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We propose a platform to realize nodal topological superconductors in a superconducting monolayer of MoX2

(X = S, Se, Te) using an in-plane magnetic field. The bulk nodal points appear where the spin splitting due
to spin-orbit coupling vanishes near the ±K valleys of the Brillouin zone and are six or twelve per valley in
total. In the nodal topological superconducting phase, the nodal points are connected by flat bands of zero-
energy Andreev edge states. These flat bands, which are protected by chiral symmetry, are present for all lattice-
termination boundaries except zigzag.

DOI: 10.1103/PhysRevB.98.205411

I. INTRODUCTION

Fully gapped topological superconductors (TSCs), char-
acterized by a global topological invariant in the Brillouin
zone, have been the subject of intense investigation in re-
cent years. They provide a platform for the creation of the
Majorana quasiparticle [1–3], which has promising applica-
tions in quantum information [4–6]. Nodal superconductors,
i.e., superconductors with nodal points or lines at the Fermi
surface where the bulk gap vanishes, can also display nontriv-
ial topological properties, becoming nodal TSCs [7–9]. Their
topological invariants are only defined locally in the Brillouin
zone, giving rise to flat bands or arcs of surface states in the
nontrivial phase [10–12].

Intrinsic nodal TSCs are predicted to exist in uncon-
ventional superconductors, such as high-temperature d-wave
superconductors [13], the heavy fermion systems [14–16],
noncentrosymmetric superconductors [17,18], and Weyl su-
perconductors [19]. However, intrinsic unconventional pairing
is complex and ambiguous, and is furthermore not robust
to disorder, making intrinsic nodal TSCs challenging exper-
imentally. It is therefore desirable to engineer nodal TSCs
using simpler components [20–22], such as conventional s-
wave spin-singlet superconductors, similar to efforts in re-
alizing fully gapped TSCs using proximity-induced s-wave
pairing [23,24].

Two-dimensional monolayers of transition metal dichalco-
genides (TMDs) [25] offer an opportunity to engineer nodal
TSCs. Recent experiments show that several monolayer
TMDs, such as MoS2, MoSe2, MoTe2, WS2, and NbSe2,
become superconducting [26–34], with a critical temperature,
e.g., as large as 10 K observed in MoS2 [28]. These supercon-
ductors possess an extremely high critical in-plane magnetic
field, several times larger than the Pauli limit, due to a special
type of Ising spin-orbit coupling (SOC) [28,30,35,36]. The
Ising SOC results from the heavy atoms and the absence of
inversion symmetry and acts as an effective Zeeman term

*Corresponding author: L.Wang-6@tudelft.nl

perpendicular to the TMD plane, with opposite orientation
at opposite momenta, pinning electron spins to the out-of-
plane direction [37,38]. Previous work predicts that hole-
doped monolayer NbSe2 with s-wave superconductivity near
� becomes a nodal TSC in an in-plane magnetic field [39].
In their proposal, the bulk nodal points appear along �-M
lines where the Ising SOC vanishes because of the in-plane
mirror symmetry Mx : x → −x. However, the potential of
TMD materials such as MoS2, MoSe2, MoTe2, and WS2,
which are superconducting at electron doping near the K
valleys, to become nodal TSC is currently not known. Note
that Mx does not guarantee the vanishing of SOC near the K
valleys.

In this paper, we show that s-wave superconducting mono-
layers of molybdenum dichalcogenides (MoX2, X = S, Se,
Te) become nodal TSCs in the presence of an in-plane mag-
netic field. In this previously unknown topological phase,
the bulk nodal points appear near the K valleys at special
momenta where the SOC splitting vanishes. We find two
regimes in the nodal topological phase, with six or twelve
nodal points appearing near each valley, respectively. In the
nodal topological phase, nodal points are connected by zero-
energy Andreev flat band edge states, which are protected by
a chiral symmetry originating from mirror symmetry in the
MoX2 plane and present for all edges except zigzag. Finally,
we discuss possible experimental verification of the nodal
topological phase.

II. MODEL

A monolayer MX2 (MoS2, MoSe2, MoTe2, or WS2) con-
sists of a triangular lattice of M atoms sandwiched between
two layers of X atoms, each also forming a triangular lattice.
The top and bottom X atoms project onto the same position
in the layer of M atoms, such that when viewed from above,
the monolayer has the hexagonal lattice structure shown in
Fig. 1(a), with primitive lattice vectors a1 and a2. In the
normal state, the monolayer MX2 has a direct band gap at the
±K points. Near the ηK (η = ±) points, the point group is
C3h, and the effective Hamiltonian of the lowest conduction
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FIG. 1. (a) Top view of monolayer MX2 lattice structure with
primitive lattice vectors a1 and a2. (b) Phase diagram of the gap-
closing condition as a function of μ and

√
V 2

x − �2. Nodal points
appear in regions where the gap closes, colored yellow (regime I)
and green (regime II), with the phase boundaries given by μ =
μ1,2 ± √

V 2
x − �2. III represents the boundary between regimes I

and II. (c) Sketch of nodal points near K valley. The chirality of nodal
points with +(�) is 1(−1), and diamond denotes two overlapping
nodal points of opposite chirality. Nodal point projections on the ky

axis determine topologically nontrivial phases with nonzero winding
number (solid green lines).

band up to the third order in momentum k = (kx, ky ) is

Hη
e (k) = k2

2m∗ + [
λη + A1k

2η + A2
(
k3
x − 3kxk

2
y

)]
σz (1)

in the basis [cηk↑, cηk↓], with cηks the annihilation operator for
an electron in valley η at momentum k with spin s =↑,↓. We
obtain this effective Hamiltonian from the k · p Hamiltonian
near the ±K valleys in Ref. [46] by the Löwdin partition
method [47,48]. Here, the x (y) axis points along the zigzag
(armchair) direction as in Fig. 1(a), m∗ denotes the effective
mass, λ and A1,2 are SOC strengths, and σx,y,z are the Pauli
matrices in spin space. Material parameters are provided as
Supplemental Material [49].

Including superconductivity with s-wave pairing and an
in-plane magnetic field, the Bogoliubov-de Gennes (BdG)
Hamiltonian in the basis [cηk↑, cηk↓, c

†
−η−k↑, c

†
−η−k↓] is

H
η

BdG(k) =
(

k2

2m∗ − μ

)
τz + [

λη + A1k
2η + A2

(
k3
x

− 3kxk
2
y

)]
σz + Vxσxτz + Vyσy + �σyτy, (2)

where μ, τx,y,z, �, and Vx,y are the chemical potential,
Pauli matrices in particle-hole space, the superconducting
gap, and the Zeeman energy terms due to the magnetic field,
respectively.

The BdG Hamiltonian H
η

BdG(k) has a particle-hole sym-
metry (PHS) PH

η

BdG(k)P−1 = −H
−η

BdG(−k) where P = τxK,

with K being the complex conjugation operator. Although
time-reversal symmetry (TRS) T = iσyK is broken by
the magnetic field, H

η

BdG(k) respects an effective TRS
T̃ H

η

BdG(k)T̃ −1 = H
−η

BdG(−k) where T̃ = MxyT , with Mxy =
−iσzτz the mirror symmetry in the monolayer plane. There-
fore, H

η

BdG(k) has the chiral symmetry CH
η

BdG(k)C−1 =
−H

η

BdG(k) with C = PT̃ = σxτy . As a result, H
η

BdG(k) is in
class BDI, which is trivial in two dimensions for gapped
systems [50,51] but can be nontrivial for nodal systems. We
reduce the dimension to one by fixing two orthogonal direc-
tions k‖ and k⊥ in momentum space and considering each
H

η

BdG(k⊥, k‖) at a fixed k‖ separately [11]. Although P and
T̃ are in general not symmetries of the one-dimensional (1D)
Hamiltonian H

η

BdG(k⊥, k‖) at a fixed k‖ [52], because they
flip the sign of both k‖ and k⊥ [53]; C is a symmetry for any
choice of k‖. Therefore the 1D Hamiltonians H

η

BdG(k⊥, k‖) at
a fixed k‖ belong to class AIII [54] and are thus characterized
by an integer topological invariant: the winding number [50].

III. BULK NODAL POINTS

We begin investigating the topological phases of H
η

BdG(k)
by finding the gap-closing conditions, which determine the
bulk nodal points. Due to chiral symmetry, H

η

BdG(k) can be
brought to a block off-diagonal form [11,55], with the upper
off-diagonal element

Aη(k) = −
(

k2

2m∗ − μ

)
+[

λη+A1k
2η + A2

(
k3
x − 3kxk

2
y

)]
σz

− Vxσx + Vyσy + i�σz. (3)

The gap-closing condition det[Aη(k)] = 0 gives rise to two
requirements:

λη + A1k
2η + A2

(
k3
x − 3kxk

2
y

) = 0, (4a)

μ ±
√

V 2
x + V 2

y − �2 = k2

2m∗ . (4b)

The first is the vanishing of spin splitting due to SOC
[see Eq. (1)], and the second is the magnetic field closing
the bulk gap at the Fermi circle without SOC. These two
conditions arise because closing the gap with the magnetic
field brings together bands that are coupled by SOC. The
bands thus repulse, except at points in momentum space
where the SOC vanishes and the gap closes. Such points
manifest as crossings between the spin-split conduction bands
in the normal-state dispersion, which are present near ±K
valleys in monolayer MoX2 (X = S, Se, Te) but not WS2,
due to the relative strengths of SOC contributions from the d

orbitals on the transition metal atoms and the p orbitals on the
chalcogen atoms [56–58]. Therefore, the requirement (4a) is
not met in WS2, and we focus on MoX2 in the following. The
gap-closing requirements (4) are independent of the in-plane
magnetic field orientation, so we set Vy = 0 in the following.
Solving Eq. (4a) limits k to kc1 � k � kc2 with kc1,c2 = k0 ±
k2

0/(2A0), k0 = √−λ/A1, and A0 = A1/A2 [49]. Figure 1(b)
shows a phase diagram of the gap-closing conditions as a
function of μ and

√
V 2

x − �2. The four phase boundaries
μ = μ1,2 ± √

V 2
x − �2 with μ1,2 = k2

c1,c2/(2m∗) divide the
diagram into regimes, with nodal points and therefore possible
nontrivial phases in the colored regions (I and II).
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IV. TOPOLOGICAL PHASES

In the gapless regimes of the phase diagram, Fig. 1(c)
sketches the nodal points near the K valley along with their
chirality w(ki ). The chirality of the nodal point at ki =
(ki

⊥, ki
‖) is the winding number around it and is ±1 [11,18,55].

The nodal point chirality relates to the winding number
W of the 1D Hamiltonian at a fixed k‖ through W (k‖) =∑

ki
‖<k‖ w(ki ), which means that we can obtain W (k‖) by

counting the nodal point projections onto the k‖ axis and
keeping track of their chirality. For the zigzag direction k‖ =
kx x̂, the nodal point projections cancel exactly, because the
nodal points come in pairs with opposite chirality at each kx

and hence W (kx ) = 0 always. For any other direction, the
nodal points do not cancel, and nontrivial phases thus exist for
all directions k‖ other than zigzag. We show the projections
of the nodal points on the armchair direction k‖ = ky ŷ and
the corresponding segments of the ky axis where W (ky ) 	= 0
(solid green lines). In regime I, there are two momentum
circles (4b) near the K valley, with six nodal points each for
a total of twelve. The nodal points divide the ky axis into
thirteen segments, with six segments topologically nontrivial.
In regime II, there is only one momentum circle with six nodal
points, such that the ky axis separates into seven parts, with
three nontrivial. At the boundary between regimes I and II
(marked as III in the figure), pairs of nodal points of opposite
chirality overlap on one momentum circle, such that only the
other circle contributes to the winding number W , similar to
regime II. The nodal points near the −K valley are symmetric
to the ones near K in kx [see also Fig. 4(a)]. The preceding
analysis applies equally to all three MoX2 monolayers. In
the following, we explore further details of the topological
phases, focusing on nodal point projections on the armchair
direction. Although we show examples for specific materials,
we have verified that the physics is qualitatively the same for
all three [49].

To complement the analysis of nodal point projections,
Figs. 2(a) and 2(b) show computed phase diagrams of the
winding number as a function of ky and

√
V 2

x − �2 at two
chemical potentials, μ1 < μ < (μ1 + μ2)/2 in (a) and μ <

μ1 in (b), respectively, representative of regimes I and II of
Fig. 1. The phase diagrams are even in ky , and the winding
number is ±2 due to equal contributions from the ±K valleys.
The phase boundaries in Fig. 1(b) determine the range of the
nontrivial regions in

√
V 2

x − �2, while the maximum extent
along ky is bounded from above by |ky | � k0, independent
of μ and

√
V 2

x − �2 [49]. Sweeping over
√

V 2
x − �2 in (a),

the phase diagram transitions from regime I to II indicated by
the vertical dashed line, such that the number of topologically
nontrivial segments along ky changes from six to three (also
counting −ky). In contrast, (b) is exclusively in regime II.

V. EXCITATION GAP AND EDGE STATES

Topologically nontrivial phases are protected by the
topological excitation gap, which we define as Egap(k‖) =
minn,k⊥|En(k‖, k⊥)|, where En(k) is the spectrum of
H

η

BdG(k), with n a band index. Figures 2(c) and 2(d) show
maps of the topological excitation gap corresponding to the
phase diagrams (a) and (b), respectively. In the nontrivial
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FIG. 2. Topological phase diagrams for the armchair direction
k‖ = ky ŷ of monolayer MoSe2. The winding number as a function of
ky and

√
V 2

x − �2 with (a) μ1 < μ < (μ1 + μ2)/2 and (b) μ < μ1,
in regimes I and II of Fig. 1. The phase diagrams for (μ1 + μ2 )/2 <

μ < μ2 and μ > μ2 are similar to (a) and (b), respectively, but with
opposite winding numbers. (c), (d) The corresponding topological
excitation gap Egap to (a) and (b) separately. Data is obtained using
the continuum model (2), and a is the lattice constant of the MX2

lattice.

phase, we see that Egap � 0.1� for MoSe2 and similarly find
Egap � 0.04� for MoS2 and Egap � 0.2� for MoTe2 [49].
Here, we emphasize that � may represent intrinsic supercon-
ductivity, which means that no proximity effect is required,
and interface effects that tend to reduce the gap further are
thus absent.

In a topologically nontrivial phase, edge states manifest
at a monolayer lattice termination boundary. We investi-
gate the edge states at an armchair edge by calculating
the local density of states at the boundary, ρ(E, xB, ky ) =
− 1

π
Tr[ImG(E, xB, ky )], with E the energy, xB the coordinate

of the armchair edge, and G the surface Green’s function [59].
Figure 3(a) shows the local density of states obtained using pa-
rameters from regime I of Fig. 1(b), i.e., with 12 nodal points
per valley. At zero energy, there are six sections of Andreev
flat bands connecting nodal points, which exactly match the
topologically nontrivial phases with nonzero winding number,
marked by the vertical dotted lines, and the shaded regions in
Fig. 3(b). In Fig. 3(b), we also present the decay length of
the topologically nontrivial edge states and see that it is of the
order 1 μm here.

VI. ARBITRARY EDGE DIRECTIONS

Although we have so far focused on an armchair edge,
topologically nontrivial regimes exist for all lattice termi-
nation edges except zigzag. Using tight-binding models to
simulate the MX2 lattice [Fig. 1(a)] with Kwant [60], we
characterize a lattice termination edge with a superlattice
vector T at the angle φ relative to the armchair direction [49].
To investigate topological phases, we deform the hexagonal
first Brillouin zone into the rectangle spanned by primi-
tive reciprocal vectors k̂‖ and k̂⊥, which are parallel and,

205411-3
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FIG. 3. (a) Density of states at the armchair edge as a function
of ky for monolayer MoS2, with parameters in regime I of Fig. 1(b).
Flat bands of zero-energy Andreev edge states where the winding
number is nonzero between nodal point projections. (b) Decay length
of the edge states in the topologically nontrivial phase. The nontrivial
phases are marked by the shaded regions with the nonzero winding
numbers in the insets. Data is obtained using an 11-orbital tight-
binding model with μ = 1.8337 eV,

√
V 2

x − �2 = 1.5 meV, and
� = 0.8 meV, see Supplemental Material.

respectively, transverse to T [61], and project the nodal points
onto the k‖ axis [Fig. 4(a)]. As before, flat bands exist in
segments of the k‖ axis where the winding number is nonzero.
Unlike an armchair edge, the nodal points near ±K generally
do not project pairwise onto the same k‖ at a generic boundary,
and the winding number can take other values than ±2,
e.g., ±1 (green lines). Figure 4(b) is an example of a phase
diagram for an edge direction with φ ≈ 1.2◦ and shows that
the winding number can be ±1, ±3, and even ±4. For generic
lattice terminations other than armchair, nodal topological
phases are thus not only present but also manifest in rich phase
diagrams with large winding numbers.

VII. SUMMARY AND DISCUSSION

We have shown that a superconducting monolayer MoX2

(X = S, Se, Te) can become a nodal TSC in the presence
of an in-plane magnetic field. The bulk nodal points occur
at special momenta near ±K valleys in the Brillouin zone
where the spin splitting due to SOC vanishes and can be 6
or 12 in each valley. For all lattice termination edges except
zigzag, the edge projections of the nodal points are connected

FIG. 4. (a) Schematic of the hexagonal first Brillouin zone of
the monolayer lattice, with nodal points around the high symmetric
points ±K . For arbitrary edge cuts, we deform the Brillouin zone
into a rectangle, illustrated by the dash-dotted lines and the k‖ and
k⊥ axes, and project the nodal points onto k‖. Flat bands of Andreev
bound states exist for k‖ where the winding number is nonzero (bold
colored lines). For a generic edge cut, each nodal point generally
projects onto a distinct k‖, such that the winding number may take
various values, e.g., ±1 (green) or ±2 (purple) in the sketch. (b)
Phase diagram of the winding number for an edge with φ ≈ 1.2◦. The
phase diagram is rich with the winding number ±1, ±2, ±3, or ±4.
Data is obtained from an 11-orbital tight-binding model for MoS2

with μ = 1.8390 eV and � = 0.8 meV, see Supplemental Material.

by flat bands of zero-energy Andreev edge states. These flat
bands are protected by chiral symmetry. Our conclusions are
based on a study of both continuum and atomic tight-binding
models.

Finally, we address experimental feasibility. It is possible
to produce high-quality monolayer MoX2 crystals with low
impurity densities and sizes in the tens of microns or even
millimeters [62–65]. Such large samples may guarantee that
the topological Andreev edge states at opposing edges are well
separated. In addition, recent experiments show that thin films
even down to monolayers of MoX2 become superconducting
in the conduction band at carrier densities �6 × 1013 cm−2

[26,28,29], which translates to a minimum chemical potential
μ0 for superconductivity of 153 meV (MoS2), 120 meV
(MoSe2), and 117 meV (MoTe2). The mismatch of μ0 and
μ1,2 in MoS2 implies that intrinsic superconductivity is not
suitable to realize the nodal topological phase in MoS2, but
this can potentially be overcome using the proximity effect.
In addition, a recent experiment indicates possible intrinsic
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TABLE I. Chemical potentials μ1,2 in meV for MoS2, MoSe2,
and MoTe2 [see also Fig. 1(b)], obtained from the continuum model.

MoS2 MoSe2 MoTe2

μ1 32.6 126.7 136.1
μ2 34.5 143.0 184.5

unconventional pairing in MoS2 at very large doping [66]. For
monolayer MoSe2 and MoTe2, μ0 is close to μ1,2 in Fig. 1(b)
[see Table I], and therefore these two materials are promising
candidates for realizing nodal TSCs. For experimental detec-
tion, aside from tunneling measurements, the character of bulk
nodal points could be probed using quasiparticle interference
or local pair-breaking measurements [15,16,67]. Because the
flat bands manifest as a zero-energy density of states peak
in the nontrivial parts of the phase diagram Fig. 1(b), it is
possible to discern them from other edge states [68], which
generally don’t stick to zero energy, by tuning the magnetic
field and/or chemical potential. If the chiral symmetry is bro-
ken, the flat bands may split from zero energy. Two possible

causes are a perpendicular electric field due to asymmetric
electrostatic gating and an out-of-plane Zeeman field. The
electric field can be avoided by chemical doping [26,28] and
it is possible to align the magnetic field along the in-plane
direction to a precision of � 0.02◦, such that the out-of-plane
projection is negligible [30].
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