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1 Introduction

1.1 Project background

Mode coupling behaviour, where the energy transfer between different modes, can be seen in

many different places, from the torsion pendulum that measures forces through the coupling

of swing and torsional modes [1], to micro-scaled angular rate sensors utilizing the coupling

of the gyroscope’s sense and drive modes. For a multi-degree-of-freedom nonlinear system, if

the ratio of its components’ natural frequencies is very close to an integer, the frequency of

the system’s different vibration mode can be coupled at certain internal resonance ratio [2,

3]. When the system includes nonlinear terms, through appropriate parameter tuning, we can

induce coupling between different modes. This phenomenon of stronger energy transferring

through mode coupling is called internal resonance [4]. These features can be used in multiple

fields, such as vibration energy harvesting and sensing.

Low-power microelectronic products are widely used in consumer electronics, medical equip-

ment, aerospace and other fields [5]. Harvesting energy from the nearby of the devices has

received more attention, and the harvested energy can be used as a supplement or replacement

for traditional batteries [6]. In most cases, the input environmental vibration energy is dis-

tributed in a wide frequency range or direction. Through proper design, the internal resonance

or mode coupling can be used to realize the energy conversion between different modes (with

different direction or matching frequency), so as to realize higher harvest efficiency or the en-

ergy harvesting of multiple vibration modes by single transducer [7, 8, 9]. In order to monitor

or measure mechanical, optical, acoustic, electromagnetic and other signal in the environment,

sensors are widely used in microelectromechanical systems [10]. Mode coupling is also widely

used in this field, and they can improve the sensitivity and bandwidth of sensors with relatively

higher quality factor [11].

Compliant mechanism design has emerged as a valuable technique in mechanical engineering for

enabling mode coupling. Compliant mechanisms are characterized by their ability to transfer

motion, force, or energy through the deflection of elastic flexure joints, which are typically made

from elastic materials. These mechanisms offer several advantages, including customizable

motion, high precision, lightweight construction, low friction, reduced wear and tear, ease of

manufacturing, and most notably, compactness [12].

These inherent characteristics make compliant mechanisms highly suitable for a range of appli-

cations, including microsystems, robotics, biomedical implants, and various other fields. The
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ability to achieve compact designs while maintaining desired functionality makes compliant

mechanisms particularly attractive in scenarios where space is limited or weight reduction is

critical. The use of compliant mechanisms can lead to improved performance, increased relia-

bility, and enhanced efficiency in a wide range of engineering applications.

While mode coupling has been extensively researched and applied in the field MEMS, the precise

design and implementation of compliant mechanisms for achieving specific mode coupling and

energy transfer remains an ongoing area of study.

1.2 Thesis objective

In the realm of microelectromechanical systems (MEMS), achieving mode coupling between

resonators often involves employing optical or electrostatic actuation methods to couple one

system to another[13, 14]. However, recognizing the advantages of compliant mechanisms in

terms of system complexity, processing, and maintenance, utilizing mechanical elements to

facilitate mode coupling is proposed. One such element is a nonlinear spring that exhibits an

approximately cubic relationship between load and displacement.

Since this concept is still relatively unexplored, the focus lies in proving the feasibility of the

idea rather than designing and fabricating a model for a specific engineering application. This

thesis aims to conduct preliminary verification and exploration of the concept, which entails

establishing mathematical models, performing dynamic calculations, designing physical param-

eters for each component, creating computer-aided design (CAD) models, conducting finite

element simulations, exploring viable processing methods (such as 3D printing and laser cut-

ting), and performing experiments to compare the mechanical properties of processed samples

with theoretical design parameters.

The primary objective of this thesis is to establish a connection between mode coupling and

compliant mechanisms. To achieve this, the goal is to design a simple compliant mechanism

wherein an initial input of energy to the system allows for the transfer of energy back and forth

between two modes. The system comprises two mass blocks, two linear springs connecting the

blocks to the ground, and a nonlinear spring connecting the two blocks. The emphasis of the

design is placed on the nonlinear spring component. It is crucial that the load-deformation

relationship of the spring approximates a cubic curve while minimizing the presence of a linear

term, thus facilitating improved mode coupling within the system.
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1.3 Overview

Chapter 1 is the introduction of the entire final thesis.

Chapter 2 of this thesis is the literature review. It has two main sections. The first part is

mainly about the application of mode coupling and internal resonance in the field of MEMS.

The second part mainly describes the design method of the compliant mechanism, and nonlinear

spring design.

Chapter 3 is a paper concisely describing the work in this thesis. It includes the math analysis,

CAD design, and FEM simulation.

Additional information supporting the Chapter 3 paper can be found in Appendices. Appendix

A provides information on the linear stage prototyping. Appendix B provides information on

the testing of these stages. Appendix C provides some other possible designs for the nonlinear

spring that remain further investigation. Appendix D is about the coding of nonlinear spring

optimization program.

5



2 Literature review

2.1 Abstract

In this report, the application of mode coupling and internal resonance in the micromechanical

field is studied and investigated. A simple mechanical structure that can achieve a designed

mode coupling using nonlinear spring and compliant mechanisms is proposed, and the equations

of motion are developed. The results show that the system can achieve ideal internal resonance

ratio when the nonlinear spring has a very small linear term. The design concepts of nonlinear

spring are explored, and the literature survey of linear stage which makes the parts move in

one direction is also conducted.

2.2 Introduction

Mode coupling is a phenomenon in which two or more modes of a system become coupled

and affect each other’s behavior. This can occur in various physical systems, such as optics,

acoustics, electromagnetics, and solid mechanics. The energy transfer between different modes,

can be seen in many different places, from the torsion pendulum that measures forces through

the coupling of swing and torsional modes [15], to micro-scaled angular rate sensors utilizing

the coupling of the gyroscope’s sense and drive modes. For a multi-degree-of-freedom nonlinear

system, if the ratio of its components’ natural frequencies is very close to an integer, the

frequency of the system’s different vibration mode can be coupled at certain internal resonance

ratio [2, 3]. When the system includes nonlinear teams, through appropriate parameter setting,

we can induce certain type of coupling. This phenomenon of stronger energy transferring

through nonlinear coupling is called internal resonance [4]. These features can be used in

multiple fields, such as vibration energy harvesting and sensing.

2.2.1 Energy harvest

Low-power microelectronic products are currently widely used in consumer electronics, medical

equipment, aerospace and other fields [5]. Energy storage systems (batteries) are still their

most widely used energy source [16]. But batteries will limit these products in terms of size,

quality, durability, lifespan, and environmental friendliness. With the development of science

and technology, the power consumption of common MEMS devices can be reduced to the level

of mW or even µW [17]. As a result, Harvesting energy from the nearby of the devices has

received more attention, and the harvested energy can be used as a supplement or replacement

for traditional batteries [6]. These energies include thermal energy from human body or devices
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Figure 1: Schematic diagram of the energy harvester [20]

running, solar energy, mechanical energy, etc. Among them, the collection of mechanical energy

is cleaner, more stable, and takes up less volume [18]. Piezoelectric, electromagnetic, and

electrostatic are the three most common methods of mechanical vibration energy harvesting.

The electrostatic method is to convert mechanical energy into electrical energy through the

relative movement of the capacitive plates [19].

Williams and Yates [20] proposed a basic mass-spring system concept to convert the mechanic

vibration to electricity. Figure 1 shows the schematic diagram of the energy harvester. It

consists of a mass block m, a linear spring k, and an energy transducer d, which is depicted

as a damper because the process of converting the mass vibration displacement into electrical

energy is very similar to the behavior of a damper in the system. The damping coefficient

d satisfies d = dm + de, where dm is the mechanical damping coefficient, de is the electrical

damping coefficient. This energy transducer can be based on piezoelectric, electromagnetic

and electrostatic. The outside vibration excites the system through the inertial frame. The

equation of motion of system is:

mz̈(t) + dż(t) + kz(t) = −mÿ(t) (1)

Where z(t) is the spring deflection, which equals to the distance between mass block and the

inertial frame. y(t) is the input displacement. When applying a vibration of y(t) = Y0 sin(ωt),
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the steady state solution of spring deflection becomes:

z(t) =
ω2√(

k
m
− ω2

)2
+
(

(dm+de)ω
m

)2
Y0 sin

[
ωt− tan−1

(
dω

k − ω2m

)]
(2)

The energy extracted by the energy transducer equals to the power absorbed by the electrical

damping behaviour [21], which satisfies:

pout =

de
2ωn

Y 2
0

(
ω
ωn

)3

ω3[
1−

(
ω
ωn

)2
]2

+
[

d
mωn

(
ω
ωn

)]2 (3)

As the formula shown, the maximum deflection of spring will be achieved when the input

vibration frequency ω equals to the system’s nature frequency ωn =
√
k/m. At this time, the

energy transducer d can absorb the maximum amount of energy:

pout,max =
dem

2Y 2
0 ω

4
n

2d2
(4)

According to the formulas above, it can be concluded that if a higher energy absorption value

is to be obtained, the vibration frequency received by the energy harvester must be close to its

resonant frequency.

Xu and Tang [22] proposed a cantilever-pendulum system achieving multi-directional energy

harvesting by one piezoelectric energy transducer through internal resonance behaviour. Figure

2 shows the arrangement of the device. The device includes a cantilever and a pendulum

connected to its tip. The pendulum is hung in the gravity direction. There is a piezoelectric

transducer installed on the root of the cantilever. The energy of the beam’s bending motion will

be converted into electricity through the piezoelectric transducer. Figure 3 shows the motion

of two major parts. When the pendulum swings, it will generate acceleration in the z direction

to drive the vibration of the beam, and if the natural frequency of the pendulum is half that of

the beam, resonance of beam vibration will be induced. In this case, the pendulum’s oscillation

energy will be transferred to beam’s bending and be collected.

In most cases, the input environmental vibration energy is distributed in a wide frequency range

or direction. To conclude, through proper design, the internal resonance or mode coupling can

be used to realize the energy conversion between different modes (with different direction or

matching frequency), so as to realize simply higher harvest efficiency or the energy harvesting

of multiple vibration modes by single transducer [7, 8, 9].
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Figure 2: Schematic diagram of the cantilever-pendulum system [22]

Figure 3: Motion of the system parts [22]

2.2.2 Sensing

In order to monitor or measure mechanical, optical, acoustic, electromagnetic and other in-

formation in the environment, sensors are widely used in microelectromechanical systems [10].

Mode coupling and internal resonance effects are also widely used in this field, and they can

improve the sensitivity and bandwidth of sensors with relatively high quality factor [11].

Heat sensor Zhang et al. [23] proposed a highly sensitive thermal sensor using the internal

mode coupling effect. When the thermal sensor is heated, the resonant frequency shifts. Internal

mode coupling is created using fundamental bending mode and fundamental torsional mode.

The coupling is induced by cubic Duffing nonlinearity. As a result, if modulate the input heat

at a certain frequency, the frequency shift increased by two orders of magnitude.

Mass sensor Mechanical sensors are mainly used for sensing mechanical parameters such as

displacement, velocity, acceleration, angular velocity, force, torque, deformation, etc [24].

For example, piezoelectric MEMS resonant sensors, have extremely high resolution and can be

used for picogram to femtogram quality inspection [25] in the chemical and biological fields. A

quartz crystal microbalance can be considered as an acoustic bulk wave resonator [26]. When
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Figure 4: Higher-order modes have a more significant frequency shift [11]

the deposited mass is rigid and regularly distributed, the change of characteristic frequency

satisfies a linear relationship with the mass change when the frequency change is below %, as

shown by the Sauerbrey equation [27]:

∆f = − 2f 2
0

A
√
ρqµq

∆m (5)

But most research on such mass sensors has focused on linear mass detection. Kirkendall et

al [28] proposed a device for mass detection in MEMS systems using internal resonance and

mode coupling. When slightly changing the resonator surface mass, a nonlinear amplitude jump

will be observed in the device’s frequency response curve. Zhang et al [11] used the internal

resonance between the fundamental mode and the higher-order mode to amplify the resonance

frequency shift by an integer multiple, achieving an 11 times sensitivity amplification. As shown

in the Figure 4, when the mass is changed, the higher-order modes have a more significant

frequency shift than the fundamental mode.

Angular rate sensing Gyroscopes are widely used for angular rate sensing in MEMS [29].

Due to their small size, most MEMS gyroscopes do not use rotor rotation to get data, but instead

use the Coriolis effect. In these Coriolis gyroscopes, vibration and rotation-induced Coriolis

forces transfer angular velocity energy to the sensing mode. When the natural frequencies of

the sensing mode and the driving mode are equal, the energy received by the sensor is the largest,

leading to maximum sensitivity. Sarrafan et al. [30] proposed a structure that exhibits both

1/2 subharmonic and 2:1 internal resonance is introduced to tune the sense and drive modes.

That can enlarge frequency bandwidth for nonlinear micro-gyroscopes and provide a higher
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robustness against fabrication and operation errors. Another H-shaped nonlinear tuning fork

micro resonator [31] utilizes a 2:1 internal resonance to eliminate the mode matching problem

in a purely mechanical way, reducing the instability and drift caused by cross-coupling. This

principle can make the output signal of the gyroscope is only sensitive to the input angular

rate, thus improving the robustness of the gyroscope towards mechanical variations.

Venstra et al. [32] proved that flexural vibration modes of clamped-clamped micromechanical

resonator can be strongly coupled. In this way, the frequency response of resonator can be

easier detected by mechanical sensor. This can avoid the signal loss caused by the parasitic

capacitance behavior of electrical detector.

Saad et al. [33] proposed a concept of coupled micro resonator array sensor that use mechanical

springs to couple five micro resonators together, as shown in Figure 5. Because the response

mode frequencies of the five resonators are different, the states of each resonator can be obtained

by only measuring the modal resonance frequency of the output at the end coupled array. When

these resonators are mass sensors, the resonator states can be the amount of mass attached

on the sensor. In addition, these springs enhance the resonator’s response magnitude. It is

also possible to change the spring design parameters to better separate modal responses and

increase the overall frequency bandwidth.

2.3 Compliant mechanism

Compliant mechanisms are the mechanisms that transfer motion, force, or energy through the

deflection of flexure joints parts that is made of elastic materials. Compliant mechanisms have

a lot of advantages, such as customizable motion, high precision, low weight, low friction, less

abrasion, ease of manufacturing, and most importantly, compactness [12]. These characteristics

make them very suitable for microsystems, robotics, biomedical implants, and other applica-

tions.

However, the motion behavior and mechanical properties of compliant mechanisms become

nonlinear when large deflections are involved. Moreover, compliant mechanisms often involve

more fragile and slender parts, and the strength of the material must be paid attention to.

Therefore, the design of the compliant mechanisms becomes a challenging job. According to

a literature review by Juan A. Gallego and Just Herder [34], the design methods of compliant

mechanisms can be divided into three categories: the kinematics-based approach, the building

blocks approach and the topology optimization approach, as shown in Figure 6. Other classi-

fications of designing approaches include: finite element analysis, topology optimization, and

11



Figure 5: Schematic diagram of the coupled micro resonator array [33]
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Figure 6: Synthesis of compliant mechanisms [34]

pseudo-rigid-body model (PRBM) [12].

2.3.1 Rigid body replacement

Rigid body replacement method is one of kinematic approaches. In short, the core of this

method is to first design a rigid body model mechanism using rotary joints. The rigid body

mechanism should be able to complete the designed motion. Then according to the rigid body

mechanism, the equivalent compliant mechanisms are designed. The major replace method

include using compliant revolute joints and setting up the pseudo-rigid-body model. After

selecting a replacement method, complete the rest of the design based on the corresponding

design ideas. The revolute joints consist of a single part whose ends can be fused with beams

with higher stiffness. They act as the joints connecting multiple rigid bodies and are able to

be bent at large angles. They come in a variety of designs. Davood et al. [35] summarize the

design of some common compliant revolute joints as shown in Figure 7.

13



Figure 7: Compliant revolute joints [35]

2.3.2 Pseudo-Rigid-Body (PRB) model

PRB model is a method to analyze the macro scale deformation, force, torque and energy

of a compliant component when it is subjected to a large deflection. This method can be

used to convert a revolute joint into an equivalent compliant mechanism and analyze possible

mechanical changes, thus designing suitable compliant joint. In this method, the small joint

beam is equivalent to two rigid beams connected by ordinary revolute joints. A torsion spring

is installed on the rotary joint. The models established by PRBM are also different depending

on whether the deformation is concentrated in a certain part of the beam or widely distributed

on the entire beam. Figure 8 illustrated the PRBM of a fixed-free beam with widely distributed

deformation. The stiffness of the torsional spring satisfies K = 1.5164EI/l. Where l is the

length of the small-length flexure, E is the Young’s modulus of it, I is its and cross-section

second moment of inertia. Figure 9 illustrated the PRBM of a fixed-free beam with deformation

concentrated on the joint. In this model, the stiffness at the joint is much lower than the beam

next to it. The stiffness of the torsional spring satisfies K = EI/l.

2.3.3 Structural optimization

Structural optimization approach, as a main method of compliant mechanism design, is used

to find the optimal compliant mechanism design that satisfies the given constraints [34]. The

fitness of compliant mechanism design is defined by objective function. An optimization prob-

14



Figure 8: PRBM of a fixed-free beam with widely distributed deformation [12]

Figure 9: PRBM of a fixed-free beam with deformation concentrated on the joint [12]
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lem can be expressed as Equation 6, where f(x) is the objective function. x is the vector of

design variables. hi and gj are the constraining equations and inequalities.

minimize
x∈Ω

f(x)

subject to

hi(x) = 0 i = 1, 2, . . . , p

gj(x) ≤ 0 j = 1, 2, . . . ,m

where

x =
[
x1 x2 . . . xn

]
(6)

Structural optimization can be divided into topology optimization, shape optimization and size

optimization [34]. For a compliant mechanism, its topology structure includes input, output,

ground ports, and the connection (on or off) between different main components of the structure.

Minor changes in shape and size will not affect its topology. The shape of the compliance

mechanism includes the projected shapes of its beams in different directions, the cross-sectional

shape, etc. The dimensional information of the compliance mechanism includes the specific

lengths of different components of the model, cross-sectional geometric parameters, etc. All the

topology, shape and size parameters are the design variables of the compliant mechanism. The

object function can be defined by five dominant characteristics [36]: mutual strain energy and

strain energy, mechanical and geometric advantage, energy efficiency, characteristic stiffness,

and artificial I/O spring formulation. These characteristics can be defined with some certain

functions and weighted according to the needs of the task.

There are several ways to define the topology, shape, and size of the compliance mechanism

when performing structural optimization. The definition can be parameterized. For example,

when designing a beam generated by a sweep, the coordinates of each point of the sweep

reference polyline can be given, and then the cross-sectional shape and coordinates of the beam

should also be given. In addition to polyline coordinates, spline curve control point coordinates,

arc center coordinate and radius, etc. can also be used as structural parameters. The principle

is similar to computer-aided drafting. Different kinds of parameters can be selected according

to the task needs.

2.3.4 An example of structural optimization

Structural optimization methods can be used to design compliant mechanisms with prescribed

input-output relationships. These compliant mechanisms can serve as the equivalent of con-
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Figure 10: The splines and topology arrangement of the mechanism [37]

ventional mechanical components such as gears, linkages, improving the performance of various

devices. Christine Jutte and Sridhar Kota [37] proposed a general approach to optimize the

topology, shape, and size of compliant mechanisms. This method can generate nonlinear spring

compliant mechanisms with a specific load-displacement function relationship. The nonlinear

spring consists of a “fractal”-like network of splines in a single plane. Since the entire compliance

mechanism is at the same plane, there are various ways to fabricate, such as stamping, forming,

stripe bending, laser cutting and die casting.

The splines are all cubic B-curves. Every curve is generated by 5 control points. The whole

mechanism consists of several splines, each spline is connected to a control point of another

spline or an external port of the system. External ports can be input ports, output ports,

or ground ports. Using sweeps to generate corresponding models along these splines. Figure

10 shows the topology of the compliant mechanism. The boundary conditions, existence, and

control points of all splines build up the design variables of the entire compliant mechanism.

To realize the optimization, firstly, the load-displacement curve should be defined. The curve

can be a polyline consisting of several key points. The highly customized shape of the curve can

be J-curve, S-curve, and a constant force curve (flat-curve). Also, define some geometric and

physical property parameters in advance, such as the cross-section thickness and the Young’s

modulus of the material.

Then, MATLAB generate serval sets of design variables, input these spline data to python.

Python generates beam elements B21H, divides mesh, creates analysis steps and jobs, and calls

Abaqus for finite element calculation. Abaqus outputs the load-displacement curve data and

von Mises stress.

17



Figure 11: One optimized design and its "J"-shaped load-displacement curve [37]

Thirdly, MATLAB reads the displacement-load data and compares it with the originally pre-

scribed displacement-load function, check if the design will break according to the von Mises

stress. Using a genetic algorithm (GA), generate several new sets of variables with better

fitness. Loop until the condition to terminate the GA looping is met.

Finally, a nonlinear spring design with ideal load-displacement relationship will be generated.

Figure 13 shows one of the designs generated for the J-curve. It can be seen that the load-strain

relationship is in good agreement with the design value.

2.3.5 Flexible translational joints

Flexible translational joints is a kind of compliant mechanism device that restrict the movement

of system component to one direction [38]. The device minimizes the axial drift while achieving

a large range of motion. Therefore, the axial stiffness of such devices will typically be much

less than the off-axis stiffness. The most important performance criteria of such translational

joints include: axial stroke, ratio of off-axis to axial stiffness, and size. A study led by Davood

Farhadi et al. [35] investigated the performance of various kinds of compliant translational

joints, as shown in Figure 12. Only (c) (f) (g) (h) satisfy the condition of no axis drifts. High

stroke can be achieved from (a) to (h). For (a) (f) (h), displacement can be input from outside

of the outline. (a) (b) (c) has relatively small areas compared with their stroke.

2.4 Discussion

According to the state of art, the design for mode coupling in a 2-degree-of-freedom system

that is based on compliant mechanisms has not received wide research attention. Normally, to
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Figure 12: Compliant translational joints: (a) four-bar-notch block and (b) double notch block,

(c) symmetrical double notch block, (d) four-bar block, (e) double block, (f) symmetrical double

block, (g) folded beam, (h) planar CT joint, and (i) double XBob [35]
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Figure 13: Schematic diagram of the 2-DoF system

couple one system to another, researchers use electrostatic actuation method [13, 39] or optical

methods [4]. In this project, a compliant mechanism that use a nonlinear spring to achieve

mode coupling is proposed, as shown in Figure 13.

In this 2-DoF system, both masses (m1 and m2) move only in x-direction. They are connected

to ground with two linear spring k1 and k2. The displacement of m1 and m2 in x direction are

represented by q1 and q2, respectively. A cubic linear spring with a very small linear term is

used to couple the two masses. Equation 23 is the equation of motion of this system. m1 0

0 m2

 q̈1

q̈2

+

 k1 + ε −ε

−ε ε+ k2

 q1

q2

+

 α (q1 − q2)
3

−α (q1 − q2)
3

 =

 0

0

 (7)

Use the eigenmode term [X] (Equation 24) of the equation of motion to transformation the

system to modal space, as Equation 25 shows. fnl is the nonlinear term.

 q1

q2

 = [X]

 η1

η2

 (8)

 µ1 0

0 µ2

 η̈1

η̈2

+

 γ1 0

0 γ2

 η1

η2

+

 xT
(1) fnl/µ1

xT(2) fnl/µ2

 = 0 (9)

The ratio of resonance frequencies satisfies Equation 26. It is a very complex formula that

involves many variables and parameters. However, when the linear term of the cubic spring

becomes very small. The frequencies will satisfy Equation 27, which is very simple and elegant.

ω2

ω1

=

√
γ2/µ2√
γ1/µ1

(10)

ε → 0, ω1 →
√

k1
m1

, ω2 →
√

k2
m2

(11)
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Figure 14: Relationship between frequency ratio and linear term

For example, if k1 = 9k2, m1 = m2, the ratio of resonance frequencies will be like Figure 14,

when linear term ϵ approaches zero, the resonance frequencies ratio will be equal to 3, which

lead to a 1:3 internal resonance for the system. Therefore, by designing or tuning the k1 and

k2, an internal resonance with prescribed ratio can be achieved.

To conclude, according to the mathematical analysis above, the design of the spring with ex-

tremely high nonlinearity is very important. Its design can be done according to the knowledge

mentioned in the previous compliance mechanism design section and structural optimization

section. Despite the numerous advantages of using nonlinear springs in MEMS, there are sev-

eral challenges that need to be addressed in order to optimize their design and performance.

The fabrication of nonlinear springs in MEMS can be challenging due to the small size of the

device and the complexity of the design. Besides, the characterization and modeling of the

mechanical properties of nonlinear springs can be difficult due to their nonlinear behavior and

hysteresis. Also, the integration of nonlinear springs with other MEMS components can be

challenging due to the different fabrication processes and materials used. Furthermore, in order

to ensure that the two masses move in one direction, simple linear springs on both sides are

not sufficient, because they will introduce an axial offset. Therefore, it is necessary to develop

a suspension stage. The suspension stage design can be completed according to the knowledge

of the previous flexible translational joints section.
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Abstract

Mode coupling has extensive use in the MEMS field, including frequency division, vibration

direction conversion, and energy transfer. In practice, these applications can be used to im-

prove the performance of various devices such as sensors and energy harvesters. Nonlinear

spring also has a wide application in MEMS field. Various nonlinear spring mechanisms, such

as fixed-angle bows, bistable rotational mechanisms, H-shaped springs, and topology-optimized

planar springs, have been proposed and utilized. Nevertheless, there is a lack of non-electric

design elements specifically designed for mode coupling. This thesis proposes a simple system

demonstrating the feasibility of using a nonlinear spring to achieve mode coupling. The sys-

tem incorporates a spring-mass system with two mass blocks, two linear stages, and a unique

nonlinear spring compliant mechanism. The integrated components can be fabricated using 3D

printing resin or high-precision femtosecond laser-cutting of silicon wafers. Additionally, a new

crank-slider structure and a spline-shaped nonlinear spring are developed and studied for this

system. Each has advantages and disadvantages, and is suitable for systems of different sizes

and materials respectively. Their load-displacement relationship roughly satisfies the cubic re-

lationship, but still has a linear term. The proposed system holds potential for enhancing the

performance of sensors, energy harvesters, and other MEMS devices.

Keywords: Compliant mechanisms, Nonlinear spring, Mode coupling, Nonlinear dynamics
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3.1 Introduction

The principle of mode coupling has been widely used in the MEMS field. Its applications

include, but are not limited to, frequency and division[1], changing of vibration direction (e.g.

from displacement to torsion) [2, 3], transfer of energy[4]. It can be used to improve the of

performance of sensors [5] and energy harvesters [6, 7, 8] in their sensitivity and bandwidth by

transferring the energy from a specific frequency range to another frequency. Vibration energy

in different directions and frequencies can be transferred to another mode by taking advantage of

the geometric nonlinearity. For MEMS systems, nonlinear springs also have multiple uses, such

as eliminating the pull-in instability of the hybrid actuator[9], and improving the performance of

robotic joint[10]. There are various spring-like mechanisms with nonlinear characteristics, such

as fixed-angle bows [11], bistable rotational mechanism[12], H-shaped spring [13], splines[14],

cam structure[15], and topology-optimized planar springs [16].

Although many nonlinear springs have been proposed and widely applied, and various optical

or electrostatic actuation methods have been employed to achieve mode coupling, there is still

a lack of corresponding design elements for nonlinear springs that is specifically designed to

achieve mode coupling. To realize such application, a simple system is proposed to demonstrate

the feasibility of using a nonlinear spring to achieve mode coupling. It is also required to design

a nonlinear spring utilizing the concept of compliant mechanism for this system.

In this thesis, a spring-mass system is designed, which includes two mass blocks, two linear

stages, and a nonlinear spring. The two blocks are connected together using a nonlinear spring

and each block is connected to the ground using a linear spring. The deformation direction

of the linear spring and the nonlinear spring are coaxial. The nonlinear spring compliant

mechanism has a unique shape that, when a load is applied to its end in a particular direction,

there is an approximately cubic relationship between the load and the displacement at that

point. The utilization of a cubic relationship for the nonlinearity is attributed to its ease of

design and implementation. The linear stages are flexure structure that function as ordinary

linear springs and constrains the degrees of freedom of the blocks except axial displacement.

All components are integrated to a compliant mechanism in a single plane. The system can be

made of 3D printing resin or made by high-precision femtosecond laser-cutting silicon wafers.

For the nonlinear spring, this thesis proposes a new nonlinear spring compliant mechanism that

is similar to a crank-slider structure. For the problems described in this thesis, an alternative

spline-shaped nonlinear spring is also developed and studied.
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3.2 Nonlinear spring design methods

This section describes the design techniques for the nonlinear spring with an approximately

cubic relationship between the load and the displacement. The techniques includes FEM sim-

ulation and genetic algorithm optimization. In fact, nonlinear springs with higher order terms

(such as 5th order, 7th order) can theoretically also be used in this system. However, as the

displacement increases, the required load and the stress it brings will also increase rapidly,

which will bring great challenges to the design. Therefore, the cubic behavior is finally selected

as the nonlinear spring.

Two nonlinear spring design strategies are examined in this thesis. One is an spline-shaped

mechanism inspired from literature [14]. The other is a newly developed method in this thesis,

which is named crank-slider mechanism according to its shape. The two designs are suitable for

different situations (available sizes and materials). Besides, although the most critical design

element in the system is the nonlinear spring. Blocks connected to non-linear springs also need

to be connected to the ground using a linear spring stage. Therefore, the design method of

the linear spring stage is also introduced. It uses the concept of simple flexible translational

joints. In this section, lumped model verification is also performed on FEM software COMSOL

to ensure that the result of finite element model copes with the mathematical models.

3.2.1 Linear stage design

Linear stage is a compliant mechanism device that connects ground and the mass block together.

When an object moves in a specific direction, this device exerts an opposing force proportional

to block displacement, just like a spring. The device only allows the movement of the object

in one direction only, and that direction is the same as the axis of the spring. In other words,

this mass has only one degree of freedom. The full system in this thesis has two linear stages

as the suspensions for two masses. The motion directions of the two linear stages are coaxial.

However, the two linear stages are not necessarily the same. Since their equivalent linear springs

may have different stiffness depending on the system design. Therefore, the geometry of these

linear stages could be potentially designed differently. —- Flexible translational joints [17] is

a kind of compliant mechanism device that perfectly suits the linear stage requirements. The

basic design of flexible translational joints is shown in Figure 15. It utilize the bending of blade

flexures to provide stiffness. The most important parameters of the flexures are length L, width

w, and thickness t. When the mass block is moving in x direction with a displacement of ∆x,

it will receive a counter force Equation 12, where E is the Young’s modulus of the material.

Therefore, the effective stiffness of the linear stage becomes Equation 13. However, the bending

24



Figure 15: A basic design of flexible translational joints

of flexures will also introduce axis drift ∆y in the y direction, which roughly satisfies Equation

14 [18]. When the x displacement stroke is about 20% of the length of flexures, axis drift

∆y will be only 2.4 % of flexure length L. For the linear stage in this thesis, out-of-plane

deflection is not under consideration because of the limited amplitude of the input excitation

and strength of the material. Since the side surface of the mass block are exposed and free

from interference from other flexures, external loads can be applied to the mass block directly.

—- Flexible translational joints [17] are compliant mechanism devices that are well-suited for

linear stage applications. The basic design of these joints, as depicted in Figure 15, relies on

the bending of blade flexures to provide the necessary stiffness. The key parameters governing

the behavior of the flexures are their length (L), width (w), and thickness (t).

When a mass block undergoes a displacement ∆x along the x direction, it experiences a counter

force:

F =
2Ewt3

L3
∆x (12)

E represents the Young’s modulus of the material. Consequently, the effective stiffness of the

linear stage can be expressed as shown below:

Keff =
F

∆x
= 2× 12EI

L3
=

2Ewt3

L3
(13)

However, it is important to note that the bending of the flexures also introduces a certain

25



amount of axis drift ∆y in the y direction [18] , which can be approximately described as:

∆y ≈ 0.6
∆x2

l
(14)

It should be emphasized that the axis drift is generally modest, reaching only around 2.4% of

the flexure length L when the x displacement stroke is approximately 20% of the flexure length.

In the context of this thesis, the linear stage design primarily focuses on in-plane deflection,

as the amplitude of the input excitation is limited and the material’s strength is taken into

consideration. Additionally, since the side surfaces of the mass block remain exposed and free

from interference by other flexures, external loads can be directly applied to the mass block.

3.2.2 Lumped model verification

In this thesis, the most important design parameters of the whole system are spring stiffness,

mass, and nonlinear spring performance. These system design parameters can be determined

according to numerical simulation in Simulink or MATLAB. It is necessary to establish a

lumped model for the system to verify that the response of the numerical model is consistent

with that of the finite element model. A lumped model is often used in engineering and physics

to simplify complex systems and analyze their behavior. It allows us to represent the system

using a reduced number of elements, making it easier to understand and analyze the overall

system response. It has ideal parameters and a simplified structure.

Since system design parameters (stiffness, mass, etc.) often change according to geometric

size parameters (such as width, thickness and length of the flexures), and the topological

relationships remain constant, it is necessary to develop a more convenient modeling method,

namely parametric and feature-based modeling. The software COMSOL is employed for both

CAD design and FEM simulations of the system and its constituent components. By utilizing

parameter-defined geometric dimensions rather than fixed values, this modeling methodology

facilitates efficient editing and modification through non-GUI code methods.

To assess the fidelity of COMSOL’s modeling and simulation capabilities, a simplified lumped

model system was devised, as shown in Figure 16. This reduced model serves to streamline

the analysis. It comprises two rigid mass blocks and three slender elastic bars with linear

behavior. These bars, constructed from distinct materials, possess specific Young’s modulus

values, thereby imparting designated stiffness to the elongation and compression of these slender

rods, analogous to springs. Furthermore, the mass blocks exhibit varying densities, enabling
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Figure 16: The lumped model for the COMSOL

customization of their respective masses. Notably, unlike the comprehensive systems explored in

this thesis, the central spring within this lumped model assumes a conventional linear behavior

to facilitate the modeling. The equation of motion of this system satisfies:

 m1 0

0 m2

 ẍ1

ẍ2

+

 k1 + k2 −k2

−k2 +k3

 x1

x2

 =

 F1(t)

F2(t)

 (15)

An input step load of 5N for a duration of 0.1s was applied to mass m1 in the lumped model,

and transient analysis was conducted using COMSOL. Additionally, a set of motion equations

was established in MATLAB, incorporating the corresponding initial conditions (step load), to

calculate the transient response of the two masses. The results, as shown in Figure 17, ex-

hibit a high degree of agreement between the two software platforms, affirming the suitability

of COMSOL for CAD modeling and FEM simulation based on mathematical models. This

approach entails determining the system’s crucial parameters (e.g., stiffness, mass) and em-

ploying mathematical tools such as MATLAB and Simulink to compute the theoretical system

response. These parameters are subsequently utilized for modeling and finite element analysis

in COMSOL.

The consistency observed between the results obtained from the mathematical tools and the

finite element software in this lumped model experiment ensures the reliability of the overall

process. Utilizing the effiency of mathematical tools compared to finite element calculations,
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Figure 17: The lumped model response of different software
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this method saves significate time during the debugging phase. However, it should be noted

that the lumped model represents an idealized approximation, and subsequent iterations are

indispensable in subsequent designs to mitigate errors from factors such as spring mass and

geometric approximations.
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3.2.3 Design of spline-shaped mechanism nonlinear spring

Design principles In this section, a design method based on spline-shape to achieve spring

with a cubic load-displacement characteristics is developed. This method enables the genera-

tion of nonlinear springs with a non-linear relationship between load and displacement. The

nonlinear spring is constructed using a fractal tree-like branching network of splines within a

single plane, with at least one spline included, thus referred to as a spline-shaped mechanism.

This approach is inspired from a previous generalized method [14] that optimizes the topology,

shape, and size of nonlinear springs to achieve desired load-displacement curves. The compliant

mechanism, being entirely planar, allows fabrication through techniques such as 3D printing

and laser cutting.

The spline curves are defined by control points and can be generated using interpolation curves

or cubic Bézier curves. The mechanism comprises one or more splines, with the primary

nonlinear spring integrated with the mass blocks to fulfill the requirements of the compliant

mechanism. The remaining splines possess three potential terminations: fixed to a control

point of another spline, fixed to the ground, or unsupported (similar to a cantilever). Sweeps

are employed to generate corresponding models along these splines.

In this thesis, MATLAB is utilized to generate multiple sets of design variables, including

control point coordinates and cross-section thickness. COMSOL is then employed to generate

a 3D solid model based on the MATLAB design variables. The process involves mesh division,

establishment of boundary conditions, and subsequent finite element calculations based on the

spline data. The resulting data includes the load-displacement curve and von Mises stress.

MATLAB reads the displacement-load data, assesses its nonlinearity, and checks for potential

design failure using the von Mises yield criterion. By employing a genetic algorithm (GA),

several new sets of variables with improved fitness are generated. The GA chromosome typically

contains around 20 design variables. The GA iteration continues until a specified termination

condition is met. Eventually, a design for a nonlinear spring with a cubic load-displacement

relationship is obtained. The workflow of the project is illustrated in Figure 18.

In certain cases, automatically generated splines may intersect or cross over themselves. An

example of self crossing over is shown in Figure 19. However, for the purposes of this thesis,

where fabrication methods are limited to laser cutting and 3D printing, there is no need to

address this issue by reordering control points. However, if stripe bending fabrication method

were to be introduced, it would be necessary to examine and account for potential splines

crossover.
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Figure 18: The optimization logic schematic diagram

Figure 19: Spline with (left) and without (right) self-crossover
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Figure 20: A basic 3D model of spline mechanism nonlinear spring with one primary spline

It is pertinent to highlight that during testing, employing two-dimensional beam elements for

model construction yielded significant computational time savings. However, in the context of

this thesis, the presence of potential splines crossover necessitates the use of three-dimensional

solid models. To investigate this, both a beam element model and a three-dimensional solid

model were developed for the same design, employing fine mesh densities and subject to identical

boundary conditions. As a result, the load-deformation response curves exhibited notable

disparities between the two models. This discrepancy may arise from the fact that the boundary

conditions at the junction of the beam elements and the solid elements (mass block) differ

considerably from those encountered in the more complex model and real-world scenarios.

Consequently, it is imperative to conduct analyses based on three-dimensional solid models to

accurately capture the system’s behavior.

Optimization implementation To begin, a basic 3D model is constructed using COMSOL,

as depicted in Figure 20. This model includes a nonlinear spring spline and two cuboids attached

to its ends. The material is designated as acrylic, with properties sourced from the COMSOL

material library The two cuboids serve as platforms for applying supports and loads. The

spring’s main body is created by thickening the spline curve, which is generated based on the

coordinates of predefined control points, The left cuboid is fixed, and a maximum load F is

applied to the right surface of the other cuboid.

Using COMSOL’s built-in tools, a mesh is generated and a stationary study incorporating

geometric nonlinearity is performed, the parametric sweep function is employed to assess how

the spring’s deformation varies with load F , enabling the alteration of parameter values within

a specified range and step increment. For instance, the load can be set to various values from

-F to F in increments of 0.05F .

Calculations are then conducted to determine the corresponding deformation and stress of the
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object under each load. A probe records the right cuboid’s displacement along the x-axis and the

maximum von Mises stress throughout the model. This process generates a load-displacement

data table for the spring. The project file (.mph) is then saved.

MATLAB can read this .mph project file and directly instruct COMSOL to execute simulations

without a GUI. Moreover, nearly every aspect of the project file can be altered by modifying its

MATLAB code. If needed, additional control points can be introduced for each spline, although

this may increase the calculation time.

The optimization process for spring design is conducted using MATLAB and employs a genetic

algorithm. For designs incorporating a single spline, the design variables in the optimization

are the thickness of the spline body and the coordinates of the spline curve control points. In

this model, the coordinates of the control points at both ends are fixed parameters; that is, the

endpoints of the spline curve are predetermined. However, the remaining five control points in

the middle are variables, constrained to a rectangular area between the two cuboids.

On the other hand, the geometric parameters of the rectangular force platform, the out-of-plane

thickness, maximum load, grid density, load amplitude, and output data format are all fixed

parameters. While these parameters can be readily modified in MATLAB, they are not the

variables being optimized.

If the design calls for multiple splines, the variables will additionally include the coordinates of

the new spline control points and the end type of the new spline, which could be fixed to the

ground, attached to another spline, or unsupported. The necessity for multiple splines can be

manually determined in advance, or can be automatically established by the system within the

optimization program. In addition, the number of control points of the additional spline, and

the range where these control points are located can also be changed.

The genetic algorithm utilized in this thesis does not employ the built-in toolbox provided with

MATLAB, allowing for superior customization. The process begins by importing the .mph

project file and setting the genetic algorithm parameters, including population size, number of

generations, crossover rate, and mutation rate.

Next, if necessary, modifications are made to the fixed parameters of the model. Following this,

the design variables for the initial generation are randomly generated within the designated

range, MATLAB then automatically adjusts the variables in the project file accordingly and

prompts COMSOL to perform simulations for each individual in the initial generation, The

load-displacement probe table for each individual is then saved as a local .txt file.
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Assuming that the data table of a given design contains a total of N pairs of load-displacement

elements (where the load of the i-th element is Fi and the corresponding displacement is xi),

MATLAB’s built-in non-linear least squares fitting tool is utilized to fit the load-displacement

data to a function:

f(x) = P1x+ P2x
3 (16)

As such, the fitted load for displacement xi is represented as fi. Here, P1 is the fitted linear

term, and P2 represents the cubic term.

If the fitting function closely matches the original data and the linear term is small, it can be

inferred that the load-displacement curve of this design group is satisfactory.

To ensure minimal deviation between the design results and the standard cubic fitting function,

a shape function error (SFE) is introduced, The SFE quantifies the error between the fitting

function and the original data, as demonstrated below:

SFE =

∑N
i=1 |Fi − fi|

N ·max (|fi|)
· 100% (17)

The SFE is non-dimensionalized, making it applicable to designs of various sizes. A smaller

SFE indicates a more desirable design, and it typically falls within the 10 % range.

As mentioned before, nonlinear spring should have smaller linearity. Therefore, the linearity

penalty (LP) is used to measure the linearity of the fitted curve, as shown below:

LP =
P1 ·max (|xi|)

P1 ·max (|xi|) + P2 ·max (|xi|)3
· 100% (18)

LP measures the proportion of linear force in total load at largest deformation. LP is between

0 and 100%.

In addition, in order to avoid the model fracture due to stress. Stress penalty (SP) is also

introduced, as expressed below:

SP =

0, max(von Mises stress) < Yield stress

WP , max(von Mises stress) ≥ Yield stress
(19)
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Figure 21: Abnormal surface and mesh. The left figure is the model before manual fine-tuning

(maximum von Mises stress is 779.64 MPa), the right figure is after fine-tuning (maximum von

Mises stress is 250.63 MPa)

WP is the weight parameter of penalty. It is set to 100 in this thesis. It is important to highlight

a limitation of the 3D sweep function in COMSOL, which can introduce errors on the surface

and result in the smooth surface becoming discontinuous at turning points. This irregularity

can lead to local mesh distortions, causing extremely high von Mises stress values, as shown in

Figure 21. Through multiple test iterations, it has been observed that these stress values can

be up to four times larger than those obtained after manual fine-tuning.

Furthermore, not all designs require the maximum load to achieve large stroke capabilities.

Consequently, in the stress penalty criterion, the yield stress can be set higher than the actual

material parameters. This approach serves to prevent potentially favorable designs from being

eliminated due to incorrect simulation results.

Based on the results obtained from multiple trials, SFE typically exhibits smaller values com-

pared to the LP. However, it is important to consider both SFE and LP in the evaluation of

design fitness. To account for their relative importance, a weight factor of 5 is applied to SFE.

This weighting strategy ensures a balanced consideration of all three factors in the optimization

process. As a result, the objective function becomes the minimization of the sum of weighted

SFE, LP, and SP, as shown below:

Obj function = min(5 · SFE + LP + SP) (20)
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The fitness of each individual in the first generation design is obtained based on the objective

function. Sometimes, the designs have very close fitness. In order to create differences, fitness

can be squared or cubed, making it easier to screen out excellent individuals. Using roulette

wheel method to select the next generation of designs and performing crossover and mutation

operations. The loop is terminated when reaching the maximum generation number.
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Figure 22: A crank slider linkage

Figure 23: Deflection angle of flexures

3.2.4 Nonlinear spring based on crack-slider mechanism arrangement

Design principles In this section, a novel design method to achieve spring with a cubic

load-displacement characteristics is developed. It is named crank slider mechanism. This

design concept draws inspiration from the traditional crank slider linkage, wherein the rods are

interconnected through revolute joints, as shown in the Figure 22.

In the crank slider mechanism, as the slider undergoes translation, the angles between the

different rods vary. To illustrate this, an example is introduced, where the length of the crank

is 30 mm and the length of the other rod is 40 mm. As the displacement of the slider changes,

the angles between the rods will also change accordingly, as depicted in Figure 23. These

angle variations contribute to the unique load-displacement characteristics of the crank slider

mechanism.

In this thesis, compliant hinges are employed to replace conventional rotation joints in the crank

slider mechanism, as depicted in Figure 24. The compliant hinges used in this design are blade
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Figure 24: A crank slider compliant mechanism

Figure 25: Rigid bars with bending ends

flexures, which serve as connectors between rigid bars with rectangular cross-sections. The

in-plane thickness of the bars is significantly greater than that of the flexures. To ensure that

each flexure remains unbent when the entire system is in its natural position, and to maintain

a specific angle between each rod at the same time, a bend can be added to the end of the rigid

bar, as shown in Figure 25 so that even if there is an angle θ0 between the two rigid bars, the

flexure in between will remain unbent.

During the translation of the slider in the crank slider mechanism, the degree of bending

in the blade flexures varies, leading to different levels of torque. The displacement of the

slider is directly related to the force it experiences, which is influenced by the geometric and

material properties of each component, including the rigid bars and flexures. This particular

characteristic allows for the design of a compliant mechanism that exhibits a distinctive load-

displacement relationship, resembling that of a cubic nonlinear spring. The specific geometric

configuration and material properties of the components play a crucial role in achieving this
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Figure 26: The PRB model of the crank slider compliant mechanism

desired behavior.

Creating a pseudo rigid-body (PRB) model for the crank slider mechanism, as shown in Fig-

ure 26. Since the flexures in this design are much shorter than the rigid bars, they can be

approximated as torsion springs [19]. The torsion spring stiffness K satisfies:

K =
EI

l
=

Ewt3

12l
(21)

E is the Young’s modulus of the flexure material, w is the flexure width (out-of-plane thickness),

t is the in-plane thickness of the flexure, l is the flexure length.

The elastic potential energy stored in the torsion spring is proportional to the square of the

deflection angle ∆θ, as shown below:

Ep =
1

2
K(∆θ)2 (22)

To provide a more comprehensive explanation, the example in Figure 23 is revisited. In this

example, the maximum value of θ3 is set to 48.6°, denoted as θ3,0. By adjusting the bending

end of the rigid bar, the torque spring K3 remains undeformed when θ3 = θ3,0. Consequently,

the energy stored in spring K3 is proportional to (θ3 − θ3,0)
2. As depicted in Figure 27, the

relationship between this value and the displacement of the slider closely resembles a quadratic

curve.

The energy-displacement curve of a standard cubic spring also exhibits a similar fourth power

relationship. Therefore, the crank-slider mechanism demonstrates characteristics analogous to a

cubic spring in certain aspects. Although the curve of K3 may not perfectly align with a quartic

curve, it is possible to compensate for any discrepancies by performing similar operations on
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Figure 27: The square of defection angle and a quartic curve for reference

K1 and K2. This can be achieved by adjusting the length and thickness of the corresponding

flexures, as the stiffness of the torque springs can be fine-tuned during the design process.

Hence, employing a similar approach to the previously discussed spline mechanism, it is possible

to generate a slider-crank mechanism that exhibits a cubic displacement-load relationship.

In contrast to the spline-shaped model, the performance of the crank-slider mechanism is par-

ticularly sensitive to the thickness of the flexures. Therefore, it is recommended to utilize

femtosecond laser cutting due to its high precision. This fabrication method enables the pro-

duction of flexures with the desired thickness, ensuring the accurate and reliable functioning of

the slider-crank mechanism.

Optimization implementation The crank-slider mechanism is optimized using the GA

method similar to the previous spline-shaped design. There are two ways to optimize this

crank-slider mechanism. In this thesis, the second approach is applied.

The first method involves optimizing the design variables, including the stiffness and initial

deflection angle of the three torsion springs, as well as the lengths of the linkages in the crank-

slider mechanism. By conducting force analysis and mathematical derivations, the theoretical

load-displacement curve of the system’s PRB model under these parameters can be generated.

The objective function of the optimization process is the degree of similarity between these

curves and a standard cubic curve. The Genetic Algorithm (GA) method is employed to

optimize the performance and determine the best combination of design variables. The CAD
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design of the model is manually derived based on the performance parameters (stiffness and

initial deflection angle) of the torsion springs, utilizing Equation 21 and Figure 25. Finite

element simulation using COMSOL is performed to finalize the optimized design.

The advantage of the first method is its faster execution as it does not involve finite element

analysis in the GA optimization stage. However, it does not consider stress calculations and

feasibility evaluation during the optimization phase. This can lead to optimized results that may

require flexures with extremely high or low stiffness, which may not be achievable in practice.

Moreover, due to the discrepancies between the pseudo rigid-body (PRB) model and the actual

model, the finite element analysis results of the optimized design may deviate significantly

from the desired cubic relationship. Therefore, multiple rounds of iterations between geometric

design adjustments and performance testing might be necessary, which can be a cumbersome

process.

The second approach involves directly optimizing the geometric parameters of the crank-slider

mechanism model. In this method, the stiffness and initial deflection of the equivalent torsion

springs are treated as black box parameters, meaning they are not directly accessed or modi-

fied during the optimization process. Instead, the focus is solely on optimizing the geometric

parameters of the mechanism.

The basic COMSOL model of the crank-slider mechanism, as shown in Figure 28, includes

various geometric parameters that define the lengths, thicknesses, and angles of the components.

These parameters are essential for the subsequent optimization process.

The flexible segments, denoted by L1, L2, and L3, represent the lengths of the flexures in

the mechanism. The in-plane thicknesses of these flexures are represented by t1, t2, and t3,

respectively.

The rigid bars in the mechanism have bending ends to ensure that the flexures remain unde-

formed when the ground and bars have prescribed angles between them. The lengths of these

compensatory bending ends are denoted by L0, and they have a uniform length throughout

the mechanism. But if necessary, they can also be made optimization variables to provide

additional design flexibility, but need to specify the minimum length. This minimum length

ensures that the mechanism remains feasible and can be fabricated successfully.

The lengths of the rigid bars themselves are represented by LA and LB. It is important to

ensure that these bars are considered rigid, so their in-plane thickness t0 must be sufficiently

large.
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Figure 28: The design of the crank slider mechanism and its geometry variables
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The angles between the ground and bar A, bar B and the ground, and bar A and bar B are

denoted by θ1, θ3, and θ2, respectively. Note that θ2 is not an optimization variable, as it can

be calculated based on the other two angles.

The angles θ4, θ5, and θ6 represent the deflection angles of the flexures relative to the ground,

bar A, and bar B, respectively. These angles are limited to a range of -45°to +45°to ensure

proper model generation and avoid any abnormal behavior.

Finally, the width w of the mechanism, representing the out-of-plane thickness, is determined

based on the requirements of the laser cutting process and the thickness of the plate used.

However, this value does not affect the quality of the nonlinear spring. While the thickness

may impact the absolute values of the forces and displacements involved, it does not alter

the fundamental cubic relationship between load and displacement. Thus, variations in plate

thickness can be considered as a scaling factor without fundamentally altering the behavior of

the spring.

The basic COMSOL model serves as the starting point for the subsequent optimization process,

where the geometric parameters will be adjusted to achieve the desired cubic load-displacement

relationship.

Due to the anisotropy of the silicon wafer material, a coordinate system of crystal orientation

needs to be assigned to the material property in COMSOL. A (100) silicon wafer is utilized in

this thesis, which means that the (100) cubic crystal plane is parallel to the wafer surface. The

x and y directions in the design diagram Figure 28 correspond to x (crystal direction [110]) and

y (crystal direction [110]) in Figure 29. The terms "x" and "y" are the orthogonal directions

in the cubic crystal coordinates.

Similar to the COMSOL model for the spline-shaped mechanism, two cuboids are connected to

the crank-slider mechanism. These cuboids serve as load receivers and platforms for applying

supports and fixing surfaces. A load sweep from -F to F is applied to the model, and the corre-

sponding deformation and von Mises stress of the object are calculated at each load increment.

Probes are used to record the displacement of the right cuboid along the x direction and the

maximum von Mises stress in the entire model.

The design optimization process employs a genetic algorithm, similar to that used for the spline-

shaped mechanism. The design variables include the lengths (L1, L2, L3, LA, LB), thicknesses

(t1, t2, t3), and angular parameters (θ1, θ3, θ4, θ5, θ6). Other important parameters, which

are not design variables, include L0, t0, w, F , mesh density, and material parameters. The
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Figure 29: The crystal orientation of the silicon wafer

objective function is defined in the same manner as Equation 17-20.

It is also worth noting that since the laser beam of the cutter has diameter, the sharp edges

of the original design will be fillets after fabrication. However, adding fillets to a model can

drastically increase the number of meshes, thus increasing CPU hours. To study the effect

of fillet on FEM results, fillets with 30 um diameter are added to a model. The mesh of the

model is shown in Figure 30. The model without fillet has 2,574 mesh elements and the FEM

simulation takes 12.50 s. The model with fillet has 61,727 elements and the FEM simulation

takes 319.59 s. The simulation results are shown in Figure 31. It can be seen that adding fillect

has very little effect on the load-displacement curve of the model. But adding fillet will greatly

increase the simulation time. Although the existence of fillet will affect the maximum von Mises

stress, but the law is still very obvious. Under different loads, the maximum von Mises stress

of the model without fillet is usually about 60 % of that with fillet. Therefore, the maximum

von Mises stress of this without-fillet model can be used to estimate the real situation. Also,

the stress can be rechecked when the final optimization result is generated. Therefore, adding

fillets during GA optimization is unnecessary.

The second method, which involves optimizing the geometric parameters of the model, intro-

duces a larger number of design variables compared to the first method that focuses on torsion

spring stiffness, deflection, and bar length. Consequently, the chromosomes in the genetic al-

gorithm become longer, requiring a larger population size to explore a wider design space.

Additionally, the evaluation of each individual’s fitness necessitates performing finite element

simulations, resulting in increased computational time for the GA optimization process.

However, this method offers several advantages. Firstly, it eliminates the need for calculating
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Figure 30: The mesh of the model without fillet and with fillet

Figure 31: The simulation results of the model without fillet and with fillet
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geometric parameters based on performance parameters and manually constructing a 3D model,

reducing the manual effort required. Secondly, the designs generated through this method

guarantee mechanical feasibility since the optimization process considers geometric constraints.

Moreover, the inclusion of finite element analysis allows for the assessment of stress levels,

enabling the quick identification of designs that cannot withstand excessive loads and their

elimination from the optimization process.
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3.3 Nonlinear spring design embodiment

Both design methods for the nonlinear spring can generate a multitude of models based on the

provided basic parameters, However, the load-displacement curves of these springs do not form

a perfect cubic curve. Notably, there are still non-negligible linear terms present, While the

coefficient of the cubic term is adjustable, the range of modification is relatively limited.

3.3.1 Result of spline-shaped mechanism nonlinear spring

The optimization process is performed for a nonlinear spring with a length of 132 mm along

the x direction. The overall width (out-of-plane thickness) of the mechanism was set to 5 mm.

The maximum applied load on the spring in the x direction was 11.25 N.

The number of splines in the system is set to be determined by the optimizer, with a maximum

of 2. In order to simplify the design process and prevent excessive complexity, the configuration

of the secondary spline involved manual adjustments. Specifically, one end of the secondary

spline was fixed to connect with the middle control point of the primary spline, while the other

end was left unattached. Additionally, the secondary spline was designed to have only four

control points. The range within which these four control points were generated was limited

to a smaller rectangular region centered around the middle control point of the primary spline.

These constraints were implemented to reduce the number of design variables and ensure that

the generated designs remained within a manageable level of complexity. By controlling the

configuration of the secondary spline in this manner, the design process was made more efficient

and the resulting designs were easier to handle.

Following the optimization process, a design was obtained, as shown in Figure 32. The spring

was designed using a double-spline configuration. The secondary spline appears on one side of

the primary spline. The spline partially overlaps with the primary spline, but does not intersect.

The primary spline had a thickness (in-plane thickness) of 2.10 mm, while the secondary spline

had a width of 1.75 mm.

The full load-displacement curve of the spring is presented in Figure 33, revealing a fitted curve

that consists of both linear and cubic terms. The linear term, denoted as P1, was found to

be 188.89 N/m, while the cubic term, denoted as P2, was determined to be 46,354 N/m3.

Notably, when a load of +6.3 N or -6.7N was applied, the maximum von Mises stress reached

the yield point of 124 MPa. Within the yield stress, the mean absolute error (MAE) of the

FEM load and fitting curve is 0.256N, the mean absolute percentage error (MAPE) is 5.8%.

Despite undergoing multiple iterations, the design method did not result in a perfect design that
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Figure 32: Generated spline-shaped nonlinear spring, the "small tail" in the middle of the

primary spline is the secondary spline
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Figure 33: The load-displacement curve of the generated nonlinear spring design

exclusively exhibits a dominant cubic behavior in the load-displacement curve, with negligible

contributions from other polynomial terms. The generated designs still possess non-negligible

linear terms, indicating a partial linearity in their load-displacement characteristics. Further

refinement of the design principle is necessary. Potential methods for improvement include

increasing the number of splines, exploring different materials, adjusting the global size of

the model, or enlarging the population size in the genetic algorithm. However, due to time

constraints, these methods were not investigated in this study.
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Figure 34: The optimized crank slider mechanism nonlinear spring design

3.3.2 Result of crank slider mechanism nonlinear spring

The optimization process was conducted for a crank slider mechanism fabricated from a 525 µm

thick silicon wafer. The yield criterion for single crystal silicon was set at 1.23 GPa [20]. The

cross-section of the mechanism was constrained to a rectangular shape with dimensions of 15

mm in length and 8 mm in width. A maximum load of 10 N was applied to the spring in the x-

direction. Following the optimization, a design was obtained as depicted in Figure 34, featuring

flexure thicknesses ranging from 102 to 170 µm and flexure lengths between 807 to 1,208 µm.

The lengths of bars A and B were determined as 5,420 µm and 6,673 µm, respectively.

The resulting load-displacement curve of the spring, displayed in Figure 35, was fitted with a

linear term of P1 = 394.4 N/m and a cubic term of P2 = 3.44× 107 N/m3. The quality of the

fit was also evaluated using the mean absolute error (MAE) and the mean absolute percentage

error (MAPE), resulting in an MAE of 1.48 N and an MAPE of 30% between the FEM load

and the fitted curve.

However, it is worth noting that the load-displacement curve exhibited asymmetry around the

origin, as depicted in Figure 35. Despite multiple optimization iterations and design updates,

this issue could not be completely resolved. Additionally, due to the high Young’s modulus of

silicon, significant deformation of the spring required a substantial load, which in turn led to

high internal stresses exceeding the yield stress. For instance, even applying a displacement

of 800um to the system in Figure 34 would reach the yield point, where the linear term still

dominated the load-displacement relationship. Consequently, achieving a highly satisfactory

design for a crank slider mechanism with a 525 µm silicon wafer of size 15 × 8 mm proved
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Figure 35: The load-displacement curve of the crank slider mechanism nonlinear spring design

challenging under the current design strategy.

Upon inspecting the optimization results, it was observed that the majority of the designs

exhibited improved cubic properties when subjected to purely tensile forces. Specifically, the

load-displacement curves of the springs in the positive half of the x-axis demonstrated closer

resemblance to a standard cubic curve. A design exemplifying favorable tension cubic prop-

erties is presented in Figure 36, where the fitted curve in Figure 37 featured a linear term

of P1 = 4, 321 N/m and a cubic term of P2 = 1.06 × 1010 N/m3. In this particular model,

yielding takes place at a specific point where the displacement reaches 240 µm. Evaluating its

load-displacement curve, the mean absolute error (MAE) was 0.58 N, with a mean absolute

percentage error (MAPE) of 5.0%. Furthermore, by solely considering the portion of the curve

where the load remained below 7.8 N for analysis, the MAE reduced to 0.052 N, with an MAPE

of 1.1%. These results were significantly smaller in comparison to the analysis considering both

tension and compression (MAE=1.48 N, MAPE=30%).

Therefore, if the symmetry of load-displacement curve is ignored or not required, the crank

slider mechanism can achieve high-quality cubic property when only tension load is applied.

In conclusion, based on the size and material limitations of the current study, the design

strategy employed for the crank slider mechanism did not yield a perfect design that exhibits
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Figure 36: A crank slider mechanism design with good tension cubic property

Figure 37: The load-displacement curve of a crank slider mechanism design with good tension

cubic property
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consistent cubic characteristics in both tension and compression directions. However, this

design approach remains a promising idea for the development of nonlinear springs with load-

displacement relationships other than cubic, or for cubic springs that predominantly experience

tensile loads. Further exploration and refinement of the design strategy may lead to improved

results in the future.
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Figure 38: Schematic diagram of the 2-DoF system

3.4 Mode coupling

This section aims to investigate the potential of the designed nonlinear spring to facilitate mode

coupling within a 2-DoF system. For this purpose, a mathematical model of a 2-DoF system

connected by a purely nonlinear spring will be developed and analyzed. The conditions that

could lead to mode coupling is also investigated.

3.4.1 Equation of motion

The eventual goal of this thesis is to incorporate the nonlinear spring design discussed in

previoussections in a 2-DoF system. For this system, both masses (m1 and m2) are connected

to ground with two linear spring k1 and k2. The two springs are actually two position stage

based on leaf springs that makes two masses move only in x direction. The displacement of m1

and m2 in x direction are represented by q1 and q2, respectively. A cubic linear spring with a

very small linear term is used to couple the two masses. F1 and F2 are the load applied on m1

and m2. The schematic of the system is shown in Figure 38. And the dynamics of such system

can be explained using the following set of equations:

 m1 0

0 m2

 q̈1

q̈2

+

 k1 + ε −ε

−ε ε+ k2

 q1

q2

+

 α (q1 − q2)
3

−α (q1 − q2)
3

 =

 F1(t)

F2(t)

 (23)

To transform the system to modal space, the modal matrix [X] is introduced. The real coordi-

nates q and modal coordinates η satisfy the following equation:

 q1

q2

 = [X]

 η1

η2

 (24)

Using the transformation Equation 24, Equations 23 can be transformed to the following system

of equations, where the linear coupling coefficients are cancelled:
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 µ1 0

0 µ2

 η̈1

η̈2

+

 γ1 0

0 γ2

 η1

η2

+

 xT
(1) fnl/µ1

xT(2) fnl/µ2

 = 0 (25)

fnl is the nonlinear term, µ is modal mass and γ is modal stiffness. Then, the ratio of resonance

frequencies satisfies:

ω2

ω1

=

√
γ2/µ2√
γ1/µ1

(26)

Equation 26 is a very complex formula that involves many variables and parameters. However,

when the linear term of the cubic spring becomes very small. The frequencies will satisfy:

ε → 0, ω1 →
√

k1
m1

, ω2 →
√

k2
m2

(27)

The ratio is then highly related to the eigenfrequency of one mass block. In this way, if the

nonlinear spring linearity is very small, an internal resonance with prescribed ratio can be easily

achieved by designing the system’s mass and stiffness.

In order to make the equations of motion suitable for numerical integration, the equations

are made to be dimensionless by considering Q as the characteristic length and ω1 as the

characteristic time as follows:

x̃ = x/Q, τ = ω1t (28)

Therefore, Equation 23 will become

 ¨̃x1 +
(k1+km)

αQ2 x̃1 − km
αQ2 x̃2 + (x̃3

1 − x̃3
2) =

F1(t)
Q3α

¨̃x2 +
m1(k2+km)

m2αQ2 x̃2 − m1km
m2αQ2 x̃1 − m1

m2
(x̃3

1 − x̃3
2) =

m1F2(t)
m2Q3α

(29)

Taking into account the inherent damping effect present in the prototype, an examination of

the system with the inclusion of a damping term is also conducted. This is shown in Figure 39.

The equation of motion is accordingly modified and represented as followed:
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Figure 39: Schematic diagram of the mass-spring-damper mechanism

 m1 0

0 m2

 q̈1

q̈2

+

 c1 + cm −cm

−cm c2 + cm

 q̇1

q̇2

+

 k1 + ε −ε

−ε ε+ k2

 q1

q2


+

 α (q1 − q2)
3

−α (q1 − q2)
3

 =

 F1(t)

F2(t)

 (30)

Similarly, the nondimensionalized version of Equation 30 becomes:

 ¨̃x1 +
(c1+cm)
Q
√
αm1

˙̃x1 − cm
Q
√
αm1

˙̃x2 +
(k1+km)

αQ2 x̃1 − km
αQ2 x̃2 + (x̃3

1 − x̃3
2) =

F1(t)
Q3α

¨̃x2 +
(c2+cm)
m2Q

√
m1

α
˙̃x2 − cm

m2Q

√
m1

α
˙̃x1 +

m1(k2+km)
m2αQ2 x̃2 − m1km

m2αQ2 x̃1 − m1

m2
(x̃3

1 − x̃3
2) =

m1F2(t)
m2Q3α

(31)

For the 2-Dof mass-spring-damper system in this thesis, assuming only a sinusoidal excitation

F = F0 sin(t) is applied to the mass m1. By defining y1 = sin(ωt) and y2 = cos(ωt), the

system’s response satisfies:

ẏ1 = y1 + ωy2 − y1
(
y21 + y22

)
ẏ2 = y1 − ωy1 − y2

(
y21 + y22

)
dx1/dt = ẋ1

dx2/dt = ẋ2

dẋ1/dt =
(
− (c1 + cm) ẋ1 + cmẋ2 − (k1 + ε)x1 + εx2 − α (x1 − x2)

3 + Fy1
)
/m1

dẋ2/dt =
(
− (c2 + cm) ẋ2 + cmẋ1 − (k2 + ε)x2 + εx1 + α (x1 − x2)

3 + 0
)
/m1

(32)

3.4.2 Numerical simulation

In this subsection, Simulink Simscape software is used to model the full system, and the the-

oretical response of the system to different input signals under different design parameters is

calculated and analyzed. The ODE solver used in the simulation is Ode23t, which is well
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suited for moderate stiff problems and does not lead to numerical damping [21]. With this

solver, energy will not be reduced by numerical damping during simulations.

To effectively illustrate the impact of ideal mode coupling, a simulation is performed on a

system with predetermined parameters. These parameters are chosen to exhibit an ideal integer

relationship for the convenience of analysis and may not correspond to the actual prototype

data. The system parameters are as follows: the masses m1 and m2 are both 0.01 kg, the linear

spring stiffness values are k1 = 39.4784 N/m and k2 = 191.076 N/m, the linear term of the

nonlinear spring is ε = 0.05 N/m, the cubic term is α = 80 N/m3, and the damping coefficients

c1 and c2 are both 0.

Therefore, the eigenvectors of the system are determined as [X1] = [1.0000, 0.0003] and [X2] =

[−0.0003, 1.0000], corresponding to the eigenfrequencies of 10.0 Hz and 22.0 Hz, respectively.

The deliberate choice of the second eigenfrequency as 22 Hz is to avoid it being exactly double

the frequency of 10 Hz, thereby preventing frequency overlap.

In the system’s first mode, m1 vibrates at 10.0 Hz while m2 exhibits extremely small amplitude

motion in the same direction as m1. In the second mode, m2 vibrates at 22.0 Hz while m1

undergoes very small amplitude motion in the opposite direction to m2. The initial displace-

ments imposed on the two masses are 0.50000 m for m1 and 0.00015 m for m2, implying that

the system is driven in its first mode. The displacement response is presented in Figure 40. It

is evident that the two objects oscillate either in the same or opposite directions at different

instances.

A fast Fourier transform (FFT) is conducted on the response signals, as shown in Figure 41.

The analysis reveals a larger amplitude for the first mode at 10 Hz, signifying its significance

as the dominant component of the overall signal. However, in the spectrum of x2, a distinct

peak is observed at 22 Hz, corresponding to the second mode. This observation indicates that

the contribution of the second mode cannot be neglected. Therefore, it can be concluded that

there exists coupling between the two modes, resulting in energy transfer between them.

This analysis method can be used in preliminary theoretical simulations of new designs, quickly

check whether the design meets the requirements, and save calculation time for subsequent finite

element iterations.
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Figure 40: The displacement of two masses over time. The bottom image is an enlargement of

the top image
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Figure 41: The time domain displacement FFT of two blocks. Please notice that the y axis-

limits are different
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3.5 Discussions and conclusions

Due to the limitations of time, equipment, and some of physical laws, many of the initial goals

of this thesis were not finally realized. In this section, some challenges are discussed, along

with their potential solutions and future research directions. Conclusions are also made in this

section.

3.5.1 Challenges

Even though the theoretical calculations based on the obtained desired cubic nonlinearity

showed sufficient coupling numerically, the practical demonstration in experiments was not

achieved. The following are the challenges that need to be addressed in order to observe energy

transfer through the engineering of nonlinear spring designs in practical applications:

Optimization program In the cubic spring design part, a considerable number of FEM cal-

culations are called during the optimization process. To minimize CPU hours, it is preferable

to employ small step sizes and a high mesh density in the FEM analysis. However, setting

excessively coarse meshes or utilizing large step sizes can lead to non-convergence issues. Ad-

ditionally, as mentioned earlier, the grid quality and model filleting can introduce errors in the

determination of maximum von Mises stress. Achieving a balance between computational effi-

ciency and optimization quality requires substantial iterative experimentation and fine-tuning

efforts.

Furthermore, the investigation into the selection of the fitness function remains an area of focus.

The load-displacement behavior exhibited by the spring presents a highly intricate curve, often

necessitating the utilization of polynomial regression techniques of order 6 7 to achieve an

optimal fit. The load-displacement curves of different springs may differ from the standard

cubic curve in several ways. For example, some springs may have a larger linear term, and

some springs may have a smaller linear term, but the curve as a whole is more like a 2.5 power

curve. Methods to assess their quality are a challenge.

Additionally, the selection process for the so-called standard cubic curve utilized in fitness

calculations also warrants exploration. Various approaches can be employed to generate the

curves required for comparative analysis. For instance, one can derive simple cubic curves

based on FEM data’s maximum loads and displacements, using the relationship Fmax = αx3
max.

Alternatively, a standard cubic curve can be generated through polynomial regression. The

similarity between the spring’s FEM curve and the standard cubic curve can be quantified by
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measuring the standard error between them. It is also possible to assign weights to errors

observed at different points along the curves, corresponding to small and large loads.

Determining the linear term of the fitting curve can be accomplished through various techniques.

One approach involves fitting the spring’s load-displacement curve to a standard function in-

corporating solely linear and cubic terms. In this context, the linear term of the function can

be regarded as the nonlinearity attributable to the spring.

When assessing the final fitness, both curve similarity and linear term value are of great im-

portance, the weighting of them must be taken into consideration. Furthermore, it is possible

that multiple sets of better designs will have very small difference in fitness, and appropriate

methods need to be developed to increase discrimination.

In fact, for each specific given size and material instance, the optimal optimization settings

(such as fitness function, number of generations, mesh density, load steps etc.) can vary. The

process of determining the most appropriate parameters poses a significant challenge.

Materials and processing equipment The primary materials investigated in this thesis

are resin and single crystal silicon. Resin is an advantageous choice for 3D printing due to its

ease of use in model manufacturing; however, it exhibits a high damping ratio. Monocrystalline

silicon possesses a larger Young’s modulus and strength but has a limited capacity to withstand

significant deformations. Consequently, achieving designed deformations and sustaining vibra-

tion becomes more challenging. Furthermore, during the design phase, the precision of the

processing equipment becomes a crucial consideration. For instance, the currently available

femtosecond laser cutting machine has a beam diameter of about 150 um and causes surface

ablation, and the 3D printer also has a limit of 0.4 mm for the thinnest part, thereby impos-

ing limitations on the minimum width of the flexure. These factors collectively constrain the

potential of the design approach.

Parameters picking Additionally, for the theoretical calculations and simulations, variations

in different system parameters (mass, linear spring stiffness, the linear and cubic term of the

nonlinear spring) can exert a profound impact on the theoretical response. Figure 42 shows two

example. When the initial displacement is too small, the disparity in maximum displacement

between two masses may become excessively large, thereby obstructing effective observation.

Similarly, increasing the values of masses alone necessitates adjusting the observation time

span scale if the input initial displacement remains unchanged. Failure to do so may result

in an insufficient number of vibration cycles for accurate FFT analysis. Hence, it becomes
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Figure 42: The response of systems with parameters of different orders of magnitude

imperative to preselect appropriate significant system parameters as design criteria for optimal

spring design. Furthermore, careful consideration must be given to whether the nonlinear spring

can endure these initial displacements without yielding.

Linearity under small load For the design of nonlinear springs, there is a prevalent issue

related to the characteristics of their load-displacement curves. Figure 43 is an exaggerated

schematic. In general, these curves share similarities with the standard cubic curve. However,

during the initial section of the curve, specifically when the load is relatively small, the curve

appears to be relatively flat, resulting in a more linear relationship between displacement and

load. While the nonlinear component tends to dominate under larger loading conditions, the
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Figure 43: A exaggerated schematic showing the difference between a standard cubic curve and

the load-displacement curve of a common nonlinear spring design

model is susceptible to yielding when subjected to excessively high loads. This behavior can

be attributed to the fact that, at lower loads, the model experiences very deformation where

the primary deformation is associated with simple stretching. Consequently, the significant

deformations of the carefully engineered components (such as rigid bars and splines) of the

model are not evident. To alleviate this problem, further optimization iterations can be carried

out. The adoption of more precise manufacturing techniques to fabricate thinner flexures that

are easier to deform is an alternative choice. Nevertheless, achieving a solution for this problem

remains challenging.

Asymmetry of the curve For the obtained designs, the mechanical properties of nonlinear

springs are not strictly symmetrical with respect to tension and compression. As shown in

Figure 35, it is evident that the load-displacement curve is not strictly symmetrical about

the origin. It is more difficult to achieve a nonlinear spring with good nonlinear behavior

in both directions than in one side. The implications of this characteristic on mode coupling

phenomena have yet to be investigated. This limitation can potentially restrict the applicability

of certain precision systems that demand a high degree of symmetry. Since the deformation

of the springs designs proposed in this thesis is inevitably asymmetrical in the tension and

compression directions. This shortcoming may not be possible to eradicated. However, it is

possible for other nonlinear spring designs to avoid this limitation by ensuring symmetrical

deformations with respect to the initial position of the nonlinear spring.
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3.5.2 Conclusions

A novel compliant mechanism with two major systems (nonlinear cubic spring and linear spring

stage) was developed in this work. This mechanism is designed to achieve prescribed mode

coupling. The whole workflow from setting aim, to modelling, and simulating is also developed.

Theoretically, when the cubic spring has low linear term and the linear stage parameters are

well designed, the input energy can be transferred between the two modes, thus achieving

designated mode coupling.

Two nonlinear spring design methods were developed. For the spline-shaped mechanism, in

most cases, linear terms cannot be ignored, and the material requirements are very high. The

crank-slider mechanism can achieve relatively good cubic load-displacement curve, but at that

point, the yield point has been reached and it is therefore unavailable. However, when the

symmetry of load-displacement curve is ignored or not required, the crank slider mechanism can

achieve high-quality cubic property when only tension load is applied. Due to the commonality

of the methods, they can also be used to design prescribed curves other than cubic ones.
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Appendices

A Prototyping

This chapter describes the prototyping of linear stages. Iteration on 3D printing and laser

cutting was carried out, to find out the compensation value of CAD model for processing errors

(resin deformation, laser beam diameter).

A.1 3D printed prototype

Fabrication was performed using a Formlabs stereolithography (SLA) 3D printer. The material

used is Tough 1500 resin, which has good elasticity and strength in the available material library

of this project, and can be used to manufacture prototypes with isotropy mechanical properties

[40].

Firstly, the design method of the 3D printed linear stage model is explored. The vibration

frequency of the model should be small, otherwise it is difficult to observe its movement with

a high-speed camera during the experimental stage. Therefore, thinner and longer flexures

and heavier mass block should be used. The thickness of the flexure is the most significant

parameter for the nature frequency. However, considering the precision and size limitations of

the 3D printer, the thickness of the flexures should be at least 400 um. Similarly, the mass

block size cannot be too large, because the largest print size of the available Formlabs printer

is 144× 144 mm. Although the prototype of the complete model is not produced in this thesis,

the model must still be designed on the premise that the complete model can be printed with

this printer. Therefore, the length of the linear stage block is limited to 25 mm, instead of the

maximum length of 144 mm that the printer can provide. This allows for a design space of 94

mm for the length of the nonlinear spring.

Several through holes are designed in the center of the mass block. These through holes can

be used to reduce the weight of the mass block, or increase the weight by fixing on some metal

screws.

A typical CAD model that is printed is shown in Figure 44(a). The width (out-of-plane thick-

ness) of the mechanism is 6 mm, the thickness (in-plane thickness) of the flexure is 0.6 mm,

the length of the flexure is 35 mm, the length of the block is 24 mm, the width of the block

is 10 mm, the diameters of the holes are all 5 mm. There are two blocks, one of them can be

used as the ground. When using the one with one hole as the mass block, the nature frequency
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Figure 44: (a) CAD model of 3D printing prototype, (b) 3D printing result

would be 40.3 Hz. Vibration under this frequency can be safely recorded with a 1920 frames

per second camera.

The 3D printing result is shown in Figure 44(b). Some other models with different sizes were

also printed. Three main problems were found:

Problem 1 When 3D printing a compliant mechanism, the bottom of the model should be

integrated with some thin pillar supports, as shown in Figure 45. When the supporting pillars

are being removed after the printing process, the fragile flexures may be damaged, and the

connection spots will remain on the model, making the surface of the model not smooth. The

spots can be seen in Figure 44(b). However, the remaining plastic spots are very small, and

the impact on mass is almost negligible.

Problem 2 For relatively slender and rigid parts (such as the ground part of a full model),

they are often deformed and warped. This is especially noticeable on large-sized models. This

might be related to the stress or deformation caused by shrinkage during resin solidification.

The deformation may cause translation, vibration, and load to be non-coaxial, thereby affect-

ing mechanism performance. However, the specific effects on performance have not yet been

evaluated.

Problem 3 There is a convex surface where the support is connected to the model. As Figure

44(b) shown, compared with the smooth side surfaces, the top surfaces of the mass blocks are

convex. It is possible that the deformation is caused by gravity during the resin post-curing.

For this classical prototype with 6 mm width in the z direction. The height of the convex
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Figure 45: The supports of the mechanism

surface is about 0.9 mm. In solidworks, a relatively simple estimative modeling is performed,

as shown in Figure 46. The volume of a perfect mass block with one hole is 1,322.19 mm3. The

volume of convex block is 1,401.51 mm3. This convex surface brings a volume change of about

6.0%, which is an acceptable value. However, taking this error into consideration in design and

analyze stage is still suggested.

A.2 Laser cut prototype

Fabrication is performed with LASEA femtosecond laser cutter. The processing material is

(100) silicon wafer with a diameter of 100mm and a thickness of 525 um. Since laser cutting

can achieve higher precision, and monocrystalline silicon has higher stiffness. Models with

smaller size compared with 3D pringint can be achieved. This method is an ideal processing

solution for the final product.

Similarly, the design method of the laser cut linear stage model is explored. Since the plan of the

follow-up experiment plans is to use piezoelectric vibration stage and laser Doppler vibrometer

to test the prototype and these devices have high measurement accuracy. Therefore, it is not

necessary to make stricter restrictions on the natural frequency of mass blocks. Considering

that miniaturization is an important aim of this thesis, this model should be as small as possible

based on the laser cutter accuracy. And due to the size limitation of the vibrometer, the length
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Figure 46: The mass blocks with and without convex surface

of the linear stage should be less than 15mm, and the width should be less than 5mm.

Since the smallest parts that can be processed by a laser cutting machine are related to the

parameters of the laserr beam (such as laser speed, repetitions, laser pulse rate, laser power),

multiple rounds of prototype iterations are required to find different combinations of processing

parameters that can achieve acceptable processing quality within an appropriate time.

Also, since flexures are very fragile. It may be necessary to design a protective border for the

linear stage. And it is necessary to leave an path channel for the laser beam of the vibrometer

in the subsequent experiment stage.

First, in order to test the effect of laser beam thickness on the model edge, a common linear stage

was designed for processing test, as Figure 47(a) shown. The thickness (in-plane thickness) of

the flexure is 400 um, the length of the flexure is 8 mm, the lengths (x direction) of the blocks

are 6 mm, the widths (y direction) of the two blocks are 4 mm and 5mm.

The main laser cutting parameters are: laser speed, which is the moving speed of the laser focal

point on the silicon wafer. When the scanning speed is small, local heat dissipation may not be

timely, resulting in overheating and severe ablation. But if the movement is too fast, the light

source may change direction too fast, making the polygon movement path of the laser source

inaccurate, and a fillet may be formed, as Figure 48 shown. The maximum power of the Laser

source is 50w. When the power is too high, it may cause overheating, but this can also reduce

the processing time. The pulse rate that controls the laser pulse frequency have a similar effect

as the power. Scanning the laser along the DXF outline path only once is not enough to cut

through the silicon wafers, multiple repetitions are required. To check whether the silicon wafer
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Figure 47: (a) CAD model of the testing laser cut prototype, (b) laser cut result

is cut through, the sample must be picked up from the working stage. After moving the wafer,

it is very difficult to reposition the wafer and continue processing this sample. Therefore, the

silicon wafer must be cut through in a single cut. Therefore, there should be more repetitions

to ensure that the silicon is cut through, although this will increase the length of the process. In

addition, since the thickness of the silicon wafer cannot be ignored, the laser focal point should

not be on the upper surface of the silicon wafer, but under it. And it is better to cut several

rounds. Each round has different focus point depth. Two cutting methods are available. One is

to perform line cutting along the outline of the model, as shown in Figure 49(a). The other is

to use a beam of light to hatch the excess part of the silicon wafer other than the model. The

Hatching method is similar to using a pencil to paint on paper, as shown in Figure 49(b). The

hatching method can ensure that the model is separated away, but hatching greatly increase

the processing time.

After many tests, the optimized laser cutting parameters are: laser speed 400 mm/s, laser

power 50% (15 W), pulse rate 37,000 Hz, 2,500 repetitions. Focusing on 200 um, 300 um, 400

um below the wafer upper surface and executing once respectively. Under these parameters, the

total processing time is about 25 minutes. The final product is shown in Figure 47(b). There

is a little dust on the surface, but the overall shape is duplicated without obvious distortion.

The cutting quality of the edge is shown in Figure 50. The compensation of the laser beam

radius is 37 um, and the fillets caused by high scanning speed have radius of 83 um.

Then, the model size is compensated using the parameters obtained earlier, and the design is
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Figure 48: The fillet caused by high laser scanning speed

Figure 49: Laser scanning path. (a) cutting through the outline, (b) hatching
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Figure 50: The edge quality under optimized laser cutting parameters

updated. Several models of smaller sizes were designed. they have a protective border

Then, the CAD models are updated based on the compensation parameters obtained earlier.

Several complex models with smaller sizes were designed. they have protective borders.

A typical linear stage model that can achieve good edge processing quality and relatively small

size is shown in Figure 51. The laser beam radius compensation is taken into consideration in

the CAD model. The thickness (in-plane thickness in x direction) of the flexure is 200 um, the

length of the flexure is 4 mm, the The length (x direction) of the block is 1 mm, the width (y

direction) of the block is 2 mm. The distance between protective border and the major parts

is 333 um. The border thickness is 1 mm. The channel for the laser Doppler vibrometer near

the mass block is 2 mm wide . There is a 4.5 mm long ground part at the bottom to fix the

linear stage to the vibration stage. Theoretically, the natural frequency of this linear stage is

12,237 Hz.

It is worth noting that, according to the experience of the later vibration experiment, the side

surface of the block used to reflect the laser vibrometer beam should be milled to increase the

laser reflectivity. Various milling parameters were tested. The optimized laser cutting param-

eters are: laser speed 13 mm/s, laser power 5% (1.5 W), pulse rate 1,119 Hz, 200 repetitions.

Focusing on the top surface of the wafer and executing once. Since the surface being milled is

perpendicular to the plane of the wafer, wedges are used to hold the prototype.
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Figure 51: (a) CAD model of the laser cut linear stage, (b) laser cut result

B Experimental validations

In this chapter, the performance evaluation of the linear stage prototypes from last chapter is

carried out. For the larger 3D printed prototype, its natural frequency was tested. For the

smaller laser cut prototype, its response to inputs of different frequencies were tested.

B.1 3D printed prototype

In order to find out how well the natural frequency of the prototype matches the theoretical

value, the typical 3D printed linear stage prototype in Figure 44 is tested. The mass block with

two holes is fixed to the ground. The flexures are perpendicular to the ground. In this way, the

theoretical nature frequency would be 40.3 Hz.

Input the initial displacement to the mass block with one hole, then release the block and

record the translation of the mass block with a 1920 frames per second high-speed camera.

The initial displacement in horizontal direction is 16.0 mm, which is 67% of block length and

46% of flexure length. Due to the flexure deformation, this input will lead to a vertical initial

displacement of 4 mm.

The block displacement response is shown in Figure 52. The fitting function for the displace-

ment is shown in Equation 33. Where the initial displacement A = 0.0163 m. The damping ratio

ζ = 0.0429. Damping coefficient c = 0.0304 kg/s. The quality factor Q = 11.66. The nature

frequency without damping fn = 40.77 Hz. Its corresponding angular velocity ωn = 256.17

rad/s. The real frequency of vibration in the experiment fd = 40.73 Hz. Its corresponding
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Figure 52: The displacement response of 3D printed prototype

angular velocity ωd satisfies Equation 34, ωd = 255.93 rad/s.

x(t) = Ae−ζωnt · cos (ωdt) (33)

ωd =
√

1− ζ2 · ωn (34)

The error between the theoretical value of the natural frequency and the experimental data is

only 1.1567%. It can be seen that the linear stage manufactured by the stereolithography 3D

printing method using tough 1500 resin can achieve very accurate natural frequency. However

it is worth noting that the 3D printed models have non-negligible damping. The source of

damping has not been investigated. Due to the limitation of equipment conditions, the vibration

experiment was not carried out in vacuum. but according to a study by Jenna Gietl et al [41],

the loss due to the fluid is not the dominant damping mechanism. Another potential source

of damping is clamps. Prototypes have been clamped as much as possible to reduce this loss.

Therefore, the main source of damping is most likely from within the resin material. Since

the the natural frequency is closely related to design of the model, and the total size of the

linear stage is very limited, it has not been studied whether the damping can be reduced by

optimizing the model design.

One potential use of the whole system in this thesis is energy harvesting. Such high damping
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Figure 53: The fixing of the linear stage and the actuator

is not acceptable for the large amount of energy conversion involved in the process. Taking

the typical model involved in the experiment as an example, after inputting a large initial

displacement, the vibration only maintained for about 1 second, and then the vibration is

difficult to observe with the naked eye. Therefore, whether the method of 3D printing is

suitable for this thesis remains to be studied. But this method is very suitable if the linear

stages do not require very low damping.

B.2 Laser cut prototype

The typical laser cut linear stage prototype in Figure 51 is tested as well. For the CAD model,

the theoretical nature frequency calculated with COMSOL build-in eigenfrequency analyzer is

12237 Hz.

Experiment system components include: Polytec OFV 512 fiber interferometer, MSA-400 junc-

tion box, OFV-5000 vibrometer controller, and Keithley 2400 sourcemeter. Since the incident

direction of the laser beam is vertical to the ground, the propotype is fixed to the piezo actua-

tor by being glued with two wedges, as Figure 53 shown. A frequency sweep until 20 kHz was

carried out.

The response of the linear stage after fast Fourier transform is shown in Figure 54. Multiple

peaks can be seen in the plot. The one at 11067 Hz has the highest magnitude of 50.0 um/s.

The error between this frequency and the COMSOL simulation result of the origin model is

12.8%.
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Since the actual prototype was not measured to get the real dimension data, the CAD model

of the prototype was not rebuilt. Therefore, the theoretical first order eigenfrequency of the

prototype is not available.

Considering that the size of the sample is still relatively large for the experimental devices, the

excitation force that the actuator can provide is not great enough, and the sample had to be

exposed to the air. Therefore, the signal-to-noise ratio is low, so that the plot is still far from

the perfect curve. In addition, since the constraint method of this experiment is gluing with

wedges. Large errors could be caused.

The prototypes and experimental procedures were not further optimized due to time constraints.

But according to the results obtained so far, laser cutting method can obtain great processing

quality for the prototype and can be used to manufacture linear stage with accurate nature

frequency.

B.3 Prospects

For the 3D printed prototypes, research on how to reduce the impact of damping by optimizing

the geometric size and topology of the model can be carried out. For example, changing the

thickness and length of the flexures while keeping the natural frequency unchanged to study

the damping. It is also possible to study the effect of different materials on damping and, if

possible, to test prototypes obtained using metal additive manufacturing methods.

For the laser-cut models, the processing limit of existing equipment for models remains to be

explored. Some smaller models may be possible. And the experimental process of this model

still needs to be optimized, especially the clamping method.

C Potential nonlinear spring designs

In this chapter, some other potential designs for the nonlinear spring are proposed.

A concept utilizing force decomposition and Taylor expansion is shown in the Figure 55. The

two mass blocks are connected together by two ordinary tension coil linear springs with a

stiffness of K0 and an equilibrium length of L. The connection is ordinary revolute joint.

Mass block m1 is fixed to the ground. When applying a load F on m2 in x direction, the

displacement of m2 would be ∆x. The relation between F and ∆x satisfies Equation 35.

Applying Taylor expansion at ∆x = 0, the load becomes Equation 36. If ∆x is reletively small

(−0.3L < ∆x < 0.3L), Equation 36 becomes Equation 37, which is a perfect cubic relation.
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Figure 54: The frequency response of laser cut prototype after FFP
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Figure 55: The principle of a possible concept

Figure 56: Cross-axis flexural pivot

This concept can achieve great stroke and perfect nonlinearity. However, the requirement of

revolute joints makes it very difficult to convert it to a compliant mechanism design. Using

cross-axis flexural pivots (Figure 56) to replace revolute joint is method to integrate mass blocks

and linear springs. But the overhanging components of the flexural pivots in z direction will

make this integrated model impossible to be laser cut.

F = 2k0x− 2k0L∆x√
∆x2 + L2

(35)

F =
k0∆x3

L2
− 3k0∆x5

4L4
+

5k0∆x7

8L6
+ o

(
∆x9

)
(36)

F ≈ k3∆x3

L2
(−0.3L < ∆x < 0.3L) (37)
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In addition, the continuum topology optimization commonly used in the architecture field [42]

can also be used to optimize the geometric layout of compliant mechanism structure. These

structures usually have very complex geometric layout with many elements. It may take a

large number of iterations to generate a new structure with a cubic load-displacement curve.

However, optimizing based on an existing spline-shaped or crank slider design might save a lot

of time. Combining the two optimization strategies together is also very promising.

D Nonlinear spring optimization scripts

This chapter describes the work flow of the nonlinear spring optimization and the corresponding

codes.

The workflow for this project involved several steps. Initially, a Comsol Multiphysics (.mph)

file was created and used to generate a standard model. This model was then run and debugged

within the Comsol software to calculate the displacement-load curve data of the spring. An

alternative method involved saving the model as a separate .m file, which can be opened in

Matlab for code verification and modification.

Next, the LiveLink for Matlab was used to load the .mph file and modify the parameters of the

model in the Matlab code. This allowed for adjustments to the magnitude of the applied force,

size parameters of the model, and other variables without launching the Comsol software’s

graphical user interface. The resulting displacement-load data of the model was outputted and

saved as a .txt file.

Afterwards, a genetic algorithm was employed to optimize certain parameters, such as the

length of a specific part. The displacement-load data of the model under these parameters was

calculated and compared to a perfect cubic curve. The optimization process was repeated for

several generations until an acceptable level of nonlinearity was achieved.

The parameter settings of the genetic algorithm itself, the parameter settings of the finite

element model, and the result analysis are all integrated into one file.

The whole script is roughly divided into 5 parts. In Part 1, initializing the system, inputting

the initial value and range of optimization variables and importing the project file. In the

subsequent Part 2, the first-generation individuals are randomly generated and their fitness

is calculated. In Part 3, chromosome exchange and mutation were performed on the first-

generation individuals. In Part 4, executing loops, calculating the fitness of each generation,

and doing the exchange and mutation according to the results. In Part 5, outputting the final

80



optimization result and saving it as some .txt files. The design variables and displacement

load curves of each individual generation are stored separately and can be used for subsequent

manual analysis.

The script is as follows:

1 %% Part 1 %%

2 %mph_modify

3 close all

4 %clc

5 cd D:\Files\fin\importantPrograms\SpringIterate

6 model=mphopen('basic_comsol_file.mph')%import the model

7 tic

8

9 %% comsol basic parameters

10 %

11 %load range , it is best not to change the following

12 model.param.set('force', '4[N]');

13 model.study('std1').feature('stat').set('plistarr ', {'range

(0,force /20,force)'});

14 model.study('std2').feature('stat').set('plistarr ', {'range

(0,-force/20,-force)'});

15

16 %Material properties , it is best not to change the following

17 %model.component('comp1 ').coordSystem('sys2 ').set('base ',

{ '1/(6^0.5) ' ' -1/(6^0.5)' '0'; '1/(6^0.5)' '1/(6^0.5)'

'0'; '0' '0' '(2^0.5) /(6^0.5) '});

18 %Grid , 5 is normal , the smaller the more detailed. Level 1

takes about 54s, level 4 takes about 12s.

19 model.component('comp1').mesh('mesh1').autoMeshSize (3);

20

21 %% GA parameters

22 setnum =50; %population size 5,10,15,20,25,etc

23 gennum =8;

24
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25 pc = 0.8;% crossover rate

26 pm = 0.11;% mutation rate

27

28 L=15;%lenth of DNA ,also the num of parameters

29 exSetNum =(floor(pc* setnum /2))*2; %number of sets to be

exchanged. even number

30

31 quality_table=zeros(gennum ,setnum);

32 quality_gen_mean=zeros(gennum ,1);

33 %% %change parameters2

34

35 % % % %model.param.set('t5 ', '0.4[mm]', 'min distance ');

36

37 % model.param.set('t1 ', '130[um]'); 100 -200

38 % model.param.set('t2 ', '130[um]'); 100 -200

39 % model.param.set('t3 ', '130[um]'); 100 -200

40 % model.param.set('L1 ', '900[um]'); 800 -1200

41 % model.param.set('L2 ', '900[um]'); 800 -1200

42 % model.param.set('L3 ', '1000[um]'); 800 -1200

43 % model.param.set('LA ', '3000[um]'); 2000 -7000

44 % model.param.set('LB ', '5000[um]'); 2000 -7000

45 % model.param.set('theta1 ', 'pi/4[rad]'); 10*pi/180 - 70*pi

/180

46 % model.param.set('theta3 ', 'pi/6[rad]'); 10*pi/180 - 70*pi

/180

47 % model.param.set('t0 ', '500[um]'); 300 -700

48 % model.param.set('L0 ', '500[um]'); 150 -400

49 % model.param.set('theta4 ', 'pi/4[rad]'); -45*pi/180 - 45*pi

/180

50 % model.param.set('theta5 ', 'pi/6[rad]'); -45*pi/180 - 45*pi

/180

51 % model.param.set('theta6 ', 'pi/6[rad]'); -45*pi/180 - 45*pi

/180

52
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53

54 %% Part 2 %%

55

56 %% generation 1

57 %% case 1 random

58 gen1cp=zeros(setnum ,12);

59 gen1cp (: ,01) =100+100* rand(setnum ,1);

60 gen1cp (: ,02) =100+100* rand(setnum ,1);

61 gen1cp (: ,03) =100+100* rand(setnum ,1);

62 gen1cp (: ,04) =800+400* rand(setnum ,1);

63 gen1cp (: ,05) =800+400* rand(setnum ,1);

64 gen1cp (: ,06) =800+400* rand(setnum ,1);

65 gen1cp (: ,07) =2000+5000* rand(setnum ,1);

66 gen1cp (: ,08) =2000+5000* rand(setnum ,1);

67 gen1cp (: ,09) =10*pi /180+60* pi/180* rand(setnum ,1);

68 gen1cp (: ,10) =10*pi /180+60* pi/180* rand(setnum ,1);

69 gen1cp (: ,11) =300+400* rand(setnum ,1);

70 gen1cp (: ,12) =150+250* rand(setnum ,1);

71 gen1cp (: ,13)=-45*pi /180+90* pi/180* rand(setnum ,1);

72 gen1cp (: ,14)=-45*pi /180+90* pi/180* rand(setnum ,1);

73 gen1cp (: ,15)=-45*pi /180+90* pi/180* rand(setnum ,1);

74

75 %% case 1 random

76 %% case 2 load old stuff ,

77 % % save('genOLDcp.txt ','gen1cp ','-ascii ');

78 % load gen1cp.txt

79 % save('full_parameters_gen1.txt ','gen1cp ','-ascii ');

80 %% case 2 load old stuff

81

82 %% edit generation 1 control points and do calculation

83 %% edit generation 1 control points and do calculation

84

85 for i=1: setnum

86 %% save parameters
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87 the15para=gen1cp(i,:);

88 filename1 =['paragen1set ',num2str(i),'.txt'];

89 save(filename1 ,'the15para ','-ascii');

90 %% do the settings for comsol

91 bridge =[ num2str(the15para (1)),'[um]'];

92 model.param.set('t1', bridge);

93

94 bridge =[ num2str(the15para (2)),'[um]'];

95 model.param.set('t2', bridge);

96

97 bridge =[ num2str(the15para (3)),'[um]'];

98 model.param.set('t3', bridge);

99

100 bridge =[ num2str(the15para (4)),'[um]'];

101 model.param.set('L1', bridge);

102

103 bridge =[ num2str(the15para (5)),'[um]'];

104 model.param.set('L2', bridge);

105

106 bridge =[ num2str(the15para (6)),'[um]'];

107 model.param.set('L3', bridge);

108

109 bridge =[ num2str(the15para (7)),'[um]'];

110 model.param.set('LA', bridge);

111

112 bridge =[ num2str(the15para (8)),'[um]'];

113 model.param.set('LB', bridge);

114

115 bridge =[ num2str(the15para (9)),'[rad]'];

116 model.param.set('theta1 ',bridge);

117

118 bridge =[ num2str(the15para (10)),'[rad]'];

119 model.param.set('theta3 ', bridge);

120
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121 bridge =[ num2str(the15para (11)),'[um]'];

122 model.param.set('t0', bridge);

123

124 bridge =[ num2str(the15para (12)),'[um]'];

125 model.param.set('L0', bridge);

126

127 bridge =[ num2str(the15para (13)),'[rad]'];

128 model.param.set('theta4 ', bridge);

129

130 bridge =[ num2str(the15para (14)),'[rad]'];

131 model.param.set('theta5 ', bridge);

132

133 bridge =[ num2str(the15para (15)),'[rad]'];

134 model.param.set('theta6 ', bridge);

135 %% for this design , do a study in positive load

136 model.study('std1').run;% run study once

137

138 %% get the results

139 str1 = mphtable(model ,'tbl1'); % extract probe table

140 tbl_1 = str1.data; % extract probe table[U+FFFD]column 1

is load , column 2 is displacement

141 rawdataload=tbl_1 (:,1);

142 rawdatadisp=tbl_1 (:,2);

143

144 str2 = mphtable(model ,'tbl2'); % extract probe table

145 tbl_2 = str2.data; % extract probe table[U+FFFD]column 1

is load , column 2 is von mises

146 rawdatastress=tbl_2 (:,2);

147

148 tbl_3 = [rawdataload ,rawdatadisp ,rawdatastress ];

149

150 %% for this design , do a study in negative load

151 model.study('std2').run;% run study once

152 str4 = mphtable(model ,'tbl1'); % extract probe table
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153 tbl_4 = str4.data; % extract probe table[U+FFFD]column 1

is load , column 2 is displacement

154 rawdataload=tbl_4 (:,1);

155 rawdatadisp=tbl_4 (:,2);

156 str5 = mphtable(model ,'tbl2'); % extract probe table

157 tbl_5 = str2.data; % extract probe table[U+FFFD]column 1

is load , column 2 is von mises

158 rawdatastress=tbl_5 (:,2);

159 tbl_6 = [rawdataload ,rawdatadisp ,rawdatastress ];

160 tbl_7=flip(tbl_6);

161 tbl_7(end ,:) =[];

162 tbl_8=[tbl_7;tbl_3];

163 rawdataload=tbl_8 (:,1);

164 rawdatadisp=tbl_8 (:,2);

165 rawdatastress=tbl_8 (:,3);

166 filename3 =['rawdatagen1set ',num2str(i),'.txt'];

167

168 save(filename3 ,'tbl_8','-ascii');

169

170 %% judging the quality of the design

171

172 maxload=tbl_8(end ,1);%N y

173 maxdisp=tbl_8(end ,2);%mm x

174 mindisp=tbl_8 (1,2);%mm x, is negative

175

176 standard_alpha= 0.5*( maxload /( maxdisp ^3)-maxload /(

mindisp ^3));

177 errorstack =0;

178 for ijk=1: length(tbl_8)

179 %errorstack=errorstack+abs(yload(ijk)-standard_alpha*

xdisp(ijk)^3);

180 standard_load(ijk)=standard_alpha*rawdatadisp(ijk)^3;

181 errorsingle(ijk)=rawdataload(ijk)-standard_load(ijk);

182 errorstack=errorstack+abs(errorsingle(ijk));
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183 end

184 qlt=( maxload*length(tbl_8))/errorstack;

185 qlt=qlt^6; %The bigger the better , the worst pure

straight line is about 5937

186 quality_table (1,i)=qlt;

187 maxVon_table (1,i)=tbl_8(end ,2);

188 end

189

190

191 %% survived guys of gen1:

192 quality_temp=quality_table (1,:);

193

194 [Rankedquality1 ,RankSeedquality1 ]=sort(quality_temp) ; %front

: value small , bad

195 surviveRate=quality_temp/sum(quality_temp); %looks like

0.0007 0.0072 0.0099 0.4278 0.5544

196

197 %survival rate of this generation

198 %looks like 0.0007 0.0072 0.0099 0.4278 0.5544

199

200 for i=1: setnum

201 %surviveRate(i)

202 ratebreak(i)=sum(surviveRate (1:i));%looks like

0.3 ,0.4 ,0.7 ,0.9 ,1.0

203 end

204

205 for ii=1: setnum

206 sjs = rand;

207 for i=1: setnum

208 if sjs <= ratebreak(i) %If the survival rate of group

i is greater than the random number

209 survivedsets(ii)=i;

210 break

211 end
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212 end

213 end

214 %survivedsets ;% looks like [1,4,1,3,1] Here are the original

survivors , not the ascending ones

215

216 if std(survivedsets)==0

217 %RankSeedquality1(setnum -1) is a good but not the best

choice

218 survivedsets (2)=RankSeedquality1(setnum -1);

219 end

220 %survived first generation control points

221

222 gen1cp=gen1cp(survivedsets ,:);%the design parameters of the

new generation

223

224 %% above: first generation

225 %% below: TRANSFORM FIRST generation TO NEW generation

226

227

228 %% Part 3 %%

229

230 %% EXCHANGE

231 %1and3 , 2and 4 exchange

232 for i = 1: exSetNum /2 %, 1,2

233

234 breakpointA=randi(L-2); %1~10, if bpA=7

235 breakpointB=breakpointA+randi(L-1- breakpointA);%

randi=1or2or3or4 , if randi=2,bpB=9

236 tempCPA= gen1cp(i,:); %set1. if i=2, set2

237 tempCPB= gen1cp(i+exSetNum /2,:);%set3. if i=2,

set4

238

239 tempCPAbackup=tempCPA;

240 tempCPBbackup=tempCPB;
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241 gen1cp(i,:)=[ tempCPB (1: breakpointA), tempCPA(breakpointA +1:

breakpointB) ,tempCPB(breakpointB +1 :end)];%1,2.

242 %1~7,8~9,10~end

243 gen1cp(i+exSetNum /2,:)=[ tempCPA (1: breakpointA), tempCPB(

breakpointA +1: breakpointB) ,tempCPA(breakpointB +1 :end)];%

3,4

244 %------AVOID INTERSECTION is not needed

245

246 end

247 % gen1cp NOW HAS FINISHED EXCHANGE (no intersection)

248

249 %% MUTATION

250 for i = 1: setnum

251 if rand < pm

252 randSeed=randi(L);

253 backupValue=gen1cp(i, randSeed);

254 % gen1cp(i, randSeed) = backupValue -5 + (5+5)*

rand;

255 % %

256 switch randSeed

257 case 1

258 gen1cp(i, randSeed)=100+100* rand (1);

259 case 2

260 gen1cp(i, randSeed)=100+100* rand (1);

261 case 3

262 gen1cp(i, randSeed)=100+100* rand (1);

263 case 4

264 gen1cp(i, randSeed)=800+400* rand (1);

265 case 5

266 gen1cp(i, randSeed)=800+400* rand (1);

267 case 6

268 gen1cp(i, randSeed)=800+400* rand (1);

269 case 7

270 gen1cp(i, randSeed)=2000+5000* rand (1);
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271 case 8

272 gen1cp(i, randSeed)=2000+5000* rand (1);

273 case 9

274 gen1cp(i, randSeed)=10*pi /180+60* pi/180* rand

(1);

275 case 10

276 gen1cp(i, randSeed)=10*pi /180+60* pi/180* rand

(1);

277 case 11

278 gen1cp(i, randSeed)=300+400* rand (1);

279 case 12

280 gen1cp(i, randSeed)=150+250* rand (1);

281 case 13

282 gen1cp(i, randSeed)=-45*pi /180+90* pi/180* rand

(1);

283 case 14

284 gen1cp(i, randSeed)=-45*pi /180+90* pi/180* rand

(1);

285 case 15

286 gen1cp(i, randSeed)=-45*pi /180+90* pi/180* rand

(1);

287 end

288 end

289 end

290

291 % gen1cp NOW HAS FINISHED MUTATION (no intersection)

292 %toc

293 quality_gen_mean (1)=sum(quality_table (1,:))/setnum;

294 save('full_quality_gen_mean.txt','quality_gen_mean ','-ascii');

295 save('full_quality_gen_set.txt','quality_table ','-ascii');

296 save('full_maxVon_gen_set.txt','maxVon_table ','-ascii');

297

298

299 %% Part 4 %%
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300 %% Generation loops start here

301

302 genOLDcp=gen1cp;

303

304 for j=2: gennum

305 %% settings and calculation for this generation ---

306 filename4 =['full_parameters_gen ',num2str(j),'.txt'];

307 save(filename4 ,'genOLDcp ','-ascii');

308

309 for i=1: setnum

310 the15para=genOLDcp(i,:);

311 filename1 =['paragen ',num2str(j),'set',num2str(i),'.txt'];

312 save(filename1 ,'the15para ','-ascii');

313

314 %% do the settings for comsol

315 bridge =[ num2str(the15para (1)),'[um]'];

316 model.param.set('t1', bridge);

317

318 bridge =[ num2str(the15para (2)),'[um]'];

319 model.param.set('t2', bridge);

320

321 bridge =[ num2str(the15para (3)),'[um]'];

322 model.param.set('t3', bridge);

323

324 bridge =[ num2str(the15para (4)),'[um]'];

325 model.param.set('L1', bridge);

326

327 bridge =[ num2str(the15para (5)),'[um]'];

328 model.param.set('L2', bridge);

329

330 bridge =[ num2str(the15para (6)),'[um]'];

331 model.param.set('L3', bridge);

332

333 bridge =[ num2str(the15para (7)),'[um]'];
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334 model.param.set('LA', bridge);

335

336 bridge =[ num2str(the15para (8)),'[um]'];

337 model.param.set('LB', bridge);

338

339 bridge =[ num2str(the15para (9)),'[rad]'];

340 model.param.set('theta1 ',bridge);

341

342 bridge =[ num2str(the15para (10)),'[rad]'];

343 model.param.set('theta3 ', bridge);

344

345 bridge =[ num2str(the15para (11)),'[um]'];

346 model.param.set('t0', bridge);

347

348 bridge =[ num2str(the15para (12)),'[um]'];

349 model.param.set('L0', bridge);

350

351 bridge =[ num2str(the15para (13)),'[rad]'];

352 model.param.set('theta4 ', bridge);

353

354 bridge =[ num2str(the15para (14)),'[rad]'];

355 model.param.set('theta5 ', bridge);

356

357 bridge =[ num2str(the15para (15)),'[rad]'];

358 model.param.set('theta6 ', bridge);

359 %% for this design , do a study in positive load

360 model.study('std1').run;%[U+FFFD][U+FFFD][U+FFFD]study

361 %% get the results

362 str1 = mphtable(model ,'tbl1');

363 tbl_1 = str1.data;

364 rawdataload=tbl_1 (:,1);

365 rawdatadisp=tbl_1 (:,2);

366

367 str2 = mphtable(model ,'tbl2');
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368 tbl_2 = str2.data;

369 rawdatastress=tbl_2 (:,2);

370 tbl_3 = [rawdataload ,rawdatadisp ,rawdatastress ];

371 %% for this design , do a study in negative load

372 model.study('std2').run;%

373 str4 = mphtable(model ,'tbl1');

374 tbl_4 = str4.data; %

375 rawdataload=tbl_4 (:,1);

376 rawdatadisp=tbl_4 (:,2);

377

378 str5 = mphtable(model ,'tbl2'); %

379 tbl_5 = str2.data; %

380 rawdatastress=tbl_5 (:,2);

381

382 tbl_6 = [rawdataload ,rawdatadisp ,rawdatastress ];

383 tbl_7=flip(tbl_6);

384 tbl_7(end ,:) =[];

385 tbl_8=[tbl_7;tbl_3];

386 rawdataload=tbl_8 (:,1);

387 rawdatadisp=tbl_8 (:,2);

388 rawdatastress=tbl_8 (:,3);

389 filename3 =['rawdatagen1set ',num2str(i),'.txt'];

390

391 save(filename3 ,'tbl_8','-ascii');

392

393 %% judging the quality of the design

394

395 maxload=tbl_8(end ,1);%N y

396 maxdisp=tbl_8(end ,2);%mm x

397 mindisp=tbl_8 (1,2);%mm x, is negative

398

399 standard_alpha= 0.5*( maxload /( maxdisp ^3)-maxload /(

mindisp ^3));

400 errorstack =0;
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401 for ijk=1: length(tbl_8)

402 %errorstack=errorstack+abs(yload(ijk)-standard_alpha*

xdisp(ijk)^3);

403 standard_load(ijk)=standard_alpha*rawdatadisp(ijk)^3;

404 errorsingle(ijk)=rawdataload(ijk)-standard_load(ijk);

405 errorstack=errorstack+abs(errorsingle(ijk));

406 end

407 qlt=( maxload*length(tbl_8))/errorstack;

408 qlt=qlt^6;%The bigger the better , the worst pure straight

line is about 5937

409 quality_table (1,i)=qlt;

410 maxVon_table (1,i)=tbl_8(end ,2);

411 quality_table(j,i)=qlt;

412 end

413 %% settings and calculation for this generation ---

414

415 %% survived guys of gen j:

416 quality_temp=quality_table(j,:);

417 [Rankedquality1 ,RankSeedquality1 ]=sort(quality_temp) ; %front

: value small , bad

418 surviveRate=quality_temp/sum(quality_temp); %looks like

0.0007 0.0072 0.0099 0.4278 0.5544

419

420 %%survival rate of this generation

421 %looks like 0.0007 0.0072 0.0099 0.4278 0.5544

422

423 for i=1: setnum

424 %surviveRate(i)

425 ratebreak(i)=sum(surviveRate (1:i));%looks like

0.3 ,0.4 ,0.7 ,0.9 ,1.0

426 end

427

428 for ii=1: setnum

429 sjs = rand;
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430 for i=1: setnum

431 if sjs <= ratebreak(i) %If the survival rate of group

i is greater than the random number

432 survivedsets(ii)=i;

433 break

434 end

435 end

436 end

437

438 if std(survivedsets)==0

439 %RankSeedquality1(setnum -1) is a good but not the best

choice

440 survivedsets (2)=RankSeedquality1(setnum -1);

441 end

442

443 genOLDcp=genOLDcp(survivedsets ,:);%the design parameters of

the new generation

444

445 %% repetation of Part 3 %%

446 %% EXCHANGE

447 %1and3 , 2and 4 exchange

448 for i = 1: exSetNum /2 %, 1,2

449

450 breakpointA=randi(L-2); %1~10, if bpA=7

451 breakpointB=breakpointA+randi(L-1- breakpointA);%

randi=1or2or3or4 , if randi=2,bpB=9

452 tempCPA= genOLDcp(i,:); %set1. if i=2, set2

453 tempCPB= genOLDcp(i+exSetNum /2,:);%set3. if i=2,

set4

454

455 tempCPAbackup=tempCPA;

456 tempCPBbackup=tempCPB;

457 genOLDcp(i,:)=[ tempCPB (1: breakpointA), tempCPA(breakpointA +1:

breakpointB) ,tempCPB(breakpointB +1 :end)];%1,2.
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458 %1~7,8~9,10~end

459 genOLDcp(i+exSetNum /2,:)=[ tempCPA (1: breakpointA), tempCPB(

breakpointA +1: breakpointB) ,tempCPA(breakpointB +1 :end)];%

3,4

460 %------AVOID INTERSECTION is not needed

461 end

462 % gen1cp NOW HAS FINISHED EXCHANGE (no intersection)

463

464 %% MUTATION

465 for i = 1: setnum

466 if rand < pm

467 randSeed=randi(L);

468 backupValue=genOLDcp(i, randSeed);

469 % gen1cp(i, randSeed) = backupValue -5 + (5+5)*

rand;

470 % %

471 switch randSeed

472 case 1

473 genOLDcp(i, randSeed)=120+80* rand (1);

474 case 2

475 genOLDcp(i, randSeed)=120+80* rand (1);

476 case 3

477 genOLDcp(i, randSeed)=120+80* rand (1);

478 case 4

479 genOLDcp(i, randSeed)=800+400* rand (1);

480 case 5

481 genOLDcp(i, randSeed)=800+400* rand (1);

482 case 6

483 genOLDcp(i, randSeed)=800+400* rand (1);

484 case 7

485 genOLDcp(i, randSeed)=2500+5500* rand (1);

486 case 8

487 genOLDcp(i, randSeed)=2500+5500* rand (1);

488 case 9
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489 genOLDcp(i, randSeed)=10*pi /180+70* pi/180*

rand (1);

490 case 10

491 genOLDcp(i, randSeed)=10*pi /180+70* pi/180*

rand (1);

492 case 11

493 genOLDcp(i, randSeed)=300+400* rand (1);

494 case 12

495 genOLDcp(i, randSeed)=150+250* rand (1);

496 end

497 end

498 end

499 quality_gen_mean(j)=sum(quality_table(j,:))/setnum;

500

501 save('full_quality_gen_mean.txt','quality_gen_mean ','-ascii');

502 % genOLDcp (genJcp) NOW HAS FINISHED MUTATION (no

intersection)

503 %toc

504 save('full_quality_gen_set.txt','quality_table ','-ascii');

505 save('full_maxVon_gen_set.txt','maxVon_table ','-ascii');

506

507 end

508 %% Loops END here

509

510 %% Part 5 %%

511

512 toc

513 save('full_quality_gen_mean.txt','quality_gen_mean ','-ascii');

514 save('full_quality_gen_set.txt','quality_table ','-ascii');

515 save('full_maxVon_gen_set.txt','maxVon_table ','-ascii');

516

517 best_q=max(max(quality_table));

518 mean_error=best_q ^( -1/6)

519 oldqlt =1/ mean_error
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520 [best_gen ,best_set ]=find(quality_table == best_q)
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