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Electrically driven spin qubit based on valley mixing
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4School of Physics, The University of New South Wales, Sydney 2052, Australia
(Received 3 August 2016; revised manuscript received 17 November 2016; published 2 February 2017)

The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for
scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared
with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement
in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a
heterointerface. The enhancement is due to the strong coupling between the ground and excited states which
occurs when the electron wave function overcomes the potential barrier induced by the interface step. We
theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide
interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin
qubits despite the weak spin-orbit coupling in silicon.

DOI: 10.1103/PhysRevB.95.075403

I. INTRODUCTION

Solid state spin qubits based on quantum dots [1] take
a variety of forms [2–11]. Silicon is an ideal host for
spin qubits thanks to the absence of piezoelectric electron-
phonon coupling, to nuclear-spin free isotopes [12,13] en-
abling isotopic purification to remove the hyperfine coupling,
and compatibility with industrial manufacturing technologies.
Recent experiments have realized high-fidelity single-qubit
operations [3] and two-qubit logic gates [5] in silicon metal-
oxide-semiconductor (Si-MOS) dots in isotopically enriched
28Si, while high fidelity single-qubit operations have been
achieved in Si/SiGe dots in both 28Si [9] and naturally
occurring Si [4,14].

Fast, individually addressable qubit operations are essential
for scalable architectures. Since electric fields can be easier
to produce and control locally than magnetic fields, rotating
electron spins electrically could not only be faster, but would
also facilitate scalability. A significant effort has therefore
focused on achieving electron dipole spin resonance (EDSR)
of single spins in quantum dots. Experimentally this relies
on spin-orbit coupling, which allows simultaneous changes of
both the orbital and spin states, an AC electric field driving
purely orbital transitions, and a static, uniform magnetic field
needed to break time reversal. Rabi frequencies f ≈ 3–4 MHz
have been achieved in GaAs [15,16]. In silicon, in which
the electron spin-orbit coupling is weak, fast EDSR requires
the inhomogeneous magnetic field of a nanomagnet, and
f ≈ 4 MHz has been realized in Si/SiGe qubits [4,17].

In this work we show that spin-orbit induced EDSR in
silicon is strongly enhanced by the combination of two
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ubiquitous features of silicon quantum dots: the valley degree
of freedom and steps at the silicon interface, which can be
either identified or engineered. An interface step leads to
strong coupling between ground and excited orbital and valley
states and, through the spin-valley coupling provided by the
spin-orbit interaction, a large enhancement of EDSR can occur
when the electron wave function is positioned in a small region
near the step. This implies that spin-orbit coupling can be used
as an intrinsic mechanism for EDSR in silicon, and its impact
should also be considered in nanomagnet-based spin qubits.
We consider in detail dots formed at Si/SiO2 interfaces, but we
note that the mechanism applies also to Si/SiGe quantum dot
qubits.

The conduction band minima in Si/SiO2 heterostructures
grown along (001) lie in two equivalent valleys perpendicular
to the interface at ±k0 = ±0.85 (2π/aSi), [12] with the Si
lattice constant aSi ≈ 5.43 Å. The sharp interface potential
and ẑ-direction (‖ [001]) electric field give rise to a valley-
orbit coupling [18], whose magnitude is responsible for the
several hundred μeV splittings between valley eigenstates
observed experimentally [19]. Spin-orbit coupling in Si has
both intravalley and intervalley terms [20,21], and tuning the
valley-orbit coupling has a noticeable effect on spin dynamics.
Experimental studies have shown the effective g factor is
modified by an out-of-plane electric field in both valley
eigenstates in silicon, confirming the theoretical predictions
of g-factor sensitivity to valley composition [20].

Our focus in this work is on the effect of a single interface
step on the Rabi frequency of an electrically driven spin qubit,
such as that depicted in Fig. 1. Due to the large interface
electric field, the vertical step creates a sizable potential offset
[Fig. 1(b)]. The electron wave function moving under the
action of an in-plane electric field is initially trapped at the step,
but once it acquires enough energy it surmounts the step [22].
As it does so there is a strong mixing of the orbital and valley
degrees of freedom involving all the excited states, and the
EDSR frequency goes through a sharp peak as a function of the
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FIG. 1. (a) Top view and (b) cross sectional schematic represen-
tation of a multi-gated metal oxide semiconductor structure with a
single interface step of height d . The dot is defined by the confinement
barriers (CB) and located beneath the plunger gates. Two side gates
can produce both DC and AC in plane electric fields to place the dot
at a desired location and to manipulate the spin. The top gate changes
the out of plane electric field F as well as the electron accumulation.
The R gate acts as a reservoir supplying electrons to the quantum dot.
The potential profile is sliced at z = 0, where the Si/SiO2 interface is
located.

separation between the step and the center of the dot potential
well. This enhancement can be used for fast electrical spin
rotations and entanglement even though spin orbit at silicon
interfaces is intrinsically weak, while the sharpness of the peak
enables one to suppress spin relaxation by detuning away from
it quickly.

This paper is organized as follows. In Sec. II we present the
central results of this work and present a method to enhance the
EDSR frequency by means of an interface step. The physical
implications of the results are discussed in Sec. III, and their
practical applications for device engineering are addressed in
Sec. IV. In Sec. V we discuss briefly decoherence due to the
interplay of roughness and noise. We end with a summary and
conclusions.

II. EDSR NEAR AN INTERFACE STEP

The total Hamiltonian describing the quantum dot-step
system [23] is H = H0 + HSOC + Vc + Vz. Here H0 is the
unperturbed bulk Si Hamiltonian, while HSOC is the spin-orbit
Hamiltonian discussed in detail below. The quantum dot is

defined by the in-plane confinement potential

Vc = h̄2

2m∗(r)a4
[(x − x0)2 + y2] (1)

centered at (x0,0,0), with a radius a = 10 nm and an orbital
splitting of 3.8 meV. The effective mass m∗ has a longitudinal
component mz ranging from 0.4m0 on the SiO2 side to 0.98m0

on the Si side, and a transverse component 0.2m0, where m0 is
the electron rest mass. The out-of-plane confinement Vz for a
flat interface is Vz = U0θ (z) + eFz, where the heterojunction
barrier potential U0 ≈ 3 eV for Si/SiO2 (150 meV for Si/SiGe).
In the presence of a step the interface potential is written
as Vz(x,z) = U0[θ (z)θ (−x) + θ (z + d)θ (x)] + eFz. The step
height d = 5.43 Å is set to one lattice constant and its location
is fixed at x = 0.

Spin-orbit coupling in (001) heterostructures is described
generally by the matrices [21,24]

hR = σxky − σykx, hD = σxkx − σyky, (2)

where σx,σy are spin Pauli matrices, kx = −i ∂
∂x

and ky =
−i ∂

∂y
. The matrix hR stems from the inversion asymmetry of

the confining potential whereas hD arises from the surface
termination. We introduce pseudospin Pauli matrices τx,τy

acting in the valley subspace. The total spin-orbit Hamiltonian

HSOC = (α1 + γ τy) ⊗ hR + (β1 + ζ τy) ⊗ hD, (3)

where α = 5.5 × 10−14 eV cm and β = 8 × 10−14 eV cm
respectively, and the intervalley terms γ = 14.3 × 10−14 eV
cm and ζ = 20.8 × 10−14 eV cm [20].

In the effective mass approximation the electron wave
functions [25] |Dns,ξ (x,z)〉 = �n(x,z)uξ (r)eikξ zχ (s), where
�n(x,z) represent the nth level envelope functions and uξ (r)
the lattice periodic Bloch functions corresponding to the val-
leys centered at kξ = ±k0 [26]. The dynamics in the ŷ direction
are trivial and are neglected henceforth. In the presence of a
step the motion in the x̂ and ẑ directions is no longer separable.
The envelope wave function �n is obtained by solving the
effective mass Schrödinger equation with the Hamiltonian
HEMA = p̂2/[2m∗(r)] + Vc + Vz(x,z) [27] using the Lanczos
algorithm on a 160 × 275 finite-element grid. The grid size
along the ẑ direction is 0.26 Å, which captures the effect of
atomistic scale interface steps. χ (s) denotes the spin wave
function where s ∈ {↑,↓}. The diagonalization results in a
relative precision in orbital energy of 1.1 × 10−3 meV and a
relative error in the valley splitting of 1.4 × 10−4 meV.

For the ground orbital the valley-orbit coupling is

�v = 〈
D0s,ξ

∣∣Vz

∣∣D0s,ξ ′
〉 = |�v|e−iφv , (4)

where φv is the mixing phase of the two bare valley states,
which in the absence of the step is the same for all orbitals.
In the absence of the step EDSR can be captured by a simple
perturbative treatment. We restrict our attention to the 8 × 8
subspace comprising the ground and first excited orbital states,
namely {D0↑,k,D0↓,k,D0↑,−k,D0↓,−k,D1↑,k,D1↑,k,D1↓,−k,

D1↓,−k}. The corresponding effective Hamiltonian can be
represented as

Heff =
(

H00 H01

H10 H11

)
. (5)
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The block H00 = EZ1 ⊗ σz + �vτx ⊗ 1, with EZ the Zeeman
energy and the ground state orbital energy set to zero,
while H11 = h̄ω1 ⊗ 1 + EZ1 ⊗ σz + �v,1τx ⊗ 1 with h̄ω the
orbital confinement energy and �v,1 = 〈D1s,ξ |Vz|D1s,ξ ′ 〉. The
off-diagonal blocks H01 = H

†
10 represent the matrix elements

of the electric dipole interaction and spin-orbit coupling
eEacx1 ⊗ 1 + HSOC, with β = ζ = 0 for simplicity.

We perform a Schrieffer-Wolff transformation [28,29] to
project out the H01 and H10 blocks. Then we diagonalize the
resulting matrix to obtain the valley eigenstates |Dns,±〉 =

1√
2
(|Dns,k0〉 ± e−iφv |Dns,−k0〉), finding a ground state EDSR

Rabi frequency [16,30,31]

f = gμBeBEacκ〈x〉01

2πh̄3ω2
(α − γ sin φv), (6)

where 〈x〉01 and κ are the matrix elements between the orbital
ground and first excited states of the electric dipole and
momentum operators, respectively. EDSR arises from two-
step virtual processes, e.g., |D0↑,z〉 → |D1↓,−z〉 → |D0↓,−z〉
and requires spin-orbit coupling, a change in the orbital state,
the ac electric field, and time-reversal breaking by the magnetic
field. Although the process involves bare valley state mixing,
the initial and final valley eigenstates are the same, and the
spin states remain in the |D0s,−〉 subspace.

The resulting effective Hamiltonian for the ground
state subspace {D0↑,−,D0↓,−} has the form Heff = 1

2εzσz +
1
2εx(t)σx , which coincides with the form of the electron spin
resonance (ESR) Hamiltonian. Upon application of a vector
microwave source, a qubit can be operated around an arbitrary
axis on the Bloch sphere via in-phase (X) or in-quadrature (Y )
pulses with the reference clock.

In the presence of the step there is a large enhancement of
the Rabi frequency because contributions similar to Eq. (6)
arise from the stronger coupling between the ground state
(n = 0) and the excited states (n = 1). This is indicated by
the fact that the wave function extends over a larger area, as
higher orbital occupies a wider domain [Fig. 3(c)]. Equally im-
portantly, electrical control of the VOC is enabled by the step.
Intervalley and intravalley spin-orbit interaction terms couple
one valley eigenstate corresponding to the orbital ground state
with the opposite valley eigenstate corresponding to the first
orbital excited state. The electric field has an additional impact
on spin dynamics, leading to a strong enhancement of the Rabi
frequency. We take this into account through the spin- and
valley-orbit coupling matrix elements (〈Dns,ξ |HSOC|Dn′s ′,ξ ′ 〉
and 〈Dns,ξ |Vz|Dns,ξ ′ 〉, respectively) between all pairs of states.
Since we work with the exact solution of HEMA, the electric
dipole term couples the ground state to all excited states.
Our numerical results show that an effective Hamiltonian
analogous to Heff is sufficient to describe EDSR both quantita-
tively and qualitatively, the difference being that the individual
blocks can no longer be written out in closed form. We
determine the Rabi frequency as well as the wave function
and its time evolution as a function of the in-plane electric
field Eac. Only terms linear in Eac are retained. The central
result of this paper is displayed in Fig. 4, which shows the Rabi
frequency as a function of the separation between the quantum
dot potential center and the step. This is closely related to the
evolution of the wave function described in Figs. 2 and 3(a).

FIG. 2. Evolution of the wave function as it is driven over an
interface step. The in-plane electric field is used to drag the wave
function over a 5.43 Å step. During this process (a) the wave function
will initially be compressed at the step edge; (b) at higher fields, the
electron density starts leaking to the other side of the step; (c) as the
wave function pushes against the step, the valley composition become
more sensitive to the quantum dot position: in the presence of the step,
the in-plane electric field can be used to control both eEac〈x〉01 and
�v , resulting in a significant enhancement of the EDSR frequency.
(d) The wave function overcomes the barrier and surmounts the step.

III. DISCUSSION

On the far left of Fig. 4 we recover the Rabi frequencies
for a flat interface cf. Eq. (6). These differ slightly on the
two sides of the step because, in the presence of the strong
interface electric field, the step creates a potential barrier
eFd ≈ 15.2 meV. The valley-orbit coupling magnitude and
phase are slightly different on the left and right sides of
the step. The potential barrier can be used to understand the
sharp, resonancelike shape of Fig. 4. The spin- and valley-orbit
couplings between all the states are maximized at the location
of the step. As the wave function approaches the step it
initially does not have sufficient energy to overcome it and
is pushed against it by the in-plane electric field [Figs. 2(a)
and 2(b)]. The EDSR Rabi frequency gradually decreases since
the additional confinement due to the step limits the movement
of the quantum dot (〈x〉01 decreases as the wave function nears
the step). Once the confinement becomes strong enough that
the energy of the electron matches that of the step potential
barrier, the wave function passes over the step and continues
smoothly onto the other side [Figs. 2(c) and 2(d)]. As the
wave function quickly overcomes the step, the EDSR Rabi
frequency has a sharp maximum as a function of position.

The key to the EDSR enhancement is provided by
the intervalley spin-orbit coupling terms governed by the
structure-specific parameters γ and ζ . The step strongly
enhances intervalley dynamics by enabling the electron to
tunnel between the ground valley eigenstate and the opposite
valley eigenstates corresponding to all excited orbital levels.
Thanks to the intervalley spin-orbit coupling, which flips the
electron spin, the interorbital intervalley tunneling enabled by
the step has a strong impact on spin dynamics, and the strong
coupling to all the orbital excited states results in a much faster
spin rotation than in the absence of the step. This is reflected
in the decrease in the valley splitting seen in Fig. 3(b). The
enhancement of the Rabi frequency is due to the combination
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FIG. 3. (a) A small DC in-plane electric field (≈1 MV/m) due
to the side gates shifts the dot ground state mean position 〈x〉 by
approximately 40 nm. (b) The valley splitting is also sensitive to the
location of the center of the dot potential near a 5.43 Å step. (c) The
spread of the wave function, defined as the extent of the central 90%
of its weight.

of the wave function sensitivity to the in-plane electric field as
well as to the drop in the valley splitting.

The enhancement at a step is not present in materials
that do not possess a valley degree of freedom, such as
III-V semiconductors: We have checked this explicitly. In Si,
conversely, the effect is particularly strong since the lowest
lying valley states are perpendicular to the interface. Using
Eac = 2 kV/m and B = 1T we obtain a maximal EDSR gate

FIG. 4. EDSR Rabi frequency fRabi,v− as a function of the
quantum dot potential center position x0 in a global magnetic field
B = 1T along [001] with a step height of 5.43 Å. The enhancement
appears at x0 = 20 nm, on the right side of the step.

time tπ of 170 ns in Si/SiO2, which is approximately five times
faster compared to tπ = 880 ns for a flat Si/SiO2 interface. In
Si/SiGe, a single atomic layer step leads to a peak gate time tπ
of 225 ns, three times as fast as for a flat interface.

Fast qubit operation protects the qubit from unwanted
excitations. Given that the spin flip time is ≈200 ns and the
orbital state splitting is 3.81 meV, our perturbation theory is
strongly adiabatic in the orbital motion [31]. Hence, even with
the small intrinsic spin-orbit coupling of Si, a spin qubit could
be efficiently driven purely by electrical means. A local oscil-
lating electric field allows individual qubit control. Likewise,
electrical spin coupling to a superconducting resonator will be
enhanced, enabling fast electrical spin entanglement of distinct
spin qubits. We note that two-qubit entanglement can also
be accomplished via exchange [1]. The intervalley spin-orbit
terms γ and ζ independently result in an enhancement of
the EDSR strength. An additional relative phase may exist
between these terms, which is structure dependent, and slight
variations are expected in the EDSR times for individual
samples. Yet the effect will be qualitatively the same across all
structures and a strong enhancement in EDSR due to the step
will occur.

IV. DEVICE APPLICATION

A typical ac electric voltage of approximately 1.5 mV
was applied to devices in previous EDSR experimental
realizations [4,15], which we consider to be a realistic voltage
representing the current state of the art. By means of tech-
nology computer aided design (TCAD) [32] simulations, we
find that in MOS architectures with a silicon oxide thickness
of 5 nm, a 1.5 mV side gate voltage can produce an in-plane
electric of as much as 2 kV/m acting on the quantum dot. This
realizes the minimum EDSR gate time tπ of 170 ns reported
above.

The results presented here are crucial for any implemen-
tation of EDSR in silicon. Recently, second harmonics have
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FIG. 5. (a) The enhancement of the EDSR Rabi frequency
increases with step height (1 atomic layer = 1.36 Å). (b) Higher
atomic steps require a stronger in-plane DC electric field in order
to overcome the potential barrier introduced by the step.

been observed in a Si/SiGe spin qubit operated using EDSR
enabled by a nanomagnet [6]. A possible explanation of these
higher orders can be the presence of disorder, as these cause a
strong nonlinear dependence of the wave function position and
spin-orbit terms on the applied electric field. State-of-the-art
technology can reduce Si/SiO2 surface roughness to as low
as 0.7 Å [33–38] meaning that only one such step may
be present within a single dot device. We also anticipate
the possibility of the intentional design of quantum dots
incorporating step edges. These could be constructed using
standard top-down fabrication techniques, such as reactive
ion etching, or possibly STM-based approaches. Such an
intentional step would dominate any effects due to interface
roughness, as we see in Fig. 5(a), which shows that larger
steps lead to a stronger enhancement of the Rabi frequency. As
the impact of roughness on valley physics averages out [18],
the effect of the intentional step becomes more prominent.
However, as the step increases in size, a stronger DC in-plane
electric field is required to push the center of the quantum
dot to a position where the spin can reach the maximum
possible EDSR Rabi frequency. As the step size is increased by
the addition of further atomic layers, it becomes increasingly
difficult for the electron to overcome the potential due to the
step [Fig. 5(b)]. For large steps, which prevent the formation
of a simple, single quantum dot, the potential landscape
eventually becomes rather complicated.

V. DECOHERENCE

The step may increase the coupling to phonons and charge
noise, causing spin and valley relaxation [16,19]. Since the
qubit is in the lowest valley eigenstate, valley relaxation will
only be important around hotspots. Yet the intervalley spin-
orbit coupling could enhance decoherence mechanisms al-
ready active in the absence of valley-orbit coupling [15,39–46].
Moreover, interface roughness is unavoidable in heterostruc-
tures, giving rise to fluctuations in the z position of the
interface that couple different valley eigenstates [18]. Noise
and phonons driving the quantum dot over the fast-varying
roughness profile may enable intervalley tunneling. Together
with the intervalley spin-orbit coupling this may lead to
additional spin relaxation and dephasing.

Nevertheless, the sharpness of the resonance in Fig. 4 means
that experimentally the quantum dot position only needs to
be tuned 5 nm away from the step once the spin rotation is
accomplished for the spin relaxation and dephasing times to
return to their normal values for a flat interface. Charge noise
and phonons will only be noticeable during qubit operation.
To preserve fidelity experiment should ensure the qubit is
at the maximum in Fig. 4, where the sensitivity to jitter is
eliminated. Moreover, roughness will reduce the magnitude of
the valley-orbit coupling (i.e., the valley splitting), yet as long
as the valley splitting can be resolved experimentally the spin
dynamics described in this work should be observable.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated that a single step at a silicon
heterointerface strongly enhances EDSR in a single-spin qubit.
The effect is driven by intervalley spin-orbit coupling terms
specific to silicon and by the intervalley tunneling enabled
by the step. The Rabi frequency has a sharp maximum as a
function of the qubit position, such that the qubit can be tuned
away from the step to reduce spin relaxation and dephasing. A
high gate fidelity can be maintained by positioning the qubit
at the location that yields the maximum EDSR frequency. Our
findings pave the way for the experimental realization of EDSR
in silicon without a nanomagnet, despite spin-orbit coupling
being inherently weak.
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APPENDIX A: FORM OF SPIN-ORBIT COUPLING

The spin-orbit coupling in the basis {D0↑,k0 ,D0↓,k0 ,D0↑,−k0 ,

D0↓,−k0} has the form

HSOC =
(

HDintra + HRintra HDinter + HRinter

H ∗
Dinter

+ H ∗
Rinter

HDintra + HRintra

)
. (A1)
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In Eq. (A1), the intravalley Rashba terms have the form

HRintra = α(kyσx − kxσy) =
(

0 iαk−
−iαk+ 0

)
, (A2)

where k± = kx ± iky . The intervalley Rashba terms can be
written as

HRinter = −iγ (kyσx − kxσy) =
(

0 γ k−
−γ k+ 0

)
. (A3)

The intravalley Dresselhaus spin-orbit coupling has the form

HDintra = β(kxσx − kyσy) =
(

0 βk+
βk− 0

)
, (A4)

with the intervalley terms

HDinter = ζ (kxσx − kyσy) =
(

0 ζk+
ζk− 0

)
. (A5)

The magnetic field is applied along [001], corresponding to a
Zeeman interaction

Hz = gμBB

2

(
1 0
0 −1

)
. (A6)

APPENDIX B: COUPLING MATRIX ELEMENTS

The envelope wave function for the excited state is

�1(x,z) = 1
a2

√
π

(x − XD)e− (x−XD )2

2a2 ψ(s), giving rise to the fol-
lowing matrix elements

〈kx〉01 = −i

a3π

∫ ∞

−∞
dxe

− (x−XD )2

2a2

(
∂

∂x

)
(x − XD)e− (x−XD )2

2a2

= − i√
2a

= −iκ

〈ky〉01 = 0. (B1)

Similarly the matrix element for 〈x〉01 is

〈x〉01 = ξ = 1

a3π

∫ ∞

−∞
dxe

− (x−XD )2

2a2 (x − XD)e− (x−XD )2

2a2

= a√
2
. (B2)

Thus the total Hamiltonian in the basis {D0↑,k0 ,D0↓,k0 ,

D0↑,−k0 ,D0↓,−k0 ,D1↑,k0 ,D1↓,k0,D1↑,−k0 ,D1↓,−k0} with Rashba
only spin-orbit coupling becomes

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ez

2 0 �v 0 eEξ ακ 0 −iγ κ

0 −Ez

2 0 �v −ακ eEξ iγ κ 0

�∗
v 0 Ez

2 0 0 iγ κ eEξ ακ

0 �∗
v 0 −Ez

2 −iγ κ 0 −ακ eEξ

eEξ −ακ 0 iγ κ
Ez

2 + h̄ω 0 �v 0

ακ eEξ −iγ κ 0 0 −Ez

2 + h̄ω 0 �v

0 −iγ κ eEξ −ακ �∗
v 0 Ez

2 + h̄ω 0

iγ κ 0 ακ eEξ 0 �∗
v 0 −Ez

2 + h̄ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

We apply the Schrieffer-Wolff transformation to the off-diagonal elements of H , ignoring all the higher order spin-orbit terms
α2κ2 + γ 2κ2 and αγ κ2. We obtain an energy offset for ground state subspace {D0↑,k0 ,D0↓,k0 ,D0↑,−k0 ,D0↓,−k0}

H (2) =

⎛
⎜⎜⎜⎜⎝

0 −αgμBeBEκξ

h̄2ω2 0 iγgμBeBEκξ

h̄2ω2

−αgμBeBEκξ

h̄2ω2 0 iγgμBeBEκξ

h̄2ω2 0

0 − iγgμBeBEκξ

h̄2ω2 0 −αgμBeBEκξ

h̄2ω2

− iγgμBeBEκξ

h̄2ω2 0 −αgμBeBEκξ

h̄2ω2 0

⎞
⎟⎟⎟⎟⎠. (B4)

As an example of the calculation, the matrix element (1,2) is

H
(2)
12 = 1

2

∑
l

H1lHl2

[
1

E1 − El

+ 1

E2 − El

]
= 1

2
(αeEξκ)

[
1

gμBB + h̄ω
+ 1

gμBB − h̄ω

]
. (B5)

We consider the valley orbit coupling in the ground state subspace

H =

⎛
⎜⎜⎜⎜⎝

Ez

2 −αgμBeBEκξ

h̄2ω2 �v
iγgμBeBEκξ

h̄2ω2

−αgμBeBEκξ

h̄2ω2 −Ez

2
iγgμBeBEκξ

h̄2ω2 �v

�∗
v − iγgμBeBEκξ

h̄2ω2
Ez

2 −αgμBeBEκξ

h̄2ω2

− iγgμBeBEκξ

h̄2ω2 �∗
v −αgμBeBEκξ

h̄2ω2 −Ez

2

⎞
⎟⎟⎟⎟⎠. (B6)
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We diagonalize this matrix using the rotation

R = 1√
2

⎛
⎜⎜⎜⎝

1 0 e−iφv 0

0 1 0 e−iφv

1 0 −e−iφv 0

0 1 0 −e−iφv

⎞
⎟⎟⎟⎠ (B7)

yielding

RHR−1 =
(

Hv+ H01

H10 Hv−

)
(B8)

where

Hv+ =
⎛
⎝ |�v| + 1

2Ez − gμBeBEκξ [α+γ sin (φv )]
h̄2ω2

− gμBeBEκξ [α+γ sin (φv )]
h̄2ω2 |�v| − 1

2Ez

⎞
⎠ (B9)

and

H01 =
⎛
⎝ 0 − iBegγEκμBξ cos (φv )

h̄2ω2

− iBegγEκμBξ cos (φv )
h̄2ω2 0

⎞
⎠ (B10)

as well as

Hv− =
⎛
⎝ −|�v| + 1

2Ez
gμBeBEκξ [γ sin (φv )−α]

h̄2ω2

gμBeBEκξ [γ sin (φv )−α]
h̄2ω2 −|�v| − 1

2Ez

⎞
⎠. (B11)

This finally yields the Rabi frequency in the subspace spanned by the spin-split ground valley eigenstate

f = gμBeBEacκ〈x〉01

2πh̄3ω2
(α − γ sin φv). (B12)
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