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Preface
The application of robotics in modern­day environments are becoming more widespread and complex.
Enabling them to better interpret their surrounding world allows them to become more helpful and
safe. This work extends recent machine learning advances for estimating monocular depth in a self­
supervised manner to more complex domains. Specifically, this research enables the use of self­
supervised learning for monocular depth estimation in untextured indoor environments under rotation.
The code for this work is made available to all for application and improvements 1.

This paper marks the end of a long journey in Delft, full of good memories and important people
in my life. Even though there have been difficult moments, especially considering a year like this one,
the people around me have helped me persevere. First, I would like to express my gratitude to my
supervisors Tom van Dijk and Dr. Guido de Croon for their continual support and understanding in a
year like this. Their contributions and feedback have been essential to navigate and shape this thesis.
I am thankful for the strong support and care I have received from my friends, old and new, whose
presence in my life has been invaluable. I feel lucky to have such special friends and family in my life.
Finally, thank you to my parents and my brother in exploring the world with me and guiding me on my
way. None of these years would be possible without their constant support and love.

Benjamin Keltjens
Delft, July 2021

1https://github.com/tudelft/filled­disparity­monodepth
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1
Introduction

1.1. Background
The application of robotics in modern­day environments are becoming more widespread and complex.
Enabling them to better interpret their surrounding world allows them to become more helpful and safe.
The ability to estimate depth in a scene is an essential component of many 3D computer vision tasks.
It is extremely useful for many applications, such as scene reconstruction, autonomous navigation of
indoor environments, augmented reality and image augmentation.

Initially, depth estimation was done through classical techniques such as stereo matching [20].
More recently, with the advent of machine learning, deep learning methods with monocular cameras
have been used to tackle the problem. Deep learning methods leverage a statistical learning ability to
recognise and make use of contextual cues in different scenes [52].

Many existing deep learningmethods for monocular depth estimation use supervised learning where
data must be labelled with ground truth data [9] [24]. These methods are popular as they have high ac­
curacy. However, the data collection methods for these are quite cumbersome, often requiring heavier
sensors such as LIDAR [14].

The development of self­supervised methods for monocular depth estimation has allowed for more
flexible data collection methods. The use of stereo training pairs was proposed where disparity was
estimated for the left image and a warped generated right pair was compared to the captured right
pair [13]. This method has been considerably improved upon since its release, making self­supervised
methods competitive [15].

Although this method has opened up data collection in manymore domains, it has only been demon­
strated on a select few domains. A large problem it runs into is that warping images in textureless
regions is not affected by the difference of small or large disparity shifts. Consequently, errors in im­
age reconstruction, as a consequences of disparity shifts, for these regions can not be penalised and
learned. This leads to poor performance in untextured scenes that frequently occur in indoor and darker
environments.

Another unexplored domain for training in this way is for rotated scenes in pitch and roll. Popular
datasets, such as KITTI [14], maintain a fixed angle as data is collected on a car. This leads to issues
when tested on images that are rotated [52].

This paper extends self­supervised learning of monocular depth to these two domains. First, a novel
loss term, Filled Disparity Loss, is proposed to guide the learning of disparity in untextured regions of an
image. Secondly, it is shown that having representative rotations, in both pitch and roll, in the training
dataset is sufficient to improve the estimation over the range of rotations. These two advances allow
for a broader use of self­supervised learning in more complex domains.

1.2. Research Aim
The research objective and questions of this thesis are shown below. These do not match those outlined
in the literature review as the subject of the paper changed focus. The objective of this paper is

1



2 1. Introduction

to improve self­supervised monocular depth estimation in untextured rotated
environments by means of developing a self­supervised learning method trained for

a rotated indoor domain

This objective led to the following research questions

Q1 How can self­supervised monocular depth estimation be improved for untextured regions in im­
ages?

Q1.1 To what extent is accuracy in untextured regions improved compared to previous methods?
Q1.2 Is there a trade­off in performance in textured regions with previous methods?

Q2 How can self­supervised monocular depth estimation be improved for rotations in pitch and roll?

Q2.1 Is the improvement in accuracy different for rotations in pitch and roll?
Q2.2 How well does the improvement in accuracy generalise over the entire range of rotation?

1.3. Thesis Structure
This report is structured in three parts. Part I contains the scientific article detailing the outcomes of
this research. An overview of related work is given in section 2.2. This is followed by a description of
the proposed method in section 2.3. The main results of the work are shown in section 2.4. Finally, the
conclusions are presented in section 2.5.

Part II contains the preliminary research done for this thesis. The reader should keep in mind that
the subject of the thesis was altered slightly after the literature study. First, various depth estimation
methods are discussed in section 3.3. Next different domain adaption techniques are detailed in sec­
tion 3.4. This is followed by an examination of the different methods to improve computational speed
in section 3.5. Some details for the platforms for implementation are given in section 3.6 followed by
the conclusions of the report in section 3.7.

The thesis is finished in Part III with a discussion of conclusions and recommendations for further
work.
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Abstract

Self-supervised deep learning methods have leveraged stereo images for training
monocular depth estimation. Although these methods show strong results on outdoor
datasets such as KITTI, they do not match performance of supervised methods on in-
door environments with camera rotation. Indoor, rotated scenes are common for less
constrained applications and pose problems for two reasons: abundance of low texture
regions and increased complexity of depth cues for images under rotation. In an effort to
extend self-supervised learning to more generalised environments we propose two addi-
tions. First, we propose a novel Filled Disparity Loss term that corrects for ambiguity of
image reconstruction error loss in textureless regions. Specifically, we interpolate dispar-
ity in untextured regions, using the estimated disparity from surrounding textured areas,
and use L1 loss to correct the original estimation. Our experiments show that depth es-
timation is substantially improved on low-texture scenes, without any loss on textured
scenes, when compared to Monodepth by Godard et al. Secondly, we show that training
with an application’s representative rotations, in both pitch and roll, is sufficient to signif-
icantly improve performance over the entire range of expected rotation. We demonstrate
that depth estimation is successfully generalised as performance is not lost when evalu-
ated on test sets with no camera rotation. Together these developments enable a broader
use of self-supervised learning of monocular depth estimation for complex environments.

1 Introduction
The ability to estimate depth in a scene is an essential component of many 3D computer
vision tasks. It is extremely useful for many applications, such as scene reconstruction,
autonomous navigation of indoor environments, augmented reality and image augmentation.

Initially, depth estimation was done through classical techniques such as stereo matching
[12] [3] and Structure from Motion (SfM) [22], amongst others. More recently, methods
using Convolutional Neural Networks (CNNs) have been developed for the purpose of es-
timating depth from a single image [5] [7] [10] [11] [25], opening the possibility to more

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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lightweight and flexible robots and devices having this capability. This was first achieved
using ground-truth labels for depth to train in a supervised fashion [5] [14]. The accuracy of
supervised methods is impressive on datasets like KITTI [9], featuring outdoor car scenes,
and NYUDepthV2 [16], showing indoor scenes. However, supervised learning requires com-
plex and cumbersome data collection methods, such as heavy LIDAR systems.

To combat this, self-supervised learning of monocular depth has emerged to guide learn-
ing using stereo cameras [7] [10] or monocular sequences of images [25], where training data
is more easily collected. These newer methods are promising for the application of online-
learning and show strong performance on similar outdoor domains as supervised learning.
However, stereo pair methods are generally applied to domains quite fixed in content and mo-
tion. We would like such networks to work in more generic settings, for example in indoor
environments or when the camera is under rotation. These conditions still cause problems
that hamper their widespread applicability [23].

For less physically constrained applications on dynamic platforms, such as hand-held
phones or autonomous Micro Air Vehicles (MAVs), indoor scenes under rotation are com-
mon. Indoor domains often feature untextured scenes with structures such as walls and
ceilings. Self-supervised learning with image-reconstruction is based on estimating the dis-
parity shift between stereo pairs to synthesise the alternate view and compare it to ground
truth view of the other camera. This method is ill-posed for textureless regions as small or
large translations of pixels are indistinguishable in the generated, alternate, view.

Additionally, these platforms must handle a wide range of difficult rotations which are
challenging. Van Dijk and De Croon show that Monodepth [10] and other networks have
difficulties estimating depth under pitch and roll rotation when trained on KITTI [23]. This
is explained by the dependence on the vertical position of objects as a depth cue for a camera
with a fixed pose.

To improve the application of self-supervised learning in these more complex domains,
we present two additions to the current state-of-the-art. First, we propose a novel loss term,
Filled Disparity Loss, to learn correct disparity for textureless regions. We make use of an
assumption, inspired by stereo matching disparity refinement [8], that disparity can be in-
terpolated between edges, where the image-reconstruction loss is better posed. Our method
improves depth estimation considerably when compared to previous image-reconstruction
based self-supervised networks. Secondly, we show that building a dataset with represen-
tative rotations expected in the network’s deployment significantly improves performance
without requiring any changes to the network’s structure. These two findings allow self-
supervised networks to be deployed in the studied complex, but common, domains.

2 Related Work
Several advances have been made to estimate depth with monocular vision. Initially, hand-
crafted features combined with probabilistic methods were developed, such as Saxena et al.’s
method which used Markov Random Fields [20]. However, more recently deep learning
methods have come to the forefront to tackle the problem [5] [7] [10] [11] [25] .
Supervised Monocular Depth Estimation Eigen et al. [5] were the first to use deep learn-
ing to leverage learned features for monocular depth estimation. Their network used a two-
stage process with coarse and refined depth estimation. Since this work, additions such as
GANs [15] and multi-task learning have improved the performance of supervised methods.
Some networks leverage semantic and surface normal labels to aid in depth estimation [4].
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Performance is strong in various environments with datasets such as KITTI [9] for outdoor
scenes for driving cars and NYU-Depth V2 [16] that has a variety of indoor scenes. Super-
vised methods are able to handle textureless surfaces in indoor environments [6] as depth is
directly learned. To an extent, supervised methods have also been able to handle scenes with
camera rotation, such as NYUDepth-V2 that contains slightly pitched images. Recently,
Zhao et al. [24] use an encoding of the camera pose as an additional input to significantly
improve performance on rotated datasets.
Self-Supervised Monocular Depth Estimation In order to avoid the vast amount of re-
quired labelled data for supervised methods, various self-supervised methods have been de-
veloped using both stereo images and monocular video sequences. Garg et al. developed
the first self-supervised method using image reconstruction with stereo pairs [7]. Instead
of estimating depth directly, their proposed method estimates disparity, which is then used
to warp the input left image to synthesise the right image of the stereo pair. This warped
version is compared to the true right image, and a loss based on the difference between the
two (the image reconstruction loss) is used to guide learning. Disparity, d, is converted to
depth, D, by D = b f

d where b is the baseline distance and f is focal length in pixels. Go-
dard et al. [10] improved on this method with the addition of a fully differentiable warping
method as well as estimating the disparity for both the left and right image and defining a
loss for consistency between them. There have been various improvements to these methods
with diverse network structures as well as novel loss terms [11] [18] [17]. In addition to
self-supervision with stereo-images, methods have also been developed to leverage monoc-
ular videos as training material. Zhou et al. [25] proposed a method that simultaneously
estimates pose and depth, allowing images to be warped between neighbouring frames and
used for an image reconstruction loss.

Contrary to supervised methods, not much has been done to evaluate self-supervised
learning with stereo images when training in indoor environments under rotation; the KITTI
dataset is used most often for training and evaluation [7] [10] [17]. This leads to degradation
of performance when testing on rotated images and datasets [23]. Moreover, to our knowl-
edge, the ill-posed nature of the image reconstruction loss with image warping in low-texture
environments is also yet to be addressed in the literature.

3 Proposed Method
In order to estimate depth in indoor, rotated environments, our proposed method entails both
a novel loss term using filled disparity maps as well as the use of representative datasets to
learn expected rotations in environments. First, the losses and network are presented and
then a description of the rotated datasets used for training is given.

3.1 Filled Disparity Loss
As described in section 2, self-supervised learning of monocular depth using stereo images
infers disparity maps from a single RGB image. However, the image reconstruction loss in
textureless regions of the scene is ill-posed due to small and large disparity maps producing
the same result, and therefore loss, in those regions. The effect can be seen for the state-of-
the-art Monodepth method [10] in the second column of Figure 4. We propose an additional
loss term, called Filled Disparity Loss, which uses filled disparity maps in regions of low
texture as an additional loss for indoor scenes. This is inspired by the interpolation of sparse
of disparity estimates in ELAS [8]. This new loss is used together with the losses for stereo
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self-supervised learning used by Godard et al. in Monodepth [10] as can be seen in the
network overview in Figure 1.

Figure 1: Structure of our network and the Disparity Filler Function

The Disparity Filler Function generates an interpolated disparity map as seen in the bot-
tom of Figure 1. This function is split into three main parts.

Disparity Mask First, a sparse disparity mask is generated by identifying significant edges
where the reconstruction loss is well posed. This is done by means of a Sobel filter of size 7
on the grayscale input image. A large filter is used to avoid detecting smaller changes due to
noise, that may appear in regions of lower texture. Feature detection methods such as ORB
[19] and SURF [2] were considered, however, they produce far too few, scattered points for
the following steps. Additionally, Sobel filters perform well in the Tensorflow framework
[1]. The gradient image is then normalised to the interval [0,1] and then an "active" mask of
textured pixels is defined as values greater than 0.1.
Propagation Secondly, the disparity is propagated outwards to other edges. A while loop
is used where pixels are filled by averaging the immediately neighbouring active pixels as

Figure 2: Progression of the Propagation step of the Disparity Filler Function to fill the
sparse disparity map (top) and active pixel mask (bottom)
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can be seen in Figure 2. This loop continues until the entire image has been filled with active
pixels. This method allows for interpolation between edges as well as interpolation to the
border of the image where there might be no active pixels.
Smoothing In the final step a 5x5 smoothing kernel, using inverse distance and 1 at the
centre (normalised), is used to smoothen the new disparities in textureless regions. Texture-
less pixels are found using the inverse of the initial mask of active pixels.

Overall, the Disparity Filler Function is able to generate more accurate disparity esti-
mates in the textureless regions. However, from Figure 2 it is apparent that there are some
undesired effects such as filled disparities being propagated perpendicular to detected edges.
This can be improved by methods such as used by Geiger et al. [8] with interpolation over
Delauny Triangulation between points. However, this process is not differentiable and per-
forms slower on the CPU with large quantities of active pixels. The new map is compared to
the originally estimated disparity map using an L1 loss.

3.2 Losses
The loss function for this network is based on the work done by Godard et al. [10] and
consists of 4 terms, resolved at multiple scales s, as seen in Equation 1. The total loss is the
sum of losses at 4 different scales L = ∑

4
s=1 Ls.

Ls = αap

(
Ll

ir +Lr
ir

)
+αds

(
Ll

ds +Lr
ds

)
+αlr

(
Ll

lr +Lr
lr

)
+α f d

(
Ll

f d +Lr
f d

)
(1)

Lir evaluates the loss of image reconstruction of input images, Lds evaluates the smooth-
ness of the disparity map, Llr evaluates the consistency of the left and right disparity maps
and L f d evaluates the similarity of the estimated disparity map and the filled disparity map.
Disparities are predicted for both the left and right images; the superscript l and r indicate
which image the loss is calculated for. The losses are shown in detail for the left images case.
Image Reconstruction Loss To learn the correct disparity map, both the left and right
images are warped to match the opposite direction and are compared to the input images as
described in section 2. Similar to [10] the imaging warping is done using bilinear sampling
[13]. The reconstruction loss is measured by both L1 and SSIM, comparing input image Il

i j

with the reconstruction Ĩl
i j, where N is number of pixels and α = 0.85 is the weighting term:

Ll
ir =

1
N ∑

i j
α

1−SSIM(Il
i j, Ĩ

l
i j)

2
+(1−α)

∣∣∣Il
i j− Ĩl

i j

∣∣∣ (2)

Disparity Smoothness This loss term encourages local smoothness by minimising gradi-
ents ∂d in the disparity map. The loss takes account of large gradients at edges in the input
image by reducing the loss with the image gradients ∂ I.

Ll
ds =

1
N ∑

i j

∣∣∣∂xdl
i j

∣∣∣e−∣∣∣∂xIl
i j

∣∣∣
+
∣∣∣∂ydl

i j

∣∣∣e−∣∣∣∂yIl
i j

∣∣∣ (3)

Left-Right Consistency As the network outputs disparities for both the left and right im-
ages, this loss term ensures consistency between them. It uses the L1 loss between the left
disparity map dl

i j and the right disparity map projected onto the left view di j+dl
i j

[10].

Ll
lr =

1
N ∑

i j

∣∣∣dl
i j−di j+dl

i j

∣∣∣ (4)
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Filled Disparity Loss Our proposed loss is formulated as an L1 loss between the estimated
disparity map dl

i j and the filled disparity map d̃l
i j. The loss only applies to untextured regions

as the Disparity Filling Function does not change disparity in textured regions of an image.

L f d =
1
N ∑

i j

∣∣∣dl
i j− d̃l

i j

∣∣∣ (5)

3.3 Datasets
This work makes use of the AirSim Building_99 drone simulation environment developed
by Microsoft [21] to generate training data. A more detailed description of the collection
method can be found in Appendix A. Various indoor scenes are captured with left and right
images as well as ground truth disparity. The environment contains a range of scenes ranging
from long narrow hallways to open spaces as seen in first column of Figure 4. Flying on a
trajectory through the entire building, 18000 images (128x256) are collected for training and
2000 for testing. Depth is saturated on the boundaries 0-80 [m] as done in [10].

Four datasets are generated with pitch and roll motions enabled or disabled, as listed in
Table 1. The angles are normally distributed in pitch and roll with a standard deviation of 10
degrees about 0 degrees.

Dataset ID Dataset Description
N Nominal with no rotations
R Rotation in roll with standard deviation of 10 degrees
P Rotation in pitch with standard deviation of 10 degrees

PR Rotation in pitch and roll with standard deviation of 10 degrees
Table 1: Dataset Descriptions

3.4 Implementation Details
The hyperparameters of the network are the same as in [10]. The network is trained for 50
epochs with a batch size of 8 using an Adam Optimiser where β1, β2, and ε are 0.9, 0.999
and 10−8 respectively. The learning rate λ is 10−4 for 30 epochs and is then halved every
10 epochs. Colour augmentations and flipping of the input image pairs is also performed
randomly for data augmentation, similar to [10]. A detailed description of the computational
performance on different platforms is given in Appendix B.

4 Results
To show our improvements we begin by analysing the effect of the Filled Disparity Loss on
the performance on the overall dataset. We also evaluate the effect of image texturedness
on performance. This is followed by an analysis of the effect of training with datasets that
contain representative rotations on overall performance, as well as over the range of rotations.

Metrics We use the metrics described in [10]. Given ground truth depth D∗ and estimated

depth D, the following metrics are defined. (1) Absolute Relative Error: 1
|N| ∑i∈N

|Di−D∗i |
D∗i

, (2)

Squared Relative Error: 1
|N| ∑i∈N

‖Di−D∗i ‖
2

D∗i
, (3) RMSE:

√
1
|N| ∑i∈N

∥∥Di−D∗i
∥∥2, (4) RMSE

log:
√

1
|N| ∑i∈N

∥∥log(Di)− log(D∗i )
∥∥2, (5) δt : % of Di s.t. max( Di

D∗i
,

D∗i
Di
) < t, where t ∈{

1.25,1.252,1.253
}

.
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Performance Metrics on Untextured Scenes The effect of the new loss term can be seen
by altering its weight α f d . The results displayed in Table 2 are from training and testing on
the pitch and roll (PR) dataset. We can see that increasing α f d leads to an improvement in
almost all error metrics, except δ < 1.25 at α f d = 0.6. Without the new loss function, the
network performs considerably worse when trained and tested on this domain. The decrease
in the errors stagnates at larger values of the loss weight as it reaches the optimum.

α f d Lower is better Higher is better
Abs. Rel. Sq. Rel. RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

0.0 (Monodepth) 1.7676 89.3917 13.692 0.707 0.667 0.782 0.840
0.1 1.1126 49.5702 10.575 0.572 0.685 0.803 0.865
0.2 0.3696 2.8818 6.301 0.417 0.687 0.816 0.882
0.3 0.3262 2.3222 6.175 0.396 0.683 0.819 0.892
0.4 0.3172 2.1787 6.201 0.392 0.676 0.819 0.895
0.5 0.3200 2.1690 6.109 0.392 0.674 0.819 0.895
0.6 0.3181 2.1549 6.246 0.394 0.664 0.815 0.894

Table 2: Performance of networks with changing α f d on the PR dataset.

Influence of Texturedness on Performance We are interested in seeing the effect of tex-
turedness on the network’s performance. Texturedness is measured by the percentage of
pixels with a Sobel gradient above our threshold of 0.1. In Figure 3 it is apparent that for
lower levels of texture the error is much higher for networks trained with a lower loss weight
α f d . As the texturedness of an image increases, the errors converge to the same value. This
confirms that the new loss function significantly improves estimation in textureless regions
and preserves performance in textured regions.

Figure 3: Absolute Relative error (left) and RMSE (right) of the PR test set as a function of
the percentage of textured pixels in an image for varying α f d . Lower is better.

Qualitative Performance on Untextured Scenes The qualitative results of the network
with the Filled Disparity Loss can be seen in Figure 4. The errors from Monodepth are quite
severe as disparity estimation in close-by, untextured, regions are extremely low (faraway
regions). It is apparent that the additional loss term has helped to guide the network in tex-
tureless areas to correct for the ill-posed image reconstruction. This is especially apparent in
dark environments where texture is lost (row 4), which can be common indoors. Addition-
ally, in textured regions where Monodepth performs well, it is apparent that the performance
is not degraded. Even though there is large improvement, our network still does not com-
pletely capture the scale of disparities in near, untextured, regions (rows 1, 3, 4). However,
when the disparity is inverted to find depth, the differences at close range are small.
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Figure 4: Disparity maps for different scenes on the PR test set

Performance Metrics on Rotated Datasets Our results in Table 3 show the effect of train-
ing on the different datasets when tested on the nominal (N) and pitch and roll (PR) datasets.
The networks are all trained with α f d = 0.5. The first result of interest is that training the
networks on datasets that are rotated does not seem to significantly affect the performance
on the nominal dataset.

Training
Dataset

Testing
Dataset Lower is better Higher is better

Abs. Rel. Sq. Rel. RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

N N 0.3156 2.3348 6.366 0.394 0.673 0.815 0.893
R N 0.3089 2.1977 6.424 0.393 0.670 0.815 0.894
P N 0.3134 2.5294 6.370 0.391 0.675 0.819 0.897

PR N 0.3052 2.1101 6.287 0.387 0.679 0.821 0.897
N PR 0.7245 7.4258 10.232 0.673 0.317 0.542 0.701
R PR 0.4737 3.9536 7.992 0.507 0.483 0.701 0.821
P PR 0.3461 2.3993 6.697 0.421 0.611 0.789 0.880

PR PR 0.3200 2.1690 6.109 0.392 0.674 0.819 0.895
Table 3: Performance of networks on the test sets of nominal (N) and Pitch Roll (PR)

When tested on the pitch and roll test set, the discrepancy between the networks is no-
ticeable, as seen in Table 3. The network trained on the nominal dataset performs extremely
poorly on the PR dataset when compared to the others and its performance on the nominal
dataset. As expected, with more axes of rotation in the training dataset the network performs
better. Training on the PR dataset has similar results when testing on the nominal and PR test
sets. The network trained solely on pitch (P) performs significantly better than that trained
only on roll (R). This is probably because training on pitch allows the learning of correct
vertical height depth cues that arise from pitch rotation [23].
Qualitative Performance on Rotated Datasets Looking at a comparison of disparity
maps in Figure 5 we can see that the performance of the network trained on the nominal
dataset is severely degraded and struggles to retain any resemblance of structure when test-
ing on rotated datasets. With more representative rotations in the training set the preservation
of structure in the depth maps greatly improves.
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Figure 5: Comparison of disparity maps on PR test set. Networks trained with α f d = 0.5.

Performance over Range of Rotation From Figure 6 it is evident that training on the pitch
and roll (PR) dataset does not reduce performance on the pitch dataset (P) when compared
to the network trained only on pitch (P). As expected, the error of the network trained on the
nominal dataset (N) is much larger when the absolute value of the pitch angle increases. Also
promising is that for the two networks trained with rotations, their performance remains quite
constant over the range of pitch. The spread of error on the rotated dataset results are also
much smaller than the network on nominal (N), indicating more consistent performance.
Supplementary analysis for the roll (R) and the pitch and roll (PR) test sets are given in
Appendix C.

Figure 6: Comparison of networks trained on nominal (N), pitch (P) and pitch and roll (PR)
datasets on the pitch (P) test set as a function of pitch angle. The 25th and 75th percentiles of
the data are shown by the shaded areas. Pitch (P) and pitch and roll (PR) are almost identical.

5 Conclusion and Recommendations
In this work, we have presented a new Filled Disparity Loss term to improve depth estima-
tion in textureless regions of images. Our method successfully estimates depth in untextured
regions of indoor environments whilst preserving performance on textured regions. Addi-
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tionally, we have demonstrated the ability of self-supervised networks for monocular depth
estimation to generalise over rotations of scenes given a representative dataset.

For further work, there are a few insights into possible areas of improvement. First,
gathering and testing on a real-world dataset would be important to assess how this method
would perform on a physical platform. Secondly, it would be interesting to investigate the
effect of height as it was kept constant for these experiments. A particularly exciting line of
research would be to take advantage of this method for online learning of monocular depth
in indoor applications. Several computational and hardware improvements would have to be
considered, but it would be very interesting for indoor navigation.

Overall, this work allows for more mobile applications of self-supervised monocular
depth estimation in complex, indoor, environments.
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A Data Collection
Data collection for this work was done in the Airsim Building_99 simulation environment
using binaries1 from Microsoft [21]. The drone platform with stereovision and disparity
ground truth for the left view was used to collect data in the environment. Movement of
the drone was done by setting the exact pose of the drone as it allowed for control of the
distribution of rotations. The translation of the drone followed a set path that allowed it to
view the different parts of the building environment. The path taken over the building floor
plan can be seen in Figure 7. Examples of the different scenes in Building_99 can be seen in
Figure 8

Figure 7: Floor plan of Building_99 Simulation environment with labelled route

Figure 8: Example scenes of locations in Building_99 under Pitch and Roll Rotation. Shown
are the left image (bottom), right image (middle) and the ground truth disparity (top)

1The specific binary version can be found at https://github.com/microsoft/AirSim/releases/tag/v1.3.1-linux
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B Computational Performance
The addition of the Filled Disparity Loss increases the computational load required for train-
ing when compared to Godard et al. [10]. On a single GTX 1080 Ti Monodepth [10] trains
at 48.3 [examples/s] whilst our network achieves 29.5 [examples/s]. As the Filled Disparity
function is only imposed in training, the speed in inference, 82.6 [examples/s], is the same
for both.

In the interest of improving computational performance, a simple trimming process is
performed where the number of layers in both the encoder and decoder is reduced to a per-
centage of the original size. The results of the training speed and accuracy on the Pitch and
Roll (PR) dataset on three different platforms can be seen in Table 4. The three Nvidia plat-
forms considered are the GTX 1080 Ti, Jetson TX2 and Jetson Nano. The smaller Jetson
platforms are interesting in their ability to be placed on light mobile robots, such as drones,
to enable online learning.

Network
Size [%] Training Speed [examples/s] Error Metrics

GTX 1080 Ti Jetson TX2 Jetson Nano Abs. Rel. RMSE δ < 1.25 δ < 1.252 δ < 1.253

20 58.80 6.67 1.81 0.348 6.689 0.632 0.795 0.879
40 55.13 5.88 1.68 0.331 6.382 0.656 0.808 0.887
60 43.98 5.08 N/A 0.320 6.195 0.667 0.815 0.893
80 35.60 4.51 N/A 0.313 6.119 0.677 0.821 0.896
100 29.50 3.86 N/A 0.320 6.109 0.674 0.819 0.895

Table 4: Training speed and error metrics for differing network size on three Nvidia plat-
forms. N/A is used to indicate that it was not possible to train the network for that size.
Some error metrics are removed in the interest of space.

As expected, the training speed improves for a decrease in the size of the network on all
platforms. On the Jetson Nano, only smaller sized networks can be trained due to memory
constraints. Reducing the batch size did not enable training of the network. An interesting
result in Table 4 is that the performance in accuracy is not degraded by too large an amount
whilst retaining only 20% of the layers.

Figure 9: Comparison of disparity map outputs for networks with differing sizes. Sizes are
given as percentage of nominal network size.

Figure 9 shows a qualitative comparison of the different network sizes. The scale of the
disparity estimation is quite constant and the performance of the Filled Disparity Loss is
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retained in untextured areas. Though it does seem that detail is lost in more textured areas.
For example, in the second row, the chairs which are delineated quite well in the original
100% sized network become a single blur in the network 20% the original’s size. This seems
promising for producing coarse estimations on low-power and light platforms.

C Supplementary Rotational Analysis
In addition to the rotational analysis given in section 4 a few additional results are presented
here. First, an analysis of the effect of the roll angle on performance on the roll (R) test set
is given followed by a discussion of the effect on performance over both the pitch and roll
angle on the pitch and roll (PR) test set.

In Figure 10 a comparison of the performance on the roll (R) test set is shown for 3
different networks (trained on nominal (N), roll (R) and pitch and roll (PR)). As expected
the results are quite similar to that of Figure 6. The performance of the network trained on
the nominal (N) dataset is similar to the others for low roll angles but steadily gets worse for
larger roll angles. Contrary to pitch, the decrease in performance for the roll is symmetric.
This is probably because roll angles change vertical cues symmetrically whereas pitch does
not. Similar to pitch, the performance for the networks trained on roll (R) and pitch and roll
(PR) is maintained over the range of roll angles. As for the pitch, the mean result is near the
75th percentile as the average is skewed by larger outliers in error.

Figure 10: Comparison of networks trained on nominal (N), roll (R) and pitch and roll (PR)
datasets on the roll (R) test set as a function of roll angle. The 25th and 75th percentiles of
the data are shown by the shaded areas. Roll (R) and pitch and roll (PR) are almost identical.

For a 3D analysis, Figure 11 shows the performance on the pitch and roll (PR) dataset
over the range of pitch and roll angle, for 4 networks trained on each of the datasets. The
first significant result is that the network trained on the nominal (N) dataset performs far
worse, overall, than the other networks. The performance near smaller angles of roll and
pitch is good for the network trained on the nominal (N) dataset. However, for larger angles
the performance quickly degrades to large errors. This is especially the case for positive
pitch angles. The network trained on the roll (R) dataset has a similar shape to that of the
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nominal, that larger pitch angles degrade performance substatially. However, for each pitch
angle, along the range of roll angles, the performance is fairly consistent.

Both the networks trained on the pitch (P) and pitch and roll (PR) seem to have more
consistent, and better, performance over the range of rotations. Although, performance on
the pitch (P) trained network does seem to slightly worsen when going to extreme roll angles.
The performance of the pitch and roll (PR) trained network is constant over the entire range
of 2D rotations and is overall the best. From these results, it is apparent that pitch is the more
important rotation for improving performance on dynamic platforms. Also, it can be seen
that training on both pitch and roll is the most effective for improving performance over the
entire range of expected rotations.

Figure 11: Comparison of performance of networks trained on all four datasets on the pitch
and roll (PR) test set as a function of both pitch and roll angle.
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3
Literature Review

In this chapter the review of the relevant literature is presented. First, various depth estimation methods
are discussed in section 3.3. Next different domain adaption techniques are detailed in section 3.4. This
is followed by an examination of the different methods to improve computational speed in section 3.5.
Some details for the platforms for implementation are given in section 3.6 followed by the conclusions
of the report in section 3.7. During the course of the thesis the focus shifted from online learning on a
drone indoors to solving the issues of indoor rotated depth estimation.

3.1. Executive Summary
Depth estimation is an important capability for modern systems and robots. This extends from different
fields such as 3D scene reconstruction [64] to robot navigation [32]. In the field of autonomous robotics,
depth estimation is important for tasks such as obstacle avoidance, object detection, navigation and
visual odometry.

The field of depth estimation has existed for a while and continuously sees improvement in attempts
to make better predictions over time [64]. However, depth estimation is often tested for specific envi­
ronments and users, not covering the entire spectrum of domains. This is especially true for methods
that attempt to leverage contextual cues in the domain [52]. Therefore, when deploying an autonomous
robot, that can operate fully alone, it would be ideal that our method for estimating depth could adapt
to its surroundings and learn on its own. This desire can be made possible through self­supervised
learning; a paradigm in which, instead of being fed supervised labels by a human, an algorithm can
learn by comparing its prediction of the world with its observation of the world.

This literature study delves into assessing what the current body of knowledge consists of in the field
of depth estimation and online adaption. This is done in order to determine what is required to make
self­supervised learning of depth possible on a mobile low­power robot, such as a Micro Air Vehicle
(MAV).

Estimating depth ranges over several different methods. Classically, stereo image pairs have been
leveraged to estimate the location of a projected point in 3D space with methods such as SGM [20].
These methods, by themselves, are optimisation based and use no learning methods. Adaptions with
CNNs are possible to allow them to learn, however, these are computationally expensive and complex
in their structure [67][62][55][28].

A newer method is to leverage contextual cues in single images to estimate depth. This began with
Saxena [45] in 2005 with handcrafted filters to extract and relate cues in an image. However, more
recently, these methods have extended to using CNNs, starting with Eigen [9] in 2014. This inspired a
large number of other papers that also learn with ground truth depth, but change the structure and loss
functions to pursue higher accuracy [64][24][8][29]. One large issued identified was that it was very
difficult to compile a large training set of ground truth depth data, especially when training on specific
new domains. This lead to an important development by Garg et al. [13] to develop a self­supervised
method. Essentially, Garg saw that instead of estimating depth, estimating disparity from a stereo pair
would allow for simpler collection of data as only a second camera was need. This loss method, with
image warping, can be seen in Figure 3.1.
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Figure 3.1: Self­supervised training architecture [13]. Predicted inverse depth is the same as image disparity

Like Eigen’s paper there have been a large amount of additions to Garg’s method [15][16][41][8][37].
One of the first, large, improvements was by Godard et al. [15] with a change to the loss term that
produced a disparity map for both directions of warping to check consistency between them. Another
noticeable improvement, by Poggi et al. [41], was to use a pyramidal structure to analyse the image
with decoders at different resolutions, and then up­sampling them to higher resolution decoders. This
method retained performance, but decreased runtime considerably, especially as it allowed to choose
which layer of resolution to terminate inference at. Although these self­supervised methods do not
produce as accurate results as the ground truth methods do on similar domains [64], they allow for
easier adaption to different domains by the means of simpler data collection methods. One of the
most recent innovations, that made data collection even simpler, was to use sequences of monocular
images. Zhou et al. [68] discovered that, by leveraging the change in pose between subsequent
monocular frames depth could be learned in a self­supervised way with only one camera. This class
of method allows for data collection with the least amount hardware, however, also leads the lowest
accuracy compared to the other methods. Also, it requires multiple networks to run in parallel and more
data to be stored in memory. There have also been methods that fuse these learning estimate methods
with the more classical methods [31][10][11].

Thesemethods are compared to find the most apt for self­supervision on a low­power computational
hardware equipped drone. This means the most important aspects are possibility for self­supervised
learning and inference and training speed. From a comparison of the methods in Figure 3.2 it is seen
that Garg and Godard have the most recommended methods for these purposes. This is because they
boast the fastest training speeds whilst maintaining acceptable accuracy.

Figure 3.2: Scatter plot of depth estimation methods accuracy and training speed
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There have been a few papers that examine the application of these learning methods on drones.
Pinard et al. [40] use two frames in an image sequence, one corrected for pose transition to the other,
as inputs for their networks. This serves as a good adaption for applications on drones as pose is
accounted for, however, this method is only demonstrated with processing on a computer receiving a
feed from the drone. Zhao et al. [66] encode the pose of the drone, in height and pitch, into a 4th
channel input. This methods works very well for inference on exotic poses at a low additional cost of
computation. Yang et al. [58] demonstrate one of the very few complete applications on a drone using
SLAM and auto­encoders together. However, this runs on quite a bulky, powerful, computational setup
as well as only being tested in a very constrained obstacle course. There is still work to do to develop
learning based depth estimation methods for drones on lower power computational hardware, applied
in more diverse environments.

The aforementioned depth methods offer a way to interpret an environment that they have been
trained for, however, they are quite constrained to the environment they train on and do not gener­
alise well to other domains [64]. In order to be applicable to a drone, it would be preferable to work
irrespective of the domain.

One of the obvious methods is to try train on varying domains. Many do this by training on different
synthetic domains, however, this is susceptible to lighting and in the end isn’t fully able to generalise
[2]. Another method is to use estimated confidence measures to selectively train with ’good’ estimates
of depth online. However, this requires more computation and still inherits the bias and errors of SGM,
or other classical depth methods, while only getting a sparse loss calculation [50].

Architectural changes also provide a promising direction for online domain adaption. For example,
employing LSTM networks [30][27], allows to leverage temporal information, from past inputs, in an
inexpensivemanner. Alternatively, Zhang et al. [63] use adapter units that learn to change the statistical
features of normalisation layers outputs in order to fit the new domain better. This seems to be quite
powerful, however, also employs quite complicated, non­standard, network shapes which are moved
around a lot in the different phases of training and deployment. Apart from architecture, it is also
possible to change the gradient descent method. Finn et al. [12] use MAML that essentially adapts
weights on the training data, due to loss on test data. This allows training of the network to not be
independent of future inputs. However, this method is complicated to employ on simple frameworks
such as Darknet because of its outer­loop optimisation method.

Due to the constraints of the platform for this research it is also important to ensure that the compu­
tation is not too slow in both inference and training. One the first obvious methods is to lower resolution
of input images. Peluso et al. [35] show the operation of the network at 32x32 resolution by using SGM
supervisory signal which can be seen in Figure 3.3.

Figure 3.3: Examples of depth estimation on 32x32 image inputs

Changes to architecture are also powerful. Mobile Net [21] employ the use of Depthwise Separable
Convolutions to speed up convolutions. The effect is quite powerful and is employed by Wofk et al. [54]
for the purpose of depth estimation. However, the functionality to carry this out on a simple framework,
such as Darknet, is not yet possible. A promising direction is to prune the network before it is deployed
for online training as seen by Wofk et al..

Quantisation is also a promising feature that changes the representation of weights to lower bit rep­
resentations to decrease computation time and memory space. This method is powerful for inference,
but remains very difficult to use for back­propagation. Wofk et al. achieve considerable performance
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increase using this method. For training time, it is recommended to use batch normalisation for faster
convergence to a stable network. It is also possible to not train the entire network each iteration. Brock
et al. [6] suggest progressively freezing layers of the network to stop to training them. These methods
are useful, but may prove difficult to implement on a framework such as Darknet.

There must also be considerations for implementation. The hardware platform is self­contained on
a StereoJevois camera. This has two cameras, CPU, GPU, USB and serial output. The stereo input
can be in colour, or black and white, with the latter having a higher input rate. However, the input rate
is not too important as it likely cannot be processed as fast. The coding for the learning method is
possible in Darknet and Tensorflow, however, Darknet is preferred due to its simplicity in changing the
source code to be compiled to binaries for the Jevois. For simulation the most promising candidate is
Airsim as it has high visual fidelity, stereo camera and a simple API that makes prototyping and testing
easier.

From the different areas analysed there were two clear gaps in the literature. First, it is clear that
although there are a large number of depth estimation methods available, there is not too much work
with regards to application of drones. There are some efforts in this area, however, either the meth­
ods do processing off­board [39] or they employ powerful hardware in constrained, obstacle­course,
environments [58]. There has not been work to process fully on­board a lightweight drone for natural,
indoor, environments. Secondly, as seen in the discussion of adaption, there has clearly been no work
on online self­supervised learning of depth for a physical drone, in a real­world environment. There­
fore, this thesis will address both the use, and online learning, of self­supervised depth estimation on
a drone, in real environments.

This leads to the following research question:

• How can we carry out online self­supervised learning of depth estimation on a drone?

1. Which depth prediction method is best suited to deployment on a drone for online domain
adaption on low­power hardware?
(a) Which method offers the best trade­off between inference speed, training speed and

accuracy?
(b) Which method is best suited to adapt online to a new domain the fastest and most

robustly?
(c) To what degree is the proposed method feasible for implementation on hardware with

low computational power?
2. How should the drone obtain new data such that it can adapt to the new domain as quickly

and robustly as possible?
(a) What information about the environment is most important to capture, to robustly adapt

to the new domain?
(b) At what rate should the drone obtain data for the learning process, in order for the drone

to learn quickly and robustly?
(c) How the should the drone be controlled dynamically in order to facilitate robust domain

adaption?
(d) How can the drone learn in a manner that prevents unlearning of previous domains?

3. What is the overall performance of the proposed depth prediction method?
(a) How well does the drone adapt in terms of accuracy, compared between different do­

mains?
(b) How fast does the drone reach a threshold of accuracy between different domains?
(c) What is the inference time, training time and memory allocation of the proposed method

on the drone?

To answer these questions, first some exploratory work of the methods will be conducted. The
depth estimation methods of interest will be Godard’s [15] with pose encoding [66]. This will be tested
for different dynamic situations in simulation and then moved to the StereoJevois platform. This is
due to its sequential structure, simpler for implementation, and the auto­encoders previous application
on drones for estimation [58][40]. For adaption, of the methods discussed, the most promising for
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implementation are LSTM, as it provides temporal information for better scale estimation, and batch
normalisation, for increased speed convergence of network. Finally, for increase of speed, resolution,
offline pruning and quantisation will be explored. An outline of time planning is given in the Gantt chart
in Figure A.2.

3.2. Background
In order to contextualise the discussed literature a brief overview is given of the basic concepts. This lit­
erature study focuses on both depth and learning methods. Therefore, in subsection 3.2.1 an overview
of depth geometry is given followed by a description of the important common features of a CNN in
subsection 3.2.2.

3.2.1. Stereo Depth Geometry
Depth estimation of a scene from a stereo pair is a well posed problem [64]. The essence of the problem
is to find the corresponding projection of a point on both of the pair images. These are found on the
epipolar plane that connects the point in the scene with two cameras. This can be seen in Figure 3.4.

Figure 3.4: Epipolar Geometry [5]

Point X is projected onto point x on the left plane. From just the left plane image, the length of
the vector OX is indeterminate. It can be solved by using information of the right plane, namely the
projection of the point in space on to the right plane. The differing projection of X on to the right plane,
x’, varies along the epiline l’. With the plane OO’X determined, the 3D position of point X can be given
with the known translation between the two cameras.

In the case of rectified stereo vision, one image plane is only horizontally translated from the other
without any rotation; the two images are coplanar. This makes every point’s epiline horizontal, cor­
responding points need no vertical disparity. For two rectified images, the only problem is to find the
horizontal pixel displacement between the points on the two images, also known as the disparity. This
disparity can be translated to depth by use of Equation 3.1 where 𝑓 is the focal length of the cameras
and 𝐵 is the horizontal distance between the cameras [64].

𝑑 = 𝑓 ∗ 𝐵
𝐷 (3.1)

3.2.2. Convolutional Neural Networks
As this review centres on learning for depth estimation methods a brief overview of one of the most
popular learning methods for image analysis, CNNs, is given. CNNs are essential adaptions of Artificial
Neural Networks in order to handle machine learning concerning images. The architecture of a neural
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network consists of several layers; in general the most essential layer is the convolutional layer that
contains the convolution, activation and pooling. There are also additional important features such as
skip­architecture and upsampling. These features can be seen in Figure 3.5.

Figure 3.5: Autoencoder network architecture. The blocks C (red), P (yellow), L (purple), F (green), D (blue) correspond to
convolution, pooling, batch normalisation, deconvolutions and upsampling layers respectively [13]

Convolutional Layer The convolutional layer is the essence of the CNN architecture. It can be seen
by layers L1­L6 in Figure 3.5. The layer consists of three steps: convolution, activation and pooling.
The first step is to perform a convolution operation over the input channels by matrix multiplication of
kernels. Each convolutional layer has a specified number of kernels which determines the number of
output channels of the layer.

The kernels are defined by a few parameters which include their dimension, padding and stride
[17]. The dimension simply defines the height and width of the kernel as they are a square matrix.
The padding defines how large the border of zero pixels is added onto the image in order to be able
to pass the kernel over the perimeter values of the image. This allows for capturing more information
from the edges of images. Finally, the stride defines the number of pixels traversed to perform the next
convolution. Therefore, the learning of the network is done in the values of the kernels, demonstrating
the ability to keep learned parameters low. The output dimensions, width and height, of the convolutions
are given according to Equation 3.2. Where N is the image dimension, P is the padding, K is the kernel
dimension and S is the stride.

𝑁𝑜𝑢𝑡 =
𝑁𝑖𝑛 + 2𝑃 − 𝐾

𝑆 + 1 (3.2)

After this, the output ’image’ is passed through an activation function to transform the output val­
ues. These functions are similar to the those of a neural network such as sigmoid, tanh and ReLU.
The functions are normally used to add non­linearity to the system, as well as, to clip values that are
negative, to zero. Finally, each of the output channels of the convolutions can be optionally passed
through a pooling layer. The pooling layer is a method of downsampling where the image is separated
into rectangular sections that do not overlap and a non­linear function is performed to output a single
value. The most common form of down­sampling uses max­pooling which just outputs the maximum
value of the section. There are also linear functions such as averaging in pooling.

These convolutions in the end are used to reduce the information in the image to minimal repre­
sentations that retain important features from the original input. The output of the convolutional layers
can be then passed onto different layers such as a fully connected neural network or upsampled back
to the original resolution.

Upsampling The convolutions are used to reduce information, however, that compressed information
can also be upsampled to output higher resolutions images than the convolutional final output. This can
be done by means of unpooling or deconvolution, also known as transposed convolution. Unpooling
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uses non­learningmethods such asmax­unpooling or nearest neighbour to fill in or interpolate unknown
space. However, deconvolution uses the mechanism of convolution with larger padding and stride to
pass kernel filters that increase the resolution of the image. This allows for learnable upsampling to
recover an image from an encoded output of the convolutional layers.

Skip Architecture Skip architecture allows for the connection of convolutional layer outputs to the
upsampling layers which has two main benefits. The first, is that it allows for losses to be better back­
propagated through the network. Secondly, it allows for the upsampling layer to retain details from the
earlier convolutional layers for constructing an output image [13].

3.3. Depth Estimation Methods

There are a plethora of existing depth estimation techniques that use a variety of techniques and a
variety of input types. In this exploration of existing depth techniques, the methods are first delineated
by their type of input for estimating depth, and then further divided by the technique to train the method.
First, a review of methods that have an input of stereo­pairs is given in subsection 3.3.1. This is followed
by methods that have an input of a single image (monocular) in subsection 3.3.2. A fusion of the two
input types is discussed in subsection 3.3.3. After an exploration of the methods, an overall comparison
of the different methods is given in subsection 3.3.4. Finally, there is a discussion of the depth networks
that have been used for drones in subsection 3.3.5 and a brief conclusion to the chapter is given in
subsection 3.3.6. A general diagramatic overview of the architecture of the most relevant methods
discussed, and how they are grouped, can be found in Figure A.1.

3.3.1. Stereo Depth Estimation

The first depth prediction methods consisted of having dual stereo pair images. As explained with
the basics in subsection 3.2.1, points in 3D space are triangulated by using the position of the point
on both right and left projection planes. There has been extensive research and development into
classical optimisation based methods and newer, learning based methods. The general structure of
stereo depth estimation comprises of 4 steps: matching cost computations, cost aggregation, disparity
computation/optimisation and disparity refinement [46].

Classical Classical stereo algorithms can be split into three main categories: local, global and semi­
global methods. These define the level at which comparisons of matches of pixels are made for es­
timating disparities. In general, local methods depend on information of neighbouring pixels which is
fast in computation but can be misled by discontinuities, whilst global methods attempt to optimise over
all disparities which is more accurate but more computationally expensive [4]. Semi­global attempts to
leverage the advantages of both methods. This was shown by Bebeşelea­Sterp et al. [4] in a compara­
tive study where graph­cut optimisation, a global method, outperformed other methods in accuracy but
required a much higher computational cost. However, Sum of Squared Differences (SSD) was shown
to be less accurate and more sparse, but led to much faster computational time.

An extremely popular semi­global method is Semi­Global Matching (SGM), which uses mutual­
information based matching cost method [19]. This method, and other classic methods, boast the
ability to generalise on different settings, however, do suffer from large amounts of memory use [20].
It has a simplified implementation in OpenCV, known as Semi­Global Block Matching (SGBM), that
reduces memory usage and computation time using block matching [5]. An example of disparities is
shown in Figure 3.6. It can be seen that even SGBM still results in a slightly sparse disparity map.
It also leaves the edge of image without a depth estimation as the images are offset. One thing that
stereo vision algorithms don’t leverage are contextual cues of images which can be better trained over
machine learning processes [45].
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Figure 3.6: Demonstration of the output of SGBM. Input to the algorithm from KITTI [14] (left) Disparity output from SGBM
algorithm (right)

Learning Based As opposed to more classical methods there is also the possibility for learning based
methods on stereo inputs. Normally, these methods subsitute some, or all, of the earlier described 4
steps of stereo matching. For example, Zhong et al. [67], substitutes only the feature extraction and
disparity computation with 4 neural networks, 2 for each image. This method in particular allows for
self­supervised learning as the disparities are calculated for both the left and right images, and allows
for warping each opposite image to compare to the actual image pair for loss calculations. However,
it is clear that the complicated architecture, which can be seen in Figure A.1, is quite heavy with 4
networks and non­linear functions and weight sharing that make backpropogation in an online context
quite computationally demanding and requiring a complicated framework. A similar architecture is used
for Activestereonet [62], however in this approach a camera with an active IR depth sensor is used
providing ground truth depth labels. Another difference with this network is that because a second
disparity map is not required, a confidence map is generated instead from the right image. This is quite
useful in attempting to describe the quality of the estimation in a mobile robotic application.

However, there are methods that simply use a completely end­to­end network to estimate depth like
Yang et al. [55] and Liang et al. [28]. In this paper two auto­encoders are used to produce features from
the two images and they are passed through a 3D decoder network to produce the final disparity maps.
The final decoder has several stages, allowing for early stopping in consideration of computational time.
It is shown that the network can stop earlier to retain faster processing than SGM, whilst maintaining
higher accuracy. Although, this network is running on a high­end GPU as opposed to SGM which runs
on the CPU. However, for a network architecture it is quite heavy employing two auto­encoders and
one 3D decoder. It boasts its performance specifically for high­resolution images, which is perhaps out
of the scope of the low resolution inputs of small cameras on a dynamic vehicle. A further trade­off of
the performance of these networks is given in subsection 3.3.4.

3.3.2. Monocular Depth Estimation
Although inferring depth from a single image is an ill­posed problem, it allows for dense inference of
depth [64] by leveraging contextual information in a learning manner. A powerful way to do this is to
learn contextual clues in the image through means of machine learning. Since the publication of one
of the first methods in 2005 by Saxena et al. [45], there are now a large amount of existing methods.
To simplify the collection of papers they are separated by their training methods; namely, they are
separated into training with ground truth depth labels, stereo image pairs and sequences of monocular
images.

Ground Truth Training At the beginning of the development of monocular depth estimation methods
it was standard to use ground truth depth as a supervisory signal. These were collected by means
of secondary sensors such as LiDAR. The first paper in this field was written by Saxena et al. [45]
using Markov Random Fields. Different image features are found at local and global scales and also
sampled at different resolutions. With these features a probabilistic model is trained on parameters per
row of the image. Although this functions relatively well for the images given, it requires images to be
of similar shape, such as rotational angle [45] [9]. Therefore, any rotated images, which are extremely
common for dynamic vehicles, will probably perform quite poorly using this technique. It also requires a
quadratic optimisation routine to be run on forward inference. A quite impressive fact is that the method
only needs to train on 319 images.
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The next big step came quite a bit later, in 2014, from Eigen et al. [9] using two CNNs: one for
producing a coarse, but dense, depth map and the second for refining the coarse estimation. This
paper was made possible, in part, to the KITTI dataset [14] released in 2013 that comprised of a large
collection of images and depth maps from a LiDAR sensor. Of course at the time this performed very
well, but in light of new methods this paper does not perform as well anymore in terms of accuracy [64].
Since 2014 there have been many papers in the same vein making changes to the structure of the
network such as adversarial networks [24] and multi­task networks [8]. The use of multi­task networks
are quite powerful for example in Chen et al.’s paper [8] where semantic segmentation is done in
a parallel network. This is useful as the depth over an object is quite smooth, whilst the transition in
depth to another object nearby in a scene is harsher. However, the drawback of thesemore complicated
networks is that they have higher inference time, take up more memory, have longer training times and
in the case of multi­task networks require more collected data.

There is also an interesting adaption of stereomatching tomonocular inputs for a network developed
by Luo et al. [29]. In this architecture a view synthesis network first produces a synthesis right image
from a left image input. Then the input left image and the synthesis image go through a stereo matching
network to produce the depth. This method is powerful in terms of accuracy, but is not computationally
efficient.

When training with ground truth labels it is possible to use data augmentation [9] and synthetic
images [65] to train for better domain generalisation. However, overall the use of ground truth label is
often expensive and restricted to certain domains.

Stereo Input Training Due to the restrictiveness of requiring ground truth of depth labels with super­
vised learning, Garg et al. [13] proposed a novel loss method to allow for self­supervised learning. The
crux of this method is to use the monocular input’s predicted disparity map to warp the stereo pair to a
copy of the original monocular input and calculate the loss from that. The general method can be seen
in Figure 3.7 for more clarity. This network employs an auto­encoder with skip architecture in order to
propagate forward finer details in the convolutional layers to the layers in upsampling layer.

Figure 3.7: Self­supervised training architecture [13]. Predicted inverse depth is the same as image disparity

However, a pitfall of this paper is that the loss term for the inverse warping is not fully differentiable
and a linearisation with Taylor Series must be used [15]. The use of a Taylor Series also requires that
the previous disparity estimation must be held in memory. Godard et al. [15] also claim that Garg et
al.’s method to only minimise photometric loss results in good image reconstruction but poor depth
estimation [15]. However, this method still employs one of the most simple architectures available.

The next large advance in this field came from Godard et al. [15] who introduced a novel loss term
with left­right consistency between the predicted disparity maps. Instead of just warping one image
with a single disparity map, two disparity maps are generated and then the two images in the stereo
pair are warped to be compared for the loss. This method significantly increases accuracy, as seen in
subsection 3.3.4, and does not significantly increase the time for inference. However, it does increase
the size of the output and the loss calculation as the loss is calculated for both disparity maps, 2 warped
images and at 4 different resolutions. Chen et al. propose a slight modification to the network setup to
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only output one disparity and instead flip the right image and then flip the output disparity to produce
the second disparity map [8]. In this case both disparity maps originate from their actual respective
scene and the second view does not have to be indirectly synthesised. The network architecture and
training method for Godard et al.’s work can be seen in Figure A.1.

Following Godard et al.’s innovation on the loss function, more networks were developed that in­
novated more on network structure. For example, many methods attempted to chase higher accuracy
using more intricate networks such as cycled GAN networks [37] or knowledge distillation [38]. These
architectures use multiple networks to train a single network to deploy. Whilst it is beneficial in the
trade­off between inference time and accuracy, it is severely impaired in computations for online train­
ing requiring many additional networks.

A very promising paper developed by Poggi et al. [42] shows a novel structure, PyD­Net, which
draws inspiration from the classical computer vision technique of using a pyramid of features. Essen­
tially, the network is broken into tiers of resolution, until the lowest tier, 1/64 of the original resolution, to
calculate the disparity at each level. This disparity is then send to upper layers in the pyramid to resolve
disparities at higher detail. The structure of the network can be seen in Figure A.1. The purpose of
sampling at these lower resolutions is that often certain, important, contextual depth clues are retained
at lower resolutions [45]. This architecture was trained in a similar manner to Godard et al. left­right
consistency loss form. However, in this case the loss is back propagated from each individual layer of
the pyramid rather than once sequentially through the whole network. The novel aspect of this network
is the increase of the speed in inference compared to other methods such as Goddard et al. [15] with
similar accuracy. At similar resolutions PyD­Net runs up to 3 times faster on the GPU and 10 times
faster on the CPU than Goddard’s.

Generally, using stereo pairs for training allows for a elegant self­supervised learning of depth that
maintains a high accuracy. This is especially attractive in the case for online self­supervised learning.
However, a gap in these proposed papers is that they are not implemented in live conditions and only
train on manicured datasets such as KITTI [14].

Monocular Sequence Training Sometimes it may be the case that even less information is available
to the system. For example, the only data that is collected could be a stream of monocular images, with
no stereo pairs captured. In this case novel methods are required. The first of these came from Zhou
et al. [68] in 2017, where a network with monocular input depth prediction was trained on a monocular
image stream. Essentially, a depth estimation network runs in parallel to a network that estimates the
change in camera pose between the neighbouring frames. The output of both networks are used to
estimate the target view that can be used to calculate the loss of both networks. The structure of this
network can be seen in Figure 3.8.

Figure 3.8: Depth and EgoMotion Network architecture [68]

This method allows for self­supervised training with less input data while retaining accuracy. How­
ever, this method, and others that perform on monocular streams, perform worse than those trained
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on stereo pairs and ground truth labels as seen in subsection 3.3.4. Another aspect to consider is that
this network takes in quite a manicured data­set that always maintains horizontal controlled transla­
tions between frames. This work has not been tested on its application to more dynamic monocular
sequences like that of a drone where there may be severe vertical translation or rotation.

Following this method there have been several papers proposing similar architectures to leverage
monocular sequences. The following year, in 2018, Yin et al. [60] released a paper that attempted
to leverage Optic Flow as an additional quantity estimated by a separate network. This resulted in a
definite increase in accuracy [64] but at the loss of performance speed in back­propagation. However,
for use on a dynamic vehicle the addition of an optical flow network may also prove beneficial for its
tasks.

Godard et al. released another paper in 2019 [16] focused on training with monocular sequences.
They proposed changes to the loss function in order to better handle occlusions, visual artefacts and
handle pixels that violate the camera assumptions. Occlusions are a large issue in monocular se­
quences because as objects move in time previously unseen objects in a scene may become more
clear. With these changes not too large of a change in computational speed is needed, whilst a large
improvement in accuracy is gained within the category [64].

Because of the mix of this field with application in Visual Odometry there is quite a bit of development
from that angle as well. For example, Yang et al. [56], employs a novel uncertainty estimation network
in their D3VO pipeline alongside estimating pose and depth. The estimated uncertainty is useful as it
is used on the back­end to optimise the estimated pose transformation, alongside the depth. Although,
this architecture is developed for use by drones in mapping unknown environments the entire system
is trained on the KITTI architecture as well and performance hasn’t been shown on a deployed drone.

Overall, networks that allow for training monocular sequences are great for more constrained cam­
era hardware. However, in terms of computational load, the back­propagation is muchmore demanding
than the stereo training networks. Also, more information must be held in memory as images must be
stored over time. Though, providing temporal information allows for other useful parameters such as
pose estimation and optical flow to be leveraged.

3.3.3. Fusion Based Methods
Few papers have also found the benefit of fusing different types of methods together, both in the infer­
ence and in training.

Facil et al. [10] estimates a dense depth map using a CNN and a sparse depth map using multi­view
geometric methods. The multi­view methods excels on highly textured and high parallax cases, whilst
the single view CNN performs better on texture­less objects and object structures. The fusion of both
is done by means of an interpolation based on pixel weights that leads to a better performance than
either of the methods separately. Weights are calculated based on the likelihood for each pixel from
the multi­view output to relate to the pixel from the single­view output. It must be noted that the CNN
is tested on the same scenes that it is trained which means good performance is expected [31].

Martins et al. [31] take a different route in that SGM is used as a supervisory signal to train a
monocular depth estimator network in a self­supervised way. This is done offline before deployment on
a drone. When deployed, the SGM estimation is fused together with the dense monocular estimation
network. Fusion works mainly through a confidence map generated by a vertical Sobel filter to detect
edges that indicate where SGM works better as well as a weight dependent on the ratio of the depths
of the two estimates. Although the network does not train online, it operates in new environments
and proves to be effective in producing estimates with better results than the individual methods. As
discussed in subsection 3.3.1, SGM can be made faster and more memory friendly by implementation
of the OpenCVSGBMmodule which prevents this method from being too slowed down. One qualmwith
the method is that the monocular input network learns the deficiencies of the chosen stereo geometry
method [64]. An overview of the network can be seen in Figure A.1 but can also be seen from the
author in Figure 3.9. In Figure 3.9 it is clear that the estimation of depth through the CNN enhances
the thin detail of the thin table support whilst the SGM network can estimate the larger distances more
accurately to ground truth.

A different approach to these is to fuse depth estimates through a network. This is done indirectly in
some networks such as Eigen et al. [9] where the networks are multi­scale and more coarse depth esti­
mate are refined with a secondary network. However, a more direct example, where different methods
of depth estimation are fused in a learnable way, was devised by Ferrera et al. [11]. In this approach the
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Figure 3.9: Overview of SGM/monocular depth estimation fusion architecture [31]

refinement network has multiple inputs: it takes in the stereo image pair, the disparity from a geometric
method and the disparity from a CNN based branch and outputs a final disparity map using a trainable
network. This method does not use full back­propagation through all networks, only the final fusion
network. Adding a network, this method is adds significant computation time in through­put, however
this method allows for learning on the fusion. A diagram of the network can be seen in Figure A.1.

A more indirect approach of fusion is to use other depth predictions in the learning processes.
For example, Watson et al. [53] use a supervisory SGM signal in the loss function to improve depth
estimations. When the loss of the estimation is larger than the loss for the SGM method, then an
additional loss term is added based on the loss of the SGM prediction. This way offers a method to
involve better depth predictions without enforcing the network to learn the secondary depth prediction
method. The improvement to Godard [15] can be seen in the accuracy metric in Table 3.1. The change
this method incorporates in the learning process can be seen in Figure A.1.

Overall, the fusion of different depth prediction methods allows for an improvement of depth predic­
tions. Although it may be slightly more computationally intensive, if done in a lightweight manner, can
improve the prediction substantially, at an acceptable increase in computational effort.

3.3.4. Comparison of Depth Estimation Methods
It is essential to understand which class of methods are better suited for online learning of depth es­
timation therefore they must be compared on both accuracy and computational speed. Conducting
a trade­off of these various methods can be quite complicated as at times they are not directly com­
parable, especially because they do not use the exact same hardware and image format constraints
for analysis. The papers traded­off, as seen in Table 3.1, are chosen for their ability to perform self­
supervised learning.

Accuracy For analysing accuracy of the networks there are a common fewmetrics employed as listed
below [64], where 𝑑𝑖 is predicted depth, 𝑑∗𝑖 is depth ground truth and N is the total number of pixels. In
this comparison the absolute relative error is used as it provides the most geometrically understandable
metric. Although this is chosen, there is not too large a difference in performance between the different
metrics. It should be noted that not all the values found for the different papers are based on the same
dataset, therefore the comparison is not completely accurate.
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Inference Speed For comparing the computation speed for inference and back­propagation themethod
is even more convoluted, unfortunately. Most methods do not give the actual inference time, as in this
field a large focus is placed on accuracy instead. Therefore, only qualitative scores can be given, on
a range from 1 to 5 (1 being the best), based on the network architecture and loss method. From an
observation of the networks almost all the papers receive the same score on inference speed. This
is because regardless of the training method, and the networks involved, when deployed they all take
the form of an encoder­decoder network. However, Poggi et al. [42] are the exception that manage to
deploy their network much faster than the others due to network architecture and the method of compi­
lation on hardware. It should be noted that there is the possibility to prune the network to improve the
computational speed as the cost of accuracy.

Training Speed However, for training speed the results are more varied. The baseline is set at Garg’s
[13] paper for the fastest training as the loss is the simplest and there is only a single network to be
trained. At the next level, 2, are the papers that employ more complicated loss functions. For example,
Godard et al. [15] added the consistency term and require two outputs of the network, which is adopted
by Poggi et al. [42] as well. Watson et al. are rated as three because they employ the more complicated
loss term as well as having the supervisory SGM signal. Martins et al. fall into level 2 as they calculate
the supervisory signal by another algorithm, namely SGBM.

All the networks that train usingmono sequences all performworse on training speed as they require
additional networks to estimate pose, must train both networks and require storing more images in
memory, placing them at level 3. Yin et al. [60] perform worse than their counterparts in this ordeal
as they also train an optical flow network. Finally, the worst performing in training speed are those
designed by Pilzer et al. [37] [38]. This is because they use GAN networks and knowledge distillation
to compress all the learning into a single network. This may be efficient to achieve higher accuracy
with low speed on inference, but takes a lot of computational effort to train with up to 4 networks to be
trained in the case of knowledge distillation.
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Paper Keywords Abs Rel Inference Speed Training Speed
Garg [13] Stereo Training 0.169 2 1

Godard [15] Stereo Training 0.148 2 2
Godard [16] (Stereo) Stereo Training 0.127 2 2

Watson [53] Stereo Training 0.112 2 3
Poggi [42] Stereo Training 0.148 1 2
Pilzer [37] Stereo Training 0.152 2 5
Pilzer [38] Stereo Training 0.098 2 5
Zhou [68] Mono Sequence 0.208 2 3
Yin [60] Mono Sequence 0.155 2 4

Godard (M) [16] Mono Sequence 0.132 2 3
Martins [31] Fusion 0.200 2 2

Table 3.1: Comparison of relevant depth prediction methods for accuracy (abs relative difference) and inference and training
speed (rated from 1 to 5)

Figure 3.10: Scatter plot of depth estimation methods accuracy and training speed

From Table 3.1 and Figure 3.10 it is clear that on average, networks using stereo pairs for training
can maintain better accuracy whilst maintaining low computational effort on training. It seems that
although the knowledge distillation method developed by Pilzer is the most accurate its terrible training
speed makes it infeasible for online learning. If accuracy is weighted less than the computational effort
then the best methods are between Garg’s and Poggi’s. In terms of complexity Garg’s architecture
is much simpler to employ due to its sequential structure whilst Poggi has a convoluted method for
back­propagation. Godard’s stereo method [16] does also fair quite well, especially with consideration
of possiblity to prune the network. A fusion like the one devised the paper by Martin et al. also seems
quite feasible to employ online.

3.3.5. Implementations for Drones
There have also been efforts to implement these methods on drones. This research shifts away from
simple estimation of depth and considers the artefacts and effects of estimating depth on a vehicle with
more exotic motion. This consideration is shown to be important in a paper by van Dijk et al. [52]. It
is shown that for different rotations of an image, the various algorithms explored previously perform
worse.

One of the largest issues of implementation on a dynamic vehicle like a drone is the issue of rotation
and constantly changing pose. This is addressed by Pinard et al. [40] by encoding the change of pose
in a video stream into the network training, which can be seen in Figure 3.11.

A stream of videos is obtained and two images are fed into the DepthNet network: the target frame
and the warped reference frame, corrected for the rotation from target frame. The pose is estimated
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Figure 3.11: Training structure for stablised DepthNet [40]

from the PoseNet network [68]. In the inference stage PoseNet is not required as the stabilisation can
be done by the drone, or with inertial sensors. The issue with using the motion the encode information
on the pose of the drone is that it requires that the drone is moving to estimate depth. However,
despite this flaw, the network performs quite well in estimating depth maps for rotation, even managing
to compute depth for a flipped image, which is impossible for naive networks [68]. Though, this comes
with a flaw that for the non­flipped images, the estimation is slightly worse than the naive, non­robust,
prior solutions. Another issue with this method is that the training method is quite heavy as it requires
calculations of loss on multiple frames and the additional PoseNet. Also, for inference on a live drone,
this method streamed video to a laptop with a GPU equipped, instead of running on board [39].

A more lightweight alternative to this is implemented by Zhao et al. [66]. They propose a much sim­
pler solution that encodes the drones vertical position and pitch into a 4th channel input, concatenated
with 3 channel RGB monocular input. This requires additional sensors which are normally available in
the form of IMU and Gyro for drone applications. The encoding is done by estimating the depth of each
image row in relation to the fixed height of the room (that has an infinitely long floor and no walls). This
can be seen more clearly in Figure 3.12.

Figure 3.12: Encoding to depth for camera pose (height and pitch). 𝑢 is row in image, (𝑝𝑥 , 𝑝𝑦) are principle point of image, ℎ is
camera height, 𝜃 is pitch, 𝑧 is camera view axis. [66]

The depth of pixels in each image row is the projection of the distance to the floor 𝑂𝐴, or ceiling,
projected onto the camera view axis, 𝑧. Because of issues of infinity at 90 degrees, row depth is
passed through inverse tan function (monotonically increasing) that maps all positive values of depth
to the interval {0, 𝜋2 } . One could also naively add two channels to the input, one with the height value
and one with pitch. However, that leads to lower performance than this geometrically motivated method
[66].

The authors report that using this camera pose encoding leads to much better performance in more
exotic poses and similar performance in more common poses (angled on the horizon and at mid­height)
when compared to methods that don’t consider pose. This is even the case with noise on the pose
estimation. It also outperforms a method that estimates surface normals in training [59]. This method
uses ground truth to train the network, however, it seems that it should not be too difficult to employ
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the same strategy with an aforementioned self­supervised method as only an input channel is added.
Two apparent geometric drawbacks are that this method assumes a ceiling height, which could be
misleading for outdoor scenes, and it does not account for roll motion. However, these issues can be
addressed to make the solution more viable for the motion of drones in indoor and outdoor settings.
Unfortunately, this method is not employed yet on an actual flying drone ’in the wild’. Yet it does propose
a simple, yet powerful, method to be more robust to drone motion.

Niu et al. [34] compare the implementation of autoencoders [13] and multi­scale deep networks [9]
for use on robotic swarms in a forest, specifically with a focus on motion blur (simulated). It is shown
that for both methods depth accuracy drops with increased simulated gaussian and horizontal blur. The
effect of blur is more apparent on the autoencoders compared to multi­scale deep networks, however,
by not too large an amount. Also, it is shown that the autoencoders perform much better in run­time
with a minimal drop in accuracy.

Finally, Yang et al. [58] demonstrates an obstacle avoidance strategy that uses on board estimation
of depth and the confidence of that estimation. The network for the estimation has a similar form to that
of Garg [13], however, it also takes in a sparse depth map as input. It is possible for the sparse depth
map to come from secondary sensors but the authors use the ORB­SLAM algorithm [33] in parallel to
derive this sparse map, which only requires monocular images and pose information. The network is
trained offline on ground­truth depth maps.

Figure 3.13: Drone footage of obstacle avoidance with depth maps and confidence in indoor real environment. Depth map (left)
raw images (right) [58]

A great aspect of this paper is that the authors also tested the performance on the drone in a real
environment as seen in Figure 3.13. They use a NVIDIA Jetson TX2 running in the ROS (Robotic
Operating System) framework, on a 0.6 m diameter drone and managed to achieve inference at 12
FPS. They manage to fly through a short obstacle course with a 100% success rate, but no data is
given on depth prediction accuracy and it seems a low velocity is used causing very little rotation.
However, it is important to note that the network was not trained on images from this real environment,
yet it could manage to navigate. Although the hardware is quite powerful for this application and the
environment quite constrained, the paper does indicate that the depth estimation can be used on a live
drone in a controlled setting.

3.3.6. Conclusion
It is clear that there are a large range of different methods available for predicting depth, especially
as many had to be left out in this review. With the given comparison a simple trade­off on speed and
accuracy was detailed between the different frameworks. As well as this, an examination of current
drone methods some examples of application on drones was also given. However, what is still lack­
ing, is proof of application on­board a MAV with low computational hardware in more exotic, natural,
environments. Although, there have been efforts to compensate for the effects of drone motion on
camera input. Generally, it seems that there is room to explore the performance of depth estimation
on a larger range of motion and environments with a live, on­board, platform. From this collection
of methods it seems that most promising direction is to pursue simpler architectures, as identified in
subsection 3.3.4, such as Garg et al. [13] and Godard et al. [16]. Although Poggi performs well on
inference time, its more complicated network structure, will provide a large barrier. As well as this, the
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input of pose encoding, discussed in subsection 3.3.5, will also be explored in the application of this
project.

3.4. Domain Adaption
All of the papers discussed in section 3.3 are trained offline on well manicured data sets. Although they
boost good performance on the same dataset they are trained on, they are not as robust to changes in
domain, such as real world applications on drones [51]. One method that is normally employed, is to
simply train the pre­trained model on a small subset of training images of the new domain. However,
this is impractical and may take more resources to collect images for supervisory learning models. This
chapter addresses the methods by which networks can adapt to new domains to maintain performance.
Specifically, subsection 3.4.1 delves into techniques for adaption in the field of depth estimation, fol­
lowed by subsection 3.4.2 addressing general adaption techniques outside of the field, and finally the
chapter ends with subsection 3.4.3 for a brief conclusion.

3.4.1. Depth Adaption
Although there exists a large body of work for estimating depth using learning based methods, there
are considerably fewer works on the adaption of the networks to different domains. The few methods
that do exist rely on different methods that are organised into three here. The most common is using
synthetic data sets, followed by training with confidence measures in the loss function and finally by
designing novel architectures for effective training and preventing network forgetfulness.

Synthetic It is quite common in the literature for networks to use synthetic data sets to attempt better
generalisation on different domains [64] [63] [30]. Atapour­Abarghouei et al. note that this still does not
practically generalise a network well to many different domains [2]. Their paper proposes to minimise
the difference between the feature distributions of the source and target domains. This is achieved
with two steps: training a depth model over synthetic data and training another model to perform style
transfer of images from synthetic to the real­world. The style transfer network is trained using a GAN
configuration, leveraging adversarial training and cycle­consistency. However, the authors identified it
is very difficult for style transfer to accommodate large changes in lighting and saturation. Also, more
importantly it is evident that style transfer is for the same class of domain, for example traffic in the
synthetic and real domain. This means that a completely new setting, that does not exist in either the
synthetic or real­world data set, will still remain difficult.

Confidence Measures An interesting approach is to learn online using confidence measures. This
was proposed by Tonioni et al. in 2017 [49] for deep stereo networks and expanded to include monoc­
ular networks in 2020 [50]. These papers essentially impose an additional term in the loss function
so that they consider smoothing, image reconstruction and confidence guided loss. The confidence
guided loss is based on the difference between the disparity estimated by the network and the sparse
disparity estimated by a stereo algorithm, such as AD­CENSUS [61] or SGM [20]. This difference is
weighted by a confidence mask. Confidence measures are used to evaluate how good the stereo es­
timated depth guiding the loss is. This reduces the effect of noisy stereo estimates leading to incorrect
loss. Evidently, this method requires the use of a stereo camera to provide a secondary sparse esti­
mate to guide online learning. The confidence measure used is found from Poggi et al. [41] paper on
trading­off confidence measures for efficiency on embedded systems. This estimation of a confidence
measure is guided by a hyperparameter, 𝜏. In the 2017 paper [49] this parameter is handtuned to
optimal performance, however, in the 2020 iteration of the study [50] the hyperparameter is learned
through gradient descent during the learning procedure. The effects of the adaption process can be
seen on Figure 3.14.

From the image, and the absolute relative error in disparity, it is clear that the adaption scheme is
extremely useful for improving estimates of the network. The paper in question uses this method offline
with collected stereo pairs to improve the estimates of different networks. However, if there is access
to a stereo camera this should be feasible online. The only obstacle is the increased time to calculate
loss by means of calculating the stereo algorithm output and estimating the confidence measure. A
notable point is that the authors of the paper do not collect stereo images from the ’wild’ but rather
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Figure 3.14: Adaption of monocular depth estimation network (Network originally trained on Cityscapes). a) input image from
KITTI b) Disparity estimation from AD­CENSUS c) disparity output of monocular network d) adaption with stereo estimate only
e) adaption with confidence mask f) full adaption with hyperparameter optimisation. Image taken from [50]

use the stereo images from the manicured KITTI dataset [14]. In the context of more dynamic inputs,
such as rotations of images or motion blur, this adaption scheme has not been evaluated. This raises
concerns on its applicability to low resolution and dynamic inputs on real­world applications.

Architecture Changes The last class of adaption scheme discussed for depth networks is employing
changes to the architecture of the networks. An interesting method for managing adaption on different
domains is to employ Long Short Term Memory (LSTM) layers to avoid forgetfulness of a network.
LSTM layers are functions of both the current input as well as previous outputs. For example, Mancini
et al. [30] employ two LSTM layers between the encoder and decoder as can be seen in Figure 3.15.
In this case the authors attempt to leverage the LSTM network in order to refine the features extracted
by the encoders. The network is trained on synthetic datasets that produce exact depth values.

Figure 3.15: LSTM Network with two LSTM layers with 180 neurons between encoder and decoder [30]

Looking at the performance of the network the authors claim that the when both this novel network
and Eigen et al.’s network [9] are trained on the same dataset, when transferred to a dataset on a
new domain this network performs better. This is the case for many different new domains such as
traffic and forests. However, the issue with this is that it is unclear if the network performs better
because it can adapt better of if the LSTM addition simply adds more complexity. It does not show
the performance of the network over time in a new domain, therefore not indicating whether LSTM
causes better performance over time with continuously improved estimates being stored in the memory
neurons.

In contrast, Li et al. [27] suggest an LSTM framework that employs online adaptive learning in the
context of depth estimation for visual odometry. Convolutional LSTM is interleaved between convo­
lutional layers as seen in Figure 3.16. Convolutional LSTM layers are used here in order to leverage
past experience.

This paper also employs a novel parameter update method. The most common method to update
parameters in a network functions according to Equation 3.3, where 𝜃 are the parameters of the net­
work, 𝛼 is the learning rate of the network, ∇𝜃𝑖ℒ (𝜃𝑖 , 𝒟𝑖) is the gradient of update dependent on the
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Figure 3.16: Depth Network with Convolutional LSTM layers [27]

current loss, ℒ, and 𝒟𝑖 is the current data input.

𝜃𝑖+1 = 𝜃𝑖 − 𝛼∇𝜃𝑖ℒ (𝜃𝑖 , 𝒟𝑖) (3.3)

Li claims that this approach is naive and that the gradients on different iterations are stochastic in
relation to each other. They imply that this leads to slow convergence andmay introduce bias [27]. They
offer a different meta­learning update scheme optimising over a series of inputs as seen in Equation 3.4.

min
𝜃𝑖
ℒ (𝜃𝑖 − 𝛼ℒ (𝜃𝑖 , 𝒟𝑖) , 𝒟𝑖+1) (3.4)

Essentially, instead of optimising on the current input, the update scheme attempts to optimise the
adapted network on the next input. This allows for training not to be independent between subsequent
data inputs. This is similar to work done by Finn et al. [12] on Model Agnostic Meta Learning (MAML)
discussed in subsection 3.4.2. Changing the size of the data considered per iteration affects both the
adaption accuracy and computational speed. It was found that accuracy only increases until a data
window size of 15 and thereafter decreases.

The final step this paper takes is to align the features of the training domain with that of the new
domain. This is done by using collecting the feature statistics, from the Normalisation Layer [3], at the
end of training and adapting the mean and variance to better fit the new domain features. Although,
the paper does not show the performance of the depth network directly, the performance in Visual
Odometry, for which the depth estimation is essential, vastly outperforms other networks like GeoNet
on new domains [60]. Overall, even though this paper might be more relevant to the temporal relation
of visual odometry, it proposes novel and effective changes for online adaption for depth estimation.
Although there are quite a few additions to the network, the training scheme manages to run at 30 FPS
on the NVIDIA GTX 1080Ti GPU.

In 2020 Zhang et al. [63] suggest a new framework for online adaption, specifically for depth es­
timation, to prevent forgetting in network learning. They employ a novel statistic feature alignment
with adapters and then adapt these adapters instead of the entire network. This quite a complicated
scheme, and can be seen better in Figure 3.17.
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Figure 3.17: Feature Adaption based learning framework with pretraining and online training phases [63]

The figure shows that there are a few distinct steps: first the model is trained on a synthetic data set,
followed by the training of the online adaptors of feature statistics, and then finally online, the adapters
and the decoder layers are updated. The online adaption of the adapters is also done in ameta­learning
manner, similar to Li et al. [27], in that the parameters are optimised over a series of data inputs. Using
this method Zhang et al. boast quite impressive results as can be seen in Figure 3.18

Figure 3.18: RMSE over time for different adaption methods on the same KITTI video [14] [63]

From the figure it is clear that the adaption of the authors framework works the best compared to
naively updating the system like in Equation 3.3. This is evident from the spike in RMSE at roughly
adaption step 200. Although, the other methods do eventually find better estimates they are much less
robust to the change in the short term. This method seems to perform exceptionally well in adapting
and doesn’t seem to add too much computational effort as the adapter layers are only 1/9 the size of
the encoder. The authors claim to operate in real­time, however, there is no indication of the training
speed or inference speed. This method employs an interesting concept to only adapt the shift of feature
statistics after normalisation layers in order to preserve previously learned knowledge whilst adapting
to new domains.

For the final framework considered here, Tonioni et al. [51] released a paper in 2019 focusing on
a novel architecture and update model, named MADNet (Modularly ADaptive Network) to make online
adaption fast. They employ a similar pyramidal structure to Poggi et al. [42], however, they adapt it for
stereo input rather than monocular input. This structure can be seen in Figure 3.19.
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Figure 3.19: MADNet Pyramidal structure a) fully adaptive network update b) modular adaption of network [51]

The innovation of this method is that each layer of the pyramid comprises of a single module that
can be updated independently from the others. This significantly decreases the computational effort
per iteration with claims that backpropagation on KITTI full resolution can be done at 40 FPS. The
method on selecting which layer to update is done through estimating which one currently has the
worst performance in terms of loss.

The performance of this method is noticable when examining Figure 3.20. As can be seen, MADNet
performs better in the long run than no adaption at all. It slowly converges to the network performance
tuned on the ground truth for the new domain. It is also clear that the full adaption converges faster,
however, it also takes more computational power.

Figure 3.20: D1­all (percentage of pixels with disparity error> 3) over time on new domains comparing MADNet to other methods
[51]

Tonioni et al. claim that only training the last few layers of a normal, sequential, network, which
has a comparable computational effort to MADNet, has a much worse performance in adapting to new
domains. However, the results were not compared to a sequential network being fully updated every
iteration. Overall, this work seems like a promising direction for updating networks in a fast and effective
manner which can be easily be moved over to a monocular framework such as from Poggi et al. [42].

3.4.2. General Adaption
There are also interesting papers that address adaption to new domain to generic machine learning
problems such as Elastic Weight Consolidation (EWC) and MAML.

Elastic Weight Consolidation For instance, Kirkpatrick et al. [25] address catastrophic forgetting in
neural networks. They introduce a concept known as EWC which prevents the more important weights
to task A from being changed too much when adapting the network to task B. Although this process
is very effective, it is quite particular to the task at hand. This can be seen by a largely differently
approach for identifying written numbers compared to reinforcement learning for an Atari game. Also,
the technique only seems to be implemented when the task is switched in a very discrete way. In
the context of depth estimation it may be the case that the domain is constantly shifting, therefore,
potentially making this method redundant.
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Additionally, Chaudhry et al. [7] state that EWC requires calculating a Fisher matrix for each task
and regularising over all of them is practically infeasible with multiple tasks and millions of parameters.
Instead, Chaudhry et al. suggest only maintaining one diagonal Fisher matrix that is updated as it trains
over new tasks. This is further improved upon by Schwarz et al. [47] with online EWC. This method
allows for ’graceful’ forgetting in which if an older task cannot be further optimised upon, it is slowly
forgotten (which was not possible with EWC). Online EWC performs faster and reduces the number of
required parameters by many orders of magnitude. Although this results in lost overall accuracy, in the
context of online adaption on low memory and power hardware, it is more effective.

Model­Agnostic Meta­Learning Finn et al. [12] devise a MAML method that attempts to solve new
learning tasks for a network with a small number of training samples. Essentially, this method is a
more general form of Li’s [27] update rule, where the parameters of the network, 𝜃, are updated by
optimising performance of the updated network over the range of tasks required of the network. Within
the inner loop, for each task the parameters are updated through normal gradient descent, and then in
the outer­loop the most optimal parameters are found for loss over all the tasks with the newly updated
parameters from the inner loop. This method is quite useful, however, if the new parameters want to
account for loss in the trained domain then the network would have to constantly store input data from
previous domains to ensure they are still considered in subsequent optimisations. On low memory
hard­ware this may be difficult to achieve. It also significantly increases computation time per iteration
to find the gradients of the parameter over all the tasks in the outer optimisation step.

3.4.3. Conclusion
From the papers analysed it is clear in the last 3 years the research area of adaption, and specifically
online adaption, is rife with innovation. Many papers have emerged attempting to better adapt net­
works to new domains and tasks in an effective and quick way. An issue that still remains, however, is
that adaption techniques for depth estimation do not extended their domain to dynamic vehicles. The
datasets used for the differing domains may include long­term shifts such as the overall environment
(traffic to forest), however, they do not approach the issue of adaption in the context of a dynamic,
low hardware, vehicle. Without an analysis at the edge of domain adaption it seems unclear whether
these methods could make depth estimation in this dynamic environment feasible, as they so claim.
For the purpose of this work it is necessary to pursue a lightweight solution that is not too complex
to implement. Of the methods that were explored the most plausible would be to implement a LSTM
layer in order to leverage temporal information within a domain. It may also be interesting to explore
confidence estimates, however, this would add to training time where as the addition of LSTM may be
more lightweight.

3.5. Network Speed
When running an online network there are two types of speed that are relevant. Both the inference
speed, as well as the training speed, are essential to running a fast online adaptive network. In this
chapter papers in both the field of depth estimation and the broader machine learning field are examined
for strategies to improve speed. This chapter is separated into techniques to improve inference speed
in subsection 3.5.1, training speed in subsection 3.5.2 and a brief conclusion in subsection 3.5.3.

3.5.1. Inference
Increasing the inference speed is an obvious goal for research in this domain as there is an effort to
move neural networks to many different domains. With such an interest in the subject, many different
strategies have been identified to reach this objective.

Resolution One of the most obvious changes to improve speed, on inference, is to reduce the reso­
lution of the input. Of course, the input size must stay consistent with the chosen stride and padding of
the beginning layer in order to be feasible. The effects of changing the input resolution can be seen in
Figure 3.21. It is clear that the marginal effect on inference time is reduced once the image is reduced
to 90x30 which already holds very little information. Perhaps, with this size of input image the size of
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the network (number of filters) could also be reduced as the amount of information to be extracted by
passing filters is greatly reduced.

Figure 3.21: Inference time with scale reduction of original input resolution of 360x120. 32 filter 3x3 convolution with ReLU
activation function and max pooling (left). Deconvolution with 1 3x3 kernel filter (right)

In the context of running on low­power computational units, reducing the input size requires a trade­
off of required accuracy. For example, Peluso et al. [35] implement the pyramidal structure developed
by Poggi et al. at the very edge of resolution. They make the network much shallower and are able to
reduce the parameters from 1.9 million to 100 thousand. The input resolutions are extremely reduced
to levels of 48x48 and 32x32 which can be seen in Figure 3.22. Depending on the application a choice
must be made whether this level of detail is acceptable.

Figure 3.22: Examples of depth estimation on 32x32 image inputs

This network employs supervisory training by means of SGM. Although the reason for this is not
given, it is suspected that this is due to the fact that using a self­supervised method with stereo pairs is
ineffective at these resolutions as many details may be lost between the stereo pairs. Instead, finding
the depth based on a classical stereo algorithm at original resolution and downsampling it to be used
as a supervisory signal seems more accurate.

Network Structure There are also interesting changes that can be made to the network architecture
that result in faster inference. One of the novel ways is to employ Depthwise Seperable Convolutions
developed by Howard et al. [21] for use on their MobileNet. In essence this changes the convolution
structure from a single convolution layer to two convolutions, first with a separable convolution followed
by a pointwise convolution of dimension 1x1. The difference can be seen in Figure 3.23.

This change reduces the computational effort by the factor given in Equation 3.5 where 𝐷𝐾 is kernel
size and 𝑁 is the number of kernels. The authors boast much faster performance with a minor drop in
accuracy. They find a log linear dependance between accuracy and computation. They also claim that
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Figure 3.23: Comparison of standard convolutional filters in a) that are replaced with combination of depthwise b) and pointwise
convolutions c). 𝐷𝐾 is kernel size, 𝑀 is the number of input channels and 𝑁 is the number of kernels [21]

there is less need for data augmentation techniques as smaller models (less parameters) have less
issues of over­fitting.

1
𝑁 +

1
𝐷2𝐾

(3.5)

This method has also been used once by Wofk et al. [54] for their FastDepth network. In this
network Wofk employs the use of MobileNet as an encoder as well as converting the decoder decon­
volution operations to a depthwise separable shape. This results in much faster computational speeds
as can be seen in Figure 3.24. Wofk also noticed that the decoder can also be designed with simple
convolution followed by bearest neighbour interpolation to upsample, which results in the same accu­
racy with higher computational speed. At times the deconvolution operation introduces checkerboard
artefacts in the output. The move from the ResNet architecture with Up Projection to MobileNet with
deconvolution decreases the computation speed by a factor of up to 10 times. This is further enhanced
by implementing depthwise operations in the decoder. The accuracy of each of these networks remain
roughly the same.

Figure 3.24: Effect of network architecture changes by FastDepth on computational speed [54]

Wofk et al. use skip connections in additive manner, rather than concatenative, as it reduces the
number of channels to analyse in the decoder whilst maintaining similar accuracy. These proposed
changes in architecture are evidently quite effective and do not pose many restrictions on the network.

Pruning Something else employed by Wofk et al. is the use of post training pruning. Pruning is the
process of removing model parameters in effort to reduce computational time, but maintain accuracy.
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The pruning of the decoder is made easier as the author removed deconvolutions and only has con­
volutions remaining. Wofk et al. use NetAdapt [57] to prune the network, which iterates over different
network proposals and selects the best accuracy/complexity trade­off per round. The effectiveness of
this approach can be seen by the reducing of channel size in Figure 3.25 and the decrease in runtime
in Figure 3.24.

Figure 3.25: Reduction in input channels to each layer in FastDepth due to pruning. Grey area indicates the values for the
network prior to pruning. [54]

One drawback of this, is that it runs in an offline manner. However, this could also be used to
estimate how far the network could be reduced before employing it for online learning.

There are some methods for online pruning, for example, Haider et al. [18] suggest using gates to
activate layers during forward pass via optimisation of an objective function. However, this work has
not seen any similar implementation or peer review.

Quantisation Another promising direction is the quantisation and compilation of networks for deploy­
ment. Wofk et al. [54] use a hardware specific (TVM) compilation to increase the network speed by a
factor 2 as seen in Figure 3.24. However, this is for a network ready for deployment, rather than one
that undergoes online training.

Quantisation is a process by which floating point values for parameters in the network are reduced
to 16 or 8 bit representations. This is done in a way where the accuracy is reduced as little as possible.
Approaches range from performing the same transformation over the entire network to methods that
change the representation per layer instead. Peluso et al. [36] make the remark that there is no quanti­
sation solution that can be applied to a general network, it must be determinedb by the specific network
and platform. Peluso performs a quantisation of the PyD­Net model from Poggi [41] for application
on a ARM based platform. Peluso performs the quantisation dyanmically per layer aiming to minimise
the distance of the original values from the quantised result. Peluso et al. claim that the improved
performance does not stem from decrease arithmetic complexity, but rather from more efficient use of
memory bandwidth due to lower bit representations. They boost hardly any drop in performance from
PyD­Net with heavily increased energy efficiency ( up to x6), less memory occupied to store weights
and lower usage of RAM by a factor of x4.5. This paper shows excellent results, but yet again, it seems
that this method requires a large effort offline and is not trainable.

Jacob et al. [23] propose a method allows for integer­only arithmetic to apply on integer­only hard­
ware. Interestingly, they design a training procedure that simulates quantised integer­only computa­
tions but performs back­propagation in floating point arithmetic. The authors claim that this restores
model accuracy to near­identical levels to the floating point method. They show this method to be
effective on MobileNet [21] architecture
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3.5.2. Training
Although there is quite an effort in decreasing the inference time of a network, there is considerably
less effort on attempting to decrease the backprogation pass. This is due to there being powerful
hardware available on offline training and less powerful technology when deploying the network; most
frameworks do not train online.

However, some of the efforts for increasing speed on inference do also increase speed on back­
propagation. For example, if the resolution is lowered, backpropagation speed for CNNs will increase.
This is because the derivative of layer weights, with respect to its output, is equal to the input to the
layer. Therefore, in the backward pass, when gradients are convolved, these with lower resolutions
will be much less computationally intensive. This is also the case with pruning a network and training
it afterwards.

Apart from changes in the raw amount of computations to train a network, there are also ways in
which a network can converge faster in training. For example, Krizhevsky et al. [26] claim that in
testing their network, ImageNet, on the task of classification, it converged the fastest when using ReLU
activation functions. Apparently, using other activation functions, such as tanh, result in converging to
25% error rate in more than x6 the time.

Another very popular way is to use batch normalisation layers in the network, which are present
in many of the depth estimation networks discussed in section 3.3. Batch Normalisation makes the
training of a network faster and more stable [44] by stabilising the distribution of layer inputs. This is
done by controlling the mean and variance of inputs through an additional layer. Santurkar et al. claim
that this is due to the normalisation layer smoothing the landscape of the gradients, leading to faster
convergence. However, there are claims that it causes gradient explosion initialisation [44]. Batch
Normalisation is designed for training that has mini­batches to train on, which may not be the case for
online learning, where the training batch may only be of size one. Lei Ba et al. [3] offer an adaption to
this with Layer Normalisation, which performs a similar effect but with only on single training cases.

Finally, there are also training strategies in which the entire network does not have to be trained
every iteration, like the approach of Tonioni et al. [51] discussed in subsection 3.4.1. For example,
Brock et al. [6] suggest progressively freezing layers of the network to stop to training them. A similar
method is proposed by Huang et al. [22] in which only a random set of layers are trained each iteration.
Both these methods achieve gains in training time and also claim their framework prevents over­fitting
as they acts as regularisers. However, their method may not be so simple to implement on low level
machine learning frameworks.

3.5.3. Conclusion
Overall, there are quite a few ways to speed up the performance of the network. The most efficient
methods, that could be used well in an online manner seem to be those that change the architecture of
network. This includes changing resolution, pruning before deployment and quantisation. Employing
these methods would be beneficial to deploying a depth estimation network on low­power hardware.

3.6. Implementation
Although there are many interesting and useful suggestions from papers in the previous chapters, there
must also be a consideration of the the actual platform for this implementation. First, the SteroJevois
camera is discussed in subsection 3.6.1 followed by a discussion of the framework for implementing
CNNs on the StereoJevois in subsection 3.6.2. Finally, a discussion of the simulation platform Airsim
is given in subsection 3.6.3.

3.6.1. StereoJevois
The StereoJevois is a hardware adaption of the Jevois Smart Machine Vision Camera1 to have stereo
vision. Jevois is a small 1.3 MP camera equipped with a video sensor, quad­core CPU, dual GPU, USB
video and serial port. This allows all image processing and computer vision to be on­board the camera
system. Unfortunately, there is no IMU system on the StereoJevois, however values can be input to
the system through the serial bus.
1Jevois: www.jevois.org

www.jevois.org
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The computer vision algorithm and resolution output is determined by the selected output resolu­
tion and frame rate of the camera. The computer vision algorithms can be implemented in different
languages including Python, C and C++.

The Jevois was changed to its stereo form purely by means of hardware; the same Jevois software
receives the input in the same as it would if there was only a single camera. The images arrive inter­
leaving in the vertical direction and must be separated by a pre­processing function before they can be
used. With this hardware implementation there are two modes: one with a full resolution dual image in
black and white and the second of half vertical resolution in colour. They are toggled by making a short
circuit between a debug pin (D1) and ground on the circuit board. These two outputs can be seen in
Figure 3.26. The black and white image was taken in the same environment as the colour and was left
dark to demonstrate the differences. Although it is difficult to see they are of the same scene.

Figure 3.26: Raw outputs of the StereoJevois. Colour output of StereoJevois (left) Black and White output (right)

Modules can be written for the Jevois in JevoisInventor and set at the desired resolution and frame
rate output. When implementing modules, compilation is not necessary as Jevois generates shared
objects itself.

3.6.2. CNN Framework
There are two open­source CNN frameworks available on the Jevois platform: Darknet [43] and Ten­
sorFlow [1]. Darknet is an implementation of CNN architecture written in C and CUDA. Darknet is
primarily implemented for use in classification tasks with CNNs that have encoders followed by fully
connected layers rather than decoders. Although there are capabilities for decoder layers, the use
cases with Darknet are extremely sparse and informally made with very little documentation. Addi­
tionally, Darknet is restricted to a sequential structure and does not have any implementations of loss
functions outside of supervised classification tasks.

Tensorflow is an extremely popular framework for designing and training neural networks of various
shapes in the Python programming language. It does have an API written in C++ that is accessed by
Jevois. Tensorflow is more mature in terms of development, however, their implementation in C++ is
also quite new.

Jevois uses both just to call the forward pass of networks that have already been trained offline.
As it seems, the implementation to learn online for CNNs is non­existent on the Jevois and must be
developed. To choose between the two frameworks will require more time of analysing the capabilities.

3.6.3. Airsim
Airsim is an open source simulator for simulating autonomous vehicles such as drones and cars [48].
Airsim is quite useful in that it allows for simulated depth maps and stereo vision. It can be used to
retrieve training data for training offline or it can be used to simulate online training with live control.
This is possible through Python or C++ script, meaning that things can be tested on an easier machine
learning framework like PyTorch first.

This simulator can be run on Unreal Engine, however, it is simpler to run the binaries for the specific
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Figure 3.27: Screenshot of airsim drone simulation with depth map, segmentation map and first person view [48]

environment. A benefit of this simulator is that there are a variety of different environments with both
indoor and outdoor scenes. This framework can serve to experiment with methods for depth estimation
and control before being deployed a real drone. Noise artefacts and other effects can be used to attempt
to better approximate the real domain.

3.7. Research Questions and Conclusion
The conclusion to the literature review is split into three sections. First, the development of the research
questions is given by identifying the research gap in subsection 3.7.1. This is followed by a brief project
outline of the research direction and organisation in subsection 3.7.2. Finally, a conclusion to the paper
is given in subsection 3.7.3

3.7.1. Research Questions
Research Gap From the different research areas addressed in this review, it is possible to extract two
major gaps in the research. First, it is clear that although there are a large number of depth estimation
methods available, there is not too much work with regards to application of drones. Subsection 3.3.5
does identify some efforts in this area, however, either the methods do processing off­board [39] or
they employ powerful hardware in constrained, obstacle­course, environments [58]. There has not
been work to process fully on­board a lightweight drone for natural, indoor, environments. Secondly,
as seen in section 3.4, there has clearly been no work on online self­supervised learning of depth for a
physical drone, in a real­world environment. Therefore, this thesis will address both the use, and online
learning, of self­supervised depth estimation on a drone, in real environments.

Research Questions With this research gap identified, the research question and subquestions can
be stated below.

• How can we carry out online self­supervised learning of depth estimation on a drone?

1. Which depth prediction method is best suited to deployment on a drone for online domain
adaption on low­power hardware?
(a) Which method offers the best trade­off between inference speed, training speed and

accuracy?
(b) Which method is best suited to adapt online to a new domain the fastest and most

robustly?
(c) To what degree is the proposed method feasible for implementation on hardware with

low computational power?
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2. How should the drone obtain new data such that it can adapt to the new domain as quickly
and robustly as possible?
(a) What information about the environment is most important to capture, to robustly adapt

to the new domain?
(b) At what rate should the drone obtain data for the learning process, in order for the drone

to learn quickly and robustly?
(c) How the should the drone be controlled dynamically in order to facilitate robust domain

adaption?
(d) How can the drone learn in a manner that prevents unlearning of previous domains?

3. What is the overall performance of the proposed depth prediction method?
(a) How well does the drone adapt in terms of accuracy, compared between different do­

mains?
(b) How fast does the drone reach a threshold of accuracy between different domains?
(c) What is the inference time, training time and memory allocation of the proposed method

on the drone?

3.7.2. Research Planning
This section develops a plan for apporaching this thesis. First, a preliminary answer to research sub­
question 1 is given in subsection 3.7.2 in order to guide the beginning of thesis. This is followed by a
break down of the organisation of time for the thesis in subsection 3.7.2.

Research Direction This review has gathered knowledge of different depth estimation techniques,
domain adaption methods, computational speed increase techniques and specifics of the hardware
platform.

It is clear that computational effort in inference, and especially training, is a larger constraint than
accuracy of the estimation. Also, it is clear that not only computational effort is constraining, but also
solution complexity, as the proposed platforms for learning, such as Darknet, are quite rigid in their
possible structures. Therefore, the solution to pursue, must attempt to target the most simple changes
that have the largest effects.

From the comparison of methods in subsection 3.3.4, it is clear that the depth estimation method
that employs the least computational effort and complexity, allowing for self­supervised learning, is
using the autoencoder with left­right consistency loss by Godard et al. [15]. Although, it is slightly more
expensive for training than Garg et al. [13], it is marginal for the considerable increase in accuracy. This
structure of a sequential auto­encoder is suggested also due to its popularity on the few solutions that
have been implemented for mobile robots [66] [34] [58], particularly drones, as seen in subsection 3.3.5.

Additionally, there a few features from different papers that will be explored, that add vital compo­
nents in a lightweight manner, to attempt to address the issues of domain adaption. First, to make the
method more robust to the effect of drone motion, pose encoding will be explored in a similar manner to
Zhao et al. [66] as seen in subsection 3.3.5. A suggested simple change, is to include the roll pose as
well. Also, LSTM layers and batch normalisation will be explored as they are some of the few possible
methods discussed in section 3.4 that can be applied on a constrained platform like Darknet. Finally, for
increasing computational speed, resolution changes, offline pruning and quantisation will be explored
as described in section 3.5.

Research Organisation To approach the planning of the research the project was broken down into
a few work­packages. These consists of: Literature Study, Implementation, Verification, Indoor Testing,
Performance Analysis and Report Writing. Implementation is done both on the simulation and hardware
platform. The planning can be seen in the Gantt Chart in Figure A.2.

In the chart there are quite a few concurrent work­packages. The first concurrent work­packages
are implementation and verification as they are done together while iterating the developed code. The
second concurrent work­packages are indoor testing and performance analysis as the data must be
analysed while testing to see if things are behaving accordingly. Finally, performance analysis and re­
port writing happen concurrently. The time for each is estimated on personal experience with working
with implemented code on hardware, however, there is the possibility of delays in implementation of
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hardware that are very possible. This is especially true because of the relative novelty of the compu­
tational hardware that was developed for the purpose of this project. If corona disallows on campus
testing, then the Gantt chart must re­evaluated for new testing practices. Overall, this outline is quite
ambitious for implementing this software/hardware solution; however, this is the required tempo to fully
address the problem.

3.7.3. Conclusions
In conclusion, this paper has surveyed the body of research relevant to the online adaption of drones
for depth estimation to arrive at a set of research questions to use. In section 3.3 the various methods
to estimate depth on a drone were examined. This extended from classical to machine learning meth­
ods, and a fusion of the two, ending with a comparison of the different approaches. This was followed
by examination of online adaption methods of neural networks both within the field of depth estima­
tion and generally. Finally, different methods for increasing the speed of networks, for both inference
and back­propagation, were identified and discussed. Additionally, a brief overview of the platform for
implementation was given.

With these identified the main research gaps were identified and the research questions could be
formed as well as a project plan. This literature review forms the motivation for a thesis to develop,
implement and analyse an online adaptive self­supervised depth estimation network on a drone.
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4
Conclusion

With the advances proposed in this paper, self­supervised monocular depth estimation has been con­
siderably improved in untextured indoor rotated environments. This contribution is useful for making
numerous applications, such as autonomous navigation, augmented reality and scene reconstruction,
more accurate and safer in increasingly complex environments.

The main conclusions of the paper are given as answers to the initially posed research questions.
The first question concerns the improvement in the performance of self­supervised monocular depth
estimation methods in untextured regions of an image.

Q1 How can self­supervised monocular depth estimation be improved for untextured regions in im­
ages?

Q1.1 To what extent is accuracy in untextured regions improved compared to previous methods?
Q1.2 Is there a trade­off in performance in textured regions with previous methods?

To improve performance in untextured regions the Filled Disparity Loss was presented as an addition
to conventional self­supervised depth estimation methods. Disparity estimation at edges, where image
reconstruction loss is better posed, was used to interpolate disparity within textureless regions. From
the results in section 2.4 there was a demonstrable increase in the accuracy on indoor scenes when
compared to Monodepth [15]. The effect of the new loss term was quite clear as the performance in
the chosen metrics improved as the weight of the Filled Disparity Loss increased. However, it was
clear that the improved disparities were still smaller when compared to the ground truth disparity in
near regions. This is due to the Filled Disparity Function only being able to interpolate between values
at edges. When hallways, which dominate a lot of indoor spaces, were present, the Filled Disparity
Function could not increase estimates of the disparity at the edges of images. However, it is noted that
when inverting to find the depth the differences in these regions are minimised.

To answer the second part of this question an analysis of the performance as a function of the
’texturedness’ of an image was given. It was shown that when the weight of the new loss term was
increased, performance in images with low ’texturedness’ was significantly improved and performance
in images with high ’texturedness’ was maintained. This implies that there little to no trade­off in per­
formance in textured regions of an image when compared to previous methods [15].

The second research question addressed pertained to improving performance in rotated scenes.

Q2 How can self­supervised monocular depth estimation be improved for rotations in pitch and roll?

Q2.1 Is the improvement in accuracy different for rotations in pitch and roll?
Q2.2 How well does the improvement in accuracy generalise over the entire range of rotation?

To improve performance over pitch and roll rotations, a passive approach was used where instead
of changing the network, only the range of rotations present in the dataset was changed. It was demon­
strated that training with a dataset that contains rotations in both pitch and roll is extremely effective in
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improving the performance on rotated images. From the comparison of overall error metrics, it seemed
that pitch had more of an effect on the performance of the network when tested on the pitch and roll test
set. This was due to the pitch altering vertical depth cues more drastically, and in a less symmetrical
manner, than rotations in roll [52].

When looking at comparisons of accuracy over the range of rotations it was clear that training for
the representative rotations improved performance over the entire range of rotations. When training
on images rotated in pitch, the performance for non­rotated images was the same as for training on
the nominal dataset. Performance for the pitch trained network did not change over the entire range of
pitch angles in the test set. Also, the network trained on both pitch and roll did not trade­off performance
on the pitch test set when compared to the network trained on the pitch dataset.

Overall, the results obtained with this research not only show an improvement in the performance
for untextured indoor rotated scenes, but it also demonstrates that there has not been a trade­off for
textured non­rotated scenes. Hopefully, this work will expand the use of self­supervised monocular
depth estimation to more complex domains.



5
Recommendations

From the work done in this paper there are a few recommendations for further research identified.

• The largest improvement for this research would be to collect indoor data under different rotations
for a real­world domain. Although the results are significant, showing them closer to a domain
for application would be useful. This would incorporate more real­world effects of cameras, and
stereo cameras, that may pose problems to this network.

• Another large area for improvement is the generalisation of this method to any domain. Although
performance is improved indoors, there is the issue of outdoor performance. With the sky as a
generally untextured region of an image, the depth of whatever is in front of the sky would be
interpolated into the sky as a consequence of the Disparity Filler Function. There are ways to
remedy this, for example, using a sky classification network in parallel or using assumptions to
detect the sky. However, these may require labelled data or have more assumptions that break
in different domains.

• It is attractive that the Filled Disparity Loss function is differentiable. However, there is an un­
desired effect in the propagation step where disparity extends outwards, perpendicular to the
detected edges. Although this effect was not too influential in the end product, it would be bet­
ter for the generated disparity map to be more physically correct: to interpolate linearly between
edges.

• In this research, changes in the pose were limited to pitch and roll whilst height was held constant.
It would be significant to understand the effect of varying height of images in varying domains.

• An exciting area that this could be applied to is for online learning on drones. This way depth could
be learned for different domains with exploration, rather than trained offline each time the domain
is changed. Several computational and hardware improvements would have to be considered,
but it may be interesting for indoor navigation.
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