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Modeling extensive defects in metals
through classical potential-guided
sampling and automated configuration
reconstruction
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Fei Shuang1 , Kai Liu1, Yucheng Ji1,2, Wei Gao3,4, Luca Laurenti5 & Poulumi Dey1

Extendeddefects such asdislocation networks andgeneral grain boundaries are ubiquitous inmetals,
and accurate modeling these extensive defects is crucial to elucidate their deformation mechanisms.
However, existing machine learning interatomic potentials (MLIPs) often fall short in adequately
describing these defects, as their large characteristic scales exceed the computational limits of first-
principles calculations. Toaddress this challenge,wepresent a computational framework combininga
defect genome constructed via empirical interatomic potential-guided sampling, with an automated
reconstruction technique that enables accurate first-principles modeling of general defects by
converting atomic clusters into periodic configurations. The effectiveness of this approach was
validated through simulations of nanoindentation, tensile deformation, and fracture in BCC tungsten.
This framework enhances the modeling accuracy of extended defects in crystalline materials and
provides a robust foundation for advancing MLIP development by leveraging defect genomes
strategically.

In the intersecting realms of computational chemistry, materials science,
and mechanics, machine learning has made substantial strides, particularly
through the development of machine learning interatomic potentials
(MLIPs). These innovative tools have transformed atomic-scale simulations
by facilitating the accurate modeling of complex material behavior with
quantum-level accuracy1–6. A diverse array of MLIPs leveraging unique
descriptors has emerged. For instance, Neural Network Potentials (NNPs)
employ the Atom-Centered Symmetry Functions (ACSF)7, while Gaussian
Approximation Potentials (GAP) utilize the Smooth Overlap of Atomic
Positions (SOAP)8, and Spectral Neighbor Analysis Potentials (SNAP)
depend on bispectrum components9. Additionally, both Moment Tensor
Potential (MTP)10 and Atomic Cluster Expansion (ACE)11 have found
extensive applications across variousmaterials, frommetals and alloys to 2D
materials and complex systems like carbon and silicon12–14. The computa-
tional accuracy-efficiency analysis reveals that while GAP achieves the
highest accuracy, it lacks computational efficiency15. In contrast, MTP and

ACE present a more balanced profile of accuracy and computational
demand, with ACE being notably faster than MTP14,16,17.

An essential element in developing MLIPs is constructing a good
training database that adequately covers the configuration space relevant to
the intended simulations. Typically, this database is curated by domain
knowledge, such as ground-state structures, structures deformed under
various elastic strains, ab initiomolecular dynamics (AIMD) configurations
at different temperatures, and simple defects such as vacancy, interstitial,
crack tip, and dislocation core18. Advancements in machine learning have
driven the adoption of on-the-fly active learning (OTF-AL)19–21, a sophis-
ticated approach that accelerates the development of MLIPs by efficiently
selectingnewconfigurations exclusively fornecessaryDFTcalculations.The
effectiveness of OTF-AL strategies hinges on the ability to calculate simi-
larities among configurations by comparing their local atomic environ-
ments (LAEs). MTP with OTF-AL, utilizing the D-optimality criterion and
theMaxVol algorithm, exemplifies oneof themostwidely employedMLIPs,
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which has been used in numerous studies22,23. Other active learning strate-
gies, such as uncertainty-driven dynamics24 and hyperactive learning25, also
significantly contribute to efficiently sampling the configuration space.

Two primary challenges persist in the construction of databases for the
development ofMLIPs. Thefirst challenge is the comprehensive coverage of
defect. For metals, it is relatively straightforward to train MLIPs that can
reproduce lattice constants, elastic constants, vacancy formationenergy, and
energies of simple grain boundaries. However, it remains unclear whether
existing MLIPs can effectively model extended defects and their interac-
tions, even if some of them are deemed for general-purpose18,26–29. This
uncertainty primarily stems from the lack of quantification for unknown
defects.AlthoughOTF-ALhas emerged as apromising strategy to accelerate
MLIPdevelopment, existing frameworks struggle to achieve comprehensive
defect sampling across all loading conditions, notably in computationally
demanding simulations involving large-scale atomic systems and extended
time scaless. Qi et al. suggested that an ideal strategy would be to efficiently
generate and sample configuration space before conducting any DFT
calculations30. They used M3GNet31 as the engine for effective and efficient
database generation for atomic hydrogen diffusion in titanium hydride
system.This strategyhowever is unsuitable formodeling extendeddefects in
metals due to the low accuracy and computational efficiency of universal
MLIPs in large-scale simulations.

The second challenge involves the accurate modeling of extended
defects. For instance, while current MLIPs can handle local defects such as
vacancies, screw dislocations, and simple grain boundaries, they often
exclude extended defects such as dislocation nucleation and multiplication,
general grain boundaries (GBs), and interactions among them32. This
exclusion is due to the inability of these extended defects to fit within the
small periodic configurations typically used in DFT calculations. One
workaround has been to extract a non-periodic atomic cluster with a
spherical shape from large-scale simulations. To restore periodic boundary
conditions required for plane-wave DFT calculations, a sufficiently large
vacuum layer is added to prevent image interaction, as implemented in the
MLIP-3 package23. This strategy has been applied in nanoindentation
simulations33 and elastic constant calculations of polycrystals34 for diamond.
Nevertheless, this approach can introduce irrelevant free surfaces or other
boundaries35. To overcome these limitations, new strategies have been
developed to maintain periodic boundary conditions without additional
vacuum layers. For instance, Zhang et al. created a periodic crack-tip DFT

cell through duplication and rotation operations36. Hodapp et al. utilized a
screw dislocation in BCC W as an example to construct a periodic
configuration37, while Mismetti et al. designed periodic configurations
containing leading and trailing parts of edge dislocation in face-centered
cubic aluminum (FCCAl)38. However, these methods fall short in handling
aforementioned extended defects.

In this study, we introduce a generalized framework for developing
MLIPs specifically designed to model extensive defects in metals. This fra-
mework integrates two key components: (1) Empirical Interatomic
Potentials-Guided Sampling (EIP-GS), and (2) Periodic Configuration
Construction via Grand Canonical Monte Carlo simulations (PCC-
GCMC). These components are crucial for overcoming the challenges
previously discussed. The EIP-GS method is designed to enhance defect
sampling capabilities during large-scale simulations under a wide range of
loading conditions. The PCC-GCMC technique, on the other hand, con-
verts non-periodic atomic clusters of selected defects into periodic config-
urations without the need for vacuum layers. This conversion is essential to
ensure that these configurations are compatible with standard plane-wave
DFT calculations. Focusing on body-centered cubic tungsten (BCCW), our
analysis underscores the critical role of the EIP-GS and PCC-GCMC
techniques in enhancing the predictive accuracy and reliability ofMLIPs for
large-scale simulations. Ultimately, we have developed a set of MLIPs
optimized for BCC W, capable of simulating a wide range of plastic
deformations. We demonstrate the capabilities of our MLIPs through
polycrystal tension andnanoindentation simulations. The exceptionally low
uncertainty of new MLIPs underscores the robustness and adaptability of
our approach across diverse simulation challenges.

Results
MLIP development framework for modeling extensive defects
In this study, we introduce a generalized framework designed to develop
versatile MLIPs for accurately modeling extensive defects in metals, as
depicted in Fig. 1. This framework is implemented through a sequential
three-step process. Initially, a comprehensive pool of defect structures is
generated using large-scale simulations based on well-established EIPs,
notably the Embedded-Atom Method (EAM) potentials for metals. These
potentials have been instrumental for over three decades, enabling the rapid
simulation of complex defects across millions of atoms, albeit with lower
accuracy compared to DFT. These capabilities are indispensable for

P-MLIP-1P-MLIP-0C-MLIP-0

EIP-GS

PCC-GCMC

OTF-AL

PCC-GCMC

MLIPs:

Fig. 1 | The framework of versatile MLIP development for modeling extensive
defects. a Empirical interatomic potential-guided sampling (EIP-GS).
b Construction of periodic configurations from non-periodic atomic clusters

through precise atom insertion using grand canonical Monte Carlo simulations
(PCC-GCMC). cMLIP refinement by combining EIP-GS, on-the-fly (OTF-AL), and
PCC-GCMC.
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simulating a broad spectrum of deformation scenarios, encompassing
general GBs in polycrystals, as well as compression, tension, shear, and
nanoindentation tests in both polycrystalline and single-crystal systems
(Fig. 1a). For a particular metal (BCCW in this study), we employed EAM
potentials to generate a diverse set of LAEs for various defects, addressing
phenomena such as grain boundary relaxation anddeformation, dislocation
nucleation from material inside and exposed surfaces, dislocation multi-
plication, and complex dislocation-grain boundary interactions. The details
of these MD simulations are presented in the “METHODS” section. Sub-
sequently, the D-optimality criterion-based algorithm implemented in
MLIP-323 is used to select representative LAEs according to the local atomic
neighborhoods. This strategy meticulously evaluates the extensive pool of
generated configurations against an established basic dataset (obtained
through domain knowledge, as detailed in SupplementaryNote 1), enabling
the precise selection of the most representative LAEs. This process yields
distinct atomic clusterswith typical size of 100-200 atoms. For these clusters,
vacuum layers of 8 Å thickness are added in all three dimensions of the
simulationbox tominimize image interaction.Wedevelop anMLIP,named
C-MLIP-0, combining the basic dataset with these cluster configurations. It
should be noted that this C-MLIP-0 is very similar to the outcome ofMLIP-
323, with the only diffence is thatOTF-AL is used inMLIP-3,while EIP-GS is
used in our approach.

In the second step, our PCC-GCMCstrategy is employed to convert all
clusters from the first step into periodic configurations, as shown in Fig. 1b.
For each atomic cluster, we begin by initializing the simulation box size
slightly larger than the atomic coordinates in all directions. Subsequently,
new atoms (depicted in blue in Fig. 1b) are inserted into the box via GCMC
simulations, continuing until no additional atoms can be accommodated.
EAMpotentials are used inGCMCsimulations.During this insertionphase,
the core atoms (shown in red) remain fixed to preserve the original LAE of
the center atom. After the insertion is complete, both the coordinates of the
newly inserted blue atoms and the box size are relaxed simultaneously. This
step is crucial to prevent highly distorted LAEs among the newly inserted
atoms. This procedure is iteratively repeated, with the box size gradually
increasing to enable the insertion of atoms into lower energy states. By
selecting only the lowest-energy configurations from PCC-GCMC, we
ensure that all LAEs in these configurations are physically pertinent to the

central LAE. The resulting new DFT dataset, combined with the basic
dataset, is utilized to train a foundational model, termed P-MLIP-0,
designed to be suitable for simulating common defects.

The final stage, Step 3, is the MLIP refinement phase, as illustrated in
Fig. 1c. For specific applicationsnot addressed in the initial EIP-GSof Step1,
such as crack propagation and radiation damage, further EIP-GS and PCC-
GCMC operations are required, utilizing appropriate EIPs. A limitation of
EIP-GS is its potential bias in generating necessary LAEs due to the inherent
bias of EIPs. Consequently, MLIP-based large-scale simulations may gen-
erate unforeseenLAEs.To ensure the transferability ofMLIPsacross diverse
applications,we implement the traditionalOTF-ALprocess here for specific
cases. All generated atomic clusters are converted into periodic configura-
tions via PCC-GCMC and reincorporated into the training dataset. This
process is repeated until no new LAEs are produced by OTF-AL. The final
version of our MLIP, named P-MLIP-1, represents the culmination of our
development efforts and is designed to robustlymodel awide range of defect
phenomena.

Inconsistent data in periodic configuration and cluster with
vacuum layers
First, we investigate the potential issues arising from the use of clusters with
vacuum layers inDFTcalculations. InFig. 2,we compare theDFTresults for
a periodic configuration and an isolated cluster with vacuum layers. The
periodic configuration consists of a relaxed BCC supercell, where all atoms
exhibit vanishing forces due to the equilibrium conditions (such as atom A
in Fig. 2a). A spherical clusterwith a radius of 9Å is then extracted from the
relaxed BCC supercell, as illustrated in Fig. 2b. Since the central atom of the
cluster retains the sameLAEas in the pristineBCC lattice,we expect its force
to be zero. However, the results in Fig. 2c reveal a non-zero forcemagnitude
of 18.7 meV/Å for the central atom B. AtomC, the first nearest neighbor of
atomB, exhibits a forcemagnitude of 11.7meV/Å, while the second nearest
neighbor atom D shows a significantly larger force of 527.5 meV/Å. We
further compare the LAEs of atoms A-D by plotting their SOAP (Smooth
Overlap of Atomic Positions) vectors in Fig. 2d. We use the SOAP
descriptor39 parameters set as rcut =5Å,nmax =12, and lmax =10

40. TheSOAP
analysis confirms that atoms A and B have identical environments, while
atoms C and D exhibit environments very close to those of A and B.

Fig. 2 | Inconsistent DFT results in a periodic
configuration and an isolated cluster. a A relaxed
BCC W supercell containing 256 atoms. b An iso-
lated spherical cluster cut from a relaxed BCC W
supercell. cMagnitude of atomic forces in the core
region of the cluster. Only the center atom and its
first two neighbors are color-coded by the force
magnitude. Atom B is the center atom, while atoms
C and D represent the first and second neighbors,
respectively. d Comparison of SOAP vectors for the
atomic environments of atoms A, B, C, and D.
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However, the force calculations performed on the cluster with vacuum
layers in Fig. 2c yield inconsistent results. These findings highlight a critical
discrepancy between DFT results obtained from periodic configurations
and those from clusters with vacuum layers. Such inconsistencies can pose
significant challenges for MLIP training, as a single atomic environment
may correspond to distinct atomic forces.

The atomic forces on the central atom in an ideal BCC W structure
exhibit marked differences between periodic and truncated cluster-vacuum
models due to contrasting boundary conditions and interaction truncation.
In the periodic model, forces arise from long-range Hellmann-Feynman
contributions of all periodic images, preserving lattice symmetry and
yieldingnear-zeronet forces at equilibriumpositions. In contrast, the cluster
model restricts interactions to finite atomic neighbors while introducing
surface-induced symmetry breaking. This truncation eliminates long-range
electronic screening and imposes asymmetric force distributions from edge
atoms, resulting in non-vanishing residual forces on the central atom. These
force discrepancies correlate directly with asymmetric charge density
redistributions near the cluster surface and disrupted delocalization pat-
terns, as visualized through comparative CHGCAR analysis of charge
density gradients as shown in Fig. S2.

Significance of PCC-GCMC
In this section, we discuss the significance of PCC-GCMC in modeling
complex defects. To demonstrate the functionality of PCC-GCMC, we
employ the example of a screw dislocation core in BCCW, as illustrated in
Fig. 3a. The atomic cluster includes a screw dislocation core with three
compact core atoms, labeled 1-3. This configuration maintains periodic
boundary conditions along the z-direction, with free boundary conditions
along the x and y directions. The PCC-GCMC process is repeated with
varying boxdimensions,Δx andΔy, from1 to 10Å. Fig. 3b shows the average
potential energies of each configuration constructed via PCC-GCMC.
Notably, configurations with potential energies below -8.8 eV/atom,
depicted in blue, approach the cohesive energy of -8.9 eV/atom which are
nearly close to a perfect BCC W. Fig. 3c highlights two representative
configurations. In the top panel, we observe a periodic configuration

featuring a newnon-compact core crossing the periodic boundary along the
y-axis dislocation, with the rest of the atoms conforming to the perfect BCC
lattice structure, excluding the original screwcore. The bottompanel reveals
a periodic configuration that includes a screw dislocation dipole, akin to
typical screw dislocation dipole configurations with a tilted box. Both
configurations depicted in Fig. 3c are generated entirely through automated
processes. All newly inserted atoms either form a pure BCC lattice or
constitute relevant LAEs, making them suitable for DFT calculation and
MLIP training.

It should be noted that we strictly enforce a 140-atom system size
threshold in our PCC-GCMC methodology to ensure inserted atoms
physically occupy vacancy regions through energy-minimized configura-
tion selection. While larger atomic configurations would enable more
physically representative models, particularly for achieving defect-free bulk
regions surrounding isolated defects (e.g., the screw dislocation core shown
in Fig. 2), DFT-based approaches remain computationally intractable for
atomistic-scale defect modeling at these system sizes. This fundamental
limitation necessitates our optimized balance between physical fidelity and
computational feasibility.

All plastic deformations utilized in EIP-GS are illustrated in Fig. S1.
Large-scale simulations are conducted using the EAM-Zhou potential41.
Following the procedure outlined in Fig. 1a, we generate both cluster and
periodic datasets. We systematically compare three datasets: (1) the cluster
dataset (Fig. 1a), (2) the periodic dataset (Fig. 1b), and (3) the basic dataset
curated through domain knowledge. These comparisons employ the
Smooth Overlap of Atomic Positions (SOAP) descriptor39 with parameters
rcut = 5 Å, nmax ¼ 12, and lmax ¼ 1040. The results, visualized in Fig. 3d
through principal component analysis (PCA), reveal distinct patterns. The
basic dataset predominantly occupies PC1 < 0, with an extended arm
representing surface atoms with PC1 > 0. The cluster dataset bifurcates into
two groups: a minor cluster overlapping with the core of the basic dataset,
andamajor cluster positionedabove its extendedarm.This dominant group
corresponds to surface atoms near free surfaces, while the smaller group
reflects defect-related LAEs at cluster centers. The size disparity between
groups indicates that only a minority of LAEs (central atoms) directly

Fig. 3 | Significance of PCC-GCMC in defect
structure generation. aAtomic cluster containing a
screw dislocation core. The lower panel shows atoms
color-coded by common neighbor analysis (CNA):
blue denotes pristine BCC lattice atoms, while white
highlights disordered atoms at the defect core and
surface. b PCC-GCMC-based grid search for ener-
getically stable periodic configurations, with each
data point colored by the system’s average energy
(lower energy = darker blue). c Representative per-
iodic configurations (A and B) reconstructed via
PCC-GCMC, demonstrating its capability to gen-
erate DFT-compatible configurations from defect
clusters. d Principal component analysis (PCA) of
different datasets. e MTP training performance
comparison between datasets B+C and B+P, eval-
uated across increasing model complexity levels
(levels 12–20).
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influence defect modeling, whereas most surface atoms do not contribute
meaningfully to force/energy calculations of bulk atoms.

Unlike the cluster dataset, the periodic dataset forms a single cohesive
group containing all target atoms from the cluster dataset. There is an
overlapping region between the periodic and basic datasets, marked by a
dashed line, suggesting shared commonLAEs.This overlap signifies that the
periodic configurations created via our PCC-GCMC method exhibit
characteristics similar to those identified in ref. 42, with data points in this
region likely corresponding to the perfect BCC lattice. Additionally, other
data points in the periodic dataset represent inserted atoms from theGCMC
process and atoms close to the surfaces in the original clusters. Although
these LAEs are not explicitly defined in the initial EIP-GS (such as the non-
compact screw core discovered in Fig. 3c), they may prove instrumental in
exploring other types of unknown plastic deformations, which we will
discuss further in the following section. Another interesting observation is
that the LAEs of defects are not included in the basic dataset (3d), indicating
that the existingMLIPs obtained through domain knowledge are unsuitable
for modeling general defects.

Next, we proceed to train C-MLIP-0 and P-MLIP-0, using the cluster
dataset (C) and the periodic dataset (P), respectively, with both datasets
integrated into the basic dataset (B). Training is performed using the MTP
framework. Theperformance of thesemodels is evaluated by comparing the
root mean square error (RMSE) of configuration energies, as shown in Fig.
3(e). Consistently, the B+P combination outperforms B+C across all MTP
levels. The superior performance of B+P can be attributed to the simpler
and more consistent nature of the periodic dataset, which avoids the
inclusion of complex and irrelevant LAEs, such as surface atoms, that are
present in the cluster dataset (illustrated in Fig. 3d).More importantly, DFT
calculations of clusterswith vacuum layersmay introduce inconsistencies in
the data compared to the basic dataset (B), which primarily consists of
periodic configurations. These inconsistencies possibly arise from the
truncation of long-range interactions and the introduction of surface effects
in the cluster model, which are absent in the periodic case (Fig. 2). This
findinghighlights thefirst significant advantage of using the periodic dataset
forMLIP training: by eliminating irrelevant LAEs and data inconsistencies,
the training process becomes more robust, leading to more accurate and
reliable MLIPs.

Uncertainty quantification across diverse plastic deformations
Our datasets, i.e., B+C and B+P, are designed to accommodate a wide range
of defect simulations including dislocations, GBs, dislocation nucleation and
multiplication, and dislocation-GB interactions. To verify the transferability
of our datasets, we utilize per-atom uncertainty quantification available in
MLIP-323 (the extrapolation grade γ) to evaluate various defects in BCCW.
Values ofγ ranging from0 to1 signify interpolation,while values greater than
1 imply extrapolation. Figure 4a–c display three common types of dislocation
loops encountered in the plastic deformation of BCC metals: a 〈100〉 inter-
stitial loop, a 〈111〉 glide loop, and a 〈111〉 climb loop. Given that the per-
formance outcomes of the basic dataset combined with cluster one (B+C)
and the basic dataset with periodic one (B+P) are comparable, we present
only the results for B+C for clarity. Notably, using the basic dataset (B), all
atoms within the 〈100〉 interstitial loop and those near the edge segments of
the 〈111〉 glide loop, alongwith some atoms in the 〈111〉 climb loop, exhibit γ
values significantly greater than 1, indicating a higher level of uncertainty (left
panelsof Fig. 4a–c). Incontrast, all atomswithin thesedislocation loops,when
analyzed using the B+Cdataset, show γ values less than 1. This demonstrates
our datasets’ enhanced effectiveness in capturing complex dislocations, with
energies and forces of all LAEs obtainable through interpolation.

Additionally, we assess the transferability of our models regarding
general GBs in polycrystals and their temperature-induced evolution. We
calculate the extrapolation grade γ for all the atoms in a polycrystal relaxed
by aMEAMpotential43 at 300Kand2000K. It shouldbenoted that ourEIP-
GS in the initial EIP-GS only uses the EAM-Zhou potential41, such that the
GBs obtained by MEAM may have different LAEs. Fig. 4d illustrates the
polycrystal at 300 K, with each atom color-coded according to the γ value

obtained from B+C. Notably, all atoms in this representation exhibit γ
values less than 1, indicating low uncertainty and high confidence in the
predictions. Fig. 4e and f display histogram plots of the γ values for this
polycrystal calculated using different datasets: B, B+C, and B+P at 300 K
and 2000 K. The analysis reveals that the dataset B predicts γ values greater
than 2 for atoms at both 300K and 2000K, indicating higher uncertainty. In
contrast, γ values calculated by datasets B+C and B+P are consistently
below 1 at 300K.However, at 2000K, there are a few exceptions with values
of γ slightly higher than 2. This indicates that although B+C and B+P
perform well at lower temperatures, at higher temperatures the uncertainty
escalates but stays manageable. These results underscore the high trans-
ferability and effectiveness of generated defect genome in simulating the
behavior of general GB and the thermodynamics of polycrystals.

We further evaluate the uncertainty quantification of our datasets
during a continuous nanoindentation simulation, illustrated in Fig. 4g–i.
Fig. 4g andhdisplay the distribution of defect atoms color-codedby γ values
at the maximum depth (4 nm), calculated using B and B+C, respectively.
For the case of B, several regions exhibit γ values above 1, particularly in
regions involving dislocation interactions and surface regions, as indicated
by red arrows in Fig. 4g. In contrast, all defect atoms analyzed with B+C
demonstrate γ values lower than 1 (Fig. 4h), indicating significantly lower
uncertainty.Additionally, we calculate themaximum γ values (γmax) among
all defect atoms for each snapshot throughout the nanoindentation process.
Comparisons of γmax for B, B+C, and B+P reveal that B consistently shows
γmax values above 2, reflecting high uncertainty throughout the nanoin-
dentation process. Conversely, both B+C and B+P maintain γ values
around 1. These results indicate that our new datasets encompasses all the
plastic LAEsduringnanoindentation, includingdislocationnucleation from
open surfaces and complexmultiplication beneath the indenter. It should be
noted that datasets B+C and B+P exhibit comparable performance in
uncertainty quantification analysis in Fig. 4. This is because the key LAEs for
these defects are included in the core atoms of both datasets. However, this
does not imply that dataset P, constructed using PCC-GCMC, is unneces-
sary. Firstly, DFT calculations of clusters introduce inconsistencies into the
training data, as highlighted earlier in Fig. 2. Secondly, the periodic con-
figurations in the dataset P enhance the extrapolation capability of the
resulting MLIP. This advantage will be discussed in detail later.

MLIP refinement
It should be noted that all LAEs discussed above are generated using the
EAM-Zhou potential41. The applicability of the MLIP-0 models developed
based on these LAEs for modeling extended defects in large-scale simula-
tions, particularly within MLIP simulations, remains uncertain. To address
this issue, we employ the traditional on-the-fly AL (OTF-AL) implemented
in MLIP-323. This process allows us to monitor the extrapolation grade γ
during MLIP-based simulations and to identify unknown LAEs. These
activities correspond to Step 3 in Fig. 1c.

We focus on the high-temperature relaxation of a polycrystal. Fig. 4e
shows that our dataset, constructed via the initial EIP-GS, includes all LAEs
in a polycrystal relaxed by the MEAM potential at 300 K. However, Fig. 4f
reveals that these LAEs do not fully represent those at 2000 K, making EIP-
GS ineffective for high temperatures. To address this, we use OTF-AL to
model polycrystal relaxation at 300 K, 900 K, 1200 K, and 2000 K, starting
with the dataset B+P. In the first AL loop, no new configurations are
generated at 300 K and 900 K. However, the simulation at 1200 K is ter-
minated due to atom loss, leading to the selection of 21 new configurations
with γ > 2. These are converted into periodic configurations via PCC-
GCMC and added to the training database to develop an updatedMLIP. In
the next loop, relaxation simulations proceed smoothly across all tem-
peratures, with 25 additional configurations identified at 2000 K. This
ensures a comprehensive defect genome for modeling general GBs in ran-
dompolycrystals, all embedded in periodic configurations via PCC-GCMC.
These configurations form the dataset OTF-AL-GB. To assess the uncer-
tainty of our MLIP trained on B+P+OTF-AL-GB, we use ensemble
learning (detailed in the METHODS section) to evaluate a polycrystal
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relaxed at 300 K and 2000 K (Fig. 5). The results show significantly reduced
uncertainty, with most force standard deviations (σF) below 0.2 eV/Å,
comparable to MLIP force prediction errors (Table S2). This confirms the
high accuracy of the new MLIP in modeling general GBs.

Additionally, we refine our MLIP model by incorporating crack pro-
pagation, as detailed in Supplementary Note 1. Our approach successfully
captures LAEs associated with diverse fracture mechanisms, as demon-
strated in Fig. S2 using both EAM and MEAM potentials. Finally, we
consolidate all datasets in Table S1 and train hierarchical MTPs alongside a
high-dimensional ACE potential. Due to the excellent training accuracy of
ACE, good performance for fundamental properties of BCCW, and com-
putational efficiency (SupplementaryNote 2 andTable S2),we selectACEas
the finalMLIP for large-scaleMD simulations. The training performance of
the ACE potential is summarized in Fig. S4. Further validation is provided
by comparing theACE-predicted phonon spectrumwith theDFT results in
Fig. S5, which shows excellent agreement. The DFT reference data are
sourced from a recent study44, reinforcing the reliability of our ACEmodel.

Direct validation through comparison with DFT calculations
To demonstrate the superiority of our approach and the resultingMLIP, we
validate MLIPs trained on datasets B, B+C, B+P (Fig. 3), and the final

composite dataset against new DFT calculations, while benchmarking
against two existing W datasets: the 2014 and 2019 datasets45,46. Six ACE
potentials are trained and evaluated spanning five distinct validation sce-
narios: (1) GBs relaxed at 300 K, 900 K, and 2000 K (equilibrium structures
from47), (2) severe compression-induced deformations and phase transi-
tions (FCC/HCP lattices, amorphous phases; Fig. S10), (3) random 2D
polycrystals, (4) 3D polycrystals generated via Voronoi tessellation, and (5)
crack propagation configurations from36. Representative configurations and
energy/force errors comparing MLIP predictions with DFT references are
shown in Fig. 6. For GBs (task 1), nine symmetric configurations exhibit
temperature-dependent structural evolution, while compression (task 2)
reveals pressure-driven transformations detailed in Fig. S10. In tasks 3–4
(random 2D/3D polycrystals) and task 5 (crack systems), the MLIPs are
rigorously evaluated acrossmultifaceted defect environments, probing their
robustness under extreme structural complexity.

For validation tasks 1-4 in Fig. 6a, focusing on general grain boundaries
(GBs), datasets B+C and B+P consistently outperform dataset B across all
scenarios. A notable exception occurs in energy comparisons for thermally
perturbed simple GBs, where B achieves marginally lower errors than B+C
andB+P.However, B exhibits significantly higher forceRMSEcompared to
B+C and B+P, underscoring the critical role of defect datasets in force
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prediction. These results confirm that incorporating cluster (C) or periodic
(P) configurations enhancesMLIP accuracy. Remarkably, B+P surpasses B
+C in both energy and force accuracy, particularly for compressed simple
GBs. This superiority stems from two factors: (1) PCC-GCMC introduces
additional atoms as shown in Fig. 3d, enriching the representation of critical
LAEs missing in B+C, and (2) periodic configurations mitigate data
inconsistencies inherent to clusters with vacuum layers, as demonstrated in
Fig. 2. These findings collectively validate the superiority of PCC-GCMC-

derived periodic configurations over conventional cluster-based
approaches.

Additionally, our final dataset demonstrates superior performance
compared to the 2014 dataset45 and the 2019 dataset46. The latter dataset is
widely adopted for large-scale applications such as radiation damage
studies48. Notably, our approach achieves higher force prediction accuracy
across all validation tasks.With only 39 crack-related configurations (Fig. S1
and Table S1), our dataset outperforms the 2019 dataset in crack
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propagation modeling, underscoring its exceptional data representative-
ness. This performance advantage persists even when tested on complex
deformationmechanisms,highlighting the robustnessof our curated atomic
environments. The strength of our dataset stems from its systematic
inclusion of diverse atomic configurations spanning multiple deformation
modes (dislocation glide, phase transitions, fracture) in Fig. 1a, ensuring
broad transferability to different material systems and extreme loading
conditions. Combined with its compact size and reduced computational
overhead, these features make our approach uniquely suited for both fun-
damental studies of material behavior and large-scale simulations of
engineering-relevant scenarios.

MLIP applications in polycrystal tension
To demonstrate the high reliability of our finalMLIPmodel in modeling
general defects in BCC W, we have conducted MD simulations of
polycrystal tension at room temperature (300 K). The results are pre-
sented in Fig. 7. TheMD snapshot at the end of the simulation, shown in
Fig. 7a, reveals a classical intergranular fracture pattern. Dislocation
analysis in Fig. 7b indicates that very few dislocations are present within
the grains, while dislocation networks primarily result from GB defor-
mation. The stress-strain curve in Fig. 7c demonstrates that the W
polycrystal exhibits very limited plasticity. The decreasing stress is
attributed to crack initiation and propagation, with the sample frac-
turing completely at a strain of 0.32. These results align with previous
experimental findings49–51, confirming that BCC W polycrystals are
highly brittle at room temperature and that intergranular fracture is the
dominant deformation mechanism.

Importantly, we monitor the extrapolation grade (γmax) throughout
the tension simulation, as shown in Fig. 7d. It is evident that all atomic
environments encountered during the simulation have counterparts in our
final dataset, highlighting the comprehensiveness of the dataset. Further-
more, we provide a detailed uncertainty quantification analysis for the MD
snapshot in Fig. 7a. The distribution of γ for each atom in Fig. 7e and the
force standard deviation in Fig. 7f and Fig. S7 demonstrate that ourMLIP is
highly reliable, with minimal uncertainty in force predictions. These

findings further validate the robustness and transferability of our MLIP for
modeling complex deformation scenarios in BCCW.

Additionally, we have conducted comprehensive validation tasks to
demonstrate the high reliability of our MLIP across different scenarios,
including crack initiation (Fig. S8), nanoindentation into a single crystal
(Fig. S9), nanoindentation into a bicrystal containing a twin boundary (Fig.
S10), and structural transitions of GBs (Fig. S11). In all cases, the results
exhibit very low extrapolation grade (γ) values and minimal force standard
deviation, further confirming the robustness and accuracy of our MLIP in
modeling diverse deformation mechanisms and defect behaviors.

Discussion
Over the past decade, MLIPs have emerged as a cornerstone in computa-
tional science, significantly impacting fields such as chemistry, materials
science, andmechanics1–6.Various frameworks employing a rangeof atomic
descriptors, including ASCF7, SNAP9, moment tensor10, and ACE11, have
been developed. These frameworks have implemented diverse training
strategies, from linear regression to neural networks, primarily focusing on
enhancing the accuracy and computational efficiency of MLIPs. Such
advancements are crucial, as they significantly improve the ability ofMLIPs
to model complex atomic interactions both accurately and efficiently,
thereby paving theway for groundbreaking discoveries inmultiple scientific
domains. However, the construction of a robust training dataset is equally
essential. The quality and comprehensiveness of the data used for training
directly impact the effectiveness and reliability of MLIPs. Despite these
developments, the scrutiny applied to most MLIPs remains insufficient.
These potentials are often deployed in large-scale applications without
undergoing rigorous validation across diverse conditions or against a wide
spectrum of atomic configurations. Consequently, due to inadequately
comprehensive training datasets, many existing MLIPs fail to accurately
model general defects, thereby limiting their applicability in complex
simulations.

Our approach demonstrates significant advancements over previous
studies36–38. While these earlier methods are restricted to simple defects and
often rely on manual operations, such as rotation and merging in ref. 36,

Fig. 7 | Tensile deformation of BCC W poly-
crystals. a Final fracture morphology after tensile
loading. b Dislocation network analysis and crack
initiation pathways. cMacroscopic stress-strain
response under uniaxial tension. d Evolution of
maximum extrapolation grade (γmax) during tensile
deformation. e Distribution of extrapolation grade
(γ) across the fractured microstructure in (a).
fDistribution of force standard deviation (σF) for the
fractured configuration in (a).
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they also require elastic solutions for simple defects to construct atomistic
positions, as seen in refs. 37,38. In contrast, our methodology is uniquely
capable of addressing complex defects, including mixed dislocations and
general GBs, where prior approaches prove inadequate. An alternative
strategy for developing a general-purpose MLIP involves systematic
exploration of all possible space groups in random crystal structures, which
generates the RANDSPG dataset52,53. Although MLIPs trained on the
RANDSPG dataset achieve accurate modeling of simple GBs in Mg and
general GBs in BCC Fe53, recent findings reveal substantial limitations.
Specifically, high extrapolation grade (γ > 2) and significant force errors are
observed in the polycrystal deformations of BCC Fe54, as reported by the
same authors in the previous study53. In comparison, our MLIPs exhibit
markedly lower uncertainty (γ < 2) in polycrystal tension even with sig-
nificant fracture (Fig. 7e) and nanoindentation (Fig. S9 and S10). These
results underscore the insufficiency of the RANDSPG dataset for modeling
extensive defects and highlight the superior robustness of our approach.

While MLIP-3 enables OTF-AL with MTPs to address similar
challenges23, our framework integrating EIP-GS and PCC-GCMC delivers
key advancements. EIP-GS significantly reduces the computational expense
of OTF-AL, which improves MLIP training efficiency. Conventional OTF-
AL struggles with large-scale (million-atom) defect systems due to slow
MLIP inference speeds15, especially for rare events such as diffusion and
phase transitions. By leveraging EIP-GSwith classical potentials (e.g., EAM,
which is at least 100 times faster than MTPs), we bypass this bottleneck.
Additionally,OTF-AL requires iterative retraining cycles30—whether using
linear regression or neural networks — which remain computationally
costly. Although our method retains OTF-AL, it operates as a lightweight
safety check. As evidenced in Table S1, only 72 of 348 configurations derive
from OTF-AL, and only one retraining is required, underscoring its mini-
mal role in our workflow.

Our PCC-GCMC method significantly advances MLIP development
for modeling extended defects, serving as a critical enhancement to both
EIP-GS andOTF-AL. Unlike conventional approaches in frameworks such
as MLIP-323–which rely on vacuum layers to mitigate image
interactions–PCC-GCMC eliminates both data inconsistencies and com-
putational inefficiencies inherent to cluster-based methods. These limita-
tions manifest in two critical ways: (1) Data inconsistencies from vacuum-
containing clusters degrade model performance during both training (Fig.
3e) and inference (Fig. 6), and (2) surface-dominated LAEs in clusters
underutilize critical defect-environment information (Fig. 3a). PCC-GCMC
addresses these issues by generating periodic configurations directly com-
patible with DFT calculations, ensuring seamless integration into training
datasets. This approach circumvents artificial surface effects while enabling
systematic sampling of bulk-like defect environments. The inserted atoms
either reconstruct pristine lattices/defects (Fig. 3c) or reveal previously
uncharacterized defect configurations, significantly enhancing MLIP
transferability (Fig. 6). By completely bypassing vacuum-layer approxima-
tions, PCC-GCMC provides a robust framework for capturing complex
defect interactions essential to predictive large-scale simulations.

Finally, we demonstrate that our framework is generalizable to diverse
crystalline materials for modeling extended defects, as illustrated in Fig. 8.
The methodology applies universally across common crystal
structures–including FCC, BCC, HCP, and diamond-cubic systems–and

leverages the vast repository of EIPs from resources, such as the NIST
Interatomic Potentials Repository (NIST-IPR) https://www.ctcms.nist.gov/
potentials and OpenKIM55. These platforms collectively provide over 644
potentials (predominantly EIPs) spanning EAM, modified EAM (MEAM),
bond-order (BOP), Stillinger-Weber (SW), Tersoff, and reactive force field
(ReaxFF) formulations. While EIPs exhibit larger force/energy errors com-
pared to DFT, their physics-driven consistency has fueled computational
materials science for three decades56, which remains valuable despite the
MLIP revolution. Our framework could harnesses these EIPs through three
synergistic strategies: (1) lattice-constant-rescaled adaptationof isostructural
material potentials, (2)mechanical-property-optimized parametrization57,58,
and (3) average-atom potential generation for random alloys59. This enables
the systematic creation of defect genome libraries for crystalline materials
by sampling diverse LAEs across loading conditions. Critically, the app-
roach transforms historical EIP investments into MLIP training assets,
combining the interpretability of physical models with the accuracy of
machine learning. The resulting LAE diversity–particularly for rare defect
configurations–positionsourmethodology asboth computationally efficient
and physically insightful for next-generation materials simulation.

It is worth noting that extending PCC-GCMC to crystalline com-
pounds requires careful adaptation of the GCMC algorithm to handle
multiple atomic species. Nevertheless, PCC-GCMC remains applicable in
certain scenarios. For high-entropy alloys, where elements are often inter-
changeable, PCC-GCMC can insert atoms of a single element during
sampling and later substitute them with target elements. This approach
prioritizes the generation of diverse structural environmentswhile deferring
the chemical complexity to post-processing steps. For non-exchangeable
compounds like FeO,PCC-GCMCcan insert atomsof a single element (e.g.,
Fe) around the oxide core, producing atomic environments relevant to
interfaces (e.g., Fe/FeO boundaries). These environments are crucial for
studying processes such as oxidation.

In summary, this work introduces an advanced framework for devel-
oping MLIPs by integrating EIP-GS, PCC-GCMC, and OTF-AL. This
framework enables automated, ab initio-accurate, large-scale atomistic
modeling of general defects in metals. The developed MLIPs are highly
transferable and are based on comprehensive datasets that facilitate simu-
lations of complex behaviors, including general GBs in polycrystals, dis-
location nucleation and interactions, dislocation-GB interactions, and crack
propagation in BCC W. Rigorous uncertainty quantification analyses,
employing D-optimality criterion and ensemble learning techniques, con-
firm the accuracy of our models in these scenarios. This approach proves
versatile enough to be generalized for modeling extensive defects in other
BCCmetals, FCCmetals, and high-entropy alloys, demonstrating its broad
applicability across various material systems.

Methods
First principles calculations
We utilize the Vienna Ab initio Simulation Package (VASP) to perform
first-principles calculations of all new configurations necessary for MLIP
development60. A gradient-corrected functional in the Perdew-Burke-
Ernzerhof (PBE) form is used to describe the exchange and correlation
interactions61. Electron-ion interactions are treated within the projector-
augmented-wave (PAW) method, using the standard PAW pseudopoten-
tials provided by VASP. The energy convergence criterion is set to 10−6 eV
for electronic self-consistency calculations. The plane-wave cutoff energy is
chosen to be 520 eV. The KPOINTS are generated byVASPKIT62, based on
theMonkhorst-Pack scheme,with a consistent density of 2π × 0.03Å across
the entire dataset. For clusters with vacuum layers, only a single KPOINT is
employed.

Empirical interatomic potentials
In our simulations, we utilize both the Embedded-AtomModel (EAM) and
the Modified Embedded-Atom Model (MEAM) to perform large-scale
molecular dynamics simulations of body-centered cubic tungsten (BCCW)
under various loading conditions. Specifically, we employ the EAM-Zhou
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potential41 for simulating the relaxation, compression, and tension of W
polycrystals, as well as single-crystal compression, tension, and nanoin-
dentation processes. Additionally, theMEAMpotential referenced in ref. 43
is applied to model crack propagation in single-crystal W.

Atomistic simulations and analysis
We employ the Large-scale Atomic/MolecularMassively Parallel Simulator
(LAMMPS) package for all atomistic simulations63. For visualizing atomic
configurations and post-processing results, such as extracting dislocation
structures, we use OVITO64. Additionally, Atomsk is used to generate
polycrystalline structures65. These packages provide a comprehensive suite
of tools to support our study of the mechanical properties and plastic
deformation mechanisms of BCCW. All MD simulation details are shown
in Supplementary Note 3.

Machine learning potential development
Weemploy theMLIP-2package22 andpacemarker16 to developMTPs and
ACE potential for BCC W. MLIP-2 utilizes moment tensor descriptors
and applies linear regression to train the machine learning model,
enabling it to predict the energy, force, and stress of atomistic systems. In
our study, the weights of energy, force, and stress are set as 1, 0.01 and 0,
respectively. For ACE, we utilize the highly nonlinear potential energy
function with the complex form of Ei ¼ φþ ffiffiffi

φ
p þP

iφ
f i , where

Ei ¼ φþ ffiffiffi

φ
p þP

iφ
f i ; f i 2 1

8 ;
1
4 ;

3
8 ;

3
4 ;

7
8 ; 2

� �

, obtained from ref. 26.
For the expansion of the atomic properties, we used 72 basis functions
with 801 parameters. Bessel functions are used as the radial basis. The
ratio between the force and the energy weights during the fitting, κ, is set
as 0.01. For optimization, we use the BFGS algorithm for 4000 steps. The
cutoff distance is set as 5 Å for both MTP and ACE.

More importantly, we utilize MLIP-323 to perform direct sampling
based on theMaxVol algorithm from extensive simulations conductedwith
EAM or MEAM potentials. This method was originally developed for the
OFT-AL of atomic environments, incorporating a cycle of MTP-based
simulations, DFT calculations, and subsequent MTP retraining. In this
study, to expedite the process, we exclusively utilize the EIP-GS to identify
representative defects froma comprehensive pool of large-scale simulations.
This approach and its implications are elaborated in Section 3.

We employ the regular on-the-fly active learning (OTF-AL) imple-
mented inMLIP-323 to samplenew local atomic environments (LAEs)during
high temperature relaxation of polycrystals and crack propagation. This
methodology utilizes an extrapolation grade γ, which quantifies the deviation
of atomic configurations from those in the training set. The process begins by
training an initialmoment tensor potential (MTP) on a baseline dataset. This
MTP is then deployed to simulate the target system under application-
specific conditions such as mechanical loading. During simulations, config-
urationswithγ>γbreak=10 trigger immediate termination toavoidunreliable
predictions, while those with γ > γselect = 2 are flagged forDFT validation and
subsequent inclusion in the updated training set. The MTP is iteratively
retrained until all configurations in production simulations aremaintained γ
< γbreak, ensuring robustness across target deformation regimes.

Uncertainty quantification
We adopt two methodologies for uncertainty quantification. The first uti-
lizes atomic descriptors, specifically the extrapolation grade γ, as imple-
mented in MLIP-323 and similarly applied in ACE35, based on the
D-optimality criterion and the MaxVol algorithm. A value of γ between 0
and 1 indicates interpolation, while a γ between 1 and 2 indicates reliable
extrapolation, and greater than 10 means risky extrapolation.

The second employs ensemble learning, where we train six indepen-
dentMTPson the samedataset to compute the standarddeviationof atomic
force:

σF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i2fx;y;zg
σðFð1::NÞ

α;i Þ2
s

: ð1Þ

Here, Fð1::NÞ
α;i is the i-th component of the force acting on atom α as obtained

by one of the 5 committeemembers (MTPs) for a particular configuration; σ
denotes the standard deviation. It should be noted that while both
approaches are valuable for uncertainty quantification, they fulfill different
objectives. Each method can identify new local atomic environments
(LAEs), but the extrapolation grade, γ, is specifically designed for this
purpose and is particularly useful for OTF-AL. However, merely having a
good sampling of LAE does not ensure the effectiveness of an MLIP. It is
essential to implement a robust MLIP framework that can effectively train
these datasets. Therefore, we integrate bothmethods in ourwork to leverage
their distinct advantages.

Data availability
Data is provided within themanuscript or supplementary information files.

Code availability
All simulations are executed using open-source software LAMMPS. The
machine learning force field was trained and validated by the MLIP
package22. All source codes are available at the GitHub repository: https://
github.com/ufsf/ML-Defect-Modeling.
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