x coordinate to the highest.
Both tables show different coordinates and survey 70362350 (b) has significantly more data points.
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(a) Survey 70360214 (b) Survey 70362350

Figure B.19: Surveys rasterised over same polygon.

Figure B.20: Polygons defining each dredging area (GEOJSON, 2024)
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Table B.1: Polygons transformed from ESPG:4326 WGS 84 to EPSG:28992 Amersfoort/RD NEW with EPSG (EPSG, 2024). The polygons can be
used in an SQL WITHIN query.

Dredging area Polygon

H-L-N-BT-096-BGV-AAM ’POLYGON((80897 433784, 80685 433784.5,
80570 433054.5, 80775 433004, 80897 433784))’

H-L-N-BT-096-BGV-AAO ’POLYGON((80426 432778, 80659.5 432658,
80832 432703, 80768 432922.5, 80532 432994.,80426 432778))’

H-L-N-BT-004-BGV-ABG ’POLYGON((79264 433405.5, 80586 433794,
80542 433949.5, 79217 433572.5, 79264 433405.5))’

H-L-N-BT-004-BGV-ABK ’POLYGON((80524.5 434175.5, 80628 433791.5,
80951 433858.5, 80952.5 434088.5, 80630.5 434202.5, 80524.5 434175.5))’

H-L-N-BT-004-BGV-ABH ’POLYGON((80121.5 434483.5, 80520 434179.5,
80602.5 434286, 80541 434466, 80150 434550.5, 80121.5 434483.5))’

H-L-N-BT-004-BGV-ABF ’POLYGON((78428 433471.5, 78523.5 433153.5,
79256.5 433394.5, 79209 433574,78428 433471.5))’

H-L-N-BT-004-BGV-ACM ’POLYGON((78150.5 432974, 78427 433129.5,
78410.5 433465.5, 78041 433357.5,78150.5 432974))’

H-L-N-BT-128-BGV-AFO ’POLYGON((78148 434476, 78431 433503,
78644.5 433569.5, 78345.5 434536,78148 434476))’

Table B.2: Measurement stations ascribed to the dredging areas. The three letters refer to the last three letters of the full dredging area name code
from Table B.1

Dredging
area WT10 PSAB10 H10 Q10 WV10 WD10 PTSDDA10 PTSRDA10 RH

AAM RIJNH 2WERKH RP10 LOBI RP10 RP10 BOTCGO BOTCGO -
AAO RIJNH 2WERKH RP10 LOBI RP10 RP10 BOTCGO BOTCGO -
ABG RIJNH 2WERKH RP10 LOBI RP10 RP10 BOTCGO BOTCGO -
ABK RIJNH 2WERKH RP10 LOBI RP10 RP10 BOTM BOTM -
ABH RIJNH 2WERKH RP10 LOBI RP10 RP10 BOTM BOTM -
ABF RIJNH BOTCGW RP10 LOBI RP10 RP10 BOTCGO BOTCGO -
ACM RIJNH BOTCGW RP10 LOBI RP10 RP10 BOTCGO BOTCGO -
AFO RIJNH BOTCGW RP10 LOBI RP10 RP10 BOTCGO BOTCGO -
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B.3. Dredging data

(a) Botlek Mond 1 (b) 3e Petroleumhaven North

Figure B.21: Examples of sample outliers
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(a) 3e Petroleumhaven North (b) 3e Petroleumhaven Center

(c) Botlek Vak 3 Center (d) Botlek Centrale Geul

(e) Botlek Mond 1 (f) Botlek Mond 2

Figure B.22: Difference between the amount of sedimentation and dredging in a sample (part 1). The red line indicates the samples where the
sedimentation was lower than the volume that was dredged.
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(a) Botlek Vak 3 Left (b) Botlek Vak 3 North

Figure B.23: Difference between the amount of sedimentation and dredging during a survey period (part 2). The red line indicates the samples where
the sedimentation was lower than the volume that was dredged.
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C.1. Modelling phase 1.0
Table C.1: Parameter grid RFR

Hyperparameter Values

n_estimators 50, 100, 200, 300,
400, 450, 500, 600

max_depth None, 10, 20, 30,
40, 50

min_samples_split 2, 4, 5, 8, 10
min_samples_leaf 1, 2, 4, 6
max_features None

Table C.2: Paramater grid SVR

Hyperparameters Values
kernel ’rbf’

C 0.1, 0.3, 0.6, 1,
10, 100, 1000

epsilon 0.001, 0.01, 0.1,
0.5, 1

gamma ’scale’, ’auto’,
0.001, 0.01, 0.1, 1

C.1.1. Phase 1.0: training on dredging data and SR in m3

LR with SR in m3

Table C.3: Phase 1.0 LR with SR inm3 with erosion samples.

Random state R2 RMSE MSE
0 0.20 16008.95 2.56E+08
20 -0.02 12311.89 1.52E+08
42 -0.02 16373.87 2.68E+08

Table C.4: Phase 1.0 LR with SR inm3 without erosion samples.

Random state R2 RMSE MSE
0 0.02 13015.40 1.69E+08
20 0.12 10527.12 1.11E+08
42 0.28 12915.75 1.67E+08
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SVR with SR in m3

Table C.5: Phase 1.0 SVR with SR inm3 with erosion samples.

Random state C epsilon gamma CV R2 RMSE MSE
0 10 0.01 0.01 0.05 0.18 16186.44 2.62E+08
20 500 0.3 0.0005 0.16 0.05 11891.11 1.41E+08
42 100 0.5 0.001 0.16 -0.01 16299.35 2.66E+08

Table C.6: Phase 1.0 SVR with SR inm3 without erosion samples.

Random state C epsilon gamma CV R2 RMSE MSE
0 500 0.5 0.0005 0.37 0.05 12789.59 1.64E+08
20 500 0.5 0.0005 0.37 0.10 10652.23 1.13E+08
42 500 0.3 0.0005 0.34 0.35 12273.71 1.51E+08

C.1.2. Phase 1.0: training on dredging data and SR in m3/day

LR with SR in m3/day

Table C.7: Phase 1.0 LR with SR inm3/day with erosion samples.

Random state R2 RMSE MSE
0 0.57 533.63 2.85E+05
20 0.60 410.40 1.68E+05
42 0.25 545.80 2.98E+05

Table C.8: Phase 1.0 LR with SR inm3/day with erosion samples.

Random state R2 RMSE MSE
0 0.65 433.85 1.88E+05
20 0.73 350.90 1.23E+05
42 0.57 430.53 1.85E+05

SVR with SR m3/day

Table C.9: Phase 1.0 SVR with SR inm3/day with erosion samples.

Random state C epsilon gamma CV R2 RMSE MSE
0 1000 0.3 0.001 0.46 0.57 534.83 2.86E+05
20 500 0.3 0.0005 0.47 0.61 402.07 1.62E+05
42 100 0.3 0.0005 0.55 0.23 553.11 3.06E+05

Table C.10: Phase 1.0 SVR with SR inm3/day without erosion samples.

Random state C epsilon gamma CV R2 RMSE MSE
0 1000 0.5 0.001 0.46 0.64 437.78 1.92E+05
20 100 0.5 0.01 0.49 0.68 379.81 1.44E+05
42 500 0.3 0.0005 0.50 0.62 404.27 1.63E+05
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RFR with SR in m3/day
Table C.11: Phase 1.0 RFR with SR inm3/day without erosion samples.

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 100 4 2 None 0.42 0.59 467.31 2.18E+05
20 10 5 4 10 0.44 0.58 437.64 1.92E+05
42 100 6 6 None 0.48 0.48 475.29 2.26E+05

C.2. Results Phase 1.1: SR in m3

Individual runs LR Phase 1.1

Table C.12: Phase 1.1 LR runs with daily sample types

Random state R2 RMSE MSE
0 -0.5787 22423.44 5.03E+08
20 -1.8185 20449.93 4.18E+08
42 -0.7098 21181.63 4.49E+08

Table C.13: Phase 1.1 LR runs with weekly sample types

Random state R2 RMSE MSE
0 -0.2946 18430.79 3.40E+08
20 -0.4435 14634.92 2.14E+08
42 -0.2946 18430.79 3.40E+08

Table C.14: Phase 1.1 LR runs with monthly sample types

Random state R2 RMSE MSE
0 0.3870 13972.57 1.95E+08
20 -0.1474 13047.90 1.70E+08
42 -0.0511 16607.83 2.76E+08

Individual runs RFR Phase 1.1

Table C.15: Phase 1.1 RFR runs with daily sample types

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 500 5 6 30 -0.01 0.30 14928.37 2.23E+08
20 50 5 4 30 0.19 -0.15 13082.237 1.71E+08
42 400 5 2 10 0.19 0.24 14114.31 1.99E+08

Table C.16: Phase 1.1 RFR runs with weekly sample types

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 450 10 6 20 0.032 0.36 14303.24 2.05E+08
20 300 2 6 50 0.22 -0.02 12272.13 1.51E+08
42 50 4 1 10 0.25 0.20 14476.35 2.10E+08

Table C.17: Phase 1.1 RFR runs with monthly sample types

Random State n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 300 2 6 50 0.030 0.38 14039.13 1.97E+08
20 450 2 1 10 0.24 -0.23 13505.99 1.82E+08
42 50 8 6 20 0.28 0.12 15214.85 2.31E+08
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Individual runs SVR Phase 1.1

Table C.18: Phase 1.1 SVR runs with daily sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 1 0.3 0.001 0.11 0.22 15751.09 2.48E+08
20 1 0.3 0.001 0.15 0.14 11328.11 1.28E+08
42 1 0.5 0.001 0.17 0.15 14924.21 2.23E+08

Table C.19: Phase 1.1 SVR runs with weekly sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 5 0.3 0.001 0.21 0.27 15237.17 2.32E+08
20 10 0.3 0.001 0.27 0.18 11029.29 1.21E+08
42 10 0.3 0.001 0.29 0.22 14336.48 2.23E+08

Table C.20: Phase 1.1 SVR runs with monthly sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 5 0.1 ’auto’ 0.21 0.25 15466.48 2.39E+08
20 1 0.001 ’auto’ 0.31 0.18 11000.83 1.21E+08
42 5 0.3 0.01 0.32 0.12 15190.18 2.23E+08

C.2.1. Results Phase 1.2: SR in m3/day

Individual runs LR Phase 1.2

Table C.21: Phase 1.2 LR runs with daily sample types

Random state R2 RMSE MSE
0 0.1525 747.45 558678.42
20 -0.1087 681.66 464666.07
42 -0.2513 706.05 498512.76

Table C.22: Phase 1.2 LR runs with weekly sample types

Random state R2 RMSE MSE
0 0.5388 551.43 304074.97
20 0.4322 487.83 237978.77
42 0.0526 614.36 377437.71

Table C.23: Phase 1.2 LR runs with monthly sample types

Random state R2 RMSE MSE
0 0.6709 465.75 216925.27
20 0.5487 434.93 189164.19
42 0.2307 553.59 306466.73

Individual runs RFR Phase 1.2

Table C.24: Phase 1.2 RFR runs with daily sample types

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 450 4 1 30 0.40 0.54 548.46 3.01E+05
20 400 10 6 10 0.45 0.50 456.73 2.09E+05
42 100 8 4 10 0.53 0.13 587.74 3.45E+05
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Table C.25: Phase 1.2 RFR runs with weekly sample types

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 400 8 2 40 0.45 0.57 532.27 2.83E+05
20 400 10 6 10 0.46 0.55 434.69 1.89E+05
42 100 4 2 30 0.54 0.16 577.86 3.34E+05

Table C.26: Phase 1.2 RFR runs with monthly sample types

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 100 5 4 50 0.47 0.57 534.68 2.86E+05
20 400 10 4 50 0.48 0.47 473.35 2.24E+05
42 100 5 4 50 0.58 0.24 549.25 3.02E+05

Individual runs SVR Phase 1.2

Table C.27: Phase 1.2 SVR runs with daily sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 100 0.3 0.001 0.40 0.63 492.96 2.43E+05
20 100 0.3 0.001 0.50 0.34 524.64 2.75E+05
42 100 0.3 0.001 0.51 0.33 516.29 2.67E+05

Table C.28: Phase 1.2 SVR runs with weekly sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 10 0.1 0.001 0.45 0.62 498.40 2.48E+05
20 50 0.001 0.001 0.55 0.52 449.78 2.02E+05
42 100 0.3 0.001 0.55 0.31 524.76 2.75E+05

Table C.29: Phase 1.2 SVR runs with monthly sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 50 0.001 0.001 0.54 0.67 468.21 2.19E+05
20 5 0.1 0.01 0.59 0.62 400.36 1.60E+05
42 50 0.001 0.001 0.63 0.23 553.95 3.07E+05

C.3. Results Phase 1.3: SR in m3/day and no erosion samples

Table C.30: Expanded SVR parameter grid

Hyperparameters Values
kernel ’rbf’

C 0.1, 0.3, 0.6, 1, 5,
10, 25, 50, 100, 200, 1000

epsilon 0.0005, 0.001, 0.0015, 0.01,
0.1, 0.3, 0.5, 0.7, 1, 2

gamma ’scale’, ’auto’, 0.0005, 0.001,
0.0015, 0.01, 0.1, 0.5, 1, 1.5
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individual runs LR Phase 1.3

Table C.31: Phase 1.3 LR runs with daily sample types

Random state R2 RMSE MSE
0 0.48 529.20 2.80E+05
20 0.19 591.66 3.5E+05
42 -0.01 677.11 4.58E+05
60 0.45 555.56 3.09E+05

Table C.32: Phase 1.3 LR runs with weekly sample types

Random state R2 RMSE MSE
0 0.57 482.63 2.33E+05
20 0.34 548.35 3.01E+05
42 0.42 569.87 3.25E+05
60 0.42 569.87 3.25E+05

Table C.33: Phase 1.3 LR runs with monthly sample types

Random state R2 RMSE MSE
0 0.62 448.85 2.01E+05
20 0.56 446.21 1.99E+05
42 0.53 451.94 2.04E+05
60 0.69 419.34 1.76E+05

Individual runs SVR Phase 1.3

Table C.34: Phase 1.3 SVR runs with daily sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 100 0.1 0.001 0.489 0.614 455.11 2.07E+05
20 100 0.3 0.001 0.508 0.542 455.71 2.08E+05
42 100 0.1 0.001 0.539 0.498 467.58 2.19E+05
60 100 0.3 0.001 0.542 0.649 443.52 1.97E+05

Table C.35: Phase 1.3 SVR runs with weekly sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 50 0.1 0.001 0.582 0.705 397.57 1.58E+05
20 50 0.1 0.001 0.544 0.720 356.31 1.27E+05
42 100 0.1 0.001 0.612 0.471 479.85 2.30E+05
60 100 0.001 0.001 0.601 0.603 471.99 2.23E+05

Table C.36: Phase 1.3 SVR runs with monthly sample types

Random state C epsilon gamma CV R2 RMSE MSE
0 5 0.1 0.01 0.564 0.685 411.12 1.69E+05
20 50 0.001 0.001 0.591 0.731 349.11 1.22E+05
42 10 0.1 0.01 0.665 0.610 411.96 1.70E+05
60 1000 0.1 0.001 0.586 0.739 382.91 1.47E+05
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Individual runs RFR Phase 1.3

Table C.37: Phase 1.3 RFR runs with weekly sample types

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 50 5 4 30 0.43 0.60 462.29 2.14E+05
20 100 8 6 40 0.45 0.45 500.48 2.50E+05
42 50 4 1 10 0.54 0.42 503.27 2.53E+05
60 50 10 1 10 0.45 0.57 491.40 2.41E+05

Table C.38: Phase 1.3 RFR runs with monthly sample types

Random state n_est min_split min_leaf max_depth CV R2 RMSE MSE
0 300 10 4 50 0.47 0.62 449.92 2.02E+05
20 50 5 4 30 0.44 0.56 447.36 2.00E+05
42 500 2 1 30 0.50 0.57 430.44 1.85E+05
60 300 2 6 50 0.43 0.57 490.89 2.41E+05

C.3.1. Feature importance scores Phase 1
Scores Phase 1.1

The average feature importance scores per hydro-meteo variable are shown in Figure C.1. Each bar represent the average
of the three random states for that sample type. The importance score is an aggregated score, meaning that for the daily
and weekly runs, the scores of all lagged features of a specific hydro-meteo variable are aggregated.

Figure C.1: Feature importance scores of all RFR runs in Phase 1.1. The ’hoeveelheid_total’ is the dredged volume in between surveys. The rest of
the abbreviations can be found in Table 3.2.

C.3.2. Runs with reduced feature set

Individual runs RFR

Table C.39: RFR runs with reduced feature set with monthly samples

Random state n_estimators min_split min_leaf max_depth R2 RMSE MSE
0 50 5 4 20 0.63 442.71 1.96E+05
20 500 4 2 60 0.65 400.96 1.61E+05
42 600 2 2 40 0.63 403.56 1.63E+05
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Individual runs SVR

Table C.40: SVR runs with reduced feature set with monthly samples

Random state C epsilon gamma R2 RMSE MSE
0 50 0.1 0.001 0.66 423.91 1.80E+05
20 100 0.1 0.0005 0.72 357.67 1.28E+05
42 50 0.1 0.001 0.67 381.70 1.46E+05

Individual runs LR

Table C.41: LR runs with reduced feature set with monthly samples

Random state R2 RMSE MSE
0 0.63 447.68 2.00E+05
20 0.56 445.64 1.99E+05
42 0.60 418.43 1.75E+05

Scores Phase 1.2

Figure C.2: Average scorse Phase 1.2
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Appendix

D.1. Result Analysis
Feature importance score analysis

(a) RFR run 1 (R2 = 0.61) (b) RFR run 2 (R2 = 0.57)

Figure D.2: Scores individual runs
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Figure D.1: Pearson correlation matrix of all input variables
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