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PREFACE

Dear reader,

It makes me glad to see your interest in my PhD dissertation. What you are reading is
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It is said that the future is not something we enter, but rather something we create.
When I left Iran and moved to the Netherlands to pursue my MSc studies at TU Delft,
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eyes. The colorful landscapes, beautiful historical sights, and the welcomingness of the
Dutch people, soon outcasted my frustrations with the fickle, windy and rainy weather of
the country. Having active social engagements and taking a few Dutch language courses
provided me with a better connection towards the culture and all the “gezelligheden”.

The dynamic and exciting academic atmosphere of the university added to the moti-
vation. But it was the course “reservoir simulation” by Dr. Hadi Hajibeygi that made me
find out my passion. It soon became clear that computer programming and modeling,
despite no initial background, is the path I wanted to take. Having my MSc thesis under
his supervision gave me even better insights. I enjoyed every moment of programming
and writing codes from the scratch with all the challenges I faced. After successfully fin-
ishing my MSc, I had eager interest in continuing the same path towards PhD. Looking
at different research opportunities from various universities, none of them captured my
interest. I clearly knew what I wanted, but such a project did not exist. Discussing it with
Hadi, he gave me an ambitious suggestion, i.e., if the PhD position you want does not ex-
ist, create it yourself! Therefore, I wrote my own PhD research proposal, and it was even-
tually accepted. My PhD journey started with Dr. Hadi Hajibeygi and Prof.dr.ir Cornelis
(Kees) Vuik as my promotors. My excitement and motivation were great drivers which
made me publish my first journal paper just a few months later. Beside scientific knowl-
edge and research skills, I also acquired various personal and social skills. Attending
and presenting at various international conferences improved my communication and
networking skills. Teaching as well as supervising MSc students highlighted the impor-
tance of knowledge transfer for me. This PhD research offered me a renewed perspective
towards many aspects in my life. The social part of my life was also full of colors. Orga-
nizing and participating at various social activities, trips, drinks, and so on. Learning
Latin dances (such as salsa and bachata) changed my lifestyle completely. Having met
numerous open-hearted and energetic people, from every corner of the globe, enriched
my cultural experience, making me blessed to have met my girlfriend as well. After four
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years, this PhD journey came to an end, leaving behind countless of vivid and unforget-
table memories.

After my PhD contract ended, I had the opportunity to spend three months as a high-
performance computing (HPC) software engineer intern at Schlumberger, in Abingdon,
UK. Despite the pandemic restrictions and working remotely from home, I could explore
computer programming on an industrial scale which opened a new window in front of
eyes. Learning advanced C++ and GPU programming, I realized how deep my passion
for computer programming runs. Entering industry, I eagerly look forward to applying
my knowledge and skills in a practical manner, while continuously improving those I
have and learning new ones. At the end, this is what life is all about, never stop learning.

Yours Sincerely,

S.Mousa HosseiniMehr
Delft, November 18, 2021



SUMMARY

In various geo-engineering fields, accurate and scalable modeling of fluid and heat trans-
port in the subsurface fractured porous media is important in order to fulfill scientific,
economical and societal expectations on successful field development plans. Such mod-
els and the predictions they provide, contribute to efficient and safe operations on the
production or storage facilities. However, while attempting to provide accurate results,
a number of key challenges exist. Over the past decades, the scientific community have
been developing various advanced numerical techniques to address these challenges.
In this work, a number of scientific contributions have been made to help address spe-
cific challenges, by developing scalable numerical methods for fractured porous media,
some with complex geometries. The primary aim of these methods is to provide compu-
tational efficiency while delivering accurate results on a desired level.

Chapter 1 starts with background information on why these computer models are
needed and the key challenges that exist along the way. Moreover, the contribution of
the scientific community in various aspects are highlighted. In addition, the numerical
methods developed in this work are briefly pointed out in this chapter.

Chapter 2 covers the governing equations as well as the mathematical and physical
relations for various flow models in great detail. These equations include capturing the
effect of fractures and faults in the subsurface flow as well. Chapter 3 attempts to provide
detailed explanation of the discretized equations. The fine-scale simulation approaches
as well as the coupling strategies for the governing equations are described. Moreover,
the linearization of the non-linear equations is covered as well. Afterwards, the embed-
ded discrete fracture models are thoroughly explained, where the effect of fractures on
the patterns of flow are explicitly captured. In chapter 4, the mentioned fracture models
are extended and applied to geologically relevant field-scale models. This is an impor-
tant part of this work as the real field-scale geological formations cannot be represented
by the Cartesian grid geometry (orthogonal box-shaped grids), but they are better repre-
sented by unstructured grids (such as corner-point grids). Using a number of numerical
results, the capabilities of the developed model are showcased. It is also discussed how
this model can offer great flexibility in the gridding strategies for field-scale models.

In the above-mentioned chapters, the focus is on the fine-scale approaches in the
numerical simulations. However, despite the technological advancements in computer
hardware and high performance computation, the large size of the real field-scale do-
mains, makes it impractical for the current computers to provide simulation results us-
ing fine-scale numerical methods. From this point onward, the focus shifts towards the
multilevel multiscale methods. Chapter 5 covers the static multilevel multiscale meth-
ods for simulation of fluid flow in fractured domains, where the domain is subdivided in
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coarser grids across multiple levels of coarsening. With the help of the locally computed
functions (also known as the basis functions), an approximated solution is obtained for
the entire domain, reducing the size of the linear system of equations and providing
computational efficiency.

In chapter 6 and 7, the dynamic multilevel method is described in which different
parts of the domain are treated and processed at different resolutions and coarsening
levels. Due to different physical processes at various scales in the domain, while some
parts of the domain can be treated on a lower resolution, certain regions need a higher
resolution to capture the physics accurately, which can dynamically change across sim-
ulation time. The dynamic multilevel method uses fine-scale high resolution grids only
when and where needed, providing a robust and efficient performance while keeping
the accuracy at a desired level. Various numerical tests compare the results of the dy-
namic multilevel method against those of the fine-scale approach. It is shown that accu-
rate results can be obtained while using only a fraction of the high resolution grids. For
large-scale domains, such model can offer a significant reduction in the size of the linear
systems, providing an optimal scalability.

This dissertation is concluded in chapter 8 and references used in this work are fol-
lowed afterwards.
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1
INTRODUCTION

1.1. WORLDWIDE ENERGY DEMAND
A key necessity for advancements in civilization in many aspects (e.g., technology, econ-
omy, and life quality) is energy. The worldwide energy demand is on a continuous and
steady growth every year [1]. The year 2020 was exceptionally affected by the unprece-
dented COVID-19 pandemic, and the year 2021 is predicted to be influenced similarly.
To this date (25th of February 2021) more than 113 million COVID-19 cases have been
reported and 2.5 million individuals have lost their lives. In the light of the extraordi-
nary impact of this pandemic and the corresponding measures on the energy system, the
global energy demand dropped significantly [2, 3]. However, it is expected that the post-
pandemic energy demand will shortly grow back to pre-pandemic levels (if not higher).

Despite a significant growth in renewable energy production in recent years, the gap
in the global energy demands is mostly filled with a considerable increase in the pro-
duction of hydrocarbon fuels (i.e., oil and gas). Figure 1.1, from the annual statistical
review of world energy consumption in 2020 provided by British Petroleum, illustrates
the trend of global energy consumption (in Exajoules) and the role of each energy source
type on the entire consumption from 1994 till 2019. To achieve efficient and economi-
cal energy production from hydrocarbon resources, and to minimize its environmental
impact, more advanced and enhanced recovery methods have been used.

Concurrently, in transition towards green and renewable energy in geo-engineering
applications, geothermal energy productions, carbon capture and storage (CCS), and
hydrogen storage are among the most important industries. Geothermal energy [4, 5]
has the benefit of independent energy production regardless of climate-dependent fac-
tors (as compared to solar and wind energy sources). Therefore, it can sustainably pro-
vide electricity and/or heat for variety of buildings. The prospective outline looks very
promising and its demand will grow steadily within the next decades. The contribution
of geological formations is not limited to the energy sector, as they can offer a consider-
able capacity to store greenhouse gases, i.e., CO2 in an effort to reduce its concentration
in the atmosphere and reverse its impact on climate change [6–10]. In addition, hydro-

3
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Figure 1.1: Statistic report of the global energy consumption by British Petroleum company. The figure on the
left shows the combined global energy consumption in Exajoules from 1994 till 2019 while sub-categorizing
the types of energy source. Figure on the right demonstrates the identical data in percentage shares for each
of the energy sources.

gen storage has become a fast growing industry that casts a promising solution for future
of green and blue energy storage.

1.2. THE NEED FOR COMPUTER MODELS

Regardless of the geo-engineering fields and their application in energy production (e.g.,
hydrocarbons and geothermal energy) or storage (e.g., CO2 storage and hydrogen stor-
age), a detailed understanding of fluids and heat transport, their physical and chemical
interactions together with rock, and their impact on the geological formation is greatly
necessary. Accurate scalable modeling of fluid and heat transport in the subsurface
porous media is of high importance in order to fulfill scientific, economical and soci-
etal expectations on successful field development plans. Such computer models and
their resulting predictions contribute to efficient and safe operations on the production
or storage facilities with regards to any of the mentioned geo-engineering applications.
These predictions provide valuable insights on the optimization of hydrocarbon extrac-
tions [11], the energy production outlines and the life-time of geothermal systems [12–
15], the practical capacities that can be offered by the underground formations to store
CO2 or hydrogen, and many more. Figure 1.2 shows an example of a computational
model (Norne field, more information on section 4.3.6) which is used for field develop-
ments plans.
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5

Figure 1.2: Norne oil field located in the Norwegian Sea. This figure illustrates a schematic view of this field
and how the Norne computational model looks like. The images are extracted from [16–18].

1.3. CHALLENGES

In many geo-engineering fields, the term porous media refers to geological formations.
These formation are often in large scales. While they are located few kilometers deep in
the subsurface (crust) and have a thickness of tens (if not hundreds) of meters, their areal
extents can easily be in orders of kilometers. The computer models do not have a phys-
ical sense of these geological formations as continuum domains. Instead, these contin-
uum domains are subdivided into smaller subdomains called grid cells at fine-scale high
resolution. These grid cells must be in size of representative elementary volume (REV)
[19] that can reflect the geological and geometrical properties of the subsurface in a de-
sired accuracy. However, this will result in dividing the formations into billions of grid
cells. Imposing such high-resolution computational grids on the domain results in sig-
nificant computational complexity. Despite the significant technological advancements
gained on modern computers, it is still impossible to run computer models with such
large computational domains using conventional methods.

Moreover, in many subsurface formations, strong spatial heterogeneity contrasts is
observed between various physical and chemical properties. These fine-scale hetero-
geneities affect the flow and transport properties of the rock (i.e., storage capacity and
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conductivity) in several orders of magnitude. Subsequently, the discretization of the gov-
erning partial differential equations or PDEs (see chapter 2) results in ill-conditioned
linear systems of equations, creating challenges for numerical solution schemes to solve
such heterogeneous systems. In addition, the measurement of the heterogeneous prop-
erties several kilometers beneath the subsurface involves a great deal of uncertainty. In
order to minimize the impact of such uncertainties, instead of one realization, hundreds
(if not thousands) of realizations are created to obtain uncertainty quantification (UQ)
and a large number of simulations have to be run. Thus, the complexity of the system
can have a huge impact on providing predictions in a reasonable time scale. Further-
more, geological formations are often defined with complex geometry and stratigraphy.
Using Cartesian grid geometry, even though it allows for simpler conceptual modeling
analyses, can result in oversimplified and inaccurate predictions.

Additionally, the presence of faults and fractures (see section 1.4) has significant ef-
fects on fluid and heat flow patterns through the subsurface formations. The hetero-
geneities in length scales and conductivities caused by these complex networks of frac-
tures and faults can cause extreme challenges in solving the linear systems using numer-
ical methods [20–22]. Therefore, high fidelity representation of the physical phenomena
within the heterogeneous fractured reservoirs is crucial [23].

Non-linear behavior of the system due to strong mass-heat coupling results in poor
stability and convergence. In case of multi-phase flow (e.g., high-enthalpy systems)
these issues become more severe [24]. The geo-mechanical processes (i.e., elastic and
plastic deformation) [25–27], reactive transport (e.g., geo-chemical interaction between
the substances) [28–30] and compositional changes are other notable challenges that
the system might face. These challenges introduce high demands for developing ad-
vanced simulation methods that are able to provide efficiency (i.e., applicable to field-
scale problems), while maintaining accuracy at the desired level.

To address these challenges, various advanced simulation schemes have been devel-
oped that will be briefly covered in the following sections.

1.4. FRACTURE MODELS
Geological formations are often naturally fractured. Figure 1.3 shows examples of real-
field outcrops. There are various effects contributing to the formation of these fractures.
The tectonic activities and stratigraphic processes are two of the main geo-mechanical
causes of fracture generation, which act via influencing the stress-strain field in the sub-
surface geological formations. The details on how these processes affect the stress-strain
field and the formation of fractures are beyond the scope of this work, and thus not ex-
plained further.

Depending on the tectonic forces and the lithology, the length scales, the size and the
distribution, these fractured formations contain complex geological networks of frac-
tures and faults with a broad range of conductivities. Some reservoirs present a few dis-
connected fractures while others have very complex fracture networks. Fractures usually
have very small apertures (i.e., at the scale of millimeters). Even though their volume is
relatively small and they do not contain considerable amount of fluids, they are typically
highly conductive (several orders of magnitude more than the rock). In opposite, the
faults and fractures that have become sealed due to tectonic activities or physical and
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chemical interaction between rock and fluid over geological time scales, can act as flow
barriers.

Figure 1.3: The image on the left shows a fracture network in flat-lying carbonates in the Potiguar Basin, Apodi,
Rio Grande Do Norte, Brazil. Photo made by K. Bisdom, PhD Candidate, TU Delft. The image on the right
illustrates fractures together with inclined layering in the Brochterbeck quarry, Germany. Photo taken by the
author.

The significant effect of fractures and faults on fluid and heat flow makes it vital for
reservoir simulation and management studies to consider an accurate modeling of frac-
tures in many real scenarios (such as underground water resources, hydrocarbon and
geothermal reservoirs, etc.). However, the geometrical complexity of the fractured me-
dia together with the large conductivity contrasts between fracture and rock impose a
huge challenge to simulators. High computational costs together with low accuracy of
the excessively upscaled models have made such simulations incapable of providing sat-
isfactory results for field-scale problems. Consequently, many specialists are working to
improve the efficiency of simulations by introducing new techniques and approaches in
modeling of flow in fractured media.

Different approaches have been proposed to model the effect of fractures on flow
patterns in natural formations. One option, known as fully-resolved approach or DNS
(Direct Numerical Simulation), is to explicitly account for fractures by adapting the grid
to their geometry and resolution. However, due to the difference of scales (several orders
of magnitude) between the size of the domain, fractures’ areal extents, and their small
aperture sizes, this requires that extremely high resolution grids are employed which
is not compatible with the length scales of natural formations. As a consequence, this
approach is not practical for field scale simulations.

Alternatively, it is possible to upscale fractures by obtaining averaged and effective
properties (e.g., permeability) between fractures (or faults) and the hosting rock (also
known as the rock matrix) introducing a porous media representation without fractures
but with approximated conductivities. However, such models raise concerns about inac-
curacy of the simulation results due to the employed excessively upscaled parameters,
especially in the presence of high conductivity contrasts between the matrix and frac-
tures.
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Therefore, two distinct methods have been introduced in the fracture modeling ap-
proach; the so-called dual permeability model (also known as dual continuum or dual
porosity) [31–33] and the discrete fracture model (DFM) [34]. In the former method, the
rock matrix plays the role of fluid storage and the fluid only flows inside the fractures.
As it is assumed that there is no direct connection between the matrix cells, this model
neglects the flow through the porous rock.

DFM considers fractures as a separate system in a lower dimensional domain than
that of the rock matrix, and couples them through a transfer function. In 2D domains
the fractures are represented by 1D line-segments and in 3D domains each fracture is
modeled by a 2D plane-segment. The DFM provides more accurate results. Thus, it has
been developed and evolved significantly during the past several years (See, e.g., [35–43],
and the references therein). Next, the DFM approaches are being explained in brief.

1.4.1. DISCRETE FRACTURE MODELS (DFM)
Two different DFM approaches have been presented in the literature: the Embedded
DFM (EDFM) and the Conforming DFM (CDFM). The main difference between these
two techniques resides in the flexibility to the grid geometry. An illustration of these
methods is presented in Fig. 1.4.

(a) The fractured media (b) CDFM, unstructured matrix grid (c) EDFM, structured matrix grid

Figure 1.4: A schematic sample showing the grid construction of different DFM approaches.

CONFORMING DISCRETE FRACTURE MODEL (CDFM)
In the CDFM, fracture elements are located at the interfaces between the triangular un-
structured matrix grid-cells. The effect of fractures is represented by modifying transmis-
sibilities at those interfaces. Therefore, there is an accurate consideration of flux transfer
between matrix and fracture [35, 40, 42]. However for highly dense fracture networks
the number of matrix grid cells should be very high with very fine triangles close to the
fracture intersections, to account for the fractures. In addition, in case of fracture gen-
eration and propagation, the matrix grid has to be redefined at step of the simulation
which reduces the efficiency of such an approach. All of these complexities can limit the
application of CDFM in real-field applications.

EMBEDDED DISCRETE FRACTURE MODEL (EDFM)
In the EDFM, fractures are discretized separately and independently from the matrix on
a lower dimensional domain by using non-conforming grids. Once the grid cells are
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created and the discretization is done, the fractures and matrix are coupled together us-
ing Conservative flux transfer terms that calculate the flow of mass and heat between
each fracture element and its overlapping neighbors (non-neighboring connectivities).
[36, 39, 44, 45]. Having two independent grids allows for modeling of complex fracture
networks even with simple grids for the matrix. While the EDFM is applicable to provide
acceptable solutions for highly conductive fractures, it leads to very small, yet nonphysi-
cal, flux leakages. More importantly, the EDFM cannot accurately represent flow barriers
(e.g., sealing fractures and impermeable faults). In order to resolve this limitation, the
projection-based EDFM (pEDFM) was introduced [46, 47] where consistent connectivi-
ties between matrix and fractures were developed. Therefore, the pEDFM can be applied
to fractured porous media with generic range of conductivity contrast between fracture
and the hosting rock. However, one needs to note that even with the pEDFM indepen-
dent gridding, the size of the reservoir and density of the fractures make any fine-scale
simulation approach impractical.

1.5. COMPLEX GEOMETRICAL MODELS
To represent the real-field geological formations accurately, instead of using Cartesian
grids, more complex and flexible gridding structure are needed as these formations are
more conveniently represented by flexible grids [42, 48]. The grid geometry should cre-
ate a set of discrete cell volumes that approximate the reservoir volume, yet fit the trans-
port process physics, and avoid over complications as much as possible [40]. Unstruc-
tured grids allow for many flexibilities, which need to be carefully applied to a computa-
tional domain so that the discrete systems do not become over-complex [35, 49]. With-
out introducing the full flexibility (and at the same time complexity) of the fully unstruc-
tured grids, the corner-point grid (CPG) geometry allows for many possibilities in better
representation of the geological structures. This has made the CPG geometry attractive
in the geoscience industry-grade simulations [50–53].

1.6. MULTISCALE STRATEGIES
As mentioned above, despite employing advanced fracture models such as the pEDFM,
the length scale of many geological formations and reservoirs are very large (in orders of
kilometers) and the need to run simulations for hundreds (if not thousands) of realiza-
tion (as a result of intrinsic uncertainties) makes high resolution simulations impractical
for field-scale applications.

Conventionally speaking, to reduce the computational costs, upscaling methods [54]
have been used. In such techniques, the rock and fluid properties at fine-scale high
resolution are mapped to a coarser resolution by obtaining effective averaged proper-
ties, which makes simulation affordable computationally. However, in presence of more
complex physics, the excessive upscaling of the properties may cause inaccurate and
non-satisfactory results. Due to these issues, more advanced algorithms and solvers
have to be developed and used to allow for higher resolution grids to be employed.

To address this challenge, the Multiscale Finite-Element (MsFE) [55–57] and the Mul-
tiscale Finite-Volume (MsFV) [58–63] methods, and Dynamic Local Grid Refinement
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(DLGR) techniques [64–72] and Adaptive Mesh Refinement (AMR) methods [64, 66, 73–
76] are two classes of such advanced methods that aim to achieve accurate and efficient
simulations by tackling different aspects of the entire complexity map.

The multiscale methods have been developed to solve the elliptic (or parabolic) pres-
sure equation efficiently, in which highly heterogeneous coefficients are taken into ac-
count at their fine-scale resolution. First, the full domain is divided into a set of coarser
grid cells and a local solution is achieved for each coarse grid cell. At the next stage,
the system is solved on a coarse grid resolution. Lastly, the solution obtained at the
coarse scale resolution is mapped to fine-scale resolution using the mentioned local so-
lutions while preserving the fine-scale heterogeneities. These local solutions are the ba-
sis functions. To improve the accuracy, iterative multiscale techniques have been intro-
duced where it allows a systematic reduction of the error in the multiscale approxima-
tion [60, 77, 78]. Moreover, by using an algebraic framework for the multiscale methods,
higher computational gains have been put on the focus as well [79–81]. In the algebraic
multiscale framework, the mapping between the fine-scale and the coarse-scale reso-
lutions is done by employment of the so-called multiscale restriction and prolongation
operators. While the classical multiscale approaches are considered as a great help to de-
crease the computational cost and at the same time honor accuracy, the computational
gain is still not considerable to solve systems on real-field scale with billions of grid cells
for which we need more advanced methods to provide a more efficient and faster so-
lution. In order to overcome such issues, it is applicable to extend the concept from
only one level into multiple levels of multiscale to increase the efficiency even further
[45, 47, 82]. The multilevel multiscale finite volume method (MMsFV) approach uses
the same method as in the MsFV approach recursively by giving the coarse grid cells of
the 1st multiscale coarsening level to the 2nd multiscale coarsening level and so on (see
chapter 5 for more details). Integration of the EDFM models in the MMsFV method al-
lowed to benefit the computational gain of multilevel multiscale methods for simulation
of fractured porous media [83]. For porous media containing high heterogeneity con-
trasts, the MMsFV method suffers the same inaccuracy as in the MsFV approach. There-
fore, iterative multiscale can be used to achieve convergence to the fine-scale solution in
the MMsFV method as well.

On the other hand, DLGR techniques adapt the grid resolution throughout the time-
dependent simulation to employ a high-resolution grid where necessary (i.e., the ad-
vancing saturation front), and are, therefore, transport-oriented methods. By extending
the DLGR grid refinement strategy and AMR methods, and by taking the advantages of
multilevel multiscale techniques, an algebraic dynamic multilevel (ADM) method has
been introduced for fully implicit simulation of multiphase fluid flow in non-fractured
porous media [45, 47, 84, 85].

1.7. RESEARCH GOALS
Many challenges in the field of simulation of fluid and heat flow in subsurface porous
media and various techniques developed to address them were mentioned in the pre-
vious sections. These techniques and the developed models by the scientific commu-
nity provided a multi-dimensional insight to what is needed to obtain advanced models
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to tackle the challenges. Based on theses challenges and the scientific needs, the aim
of this work has been to contribute to the field of computer simulations by developing
a scalable model that represents the physical phenomena in the subsurface fractured
porous media, honors accuracy and provides significant computational efficiency. The
main goal of this work has been to:

• Develop a scalable model using algebraic dynamic multilevel (ADM) method to
simulate the coupled mass-heat flow in fractured porous media with complex ge-
ometries.

Too achieve this goal, there are two main objectives. The first one is to develop a
stand-alone projection-based embedded fracture model (pEDFM) that calculates the
geometrical fluxes (geometrical transmissibilities) between fractures and the rock ma-
trix. This model is able to model the fractures (highly conductive flow channels) and
faults (impermeable flow barriers) with generic conductivity contrast. In addition, the
model works on fully 3D domain and uses either Cartesian geometry or more complex
corner-point grid geometry. The second objective is to develop the multilevel multiscale
(MMsFV) and the algebraic dynamic multilevel (ADM) methods for fractured porous
media with isothermal and non-isothermal flow. These objectives were achieved by set-
ting the following detailed intermediate steps (some have been worked on in parallel)
during the project time:

• develop a multilevel multiscale method for fractured porous media;

• develop a 3D projection-based embedded fracture model for Cartesian and corner-
point grid geometry;

• develop an algebraic dynamic multilevel method for fully implicit method (FIM)
simulations of fluid flow in fractured heterogeneous porous media;

• extend the method developed to more complex physics (i.e., geothermal systems);

• extend the method to use the corner-point grid geometry and thus include more
complex geologically relevant domains.

1.8. THESIS OUTLINE
This dissertation consists of eight chapters, including this introduction. At first, in chap-
ter 2, the governing equations for multiphase flow and heat transfer in fractured porous
media are presented. The mass conservation (single-phase and multi-phase) and heat
conservation (using either pressure-temperature or pressure-enthalpy as the main un-
knowns) are explained. Inside this chapter, all the phase and rock properties are de-
scribed in detail as well. Chapter 3, consists of the simulation strategy at fine-scale
resolution. The coupling strategies to couple the equations, especially the so-called
fully-implicit method (FIM) are explained. Moreover, in this chapter the embedded dis-
crete fracture model (EDFM) and the projection-based EDFM (pEDFM) are presented.
The simulation flowcharts are also illustrated. Chapter 4 includes the extension of the
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fine-scale simulation model and the pEDFM model to include corner-point grid geome-
tries for more geologically relevant applications. In chapter 5 the multilevel multiscale
method for single-phase flow in fractured porous media is presented. In chapter 6, the
algebraic dynamic multilevel method for multi-phase flow in fractured porous media
is presented. Moreover, this chapter compares the employment of multilevel multi-
scale and homogenization (upscaling) techniques in the ADM method. In chapter 7,
the ADM method for low-enthalpy and-high enthalpy fractured geothermal reservoirs is
described. In addition, a comparison is made for different thermodynamical formula-
tions. Chapter 8 includes conclusions and future work. At last, the references used in
this dissertation are listed.



2
GOVERNING EQUATIONS FOR MASS

AND HEAT TRANSPORT IN

FRACTURED POROUS MEDIA

In this chapter, at first, the governing equations of isothermal multiphase flow in frac-
tured porous media are given. Thereafter, coupled mass-heat flow in low-enthalpy (single-
phase flow) and high-enthalpy (two-phase flow) in fractured geothermal reservoirs will
be presented. Moreover, the corresponding correlations between some of the rock and
fluid properties will be given. The focus of this chapter is only the governing equations,
and the correlations between the primary and dependent variables. The discretization
of the equations and the simulation strategy (at fine-scale) will be covered in the next
chapter (3).

2.1. MULTIPHASE FLOW IN FRACTURED POROUS MEDIA

(ISOTHERMAL)
The mass conservation for phase α in the absence of mass-exchange between phases,
capillary, and gravitational effects in porous media with nfrac discrete embedded frac-
tures reads

∂

∂t

(
φραSα

)m −∇ · (ραλα ·∇p
)m = ραqm,w

α +
nfrac∑
i=1

ραQ
m, fi
α , on Ωm ⊆ ℜn (2.1)

for the rock matrix m and

Various parts of this chapter have been extracted from a number of the author’s publications.
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∂

∂t

(
φραSα

) fi −∇· (ραλα ·∇p
) fi = ραq fi ,w

α +ραQ
fi ,m
α +

nfrac∑
j=1

(
ραQ

fi , f j
α

)
j 6=i

,

on Ω fi ⊆ℜn−1 ∀ i ∈ {1, ...,nfrac} (2.2)

for the lower-dimensional fracture fi . There exist nα phases. Moreover, the super-
scripts m, f and w in equations (2.1)-(2.2) indicate the rock matrix, the fractures and
the wells, respectively. Here, φ is the porosity of the medium. The terms ρα, Sα, λα
are the density, saturation, and mobility of phase α, respectively. In addition, λ = krα

µα
K

holds, where kr , µ and K are the phase relative permeability, the fluid viscosity and the
rock absolute permeability tensor, respectively. Also, qα is the phase source term (i.e.,

wells). Finally, Q
m, fi
α and Q

fi ,m
α are the phase flux exchanges between the rock ma-

trix and the i -th fracture, whereas Q
fi , f j
α represents the volumetric influx of phase α

from j -th fracture to the i -th fracture. Note that the mass conservation law enforcesÐ
V

Q
m, fi
α dV =−Î

A fi

Q
fi m
α d A and

Î
A fi

Q
fi , f j
α d A =− Î

A f j

Q
f j , fi
α d A.

The Peaceman well model [86] is used to obtain the well source terms of each phase
for the rock matrix as

qm,w
α = PI ·λ∗

α · (pw −pm)

∆V
(2.3)

and for the fractures as

q fi ,w
α = PI ·λ∗

α · (pw −p fi )

∆A
. (2.4)

Here, PI is the well productivity index and λ∗
α is the effective mobility of each phase

(λ= krα
µα

K ) between the well and the penetrated grid cell in the medium. ∆V and ∆A are
the control volume and control area used in the discrete system for the rock matrix m
and the fracture fi respectively.

The flux exchange terms Q
m, fi
α , Q

fi ,m
α (matrix-fracture connectivities) and Q

fi , f j
α

(fracture-fracture connectivities) are written as:

Q
m, fi
α =C I m, fi ·λ∗

α · (p fi −pm)

Q
m, fi
α =C I fi ,m ·λ∗

α · (pm −p fi ) (2.5)

Q
fi , f j
α =C I fi , f j ·λ∗

α · (p f j −p fi ),

where C I denotes the connectivity index between each two non-neighboring elements
and is explained in detail in the next chapter (3.61).

Equations (2.1)-(2.2), subject to proper initial and boundary conditions, form a well-

posed system for nα unknowns, once the
nph∑
α=1

Sα = 1 constraint is employed to eliminate
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one of the phase saturation unknowns. Here, this system of equations is solved for a
two phase flow fluid model with the primary unknowns p and S1 (in some expressions
indicated as S).

2.2. MASS AND HEAT FLOW IN LOW-ENTHALPY FRACTURED

POROUS MEDIA
In low-enthalpy geothermal systems, due to more relaxed thermodynamic conditions, it
is assumed that the phase exchange (i.e., evaporation of liquid phase into vapor phase
and vice versa) does not take place. Therefore, this system is assumed to be single-phase
flow. Two sets of equations are described for this system, i.e., the mass balance and the
energy balance equations.

2.2.1. MASS BALANCE EQUATION
The mass balance equation for thermal single-phase fluid flow in porous media with
nfrac discrete fractures is given as

∂

∂t

(
φρ( f l )

)m−∇·(ρ( f l )λ ·∇p
)m = ρ( f l )qm,w+

nfrac∑
i=1

ρ∗
( f l ) Qm, fi , on Ωm ⊆ℜn , (2.6)

for the rock matrix (m) and

∂

∂t

(
φρ( f l )

) fi −∇· (ρ( f l )λ ·∇p
) fi = ρ( f l )q fi ,w +ρ∗

( f l ) Q fi ,m +
nfrac∑
j=1

(
ρ∗

( f l )Q
fi , f j

)
j 6=i

,

on Ω fi ⊆ℜn−1 ∀ i ∈ {1, ...,nfrac}, (2.7)

for the lower dimensional fracture ( fi ). Here, the main unknown is the pressure p. φ is
the porosity. In addition, λ= K

µ( f l )
is the mobility calculated for the fluid in which µ( f l ) is

the fluid viscosity and K is the rock absolute permeability. Here, K is a tensor to account
for a generic anisotropic case. Superscripts m, fi and w correspond to matrix, fracture
i and well, respectively. Subscripts f l and r denote fluid and rock. ρ( f l ) is the density

of the fluid. In addition, qm,w and q fi ,w are the source terms (i.e., wells) on matrix m
and fracture fi . Moreover, Qm, fi and Q fi ,m are the flux exchange between the matrix
m and the overlapping fracture fi corresponding to the grid cells where overlap occurs.
Q fi , f j is the flux exchange from j -th fracture to the i -th fracture on the intersecting el-
ements. This means that the mentioned flux exchange terms are non-zero only where
matrix-fracture overlap or fracture-fracture intersection exists. Due to mass conserva-
tion,

Ð
V

Qm, fi dV =−Î
A fi

Q fi ,md A, and
Î
A fi

Q fi , f j d A =− Î
A f j

Q f j , fi d A hold.

The Peaceman well model is used to obtain the well source terms for matrix

qm,w = PI ·λ∗ · (pw −pm)

∆V
(2.8)
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and fractures

q fi ,w = PI ·λ∗ · (pw −p fi )

∆A
. (2.9)

Here, PI is the well productivity index and λ∗ is the effective mobility (λ= K /µ) be-
tween the well and the penetrated grid cell in the medium. ∆V and ∆A are the control
volume and control area used in the discrete system for matrix m and fracture fi respec-
tively. The flux exchange terms Qm, fi , Q fi ,m (matrix-fracture connectivities) and Q fi , f j

(fracture-fracture connectivities) are written as:

Qm, fi =C I m, fi ·λ∗ · (p fi −pm)

Qm, fi =C I fi ,m ·λ∗ · (pm −p fi ) (2.10)

Q fi , f j =C I fi , f j ·λ∗ · (p f j −p fi ).

2.2.2. ENERGY BALANCE EQUATION
Assuming local equilibrium, energy balance on the entire domain reads

∂

∂t

(
(ρU )e f f

)m −∇· (ρ( f l )H( f l )λ ·∇p
)m −∇· (Λe f f · ∇T

)m =

ρ( f l )H( f l )qm,w +
nfrac∑
i=1

ρ∗
( f l )H∗

( f l ) Q
m, fi +

nfrac∑
i=1

Rm, fi ,

on Ωm ⊆ℜn , (2.11)

in the rock matrix (m) and

∂

∂t

(
(ρU )e f f

) fi −∇· (ρ( f l )H( f l )λ ·∇p
) fi −∇· (Λe f f ·∇T

) fi =

ρ( f l )H( f l )q fi ,w +ρ∗
( f l )H∗

( f l ) Q
fi ,m +

nfrac∑
j=1

(
ρ∗

( f l )H∗
( f l )Q

fi , f j
)

j 6=i
+R fi ,m +

nfrac∑
j=1

(
R fi , f j

)
j 6=i

,

on Ω fi ⊆ℜn−1 ∀ i ∈ {1, ...,nfrac}, (2.12)

in the lower dimensional discrete fracture ( fi ). Here, beside pressure p, the second main
unknown is T as the temperature in both fluid and the solid rock. (ρU )e f f is the effective
property defined as

(ρU )e f f =φρ( f l )U( f l ) + (1−φ)ρr Ur , (2.13)

where U f and Ur denote the specific internal energy in fluid and rock, respectively.

Distinctly, (ρU )m
e f f = φmρ( f l )U( f l ) + (1 −φm)ρr Ur and (ρU ) fi

e f f = φ fi ρ( f l )U( f l ) + (1 −
φ fi )ρr Ur . Moreover, H( f l ) is the specific fluid enthalpy. The three mentioned terms can
be expressed as non-linear functions of pressure and temperature. Λe f f is the effective
thermal conductivity of the saturated rock defined as
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Λe f f =φΛ( f l ) + (1−φ)Λr . (2.14)

Here, Λ( f l ) and Λr are the thermal conductivities in fluid and rock, respectively. The
subscripts f l and r indicate fluid and solid rock. Note that,Λm

e f f =φmΛ( f l )+(1−φm)Λr

and Λ fi
e f f = φ fi Λ( f l ) + (1−φ fi )Λr . Lastly, Rm, fi and R fi m, are the conductive heat flux

exchange between the matrix m and the overlapping fracture fi . R fi , f j denotes the
conductive heat flux exchange from j -th fracture to the i -th fracture where the inter-
section occurs. Similar to mass flux exchange, the conductive flux exchange terms are
non-zero only for the existing matrix-fracture overlaps or fracture-fracture intersections.Ð
V

Rm, fi dV =−Î
A fi

R fi ,md A, and
Î
A fi

R fi , f j d A =− Î
A f j

Q f j , fi d A hold as well to honor the

conservation of energy.
To obtain the conductive heat flux exchanges, i.e., Rm, fi , R fi ,m (matrix-fracture con-

nectivities) and R fi , f j (fracture-fracture connectivities), the embedded discrete scheme
is used, i.e.,

Rm, fi =C I m, fi ·Λ∗
e f f · (T fi −T m)

Rm, fi =C I fi ,m ·Λ∗
e f f · (T m −T fi ) (2.15)

R fi , f j =C I fi , f j ·Λ∗
e f f · (T f j −T fi ),

whereΛ∗
e f f is obtained as harmonically-averaged property between the two

non-neighboring elements. The connectivity index C I is identical to those used in prior
equations. Note that the effects of both capillarity and gravity are neglected in all the
equations.

2.3. MASS AND HEAT FLOW IN HIGH-ENTHALPY FRACTURED

POROUS MEDIA
In the previous section, the governing equations for the low-enthalpy single-phase flow
model were described. However, in high-enthalpy systems, due to more intense ther-
modynamic conditions, phase exchange can occur. In these systems, the water is con-
sidered as the dominant fluid. The evaporation of liquid water, and on the other hand,
the condensation of vapor water occur due to the exposure of the fluid to sudden tem-
perature and pressure changes. Therefore, a more general multi-phase formulation is
taken into account. Yet, two series of mass conservation and energy conservation laws
are considered. The subsets of these equations for each phase are added together and
form one set of equations for the entire system, namely, one mass balance equation and
one energy balance equation for all the phases.

2.3.1. MASS BALANCE EQUATIONS
The equation for the conservation of mass in a pure water system assuming multi-phase
flow conditions, i.e. single component water present in two possible phases, is written
as [87, 88]
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∂

∂t

(
φ

nph∑
α=1

ραSα

)m

−∇·
(nph∑
α=1

(
ραλα ·∇p

))m

=
nfrac∑
i=1

ραqm,w
α +

nph∑
α=1

nfrac∑
i=1

ραQ
m, fi
α ,

on Ωm ⊆ℜn , (2.16)

for the rock matrix (m) and

∂

∂t

(
φ

nph∑
α=1

ραSα

) fi

−∇·
(nph∑
α=1

(
ραλα ·∇p

)) fi

=

nfrac∑
i=1

ραq fi ,w
α +

nph∑
α=1

ραQ
fi ,m
α +

nph∑
α=1

nfrac∑
j=1

(
ραQ

fi , f j
α

)
j 6=i

, on Ω fi ⊆ℜn−1, (2.17)

for the explicit (discrete) fracture ( fi ). In these equations, nph is the number of phases.
For the purpose of this work, we have only two phases in a single component system
(i.e., water and steam). Similar to the previous equations ((2.1)-(2.12)), the superscripts
m, fi and w refer to the rock matrix, the i -th fracture and the wells, respectively. φ is the
medium porosity. λα is the phase mobility, comprising both fluid and rock properties as

λα = kr,α
µα

K, where kr,α and µα are the fluid relative permeability and the fluid viscosity
of phase α. K is the absolute permeability of the rock and can be written as a tensor
in presence of anisotropy. Moreover, ρα is the fluid density and Sα is the saturation of
phase α. In these equations p is the fluid pressure and one of the primary unknowns.
qα is the source term (i.e., wells) for phase α. The summation of the saturation of all the

phases equal the unity, i.e.,
nph∑
α=1

Sα = 1.

Similar to the previous sections (e.g., isothermal multiphase flow), Q
m, fi
α and Q

fi ,m
α

are the phase flux exchanged between the rock matrix m and the fracture fi , and Q
fi , f j
α

represents the influx of phaseα from the fracture f j to the fracture fi . Mass conservation

ensures that
Ð
V

Q
m, fi
α dV =−Î

A fi

Q
fi ,m
α d A and

Î
A fi

Q
fi , f j
α d A =− Î

A f j

Q
f j , fi
α d A.

The equations to calculate the volumetric well fluxes and the volumetric flux ex-
changes between matrix and fractures used in this section are identical to previous sec-
tions. The well fluxes are obtained via Peaceman well model [86] both for the rock matrix
and the fractures:

qm,w
α = PI ·λ∗

α · (pw −pm)

∆V
(2.3, revisited)

q fi ,w
α = PI ·λ∗

α · (pw −p fi )

∆A
. (2.4, revisited)

The volumetric flux exchanges between the matrix and fractures are similarly calcu-
lated:
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Q
m, fi
α =C I m, fi ·λ∗

α · (p fi −pm)

Q
m, fi
α =C I fi ,m ·λ∗

α · (pm −p fi ) (2.5, revisited)

Q
fi , f j
α =C I fi , f j ·λ∗

α · (p f j −p fi ),

As the connectivity indices (i.e., C I ), obtained on all the overlaps between the rock
matrix and the fractures, are calculated purely geometrically, they are identical for all the
equations in this chapter.

2.3.2. ENERGY BALANCE EQUATIONS
The energy balance equation in the single component water and two phase system with
the assumption of local equilibrium on the domain reads

∂

∂t

(
(ρU )e f f

)m −∇·
(nph∑
α=1

(
ραhαλα ·∇p

))m

−∇· (Λe f f · ∇T
)m =

nfrac∑
i=1

ραhαqm,w
α +

nph∑
α=1

nfrac∑
i=1

ραhαQ
m, fi
α +

nfrac∑
i=1

Rm, fi ,

on Ωm ⊆ℜn , (2.18)

on the rock matrix (m) and

∂

∂t

(
(ρU )e f f

) fi −∇·
(nph∑
α=1

(
ραhαλα ·∇p

)) fi

−∇· (Λe f f · ∇T
) fi =

nfrac∑
i=1

ραhαq fi ,w
α +

nph∑
α=1

ραhαQ
fi ,m
α +

nph∑
α=1

nfrac∑
i=1

(
ραhαQ

fi , f j
α

)
j 6=i

+R fi ,m +
nfrac∑
i=1

(
R fi , f j

)
j 6=i

,

on Ω fi ⊆ℜn−1, (2.19)

on the lower dimensional fracture ( fi ). In these set of equations, in addition to the pre-
viously defined parameters, hα is the fluid enthalpy of phase α. (ρU )e f f is the effective
internal energy per unit of mass and is obtained by

(ρU )e f f =φ
nph∑
α=1

ραSαUα+ (1−φ)ρr Ur , (2.20)

where Uα and Ur are the specific internal energy in fluid (for each phase) and rock re-
spectively. Moreover,Λe f f is the effective thermal conductivity defined as

Λe f f =φ
nph∑
α=1

SαΛα+ (1−φ)Λr . (2.21)
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Here, Λα and Λr are the thermal conductivities of phase α and the rock, respec-

tively. One can note that Λm
e f f = φm

nph∑
α=1

SαΛα+ (1−φm)Λr and Λ fi
e f f = φ fi

nph∑
α=1

SαΛα+
(1−φ fi )Λr . In addition, Rm, fi , R fi ,m, and R fi , f j are the conductive heat flux exchanges
between the rock matrix and the overlapping fractures, defined identical as in eq. 2.15:

Rm, fi =C I m, fi ·Λ∗
e f f · (T fi −T m)

Rm, fi =C I fi ,m ·Λ∗
e f f · (T m −T fi ) (2.15, revisited)

R fi , f j =C I fi , f j ·Λ∗
e f f · (T f j −T fi ),

where, similarly to previous section,
Ð
V

Rm, fi dV = −Î
A fi

R fi ,md A, and
Î
A fi

R fi , f j d A =

− Î
A f j

Q f j , fi d A hold as well.

2.3.3. CHOICE OF PRIMARY VARIABLES
Following Gibb’s phase rule [89], defining two independent primary variables is required
to fully define the thermodynamic state of a system consisting of single-component wa-
ter present in either the liquid or the vapor phase (reference). To this end, two main
non-linear formulations exist:

• 1) the natural formulation based on pressure (p), temperature (T ) and saturation
(S) [90], and

• 2) the molar formulation based on pressure (p) and total enthalpy (H) [87].

(a) Pressure-Temperature diagram (b) Pressure-Enthalpy diagram

Figure 2.1: The phase diagrams of pure water. The left plot shows the pressure-temperature (P-T) diagram [91]
and the plot on the right illustrates the pressure-enthalpy (p-H) diagram [92]. A point on the line between the
water and steam on the P-T diagram corresponds to a horizontal line on the p-H diagram, which connects the
saturated liquid curve to the saturated vapor curve.
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Use of the natural formulation poses difficulties when defining the thermodynamic
state of the system under two-phase conditions. In a pressure-temperature phase dia-
gram (figure 2.1, left), the two-phase region is defined by the vaporization curve as pres-
sure and temperature are dependent under two-phase conditions, i.e. p = psat(T ). This
means that the secondary variables are now only dependent on pressure, and an addi-
tional variable, i.e. saturation, is required in order to describe the thermodynamic state
of the system [93]. In the two-phase region, the primary variables may be switched to
pressure and saturation in order to solve the two-phase system.

Using the molar formulation, the thermodynamic state of the system is uniquely de-
fined under both single- and two-phase conditions as pressure and enthalpy remain in-
dependent in the two-phase region, and singularities in the constitutive equations at
the critical point are avoided [94]. In a pressure-enthalpy phase diagram (figure 2.1,
right), the two-phase region is defined by an area bounded by the bubble- and dew-point
curves. This means that the thermodynamic state of the system under two-phase condi-
tions can be determined directly by comparing the total (or mixture) enthalpy (H) of the
system to the saturated phase enthalpies [87, 88]. This is illustrated as the following:

Phase state =


Single-phase compressed water, if hw (p) ≥ H

Two-phase mixture (water-steam), if hw (p) < H < hs (p)

Single-phase superheated steam, if H ≥ hs (p)

(2.22)

The saturation of both water and steam can be calculated directly from the mixture
enthalpy (H) using:

Sw = ρs (hs −H)

H
(
ρw −ρs

)− (
hwρw −hsρs

) (2.23)

As the thermodynamic properties are often described as functions of pressure and
temperature [93], the natural formulation may be preferred for simulations under single-
phase conditions. The molar formulation requires the use of implicit relations in order
to describe the properties as functions of pressure and enthalpy, which can affect the
accuracy.

Both pressure and temperature (and saturation) are written explicitly in the mass and
energy balance equations in (2.16-2.17) and (2.18-2.19). Although enthalpy is also explic-
itly written in the energy balance equation, it is actually the phase enthalpy (hα) that this
variable is referring to. Application of the molar formulation requires solving the energy
balance equation for the total (or mixture) enthalpy (H) instead [87]. In the single-phase
region(s) the phase enthalpy is equal to the total enthalpy so that there is no apparent
issue using the molar formulation. However, in the two-phase region, both phase- and
total enthalpy are two different entities entirely. In order to express the energy balance
equation in terms of total enthalpy, the internal energy is re-written according to

U = H −PV , (2.24)

which states that a change in internal energy in the system is equal to the amount of
energy transferred to or from the system, i.e. enthalpy (H), and an associated change
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in volume at constant pressure (PV ) [95]. Here, the PV term represents the work done
by compression of the system resulting from a constant external pressure and therefore
refers to the effects of matrix compressibility. In terms of the internal energy of the rock
(Ur ), the work done by compression of the rock itself can be neglected as the rock is as-
sumed non-deformable, i.e., Ur = Hr . However, in order to neglect such work, one must
assume the absence of poro-seismicity or any geo-mechanical processes (as it has not
been taken into account during this PhD project). As the matrix compressibility also af-
fects the fluid volume, neglecting the work done by compression of the system is not that
straightforward in terms of the internal energy of the fluid phase (Uα). However, Faust
and Mercer [87] state that the compressible work of the fluid volume as a result of an
external pressure is negligible, except for fluid volumes of low liquid-phase saturation,
i.e., Ul = H = hl in the compressed water region. This assumption is supported by the
knowledge that the vapor phase (i.e. super-heated steam) is highly compressible, espe-
cially compared to the low compressibility of the liquid phase. Note that H = U +PV ,
so that the work done by compression of the fluid as a result of the fluid pressure itself
is taken into account. This allows re-writing the energy balance equation in terms of the
required total enthalpy (H) as

∂

∂t

((
1−φ)

ρr Hr +φρt H
)−∇· (ρl hlλl ·∇p

)−∇· (Λe f f ·∇T
)= ρl hl ql (2.25)

for the single-phase compressed water region in which H = hl . In the two-phase region,
the total enthalpy H is defined as

H = ρl Sl hl +ρv Sv hv

ρt
, withρt = ρl Sl +ρv Sv (2.26)

where the subscripts l and v refer to the liquid and vapor phases, respectively. In addi-
tion, Faust and Mercer (1979) [87] propose expanding the temperature gradient in the
conductive flux in order to re-write the energy balance equation in terms of the total
enthalpy H . This approach is illustrated by

∇· (Λe f f ·∇T
)=∇·

(
Λe f f

(
∂T

∂p

)
H
·∇p +Λe f f

(
∂T

∂H

)
p
·∇H

)
(2.27)

and applicable as temperature is treated as a function of both pressure and enthalpy.
Note that the derivative of temperature with respect to pressure at constant enthalpy is
equal to the Joule-Thomson coefficient [94].

Considering the molar formulation, the modified extended energy conservation equa-
tion now reads

∂

∂t

(
ρH

)m
t −∇· (ρ( f l )h( f l )λ( f l ) ·∇p

)m −∇·
(
Λe f f

(
∂T

∂p

)
H
·∇p +Λe f f

(
∂T

∂H

)
p
·∇H

)m

=

ρ( f l )h( f l )qm,w
( f l ) +

n f r ac∑
i=1

ρ∗
( f l )h

∗
( f l )Q

m, fi +
n f r ac∑
i=1

Rm, fi (2.28)
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for the rock matrix (m), and

∂

∂t

(
ρH

) fi
t −∇· (ρ( f l )h( f l )λ( f l ) ·∇p

) fi −∇·
(
Λe f f

(
∂T

∂p

)
H
·∇p +Λe f f

(
∂T

∂H

)
p
·∇H

) fi

=

ρ( f l )h( f l )q fi ,w
( f l ) +ρ∗

( f l )h
∗
( f l )Q

fi ,m +
n f r ac∑

j=1

(
ρ∗

( f l )h
∗
( f l )Q

fi , f j
)

j 6=i
+Rm, fi +

n f r ac∑
i=1

(
Rm, fi

)
j 6=i

(2.29)

for the fracture ( fi ). Note that equations (2.28) and (2.29) are written in terms of the total

accumulation of enthalpy in the system, which is defined as
(
ρH

)β
t = (

1−φβ)
ρr Hr +

φβρ( f l )H( f l ) on an arbitrary domain β.

2.3.4. CONSTITUTIVE EQUATIONS AND CORRELATIONS
The mass and energy conservation equations presented in the previous section require
additional constitutive equations in order to describe the model problem. The thermo-
dynamic properties of pure water and steam are expressed by these constitutive equa-
tions, which, in turn, are functions of the primary variables. These correlations form the
so-called fluid model, which is presented in this section for both the natural and mo-
lar variable formulations. The natural formulation employs correlations developed by
[96] and the molar formulation employs correlations developed by [97]. All variables are
presented in SI units.

Both formulations apply the same correlations for the porosity φ and rock internal
energy Ur . These correlations are given by

φ
(
p

)=φ0 ×exp
(
cr

(
p −p0

))
(2.30)

in which cr , φ0 and p0 are the rock compressibility, initial reservoir porosity and initial
reservoir pressure, respectively, and

Ur (T ) =Cp ×T (2.31)

where Cp is the rock specific heat capacity. Note that Ur = Hr is assumed, as described
in the previous section.

NATURAL FORMULATION

The density of the liquid phase in [kg/m3] is treated as a function of pressure and tem-
perature and is given by

ρl
(
p,T

)= ρl ,s (T )
[
1+ c f (T )

(
p −psat

)]
(2.32)

where the saturation pressure psat has a constant value of 105 [Pa], and the density of the
liquid phase at saturation conditions ρl ,s and fluid compressibility c f are obtained from
empirical correlations as
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ρl ,s (T ) =
{
−0.0032T 2 +1.7508T +757.5, for T ≤ 623.15[K]

−0.5214T 2 +652.73T −203714, for T ≥ 623.15[K]
(2.33)

c f (T ) = (
0.0839T 2 +652.73T −203714

)×10−12, for 273[K] < T < 647[K] (2.34)

The liquid phase enthalpy in [J/kg] is treated as a function of pressure and tempera-
ture and is given by

hl
(
p,T

)=Ul ,s +Cp,l (T −Tsat)+ p

ρl
(2.35)

where the saturation temperature Tsat has a constant value of 373[K], the specific heat

capacity of the liquid phase Cp,l is constant and has a value of 4200
[

J
kg.K

]
and the liquid

phase internal energy at saturation conditions Ul ,s has a constant value of 420000[J/kg].
The viscosity of the liquid phase in [Pa.s] is treated as a function of temperature and

is given by

µl (T ) = 2.414×10−5 ×10
( 247.8

T−140

)
(2.36)

MOLAR FORMULATION

The correlations used to express the dependent variables in terms of pressure and en-
thalpy (i.e. molar formulation) are limited to the following range of validity

p : 1 − 175[bar]

H : 209 − 3175[kJ/kg]

T : 274.15 − 573.15[K]

(2.37)

The pressure and enthalpy as input to the following correlations are in 10−6 [bar] and

10−7
[

kJ
kg

]
, respectively.

The liquid and vapor phase densities in [kg/m3] are treated as functions of pressure
and enthalpy and are given by

ρl (p, H) = (1.00207+4.42607×10−11p −5.47456×10−12H +5.02875×10−21H p

−1.24791×10−21H 2)×103 (2.38)

ρv (p, H) = (−2.26162×10−5 +4.38441×10−9p −1.79088×10−19pH

+3.69276×10−36p4 +5.17644×10−41pH 3)×103 (2.39)

The saturated liquid and vapor phase enthalpies in [J/kg] are treated as functions of
pressure and are given by
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hl (p) = (7.30984×109 +1.29239×102p −1.00333×10−6p2 +3.9881×10−15p3

−9.90697×1015p−1 +1.29267×1022p−2 −6.28359×1027p−3)×10−7 (2.40)

hv (p) = (2.82282×1010−3.91952×105p−1+2.54342×1021p−2−9.38879×10−8p2)×10−7

(2.41)

Temperature in [K] is treated as a function of pressure and enthalpy in the single-
phase regions. The temperature in the compressed water region is given by

T (p, H) = 273.15−2.41231+2.5622×10−8H −9.31415×10−17p2 −2.2568×10−19H 2

(2.42)

and in the superheated steam region by

T (p, H) = 273.15−374.669+4.79921×10−6p −6.33606×10−15p2 +7.39386×10−19H 2

−3.3372×1034H−2p−2 +3.57154×1019p−3 −1.1725×10−37H 3p −2.26861×1043H−4

(2.43)

Note that in the two-phase region, the saturated liquid phase enthalpy is used in the
equation instead.

The liquid and vapor phase viscosities in [Pa.s] are treated as functions of tempera-
ture and are given by

µl (T ) =
(
241.4×10

( 247.8
T−273.15+133.15

))
×10−4 (2.44)

µl (T ) = (0.407(T −273.15)+80.4)×10−4 (2.45)

In order to set the initial and injection properties identically between both formula-
tions, the enthalpy is computed from temperature using

hl (p,T ) =
−B +

√
B 2 −4D

(
A+C p2 − (T −273.15)

)
2D

(2.46)

where the constants A = −2.41231, B = 2.5622 × 10−8, C = −9.31415 × 10−17 and D =
−2.2568×10−19 are used. Note that this equation is only valid in the compressed water
region, and therefore it is assumed that only the liquid phase is present in the injection
well.

The water saturation is computed using equation (2.23) presented in this chapter.
This equation yields the pressure-enthalpy phase diagram as illustrated in figure 2.2.
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Figure 2.2: The pressure-enthalpy phase diagram of pure water with vapor fraction intermediate lines (in black
solid curves inside the two-phase region).

There exists considerable uncertainty regarding a proper correlation for the relative
permeability of the two phases in geothermal systems. Watanabe et al. (2017) [98] apply
the Corey functions for relative permeability, whereas Faust and Mercer (1977) [97] pro-
pose a variation on the Corey functions in which vaporization dominates condensation
(a drainage displacement process). Verma functions are also often applied for porous
rocks. They are especially applicable to water-steam two-phase flows as they are derived
based on the enhancement of steam relative permeability due to phase transformation
[98]. Nield and Bejan (2006) [99] state that “experience has shown that the main qual-
itative features of convection flows are not sensitive to the precise form of the relative
permeability versus saturation relationship” and therefore suggest the application of a
linear relationship. In an effort not to increase the non-linearity presented by the fluid
model any further, a linear relation for the relative permeability is chosen at this point
such that

kr,α(Sα) = Sα (2.47)

for a given phase α.

In the next chapter, the fine-scale simulation strategy including the fine-scale dis-
cretization, the coupling approaches and the linearization of the nonlinear equations
will be explained. Moreover, both the classic and the projection-based embedded dis-
crete fracture models (EDFM and pEDFM) will be described.
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3
DISCRETIZATION AND SIMULATION

STRATEGY AT FINE-SCALE

The system of equations presented in the previous chapter (2) for all the formulations
covered in this work (i.e., isothermal multiphase flow, low-enthalpy and high-enthalpy
geothermal flow) are in the continuous domains and are all nonlinear. However, they
do not have analytical solutions and they are mostly solved numerically, and the com-
puter models developed to solve them are thus numerical methods. Therefore, these
continuous equations need to be re-written in discrete form. This process is called dis-
cretization. The most common approach for the spatial discretization in the realm of
fluid flow modeling in porous media is the so-called finite volume method (FVM). Be-
side the simplicity that it provides, this approach is crucial, especially because it ensures
mass conservation [100]. Moreover, the convective terms in the mass and energy conser-
vation equations are discretized with an upwind two-point flux approximation (TPFA)
in space. Regarding temporal discretization, both implicit and explicit time integration
schemes have been proposed in the literature. However, in this work, the equations are
discretized in time with a backward (implicit) Euler scheme. In addition, the solution
strategy to couple the sets of the equations in all the fluid models in this work is the so-
called fully-implicit approach (FIM) which will be briefly explained later in this chapter.

During the discretization stage, the nonlinear equations need to be linearized using
a linearization scheme. This is an integral part of the discretization as a linear system
of equations is the input to the linear solver in the simulation model. At this stage, the
equations are written in residual forms and the linearization of the nonlinear terms in all
the residuals is done using Newton-Raphson method [100, 101], which will be covered
further in this chapter.

The discretization of all the equations presented in this chapter includes the explicit
representation of the fractures using the embedded discrete fracture models and extra
terms will be added to the system of equations. After explaining the discretization, cou-

Various parts of this chapter have been extracted from a number of the author’s publications.
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pling strategy and linearization of these equations, the embedded discrete fracture mod-
els will be described in this chapter.

3.1. DISCRETIZATION OF THE CONTINUOUS EQUATIONS
The discretization of the nonlinear equations is done using the finite volume method
(FVM). The equations are discretized with a two-point-flux-approximation (TPFA) finite-
volume scheme in space and a backward (implicit) Euler scheme in time. This will be ex-
plained section by section following the equations presented in the previous chapter. In-
dependent structured grids are generated for a three-dimensional (3D) porous medium
and the 2D fracture planes. An illustration is presented in figure 3.1.

(a) matrix grid (b) fracture grids

Figure 3.1: The independent matrix 3D grid and the fractures 2D grids are shown. Note that each domain has
its own grid and that any fracture orientation can be considered.

3.1.1. MULTIPHASE FLOW IN FRACTURED POROUS MEDIA (ISOTHERMAL)
The coupled system of non-linear equations (2.1)-(2.2) is discretized by calculating the
fluxes. The advective TPFA flux of phase α between the control volumes i and j reads

Fα,i j = ρ∗
α

k∗
rα

µ∗
α

Ti j (pi −p j ). (3.1)

Here, Ti j = Ai j

di j
K H

i j is the transmissibility between the cells i and j . Ai j is the interface

area between these two cells, di j is the distance between the cells centers and K H
i j is the

harmonic average of the two permeabilities. The terms indicated with the superscript
∗ are evaluated using a phase potential upwind scheme. Following the EDFM and the
pEDFM [44–46] approaches, the fluxes between a rock matrix cell i and a fracture cell j
are modeled as

F
m, f
α,i j =−F

f ,m
α,i j =−ρ∗

α

k∗
rα

µ∗
α

T m, f
i j (pm

i −p f
j ), (3.2)

Similarly, the flux exchange between intersecting fracture elements i (belonging to
fracture fi ) and j (belonging to fracture f j ) is modeled as
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F
fi , f j

α,i j =−F
f j , fi

α,i j =−ρ∗
α

k∗
rα

µ∗
α

T
fi , f j

i j (p fi
i −p

f j

j ). (3.3)

The transmissibilities T m, f
i j and T

fi , f j

i j are explained further in section of the fracture

models (see section 3.3).
Thus, at each time-step the following system of equations is solved

((
φραSα

)n+1
i − (

φραSα
)n

i

∆t

)m

+
(

Nn∑
j=1

Fα,i j

)m

+
nfrac∑
k=1

(N fk∑
j=1

F
m, fk
α,i j

)
= ραqm,w

α,i ,

∀ i ∈ {1, ..., Nm} (3.4)

in the rock matrix and

((
φραSα

)n+1
i − (

φραSα
)n

i

∆t

) fh

+
(

Nn∑
j=1

Fα,i j

) fh

+
Nm∑
j=1

F
fh ,m
α,i j +

nfrac∑
k=1

(N fk∑
j=1

F
fh , fk
α,i j

)
= ραq fh ,w

α,i ,

∀ i ∈ {1, ..., N fh
} (3.5)

in each fracture fh . Here, Nm and N fk
are the number of grid cells in the rock matrix m

and and the fracture fk respectively. Nn indicates the number of the neighboring cells (2
in 1D, 4 in 2D, 6 in 3D).

3.1.2. MASS AND HEAT FLOW IN LOW-ENTHALPY FRACTURED POROUS ME-
DIA

The coupled system of non-linear equations described in section 2.2 ,i.e., equations
(2.6)-(2.12) with two main unknowns (i.e., p, T ) is discretized similarly by calculating
the TPFA mass and heat fluxes.

The mass flux exchange between each two neighboring control volumes i and j (in-
side one medium) using TPFA scheme can be written as

Fi j =
ρ∗

( f l )

µ∗ Ti j (pi −p j ), (3.6)

where Ti j = Ai j

di j
K H

i j denotes the transmissibility between grid cells i and j . Ai j is the

interface area between the two grid cells, di j is the distance between their cell centers
and K H

i j is the harmonic average of the permeabilities set at the interface of grid cells i

and j . The properties with superscript ∗ are obtained using the upwind scheme. Note
that density ρ and viscosity µ are functions of pressure and temperature.

The mass flux between each two non-neighboring grid cells i and j (either matrix-
fracture or fracture-fracture connectivities) is obtained using the EDFM/pEDFM formu-
lations. The flux between a rock matrix (denoted as m) cell i and a fracture (denoted as
f ) cell j is defined as
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F
m, f
i j =−F

f ,m
i j =−

ρ∗
( f l )

µ∗ T m, f
i j (pm

i −p f
j ), (3.7)

Similar to mass flux between matrix and fracture, the mass flux between two non-
neighboring and intersecting fracture elements i (on fracture fi ) and j (on fracture f j ) is
given as

F
fi , f j

i j =−F
fi , f j

i j =−
ρ∗

( f l )

µ∗ T
fi , f j

i j (p f
i −pg

j ), (3.8)

where the transmissibilities T m, f
i j and T

fi , f j

i j are calculated and described in the next sec-

tion (fracture models, 3.3).
The convective heat flux exchange between the neighboring control volumes i and j

reads

F̆i j =
ρ∗

( f l )H∗
( f l )

µ∗ Ti j (pi −p j ). (3.9)

Here, H∗
( f l ) is the enthalpy of fluid determined at the interface between grid cells i

and j . One can conclude that F̆i j = H∗
( f l ) Fi j .

Similarly, the convective heat flux exchange between the non-neighboring elements
can be obtained via multiplication of their mass flux exchange (Fi j ) by the effective en-
thalpy (H∗

( f l )) determined at the intersection of the two overlapping elements. Namely,

F̆i j = H∗
( f l ) Fi j .

The conductive heat flux exchange between each two neighboring cells i and j is
written as

Gi j =Tcond ,i j (Ti −T j ). (3.10)

where, Tcond ,i j = Ai j

di j
(Λe f f )H

i j is the conductive heat transmissibility between the grid

cells i and j . The terms Ai j , di j and (Λe f f )H
i j are the interface area, the distance from

the cell centers and the harmonic average of the effective conductivity set at the interface
between grid cells i and j respectively.

The conductive heat flux exchange between the non-neighboring elements i and j
is obtained as

G
m, f
i j =−G

f ,m
i j =−Tm, f

cond ,i j (T m
i −T f

j ), (3.11)

for matrix-fracture connectivities and

G
fi , f j

i j =−G
fi , f j

i j =−T fi , f j

cond ,i j (T f
i −T g

j ). (3.12)

for fracture-fracture connectivities. The conductive heat transmissibilities for matrix-
fracture (Tm, f

cond ,i j ) and fracture-fracture (T
fi , f j

cond ,i j ) connectivities are calculated following

the same formulations of the EDFM/pEDFM which are covered later in this chapter.
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At every time-step the fine-scale discrete mass balance equation reads

((
φρ( f l )

)n+1
i − (

φρ( f l )
)n

i

∆t

)m

+
(

Nn∑
j=1

Fi j

)m

+
nfrac∑
k=1

(N fk∑
j=1

F
m, fk
i j

)
= (

ρ( f l )qm,w )
i ,

∀ i ∈ {1, ..., Nm} (3.13)

for element i in the rock matrix m and

((
φρ( f l )

)n+1
i − (

φρ( f l )
)n

i

∆t

) fh

+
(

Nn∑
j=1

Fi j

) fh

+
N fk∑
j=1

F
fh ,m

i j +
nfrac∑
k=1

(N fk∑
j=1

F
fh , fk

i j

)
=

(
ρ( f l )q fh ,w

)
i

,

∀ i ∈ {1, ..., N fh
} (3.14)

for element i in the fracture fh . Nm and N fk
denote the number of elements in the rock

matrix m and the fracture fk respectively. Nn is the number of neighboring grid cells.
Similarly, the fine-scale discrete form of the energy balance equation at each time-

step is written as:

((
(ρU )e f f

)n+1
i − (

(ρU )e f f
)n

i

∆t

)m

+
(

Nn∑
j=1

F̆i j

)m

+
nfrac∑
k=1

(N fk∑
j=1

F̆
m, fk
i j

)

+
(

Nn∑
j=1

Ği j

)m

+
nfrac∑
k=1

(N fk∑
j=1

Ğ
m, fk
i j

)
= (

ρ( f l )H( f l )qm,w )
i , ∀ i ∈ {1, ..., Nm} (3.15)

for element i in the rock matrix m and

((
(ρU )e f f

)n+1
i − (

(ρU )e f f
)n

i

∆t

) fh

+
(

Nn∑
j=1

F̆i j

) fh

+
Nm∑
j=1

F̆
fh ,m

i j +
nfrac∑
k=1

(N fk∑
j=1

F̆
fh , fk

i j

)

+
(

Nn∑
j=1

Ği j

) fh

+
Nm∑
j=1

Ğ
fh ,m

i j +
nfrac∑
k=1

(N fk∑
j=1

Ğ
fh , fk

i j

)
=

(
ρ( f l )H( f l )q fh ,w

)
i

, ∀ i ∈ {1, ..., N fh
}

(3.16)

for element i in the fracture fh .

3.1.3. MASS AND HEAT FLOW IN HIGH-ENTHALPY FRACTURED POROUS ME-
DIA

The system of equations (2.16)-(2.19) from section 2.3 is discretized with similar dis-
cretization schemes as in previously mentioned formulations. However, as discussed
in section 2.3.3, there exist two different choices for selection of the primary variables,
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i.e., either pressure and temperature (p,T ), or pressure and total enthalpy (p, H). In this
section, pressure and total enthalpy (p, H) are chosen as the primary unknowns.

First, the discrete mass fluxes need to be calculated. The mass flux of phase α be-
tween each two neighboring control volumes i and j (inside one medium) using the
TPFA scheme can be written as

Fα,i j = ρ∗
α

k∗
rα

µ∗
α

Ti j (pi −p j ), (3.17)

where Ti j = Ai j

di j
K H

i j is the geological or rock transmissibility between cells i and j . Ai j

is the interface area between cells i and j , di j is the distance between the cells centers
and K H

i j is the harmonic average of the two permeabilities. The EDFM/pEDFM fluxes

between a matrix cell i and a fracture cell j are modeled as

F
m, f
α,i j =−F

f ,m
α,i j =−ρ∗

α

k∗
rα

µ∗
α

T m, f
i j (pm

i −p f
j ), (3.18)

Correspondingly, the flux exchange between the intersecting fracture elements i (be-
longing to fracture fi ) and j (belonging to fracture f j ) is written as

F
fi , f j

α,i j =−F
f j , fi

α,i j =−ρ∗
α

k∗
rα

µ∗
α

T
fi , f j

i j (p fi
i −p

f j

j ). (3.19)

The transmissibilities T m, f
i j and T

fi , f j

i j are calculated identical to their counterparts

in the previous formulations.
Next, the convective and conductive heat fluxes are calculated. The convective heat

flux exchange between the neighboring control volumes i and j for each phase α reads

F̆α,i j =
ρ∗
αh∗

α

µ∗
α

Ti j (pi −p j ). (3.20)

Here, h∗
α is the enthalpy of phase α in fluid determined at the interface between grid

cells i and j . Conclusively, F̆α,i j = h∗
αFα,i j . The convective heat flux exchange between

the non-neighboring elements can be obtained via multiplication of their mass flux ex-
change (Fα,i j ) by the effective phase enthalpy (h∗

α) determined at the intersection of two
overlapping elements, i.e., F̆α,i j = h∗

αFα,i j .

The conductive heat flux between the two neighboring cells i and j (belonging to
one medium) is written as

Gi j =Tcond ,i j (Ti −T j ). (3.21)

where, Tcond ,i j = Ai j

di j
(Λe f f )H

i j is the transmissibility between grid cells i and j . Ai j , di j

and (Λe f f )H
i j are the interface area, the distance from the cell centers and the harmonic

average of the effective conductivity at the interface between grid cells i and j respec-
tively. Please note that the effective conductivity is calculated via equation (2.21). The
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conductive heat flux exchange between non-neighboring elements i and j is obtained
as

G
m, f
i j =−G

f ,m
i j =−Tm, f

cond ,i j (T m
i −T f

j ). (3.22)

for matrix-fracture connectivities and

G
fi , f j

i j =−G
fi , f j

i j =−T fi , f j

cond ,i j (T f
i −T g

j ). (3.23)

for fracture-fracture connectivities. The conductive heat transmissibilities for matrix-
fracture (Tm, f

cond ,i j ) and fracture-fracture (T
fi , f j

cond ,i j ) connectivities are explained later in

this chapter.
At each time-step the fine-scale discrete mass balance equation is written as


(
φ

nph∑
α=1

ραSα

)n+1

i
−

(
φ

nph∑
α=1

ραSα

)n

i

∆t


m

+
(nph∑
α=1

(
Nn∑
j=1

Fα,i j

))m

+
nph∑
α=1

(
nfrac∑
k=1

(N fk∑
j=1

F
m, fk
α,i j

))
=

(nph∑
α=1

ραqm,w
α

)
i

, ∀ i ∈ {1, ..., Nm} (3.24)

for element i in the rock matrix m and


(
φ

nph∑
α=1

ραSα

)n+1

i
−

(
φ

nph∑
α=1

ραSα

)n

i

∆t


fh

+
(nph∑
α=1

(
Nn∑
j=1

Fα,i j

)) fh

+
nph∑
α=1

(N fk∑
j=1

F
fh ,m
α,i j

)

+
nph∑
α=1

(
nfrac∑
k=1

(N fk∑
j=1

F
fh , fk
α,i j

))
=

(nph∑
α=1

ραq fh ,w
α

)
i

, ∀ i ∈ {1, ..., N fh
} (3.25)

for element i in the fracture fh . On a similar pattern, the fine-scale discrete form of the
energy balance equation at each time-step is written as:

((
(ρU )e f f

)n+1
i − (

(ρU )e f f
)n

i

∆t

)m

+
(nph∑
α=1

(
Nn∑
j=1

F̆α,i j

))m

+
nph∑
α=1

(
nfrac∑
k=1

(N fk∑
j=1

F̆
m, fk
α,i j

))

+
(

Nn∑
j=1

Ği j

)m

+
nfrac∑
k=1

(N fk∑
j=1

Ğ
m, fk
i j

)
=

(nph∑
α=1

ραhαqm,w
α

)
i

, ∀ i ∈ {1, ..., Nm} (3.26)

for element i in the matrix m and
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((
(ρU )e f f

)n+1
i − (

(ρU )e f f
)n

i

∆t

) fh

+
(nph∑
α=1

(
Nn∑
j=1

F̆α,i j

)) fh

+
nph∑
α=1

(
Nm∑
j=1

F̆
fh ,m
α,i j
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+
nph∑
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(
nfrac∑
k=1

(N fk∑
j=1

F̆
fh , fk
α,i j

))
+

(
Nn∑
j=1

Ği j

) fh

+
Nm∑
j=1

Ğ
fh ,m

i j +
nfrac∑
k=1

(N fk∑
j=1

Ğ
fh , fk

i j

)
=(nph∑

α=1
ραhαq fh ,w

α

)
i

, ∀ i ∈ {1, ..., Nm} (3.27)

for element i in the fracture fh .

3.2. COUPLING AND LINEARIZATION OF THE NONLINEAR EQUA-
TIONS

To solve the sets of the equations together, various coupling strategies have been pro-
posed. Two main category of solution strategies exist: a fully-coupled (or fully implicit)
approach (FIM) in which all equations are solved simultaneously and a sequential strat-
egy in which the problem is split into a parabolic (or elliptic) part and a hyperbolic one.
The fully-implicit and the sequential solution strategies are briefly reviewed here.

In sequential simulation approaches, the system of equations is solved at each time
step in two solution steps. First, the component balance equations (either with a volume-
or a mass-based approach) are linearly combined to form the pressure equation. This
pressure equation is solved first, where only pressure dependent terms are implicitly
treated. Phase velocity or the Darcy velocity of phase α is obtained via

u =−λ · (∇p −ρg∇h
)
. (3.28)

Please note that for the sake of the simplicity the effect of gravity is neglected and
therefore the equation above ((3.28)) is rewritten as:

u =−λ ·∇p. (3.29)

Then, the phase velocities uα are computed and the total velocity is calculated as

ut =
nph∑
α=1

uα. (3.30)

The next step is to solve the mass balance equations using the fact that
∑nph

α=1 Sα = 1
which results in removing one of the phase saturation unknowns [100, 102, 103]. Note
that all the transport dependent terms are fixed when the pressure equation is being
solved, and all the pressure dependent terms are fixed when the saturation transport
equations are being solved. Operating such a split-in during the solution process allows
to employ the most suitable solution method for each equation. In particular, the pres-
sure equation is parabolic (elliptic for the incompressible case) whereas the transport
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one is hyperbolic. The simplest approach would be the “implicit pressure implicit sat-
uration” (IMPES) [100], which employs an implicit time integration scheme to solve the
pressure equation and an explicit one to solve the transport. However, IMPES suffers
from severe restrictions in the allowable time-step size [104] and it is usually preferable
to employ an implicit time integration also for the transport equation. It is known that
the stability of such an approach is limited to the cases where the coupling between the
two equations, i.e., flow (pressure) and transport (saturation), are not strong. Therefore,
applicability of this approach for cases with strong capillary and compositional effects
can lead to solution instabilities [104]. For this reason the sequential fully-implicit (SFI)
strategy was introduced. In SFI simulation iterations are added between the pressure
and the transport equations until convergence is reached. This strategy was first de-
veloped for immiscible multiphase flow and then extended to multi-component mul-
tiphase flow for both black-oil [105, 106] and general compositional models [107–109].
Figure 3.2 on the left (a) and middle (b) shows schematic representations of sequential
and fully-implicit simulation approaches.

In presence of strong coupling terms between flow and transport equations (e.g.,
capillarity, gravity, phase exchange), sequential strategies may not be efficient [104]. For
such cases, fully implicit (FIM) systems are generally more stable than sequential strate-
gies [102, 110]. In the fully-implicit method [101], the multiple sets of equations are fully
coupled together and then the coupled system of discretized equations is solved for all
unknowns simultaneously and implicitly.

Let us imagine two sets of discretized equations exist (i.e., eq1 and eq2) with two
primary unknowns (i.e., x1 and x2) defined as:

eq1 : Z1(x1, x2) = rhs1

eq2 : Z2(x1, x2) = rhs2

These equations are rewritten in their residual forms by subtracting the left-hand-
side of the equations from their corresponding right-hand-side (residual = rhs− lhs):

r1(x1, x2) = rhs1 −Z1(x1, x2) = 0

r2(x1, x2) = rhs2 −Z2(x1, x2) = 0

Here, r1 and r2 are the residual vectors corresponding to eq1 and eq2. Additionally,
x1 , x2 are the vectors of the unknowns. Usually, the residual is a non-linear function
of the unknowns, thus a global linearization method is employed [100, 101]. Typically,
the Newton-Raphson method is used to linearize the residuals of the equations. At every
time step (n) the residuals (r n

1 and r n
2 ) are calculated based on the primary and sec-

ondary variables. The aim is to find the value of the primary unknowns at the next time-
step (n + 1) as such that the residuals at the next time-step (r n+1

1 and r n+1
2 ) are zero.

However this can be unreachable due to the complexities and various reasons (e.g., nu-
merical round-off errors). Therefore, an intermediate iteration loop is defined. At every
iteration step ν, the residuals (r ν1 and r ν2 ) are calculated based on the value of the pri-
mary and secondary variable within the current iteration step. The residuals at the next
iteration step ν+1, namely r ν+1

1 and r ν+1
2 are defined as
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r ν+1
1 ≈ r ν1 + ∂r1

∂x1

∣∣∣νδxν+1
1 + ∂r1

∂x2

∣∣∣νδxν+1
2 = 0 (3.31)

r ν+1
2 ≈ r ν2 + ∂r2

∂x1

∣∣∣νδxν+1
1 + ∂r2

∂x2

∣∣∣νδxν+1
2 = 0

Here, ∂r
∂x1

, ∂r
∂x2

∣∣∣ν are the derivative of the residuals with respect to the primary vari-

ables at iteration step ν, and δxν+1
1 and δxν+1

2 are the vectors of the update of the un-
knowns at iteration step ν+1. In the equations above (3.31), the aim is to find the un-
knowns δxν+1

1 and δxν+1
2 that satisfy r ν+1

1 = 0 and r ν+1
2 = 0. One can rewrite these equa-

tions as

∂r1

∂x1

∣∣∣νδxν+1
1 + ∂r1

∂x2

∣∣∣νδxν+1
2 =−r ν1 (3.32)

∂r2

∂x1

∣∣∣νδxν+1
1 + ∂r2

∂x2

∣∣∣νδxν+1
2 =−r ν2

Therefore, at each iteration step, a sparse large linearized system of equations is
solved. This system equation can be shown as:

Jeq1,x1 Jeq1,x2

Jeq2,x1 Jeq2,x2

ν
︸ ︷︷ ︸

Jν

δx1

δx2

ν+1

︸ ︷︷ ︸
δxν+1

=−
r1

r2

ν
︸ ︷︷ ︸

r ν

(3.33)

This linearized system of equations can be written in simpler form as:

Jνδxν+1 =−r ν. (3.34)

In this system, Jν is the Jacobian matrix including all derivatives. Each block Jeqi ,x j

contains the derivatives of the equation eqi with respect to the unknown x j , i.e., Jeqi ,x j =
∂ri /∂x j . By solving the linearized system (3.33), the vector of the update of the un-
knowns is obtained. The values of the primary unknowns and the secondary variables
are then updated. With the updated properties, residuals can be recomputed. In order
to achieve a converged solution, the following conditions have to be assured:

( ||r ν+1
1 ||2

||r 0
1 ||2

< ε(r1) ∨ ||r ν+1
1 ||2

||rhs1||2
< ε(r1)

)
∧

( ||r ν+1
2 ||2

||r 0
2 ||2

< ε(r2) ∨ ||r ν+1
2 ||2

||rhs2||2
< ε(r2)

)
∧ (3.35)( ||δx1||2

||x1||2
< ε(x1) ∧ ||δx2||2

||x2||2
< ε(x2)

)
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Here, each threshold (εx ) is a user-defined tolerance set initially as input at the be-
ginning of the simulation. Notations ||r ||2 and ||x||2 are the second norm of the vectors
of the residuals and the update of the unknowns. The superscript 0 denotes the value of
its corresponding vector at the initial state of the iteration step. Please note that in some

systems the condition ||r ν+1||2
||rhs||2 < ε(r ) can result in a better convergence when compared to

||r ν+1||2
||r 0||2 < ε(r ) and vice versa. Therefore both conditions are checked and either of them

can implicate the convergence signal.

In figure 3.2 on the right (c), the schematic of the fully-implicit (FIM) simulation
flowchart is illustrated.

Begin time-step

Solve pressure eq:

∇ ⋅ 𝜌𝜆 ∇𝑝 = 𝜌𝑞

Compute total velocity:

𝑢𝛼 = 𝜆𝛼 ∇𝑝, 𝑢𝑡 = 

𝛼=1

𝑛𝑝ℎ

𝑢𝛼

𝑡 = 𝑡 + Δ𝑡

End

𝑡 = 𝑡final

yes

no

Begin time-step

Solve pressure eq:

∇ ⋅ 𝜌𝜆 ∇𝑝 = 𝜌𝑞

Compute total velocity:

𝑢𝛼 = 𝜆𝛼 ∇𝑝, 𝑢𝑡 = 

𝛼=1

𝑛𝑝ℎ

𝑢𝛼

Solve transport equation

𝑡 = 𝑡 + Δ𝑡 End𝑡 = 𝑡final
yes

no

Converged?

Update properties

Solve transport equation

yes

no

Begin time-step

Compute residuals:

𝑟 = 𝑅𝐻𝑆 − 𝐿𝐻𝑆

Linearize the equations:

𝑟𝜈+1 = 𝑟𝜈 + ቤ
𝜕𝑟

𝜕𝑥

𝜈

𝛿𝑥𝜈+1 ≈ 0

Solve the linearized system:

𝐽𝜈 𝛿𝑥𝜈+1 = −𝑟𝜈

𝑡 = 𝑡 + Δ𝑡 End𝑡 = 𝑡final
yes

no

Converged?

yes

no

Update the properties:

𝑥𝜈+1 = 𝑥𝜈 + 𝛿𝑥𝜈+1

𝑟𝜈+1 = …

a) Sequential b) Sequentially Implicit c) Fully Implicit

Figure 3.2: Schematic of sequentially-coupled (a), sequentially implicit (b) and fully-implicit (c) simulation
flowcharts.

3.2.1. MULTIPHASE FLOW IN FRACTURED POROUS MEDIA (ISOTHERMAL)

Equations (3.4)-(3.5) can be written in residual form as

(
r n+1
α,i

)m = ραqm,w
α,i −

((
φραSα

)n+1
i − (

φραSα
)n

i

∆t

)m

−
(

Nn∑
j=1

Fα,i j

)m

−
nfrac∑
k=1

(N fk∑
j=1

F
m, fk
α,i j

)
,

∀ i ∈ {1, ..., Nm} (3.36)

for the rock matrix, and
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(
r n+1
α,i

) fh = ραq fh ,w
α,i −

((
φραSα

)n+1
i − (

φραSα
)n

i

∆t

) fh

−
(

Nn∑
j=1

Fα,i j

) fh

−
Nm∑
j=1

F
fh ,m
α,i j

−
nfrac∑
k=1

(N fk∑
j=1

F
fh , fk
α,i j

)
, ∀ i ∈ {1, ..., N fh

} (3.37)

for fracture fh . Let us define r n = [(r m)n , (r f1 )n ...(r fnfrac )n]T where (r k )n is the residual
vector of medium k at time-step n. Similarly, pn and Sn indicate the vectors of pressure
and saturation unknowns (of all media). The residual r n+1 is a non-linear function of the
primary unknowns pn+1 and Sn+1. Thus, at each time-step a Newton-Raphson method
is employed to solve the non-linear system iteratively, i.e.

r ν+1
α = r να+

∂rα
∂p

∣∣∣νδpν+1 + ∂rα
∂S

∣∣∣νδSν+1 = 0 (3.38)

where the superscript ν is the iteration index. Consequently, at each Newton’s iteration
a linear-system Jνδxν+1 = −r ν is solved. Here, Jν is the Jacobian matrix with δxν+1 =
[δp, δS]T .

Therefore, assuming two phases (the indices 1 and 2 representing the equations of
the first and the second phases respectively), the linear system of equations can be writ-
ten as 

J m,m
1,p J m, f

1,p

J f ,m
1,p J f , f

1,p


J m,m

1,S J m, f
1,S

J f ,m
1,S J f , f

1,S


J m,m

2,p J m, f
2,p

J f ,m
2,p J f , f

2,p


J m,m

2,S J m, f
2,S

J f ,m
2,S J f , f

2,S





ν

︸ ︷︷ ︸
Jν



δpm

δp f

δSm

δS f



ν+1

︸ ︷︷ ︸
δxν+1

=−



r m
1

r f
1

r m
2

r f
2



ν

︸ ︷︷ ︸
r ν

(3.39)

In this formulation, non-linear convergence is reached when the following condi-
tions are satisfied:

( ||r ν+1
1 ||2

||r 0
1 ||2

< ε(r1) ∨ ||r ν+1
1 ||2

||rhs1||2
< ε(r1)

)
∧

( ||r ν+1
2 ||2

||r 0
2 ||2

< ε(r2) ∨ ||r ν+1
2 ||2

||rhs2||2
< ε(r2)

)
∧ (3.40)( ||δp||2

||p||2
< ε(p) ∧ ||δS||2

||S||2
< ε(S)

)
Here, ε(r1), ε(r2), ε(p) and ε(S), are the user-defined tolerances.
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3.2.2. MASS AND HEAT FLOW IN LOW-ENTHALPY FRACTURED POROUS ME-
DIA

The mass conservation equations for low-enthalpy mass-heat flow (3.4)-(3.5) can be
written in residual form as:

(
r n+1

MB ,i

)m = (
ρ( f l )qm,w )

i −
((
φρ( f l )

)n+1
i − (

φρ( f l )
)n

i

∆t

)m

−
(

Nn∑
j=1

Fi j

)m

−
nfrac∑
k=1

(N fk∑
j=1

F
m, fk
i j

)
,

∀ i ∈ {1, ..., Nm} (3.41)

for the rock matrix, and

(
r n+1

MB ,i

) fh =
(
ρ( f l )q fh ,w

)
i
−

((
φρ( f l )

)n+1
i − (

φρ( f l )
)n

i

∆t

) fh

−
(

Nn∑
j=1

Fi j

) fh

−
N fk∑
j=1

F
fh ,m

i j

−
nfrac∑
k=1

(N fk∑
j=1

F
fh , fk

i j

)
, ∀ i ∈ {1, ..., N fh

} (3.42)

for the fracture fh . Similarly, the residual form of the energy conservation equations are
written as:

(
r n+1

EB ,i

)m = (
ρ( f l )H( f l )qm,w )

i −
((

(ρU )e f f
)n+1

i − (
(ρU )e f f

)n
i

∆t

)m

−
(

Nn∑
j=1

F̆i j

)m

−
nfrac∑
k=1

(N fk∑
j=1

F̆
m, fk
i j

)
−

(
Nn∑
j=1

Ği j

)m

−
nfrac∑
k=1

(N fk∑
j=1

Ğ
m, fk
i j

)
, ∀ i ∈ {1, ..., Nm} (3.43)

for element i in the rock matrix m and

(
r n+1

EB ,i

) fh =
(
ρ( f l )H( f l )q fh ,w

)
i
−

((
(ρU )e f f

)n+1
i − (

(ρU )e f f
)n

i

∆t

) fh

−
(

Nn∑
j=1

F̆i j

) fh

−
Nm∑
j=1

F̆
fh ,m

i j

−
nfrac∑
k=1

(N fk∑
j=1

F̆
fh , fk

i j

)
−

(
Nn∑
j=1

Ği j

) fh

−
Nm∑
j=1

Ğ
fh ,m

i j −
nfrac∑
k=1

(N fk∑
j=1

Ğ
fh , fk

i j

)
, ∀ i ∈ {1, ..., N fh

} (3.44)

for element i in the fracture fh . The full vector of the mass balance and energy balance
residuals are defined as

r n
MB = [(r m)n

MB , (r f1 )n
MB ...(r fnfrac )n

MB ]T and (3.45)

r n
EB = [(r m)n

EB , (r f1 )n
EB ...(r fnfrac )n

EB ]T , (3.46)
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where (r k )n
MB and (r k )n

EB are the residual vectors of medium k at time-step n. pn and
T n indicate the vectors of the pressure and temperature unknowns (of all media). The
residual r n+1 is a non-linear function of the primary unknowns pn+1 and T n+1. Thus, at
each time-step a Newton-Raphson method is employed to solve the non-linear system
iteratively, i.e.,

r ν+1
MB = r νMB + ∂rMB

∂p

∣∣∣νδpν+1 + ∂rMB

∂T

∣∣∣νδT ν+1 = 0 (3.47)

r ν+1
EB = r νEB + ∂rEB

∂p

∣∣∣νδpν+1 + ∂rEB

∂T

∣∣∣νδT ν+1 = 0

where the superscripts ν and ν+ 1 are the current and next iteration indices. At each
Newton’s iteration step, the linear-system Jνδxν+1 = −r ν is solved. Here, Jν is the Jaco-
bian matrix with δxν+1 = [δp, δT ]T . Therefore, one can write the linear system of the
equations as:

J m,m
MB ,p J m, f

MB ,p

J f ,m
MB ,p J f , f

MB ,p


J m,m

MB ,T J m, f
MB ,T

J f ,m
MB ,T J f , f

MB ,T


J m,m

EB ,p J m, f
EB ,p

J f ,m
EB ,p J f , f

EB ,p


J m,m

EB ,T J m, f
EB ,T

J f ,m
EB ,T J f , f

EB ,T





ν

︸ ︷︷ ︸
Jν



δpm

δp f

δT m

δT f



ν+1

︸ ︷︷ ︸
δxν+1

=−



r m
MB

r f
MB

r m
EB

r f
EB



ν

︸ ︷︷ ︸
r ν

(3.48)

To reach convergence, the following conditions must be met:

( ||r ν+1
MB ||2

||r 0
MB ||2

< ε(rMB ) ∨ ||r ν+1
MB ||2

||rhsMB ||2
< ε(rMB )

)
∧

( ||r ν+1
EB ||2

||r 0
EB ||2

< ε(rEB ) ∨ ||r ν+1
EB ||2

||rhsEB ||2
< ε(rEB )

)
∧ (3.49)( ||δp||2

||p||2
< ε(p) ∧ ||δT ||2

||T ||2
< ε(T )

)
Here, ε(rMB ), ε(rEB ), ε(p) and ε(T ), are the user-defined tolerances. The details of the

reason to choose these conditions are previously explained in this section (see Eq. 3.35
and the explanation followed after).

3.2.3. MASS AND HEAT FLOW IN HIGH-ENTHALPY FRACTURED POROUS ME-
DIA

As mentioned in the discretization section for high-enthalpy formulation, the sets of
equations consists of a pair of one set of mass balance equations and one set of energy
balance equations. The properties of both phases are summed up in every term in these
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equations and there is no separate mass or energy balance equation per fluid phase. The
mass balance equations (3.24)-(3.25) are rewritten in their residual form as

(
r n+1

MB ,i

)m =
(nph∑
α=1

ραqm,w
α

)
i

−


(
φ

nph∑
α=1

ραSα

)n+1

i
−

(
φ

nph∑
α=1

ραSα

)n

i

∆t


m

−
(nph∑
α=1

(
Nn∑
j=1

Fα,i j

))m

−
nph∑
α=1

(
nfrac∑
k=1

(N fk∑
j=1

F
m, fk
α,i j

))
, ∀ i ∈ {1, ..., Nm} (3.50)

for element i in the rock matrix m and

(
r n+1

MB ,i

) fh =
(nph∑
α=1

ραq fh ,w
α

)
i

−


(
φ

nph∑
α=1

ραSα

)n+1

i
−

(
φ

nph∑
α=1

ραSα

)n

i

∆t


fh

−
(nph∑
α=1

(
Nn∑
j=1

Fα,i j

)) fh

−
nph∑
α=1

(N fk∑
j=1

F
fh ,m
α,i j

)
−

nph∑
α=1

(
nfrac∑
k=1

(N fk∑
j=1

F
fh , fk
α,i j

))
, ∀ i ∈ {1, ..., N fh

} (3.51)

for element i in the fracture fh . Additionally, the energy balance equations are also
rewritten as

(
r n+1

EB ,i

)m =
(nph∑
α=1

ραhαqm,w
α

)
i

−
((

(ρU )e f f
)n+1

i − (
(ρU )e f f

)n
i

∆t

)m

−
(nph∑
α=1

(
Nn∑
j=1

F̆α,i j

))m

−
nph∑
α=1

(
nfrac∑
k=1

(N fk∑
j=1

F̆
m, fk
α,i j

))
−

(
Nn∑
j=1

Ği j

)m

−
nfrac∑
k=1

(N fk∑
j=1

Ğ
m, fk
i j

)
, ∀ i ∈ {1, ..., Nm} (3.52)

for element i in the rock matrix m and

(
r n+1

EB ,i

) fh =
(nph∑
α=1

ραhαq fh ,w
α

)
i

−
((

(ρU )e f f
)n+1

i − (
(ρU )e f f

)n
i

∆t

) fh

−
(nph∑
α=1

(
Nn∑
j=1

F̆α,i j

)) fh

−
nph∑
α=1

(
Nm∑
j=1

F̆
fh ,m
α,i j

)
−

nph∑
α=1

(
nfrac∑
k=1

(N fk∑
j=1

F̆
fh , fk
α,i j

))
−

(
Nn∑
j=1

Ği j

) fh

−
Nm∑
j=1

Ğ
fh ,m

i j −
nfrac∑
k=1

(N fk∑
j=1

Ğ
fh , fk

i j

)
,

∀ i ∈ {1, ..., Nm} (3.53)

for element i in the fracture fh . Similar to the low-enthalpy formulation, the full vector
of the mass balance and energy balance residuals can be written as
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r n
MB = [(r m)n

MB , (r f1 )n
MB ...(r fnfrac )n

MB ]T and (3.54)

r n
EB = [(r m)n

EB , (r f1 )n
EB ...(r fnfrac )n

EB ]T , (3.55)

where (r k )n
MB and (r k )n

EB are the residual vectors of medium k at time-step n. pn and H n

are the vectors of the pressure and total enthalpy unknowns (primary unknowns). as the
residual r n+1 is a non-linear function of the primary unknowns (here, pn+1 and H n+1), a
Newton-Raphson method is employed to solve the non-linear system iteratively, namely

r ν+1
MB = r νMB + ∂rMB

∂p

∣∣∣νδpν+1 + ∂rMB

∂H

∣∣∣νδHν+1 = 0 (3.56)

r ν+1
EB = r νEB + ∂rEB

∂p

∣∣∣νδpν+1 + ∂rEB

∂H

∣∣∣νδHν+1 = 0

with ν and ν+1 superscripts being the current and next iteration indices. At every New-
ton’s iteration step, the linear-system Jνδxν+1 =−r ν is solved. In this expression, Jν is the
Jacobian matrix with δxν+1 = [δp, δH ]T . Therefore, the linear system of the equations
can be illustrated as:



J m,m
MB ,p J m, f

MB ,p

J f ,m
MB ,p J f , f

MB ,p


J m,m

MB ,H J m, f
MB ,H

J f ,m
MB ,H J f , f

MB ,H


J m,m

EB ,p J m, f
EB ,p

J f ,m
EB ,p J f , f

EB ,p


J m,m

EB ,H J m, f
EB ,H

J f ,m
EB ,H J f , f

EB ,H





ν

︸ ︷︷ ︸
Jν



δpm

δp f

δH m

δH f



ν+1

︸ ︷︷ ︸
δxν+1

=−



r m
MB

r f
MB

r m
EB

r f
EB



ν

︸ ︷︷ ︸
r ν

(3.57)

The convergence at each iteration loop is reached by satisfying the following condi-
tions:

( ||r ν+1
MB ||2

||r 0
MB ||2

< ε(rMB ) ∨ ||r ν+1
MB ||2

||rhsMB ||2
< ε(rMB )

)
∧

( ||r ν+1
EB ||2

||r 0
EB ||2

< ε(rEB ) ∨ ||r ν+1
EB ||2

||rhsEB ||2
< ε(rEB )

)
∧ (3.58)( ||δp||2

||p||2
< ε(p) ∧ ||δH ||2

||H ||2
< ε(T )

)
The tolerances ε(rMB ), ε(rEB ), ε(p) and ε(H), are defined by user in the input. Please

see Eq. 3.35 earlier in this section for more details about the choice of the convergence
conditions.
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3.3. FRACTURE MODELS
The significance of fractures and the need to model them accurately has been previously
discussed in section 1.4 in detail. As it was mentioned earlier, there are multiple ap-
proaches with regards to modeling the fractures. In this section, we focus on explicit rep-
resentation of fractures in fractured domains via embedded discretization of fractures.
In the following part, the embedded discrete fracture model (EDFM) and the projection-
based embedded discrete fracture model (pEDFM) are described.

3.3.1. EMBEDDED DISCRETE FRACTURE MODEL (EDFM)
As mentioned earlier in section 1.4, the non-conforming embedded discrete method
benefits from the independent representation of fractures and the hosting rock in the
formation (mostly referred to as the rock matrix). In the EDFM approach (as apposed to
the CDFM methods, or DFM for short), the fractures are explicitly represented as sep-
arate lower dimensional control volumes. Therefore the rock matrix and the fractures
have independent gridding structures which provides significant flexibility. Especially,
in case of deformation of the rock matrix, and closure or propagation of the fractures,
the modification of the gridding structure is significantly simpler. Please note that in the
embedded discrete methods, the focus is on those fractures that are large enough (bigger
than the scale of the rock matrix control volumes), and the small-scale fractures (below
the rock matrix grid resolution) are often homogenized with the rock matrix altering the
rock properties such as porosity and permeability. This approach is called hierarchi-
cal fracture modeling which avoids the complexities arising from the discretization and
dynamic nature of the fracture geometries, especially in presence of dense fracture net-
works of various scales [37, 44, 111].

In the EDFM method, at first, the computational grids are imposed on the rock ma-
trix and each fracture independently. Figure 3.3 shows a 2D schematic on how the rock
matrix and fractures treated during the gridding.

As it can be noticed, in the previous sections of this chapter and the previous chapter,
all the mass/energy conservation equations are defined both for the rock matrix and the
fractures explicitly. The flux exchanges between the rock matrix control volumes and the
fracture elements are defined via the equations 3.2,3.3,3.7,3.8,3.11,3.12,3.18,3.19,3.22,3.23.

In these equations, T m, f
i j ,T

fi , f j

i j ,Tm, f
cond ,i j ,T

fi , f j

cond ,i j are the geometrical transmissibilities

defined between each two corresponding media.
The geometrical transmissibility in the mass flux between cell i belonging to the rock

matrix m and the element j belonging to the fracture fi reads:

T m, f
i j = K H

i j ×C Ii j , (3.59)

where, K H
i j is the harmonically averaged permeability between the overlapping rock ma-

trix and fracture elements. Please note that the convective heat fluxes employ the identi-
cal geometrical transmissibility used in the mass fluxes due to the fact that F̆i j = H∗

( f l ) Fi j

(3.20). Moreover, the geometrical transmissibility used in the conductive heat flux be-
tween these two elements is written as:

T
m, f
cond ,i j = (Λe f f )H

i j ×C Ii j , (3.60)
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(a)

(b.1)

(b.2)

(c)

Figure 3.3: Schematic of EDFM gridding. The fractured media (a) is independently split into the rock matrix
grid system (b.1) and the fracture network grid (b.2). Also the rock matrix and fracture grids are showed on top
of each other (c) with overlapped matrix cells highlighted with color.

where, (Λe f f )H
i j is the harmonically averaged heat conductivity between the rock matrix

control volume and the overlapping fracture element.
In the equations above, the C Ii j is the so-called connectivity index between the two

elements. The EDFM and pEDFM approaches model the matrix-fracture connectivity
index as:

C Ii j =
Am, f

i j

〈d〉i j
, (3.61)

where Am, f
i j is the area fraction of the fracture cell j overlapping with the rock matrix cell

i (see figure 3.4, on the left) and 〈d〉i j is the average distance between these cells [44].
The geometrical transmissibilities in the mass flux and the conductive heat flux be-

tween element i in the fracture fi and the element j in the fracture f j read:

T
fi , f j

i j = K H
i j

C I fi
i Ii j

×C I
f j

j Ii j

C I fi
i Ii j

+C I
f j

j Ii j

, and (3.62)

T
fi , f j

cond ,i j = (Λe f f )H
i j

C I fi
i Ii j

×C I
f j

j Ii j

C I fi
i Ii j

+C I
f j

j Ii j

(3.63)

respectively. The transmissibilities T
fi , f j

i j andT
fi , f j

cond ,i j between the two non-neighboring

fracture cells are obtained via a lower dimensional connectivity index formulation. Mind
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Figure 3.4: Figure on the left: An illustration of a 2D fracture plane overlapping a matrix cell. In this example,
the overlapping section forms an irregular polygon. Figure on the right: A visualization of two intersecting
fracture planes (left) and discrete elements of different intersecting fractures (right), with the intersection lines
shown in red.

that the intersection of 2D fracture planes is a line-segment and for 1D fracture line-
segments, it is a point. Figure 3.4 (on the right) shows a visualization example of inter-
section between two non-neighboring 2D fracture elements. The intersection forms a
line segment Ii j (shown in red color) with the average distances from the intersection

segment of 〈d〉 fi
i Ii j

6= 〈d〉 f j

j Ii j
. This is the reason why these transmissibilities are computed

using an harmonic-average formulation as shown above.

3.3.2. VALIDATION OF THE EDFM
In this section, the EDFM method is validated through a simple 2D test-case and the
numerical results of this test-case are presented. Moreover, the accuracy of the EDFM
method used in this test-case is compared against a reference solution from the fully-
resolved direct numerical simulation (DNS for short). For this purpose let us consider a
2D homogeneous domain of 9[m]×9[m] as shown in figure 3.5. A cross-shaped fracture
network is present in the middle of the domain. Each fracture segment is 5[m] long, with
a permeability value of 109 times higher than that of the rock matrix (Km = 2.5·10−13 [m]2

and K f = 1.3 ·10−4 [m]2). The fracture aperture is 4 ·10−2[m]. Two incompressible fluid
phases are considered. The reservoir has an initial saturation S1,i ni t = 0.1. No-flow
boundary conditions are considered at the top and bottom boundaries whereas the left
and right boundaries have fixed pressures of 2.0 ·107[Pa] and 1.0 ·107[Pa], respectively.
Phase 1 is injected from the left boundary whereas production occurs at the right. These
simulations are run using our in-house simulation software called DARSim in which
all the software developments of this work is done and made available open source at
https://gitlab.com/DARSim.

The reference solution (referred to as DNS) is obtained by imposing a 225×225 grid
that allows to fully resolve the flow inside the fracture. The EDFM simulations are per-
formed with three different matrix grid resolutions of 15×15, 25×25, and 45×45. The
grid-cells inside the fractures are chosen to have similar dimensions as the matrix cells.
The time-step size is 10−4 [days] for all simulations. The pressure and saturation maps
after 0.0235 [days] are shown in figure 3.6.

Figures 3.7a and 3.7b present the pressure and saturation errors as functions of the

https://gitlab.com/darsim
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Figure 3.5: Visualization of the 2D domain with a cross-shaped fracture network at the center.
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Figure 3.6: Comparison of the fully resolved DNS (left column) using 225×225 cells and the EDFM results with
different grid resolutions (left to right: 45×45, 25×25, 15×15) after 0.0235 [days]. The pressure results are
shown on the top row, while the saturation maps are illustrated on the bottom row.

simulation time. Given a variable x (i.e, pressure or saturation), the error, ex , is calcu-
lated as

ex = ||xDNS−xEDFM||2
||xDNS||2 . (3.64)

As can be seen from the error plots, it is noticeable that errors decrease upon refine-
ment of the EDFM solution grid. Moreover, the growth of error in both pressure and
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Figure 3.7: Pressure and saturation errors of EDFM simulations with respect to the reference solution (DNS).

saturation plots reduces over simulation time. There is a sudden increase of saturation
error as the saturation front passes through the fractures.

While the EDFM is acceptable to provide accurate solutions for highly conductive
fractures, it cannot accurately represent the flow barriers (e.g., sealing fractures and im-
permeable faults). This is due to the fact that the extra connectivities introduced by the
flux exchanges between the rock matrix and the fractures act as parallel connections (in
parallel to the classical connections between the neighboring cells within a medium). In
presence of highly conductive fractures, the extra connectivities act as highly conductive
flow channels dominating the fluid flow compared to the rest of the domain. Therefore,
in such cases, the parallel connectivities do not pose any problem and inaccurate results.
However, in case of flow barriers, one should expect blockage of the flow, yet the EDFM
parallel connectivities result in non-physical flow leakages. In order to solve this issue,
the projection-embedded fracture model (pEDFM) was introduced [46, 47]. In the next
section, the pEDFM is explained and it will be shown how the parallel connectivities are
removed.

3.3.3. PROJECTION-BASED EMBEDDED DISCRETE FRACTURE MODEL

(PEDFM)
To correct for the EDFM limitations on the fractures with generic conductivity due the to
parallel transmissibilities, the matrix-matrix, fracture-matrix and fracture-fracture con-
nectivities are modified in the overlapping regions. The mentioned modifications elim-
inate the parallel transmissibilities, such that the pEDFM is applicable to any conduc-
tivity contrast between the rock matrix and the fractures. Initially, all connectivities be-
tween the two neighboring matrix cells that are disconnected due to the overlapping
fractures are detected. Due to the geometrical algorithm devised during the develop-
ment of this method, a continuous projection path (visible in figure 3.8 as solid lines in
light blue color) is automatically obtained on the interfaces as such it disconnects the
neighboring connections letting the flux occur only on one route (i.e., through matrix-
fracture-matrix).
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Figure 3.8: The pEDFM Illustration for a 2D domain with structured grid and a 1D overlapping fracture. The
overlapped matrix cells are highlighted in yellow color. With the classical EDFM method, these cells are con-
nected to each overlapping fracture element via the connectivity index in the matrix-fracture flux exchange.
The pEDFM introduces extra non-neighboring connections between fracture elements and matrix cells high-
lighted in orange.

Let the fracture element f overlap the rock matrix grid cell i (as shown in figure 3.8)
with an area fraction Ai f . A set of projections is defined on the interface between the
overlapped matrix grid cell i and its neighboring grid cells (in orange) that are affected
by the crossing (i.e., j and k). Please note that in a 3D case, there will be three projections.
For each dimension (i.e., x, y and z) the projection area fractions are obtained via:

Ai f ⊥xe = Ai f ×cos(γ), xe ∈ {x, y, z}, (3.65)

where γ is the angle between the fracture element and the interface connecting the ma-
trix grid cell i and the neighboring grid cell in the corresponding dimension (shown in
figure 3.8 on the zoomed-in section and highlighted in red color as Ai f ⊥x and Ai f ⊥y ).
New transmissibilities are defined to connect the fracture element f to each
non-neighboring matrix grid cells (i.e., j and k in the 2D example shown in figure 3.8):

Tie f =
Ai f ⊥xe

〈d〉ie f
λie f , xe ∈ {x, y, z}, (3.66)

where, 〈d〉ie f is the average distance between the fracture element f and the rock matrix
grid cell ie . λie f is the effective fluid mobility between these cells. As a result of the new
transmissibilities, the connectivity between the matrix grid cell i and its corresponding
neighboring cells is modified:

Ti ie =
Ai ie − Ai f ⊥xe

∆xe
λie f , X ∈ {x, y, z}. (3.67)

For the sake of the simplicity of the implementation, the modified transmissibilities
are obtained by multiplication of coefficientα as a fraction of the projected cross-section
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area, and the cross-section area of the corresponding interface. Please note that for all
overlapping fracture elements (except for the boundaries of the fractures), the projection
will cover the whole interface. Therefore, α is 1.0 for most of the cases, resulting in zero
transmissibility between the matrix grid cells (i.e., Ti ie = 0), thus removing the parallel
transmissibilities. This approach is also similarly used to model horizontal or inclined
wells in some widely known simulators (e.g., Eclipse ).

3.3.4. VALIDATION OF PEDFM
In this section, the pEDFM method is validated through a simplified 2D test-case and the
numerical results of this test-case are shown. The accuracy of the pEDFM method in this
test-case is compared against both the reference solution from the fully-resolved direct
numerical simulation (DNS) and simulation results from the EDFM approach. In order
to attempt this comparison, a 2D homogeneous domain of 3[m]×3[m] is considered (see
Fig. 3.9). Two fractures intersect in the middle of the domain forming a cross shape. Both
fractures are 1.5[m] long with aperture of 8×10−3[m]. In terms of fractures conductiv-
ity, two scenarios are taken into account. In the first scenario, the fractures are a f = 108

times more permeable than the rock matrix (Km = 10−14 [m2] and K f = 10−6 [m2]) and
in the second scenario, the fractures are 108 times less permeable than the rock ma-
trix (Km = 10−14 [m2] and K f = 10−22 [m2]). The initial pressure and temperature of the
reservoir are p0 = 1.5× 107[Pa] and T0 = 400[K] respectively. Cold water with pressure
pinj = 2× 107[Pa] and temperature Tinj = 400[K] is injected from the left boundary and
hot water is produced from the right boundary with pressure pprod = 107[Pa]. No-flow
boundary conditions applies to the top and bottom boundaries. Table 3.1 shows the
input parameters of this test case.

Table 3.1: Input parameters of the pEDFM validation test-case for fluid and rock properties.

Property value
Rock thermal conductivity (Λr ) 4 [W/m.K]
Fluid thermal conductivity (Λ f ) negligible
Rock density (ρr ) 2750 [kg/m3]
Fluid specific heat (Cp f ) 4200 [J/kg.K]
Rock specific heat (Cpr ) 790 [J/kg.K]
Matrix porosity (φ) 0.2
Matrix permeability 10−14 [m2]
High-perm fractures permeability 10−6 [m2]
Low-perm fractures permeability 10−22 [m2]
Fractures aperture 8×10−3 [m]

To obtain the reference solution (denoted as DNS), a 375×375 grid resolution is im-
posed on the domain. This allows for fully resolving the flow inside the fracture. In
this case fractures are defined as channels along the middle row and column of the dis-
cretized domain. The EDFM and the pEDFM simulations are run with four different
matrix gridding resolutions of 75× 75, 45× 45 and 25× 25. At all runs, the aperture of
all the fractures is identical and set to be a f = 8×10−3[m] which is approximately equal
to the matrix grid cell size of DNS discretization. The size of grid cells inside the frac-
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tures have similar dimensions as the rock matrix grid cells. In cases with highly conduc-
tive fractures, the simulation is run for 6[hours] and in the cases with low-permeability
fractures, the simulation is run for 12[hours]. The results are provided at 50 isochronal
intervals.
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Figure 3.9: The pEDFM validation: Visualization of the geometry of the test case; a 2D domain with a cross-
shaped fracture network at the center.

In the first scenario, the fractures are considered to be highly conductive (see table
3.1 for more details). The results of the simulations as plots of pressure and temperature
solutions are shown in the figures 3.10 and 3.11.

The plots in figure 3.12 present the pressure and the temperature errors as functions
of the simulation time. The error of variable x (i.e, pressure or temperature), denoted as
ex , is calculated via

ex = ||xDNS−xEDFM/pEDFM||2
||xDNS||2 . (3.68)

At the center of the domain where the fractures intersect, a difference in the tempera-
ture distribution between the DNS, EDFM and pEDFM methods can be observed. Please
note that the difference arises from the discretization approaches. In DNS method, frac-
tures are actually channels with aperture of one grid cell. As a result, those matrix grid
cells are flooded with the cold fluid. This is not the case for the EDFM and the pEDFM
approaches.

In the second scenario, both fractures are set to be 108 times less permeable than
the rock matrix. Figures 3.13 and 3.14 show the simulation results of this scenario as
pressure and temperature solutions respectively.

Figure 3.15 shows the pressure and the temperature errors versus the simulation time
for the second scenario. As the EDFM is incapable of capturing the low permeable frac-
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Figure 3.10: The pEDFM validation using highly conductive fractures: comparison of the pressure solution be-
tween the fully resolved DNS (single plot at left column) using 375×375 grid cells, the pEDFM results (top row)
and the EDFM results (bottom row). Both the pEDFM and the EDFM are run with different grid resolutions
(left to right: 75×75, 45×45 and 25×25) at the 25th time interval (i.e., t = 3 [hours]).

Figure 3.11: The pEDFM validation using highly conductive fractures: comparison of the temperature solu-
tions between the fully resolved DNS, the pEDFM and the EDFM. Similar to previous figure, the single plot at
left column shows DNS solution, top row shows the pEDFM results and bottom row shows the EDFM results.

tures and the results are not accurate and representative, the errors are only shown for
the pEDFM.

Fine-scale simulation for a simple 2D domain allowed to investigate the pEDFM and
the EDFM accuracy, both compared to the direct numerical solution (DNS). Both highly
conductive and impermeable fractures were considered. It was shown that in the pres-
ence of highly conductive fractures, the pEDFM and the EDFM performed accurately,
though the EDFM still allows for small non-physical leakage. In addition, the EDFM
failed to capture the low conductive fractures, while the pEDFM shows a good represen-
tation of the DNS with satisfactory accuracy.



3

54 3. DISCRETIZATION AND SIMULATION STRATEGY AT FINE-SCALE

(a) Pressure Error (b) Temperature Error

Figure 3.12: The pEDFM validation using highly conductive fractures: Pressure and Temperature errors of
pEDFM and EDFM simulations with respect to the reference solution (DNS).

Figure 3.13: The pEDFM validation using impermeable fractures: comparison of the pressure solution between
the fully resolved DNS (single plot at left column) using 375×375 grid cells, the pEDFM results (top row) and
the EDFM results (bottom row). Both the pEDFM and the EDFM are run with different grid resolutions (left to
right: 75×75, 45×45 and 25×25) at the 25th time interval (i.e., t = 6 [hours]).

While the results suggest accuracy gains by using the pEDFM on Cartesian grids, one
should consider that the geological formations and the field-scale models cannot be ac-
curately represented by discretization on Cartesian grids. More complex and flexible
gridding structure is needed to be used for field-scale models. A most-commonly used
gridding structure is the so-called corner-point grid (CPG) geometry. In the next chapter,
the corner-point grid geometry will be briefly explained. Thereafter, the pEDFM model
on the corner-point grid geometry will be introduced and some fractured test-cases will
compare the accuracy of the corner-point grid results against the Cartesian grid results.
Moreover, the pEDFM model will be used on a few field-scale and geologically relevant
models to show its performance as a proof-of-concept.
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Figure 3.14: The pEDFM validation using impermeable fractures: comparison of the temperature solutions
between the fully resolved DNS, pEDFM and EDFM. Similar to previous figure, the single plot at left column
shows DNS solution, top row shows the pEDFM results and bottom row shows the EDFM results.

(a) Pressure Error (b) Temperature Error

Figure 3.15: The pEDFM validation using impermeable fractures: the pressure and the temperature errors of
the pEDFM compared to the reference solution (DNS).





4
PEDFM ON CORNER-POINT GRID

GEOMETRY

In the previous chapter, the fine-scale discretization of the governing equations for dif-
ferent fluid models was fully covered in detail. The mass and heat (convection and con-
duction) fluxes between each set of neighboring grid cells in each medium were calcu-
lated. Moreover, these fluxes were obtained between the non-neighboring connections
(i.e., between the rock matrix and the overlapping fractures, and between the intersect-
ing fracture elements themselves). The discretized equations were written in residual
form. Using the Newton-Raphson linearization schemes, the nonlinear terms of the
equations were linearized and the linear system of equations were formed, where the
vectors of the update of the unknowns were obtained by solving the linearized system
inside an iteration loop at each time-step.

At the final section of the previous chapter, we described the fracture models, namely,
the embedded discrete fracture model (EDFM) and the projection-based EDFM (pEDFM)
approaches. Using two simple test-cases, the validation of these methods were pre-
sented. Both methods were able to acceptably represent direct numerical simulation
(DNS) results in presence of highly conductive fractures. However, it could be seen
that the pEDFM could provide more accuracy when dealing with flow barriers or seal-
ing/impermeable fractures/faults, while the usage of the EDFM resulted in non-physical
solutions.

As discussed at the end of the previous chapter, geological formations can hardly
be represented by Cartesian grids, as this grid geometry is not an acceptable gridding
system when dealing with real field-scale and geologically-relevant domains, although
these simplified grids allow for many conceptual modeling analyses. Realistic forma-
tions, are more conveniently represented by flexible grids [42, 48]. The grid geometry
should create a set of discrete cell volumes that approximate the reservoir volume, yet
fit the transport process physics, and avoid over complications as much as possible [40].

Various parts of this chapter have been published by the author in the Journal of Advances in Water Resources.
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Therefore, a more complex and flexible gridding system is needed to be employed by
simulation models. Unstructured grids allow for many flexibilities, which need to be
carefully applied to a computational domain so that the discrete systems do not become
unnecessarily complex [35, 49]. Without introducing the full flexibility (and at the same
time complexity) of the fully unstructured grids, the so-called corner-point grid (CPG)
geometry is a viable option, as it allows for many possibilities in better representation of
geological structures. This has made it one of the most commonly used gridding systems
and quite attractive in the field of geo-sciences and industry-grade simulation models.
[50–53].

In this chapter, the corner-point grid (CPG) geometry is described. Via a number of
test-cases with box-shaped domains, the accuracy of the corner-point grid results are
compared against the results obtained by the Cartesian grid geometry. Afterwards, the
pEDFM model will be presented for the corner-point grid geometry. The pEDFM is em-
ployed in order to explicitly and consistently represent fractures and to provide indepen-
dent gridding of the rock matrix and the fractures regardless of the complex geometrical
shapes of such domains. Here, the applicability of the pEDFM implementation [46, 47]
has been extended to a fully generic 3D geometry where it allows for inclusion of frac-
tures (or flow barriers) with any orientation on the corner-point grid geometry. This is
crucial for practical field-scale applications. In addition to geometrical flexibility, the
matrix-matrix and fracture-matrix connectivities are re-adjusted to account for the pro-
jection of the fracture planes on the interfaces. It will be shown how these connectivity
indices are obtained in the new geometrical system. This allows for consistent modeling
of the fractures with a generic range of conductivities. At last, a few geologically relevant
models will be used as test-cases to show the performance of the pEDFM model on the
corner-point grid geometry as a proof-of-concept.

4.1. CORNER-POINT GRID GEOMETRY

A corner-point grid (CPG) is defined with a set of straight pillars outlined by their end-
points over a Cartesian 2D mesh in the lateral direction [53]. On every pillar, a constant
number of nodes (corner-points) is set, and each cell in the grid is set between 4 neigh-
boring pillars and two neighboring points on each pillar. Every cell can be identified by
integer coordinates (i , j ,k); where the k coordinate runs along the pillars, and i and j co-
ordinates span along each layer. The cells are ordered naturally with the i -index (x-axis)
cycling fastest, then the j -index (y-axis), and finally the k-index (negative of z-direction).

For establishing vertical and inclined faulting more accurately, it is advantageous to
define the position of the grid cell by its corner point locations and displace them along
the pillars that have been aligned with faults surfaces. Similarly, for modeling erosion
surfaces and pinch-outs of geological layers, the corner point format allows points to
collapse along the coordinate lines. The corner points can collapse along all four lines
of a pillar so that a cell completely disappears in the presence of erosion surfaces. If
the collapse is present in some pillars, the degenerate hexahedral cells may have less
than six faces. This procedure creates non-matching geometries and non-neighboring
connections in the underlying i - j -k topology [53].
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Figure 4.1: Construction of a corner-point grid: Starting from the coordinate lines defining pillars (left), the
corner-points are added to them (middle). A stack of cells is created for each set of four lines defining a pillar
and at last the full grid is obtained.

4.1.1. TWO-POINT FLUX APPROXIMATION IN THE CORNER-POINT GRID GE-
OMETRY

In order to only highlight the calculation of the two-point flux approximation in the
corner-point grid geometry and avoid complexities in presenting fully detailed govern-
ing equations, a simplified linear elliptic equation is used which serves as a model pres-
sure equation for incompressible fluids, i.e.,

∇·u = f , (4.1)

where f is the source/sink term (wells), and u is the Darcy velocity, defined as

u =−K∇p. (4.2)

Finite volume discrete systems can be obtained by rewriting the equation in integral
form, on discrete cellΩi , as ∫

∂Ωi

u ·n dS =−
∫
Ωi

q d x . (4.3)

The flux between the two neighboring cells i and k can be then written as

ui ,k =
∫
Γi ,k

u ·n dS. (4.4)

The faces Γi ,k are denominated half face as they are linked with a grid cell Ωi and a
normal vector ni ,k . It is assumed that the grid is matching to another one so that each
interior half-face will have a twin half-face Γk,i that also has an identical area Ai ,k = Ak,i

but opposite normal vector ni ,k =−nk,i . The integral over the cell face is approximated
by the midpoint rule, and Darcy’s law, i.e.,

ui ,k ≈ Ai ,k
(
K∇p

)(
xi ,k

) ·ni ,k (4.5)

where xi ,k indicates the centroid of Γi ,k .
The one-sided finite difference is used to determine the pressure gradient as the dif-

ference between the pressure πi ,k at the face centroid and the pressure at some point
inside the cell. The reconstructed pressure value at the cell center is equal to the average
pressure pi inside the cell, thus,
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ui ,k ≈ Ai ,k Ki
(pi −πi ,k )ck,i

| ck,i |2
·ni ,k ⇒ ui ,k ≈ Ti ,k (pi −πi ,k ). (4.6)

The vectors ck,i are defined from the cell centroids to the face centroids. Face normal
vectors are assumed to have a length equal to the corresponding face areas Ai ,k ·ni ,k , i.e.,

Ti ,k = Ai ,k Ki
ck,i ·ni ,k

| ck,i |2
(4.7)

Figure 4.2: Two cells used to define the two-point discretization on general 2D polygon cells (see figure on the
left) and 3D polyhedral cells (see figure on the right).

The one-sided transmissibilities Ti ,k are related to a single cell and provide a two-
point relation between the flux across a cell face and the pressure difference between
the cell and the face centroids. The proper name for these one-sided transmissibilities is
half-transmissibilities as they are associated with a half-face [35, 112].

Finally, the continuity of the fluxes across all the faces, ui ,k = −uk,i , as well as the
continuity of face pressures πi ,k =πk,i =πi k are set. This leads to

T −1
i ,k ui k = pi −πi k (4.8)

−T −1
k,i ui k = pk −πi k . (4.9)

The interface pressure πi k is then eliminated and the two-point flux approximation
(TPFA) scheme is defined as

ui k = [
T −1

i ,k +T −1
k,i

]−1 (pi −pk ) = Ti k (pi −pk ). (4.10)

Here, Ti k is the transmissibility associated with the connection between the two cells.
The TPFA scheme uses two “points”, the cell average pressures pi and pk , to approximate
the flux across the interfaceΓi ,k between cellsΩi andΩk . The TPFA scheme in a compact
form obtains a set of cell averages that meet the following system of equations∑

k
Ti k (pi −pk ) = qi , ∀Ωi ⊂Ω. (4.11)
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4.2. PEDFM CONNECTIVITIES
As stated in the section of the discretization of governing equations, sets of flux exchange
terms are defined between the matrix and the explicit fractures. Inside each term, the

connectivity index (C Ii j = Ai j

〈d〉i j
) is considered. In the corner-point grid geometry, to

calculate the area fraction (Ai j ) of each overlapping fracture element inside the corre-
sponding matrix grid cell, various geometrical functions are defined which can obtain
the intersection between a tetragon (the 2D planar fracture grid cell in 3D geometry) and
a hexahedron (the matrix grid cell in the corner-point grid geometry). Once the intersec-
tion is obtained and the area fraction is calculated, the average distance (〈d〉i j ) between
the two overlapping elements is calculated as well. Figures 4.3 and 4.4 illustrate the ge-
ometry of CPG-based pEDFM grids. Note that the fractures can have any orientations in
3D, and arbitrary crossing lines with other fractures.

(a) matrix grid (b) fracture grids

Figure 4.3: An example of a fractured domain on the corner-point grid geometry. The domain presented in the
left image is the well-known Norne oil-field which is a representative of the real-field geometry [53]. The figure
on the right is a realization of a fracture network inside the domain that was exclusively designed by the author.
Note that each sub domain (the rock matrix, and the individual fractures) entail independent grid resolutions,
and can have independent complexities (e.g. 3D orientation).

To develop the pEDFM for the CPG geometry, first, all the connectivities between
each set of neighboring matrix cells that are disconnected due to the overlapping frac-
tures are detected. Due to the geometrical algorithm devised during the development of
this method, a continuous projection path (visible in figure 4.5 as solid lines in light-blue
color) is automatically obtained on the interfaces. As such it disconnects the neighbor-
ing connections letting the flux occur only on one consistent route (i.e., through matrix-
fracture-matrix). Let the fracture element f overlap with the rock matrix grid cellΩi (see
figure 4.5). The area fraction of this overlap is denoted as Ai f . In this 2D example, two
projections are obtained on the interfaces between the matrix grid cellΩi and its neigh-
boring grid cells that are affected by the crossing (i.e.,Ω j andΩk ). Please note that in the
3D dimensional case, there will be three projections. For the interface between the grid
cellsΩi andΩ j (denoted as Γi , j ), the projection area fraction Ai f ⊥Γi , j is obtained via

Ai f ⊥Γi , j = Ai f ×cos(γ), (4.12)
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Figure 4.4: The intersection between to fractures and a hexahedron in the corner-point grid geometry is il-
lustrated here. The figure on the right highlights the area fraction of the two separate fracture planes inside
the matrix grid cell. The overlapping segment of green fracture forms an irregular pentagon where the yellow
fracture has a tetragon as the overlapping segment.

where γ is the angle between the fracture element and Γi , j the interface connecting the
matrix grid cell Ωi and the neighboring grid cell in the corresponding dimension Ω j .
On the zoomed-in section of figure 4.5, this projection area fraction is highlighted in red
color. Similarly, the projection area fractions on the interfaces between all the neighbor-
ing matrix grid cells that are intersected by fracture elements are calculated based on the
same formulation. New transmissibilities are defined to connect the fracture element f
to each non-neighboring matrix grid cells (i.e., j and k in the example shown in figure
4.5):

Tie f =
Ai f ⊥Γi , j

〈d〉ie f
λie f , (4.13)

where, 〈d〉ie f is the average distance between the fracture element f and the matrix grid
cell ie . λie f is the effective fluid mobility between these cells. As a result of the new
transmissibilities, the connectivity between the matrix grid cell i and its corresponding
neighboring cells is modified:

Ti ie =
Ai ie − Ai f ⊥Γi , j

∆xe
λie f , X ∈ {x, y, z}. (4.14)

To describe the implementation in a simpler manner, all the transmissibilities are
multiplied by a coefficient α as a fraction of the interface cross-sectional area that is
covered by the projection. One needs to note that except for the boundaries/edges of the
fractures, the projection will cover the whole area of the affected interfaces. Therefore,
α is 1.0 for the majority of the cases, resulting in zero transmissibility between the rock
matrix grid cells (i.e., Ti ie = 0), and removing the parallel transmissibilities [46].

4.3. TEST CASES AND RESULTS
Numerical results of various test cases are presented in this section. The first two test
cases compare the pEDFM model on the Cartesian grid geometry with the pEDFM on
the corner-point grid geometry The third test case demonstrates the pEDFM result on
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Figure 4.5: The pEDFM Illustration for a rock matrix in the corner-point grid geometry and a 1D overlapping
fracture. The overlapped matrix cells are connected to each overlapping fracture element via the connectivity
index in the matrix-fracture flux exchange. The pEDFM introduces extra non-neighboring connections be-
tween fracture elements and matrix cells. The matrix-matrix connectivities are changed if the fracture plane
intersects the line that passes through the cell centers of each two neighboring matrix grid cells.

a non-orthogonal grid model. Thereafter, we move towards a series of geologically rele-
vant fields (all with isothermal multiphase fluid model). Using the pEDFM on the corner-
point grid geometry, a number of synthetic (highly conductive) fractures and (imperme-
able) flow barriers are added to the geologically relevant models. The performance of
this method will not be benchmarked as the purpose of these simulation results is to
demonstrate the pEDFM on the corner-point grid geometry as a proof-of-concept.

Tables 4.1 and 4.2 show the mutual input parameters that are used for the test cases
with isothermal multiphase and geothermal single-phase flow models respectively.

4.3.1. TEST CASE 1: 2D HETEROGENEOUS FRACTURED RESERVOIR (SQUARE)
In this test case, the pEDFM on Cartesian grid versus the corner-point grid geometry
is visually compared. For this reason, a box-shaped heterogeneous 100[m]×100[m] do-
main containing 30 fractures with mixed conductivities is considered. The length of each
fracture is different but the size of their aperture is identical and set to a f = 5 ·10−3 [m].
A 136 × 136 grid is imposed on the rock matrix and the fracture network consists of
1024 grid cells (in total 19520 cells). The permeability of the rock matrix ranges from
Kmmi n = 1.2× 10−15 [m2] to Kmmax = 1.2× 10−12 [m2]. And the permeability of the frac-
ture network has the range of K fmi n = 10−20 [m2] and K fmax = 10−6 [m2]. Two injection
wells are located at the bottom left and top left corners with an injection pressure of
pinj = 2×107 [Pa]. Additionally, there are two production wells at the bottom right and
the top right corners with a pressure of pprod = 1×107 [Pa]. Table 4.2 demonstrates the
input parameters of this test case. Figure 4.6 shows the results of the simulation using
both the Cartesian Grid and the corner-point geometry.

Note that in this test case (and the test case 2), the x, y, z coordinates of the grids of
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Table 4.1: Input parameters of the fluid and rock properties for isothermal multiphase flow used in some test
cases.

Property value
Matrix porosity (φ) 0.2[−]
Fractures permeability (min) 10−22 [m2]
Fractures permeability (max) 10−6 [m2]
Fractures aperture 5×10−3 [m]
Fluid viscosity (phase 1, µ1) 0.001 [Pa.S]
Fluid viscosity (phase 2, µ2) 0.003 [Pa.S]
Fluid density (phase 1, ρ1) 1000 [kg/m3]
Fluid density (phase 2, ρ2) 850 [kg/m3]
Initial pressure of the reservoir 2×107 [Pa]
Initial saturation (phase 1, S1) 0.0[−]
Initial saturation (phase 1, S2) 1.0[−]
Injection Pressure 5×107 [Pa]
Production Pressure 1×107 [Pa]

Table 4.2: Input parameters of the fluid and rock properties for the geothermal single-phase flow used in some
test cases.

Property value
Rock thermal conductivity (Λr ) 4 [W/m.K]
Fluid thermal conductivity (Λ f ) 0.591 [W/m.K]
Rock density (ρr ) 2750 [kg/m3]
Fluid specific heat (Cp f ) 4200 [J/kg.K]
Rock specific heat (Cpr ) 790 [J/kg.K]
Matrix porosity (φ) 0.2[−]
Fractures permeability (min) 10−20 [m2]
Fractures permeability (max) 10−8 [m2]
Fractures aperture 5×10−3 [m]
Initial pressure of the reservoir 1.5×107 [Pa]
Initial temperature of the reservoir 400 [K]
Injection Pressure 2×107 [Pa]
Injection Temperature 300 [K]
Production Pressure 1×107 [Pa]

the Cartesian geometry and the corner-point grid geometry are identical. However, the
grids are generated with different geometrical approaches. In one scenario, the grid cells
are discretized using the Cartesian grid geometry and the grid cells are indexed in every
of the x,y ,z directions (i ∈ {1, ..., Nx }, j ∈ {1, ..., Ny }, k ∈ {1, ..., Nz }). For this scenario the
pEDFM for the Cartesian grid is used which has already been developed [46]. In the other
scenario, the grid cells are generated using the corner-point grid geometry where a list of
nodes and a list of all the interfaces and transmissibilities are generated. the pEDFM for
the corner-point grid geometry that is developed in this work is used for this scenario.
Therefore, the size and positioning of the grid cells in the two scenarios are identical,
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(a) Permeability

(b) Pressure, Cartesian Grid (c) Pressure, Corner-point Grid

(d) Saturation, Cartesian Grid (e) Saturation, Corner-point Grid

Figure 4.6: Test case 1: 2D Heterogeneous. Figure 4.6a illustrates the permeability map of the system. Figures
4.6b and 4.6c show the pressure solution on a specific time-step for the Cartesian grid and the corner-point
grid geometry respectively. The figures on the bottom row (4.6d and 4.6e) visualize the saturation solutions at
the same time-step.

though have been generated with different geometrical approaches.
The results of the both scenarios show a match visually. In order to quantify the

difference between the results of the two different geometrical approach for the pEDFM,
a average relative error (in second norm) is calculated for the pressure and the saturation
distributions over the entire simulation time. This relative error for each variable x is
calculated as

ex = || xCart −xCPG ||2
|| xCart ||2

, (4.15)

where x is a solution vector (of either of the main unknowns) and the subscripts Cart
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and CPG indicate Cartesian grid and the corner-point grid geometry. The errors calcu-
lated for this test case are ep = 1.55×10−5 and eS = 1.60×10−4.

4.3.2. TEST CASE 2: 3D HOMOGENEOUS FRACTURED RESERVOIR (BOX)
This test case, similar to the test case 1, shows a visual comparison for the pEDFM on
the Cartesian grid versus the corner-point grid geometry. A 3D 100[m]×100[m]×40[m]
domain containing 15 lower dimensional fractures with different geometrical proper-
ties is considered. A 50×50×20 grid is imposed on the rock matrix. The fracture net-
work contains 1005 grid cells (total of 51005 grid cells). The rock matrix has a per-
meability of Km = 10−14 [m2]. The fracture network consists of both highly conduc-
tive fractures with a permeability of K f = 10−6 [m2] and flow barriers with a permeabil-
ity of K f = 10−22 [m2]. Two injection wells exist on the left corners with a pressure of
pinj = 2×107 [Pa]. Similarly, two production wells are located at the right corners with a
pressure of pprod = 1×107 [Pa]. All wells are vertical and are perforated over the entire
thickness of the reservoir.

Two different grids are considered using the CPG geometry: one with orthogonal
grids where the coordinates of all the grid cells are identical with those in the Carte-
sian grid geometry, and one with non-orthogonal grids where the pillars of the grids are
slightly tilted. To provide a better insight, the non-orthogonal grid mesh is shown in fig-
ure 4.7. As shown, the domain remains a Cartesian box, but the CPG grid is tilted to verify
its consistency.

Figure 4.7: Test case 2: The non-orthogonal mesh structure used in this test case. The domain is a 3D Cartesian
box, but the grids have tilted pillars in two of the dimensions, creating non-orthogonal grids.

Figure 4.8 illustrates the results of the simulation using both the Cartesian Grid and
the two sets of CPG models.

Figure 4.9 shows the errors between the results of the Cartesian grid geometry (as the
reference solution) and the two CPG cases (orthogonal and non-orthogonal). Similar
to the previous test case, a match is visible between the results of the Cartesian grid and
the orthogonal corner-point grid, with errors (calculated via equation 4.15) of ep = 1.71×
10−9 and eS = 2.47×10−8. The difference between the solutions of the Cartesian grid and
the non-orthogonal corner-point grids are greater as the different grid geometry results
in different connectivities (ep = 1.03×10−2 and eS = 4.44×10−2).
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(a) Cartesian Grid (b) Orthogonal CPG (c) Non-orthogonal

(d) Cartesian Grid (e) Orthogonal CPG (f) Non-orthogonal

Figure 4.8: Test case 2: 3D Homogeneous box. The figures in the upper row show the pressure solutions at a
specific time-step for the Cartesian grid and the CPG geometries respectively. The figures on the bottom row
illustrate the saturation solutions at the same time-step.

10 20 30 40 50 60 70 80 90 100
Simulation Time [days]

0

0.2

0.4

0.6

0.8

1

E
rr

or

10-7 Errors in CPG with orthogonal grids

Pressure Error
Saturation Error

(a) Orthogonal CPG

10 20 30 40 50 60 70 80 90 100
Simulation Time [days]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
rr

or

Errors in CPG with non-orthogonal grids

Pressure Error
Saturation Error

(b) Non-orthogonal CPG

Figure 4.9: Test case 2: The errors (calculated via equation ??) of the pressure and saturation results between
the Cartesian grid geometry (as the reference solution) and the CPG geometries: one with orthogonal grids
(figure 4.9a) and one with non-orthogonal grids (figure 4.9b).

4.3.3. TEST CASE 3: 3D RESERVOIR WITH NON-ORTHOGONAL GRIDS

The third test case (figure 4.10) demonstrates the capability of the pEDFM on the reser-
voir model based on the corner point grids. The grid cells in test case 2 were deformed
to create a distorted version of that model. The model allows to test the pEDFM imple-
mentation in a non-orthogonal grid system. The same dimensions and gridding from
test case 2 are used in this test case. The fracture network consisting of 15 fractures is
discretized in 876 grids, and a total of 50876 grid cells are imposed on the entire domain.
Some fractures are considered as highly conductive with a permeability of K f = 10−8 [m2]
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while others are given a very low permeability of K f = 10−20 [m2] and are considered to
be flow barriers (shown in figure 4.10a with yellow color for high permeability and blue
color for low permeability). The well pattern and the pressure restrictions are also the
same as in the previous test case.

(a) Fractures permeability
(scenario 1)

(b) Matrix cells overlapped by
fractures

(c) The wells geometry

Figure 4.10: Test case 3: A 3D fractured deformed box with non-orthogonal grid on the corner-point grid ge-
ometry. Figures 4.10a shows the permeability of the fractures. Figure 4.10b illustrates the matrix grid cells that
are overlapped by the fractures. Figure 4.10c shows the positioning of the injection and production wells.

The pressure and the saturation results are shown in figures 4.11a and 4.11b respec-
tively (at the left side of figure 4.11). As the grid geometry and the gridding system of
this test case is not similar to the previous test case, it is not possible to compare the two
test cases. The pressure and the saturation distribution of the second scenario (at the
same simulation time) can be observed at the right side of figure 4.11. The flow barriers
are close to the injection wells, thus restricting the displacement of the injecting phase
towards the center of the domain (figure 4.11b). Therefore, a high pressure gradient is
visible near the injection wells (figure 4.11a) as the low permeability fractures limit the
flux through the domain.

(a) Pressure (b) Saturation

Figure 4.11: Test case 3: A 3D fractured deformed box with non-orthogonal corner-point grid geometry. Figure
4.11a shows the pressure solution, figure 4.11b illustrates the saturation distribution.

Additionally, to perform a grid resolution sensitivity analysis of the developed model,
this test case was used with three different grid resolutions. While keeping all the input
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parameters identical as the ones that were mentioned above, three different computa-
tional grids (using corner-point grid geometry) were imposed on this domain, namely,
80× 80× 32, 40× 40× 16 and 20× 20× 8 for the rock matrix, and 2852, 757 and 173 for
the fracture network, respectively. Figure 4.12 shows the saturation distribution of these
three different gird resolutions at a simulation time of t = 100[d ay s]. The results of the
two lower grid resolutions (i.e., 20×20×8 and 40×40×16) were compared against the
results of the highest grid resolution (i.e., 80× 80× 32), meaning that the results of the
80×80×32 grid resolution is used as reference in the calculation of the error. The rel-
ative error for pressure and saturation results are given in Figure 4.13. These errors are
calculated as:

ex = || xHighRes −xLowRes ||2
|| xHighRes ||2

, x = {P,Sw } (4.16)

(a) 20×20×8 (b) 40×40×16 (c) 80×80×32

Figure 4.12: Test case 3: Grid resolution sensitivity analysis with three different grid resolutions (with non-
orthogonal corner-point grids) imposed on the computational domain. The figures show the saturation dis-
tribution at t = 100[d ay s] of simulation time. Only the gird cells with the saturation values of higher than
Sw = 0.5 are visible.
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Figure 4.13: Test case 3: Grid resolution sensitivity analysis with three different grid resolutions (with non-
orthogonal corner-point grids) imposed on the computational domain. These figures illustrate the pressure
and saturation errors of the results from different grid resolutions.
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4.3.4. TEST CASE 4: THE JOHANSEN FORMATION
The water-bearing Johansen formation was a potential candidate for CO2 storage in a
project promoted by the Norwegian government. The Norwegian continental margin
has excellent potential for CO2 storage options in saline aquifers.

Figure 4.14: Test case 4: The location of the Johansen formation can be observed on the left figure. This for-
mation is located within the green curve in the map, and the yellow curve represents areas where seismic data
has been acquired (courtesy of Gassnova). The figure on the right shows the depth map of the Johansen model
(NPD5 data set).

The Johansen formation [113] is located in the deeper part of the Sognefjord delta,
40–90[km] offshore Mongstad on Norway’s southwestern coast (see figure 4.14). It be-
longs to the Lower Jurassic Dunlin group and is interpreted as a laterally extensive sand-
stone, and it is overlaid by the Dunlin shale, and closed from below by the Amundsen
shale. A saline aquifer exists in the depth levels ranging from 2200[m] to 3100[m] below
sea level. The depth range makes the formation ideal for CO2 storage due to the pressure
regimes existent in the field (providing a thermodynamical situation where CO2 is in its
supercritical phase).

These formations have uniquely different permeabilities, and perform very differ-
ent roles in the CO2 sequestration process. The Johansen sandstone has relatively high
porosity and permeability, and it is suitable as a container to store CO2. The overlaying
Dunlin shale, with its low permeability, acts as a seal that avoids the CO2 from leaking to
the sea bottom layers.

The Johansen formation has an average thickness of nearly 100[m], and the water-
bearing region extends laterally up to 60[km] in the east-west direction and 100[km] in
the north-south direction. The aquifer has a good sand quality with average porosities
of roughly 25%. This implies that the Johansen formation’s theoretical storage capacity
can exceed one Gigaton of CO2 providing the assumption of residual brine saturation of
about 20%. The northwestern parts of the Johansen formation are located some 500[m]
below the operating Troll field, one of the North Sea’s largest hydrocarbon fields.

DATA SET

The MatMoRA project has created five models of the Johansen formation: one full-field
model (149× 189× 16 grids), three homogeneous sector models (100× 100×n for n =
11,16,21), and one heterogeneous sector model (100×100×11) also known as the NPD5
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sector. In this work, the last data set (NPD5) has been used. The NPD5 sector can be
seen in figure 4.15. In the left side of this figure, the NPD5 sector is highlighted with blue
color.

In the discretized computational grids, the Johansen formation is represented by
five layers of grid cells. The Amundsen shale below the Johansen formation and the
low-permeable Dunlin shale above are characterized by one and five cell layers, respec-
tively. The Johansen formation consists of approximately 80% sandstone and 20% clay-
stone, whereas the Amundsen formation consists of siltstones and shales, and the Dun-
lin group has high clay and silt content.

Figure 4.15: Test Case 4: Illustration of the Johansen model (NPD5 data set). The left figure represents the
active section of the model or NPD5, highlighted with blue color, and the right figure shows the faults marked
with red color.

ROCK PROPERTIES

The Johansen sandstone is a structure with a wedge shaped pinch out in the front part
of the model and divided into two sections at the back. Figures 4.16a and 4.16b show the
porosity and the permeability maps of the NPD5 sector, where the Dunlin shale above
the Johansen and the Amundsen shale below the Johansen formation are excluded. The
porosity map shows the cells with porosity values larger than 0.1. The permeability ten-
sor is diagonal, with the vertical permeability equivalent to one-tenth of the horizontal
permeability. The permeability is represented on a logarithmic color scale.

(a) Porosity of the NPD5 sector (b) Permeability of the NPD5 sector

Figure 4.16: Test Case 4: The porosity and the permeability of the NPD5 sector of the Johansen field.
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SIMULATION RESULTS

The “NPD5” sector of the Johansen formation model [53] is used in the following test
case. It is a corner-point grid reservoir model that consists of 100×100×11 grid cells from
which 88775 grid cells are active. The rock properties of the Johansen formation avail-
able on public data were given as input in the simulation. A network of 121 fractures is
embedded in the reservoir geological data set that contains both highly conductive frac-
tures and flow barriers with a permeability of K fmax = 10−8 [m2] and K fmi n = 10−20 [m2]
respectively. The model is bounded by two shale formations. Therefore the fractures
were placed inside the Johansen formation (layers 6 to 10). The fracture network con-
sists of 3494 grid cells (in total 92269 grid cells for the rock matrix and the fractures). Five
injection wells with a pressure of pinj = 5×107 [Pa] and four production wells with a pres-
sure of pinj = 1×107 [Pa] were placed in the model. Wells are vertical and drilled through
the entire thickness of the model. Figure 4.17d illustrates the location of the injection
and production wells in this test case.

Two scenarios are considered with two different fracture networks of mixed conduc-
tivities. While the geometry of both fracture networks is identical, the permeability val-
ues of the fractures from scenario 1 are inverted for scenario 2. This implies that the
highly conductive fractures in the fracture network of scenario 1 act as flow barriers in
the 2nd scenario and the flow barriers of scenario 1 are modified to be highly conductive
fractures in scenario 2. Figures 4.17a and 4.17b display the fracture networks of scenario
1 and scenario 2 respectively. The matrix grid cells overlapped by the fractures are visible
in figure 4.17c.

The simulation results of the first scenario are presented in figures 4.18 and 4.19.
The injection wells are surrounded by highly conductive fractures that facilitate the flow
since the model’s dimensions are considerably large (approximately 50[km]× 50[km]).
The pressure distribution in the reservoir is shown in figure 4.18. High pressure values
are observed in a large section of the reservoir as there is no restriction for flow from the
wells, and two shale formations bound the Johansen sandstone. One can interpret that
the high pressure drop observed in some areas is caused by presence of low permeable
fractures (or flow barriers) in those regions. The saturation displacement is consider-
ably enhanced by the highly conductive fractures (figure 4.19) located near the injection
wells.

The simulation results of the second scenario are presented in figures 4.20 and 4.21.
The injection wells are surrounded by low conductive fractures which restrict the flow
from the injection wells towards the production wells. The pressure distribution differs
considerably when compared to the first scenario. The flow barriers near the wells result
in high pressure drops in the vicinity of the injection wells. The saturation displacement
(figure 4.21) is lower than that of scenario 1 due to presence of low conductive fractures
near the injection wells.

4.3.5. TEST CASE 5: THE BRUGGE MODEL

The Brugge model is an SPE benchmark study conceived as a reference platform to as-
sess different closed-loop reservoir management methods [114]. It is the largest and
most complex test case on closed-loop optimization to represent real field management
scenarios. The active Brugge field model has 44550 corner-point grid cells, and the main
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(a) Fractures permeability (scenario 1) (b) Fractures permeability (scenario 2)

(c) Matrix cells overlapped by fractures (d) Location of injection and production wells

Figure 4.17: Test case 4: The Johansen formation with 9 wells and a set of 121 synthetic fractures (with mixed
conductivities). The figures on top show the fracture network with different permeabilities for scenario 1 (top
left) and scenario 2 (top right). The figure at bottom left illustrates the highlighted matrix cells that are over-
lapped by the fracture network. And the figure at bottom right shows the schematics of the injection and
production wells.

(a) Pressure in the matrix (b) Pressure in the fractures

Figure 4.18: Test case 4: The pressure profile of the Johansen formation for simulation scenario 1. The figure on
the left illustrates the pressure distribution in the matrix grid cells. The transparency of this figure is increased
to make the fractures visible and to display the pressure profile in the fractures in the figure on the right.

geological features present in the model are a boundary fault and an internal fault. Seven
different rock regions with their particular petrophysical properties are distributed in the
whole model. Thirty wells are included in the field model’s well production pattern: 20
producers and 10 injectors.
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(a) Saturation in the rock matrix after {5000,20000,35000}[days]

(b) Saturation in the fractures after {5000,20000,35000}[days]

Figure 4.19: Test case 4: The saturation profile of the Johansen formation for simulation scenario 1. The figures
on the top row show the saturation profile in the matrix grid cells and the figures on the bottom row display
the saturation maps in the fractures. From the left column towards the right column, the saturation profiles
are displayed for simulations times 5000, 20000 and 35000[days] respectively.

(a) Pressure in the matrix (b) Pressure in the fractures

Figure 4.20: Test case 4: The pressure profile of the Johansen formation for simulation scenario 2. The figure on
the left illustrates the pressure distribution in the matrix grid cells. To make the pressure profile of the fractures
visible, the transparency of the left side figure is increased and it is presented in the right side figure.

GEOLOGICAL MODEL

The geological structure of the Brugge field contains an east/west elongated half-dome
with a boundary fault at its northern edge and an internal fault with a throw at an angle
of nearly 20 degrees to the northern fault edge. The dimensions of the field are approx-
imately 10[km]× 3[km]. The original high-resolution model consists of 20 million grid
cells, with average cell dimensions of 50[m]×50[m]×0.25[m]. In addition to the essential
petrophysical properties for reservoir simulation (sedimentary facies, porosity, perme-
ability, net-to-gross, and water saturation), the grid model includes properties measured
in real fields (gamma-ray, sonic, bulk density, and neutron porosity). The data was gen-
erated at a detailed scale to produce reliable well log data in the thirty wells drilled in the
field.
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(a) Saturation in the rock matrix after {5000,20000,35000}[days]

(b) Saturation in the fractures after {5000,20000,35000}[days]

Figure 4.21: Test case 4: The saturation profile of the Johansen formation for simulation scenario 2. The figures
on the top row show the saturation profile in the matrix grid cells and the figures on the bottom row display
the saturation maps in the fractures. From the left column towards the right column, the saturation profiles
are displayed for simulations times 5000, 20000 and 35000[days] respectively.

(a) The whole model with active cells (b) Faults present in the model

Figure 4.22: Test case 5: Illustration of the Brugge model. The left graph represents the active section (colored
in blue) of the model, and the right figure shows the faults marked with red color.

The original high-resolution model was upscaled to a 450000 grid cells model, which
established the foundation for all additional reservoir simulations of the reference case.
A set of 104 realizations, each containing 60000 grid cells, was created from the data that
was extracted from the reference case.

ROCK PROPERTIES

Some properties of the realizations, i.e., porosity and permeability maps are visible in
figure 4.23.

SIMULATION RESULTS

The following test case from the Brugge model is used to show the pEDFM model’s ca-
pability on fracture modeling in a synthetic geologically relevant model with the corner-
point grid geometry. The reservoir model consists of 138×48×9 grid cells from which
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Figure 4.23: Test case 5: Porosity and permeability distributions of the Brugge field. The left graph shows the
porosity of the model. The middle and the right figures illustrate the horizontal and vertical permeability, both
plotted using a logarithmic color scale.

43474 grid cells are active. Rock properties of the realization available on public data
were used in the simulation. A network of 60 fractures is defined in the reservoir do-
main containing both highly conductive fractures and flow barriers with a permeability
of K fmax = 10−8 [m2] and K fmi n = 10−20 [m2] respectively. The fracture network consists
of 5384 grid cells (in total 48858 grid cells). The well pattern used in this test case was a
modified version of the original well pattern (with 30 wells) [114]. Four injection wells
with pinj = 5×107 [Pa] and three production wells with a pressure of pprod = 1×107 [Pa]
were defined in the model. Wells are drilled vertically and perforate through the entire
thickness of the reservoir.

Two scenarios are created with two different fracture networks of mixed conductivi-
ties. The geometry of both fracture networks is identical but the permeability values of
the fractures from scenario 1 are inverted for scenario 2, namely, the highly conductive
fractures in the fracture network of scenario 1 act as flow barriers in the 2nd scenario
and the flow barriers of scenario 1 are modified to be highly conductive fractures in sce-
nario 2. Figures 4.24a and 4.24b show the fracture networks of scenario 1 and scenario 2
respectively. The matrix grid cells overlapped by the fractures are visible in figure 4.17c.

The pressure and saturation results of scenario 1 are shown in figures 4.25 and 4.26
respectively. The pressure results are only shown for the simulation time 5000[days], but
the saturation profiles are presented for three time intervals of 2000, 5000 and 10000[days].
The injection wells are surrounded by highly conductive fractures that act as flow chan-
nels. As a result, the saturation of the injecting phase is considerably increased in larger
distances from the injection phases and the pressure drop around the injection wells is
not high.

The pressure and saturation results of scenario 2 are shown in figures 4.27 and 4.28
respectively. The pressure results are only shown for the simulation time 5000[days], but
the saturation profiles are presented for three time intervals of 2000, 5000 and 10000[days].
The injection wells are surrounded by flow barriers that restrict the flow. As a result, a
high-pressure zone is formed near the wells since the central area of the reservoir is iso-
lated with the low permeability fractures. This is followed by a sharp pressure gradient.
The saturation displacement is small due to the reservoir’s low permeability values and
the absence of highly conductive fractures near the wells. The saturation displacement
is restricted to the area near the injection wells.
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(a) Fractures permeability (scenario 1) (b) Fractures permeability (scenario 2)

(c) Matrix cells overlapped by fractures (d) Location of injection and production
wells

Figure 4.24: Test case 5: The Brugge model with 7 wells (4 injectors and 3 producers) and a set of 60 synthetic
fractures (with mixed conductivities). The figures on top show the fracture network with different permeabil-
ities for scenario 1 (top left) and scenario 2 (top right). The figure at the bottom left illustrates the highlighted
matrix cells that are overlapped by the fracture network. And the figure at the bottom right shows the schemat-
ics of the injection and production wells.

(a) Pressure in the matrix (b) Pressure in the fractures

Figure 4.25: Test case 5: The pressure profile of the Brugge model for simulation scenario 1. The figure on the
left shows the pressure distribution in the matrix grid cells. The transparency of this figure is increased to make
the pressure map in the fractures visible. This map is displayed on the right figure. The results are shown for
the simulation time 5000[days]

4.3.6. TEST CASES 6 AND 7: THE NORNE FIELD

The Norne field [115] is an oil and gas field situated in the Norwegian Sea around 80
kilometers north of the Heidrun oil field. The field dimensions are approximately 9[km]×
3[km] and the seawater depth in the area is 9[m]. The field is placed in a license awarded
in 1986 and incorporates blocks 6608/10 and 6608/11 (see figure 4.29). Equinor is the
current field operator. The expected oil recovery factor is more than 60%, which is very
high for an offshore sub-sea oil reservoir.

Subsurface data from the Norne field have been published for research and edu-
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(a) Saturation in the rock matrix after {2000,5000,10000}[days]

(b) Saturation in the fractures after {2000,5000,10000}[days]

Figure 4.26: Test case 5: The saturation profile of the Brugge model for simulation scenario 1. The figures on
the top row illustrate the saturation profile in the matrix grid cells and the figures on the bottom row show the
saturation maps in the fractures. From the top left column towards the right column, the saturation profiles
are displayed for simulations times 2000, 5000 and 10000[days] respectively.

(a) Pressure in the matrix (b) Pressure in the fractures

Figure 4.27: Test case 5: The pressure profile of the Brugge model for simulation scenario 2. The figure on the
left shows the pressure distribution in the matrix grid cells. The transparency of this figure is increased to make
the pressure map in the fractures visible. This map is displayed on the right figure. The results are shown for
simulation time 5000[days]

cation purposes thanks to NTNU, Equinor, and the partners’ initiative. The full sim-
ulation model can be obtained through the Open Porous Media (OPM) project (opm-
project.org) [116]. The Norne field simulation model was the first benchmark case based
on the real field data available to the public. The data is based on the 2004 geological
model and consists of 46×112×22 corner-point grid cells.

RESERVOIR

The production of the Norne field is obtained from a Jurassic sandstone, which lies at a
depth of 2500 meters below sea level. The original estimation of recoverable resources
was 95.2 million cubic meters for oil, mainly in the Ile and Tofte formations, and 13.01
billion cubic meters for gas in the Garn formation.

PETROPHYSICAL DATA

The field simulation model’s petrophysical data consist of porosity, permeability, net-
to-gross, and transmissibility multiplier data. Permeability is anisotropic and heteroge-
neous, with a clear layered structure as expected for a real reservoir field model. The
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(a) Saturation in the rock matrix after {2000,5000,10000}[days]

(b) Saturation in the fractures after {2000,5000,10000}[days]

Figure 4.28: Test case 5: The saturation profile of the Brugge model for simulation scenario 2. The figures on
the top row illustrate the saturation profile in the matrix grid cells and the figures on the bottom row show the
saturation maps in the fractures. From the top left column towards the right column, the saturation profiles
are displayed for simulations times 2000, 5000 and 10000[days] respectively.

Figure 4.29: Test Case 6 and 7: The location of the Norne Field. The left plot shows the field located in the
Norwegian sea (source: Equinor), and the right picture shows the location of the licensed blocks (source: Nor-
wegian Petroleum Directorate).

Figure 4.30: Test Case 6&7: Illustration of the Norne field model. The left graph represents the active section
(colored in green) of the model, and the right figure shows the faults marked with red color.

vertical communication is decreased in significant regions of the model by the transmis-
sibility multiplier data that is available, resulting in intermediate layers of the reservoir
with permeability values close to zero. The porosity values of the field are in the inter-
val between 0.094 and 0.347 (see figure 4.31 on the left). A considerable percentage of
impermeable shale is present in some regions in the model.



4

80 4. PEDFM ON CORNER-POINT GRID GEOMETRY

Figure 4.31: Test Case 6 and 7: The porosity and permeability maps for the Norne field. The left graph shows
the model’s porosity. The middle and the right ones illustrate the horizontal and vertical permeabilities, both
plotted using a logarithmic color scale.

SIMULATION RESULTS OF TEST CASE 6: NORNE WITH HIGHLY CONDUCTIVE FRACTURES

This test case demonstrates the performance of the pEDFM model on the Norne field.
The corner-point grid data for this and the following test cases was extracted from the
input files of the MATLAB Reservoir Simulation Toolbox (MRST) [53].

As explained above, the Norne field is an oil field located around 80 kilometers north
of the Heidrun oil field in the Norwegian Sea [53]. As described in the MRST [53], the
extent of this oil field is 10[Km]×2[Km]×100[m]. The corner-point grid skeleton con-
sists of 46×112×22 grid cells from which 44915 grid cells are active forming the com-
plex geometrical shape of this oil field. A synthetic network of 15 fractures (designed by
the author as a realization) is considered inside this domain. The permeability of the
Norne rock matrix in this test case is assumed to be constant at Km = 10−14 [m2] and the
permeability data from the field was not used in this test case. All fractures are highly
conductive with a permeability of K f = 10−8 [m2]. Two injection wells with a pressure
of pinj = 5×107 [Pa] and two production wells with a pressure of pprod = 1×107 [Pa] are
located in the outer skirts of the reservoir as can be seen on figure 4.32a. All wells are
vertical and are perforated over the entire thickness of the reservoir. For this test case,
the low-enthalpy single-phase geothermal fluid model was used. The input parameters
used in this test case are listed in table 4.2.

(a) Pressure in the matrix (b) Pressure in the fractures (c) Temperature

Figure 4.32: Test case 6: The Norne oil field. Figures 4.32a and 4.32b show the pressure solutions inside the
rock matrix and the embedded fractures. The figure on the right (4.32c) visualizes the temperature solution on
the same time-step.
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SIMULATION RESULTS OF TEST CASE 7: NORNE WITH MIX-CONDUCTIVE FRACTURES

In this test case, the Norne field model with the skeleton of 46×112×22 grid cells and a
total of 44915 grid cells active matrix grid cells is considered. Unlike in test case 6, the real
rock properties of the Norne field were used in this test case. A set of 56 synthetic frac-
tures are created and embedded in the reservoir domain which comprises highly con-
ductive fractures and flow barriers with a permeability of K fmax = 10−8 [m2] and K fmi n =
10−20 [m2] respectively. The fracture network consists of 2165 grid cells. In total there
are 48705 grid cells in this test case. Four injection wells with a pinj = 5× 107 [Pa] and
three production wells with a pprod = 1×107 [Pa] were placed in the model. The wells are
vertical and drilled through the entire thickness of the model.

Similar to the test cases in Johansen (4.3.4) and Brugge (4.3.5) models, two scenarios
are considered for the fracture network used in this test case. In both scenarios, the
geometrical properties of the fracture networks are identical. However, the permeability
values of the highly conductive fractures and flow barriers from scenario 1 are inverted
in scenario 2.

(a) Fractures permeability (scenario 1) (b) Fractures permeability (scenario 2)

(c) Matrix cells overlapped by fractures (d) Location of injection and production
wells

Figure 4.33: Test case 7: The Norne model with 7 wells (4 injectors and 3 producers) and a set of 56 synthetic
fractures (with mixed conductivities). The figures on the top row show the fracture network with different
permeabilities for scenario 1 (top left) and scenario 2 (top right). The figure at bottom the left illustrates the
highlighted matrix cells that are overlapped by the fracture network. And the figure at the bottom right shows
the schematics of the injection and production wells.

The pressure and saturation results of scenario 1 simulation are presented in figures
4.34 and 4.35 respectively. The pressure results are only shown for the simulation time
5000[days], but the saturation profiles are presented for three time intervals of 2000, 5000
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and 10000[days]. The injection wells are surrounded by flow barriers that restrict the sat-
uration displacement in the reservoir. The pressure is considerably high in the areas near
the wells. These high-pressure areas are an indication that the pEDFM implementation
in the corner-point grid geometry is successful in the modeling of the fractures with low
conductivities. High pressure drops can be seen at the location of the flow barriers. The
increase in saturation is mainly carried out in two parts of the model. These two areas
are not isolated from the rest of the model which allows a distribution of the injecting
phase through the flow paths.

(a) Pressure in the matrix (b) Pressure in the fractures

Figure 4.34: Test case 7: The pressure profile of the Norne model for simulation scenario 1. The figure on the
left shows the pressure distribution in the matrix grid cells. The transparency of this figure is increased to make
the pressure map in the fractures visible. This map is displayed on the right figure. The results are shown for
the simulation time 5000[days]

(a) Saturation in the rock matrix after {2000,5000,10000}[days]

(b) Saturation in the fractures after {2000,5000,10000}[days]

Figure 4.35: Test case 7: The saturation distribution of the Norne field for simulation scenario 1. The figures on
the top row illustrate the saturation profile in the matrix grid cells and the figures on the bottom row show the
saturation maps in the fractures. From the left column towards the right column, the saturation profiles are
displayed for simulations times 2000, 5000 and 10000[days] respectively.

The results of scenario 2 are shown in figures ?? and 4.37 respectively. Just like the
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previous scenario, the pressure results are only shown for the simulation time 5000[days],
while the saturation profiles are shown for time intervals of 2000, 5000 and 10000[days].
The injection wells are surrounded by highly conductive fractures that act as flow chan-
nels. The pressure is more uniformly distributed. As a result, the effect of high permeable
fractures near the injector wells has increased the saturation displacement across larger
distances in the domain.

(a) Pressure in the matrix (b) Pressure in the fractures

Figure 4.36: Test case 7: The pressure profile of the Norne model for simulation scenario 2. The figure on the
left shows the pressure distribution in the matrix grid cells. The transparency of this figure is increased to make
the pressure map in the fractures visible. This map is displayed on the right figure. The results are shown for
the simulation time 5000[days]

(a) Saturation in the rock matrix after {2000,5000,10000}[days]

(b) Saturation in the fractures after {2000,5000,10000}[days]

Figure 4.37: Test case 7: The saturation distribution of the Norne field for simulation scenario 2. The figures on
the top row illustrate the saturation profile in the matrix grid cells and the figures on the bottom row show the
saturation maps in the fractures. From the left column towards the right column, the saturation profiles are
displayed for simulations times 2000, 5000 and 10000[days] respectively.
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4.4. CONCLUSIONS
A projection-based embedded discrete fracture model (pEDFM) for the corner-point
grid (CPG) geometry was developed and presented. This method was used with different
fluid models, i.e., for fully-implicit simulation of isothermal multiphase fluid flow and
low-enthalpy single-phase coupled mass-heat flow in fractured heterogeneous porous
media. First, the corner-point grid geometry and its discretization approach were briefly
described. Afterwards, the pEDFM model [46, 47] was extended to account for fully 3D
fracture geometries on the generic corner-point grid discrete system. Through a few 2D
and 3D box-shaped (homogeneous and heterogeneous) test cases, the accuracy of the
pEDFM on the corner-point grid geometry was briefly compared against the Cartesian
grid geometry. The new method presented similar results of satisfactory accuracy on the
corner-point grid geometry when compared to Cartesian grid-geometry. The 3D box-
shaped reservoir was then converted into non-orthogonal gridding system to asses the
pEDFM method further.

Moreover, numerical results were obtained on a number of geologically-relevant test
cases. Different scenarios with various synthetic fracture networks were considered for
these test cases. These fine-scale simulations allowed for mix-conductivity fractures. It
was shown that pEDFM can capture the physical influence of both highly conductive
fractures and flow barriers on the flow patterns. The performance of the pEDFM on the
corner-point grid geometry casts a promising solution for increasing the discretization
flexibility and enhancing the computational performance while honoring the accuracy.
Many geo-models (including ones used in the test cases above) contain millions of grid
cells that have complex geometrical alignments to match the positioning of the frac-
tures and faults, causing significant computational complexity and lack of flexibility es-
pecially when taking geomechanical deformation into account. The pEDFM model can
provide an appropriate opportunity to avoid the complexity of gridding in such models
by explicitly representing the discontinuities such as fractures and faults. In presence of
elastic and (more importantly) plastic deformations, one could only modify the gridding
structure of the affected region in the rock matrix, fully independent of the fractures and
faults. This advantage results in significant computational gains especially in the realm
of poromechanics.

Advanced methods such as discretization on the corner-point grid and employment
of the developed fracture models can deliver substantial computational gains while pro-
viding accuracy at a desired level for field-scale models. However, the large size of the
geological formations results in imposing such a high number of computational grids
on the domain that solving such a large-sized system is beyond the capability of current
computers using fine-scale methods. Therefore, more advanced models are in demand
to reduce the size of the systems of equations, obtaining an approximate solution in a
more computationally efficient manner while avoiding large accuracy sacrifices. In the
next chapters of this dissertation, a number of static and dynamic multilevel multiscale
methods are described where the main aim of these advanced methods is to create a
multilevel multiscale (static or dynamic) representation of the fine-scale system. Vari-
ous operators provide efficient mapping between different resolutions algebraically. The
approximated solutions are achieved with significant computational gains but with min-
imal accuracy sacrifices.
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5
STATIC MULTILEVEL APPROACHES

FOR FRACTURED POROUS MEDIA

In the previous chapters, the mathematical and physical concepts of the simulation of
mass and heat transport in heterogeneous fractured porous media were briefly covered.
The need for such simulations, the challenges that geo-engineering community faces
and various proposed solutions to many of those challenges were discussed. Besides
the governing equations and the fine-scale discretization of the equations, the simula-
tion strategies for coupling these equations were also explained. To linearize the non-
linear equations, the Newton-Raphson iteration scheme is used. After solving the lin-
earized system and updating the properties, the convergence criteria are checked and
the solution is obtained after successful convergence at each time-step. To explicitly
account for fractures and faults in the domain, the projection-based embedded frac-
ture model (pEDFM) was described. Moreover, the corner-point grid (CPG) geometry
was employed for discretization of geologically relevant and field-scale models. To this
point, all the mentioned approaches involve fine-scale techniques. However, the size of
the field-scale models is yet remarkably large. Discretization of such domains demands
imposing high-resolution computational grids. Obtaining simulation solutions on these
large scale domains is challenging and results in significant computational complexity.
Even with the technological advancements achieved in the field of computer hardware
and high performance computation, it is still impossible to run computer models with
such large computational domains using conventional methods. Therefore, advanced
simulation methods are needed that can provide efficiency (i.e., applicable to field-scale
problems) while maintaining accuracy at the desired level.

As was briefly explained in section 1.6, various multiscale and multilevel multiscale
methods have been developed by the scientific community to answer the mentioned
challenges.

In this chapter, the static multiscale finite volume (MsFV) and the multilevel MsFV
(MMsFV) methods for fractured porous media are explained. For the sake of the simplic-

Parts of this chapter is taken from the author’s M.Sc. dissertation, Delft University of Technology (2016) [83].
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ity in the fluid model, isothermal single-phase incompressible flow in fractured porous
media is considered. The MsFV method can obtain an efficient solution for the pres-
sure (incompressible flow) equation by solving it at a coarser resolution, while honoring
the fine-scale heterogeneities. Even though the MsFV method (with only one coarsen-
ing level) is efficient for many scenarios, its applicability is limited to only the use of
2 levels of grids (fine-scale and one level of coarse-scale). For real-field applications,
where several millions (or billions) of degrees of freedom exist, the construction of only
one level of coarse-grid resolution may not be sufficient to reduce the size of the linear
systems significantly. In such domains, the MMsFV method represents an important
step forward for the application of multiscale methods where coarse grids with multi-
ple coarsening levels can be imposed on the fine-scale mesh, reducing the size of the
linear-system substantially. Combined with explicit fracture models (e.g., the EDFM and
the pEDFM), independent coarse grids with different coarsening ratios are employed on
the rock matrix and the overlapping fractures, increasing the flexibility and practicality
of the MMsFV method for naturally and induced fractured porous media with complex
fracture networks. Using a number of 2D fractured test cases, the accuracy of the MsFV
and MMsFV methods are assessed and compared against the fine-scale results.

5.1. SINGLE-PHASE INCOMPRESSIBLE FLOW
The mass balance equations of the isothermal multiphase flow in fractured porous me-
dia, i.e., (2.1)-(2.2) (see section 2.1), with assumption of incompressible single-phase
fluid flow, are reduced to

−∇· (λ ·∇p
)m = qm,w +

nfrac∑
i=1

Qm, fi , on Ωm ⊆ℜn (5.1)

for the rock matrix m and

−∇· (λ ·∇p
) fi = q fi ,w +Q fi ,m +

nfrac∑
j=1

(
Q fi , f j

)
j 6=i

, on Ω fi ⊆ℜn−1 ∀ i ∈ {1, ...,nfrac}

(5.2)
for the lower dimensional fracture ( fi ). In these equations, λ = K

µ is the mobility calcu-
lated for the fluid in which µ is the fluid viscosity and K is the rock absolute permeability.
Superscripts m, fi and w correspond to matrix, fracture i and well, respectively. qm,w

and q fi ,w are the volumetric source terms (i.e., wells) on the rock matrix m and the frac-
ture fi . Moreover, Qm, fi and Q fi ,m are the volumetric flux exchanges between the matrix
m and the overlapping fracture fi for the grid cells where overlap occurs, and Q fi , f j is the
flux exchange from j -th fracture to the i -th fracture on the intersecting elements. Mass
conservation holds in this equation as well, meaning

Ð
V

Qm, fi dV =−Î
A fi

Q fi ,md A, andÎ
A fi

Q fi , f j d A =− Î
A f j

Q f j , fi d A. Please note that due to the assumption of incompressible

single-phase fluid, the density is constant and does not change in space or in time, thus
ρ is canceled out from the equation. Therefore, the mass balance equation is written as
a volumetric equation with the unit of [m3/s].
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According to the Peaceman well model, the volumetric well source terms for the ma-
trix and the fractures are calculated as

qm,w = W I ·λ∗ · (pw −pm)

∆V
,

q fi ,w = W I ·λ∗ · (pw −p fi )

∆A
.

The flux exchanges due to the matrix-fracture and fracture-fracture connectivities,
are obtained via

Qm, fi =C I m, fi ·λ∗ · (p fi −pm)

Qm, fi =C I fi ,m ·λ∗ · (pm −p fi )

Q fi , f j =C I fi , f j ·λ∗ · (p f j −p fi ),

where C I is the connectivity index between each two non-neighboring elements ((3.61)).
In the equations (5.1)-(5.2), the volumetric flux exchange between each two neigh-

boring control volumes i and j (inside one medium) using the TPFA scheme is given
as

Fi j = 1

µ∗ Ti j (pi −p j ), (5.3)

where Ti j = Ai j

di j
K H

i j is the transmissibility between grid cells i and j . Ai j is the interface

area between the two grid cells, di j is the distance between their cell centers and K H
i j

is the harmonic average of the absolute permeabilities set at the interface of grid cells i
and j . The properties with superscript ∗ are obtained using the upwind scheme.

The volumetric flux exchange between a matrix (denoted as m) cell i and a fracture
(denoted as f ) cell j reads

F
m, f
i j =−F

f ,m
i j =− 1

µ∗ T m, f
i j (pm

i −p f
j ), (5.4)

and the flux between two intersecting (non-neighboring) fracture elements i (on fracture
fi ) and j (on fracture f j ) is written as

F
fi , f j

i j =−F
fi , f j

i j =− 1

µ∗ T
fi , f j

i j (p f
i −pg

j ). (5.5)

In the flux terms above, the transmissibilities T m, f
i j and T

fi , f j

i j are obtained using

identical formulation from the EDFM model in section 3.3.1. The fine-scale discrete
mass balance equation for single-phase incompressible flow reads(

Nn∑
j=1

Fi j

)m

+
nfrac∑
k=1

(N fk∑
j=1

F
m, fk
i j

)
= (

qm,w )
i , ∀ i ∈ {1, ..., Nm} (5.6)
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for element i in the rock matrix m and(
Nn∑
j=1

Fi j

) fh

+
N fk∑
j=1

F
fh ,m

i j +
nfrac∑
k=1

(N fk∑
j=1

F
fh , fk

i j

)
=

(
q fh ,w

)
i

, ∀ i ∈ {1, ..., N fh
} (5.7)

for the element i in the fracture ( fh). Due to the lack of any non-linear term in these
time-independent equations, the system of equations is solved as A p = q . Here, A is
the coefficient matrix including the transmissibility terms. p is the vector of pressure
unknowns and q contains the known terms of the well fluxes. Therefore, one simply can
write the system of equations as:Am,m Am, f

A f ,m A f , f

 pm

p f

=
qm

q f

 (5.8)

In the system of equations above, the Am,m sub-block consists of the connectivi-
ties between the neighboring grid cells in the rock matrix. Similarly, A f , f contains the
connectivities between the neighboring grid cells within each fracture and also the con-
nectivities between the non-neighboring fracture elements (belonging to two different
fractures) due to intersections. The terms inside the Am, f and A f ,m sub-blocks are the
non-neighboring connectivities between the rock matrix grid cells and the overlapping
fracture elements.

The size of this linear system (5.8) at fine-scale resolution can be significantly large
in case of field-scale domains. In the next sections, the MsFV and MMsFV methods are
employed to reduce the size of the system and provide computational efficiency and at
the same time honor the fine-scale heterogeneities.

5.2. MULTISCALE APPROACHES
The multiscale finite volume (MsFV) method [58, 105] and the multiscale finite element
(MsFE) [55, 117, 118] methods were developed to solve the elliptic (incompressible) or
parabolic (compressible) pressure equations for flow in porous media with higher com-
putational efficiency. These methods are employed as a solver for the pressure equation
in simulation models with sequential strategies, (e.g., IMPES [119] or sequential implicit
[59]). The computational costs are reduced by solving the pressure equation on a coarser
grid resolution compared to the fine-scale discretization of geological properties. These
methods represent an alternative to upscaling techniques [54]. Yet, despite the classi-
cal upscaling methods, the multiscale methods do not redefine the heterogeneities on
a different resolution but only to map the solution between the fine-scale and coarse
scale resolutions. In multiscale methods, a coarse-scale system is first constructed for
the pressure equation but the fine-scale information is preserved using the local basis
functions. Once the pressure is obtained at the coarse scale resolution, the solution is
prolonged (or interpolated) back to the original fine-scale resolution. Figure 5.1 shows
schematically how different the multiscale approach is compared to the upscaling ap-
proach [120].

To enhance the computational performance, algebraic descriptions of multiscale
methods have been developed such that the so-called prolongation and restriction oper-
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Fine-scale permeability Upscaled permeability

Upscaling

Pressure

Saturation

Solve

(a) Upscaling approach

Finescale permeability Coarse pressure

Multiscale

Interpolated pressure

Saturation

Solve

Solve

(b) Multiscale approach

Figure 5.1: Visual comparison between the upscaling (a) and the multiscale (b) approaches. In the upscaling
approach, the fine-scale rock properties are used to obtain averaged and upscaled properties on a coarse res-
olution on which governing equations are solved. However, in the multiscale approach, the fine-scale rock
properties are used to map the equations to a coarser solution on which a coarse-scale pressure equation is
solved. Once a coarse pressure is obtained, the pressure solution is interpolated back to the fine-scale resolu-
tion and used to solve the transport equation. This figure is extracted from [120].
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ators are used as mapping between the fine-scale coarse scale systems [79, 82, 121–123].
Moreover, to improve the quality of the interpolated pressure solution and improve the
convergence, iterative multiscale methods have also been introduced [124]. This ap-
proach allows to employ multiscale methods as “physics-based” linear solvers and their
performance has been thoroughly studied in the literature [79, 124, 125]. The applicabil-
ity of multiscale methods to fractured media [44, 81, 126], unstructured grids [63, 127],
geomechanical processes [128, 129], and even to real-field applications [130, 131] are
among the recent developments. The extensions also include enrichment strategies in
presence of strong heterogeneity contrast that improve the multiscale solutions with ad-
ditional basis functions (enrichment). These extensions were developed both within the
finite element and the finite volume frameworks [81, 132–134]. Recently, it has also been
shown how to take advantage of multiscale methods within the context of inverse mod-
eling using both analytical [135–137] and stochastic [138, 139] gradient-based optimiza-
tion algorithms.

Next, the MsFV method for fractured porous media is covered. This is important
in order to develop the multilevel multiscale method (MMsFV). Like many advanced
computational methods, the MsFV method requires its own computational grids which
are imposed on the given fine-scale domain. The MsFV method, in particular, imposes
two sets of coarse grids, namely the primal coarse (coarse from now on) and the dual-
coarse grids. Next, the construction of these sets of grid cells are explained.

5.2.1. THE MULTISCALE FINITE VOLUME METHOD (MSFV )
In order to describe the multiscale finite volume (MsFV) method for fractured porous
media, first the MsFV method is briefly covered. Let the mass balance equation for
single-phase incompressible flow (5.1) be rewritten for the rock matrix without presence
of the fractures.

−∇· (λ ·∇p
)= q w , on Ω⊆ℜn (5.9)

where the following boundary conditions are applied to the domain:{
−λ ·∇p ·n = ū on Γu

p = p̄ on Γp ,
(5.10)

with Γu∪Γp = ∂Ω and n being the unit normal vector associated with ∂Ω. Let the contin-
uum domain be discretized into N f number of fine-scale grid cells (subscript f denotes
the fine-scale resolution). The discretized system of equations from the single-phase
flow equation (5.9) can be written in the form:

A f p f = q f . (5.11)

where, A f is an N f ×N f matrix and is called the fine-scale pressure coefficient matrix.
The MsFV method imposes two overlapping coarse grids. First, on the given fine-scale
resolution grid mesh, the primal coarse grid is imposed. The primal coarse cells form a
non-overlapping partitioning of the computational domain, with flexible geometry and
resolution (i.e., arbitrary coarsening factor in each direction). A selected fine-grid cell in
each coarse grid cell is taken as the coarse node (or vertex). The solution at the coarse
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nodes will be found by solving the coarse-scale system. By connecting the coarse nodes
together through a wire-basket pattern, a secondary –i.e., dual– coarse grid is obtained,
as shown in figure 5.2 for 1D (on the left) and 2D (on the right) domains. Note that in
2D domain, the fine-scale grid cells can be flagged based on their positions with respect
to the dual-coarse grid: vertices (coarse nodes), edges (at the edge of the dual coarse
cells), and interiors (inside the dual coarse cells). In a 3D domain however, the fine-scale
grid cells are categorized into four flags, namely, vertices (coarse nodes), edges (at the
edge of the dual coarse cells), faces (on the faces of the dual coarse cells) and interiors
(inside the dual coarse cells). There are two different approaches for construction of the
primal and dual coarse grid cells. One approach is to create primal coarse grid cells with
identical sizes. In this approach, no coarse node (vertex) is located on the corners of the
domain. The top row of figure 5.2 illustrates this approach. Assuming N f ,x fine-scale
grid cells in x direction (this applies to any of the x, y, z directions), the coarsening ratio
in x direction is defined as

γx = N f ,x

Nc,x
, (5.12)

where Nc,x is the number of coarse grid cells (and conclusively the number of coarse
nodes or vertices) in x direction. In this approach the sizes of the dual coarse grid cells
vary depending on their location (whether internal or near boundaries of the domain).
The second approach allows for putting the coarse nodes on the corners and the bound-
aries of the domain. In contrary to the first approach, the primal coarse grid cells have
different sizes depending on their location but all the dual coarse grids have identical
sizes in this method of coarse grid construction. Here, the coarsening ratio in x direc-
tion can be obtained as

γx = N f ,x −1

Nc,x
+1. (5.13)

As an example, in figure 5.2, a ratio of γ = 5 is considered for both approaches. On
the top row, following the first approach, 15 fine-scale grid cells are divided into Nc,x =
N f ,x /γx = 15/5 = 3 primal coarse grid cells. On the bottom row however, with the second
method of coarse grid construction, 16 fine-scale grid cells are divided into Nc,x = (N f ,x−
1)/γx +1 = (16−1)/5+1 = 4 primal coarse grid cells.

Throughout this chapter, both approaches will be used in various examples and test
cases. No comparison will be made as each coarse grid construction method requires
different fine-scale computational grids.

Using the MsFV method, the fine-scale pressure p f , is approximated as

p f ≈ p ′ =
Nd∑
j=1

(
Nc1∑
k=1

Φk
j ,c1pk

c1

)
, (5.14)

where pk is the pressure value of the primal coarse control volume k and Φk
j is the so-

called basis function corresponding to the primal coarse node k with values in Ω̃ j . The
basis functions are acquired by obtaining a numerical solution for a localized problem
on each dual coarse domain Ω̃ j . The right-hand-side of the system of equations for these
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Dual 
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grid

Primal 

coarse 

grid

Primal coarse grid

Dual coarse grid

Interior Edge Vertex

(a) Vertices are not put on the corners. All primal coarse grids have identical size, but dual coarse grids have different sizes.

Dual 

coarse 

grid

Primal 

coarse 

grids

Primal coarse grids

Dual coarse grid

Interior Edge Vertex

(b) There are vertices on the corners. The primal coarse grids have different sizes, but dual coarse grids have identical sizes.

Figure 5.2: Construction of the primal and dual coarse grid structure in the multiscale approach for 1D (figures
on the left) and 2D (figures on the right) domains with two different approaches. On the top row, the domain
is subdivided into identical primal coarse grid cells. In this approach, there is no vertex on the corners of the
domain and the dual coarse grids can have different sizes depending on their location on the domain. On
the bottom row however, coarse nodes (vertices) are located on the corners as well, creating heterogeneous
sizes for the primal coarse grid cells, but the dual coarse grid cells have identical sizes. In all the figures in
this example, the coarsening ratio in any dimension is γ = 5. For the first approach, 15 grid cells at fine-scale
resolution result in 3 primal coarse grid cells, and for the second approach, 16 fine-scale grid cells are divided
into 4 primal coarse grid cells in each direction.

local problems are set to be zero. In order to localize the flow problem, a reduced bound-
ary condition is used on each dual coarse domain, Ω j . Therefore, the following local
problem is solved for each dual coarse cell.

−∇· (λ ·∇Φk
j ) = 0 on Ω̃ j

−∇|| ·
(
λ ·∇Φk

j

)
|| = 0 on ∂Ω̃ j

Φk
j (xi ) = δki ∀xi ∈ {1, ..., Nc }.

(5.15)

In the equation above, the termδki denotes the Kronecker delta, and the subscript ||
means that only the component parallel to the boundary ∂Ω̃ j is taken into account. This
refers to solving a problem of reduced dimensions at the boundary of each dual coarse
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grid cell. Conclusively, in case of a 2D domain, a 1D problem is solved (see figure 5.3).
For a 3D domain, this process is done recursively. In other words, at first, 1D problems
are locally solved and their results are used as boundary conditions for 2D reduced local
problems. Definitively the results of the 2D solutions are used as the boundary condi-
tions for the 3D basis functions.

0

0

1

0

0

1

0

0

Ω̃ j

Figure 5.3: Computation of two basis functions from two coarse nodes in a 2D dual coarse domain Ω̃ j . As
shown, the basis function is obtained after solving a 1D reduced problem. The solution of this reduced problem
is used as boundary conditions for the computation of the 2D basis function. This figure is taken from [120].

Due to the construction method, the partition of unity holds in the computation of
the basis functions, namely,

Nc∑
k=1

Nd∑
j=1
Φk

j = 1. (5.16)

Inside a given dual domain, a basis function is computed for each coarse node (4 for
2D and 8 for 3D domains). However, one can merge the basis functions corresponding to
one coarse node to obtain one basis function for that coarse node. Therefore, there exist
Nc basis functions for Nc coarse nodes in a given domain. Figure 5.4 shows an example
of such basis function.

The MsFV system at coarse scale is obtained by substituting equation 5.14 in equa-
tion 5.9. Integrating over each primal coarse grid control volume Ω̆k , the following equa-
tion is achieved:

−
∫
Ω̆k

∇·
(
λ ·∇

Nd∑
j=1

( Nc∑
k=1

Φk
j pk

))
dΩ=

∫
Ω̆k

qdΩ ∀k = {1, ..., Nc } (5.17)

and applying Gauss theorem results in

Nc∑
k=1

pk
Nd∑
j=1

∫
∂Ω̆k

(
−λ ·∇Φk

j

)
·nk dΓ=

∫
Ω̆k

qdΩ ∀k = {1, ..., Nc } (5.18)

Here, the term nk indicates the unit normal vector which points outwards of ∂Ωk .
Equation (5.18) shows the mathematical notation of the linear system at coarse scale,
i.e.,



5

96 5. STATIC MULTILEVEL APPROACHES FOR FRACTURED POROUS MEDIA

1

00

0

0 0

Figure 5.4: An example of a basis function belonging to the middle right coarse node of a 2D heterogeneous
domain.

Ac pc = qc (5.19)

where Ac is the coefficient matrix at the coarse scale resolution and reads

Ac (l ,k) =
Nd∑
j=1

∫
˘∂Ωl

(
−λ ·∇Φk

j

)
·nk dΓ (5.20)

and qc is the right-hand-side of this system and is written as

qc (k) =
∫
Ω̆l

qdΩ. (5.21)

The pressure at coarse scale pc = [p1, ..., pNc ]T satisfies the mass balance equation of
each coarse grid control volume Ω̆k . Moreover, the coarse pressure matrix in equation
(5.19) has a larger stencil compared with the fine-scale coefficient matrix, as the diagonal
fluxes are also taken into account.

The multiscale formulation can be written algebraically in matrix-vector notation by
employment of the multiscale operators, i.e., the so-called restriction and prolongation
operators. Such a system can be written as

(RA f P)︸ ︷︷ ︸
Ac

pc = Rq︸︷︷︸
qc

. (5.22)

Here, R is the restriction operator which is a Nc ×N f matrix with values in the k-th
row being 1 at column j if cell j belongs to the coarse cell k, and 0 elsewhere, i.e.,



5.2. MULTISCALE APPROACHES

5

97

R(k, j ) =
{

1 if cell j ∈ Ω̆k ,

0 otherwise.
(5.23)

The prolongation operator, P, on the other hand, is a N f ×Nc matrix and each of its
columns k contains the basis function,Φk , defined as

Φk =
Nd∑
j=1
Φk

j . (5.24)

Alternatively, the multiscale coarse system can be constructed by employing a clas-
sical Galerkin-type operator, i.e., RFE = PT, resulting in the MsFE method [55]. This,
ensures that the coarse matrix Ac is symmetric but does not guarantee mass conserva-
tion on the primal coarse grid. It has been shown that such an approach is more effective
whenever the multiscale is used as an iterative linear solver [79].

Figure 5.5 shows the structure of the prolongation and restriction operators.

P(𝑁𝑓×𝑁𝑐) =

| 0 0 0 ⋯ 0 0
| ⋮ 0 | ⋯ 0 0
⋮ 0 0 | ⋯ 0 0
| | ⋮ | ⋯ ⋮ 0
0 | | ⋮ ⋯ | ⋮
⋮ ⋮ | 0 ⋯ | |
0 0 ⋮ 0 ⋯ ⋮ |
0 0 0 0 ⋯ 0 |

Φ1 Φ2 Φ3 Φ4 ⋯ Φ𝑁𝑐−1 Φ𝑁𝑐

R(𝑁𝑐×𝑁𝑓) =

1 1 ⋯ 1 0 ⋯ 0 0
0 ⋯ 1 1 1 ⋯ 0 0
0 0 ⋯ 1 1 ⋯ 0 0
0 0 1 ⋯ 1 1 ⋯ 0
0 0 0 ⋯ 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1 1 1

Figure 5.5: The structure of the prolongation and restriction operators.

To enhance the computational efficiency of the construction of the multiscale oper-
ators, algebraic multiscale solver framework was introduced [79]. In this framework, the
fine-scale system is first re-ordered using the wire-basket algorithm:

A =GA f GT, (5.25)

where, G is an orthogonal permutation matrix containing the topological information
about the dual coarse grids. Using this permutation matrix, the linear system is re-
ordered, and can be written as

AI I AI F

AF I AF F AF E

AEF AEE AEV

AV E AV V


︸ ︷︷ ︸

A


p I

pF

pE

pV

=


qI

qF

qE

qV

 , (5.26)

with the subscripts I , F , E and V denoting interior, face, edge and vertex cells respec-
tively.
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The localization assumption requires that the blocks AF I and AEF are set to zero,
which corresponds to the connectivities between the face and the interior cells, and be-
tween the face and the edge cells respectively. Therefore, the full multiscale system can
be written as


AI I AI F

ÃF F AF E

ÃEE AEV

Ac




p ′
I

p ′
F

p ′
E

p ′
V

=


qI

qF

qE

qc

 . (5.27)

Here, ÃF F and ÃEE are the face and the edge blocks that have been modified to ac-
count for the deleted connectivities. The system of equation (5.27) is upper triangular
and can be easily solved by employing a backward substitution algorithm. Consequently,
given the coarse solution p ′

V the approximate fine-scale solution is obtained as


p ′

I
p ′

F
p ′

E
p ′

V

=


−A−1

I I

(
AI F Ã−1

F F (AF E Ã−1
EE AEV )

)
Ã−1

F F (AF E Ã−1
EE AEV )

−Ã1
EE AEV

IV V

p ′
V (5.28)

Therefore, the multiscale prolongation operator, P is written as

P=GT


−A−1

I I

(
AI F Ã−1

F F (AF E Ã−1
EE AEV )

)
Ã−1

F F (AF E Ã−1
EE AEV )

−Ã1
EE AEV

IV V

 . (5.29)

5.2.2. THE MSFV METHOD FOR FRACTURED POROUS MEDIA (F-MSFV )
The multiscale coarse grid construction on a fractured domain using embedded discrete
fracture models (EDFM or pEDFM) follows a similar approach. The coarse grids are con-
structed independently for the fine-scale grids of the rock matrix and each individual
fracture. For this purpose, the equations (5.1)-(5.2) and the linear system (5.8) are con-
sidered. Please note that fractures are represented as lower dimensional objects. There-
fore, on a 2D domain where the fractures are represented in 1D, their fine-scale grids are
flagged only as vertex or edge. On a 3D domain however, the fractures have vertex, edge
or face cells on the coarse grid structure. Figure 5.6 illustrates a 2D example where the
coarse grids of the rock matrix and three 1D fractures are constructed independently.

As every fracture contains coarse nodes, there are basis functions associated with the
coarse nodes of the fractures as well. The fracture basis functions are obtained using the
similar approach of the matrix basis functions computation. However, one should note
that the region of the basis function for each medium is now extended to other overlap-
ping media. Conclusively, the matrix basis function are not only affected by presence of
the explicit fracture, but they also affect the fractures. These basis functions are called
fully-coupled basis functions as they are computed on the local dual coarse domain but
with fully coupled manner. This means that for computation of each basis function a
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Figure 5.6: An example of the coarse grid construction for a 2D domain with three fractures. As can be seen,
the primal and dual coarse grids are constructed independently for the rock matrix and each fracture.

local EDFM/pEDFM problem is solved. An example of the matrix and fracture basis
functions are illustrated in figure 5.7.

Figure 5.7: An example of a basis function for the rock matrix (the plot on the left) belonging to the middle
left coarse node of the matrix, and two basis functions of a fracture (the plot on the right) belonging to two
coarse nodes in that fracture. As can be seen, to obtain each basis function for the corresponding coarse node,
Dirichlet boundary condition (1.0 and 0.0) values are set not only on the coarse nodes of one medium, but also
on the coarse nodes of the overlapping media in the region of the influence of that basis function.

Similar to equation (5.22), the linear system of the F-MsFV method at coarse scale
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resolution can be written as

Rm 0

0 R f


︸ ︷︷ ︸

R

Am,m Am, f

A f ,m A f , f


︸ ︷︷ ︸

Afs

Pm,m Pm, f

P f ,m P f , f


︸ ︷︷ ︸

P︸ ︷︷ ︸
Ac

pm
c

p f
c

=
Rm 0

0 R f


qm

fs

q f
fs


︸ ︷︷ ︸

qc

(5.30)

Different coupling strategies have been studied for the calculation of the rock matrix
and the fracture basis functions and their influences on each other [81]. In this work,
fully coupled basis functions are employed.

5.2.3. EVALUATION OF THE F-MSFV METHOD
In this section, the accuracy of the MsFV method for fractured porous media is evaluated
and the F-MsFV results are compared with the fine-scale simulations on a 2D single-
phase incompressible system (see Eq. 5.1 and 5.2). The input parameters that are used
identical in each test case are available in table 5.1. The pressure error of F-MsFV results
with respect to the fine-scale results (denoted as ep ) is calculated using second norm of
the pressure vectors as

ep = || pFS −pMS ||2
|| pFS ||2

, (5.31)

where, p indicates pressure and the subscripts FS and MS denote the fine-scale and
the MsFV method, respectively. Moreover, the multiscale pressure graph consists of
an absolute error curve underneath the pressure curve which is simply calculated as
Er r or =| pF S − pMS |. This error is not the normalized error and it is present only to
illustrate the absolute differences between the fine-scale and the multiscale pressure
through the domain. All results include a residual surface plot in fulfillment of the fine-
scale equation. Note that non-zero terms in residual exist at the boundaries of the dual
coarse grid cells.

TEST CASE 1: 2D HOMOGENEOUS DOMAIN WITH 2 “+” SHAPED FRACTURES

In this test case, two fractures are located in the center of a homogeneous domain per-
pendicular to each other (horizontal and vertical). Five injection wells at the left bound-
ary and five production wells at the right boundary form a line drive pattern. A 75×75 =
3600 grid is imposed on the rock matrix and fractures are discretized into 92 grid cells in
total. A coarsening ratio of γ = 15 is considered for the matrix (in both directions) and
the fractures. Figure 5.8 shows the results of this test case.

The fine-scale system is solved with 75× 75 matrix cells and 92 fracture elements,
whereas the multiscale system is solved by 5×5 matrix coarse grid cells and 8 fracture
coarse grid cells (with a significantly reduced number of degrees of freedom or DOF). The
white lines in the multiscale pressure plot indicate the boundaries of the primal coarse
grids. The plotted graph below the multiscale graph in the right figure is the absolute
difference between the fine-scale and the multiscale solutions. The normalized error
calculated via equation (5.31) is ep = 2.66×10−2.



5.2. MULTISCALE APPROACHES

5

101

Table 5.1: Input parameters of fluid and rock properties of single-phase incompressible flow used in the test
cases of the F-MsFV evaluation.

Property value
Length of the domain in x direction (Lx ) 100.0 [m]
Length of the domain in y direction (Ly ) 100.0 [m]
Matrix porosity (φ) 0.3[−]
Reservoir permeability 10−14 [m2]
Fracture permeability 10−8 [m2]
Fracture aperture 5×10−3 [m]
Fluid viscosity (µ) 0.001 [Pa.S]
Fluid density (ρ) 1000 [kg/m3]
Injection Pressure 3×107 [Pa]
Production Pressure 0×107 [Pa]

TEST CASE 2: 2D HETEROGENEOUS DOMAIN WITH 2 “X” SHAPED FRACTURES

In this test case, two fractures are located in the center of a heterogeneous domain with
an “x” shape. Identical to the previous test case, a line-drive pattern well exists at the left
and right boundaries of the domain. A 91×91 = 8281 computational grid is imposed on
the rock matrix and fractures are discretized into 106 grid cells in total. The coarsening
ratio is set toγ= 13 for the matrix (in both directions) and the fractures. The permeability
of the rock matrix is heterogeneous with the contrast of kmax/kmin = 2.2×104. Figure 5.9
shows the results of this test case.

In this test case (2), the fine-scale system is solved with 91×91 grids cells in the rock
matrix and 106 elements in the fractures, whereas the multiscale system is solved by 7×7
coarse grid cells in the matrix and 10 coarse grid cells in the fractures. The normalized
error calculated using equation (5.31) reads ep = 5.58×10−2.

TEST CASE 3: 2D HETEROGENEOUS DOMAIN WITH 5 FRACTURES

In the following test case, a 2D heterogeneous fractured domain consisting of 5 fractures
is discretized on a 99×99 = 9801 computational grids. A total of 247 grids are imposed
on the fracture network. There are five injection wells at the left boundary and five pro-
duction wells at the right boundary. The coarsening ratio of γ = 11 is considered. The
heterogeneous permeability has a contrast of kmax /kmi n = 2.0×104. the results of this
test case are presented on the figure 5.10.

In this test case (3), the fine-scale system consists of 99 × 99 matrix cells and 106
fracture elements, a total of 10048 grid cells. However, the multiscale system is solved
by 9×9 matrix coarse grid cells and 27 fracture coarse grid cells. The normalized error
calculated using equation (5.31) reads ep = 7.22×10−2.

The F-MSFV method resulted in an acceptable approximation of the fine-scale pres-
sure for many challenging test cases. Residual plots confirm that the highest pressure
errors exist on the boundaries of the dual coarse domain which is caused by the localiza-
tion assumption of the reduced problems (solved as boundary conditions for obtaining
the basis functions). The MsFV method provides an efficient solution for flow in hetero-
geneous media, by solving the problem at the coarse scale while honoring heterogeneity
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(a) Permeability of the matrix (homogeneous) (b) Residual (= Ap −q)

(c) Fine-scale pressure (d) Multiscale pressure

Figure 5.8: Test case 1: A 2D homogeneous domain with two discrete fractures located in its center perpen-
dicular to each other (horizontal and vertical). Figure 5.8a shows the permeability plot in logarithmic scale
with location of the fractures and the wells. Figure 5.8a visualizes the residual of the system of the equation
(Ap −q) in logarithmic scale indicating non-zero values at dual coarse cell boundaries. The pressure results of
the fine-scale and multiscale methods are illustrated on figures 5.8c and 5.8d respectively.

at the original fine-scale resolution. The coarse scale solution is interpolated back to
the original fine-scale resolution, which is a unique advantage compared with upscaling
methods. But note that the F-MSFV method is yet found sensitive to the coarsening ra-
tio (for both matrix and fracture), and the heterogeneity contrasts. The accuracy of the
multiscale solutions can be systematically improved through iterative procedure, which
was first developed in [60] and later extended in [81, 125, 140].

One should realize, despite the computational gains that the MsFV method can pro-
vide by reducing the size of the fine-scale linear system a few orders of magnitude, the
large size of the field-scale domains, even after reduction using multiscale methods, is
still beyond the computational capabilities of the current computers. In order to in-
crease the computational efficiency of the multiscale approaches, it is applicable to ex-
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(a) Permeability of the matrix (homogeneous) (b) Residual (r = Ap −q)

(c) Fine-scale pressure (d) Multiscale pressure

Figure 5.9: Test case 2: A 2D heterogeneous domain with two discrete fractures located in its center forming
an “x” shape. Figure 5.9a shows the heterogeneous permeability plot in logarithmic scale with location of the
fractures and the wells. Figure 5.9a visualizes the residual of the system of the equation (Ap−q) in logarithmic
scale indicating non-zero values at dual coarse cell boundaries. The pressure results of the fine-scale and
multiscale methods are illustrated on figures 5.9c and 5.9d respectively.

tend the concept of the MsFV method from only one coarsening level to multiple levels of
multiscale [82]. This approach is called the multilevel multiscale finite volume (MMsFV)
method. In the next section, the MMsFV method is explained including the extension of
this method for fractured porous media using the EDFM approach.

5.3. MULTILEVEL MULTISCALE APPROACHES
In the previous section, the multiscale approaches, especially the MsFV and the F-MsFV
methods, were demonstrated. The advantages of such methods including their compu-
tational gains while honoring the fine-scale heterogeneities on a desired accuracy were
presented. Moreover, the shortcomings and the challenges arising from employing the
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(a) Permeability of the matrix (homogeneous) (b) Residual (= Ap −q)

(c) Fine-scale pressure (d) Multiscale pressure

Figure 5.10: Test case 3: A 2D heterogeneous domain with a network of 5 intersecting fractures. Figure 5.10a
shows the heterogeneous permeability plot in a logarithmic scale with location of the fractures and the wells.
Figure 5.10a illustrates the residual of the system of the equation (Ap −q) in logarithmic scale indicating non-
zero values at dual coarse cell boundaries. The pressure results of the fine-scale and multiscale methods are
shown on the figures 5.10c and 5.10d respectively.

multiscale methods were briefly discussed. To benefit from the computational efficiency
of the multiscale method, one can extend its application to multiple coarsening levels on
a recursive manner such that the size of the fine-scale linear system is reduced in many
orders of magnitude. The mapping of the linear system from fine-scale resolution to
coarse level 1 can be repeated to obtain the a further-reduced linear system at coarse
level 2. This process can theoretically be repeated for an arbitrary number of coarsen-
ing levels as long as the size of the fine-scale system allows the mapping and remapping
procedure.
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5.3.1. THE MULTILEVEL MULTISCALE FINITE VOLUME (MMSFV ) METHOD
In the description of the MsFV method, equation (5.9) and its corresponding fine-scale
linear system (5.11) were considered. For the MMsFV method, the same fine-scale sys-
tem of equations can be used where the A f is a N f ×N f coefficient matrix referring to the
fine-scale system. At first, a coarse grid structure is imposed on the fine-scale mesh. This
is called the coarse grid for coarsening level 1 which is identical to the coarse grid con-
struction of the MsFV method and can be seen in figure 5.2 from the previous section.
The coarse grid structure of the coarsening level 1 can act as a fine-scale gridding sys-
tem for a another coarse grid construction, namely, for coarsening level 2. This results in
imposing a set of nested coarse grids on the original fine-scale grid cells on an arbitrary
number of coarsening levels, and theoretically there is no limit to the number of coars-
ening levels as long as these grids can hierarchically be embedded within the fine-scale
resolution. Figure 5.11 shows 2 examples of a 2 level multiscale coarse grid construction.
On the top figure, at first, a set of primal and dual coarse grids are imposed on the 75×75
fine-scale grid mesh with no vertex on the corners. The coarsening ratio is γ = 5. This
results in a 15×15 coarse grid structure as the first coarsening level. Next, another set
of primal and dual coarse grids are imposed on this 15×15 coarse grids, creating 3×3
coarse grid structure at coarsening level 2. For this coarse grid construction approach,
the relation between the coarsening ratio and the number of coarse grids in x direction
(applicable to any of the x, y, z directions) can be written as

γx = Nl−1,x

Nl ,x
, or γx =

(
N0,x

Nl ,x

)l

, (5.32)

where γ is the coarsening ratio in x direction. N0, Nl−1 and Nl are the number of grid
cells at fine-scale, coarsening level l −1 and coarsening level l in any direction respec-
tively. Note that for fine-scale, l = 0. The figure on the bottom shows a 2 level multiscale
coarse grid construction with vertices being put on the corners of the domain as well. In
this approach, one can write the relation between the coarsening ratio and the number
of coarse grids as

γx = Nl−1,x −1

Nl ,x
+1, or γx =

(
N0,x −1

Nl ,x
+1

)l

. (5.33)

In the MsFV section, the approximated fine-scale using pressure p f was obtained via
(5.14) which is recalled here as

p f ≈ p ′ =
Nd∑
j=1

(Nc1∑
k=1

Φk
j ,c1

pk
c1

)
.

The pressure of the coarse system at coarsening level 1, i.e., pc1 can be approximated
using the MMsFV method at coarsening level 2, namely,

pc1 =
Nd∑
j=1

(Nc2∑
k=1

Φk
j ,c2

pk
c2

)
. (5.34)

Conclusively, for a 2 level multiscale system, the pressure at fine-scale can be approx-
imated as
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Finescale Resolution = 75x75

Coarsening Level 1 Resolution = 15x15 Coarsening Level 2 Resolution = 3x3

(a) Vertices are not put on the corners.

Finescale Resolution = 76x76

Coarsening Level 1 Resolution = 16x16 Coarsening Level 2 Resolution = 4x4

(b) Vertices are put on the corners as well.

Figure 5.11: Construction of primal and dual coarse grid structure in the multilevel multiscale approach for a
2D domain with two different approaches. On the fine-scale grid mesh, first, a set of primal and dual coarse
grid cells are imposed with the coarsening ratio of γ= 5. Next, on this coarse grids level 1, another set of primal
and dual coarse grids is constructed. This is a 2 level multiscale coarse grid structure. The difference between
the top and bottom figures arises from the two different approaches in the coarse grid construction (whether
to put the vertices on the corners or not).

p f ≈ p ′ =
Nd∑
j=1

(Nc1∑
k=1

Φk
j ,c1

Nd∑
j=1

(Nc2∑
k=1

Φk
j ,c2

pk
c2

))
. (5.35)

In theory, this process can be repeated for any arbitrary number of coarsening levels.
Figure 5.13 shows an example of the basis functions for two coarsening levels on a 2D
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75×75 domain.

Figure 5.12: The two-point flux approximation (TPFA) fine-scale system (left) considers connectivity of each
fine-scale grid cell with only the direct neighbors, whereas the multi-point flux approximation (MPFA) coarse
scale system (right) adds the connectivity of each dual coarse grid cell with its diagonal neighbors as well.
Computation of the basis functions for the first coarsening level is done using the TPFA scheme. For higher
coarsening levels, the coarse system develops an MPFA scheme.

Computation of the basis functions at first coarsening level is done using the two-
point flux approximation (TPFA) at fine-scale system, meaning that each grid cell has
non-zero transmissibility with only direct neighboring cells (2 connections in 1D, 4 con-
nections in 2D and 6 connections in 3D). In 2D, the edge cells are only connected to the
neighboring interiors and edges. Vertices are only connected to the neighboring edges,
and interiors have connectivity with the neighboring edges and the interiors (and not
with the vertices). Next, the coarse grid system of the first coarsening level is seen as
the base for the next coarsening level. This coarse system, in contrary to the fine-scale
system, is considered as a multi-point flux approximation (MPFA) based system (since
all the direct and diagonal neighbors of a grid cell have non-zero transmissibilities for
the calculation of the basis functions inside thr control volumes). In other words, each
dual coarse block has connectivity not only with the direct neighboring blocks that have
direct connection (left, bottom, right and top in 2D), but also with its diagonal neighbors
[141]. Here, the MPFA-based pressure matrix Al−1

p , which stands as the fine-scale system
for level l −1, is constructed by the multiscale finite-element procedure as

Ãl−1
p = (Pl−1

l−2)T Al−2
p Pl−1

l−2. (5.36)

Then, Ãl−1
p is reduced to a TPFA-based system, i.e.,

Ap
l−1 = T PF A(Ãl−1

p ), (5.37)

where the T PF A(•) extracts the TPFA components of the matrix (hepta-diagonal matrix
for 3D Cartesian grids), by considering the transmissibility between cells i and j equal to
entry Ai j of the original matrix. The algebraic multiscale procedure for the calculation
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of the basis functions is now performed on this TPFA system at level l −1 [81], in order
to obtain the basis functions at level l , i.e., (Pp )l

l−1. Note that the TPFA reduction of the
MPFA multilevel system is done independently for each sub-domain of the rock matrix,
and the individual fractures. Figure 5.12 represents the schematic view of the TPFA and
the MPFA systems.

(a) A few basis functions at coarsening level 1.

(b) The basis function of the central coarse node at coarsening level 2.

Figure 5.13: Visualization of some basis functions for coarsening level 1 (figure on top) and coarsening level
2 (figure at the bottom) for a 2D domain with 75× 75 fine-scale grid cells. Note that the basis functions at
coarsening level 2 are used to map the solution between the coarsening levels 1 and 2, while the basis functions
of the coarsening level 1 map the solution between the fine-scale and coarsening level 1.
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Similar to the MsFV method, the MMsFV method can be formulated in an algebraic
manner using multiscale restriction and prolongation operators. These operators are
constructed with identical procedure across all coarsening levels. The multilevel multi-
scale linear system of equations can be written as

Rl−1
l . . . R0

1 A f P1
0 . . . Pl

l−1︸ ︷︷ ︸
Al

pl =−Rl−1
l . . . R0

1 q f︸ ︷︷ ︸
ql

, (5.38)

where Rl−1
l is the restriction operator mapping the system from resolution l−1 to resolu-

tion l . Similarly, Pl
l−1 is the prolongation operator mapping the system from coarsening

level l to coarsening level l − 1. Once the linear system of equations is solved at this
multilevel multiscale resolution, the approximated solution at fine-scale resolution p f

is obtained by

p f ≈ p ′ =P1
0 . . . Pl

l−1 pl . (5.39)

In the equations above, Al , pl and ql correspond to the components of the linear
system at the highest coarsening level l . And A f , p f and q f denote the components at
fine-scale resolution (where l = 0).

5.3.2. THE MMSFV METHOD FOR FRACTURED POROUS MEDIA (F-MMSFV )
As the MMsFV method can provide higher efficiency for solving the system of equations
with large amounts of degrees of freedom in multiple of orders of magnitude, it is im-
portant to apply the same technique for fractured porous media. The construction of
the hierarchically nested coarse grids structure both for the rock matrix and the embed-
ded fractures is done similar to the MMsFV method (see section above) independently
and this is repeated for every coarsening level. Figure 5.14 shows an example of coarse
grid construction on a 2D fractured domain with 75×75 computational grids imposed
on the rock matrix and 75×1 grids on each of the three 1D fractures at fine-scale resolu-
tion. The coarse grids are constructed for 2 coarsening levels. At the highest coarsening
level, the rock matrix contains 3×3 primal coarse grid cells and each fracture has 3 coarse
nodes.

The fully coupled basis functions are obtained for the coarse nodes of the rock matrix
and the fractures across all coarsening levels. The algebraic description of the F-MMsFV
method is identical to that of the MMsFV method. However, the restriction and prolon-
gation operators are extended to encompass the information of the explicit fractures and
their basis functions as well as the coupling effects of the two media on each other. Let
us recall the algebraic description of the MMsFV (5.38):

Rl−1
l . . . R0

1 A f P1
0 . . . Pl

l−1︸ ︷︷ ︸
Al

pl =−Rl−1
l . . . R0

1 q f︸ ︷︷ ︸
ql

. (5.38)

For a fractured media, the prolongation operator Pl
l−1 has a block structure which

reads
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Finescale Resolution = 75x75

Coarsening Level 1 Resolution = 15x15 Coarsening Level 2 Resolution = 3x3

Figure 5.14: An example of the coarse grid construction with 2 coarsening levels for a 2D domain with three
fractures.

Pl
l−1 =


(
Pl

l−1

)m,m (
Pl

l−1

)m, f

(
Pl

l−1

) f ,m (
Pl

l−1

) f , f

 . (5.40)

And the restriction operator Rl−1
l is written as

Rl−1
l =


(
Rl−1

l

)m
0

0
(
Rl−1

l

) f

 . (5.41)

An example of a few computed fully coupled basis functions for a fractured domain
with three fractures and two coarsening levels using the F-MMsFV method is visualized
on figure 5.15.

5.3.3. EVALUATION OF THE F-MMSFV METHOD

In this section, the F-MMsFV method is evaluated and its accuracy is compared against
the fine-scale results. For this purpose, the single-phase incompressible system from
equations (5.1)-(5.2) is considered on 2D fractured domains. The input parameters that
are mutually used in the following test cases are identical to the test cases in the evalu-
ation section of the F-MsFV method and available in table 5.1. Note that, similar to the
F-MsFV evaluation, the pressure error of the F-MMsFV results with respect to the fine-
scale results (denoted as ep ) is calculated using the second norm of the pressure vectors
as
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ep = || pFS −pMMS ||2
|| pFS ||2

, (5.42)

Different test cases are designed to address various possible challenges. The sensitiv-
ity of the F-MMsFV method to the number of the coarse levels and the coarsening ratios
employed and to the permeability contrast is presented.

TEST CASE 1: 2D HETEROGENEOUS DOMAIN WITH 2 “+” SHAPED FRACTURES

In this test case, two fractures are positioned in the center of a heterogeneous domain
perpendicular to each other (horizontal and vertical) forming a “+” shape. Five injection
wells at the left boundary and five production wells at the right boundary form a line
drive pattern. The test case consists of 100×100 = 10000 computational grid cells on the
rock matrix and 152 elements on the fractures. The coarsening level is 2 and coarsening
ratio is γ= 5 for all media and in all directions. Figure 5.16 shows the results of this test
case.

The fine-scale system is solved with 100×100 matrix cells and 152 fracture elements,
whereas the multilevel multiscale system is solved by 4×4 matrix coarse grid cells and
8 fracture coarse grid cells at coarsening level 2 with coarsening ratio of γ = 5 (merely
626 times lower number of degrees of freedom or DOFs). The white and gray lines in the
multilevel multiscale pressure plot indicate the boundaries of the primal coarse grids
for different coarsening levels. The plotted graph below the multiscale graph in the right
figure is the absolute difference between the fine-scale and the multiscale solutions. The
normalized error calculated via equation (5.31) is ep = 4.40×10−2.

TEST CASE 2: 2D HOMOGENEOUS DOMAIN WITH 2 DIAGONAL FRACTURES (“X” SHAPED)
In this test case, two diagonal fractures are located in the center, perpendicular to each
other, in a 2D homogeneous domain with line drive well pattern consisting of five injec-
tors and five producers. An 81× 81 = 6561 fine-scale grid cells is imposed on the rock
matrix and 164 elements on the fractures. Solution sensitivity and error analysis will be
studied for different coarsening levels and coarsening ratios in this test case. The follow-
ing options will be considered:

1. Finescale (reference) solution

2. One coarsening level, with coarsening ratio γ= 3

3. One coarsening levels, with coarsening ratio γ= 9

4. One coarsening levels, with coarsening ratio γ= 27

5. Two coarsening levels, with coarsening ratio γ= 3

6. Three coarsening levels, with coarsening ratio γ= 3

Figure 5.17 shows the results of this test case.
In order to understand the effect of different coarsening levels and coarsening ratios

on the accuracy of the MsFV and the MMsFV methods compared to fine-scale results,
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various combinations are considered and their pressure plots together with errors are
shown in the figure 5.17. As can be seen, by increasing the number of coarsening levels
the error increases. On the other hand, the computational gain increases exponentially
as every extra coarsening level results in a γ2 (for 2D) or γ3 (in 3D) times reduction in the
size of the linear system to be solved using the MMsFV method.

TEST CASE 3: 2D HOMOGENEOUS DOMAIN WITH 5 INTERSECTING FRACTURES

This test case consists of five intersecting fractures in a 2D homogeneous domain with
line drive well pattern of five injection wells at left boundary and five production wells at
the right boundary. A 75×75 = 5625 grid cells are imposed on the rock matrix and a total
of 380 grid cells on the fracture network. The coarsening level is 2 and coarsening ratio
is 5. The results of this test case are presented in figure 5.18.

The fine-scale system is solved with 75×75 = 5625 grids on the rock matrix and 380
fracture elements. The multilevel multiscale system, however, is solved on a reduced size
of the 3×3 coarse grid cells for the rock matrix and 20 coarse grid cells for the fracture
network. The coarsening level is 2 and the coarsening ratio is 5. The normalized error
for this test case (3) is ep = 7.85×10−2.

TEST CASE 4: 2D HOMOGENEOUS DOMAIN WITH 35 FRACTURES

A 2D fractured 75[m]×75[m] reservoir with 35 fractures is considered. A 375×375 grid
is imposed on the rock matrix at fine-scale. Fractures have different lengths but identi-
cal apertures of 5×10−3 [m]. The fracture network consists of 4420 grid cells (a total of
145045 grid cells) at fine-scale resolution. The matrix permeability is 10−14 [m2] whereas
the fracture permeability is 2.08×10−6 [m2]. Two injection wells at the bottom left and
the top left corners (pinj = 2 × 107 [Pa]) and two production wells at the bottom right
and the top right corners (pprod = 1×107 [Pa]) exist. The multilevel multiscale method
is run with different number of coarsening levels and coarsening ratios. Here, similar to
the previous test cases, the fully-coupled multilevel multiscale basis functions are con-
sidered. The settings of each multilevel multiscale run, the pressure error (ep ) and the
number of degrees of freedom (DOF) are presented in table 5.2.

Coarsening levels Coarsening ratio (γm) Num. of DOF Error (ep [%])
Case 1 1 5×5 6509 0.11
Case 2 1 25×25 1109 0.22
Case 3 2 5×5 877 0.27
Case 4 1 125×125 893 0.64
Case 5 3 5×5 661 0.98

Table 5.2: Test case 4: the multilevel multiscale settings and errors

The surface plots of the pressure distributions obtained with fine-scale simulations
and with different multilevel multiscale settings are presented in figure 5.19.

TEST CASE 5: 2D HETEROGENEOUS DOMAIN WITH 35 FRACTURES

A heterogeneous 2D domain of 75[m]×75[m] with a network of 35 fractures (identical to
test case 4) is considered. The matrix and the fracture network are discretized into 135×
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135 and 1665 fine-scale grids, respectively, resulting in 19890 total grid cells. The top
right plot on figure 5.20 shows the heterogeneous permeability map for this test case with
the minimum and maximum values of 1.3×10−16 [m2] and 9.9×10−13 [m2], respectively.
The wells have identical location and constraints as in test case 4. Different coarsening
levels and ratios are considered. The pressure error with respect to the reference (i.e.,
fine-scale solution) for different numbers of degrees of freedom (DOF) are shown in table
5.3.

Coarsening levels Coarsening ratio (γm) Num. of DOF Error (ep [%])
Case 1 1 3×3 2580 12.8
Case 2 1 9×9 780 12.7
Case 3 2 3×3 410 13.6
Case 4 1 27×27 580 11.0
Case 5 3 3×3 210 12.1

Table 5.3: Test Case 5: the multilevel multiscale settings and errors

The figure 5.20 presents the pressure results of the fine-scale run as well as the mul-
tilevel multiscale run at various coarsening levels and coarsening ratios. All the multi-
level multiscale runs employ fully-coupled basis functions. As can be seen in Table 5.3,
for the corresponding coarsening ratios, the multilevel multiscale and the 1-level multi-
scale strategies deliver comparable results. Note that no iterations have been employed
to improve the multilevel multiscale results.

5.4. DISCUSSIONS AND CONCLUSION
In this chapter, the multiscale (MsFV) and the multilevel multiscale (MMsFV) methods
for fractured porous media were presented. To simplify the description of these meth-
ods, single-phase incompressible fluid flow model was considered. The coarse grid con-
struction and computation of basis functions for the rock matrix as well as the discrete
fractures were discussed on multiple coarsening levels. Moreover, the algebraic descrip-
tion of the multiscale and multilevel multiscale approaches were briefly covered. Us-
ing the restriction and prolongation operators, the fine-scale system was mapped to a
coarse scale system. After solving the linear system at the coarsest resolution, the solu-
tion was then mapped back to the fine-scale resolution using the basis functions, hence
providing an approximated solution. Using a number of 2D homogeneous and hetero-
geneous fractured test cases, the accuracy of these techniques were compared with the
fine-scale results as reference solutions. It was seen that the residual of the fine-scale
system was non-zero only at the boundaries of the dual coarse grid cells, due to the
localization assumption imprinted in the multiscale method. Note that the presented
results are all based on the MsFV/MMsFV approach, without employment of an iterative
procedure that could have improve the final results. Yet, it can be seen that the multi-
level multiscale method for fractured porous media (F-MMsFV) proposed in this chapter
provides accurate results compared to the fine-scale solution. The results show that the
F-MMsFV method can accurately capture the complex effects of fractures and the rock
heterogeneities on arbitrary levels of coarse grids. For test cases with high-permeability
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contrasts and strong anisotropic permeability tensors, though, one needs to consider
an iterative procedure to ensure the quality of the results. Important to emphasize here
is that, in test case 3, only small error differences exist between the results of coarsen-
ing levels 1, 2 and 3 (using identical coarsening ratio of γ = 3). On the other hand, the
size of the linear system (to be solved) reduces significantly by increasing the number of
coarsening levels, providing considerable computational efficiencies which is promis-
ing in the case of large-scale simulation models. At last, with the test cases 4 and 5,
the capability of the devised multilevel multiscale method for fractured porous media
was assessed using a network of 35 highly conductive intersecting fractures. The results
and the calculated errors, show a satisfactory accuracy of the F-MMsFV method even in
presence of a dense and complex fracture network. Please note that the MMsFV method
automatically reduces to the MsFV method if only 1 coarsening level is employed. This
gives full flexibility to the user, when real-field applications are being studied.

While multilevel multiscale approach in this chapter offers satisfactory performance
compared to fine-scale results, one needs to realize that such an approach solves the
entire system at the coarse scale resolution. Even though this provides significant com-
putational efficiency, it can result into high errors in certain regions in the domain espe-
cially where the heterogeneity contrasts in the rock matrix as well as presence of complex
networks of fractures and faults cause a severely ill-conditioned linear system. More-
over, in the cases of multiphase flow and coupled mass-heat transport with hyperbolic
equations, of particular interest is to capture the sharp gradients of the solution (e.g.,
the saturation and heat fronts) accurately. Therefore, one needs to employ higher reso-
lution in certain parts of the domain which can dynamically change across simulation
time-steps. In these scenarios, a dynamic grid resolution is necessary to capture vari-
ous physical phenomena on a resolution that is required. In the following chapters, an
algebraic dynamic multilevel method will be covered and explained in detail, which ad-
dresses the multilevel multiscale coexistence of the pressure (elliptic or parabolic) and
transport (hyperbolic) unknowns.
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(a) A few basis functions in the rock matrix and the two basis functions at the end points of a fracture, all at coarsening level 1.

(b) The basis function of the central coarse node in the rock matrix and the two basis functions at the end points of a fracture,
both at coarsening level 2.

Figure 5.15: Visualization of some basis functions for coarsening level 1 (figure on top) and coarsening level 2
(figure at the bottom) for a 2D domain with 75×75 fine-scale grid cells and three 1D fractures each with 75 grid
cells. Note that the basis functions at coarsening level 2 are used to map the solution between the coarsening
levels 1 and 2, while the basis functions of the coarsening level 1 map the solution between the fine-scale and
coarsening level 1. Note the fully coupled strategy in the computation of the rock matrix and the fracture basis
functions at both coarsening levels.
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(a) Permeability of the matrix (heterogeneous)
(b) Residual (= Ap −q)

(c) Fine-scale pressure (d) Multilevel multiscale pressure

Figure 5.16: Test case 1: A 2D heterogeneous domain with two discrete fractures located in its center perpen-
dicular to each other (horizontal and vertical). Figure 5.8a shows the permeability plot in logarithmic scale
with location of the fractures and the wells. Figure 5.8a visualizes the residual of the system of the equation
(Ap −q) in logarithmic scale indicating non-zero values at dual coarse cell boundaries. The pressure results of
the fine-scale and multilevel multiscale methods are illustrated on the figures 5.8c and 5.8d respectively.
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(a) Permeability of the matrix
(homogeneous)

(b) Fine-scale pressure
(c) Coarsening level = 1, coarsening

ratio = 9, error ep = 2.63×10−2
(d) Coarsening level = 1, coarsening

ratio = 27, error ep = 5.84×10−2

(e) Coarsening level = 1, coarsening
ratio = 3, error ep = 1.82×10−2

(f) Coarsening level = 2, coarsening
ratio = 3, error ep = 3.83×10−2

(g) Coarsening level = 3, coarsening
ratio = 3, error ep = 6.71×10−2

Figure 5.17: Test case 2: A 2D homogeneous domain with two discrete fractures located diagonally in its center
perpendicular to each other. Various coarsening levels and coarsening ratios are selected and their corre-
sponding pressure results are plotted. The errors are calculated using (5.42) and fine-scale pressure is used as
reference solution.
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(a) Permeability of the matrix (homogeneous)
(b) Residual (= Ap −q)

(c) Fine-scale pressure (d) Multilevel multiscale pressure

Figure 5.18: Test case 3: A 2D homogeneous domain with five discrete fractures located. Figure 5.10a shows the
permeability plot in logarithmic scale with location of the fractures and the wells. Figure 5.10a visualizes the
residual of the system of the equation (Ap −q) in logarithmic scale indicating non-zero values at dual coarse
cell boundaries. The pressure results of the fine-scale and multilevel multiscale methods are illustrated on the
figures 5.10c and 5.10d respectively.
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Figure 5.19: Test case 4: comparison of the pressure distributions obtained by the fine-scale simulations and
with static multilevel multiscale approach, where the pressure is solved everywhere at the coarsest level. The
top plot is the fine-scale solution. The middle row shows the 1 level multiscale solution with γm = 25×25 (left)
and the 2 level multiscale solution with γm = 5×5 (right). Shown in the bottom row is the 1 level multiscale
solution with γm = 125×125 (left) and the 3 level multiscale solution with γm = 5×5 (right). Note that the error
norms are presented in table 5.2.
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Figure 5.20: Test case 5: comparison of the pressure distributions obtained by the fine-scale simulations with
those from the static multilevel multiscale approach. The top left plot is the fine-scale solution. The perme-
ability map is shown in the top right plot. The middle row shows the 1 level multiscale solution with γm = 9×9
(left) and the 2 level multiscale solution with γm = 3×3 (right). The bottom row illustrates the 1 level multiscale
solution with γm = 27×27 (left) and the 3 level multiscale solution with γm = 3×3 (right). The errors are shown
in table 5.3.
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ALGEBRAIC DYNAMIC MULTILEVEL

(ADM) METHOD FOR ISOTHERMAL

MULTIPHASE FLOW IN FRACTURED

POROUS MEDIA

In the previous chapter, the static multilevel approaches such as the multiscale finite
volume (MsFV) and the multilevel multiscale finite volume (MMsFV) methods were de-
scribed. The construction of the primal and dual coarse grids both for the rock matrix
and the fractures across multiple coarsening levels was explained. Moreover, the cal-
culation of the fully-coupled basis functions was described for each medium at each
coarsening level. The multilevel multiscale formulation, obtaining the linear system at
coarse scale and the approximation of the fine-scale solution were covered in detail as
well. In addition, the algebraic description of the multiscale and multilevel multiscale
methods were briefly discussed. Through a number of fractured test cases including
heterogeneous ones, the accuracy of the static multiscale and multilevel multiscale fi-
nite volume methods was presented. Even though these methods provided acceptable
accuracy while reducing the size of the linear system with multiple orders of magnitude
(especially with MMsFV method), the accuracy of their results can be hindered in pres-
ence of severe heterogeneity contrasts within the rock matrix and presence of complex
fracture networks. Moreover, the geometry of the coarse grids affects the final results.
Please mind that by using iterative schemes for multiscale approaches, the accurate rep-
resentation of the fine-scale heterogeneity can significantly be improved.

Despite their benefits, one should note that using multilevel multiscale techniques
maps the entire system of equations from fine-scale resolution to the coarsest level.
While this results in significant reduction in the size of the linear system providing high

Parts of this chapter is the revised version of two of the author’s publication in the Journal of Computational
Physics, Vol. 373 (2018) [45], and in the Journal of Advances in Water Resources, Vol. 143 (2020) [142].
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computational gains, the fine-scale heterogeneities and physical phenomena such as
saturation or heat fronts in certain regions of the domain need to be captured with
higher orders of accuracy compared to the rest of the domain. Therefore, more advanced
techniques are needed to address such challenges. Algebraic dynamic multilevel (ADM)
methods have been introduced to provide higher flexibility in coarsening levels by com-
bining the dynamic local grid refinement (DLGR) approach with multilevel multiscale
techniques. In this chapter, the ADM method is developed for isothermal two-phase im-
miscible fluid flow in fractured porous media employing the embedded discrete fracture
model (EDFM). For more details about the fracture models, please see section 3.3. Us-
ing the ADM method, at every simulation time-step, the discretized and linearized sys-
tem of equations (coupled using the FIM approach) at fine-scale resolution, is mapped
to a dynamically defined multilevel multiscale resolution grid (the so-called ADM grid)
both for the rock matrix and the fractures independently. Such a dynamic multilevel grid
is obtained to employ the fine-scale resolution only when and where it is needed (e.g.,
at the advancing saturation fronts). The ADM dynamic grid is chosen independently
for the rock matrix and fractures, based on a front-tracking criterion that aims to mini-
mize the cost-accuracy trade-off. Mapping the solution across different grid resolutions
is performed through sequences of the ADM restriction and prolongation operators.
These operators are obtained from the static multilevel multiscale operators assembled
on various coarsening levels. The static multilevel multiscale operators are computed
only at the beginning of the simulation to increase the computational efficiency of the
ADM methods. The finite-volume restriction operators are employed for all unknowns
to ensure mass conservation at all levels. On the other hand, regarding the prolongation
operators, different interpolation strategies are considered for the two main unknowns
(pressure and saturation). Specifically, fully coupled basis functions (see sections 5.2.2
and 5.3.2) are used for the rock matrix and the fractures on all coarsening levels to take
into account the effects of the fractures on the flow pattern accurately. The devised mul-
tilevel multiscale basis functions are employed as the pressure interpolators. However,
piece-wise constant functions are used to interpolate the saturation values, as the grid
refinement strategy avoids crossing the scales at the saturation front locations. Once
the system of equations is solved at ADM resolution, the solution is mapped back to
fine-scale resolution using the ADM prolongation operator, to obtain an approximated
solution. Such a development allows for an automatic framework to explicitly or effec-
tively represent a fracture at any coarse level, i.e., through the selection of the location
of the coarse nodes. More precisely, if no coarse node for a fracture network inside a
dual coarse grid is chosen, the matrix basis functions will automatically homogenize the
effect of the fracture at the corresponding coarse scale. However, if coarse nodes are se-
lected inside the fracture network of that dual coarse cell, the fractures will be explicitly
represented at the corresponding coarser resolution. The accuracy and the sensitivity of
the ADM method to the error criterion and to the pressure basis functions are studied
through a set of 2D and 3D test cases. The devised ADM strategy provides a dynamic
treatment of highly fractured media, and casts a promising approach for real-field appli-
cations.
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6.1. THE ADM SIMULATION STRATEGY
For the purpose of describing the ADM simulation strategy in this chapter, an isothermal
two-phase fluid flow in heterogeneous fractured reservoirs is considered. The governing
equations of this fluid flow model are covered in detail in section 2.1. The discretized
equations and the fine-scale linearized system are explained comprehensively in sec-
tions 3.1.1 and 3.2.1 respectively.

At each Newton iteration, The ADM method constructs an algebraically reduced sys-
tem based on equation (3.39) on a multilevel grid which is dynamically defined at the
beginning of each time-step. A schematic of the ADM simulation is shown in figure 6.1.

As the first step, the ADM grid needs to be described. Sets of Nm and N fi nested
Cartesian grids are imposed on the matrix and fracture fine-scale grid cells. The level at
which the fine-scale computational domain is obtained is referred to as l = 0. Let N l

m be
the number of grid cells in the porous matrix and N l

fi
the number of grid cells in fracture

i , both at level l . The coarsening ratio, γl can therefore be defined as

γl =
(
γl

m ,γl
f 1, · · · ,γl

nfrac

)
=

 N l
m

N l−1
m

,
N l

f1

N l−1
f1

, · · · ,
N l

fnfrac

N l−1
fnfrac

 . (6.1)

Note that the count of the coarsening levels and the coarsening ratios for the rock
matrix and every individual fracture are independent, which leads to a flexible frame-
work. Therefore, the ADM grid at each time-step is constructed by combining grid cells
at different resolutions. The ADM method maps the fine-scale system to the dynamic
multilevel grid by applying sequences of restriction (R) and prolongation (P) operators,
which are constructed based on the values computed at the beginning of the simulation
(figure 6.1). More precisely, at each iteration, the ADM system reads

R̂l−1
l . . . R̂0

1 J0 P̂1
0 . . . P̂l

l−1︸ ︷︷ ︸
JADM

δx̂l =−R̂l−1
l . . . R̂0

1 r0︸ ︷︷ ︸
r ADM

, (6.2)

where R̂l−1
l is the restriction operator mapping part of the vector of the solution which is

at level l −1 (δx̂l−1) to level l (δx̂l ). Similarly, P̂l
l−1 is the prolongation operator mapping

part of the entire solution vector which is at level l to level l −1. Once the ADM system is
solved at the dynamic multilevel resolution, the approximated solution at the fine-scale
resolution δx ′

0 (the reference fine-scale solution is represented as δx0) is given by

δx0 ≈ δx ′
0 = P̂1

0 . . . P̂l
l−1δxl . (6.3)

The multilevel multiscale prolongation operator Pl
l−1 between each two levels l and

l − 1 is obtained for the entire domain, though at each time step only a fraction of the
domain needs to go through this map, which is illustrated by the ADM prolongation

operator, i.e., P̂l
l−1 in equation (6.2). The multilevel multiscale prolongation operator

Pl
l−1 has a block structure which reads
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Figure 6.1: Schematic description of the ADM strategy.
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Pl
l−1 =



((
Pp

)l
l−1

)m,m ((
Pp

)l
l−1

)m, f
0 0((

Pp
)l

l−1

) f ,m ((
Pp

)l
l−1

) f , f
0 0

0 0
(
(PS )l

l−1

)m,m
0

0 0 0
(
(PS )l

l−1

) f , f


Nl−1×Nl

. (6.4)

Similarly, the restriction operator reads

Rl−1
l =



(
Rl−1

l

)m
0 0 0

0
(
Rl−1

l

) f
0 0

0 0
(
Rl−1

l

)m
0

0 0 0
(
Rl−1

l

) f


Nl×Nl−1

. (6.5)

A finite-volume restriction operator is employed in order to guarantee mass conser-
vation as convergence is reached on the multilevel ADM grid, i.e.,

Rl−1
l (s, t ) =

{
1 if cell s is inside coarser cell t ,

0 otherwise.
(6.6)

On the other hand, the pressure and saturation blocks of the prolongation operator,(
Pp

)l
l−1 and (PS )l

l−1 are different [84] as different interpolation rules are used for each

variable. In this work (PS )l
l−1 =

[
Rl−1

l

]T
, where the superscript T indicates the trans-

pose operator. The
(
Pp

)l
l−1 blocks, instead, are constructed following a multilevel mul-

tiscale procedure for fractured media described in section 5.3.2. The ADM method al-
lows for full flexibility in the choice of the coupling strategies at all multilevel multiscale
resolutions. In the mathematical description of the multilevel multiscale prolongation
operator above (6.4), the extracted pressure prolongation operators can also be written
as

(
Pp

)l
l−1 =

[((
Pp

)l
l−1

)m ((
Pp

)l
l−1

) f ]
=

((
Pp

)l
l−1

)m,m ((
Pp

)l
l−1

)m, f((
Pp

)l
l−1

) f ,m ((
Pp

)l
l−1

) f , f

 . (6.7)

Here, the blocks
((

Pp
)l

l−1

)m
and

((
Pp

)l
l−1

) f
contain the basis functions correspond-

ing to the rock matrix and the fracture coarse-scale unknowns. Each one, e.g.,
((

Pp
)l

l−1

)m
,

can have non-zero values inside the rock matrix and the fracture sub-domains, depend-
ing on the local coupling strategy. More precisely, while the fully-coupled approach

leads to non-zero sub-blocks of
((

Pp
)l

l−1

)m, f
and

((
Pp

)l
l−1

) f ,m
, the decoupled approach

would lead to zero values in these local coupling sub-blocks. Figure 5.15 from section
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5.3.2 shows some of the rock matrix and the fracture basis functions at two different
coarsening levels for a 2D domain. The description of the multilevel multiscale basis
functions is available in the mentioned section in the previous chapter. Moreover, a de-
tailed explanation of the multiscale basis function entries on various coupling strategies
can be found in [81].

6.2. SELECTION OF THE GRID RESOLUTION
The fine-scale grid resolution is mapped into the ADM grid resolution using the ADM
operators. This dynamic grid resolution is obtained by a user-defined grid selection cri-
terion as a front tracking technique. At each time-step, the ADM grid is constructed by
combining grid cells of the previously defined sets of the grids both in the rock matrix
and in the fractures at various fine-scale and coarsening levels. Figure 6.2 shows an ex-
ample of a 3D test case with one fracture plane, for simplicity of the illustration. On top
of the fine-scale grid resolution, two coarse levels are employed in the rock matrix along
with one coarse level in the fracture. The grid selection method is applied independently
in the rock matrix and in the fractures, therefore, different criteria can be set for each
medium. Since no well-functions are employed in the dynamic simulations, fine-scale
resolution is kept around all the wells at all time.

The grid resolution at time-step n+1 is chosen based on the saturation map at time-
step n, thus employing an explicit procedure. A semi-implicit gridding strategy [143]
could also be used to avoid the misplacement of the grid. The selection of the grid res-
olution is done using a threshold set as the input parameter for the grid selection crite-
rion. The condition for which the criterion is considered, compares the differences of
the values of a main unknown (in this case, the saturation of the injecting phase, phase
1) between neighboring cells and the grid cells in a coarse node (spatial gradient of the
unknown) [84]. Let ΩI

l and ΩJ
l be the set of two neighboring coarse grid cells I and J

at coarsening level l . The indices of fine-scale grid cells belonging to the coarse grid
cellsΩI

l andΩJ
l are indicated by i and j respectively. The saturation differences∆S̄ I J are

obtained as

∆S̄ I J = max
(|Si −S j |

) ∀ i ∈ΩI
l and ∀ j ∈ΩJ

l . (6.8)

The coarse grid block I is refined from coarsening level l to level l −1 if the condition

∆S̄ I N > tol (6.9)

holds. Here, N refers to all the coarse grid cells neighboring the coarse grid cell I (at
coarsening level l ). Figure 6.3 shows a more detailed example of a 3D domain including
one fracture with two coarsening levels over the rock matrix and one coarsening level
over the fracture. Please note the independent coarsening strategy and grid selection
procedure for the matrix and the fracture. It can be realized that the moving front of
the flooding fluid will be captured with higher resolution as it corresponds to a sharper
gradients. Moreover, as mentioned above, the grid cells around the wells are always kept
at fine-scale resolution to guarantee accurate capture of the source term fluxes.
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Figure 6.2: Example of the ADM grid selection for a 3D test case with one single planar fracture. Two coarse
levels are used in the rock matrix (l = 1,2) and one coarse level is used in the fracture (l = 1). The bottom right
figure shows an example of a dynamic grid.

(a) ADM grid on matrix (b) ADM grid on fracture

Figure 6.3: Example of an ADM grid for a 3D domain with one fracture plane at a specific time-step during the
simulation. Two coarsening levels are employed for the rock matrix and one coarsening level is used in the
fracture. Here, the moving front of the fluid is captured at the fine-scale resolution.
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6.3. ADM METHOD VS. UPSCALING (HOMOGENIZATION)
In general, model order reduction techniques have been developed to reduce the degrees
of freedom (DoF) and provide meaningful approximate simulation framework, in the
sense that they are fast to be obtained for large-scale computational domains. Note that
any advanced method of this type becomes field applicable only when it allows for error
reduction to any desired threshold value [144].

Within the model order reduction techniques, two promising developments for next-
generation simulators are multiscale [55, 118] and homogenization [145] methods.

These approaches are different in the sense that the multiscale method deals with
crossing the solution, e.g. the pressure, across the scales [58, 60, 146, 147], while the
latter (homogenization) aims at the development of effective lower-resolution param-
eters, e.g. permeability or transmissibility, [148–150]. Moreover, multiscale basis func-
tions have been formulated purely algebraically [79], while the same does not hold for
homogenized and other parameter-based upscaling, e.g., flow-based upscaling. Spe-
cially the integration of homogenized parameters within the fully implicit framework in
an algebraic manner has not yet been developed so far. The developments of this work
include this achievement too.

Both methods, at the same time, have many similarities. Both find their mapping
strategy via local solutions of the original governing equations with local boundary con-
ditions. Multiscale basis functions often times employ reduced-dimensional boundary
conditions [63, 125], and the homogenization schemes employ periodic boundary con-
ditions [151–153]. Both methods are effective for global equations within the fully cou-
pled system of local-global unknowns, e.g. global pressure and local saturation. Both
have been extended to nonlinear and geologically complex models [45, 154, 155]. Re-
cent developments of these two classes of approaches have introduced a fully-implicit
dynamic multilevel simulation framework (ADM) in which heterogeneous detailed geo-
models are mapped into adaptive dynamic coarser mesh [72, 85].

The ADM method develops a fully-implicit discrete system for coupled flow and trans-
port equations in which each equation can be represented at a different resolution than
the defined fine-scale one. More importantly, the procedure can be done fully alge-
braically based on an error threshold. In contrast to the rich existing literature on Adap-
tive Mesh Refinement (AMR) methods [64, 66, 73–76], ADM can be defined as an adap-
tive mesh coarsening strategy which is automatically applicable to heterogeneous and
coupled systems [84].

Irrespective of the choice of the dynamic mesh strategy, it is always a challenge to
construct adaptive multiscale entries of the implicit systems.
The ADM method so far has included multiscale basis functions [84]. Following the
ADM development, homogenization methods have been also developed for dynamic
grids [154, 156]. Of great interest to the scientific community is the investigation of the
homogenization-based coarser system entries and a benchmark study of the quality of
the two approaches of ADM-multiscale (ADM-MS) and ADM-homogenized (ADM-HO)
for coupled implicit multiphase flow scenarios.

In this section, as a unified framework, the ADM method is extended to account for
both multiscale and homogenization schemes for multiphase flow simulations. This de-
velopment makes it possible to allow for different coarse-scale entries for dynamic sim-
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ulations, and importantly to benchmark the two classes of multiscale and homogeniza-
tion strategies. Once the effective parameters are computed, all other homogenization
procedures are implemented algebraically. This is done by introducing constant unity
local basis functions, with the support of the primal (non-overlapping) coarse-scale par-
titions. The multiscale ADM is implemented fully algebraically since the local basis func-
tions are also solved algebraically over the overlapping (dual) coarse grid domains.

6.3.1. ADM USING MULTISCALE (ADM-MS)
In the ADM method using the multiscale approach (ADM-MS), as explained in the pre-
vious section, the prolongation operator for the pressure is found based on multiscale
basis functions. These local basis functions are computed algebraically [79], based on
the pressure equation. In this study, the incompressible flow equation (elliptic pressure
equation) is used to construct the multiscale basis functions [125]. An example of a basis
function is shown in 6.4 (also see section 5.2.1 and figure 5.4).

Figure 6.4: An example of a basis function belonging to the middle coarse node of a heterogeneous 2D domain.

6.3.2. ADM USING HOMOGENIZATION (ADM-HO)
The homogenization method can be used to construct effective properties at the dy-
namic multilevel mesh. The effective properties at multilevel mesh are found (similar
to in ADM-MS) by solving local flow (pressure) equations based on an incompressible
(elliptic) equation.

To develop an ADM-HO system, a scale separation is assumed. Further, by doubling
the spatial variable into a fast and a slow one, one assumes that all quantities in the
mass balance equation satisfy the homogenization ansatz theory, namely that they can
be expanded regularly in terms of the scale separation parameter and they are locally
periodic w.r.t. the fast variable. The theoretical details can be found in the literature, i.e.,
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[151, 157, 158], and [154, 155, 159–162] where these ideas are used to develop effective
numerical simulation schemes.

Given a fine-scale effective permeability K and for each coarsening level l an effective
permeability tensor Kl is computed locally in a pre-process step. First the domain Ω is
divided in coarse cells Ωl that corresponds to a partition of the domain Ω as shown in
figure 6.5.

Figure 6.5: Sketch of the coarse partition ofΩ.

For each coarse cellΩl and at level l the effective permeability is calculated as

Kl
i , j

∣∣∣
Ωl

=
∫
Ωl

(
K

(
e j +∇ω j

))
·ei dy. (6.10)

Hereω j are the periodic solutions of the micro-cell equation, which can be expressed
as

−∇·
(
K

(
∇yω

j +e j

))
= 0, for all y ∈Ωl . (6.11)

Here, {e j }d
j=1 is the canonical basis of dimension d . To guarantee the uniqueness of

the solution ω j , next to its periodicity, one assumes that the average value over the cell
Ωl is 0.

To determine the value of the permeability tensor at each coarse cell Ωl , two micro-
cell problems (6.11) are solved for each spatial direction in 2D. 6.6 provides an illustration
of these local solutions for a coarse element.

More details about the homogenization procedure can be found in [142]. Note that
the local problems (6.11) capture the rapidly oscillating characteristics within a coarse



6.3. ADM METHOD VS. UPSCALING (HOMOGENIZATION)

6

131

Figure 6.6: Example of the local solutions ω1 (top right, for x-direction) and ω2 (bottom right, for y-direction)
for a coarse cell inside a 2D domain. The heterogeneous permeability field is also shown for the entire domain
(left).

element, completely decoupled from other coarse elements. The homogenized param-
eters, like multiscale bases, are computed at the beginning of the simulation. Figure 6.7
illustrates the calculation of the effective permeability at different levels.

Figure 6.7: Example of four different levels of homogenized permeability values: fine scale (bottom right),
coarse level 1 (bottom left), coarse level 2 (top right) and coarse level 3 (top left).

After this pre-process step, the homogenized parameters are used at each level and
constant unity functions are employed to interpolate the coarse-scale solutions to the
fine-scale ones. This is achieved by setting prolongation operators to unity. Finally, in
figure 6.8, the ADM process combining the usage of either the fine-scale permeability
or the upscaled permeability via homogenization technique is sketched. More details
about the role of the homogenization in the offline stage and the complete algorithm of
ADM-MS/ADM-HO can be found in the algorithm chart 1.
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Figure 6.8: Schematic description of ADM method for the combination of the multiscale and homogenization
techniques.
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Algorithm 1: The ADM algorithm using multi-scale basis functions (ADM-MS)
or homogenization (ADM-HO)

1 Given a fine scale K and the number of levels l
2 if Homogenization then
3 for k = 0 to l do
4 Compute the homogenized Kk

5 end
6 end
7 Compute the constant basis functions
8 for time step t n do
9 Select ADM grid resolution

10 Build ADM operators
11 Take i = 1 and initialize pressure
12 while error ≥ tolerance do
13 Assemble fine scale system
14 Solve the ADM system
15 Prolong back to fine scale
16 Next iteration i = i +1
17 end
18 Next time step
19 end

In the section of the numerical results (6.4), the two test cases 6.4.4 and 6.4.5 compare
the ADM results using multiscale basis functions and the homogenization technique.

6.4. RESULTS AND THE EVALUATION OF THE ADM METHOD
In this section, the numerical results of the ADM method for fractured porous media are
presented. A number of homogeneous and heterogeneous 2D as well as 3D test cases are
considered in which the accuracy and sensitivity of the ADM method are investigated.
ADM results are compared against the fine-scale simulations, used as a reference. The
error of the ADM results (compared to the fine-scale reference solution) is calculated as

ex = || xFS −xADM ||2
|| xFS ||2

(6.12)

where, x is either the pressure or the saturation vector (the main unknowns) and the
subscripts ADM and FS denote ADM and fine-scale, respectively. In all the test cases, the
fluids and the rock are considered to be incompressible, and quadratic relative perme-
ability functions are used.

Afterwards, to benchmark the homogenization and multiscale based solutions for a
dynamic mesh on heterogeneous media, two heterogeneous non-periodic permeability
fields from the top and bottom layers of the SPE 10th Comparative Solution Project [163]
are considered. For both test cases, the computational domain entails 216×54 grid cells
at fine-scale with ∆x =∆y = 1[m]. No-flow condition is imposed on all boundaries. The
reservoir initially contains oil and during the simulation water is injected from the injec-
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tion well. Both fluids are assumed to be incompressible. Injection and production take
place by introducing source terms (wells).

Table 6.1 shows the input parameters of the fluid and rock properties used in these
test cases.

Table 6.1: Input parameters of the fluid and rock properties.

Property value
Porosity (φ) 0.2
Water density (ρw ) 1000 [Kg/m3]
Oil density (ρo) 1000 [Kg/m3]
Water viscosity (µw ) 10−3 [Pa·s]
Oil viscosity (µo) 10−3 [Pa·s]
Initial pressure (p0) 107 [Pa]
Connate water saturation (Swc ) 0 [-]
Residual oil saturation (Sor ) 0 [-]
Injection pressure (pinj) 2×107 [Pa]
Production pressure (pprod) 0 [Pa]

Numerical results of the ADM-MS and ADM-HO methods will be compared to those
obtained from fine-scale reference permeability simulations. Both ADM methods em-
ploy the coarsening ratio of 3×3 with two coarsening levels. This is set due to the size of
the domain.

6.4.1. TEST CASE 1: 2D HOMOGENEOUS FRACTURED RESERVOIR
A 2D fractured 75[m]×75[m] reservoir with 35 fractures is considered. The rock matrix
is discretized with a 135× 135 fine-scale grid, and 1665 grid cells are imposed on the
fractures (total domain grid cells: 19890). The ADM method employs 2 coarse levels
with coarsening ratio of 3 in each direction both for the rock matrix and the fractures.
Both decoupled and fully-coupled multiscale basis functions are considered as pressure
interpolators. The saturation difference between neighboring cells is used as the ADM
coarsening criterion with four different threshold values: ∆S = {0.1,0.3,0.5,0.8}. Three
equidistant injection wells (pinj = 2× 107 [Pa]) and three equidistant production wells
(pprod = 1× 107 [Pa]) are present at the left and the right boundaries, respectively. The
total simulation time is set to 1000 days.

Figures 6.9 and 6.10 show the pressure and the saturation maps at the end of the
simulation for the results of the fine-scale simulation and the ADM simulations with 2
different threshold values of ∆S = {0.1,0.8}.

Figures 6.11a,6.11b and 6.11c,6.11d show the ADM pressure and saturation errors
(both using decoupled and coupled basis functions) at each time-step for the four values
of the coarsening criterion. Figures 6.12a and 6.12b illustrate the amount of active grid
cells (as a percentage of the number of the fine-scale grid cells) for each time-steps. Note
that the grid cells around the wells are always kept at the fine-scale resolution. Here, 864
grid cells are kept at the fine-scale resolution due to near-well refinement, which is 4.74
percent out of the 8.61 percent of the active grid cells at the first time-step. Figures 6.12c
and 6.12d provide the average pressure and saturation errors along with the average per-
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(a) Fine-scale

(b) Tol(∆S) = 0.1, active grid cells = 53.2%,
er rp = 1.88×10−4

(c) Tol(∆S) = 0.8, active grid cells = 9.5%,
er rp = 3.25×10−3

(d) Tol(∆S) = 0.1, active grid cells = 52.4%,
er rp = 3.49×10−4

(e) Tol(∆S) = 0.8, active grid cells = 10.0%,
er rp = 2.28×10−3

Figure 6.9: Test case 1: The pressure plots. The plot 6.9a shows the fine-scale pressure solution. The plots
6.9b and 6.9c visualize the ADM results with thresholds 0.1 and 0.8 using decoupled basis functions. And ADM
solutions with thresholds 0.1 and 0.8 using fully coupled basis functions are illustrated on the plots 6.9d and
6.9e, respectively.
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(a) Fine-scale

(b) Tol(∆S) = 0.1, active grid cells = 53.2%,
er rS = 5.76×10−2

(c) Tol(∆S) = 0.8, active grid cells = 9.5%,
er rS = 2.92×10−1

(d) Tol(∆S) = 0.1, active grid cells = 52.4%,
er rS = 9.14×10−2

(e) Tol(∆S) = 0.8, active grid cells = 10.0%,
er rS = 2.29×10−1

Figure 6.10: Test case 1: The water (injecting phase) saturation results. The plot 6.10a contains the fine-scale
saturation result. The plots 6.10b and 6.10c show the ADM results with thresholds 0.1 and 0.8 using the decou-
pled basis functions. And the ADM solutions with thresholds 0.1 and 0.8 using fully coupled basis functions
are illustrated on the plots 6.10d and 6.10e, respectively.
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centage of the grid cells employed by the ADM method as functions of the coarsening
criterion threshold values.
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(a) Pressure errors, using the decoupled basis functions
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(b) Pressure errors, using the fully coupled basis functions
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(c) Saturation errors, using the decoupled basis functions
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Figure 6.11: Test case 1: The pressure and the saturation errors. Figures 6.11a and 6.11b show the pressure
errors for simulations with decoupled and fully coupled basis functions respectively. The data is obtained over
simulation time-steps and for four different ADM tolerances. Figures 6.11c and 6.11d illustrated the saturation
errors versus the simulation time-steps for both decoupled basis functions and the fully coupled basis func-
tions.

ADM results in this test case show a low sensitivity to the type of the basis functions
employed. Note that the fully coupled basis functions are more computationally expen-
sive and provide a denser prolongation operator. However, in case of using static pro-
longation operators, as the basis functions of all levels are computed only once at the
beginning of the simulation, the extra computational costs involved in the calculation
of the fully coupled basis functions can be considered negligible. In this test case, the
saturation plots (see figure 6.10) highlight a considerable by-pass of injection fluid due
to presence of the highly conductive fractures, resulting in an inefficient sweep of the
reservoir fluid (second phase) in the middle of the domain.
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(a) Active grid cells, using the decoupled basis functions
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(b) Active grid cells, using the fully coupled basis functions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F-ADM Tolerance

0

0.5

1

1.5

2

2.5

3

3.5
10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

[-
]

Average Perssure Error (left axis)
Average Saturation Error (right axis)
Avergare Active Grid Cells [-] (right axis)

(c) Average values, using the decoupled basis functions
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(d) Average values, using the fully coupled basis functions

Figure 6.12: Test case 1: The percentage of the active grid cells and the averaged errors. Figures 6.12a and 6.12b
demonstrate the percentage of the active grid cells for the two mentioned approaches respectively. The data
is obtained over simulation time-steps and for four different ADM tolerances. Figures 6.12c and 6.12d show
the average of the pressure error, the saturation error and the percentage of the active grid cells over the whole
simulation time for both approaches.
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6.4.2. TEST CASE 2: 2D HETEROGENEOUS FRACTURED RESERVOIR

This test case differs from the test case 1 only in the permeability of the rock matrix as it is
heterogeneous. The rest of the input parameters and configurations are identical to test
case 1. The permeability map has a heterogeneity contrast of 7.7×103 with minimum
and maximum permeability values of 1.3×10−16 [m2] and 9.9×10−13 [m2], respectively.
The well positioning follows the same configuration (line drive with 3 equidistant injec-
tors and producers). Moreover, the coarsening level, the coarsening ratios and the coars-
ening criteria are identical to the previous test case. As for their similar performance to
the decoupled approach, only the results of the simulation using the fully coupled basis
functions are presented.

6.4.3. TEST CASE 3: 3D HOMOGENEOUS FRACTURED RESERVOIR

For this test case, a 3D 75[m]×75[m]×30[m] homogeneous domain containing 26 frac-
ture planes of different geometrical properties is considered, as shown in figure 6.16. A
99×99×27 Cartesian grid is imposed on the rock matrix with a total of 264,627 grid cells.
Independent 2D grids are imposed on each fracture plane. The grid cells in the frac-
tures have sizes ∆ξ and ∆η such that mean(∆ξ,∆η) = 2×mean(∆xm ,∆ym ,∆zm). Here,
∆xm ,∆ym ,∆zm indicate the sizes of the matrix grid cells in each direction. The total
number of grid cells in the fracture network is 2,646 grid cells. The rock matrix perme-
ability is 10−14 [m2] whereas the fracture permeability is 2.08×10−6 [m2]. Three injection
wells are present at the bottom left, middle left and the top left boundary, all perforated
over the whole thickness of the reservoir (pinj = 2×107[Pa]). Similarly three production
wells are located at the right-hand side of the domain (pprod = 1×107[Pa] Pa). The simu-
lation is run for 1000 days.

The ADM method employs 2 levels of coarsening with coarsening ratios γ= 3 in each
direction. Figure 6.17 shows, for instance, the saturation distribution at time-step 15
along with the ADM grid employed at that time-step.

An identical error measures used for the previous test cases are conducted in this
test case as well. Figures 6.18a and 6.18b present the pressure and the saturation errors
at each time-step for four different threshold values of the coarsening criterion, i.e. 0.1,
0.3, 0.5 and 0.8. The evolution of the number of the active grid cells throughout the
ADM simulations is shown in figure 6.18c. Average of all the pressure errors, saturation
errors and active grid cells over the whole simulation time versus∆S thresholds are given
in figure 6.18d. In this test case, 23,328 grid cells near the wells are kept at fine-scale
resolution that is 8.73 percent out of 10.51 percent of the active grid cells at the first time
step. An increase in the grid section threshold (∆S) correlates with a decrease in size of
the ADM system as less active grid cells are used.

6.4.4. TEST CASE 4: ADM-MS AND ADM-HO ON SPE10 TOP LAYER

In this test case, the SPE10 top layer is considered. A 216× 54 grid cells mesh at fine-
scale is imposed on the 2D domain. The minimum and the maximum values of the
heterogeneous permeability map are Kmi n = 3.0×10−18[m2] and Kmax = 4.6×10−12[m2]
respectively. The permeability distribution of the SPE10 top layer is shown in 6.19. One
injection well and one production well are placed in the bottom left corner and top right
corner of the domain. The simulation time is t = 1000 [days] and the results are reported
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(a) Fine-scale Pressure (b) Permeability

(c) Tol(∆S) = 0.1, active grid cells = 55.7%,
er rp = 5.30×10−5

(d) Tol(∆S) = 0.3, active grid cells = 41.4%,
er rp = 1.96×10−4

(e) Tol(∆S) = 0.5, active grid cells = 30.4%,
er rp = 5.86×10−4

(f) Tol(∆S) = 0.8, active grid cells = 13.5%,
er rp = 9.42×10−4

Figure 6.13: Test case 2: The permeability and the pressure plots. The plot 6.13b shows the permeability distri-
bution in the domain. The plot 6.13a is the fine-scale pressure solution. The plots 6.13c, 6.13d, 6.13e and 6.13f
visualize the ADM results with thresholds (Tol(∆S)) of 0.1 and 0.3, 0.5 and 0.8 respectively.
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(a) Fine-scale Saturation (b) Permeability

(c) Tol(∆S) = 0.1, active grid cells = 55.7%,
er rS = 4.30×10−2

(d) Tol(∆S) = 0.3, active grid cells = 41.4%,
er rS = 6.24×10−2

(e) Tol(∆S) = 0.5, active grid cells = 30.4%,
er rS = 9.54×10−2

(f) Tol(∆S) = 0.8, active grid cells = 13.5%,
er rS = 1.93×10−1

Figure 6.14: Test case 2: The saturation plots. The plot 6.14a shows the fine-scale saturation solution. The
plots 6.14c, 6.14d, 6.14e and 6.14f are the ADM results with thresholds (Tol(∆S)) of 0.1 and 0.3, 0.5 and 0.8
respectively.
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(b) Saturation errors
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(c) Active grid cells
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Figure 6.15: Test case 2: The error history of the ADM pressure and the ADM saturation results versus the
simulation time can be seen on figures 6.15a and 6.15b respectively. Figure 6.15c shows the changes in the
percentage of active grid cells (compared with the number of fine-scale grid cells) versus simulation time for
four different ADM grid selection criteria. All these data is averaged over the entire simulation time and is
presented in figure 6.15d versus the ADM grid selection tolerance.
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Figure 6.16: Test Case 3: The reservoir geometry and the fracture network.
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Figure 6.17: Test Case 3: illustration of the ADM mesh at time-step 15 (left) and saturation distribution (right).
Only saturation values higher than 0.5 are shown (right).
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Figure 6.18: Test case 3: The ADM pressure and the ADM saturation errors versus the simulation time can
be viewed in figures 6.18a and 6.18b respectively. Figure 6.18c visualizes the changes in the percentage of
active grid cells (compared with the number of fine-scale grid cells) versus simulation time. All the data is
then averaged over the entire simulation time and is presented in figure 6.18d versus the ADM grid selection
tolerance.
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on 100 equidistant time intervals.

Figure 6.19: Test case 4: Fine-scale permeability (Log10 scale) of the SPE10 top layer dataset.

Figure 6.20 shows the homogenized version of the permeability at 2 different coars-
ening levels. It is noteworthy to mention that the homogenized permeability at both
coarse levels preserve the structure of the original fine-scale permeability. The high and
low permeable zones remain clearly detectable.

(a) Coarse level 1 with 72×18 cells.

(b) Coarse level 2 with 24×6 cells.

Figure 6.20: Test case 4: Homogenized permeability of the top layer of the SPE10 for two coarsening levels
coarsening ratio γx ×γy = 3×3.

The saturation and pressure results of the fine-scale, ADM-MS and ADM-MS meth-
ods at the final time step are shown in figure 6.21. Numerical results of ADM-MS and
ADM-HO methods are both compared with the fine-scale result as reference solution. In
the homogenized approach, by using an effective homogenized parameter for a coarse
cell with high and low permeable fine cells higher flow leakage can be seen when com-
pared to fine-scale and multiscale-based approaches. This effect can be seen in figure
6.20, in the saturation results of the ADM-HO method. Moreover, figure 6.22 illustrates
the adaptive mesh at 2000 days after injection. Notice that the refinement of the per-
meability is most dominant at the saturation front, due to the chosen mesh refinement
criterion. For this figure, the grid resolution selection threshold value is ∆S = 0.3, i.e., a
cell is successively coarsened if ∆S is lower than 0.3.

The pressure and saturation error history maps for the ADM-MS and the ADM-HO
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(a) Fine-scale pressure (b) Fine-scale saturation

(c) ADM multiscale pressure (d) ADM multiscale saturation

(e) ADM homogenized pressure (f) ADM homogenized saturation

Figure 6.21: Test case 4: Pressure and saturation results of the fine-scale (top row), the multiscale-based ADM
method (middle row) and the homogenized-based ADM method.

Figure 6.22: Test case 4: Adaptive mesh and homogenized permeability for the SPE10 top layer test case. The
threshold value for the front tracking criterion is ∆S = 0.3.

methods are computed and shown in figures 6.23a and 6.23b respectively. These rela-
tive errors, are calculated using equation (6.12). Moreover, figure 6.23c illustrates the
percentage of the active grid cells (compared to all the fine-scale grid cells) employed
during the simulation time. Finally, these quantities are averaged over the entire simula-
tion time and presented in figure 6.23d versus the ADM grid selection criterion for three
threshold values of ∆S = {0.1,0.3,0.5}.

The results indicate that the homogenization-based simulations have higher errors
compared with the multiscale-based simulations. They both have similar average usage
of active grid cells, with ADM-MS having slightly fewer grid cells. This is shown in figure
6.23c. Note that the grid cells around the wells are kept at the fine-scale resolution per-
manently. Furthermore, for tighter error tolerance values, the quality of both approaches
become comparable.

6.4.5. TEST CASE 5: ADM-MS AND ADM-HO ON SPE10 BOTTOM LAYER

In this test case, the SPE10 bottom layer model is used as the test domain. Similar to
the previous test case, a 216× 54 grid cells mesh at fine-scale is imposed. The perme-
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(a) Pressure errors (b) Saturation errors

(c) percentage of the active grid cells
(d) Averaged values of the pressure and saturation errors,

and the active grid cells

Figure 6.23: Test case 4: the error history maps of the pressure and saturation results of the ADM-MS and ADM-
HO methods both compared to fine-scale reference solution are shown in the plots in the top row. Moreover,
the history of the active grid cells employed though the simulation time, as well as the averaged values of the
three properties (mentioned here) over the entire simulation time are presented in the plots at bottom row.

ability of the SPE10 bottom layer has higher heterogeneity contrast compared to the top
layer, with Kmi n = 2.3×10−18[m2] and Kmax = 2.0×10−11[m2]. The fluid properties and
the injection/production well conditions are identical to the previous test case. How-
ever, the simulation time is 20[days]. The permeability map of this domain at fine-scale
resolution is presented in figure 6.24.

Figure 6.24: Test case 5: Fine-scale permeability (Log10 scale) of the SPE10 bottom layer dataset.

The homogenized version of the permeability of the SPE10 bottom layer is shown in
figure 6.25 at 2 different coarsening levels. In this case, the channelized patterns of the
permeability are less visible. Due to the many high contrast channels, more active cells
are employed compared with the SPE10 top layer, as shown in 6.26.
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(a) Coarse level 1 with 72×18 cells.

(b) Coarse level 2 with 24×6 cells.

Figure 6.25: Test case 5: Homogenized permeability of the bottom layer of the SPE10 for two coarsening levels
coarsening ratio γx ×γy = 3×3.

Figure 6.26: Test case 5: Refinement of the permeability of the bottom layer of the SPE10 using ADM-HO after
20 days. The threshold value for the front tracking criterion is ∆S = 0.3.

The saturation and pressure maps at the final time step are shown in figure 6.27 for
the fine-scale (top row), the multiscale-based ADM (middle row) and the homogenization-
based ADM (bottom row) methods.

The error history plots of the pressure and saturation results of the ADM-MS and
the ADM-HO illustrated in figures 6.28a and 6.28b respectively. In addition, figure 6.28c
shows the percentage of the active grid cells employed during the simulation time. Fig-
ure 6.23d presents the averaged values of the mentioned quantities over the entire sim-
ulation time versus the ADM grid selection criterion for three threshold values of ∆S =
{0.1,0.3,0.5}.

The results indicate a noticeable difference in the errors of the ADM-MS and the
ADM-HO methods. The pressure error in the ADM-HO method is significantly higher
since ADM-HO uses homogenized effective parameters. Instead, the ADM-MS method
employs multiscale basis functions. Moreover, as a result of a more accurate pressure,
the ADM-MS saturation error is lower than that of the ADM-HO method. The difference
in the percentage of the active grid cells used in the two approaches is less noticeable
than the difference in the errors. However, the ADM-HO method uses more active grid
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(a) Fine-scale pressure (b) Fine-scale saturation

(c) ADM multiscale pressure (d) ADM multiscale saturation

(e) ADM homogenized pressure (f) ADM homogenized saturation

Figure 6.27: Test case 5: The pressure and saturation results of the fine-scale (top row), the multiscale-based
ADM method (middle row) and the homogenized-based ADM method for the SPE10 bottom layer model.

cells, especially in the SPE10 bottom layer test case.

6.5. DISCUSSIONS AND CONCLUSION
In this chapter, an algebraic dynamic multilevel method for fully-implicit simulations of
multiphase fluid flow in porous media with embedded discrete fractures, was presented.
Built on the embedded discrete fracture model (EDFM), the fine-scale fully implicit sys-
tem was mapped on to a multilevel dynamic grid, defined independently for the rock
matrix and the fractures. This was achieved by development of the sequences of prolon-
gation operators (containing local basis functions) for the fractured media. These local
multilevel multiscale basis functions were introduced after selection of the coarse nodes
on both the rock matrix and the fracture sub-domains, with flexible matrix-fracture cou-
pling. If at a coarse scale, no coarse nodes are selected on a fracture domain, its effect
will be taken into account through the rock matrix basis functions in a homogenized (ef-
fective) manner. Selecting the coarse nodes on a fracture however, allows for its explicit
representation at that coarse scale. The front-detection strategy is used to employ the
fine-scale grids only when and where they are needed, while multilevel multiscale grid
is used elsewhere. The use of the multilevel multiscale basis functions guarantees the
accuracy of the global (pressure) unknowns where coarse grids are imposed.

Numerical results for both 2D and 3D test cases were presented to validate the ADM
method for fractured porous media. Moreover, the sensitivity of the ADM method to the
type of the pressure interpolators (i.e., with and without matrix-fracture coupling) and
the fraction of the active grid cells chosen indirectly by different threshold values was
studied. The results, with different amount of active dynamic grids, show that the ADM
method is able to provide accurate results for flow in fractured media by employing only
a fraction of the fine-scale grid-cells both in the rock matrix and in the fractures. It is
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(a) Pressure errors (b) Saturation errors

(c) percentage of the active grid cells
(d) Averaged values of the pressure and saturation errors,

and the active grid cells

Figure 6.28: Test case 5: The error history maps of the pressure and saturation results of the ADM-MS and
ADM-HO methods both compared to fine-scale reference solution for the SPE10 bottom layer are shown in
the plots in the top row. Moreover, the history of the active grid cells employed though the simulation time,
as well as the averaged values of the three properties (mentioned here) over the entire simulation time are
presented in the plots at the bottom row.

expected that the greater the size of the domain, the lower the percentage of the active
grid cells compared to the global number of the fine-scale grids. As such, ADM method
casts a promising approach for the simulation of multiphase fluid flow in real field-scale
fractured porous media.

In addition, homogenization and the multiscale methods have been developed and
evolved during the past decade as promising advanced simulation approaches for het-
erogeneous large-scale systems. In this work, the two methods were investigated, ex-
tended into a unified fully-implicit framework, and benchmarked for simulation of mul-
tiphase flow in porous media. It was shown that the two methods allow the construc-
tion of coarser level systems, and both rely on local solutions to find their corresponding
maps. While homogenization methods deliver effective parameters, multiscale methods
find interpolation of the solution (pressure) across scales. This is the main difference be-
tween the two approaches. For highly heterogeneous test cases it was shown that the
two approaches provide accurate solutions, while ADM-MS provided more accurate so-
lutions compared with ADM-HO. The use of the effective parameters for coarse cells
with high and low permeable cells can lead to excessive leakage if an effective parameter
is used instead of the basis function. Furthermore, it was very important to demonstrate
solutions of the ADM-HO for permeability fields with no periodic structure. This illus-
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trated the applicability of homogenization methods for problems with no separation of
scales if they are combined with an adaptive mesh strategy (ADM). Moreover, both meth-
ods were developed algebraically. Specially by setting a constant unity prolongation op-
erator, it was shown how the ADM-HO method can be developed straightforwardly. This
comparison sheds new light on the application of multiscale and homogenization meth-
ods for real-field simulation of multiphase flow in porous media.
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In the previous chapter, the algebraic dynamic multilevel (ADM) method was explained
for isothermal multiphase flow in fractured porous media. After describing the govern-
ing equations in section 2.1 and discretizing the continuum system as well as linearizing
the non-linear equations at fine-scale resolution in sections 3.1.1 and 3.2.1, the linear
system of equations was mapped on to a dynamic resolution grid (i.e., the ADM grid)
using the ADM restriction and prolongation operators. These operators themselves are
assembled using the static multilevel multiscale operators constructed at the beginning
of the time-dependent simulation. Once the fine-scale system is mapped to the ADM
resolution and the system was solved at this dynamically defined grid resolution, the
obtained solution is mapped back to the fine-scale resolution using the ADM prolon-
gation operator, resulting in an approximated solution. The ADM method was tested
using various fractured test cases. It could be seen that the ADM method could pro-
vide satisfactory results with a user-defined level of accuracy while providing significant
computational efficiency by reducing the size of the linear system with multiple orders
of magnitude. In addition, the results of the multiscale-based ADM (ADM-MS) and the
homogenization-based ADM (ADM-HO) were compared with the fine-scale results (as
the reference solution) using test cases that employed the top and the bottom layers of
the SPE 10th comparative solution project [163]. It was shown that the multiscale-based
ADM was able to capture the fine-scale heterogeneities and adapt to the saturation front
more accurately than the homogenization-based ADM.

In many geothermal reservoirs, the presence of complex fracture networks pose sig-
nificant challenge to accurate fluid flow modeling, especially in formations with low per-

Parts of this chapter includes revised version of two of the author’s publications in the Journal of Computa-
tional Physics: X, Vol. 7 (2020) [47], and in the Journal of Geothermics.
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meabilities where the fluid and heat transport mostly occurs through the fractures. In
such scenarios, the ADM method could provide computational benefits without sacri-
ficing the accuracy considerably.

In this chapter, the ADM method is described for low enthalpy (single-phase) and
high-enthalpy (multiphase) flow in fractured geothermal reservoirs. The governing equa-
tions and the fine-scale discretization of the equations were already covered in chapters
2 and 3 respectively. The choice of the primary unknowns and the relating thermody-
namical correlations and theories were also already discussed in section 2.3.3. After de-
scribing the ADM methodology for geothermal flow, its performance will be presented
through various homogeneous, heterogeneous and fractured domains test cases both
for low enthalpy (single-phase flow) and high-enthalpy (multiphase flow) fluid models.
Especially, for low enthalpy single-phase flow, the effects resulting from the choice of
the primary unknowns (either pressure-temperature or pressure-enthalpy) will be com-
pared with each other.

7.1. ADM SIMULATION STRATEGY FOR THERMAL FLOW
In this section, two different flow models are considered for the fine-scale system, i.e.,
single-phase flow for the low-enthalpy geothermal systems and multiphase flow for the
high-enthalpy geothermal systems. In low-enthalpy conditions where the water is as-
sumed not to phase change (no evaporation of the water under the in-situ thermody-
namical conditions), two formulations can be chosen. The first is the natural formula-
tion where the primary unknowns are the pressure (p) and the temperature (T ) of the
system. The other one is the molar formulation in which the pressure (p) and the total
enthalpy (H) are considered as the primary unknowns (please see section 2.3.3 for more
details on the choice of the primary unknowns). However, for the high enthalpy systems,
only the molar formulation with pressure (p) and the total enthalpy (H) as the primary
unknowns is taken into account.

The ADM simulation strategy for geothermal flow follows a similar approach as the
one for isothermal multiphase flow described in section 6.1. The flow chart shown in fig-
ure 6.1 applies to this approach as well. For both geothermal systems, at each iteration,
the ADM system reads

R̂l−1
l . . . R̂0

1 J0 P̂1
0 . . . P̂l

l−1︸ ︷︷ ︸
JADM

δx̂l =−R̂l−1
l . . . R̂0

1 r0︸ ︷︷ ︸
rl

. (6.2)

After solving the linearized system of equations above at ADM resolution, the ap-
proximated solution at the fine-scale resolution (i.e., δx ′

0) is obtained as

δx0 ≈ δx ′
0 = P̂1

0 . . . P̂l
l−1δxl . (6.3)

The ADM prolongation and restriction operators used for geothermal flow models
are assembled from the multilevel multiscale (MMsFV) operators constructed only at
the beginning of the simulation. These ADM operators are obtained similar to the ADM
operators for isothermal multiphase flow.
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7.1.1. THE ADM OPERATORS

The MMsFV prolongation operator (i.e., Pl
l−1) for the low-enthalpy single-phase geother-

mal flow, with consideration of natural formulation (pressure and temperature as the
main unknowns), between the coarsening levels l and l −1, reads

Pl
l−1 =



((
Pp

)l
l−1

)m,m ((
Pp

)l
l−1

)m, f
0 0((

Pp
)l

l−1

) f ,m ((
Pp

)l
l−1

) f , f
0 0

0 0
(
(PT )l

l−1

)m,m
0

0 0 0
(
(PT )l

l−1

) f , f


Nl−1×Nl

. (7.1)

Similarly, the MMsFV prolongation operator for low-enthalpy single-phase geother-
mal flow and high-enthalpy multiphase geothermal flow, both with molar formulation
(pressure and total enthalpy as the primary unknowns), is given as

Pl
l−1 =



((
Pp

)l
l−1

)m,m ((
Pp

)l
l−1

)m, f
0 0((

Pp
)l

l−1

) f ,m ((
Pp

)l
l−1

) f , f
0 0

0 0
(
(PH )l

l−1

)m,m
0

0 0 0
(
(PH )l

l−1

) f , f


Nl−1×Nl

. (7.2)

Please note that the MMsFV restriction operator is identical for both the natural and
the molar formulations, and also identical to the MMsFV restriction operator explained
in section 6.1, namely,

Rl−1
l =



(
Rl−1

l

)m
0 0 0

0
(
Rl−1

l

) f
0 0

0 0
(
Rl−1

l

)m
0

0 0 0
(
Rl−1

l

) f


Nl×Nl−1

. (6.5)

The temperature blocks and the total enthalpy blocks of the prolongation operators
are assembled with constant basis functions due to the local nature of these variables.
This means that these interpolators can be constructed as the transpose of the restriction

operators. In other words, (PT )l
l−1 = (PH )l

l−1 =
[
Rl−1

l

]T
. However, the pressure blocks

of the prolongation operators are calculated (identically in both formulations) using the
multilevel multiscale procedure for fractured media (see section 5.3.2). To achieve an ef-
ficient writing style, the duplication of the contents for the ADM and the MMsFV meth-
ods for these flow models is avoided as much as possible.
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7.1.2. SELECTION OF THE GRID RESOLUTION
For the geothermal flow models, the system of equations is mapped between the fine-
scale resolution and the ADM grid resolution using the ADM operators. The user-defined
grid selection criterion (already explained in section 6.2) is written differently depending
on the natural or the molar formulations. For the natural formulation, the front track-
ing technique captures the temperature gradient to achieve the correct dynamic grid
selection. AssumingΩI

l andΩJ
l as the set of two neighboring coarse grid cells I and J at

coarsening level l , with indices of fine-scale grid cells belonging to the coarse grid cells
ΩI

l andΩJ
l written as i and j respectively, the temperature differences ∆T̄I J are given by

∆T̄I J = max
(|Ti −T j |

) ∀ i ∈ΩI
l and ∀ j ∈ΩJ

l . (7.3)

The coarse grid block I is refined from coarsening level l to coarsening level l −1 if
the condition

∆T̄I N > tol (7.4)

is met. Similarly, for the molar formulation, the front tracking technique captures the
gradient of the total enthalpy on the system. Therefore, The total enthalpy differences
∆H̄I J are written as

∆H̄I J = max
(|Hi −H j |

) ∀ i ∈ΩI
l and ∀ j ∈ΩJ

l , (7.5)

and the coarse grid block I is refined from resolution level l to level l −1 if the condition

∆H̄I N > tol (7.6)

is met. All other procedures involving the ADM methodology for geothermal flow are
identical to those of the ADM method for isothermal multiphase flow. The details of the
code development are not covered here.

7.2. NUMERICAL RESULTS AND THE EVALUATION OF THE ADM
METHOD

In this section, the algebraic dynamic multilevel (ADM) method for geothermal flow is
studied using various test cases. The section of the numerical results is divided into
three subsections. In the first subsection, using three homogeneous and heterogeneous
fractured test cases (2D and 3D), i.e., test cases 1, 2 and 3, the ADM method for single-
phase flow in low-enthalpy geothermal reservoirs is assessed for the natural formulation
(pressure p and temperature T as the primary unknowns). In the second subsection,
using the next two test cases (test cases 4 and 5), a comparison between the results of
the simulations for the molar (pressure p and the total fluid enthalpy H as the main un-
knowns) and the natural formulations (pressure p and the temperature T as the primary
unknown) is presented. Moreover, a comparison of the performance of both formula-
tions is conducted. At last, in the third subsection, through a number of 1D, 2D and 3D
fractured test case (test cases 6-8), the performance of the ADM method is demonstrated
for the high-enthalpy multiphase flow simulation in fractured geothermal domains with
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implementation of the molar formulation. The ADM results are compared against the
fine-scale results (as the reference solution). The ADM error is calculated as

ex = || xFS −xADM ||2
|| xFS ||2

, (6.12)

with x being a solution vector (of either of the main unknowns) and the subscripts
ADM and FS indicating ADM and fine-scale.

7.2.1. SINGLE-PHASE FLOW IN LOW-ENTHALPY FRACTURED GEOTHERMAL

SYSTEMS USING NATURAL FORMULATION (P-T)
In this section, three homogeneous and heterogeneous fractured test cases (2D and 3D)
are included to assess the ADM method for single-phase mass-heat coupled flow in low
enthalpy fractured geothermal reservoirs.

TEST CASE 1: 2D HOMOGENEOUS FRACTURED RESERVOIR

In this test case, the accuracy of the ADM method for mass-heat transport with natu-
ral formulation (pressure and temperature as the main unknowns) in a homogeneous
domain containing fractures with mixed conductivities is studied. For this purpose,
a 2D fractured 100[m] × 100[m] domain with 30 fractures is considered. The length
of each fracture is different but the size of their aperture is identical and set to a f =
5 ·10−3 [m]. A 136×136 grid is imposed on the rock matrix and the fracture network con-
sists of 315 grid cells (in total 18811 cells). The matrix permeability is homogeneous with
Km = 10−14 [m2] and the permeability of the fracture network has the range of K fmi n =
10−20 [m2] and K fmax = 10−7 [m2]. Two injection wells are located at the bottom left
and top left corners with injection pressure of pinj = 2 · 107 [Pa]. additionally, there are
two production wells at the bottom right and the top right corners with pressure of
pprod = 1 ·107 [Pa]. Table 7.1 demonstrates the input parameters of this test case.

Table 7.1: Input parameters of the fluid and rock properties for test case 1.

Property value
Rock thermal conductivity (Λr ) 4 [W/m/K]
Fluid thermal conductivity (Λ f ) negligible
Rock density (ρr ) 2750 [kg/m3]
Fluid specific heat (Cp f ) 4200 [J/kg.K]
Rock specific heat (Cpr ) 790 [J/kg.K]
Matrix porosity (φ) 0.2
Matrix permeability 10−14 [m2]
fractures permeability (min) 10−20 [m2]
fractures permeability (max) 10−7 [m2]
Fractures aperture 5×10−3 [m]

The maximum number of the coarsening level for the rock matrix is lm = 2 and for the
fractures is l f = 1. Over the entire computational grids, the coarsening ratio is γ= 3×3.
The ADM simulations are run for three different thresholds of grid resolution selection,
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namely, ∆T = 5,10,20[K] and the ADM results are compared to the result of the fine-
scale simulation as the reference solution. The simulations are run for 1000[days] and
the results are printed at 100 isochronal intervals.

Figures 7.1 and 7.2 show the pressure and the temperature solutions of the fine-scale
and the ADM simulations. The errors (ep and eT ) and the percentage of the active grid
cells (AGC ) are mentioned under the ADM plots.

(a) Fracture network geometry (b) Fine-scale pressure

(c) ADM with ∆T = 5[K]
ep = 9.0×10−3, AGC = 52%

(d) ADM with ∆T = 10[K]
ep = 1.3×10−2, AGC = 20%

(e) ADM with ∆T = 20[K]
ep = 2.3×10−2, AGC = 14%

Figure 7.1: Test case 1: pressure plots. Figure 7.1a illustrates the fracture network of this test case. The figure on
the top right is the fine-scale solution (7.1b), and the figures on the bottom row show the ADM solution with
thresholds of ∆T = 5[K] (7.1c), ∆T = 10[K] (7.1d) and ∆T = 20[K] (7.1e) respectively.

Figure 7.3 provides more details of the error analysis for test case 1. On the top row,
the pressure and the temperature errors (figures 7.3a and 7.3b) versus simulation time-
steps are shown. Figure 7.3c plots the percentage of the active grid cells used during the
simulation. Lastly, averaged errors and averaged active grid cells are plotted over the
entire simulation time for all the three thresholds (7.3d).

Please note that the regions around the wells are always kept at fine-scale resolution
and as a result (depending on the size of the domain) a noticeable portion of the active
grid cells are imposed. In this test case, approximately 5 percent of the total grid cells are
kept at the fine-scale resolution due to near-well refinement. Moreover, in this test case,
intersection between permeable fractures and impermeable fractures (or flow barriers)
occur. In this test case (and the following ones), the impermeable fractures are consid-
ered as “non-sealing” flow barriers, meaning that the crossing of the highly permeable
fractures causes flow leakage. This effect can be seen in the figure 7.1 where the pressure
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(a) Fracture network geometry (b) Fine-scale temperature

(c) ADM with ∆T = 5[K]
eT = 7.5×10−3, AGC = 52%

(d) ADM with ∆T = 10[K]
eT = 1.1×10−2, AGC = 20%

(e) ADM with ∆T = 20[K]
eT = 2.5×10−2, AGC = 14%

Figure 7.2: Test case 1: temperature plots. Figure 7.2b on the top right shows the fine-scale temperature so-
lution. The ADM solutions are shown on the figures of the bottom row with thresholds of ∆T = 5[K] (7.2c),
∆T = 10[K] (7.2d) and ∆T = 20[K] (7.2e).

gradient across the permeable fracture stays negligible on both sides of the impermeable
fracture. However, please note that in reality, this depend on the geologic history of the
fracture patterns. The geological discussion related to this matter is out of the scope of
this work.

TEST CASE 2: 2D HETEROGENEOUS FRACTURED RESERVOIR

This test case assesses the ADM performance on a 2D heterogeneous fractured domain.
Similar to the previous test case, a 2D domain with dimensions of 100[m]× 100[m] is
considered. A network of 30 fractures with identical geometry as in test case 1 exists.
The rock matrix is discretized into 136×136 fine-scale grid cells, and 291 grids are im-
posed on the fracture network (in total 18516 grid cells). The permeability of the matrix
ranges from Kmmi n = 1.2×10−15 [m2] to Kmmax = 1.2×10−12 [m2]. All fractures are highly
conductive with permeability of K f = 10−8 [m2]. The well pattern used in this test case is
identical to test case 1. Moreover, the same coarsening strategy is used in this test case.
The input parameters of table 7.1 holds for this test case as well, except for permeabil-
ity values of the rock matrix and the fractures. The ADM simulations are run for four
different grid resolution selection thresholds (∆T = 5,10,20,40[K]) and their results are
compared to the reference solution (fine-scale). The simulation is done for 200[days]
and the results are extracted at 100 isochronal intervals.The pressure and the tempera-
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Figure 7.3: Test case 1: error analysis. Figures 7.3a and 7.3b show the ADM error of pressure and temperature
versus the simulation time-steps. The errors are calculated based on equation (6.12). Figure 7.3c shows the
percentage of the active grid cells used during simulation versus the simulation time-steps. Lastly, figure 7.3d
demonstrates the averaged values of the mentioned parameters over the entire simulation time for the three
thresholds.

ture solutions of fine-scale and the ADM simulations are displayed on figures 7.4 and 7.5
respectively. Similar to the previous test case, the errors (ep and eT ) and the percentage
of the active grid cells (AGC ) are indicated under the ADM plots.

Figures 7.6 shows the error analysis for test case 2. The pressure and the temperature
errors versus simulation time-steps are illustrated on the top row (figures 7.6a and 7.6b).
Figure 7.6c shows the percentage of the active grid cells employed during the simulation
time. Average errors and average active grid cells over the entire simulation time can be
seen for all four ADM thresholds on figure 7.6d.

TEST CASE 3: 3D HOMOGENEOUS FRACTURED RESERVOIR

In this test case, a 3D 100[m]× 100[m]× 40[m] containing 15 lower dimensional frac-
tures with different geometrical properties is considered. An 81×81×27 Cartesian grid
is imposed on the rock matrix, and the fracture network is discretized in to 1377 grid cells
(summation of 178524 grid cells). The rock matrix has permeability of Km = 10−14 [m2].
The fracture network consists of both highly conductive fractures with permeability of
K f = 10−6 [m2] and flow barriers with permeability of K f = 10−22 [m2]. Figure 7.8a shows
the structure of the fracture network for this 3D test case. Two injection wells exist at the
bottom left and the top left boundaries with a pressure of pinj = 5× 107 [Pa]. Similarly,
two production wells are located at the bottom right and the top right boundaries with a
pressure of pprod = 1×107 [Pa]. All the wells are vertical and are perforated over the entire
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(a) Permeability field (b) Fine-scale pressure

(c) ADM with ∆T = 5[K]
ep = 1.9×10−3, AGC = 90%

(d) ADM with ∆T = 10[K]
ep = 2.5×10−3, AGC = 51%

(e) ADM with ∆T = 20[K]
ep = 5.0×10−3, AGC = 24%

(f) ADM with ∆T = 40[K]
ep = 1.1×10−2, AGC = 14%

Figure 7.4: Test case 2: pressure plots for the 2D heterogeneous test case with 30 highly conductive fractures.
Shown above, are the permeability map 7.4a, fine-scale solution 7.4b, ADM with thresholds ∆T = 5[K] 7.4c,
∆T = 10[K] 7.4d, ∆T = 20[K] 7.4e and ∆T = 40[K] 7.4f respectively.

(a) Permeability field (b) Fine-scale temperature

(c) ADM with ∆T = 5[K]
eT = 1.4×10−2, AGC = 90%

(d) ADM with ∆T = 10[K]
eT = 1.8×10−2, AGC = 51%

(e) ADM with ∆T = 20[K]
eT = 2.4×10−2, AGC = 24%

(f) ADM with ∆T = 40[K]
eT = 3.1×10−2, AGC = 14%

Figure 7.5: Test case 2: temperature plots for the 2D heterogeneous test case with 30 highly conductive frac-
tures. The permeability map is shown in figure 7.5a. The numerical solution of the temperature is given for the
fine-scale run (figure 7.5b), and the ADM runs with thresholds ∆T = {5,10,20,40}[K] (figures 7.5c, 7.5d, 7.5e
and 7.5f) respectively.
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Figure 7.6: Test case 2: error analysis. Figures 7.6a and 7.6b demonstrate the ADM error of pressure and tem-
perature results versus the simulation time-steps. The errors are calculated based on equation (6.12). Figure
7.6c shows the percentage of the active grid cells employed versus the simulation time-steps. Lastly, figure 7.6d
presents the averaged values of the mentioned parameters over the entire simulation time for the four ADM
thresholds mentioned above.

thickness of the reservoir. Simulation is run for 200 days and the results are printed at
100 isochronal intervals.. Two coarsening levels with coarsening ratio of γm = 3×3×3
is considered for matrix and one coarsening level with coarsening ratio of γ f = 3×3 for
the fractures. Figure 7.7 illustrates how the ADM grids looks like for various coarsening
levels and resolutions at a specific simulation time.

The simulations are run for the fine-scale and the ADM with four different thresholds
(∆T = {10,20,40,80}[K]). The results of the ADM are compared to the reference solution
(fine-scale). The temperature solutions are shown in figure 7.8.

Figure 7.9 provides the error analysis of this test case.

7.2.2. COMPARISON BETWEEN THE NATURAL FORMULATION (P-T) AND THE

MOLAR FORMULATION (P-H)
In this subsection with the next two test cases (test cases 4,5), a comparison is made be-
tween the natural formulation (pressure p and temperature T as the main unknowns)
and the molar formulation (pressure p and the total enthalpy H as the primary un-
knowns) for single-phase flow in low-enthalpy geothermal systems. And finally, with
test case 6, the ADM method is assessed for multiphase flow in high-enthalpy fractured
geothermal reservoirs using the molar formulation. An identical reservoir geometry and
production strategy is considered for all the following test cases. The initial reservoir
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Figure 7.7: Test case 3: Illustration of the ADM grid at time interval 10 (t = 20[dyas]) for ∆T = 40[K]. Note that
the grid cells near the wells are always kept at the fine-scale resolution.
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(a) The geometry of the reservoir and the
fracture network (b) Fine-scale temperature

(c) ADM with ∆T = 10[K]
eT = 1.6×10−3, AGC = 58%

(d) ADM with ∆T = 20[K]
eT = 2.9×10−3, AGC = 54%

(e) ADM with ∆T = 40[K]
eT = 8.6×10−3, AGC = 40%

Figure 7.8: Test case 3: Temperature plots. Figure 7.8b on the top right shows the fine-scale solution. The
ADM solutions are presented on the figures of the bottom row with thresholds of∆T = 10[K] (7.8c),∆T = 20[K]
(7.8d) and∆T = 40[K] (7.8e). For the sake of the visualization, only the grid cells with the temperature values of
300[K] < T < 350[K] illustrated. On these plots, the ADM grids belonging to the fine-scale resolution are shown
with gray color, but the ADM grids of the coarser levels are hidden for better visualization. The temperature
distribution corresponds to the simulation time interval 25 (t = 50[dyas]). The figure on the top left (7.8a)
shows the fracture network including the discrete fracture planes.
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Figure 7.9: Test case 3: error analysis. Figures 7.9a and 7.9b present the ADM error of pressure and tempera-
ture results versus the simulation time-steps. The errors are calculated based on equation (6.12). Figure 7.9c
demonstrates the percentage of the active grid cells employed versus the simulation time-steps. Lastly, figure
7.9d presents the averaged values of the mentioned parameters over the entire simulation time for the four
ADM thresholds mentioned above.
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pressure is identical for all the simulations. Figure 7.10 shows a schematic overview
of the reservoir geometry and production strategy. A subdivision is made in terms of
the geological realization of the reservoir. The initial reservoir temperature, rock ma-
trix properties and permeability map are chosen such that the two models represent the
geothermal fields of Middenmeer in the Netherlands and Soultz-sous-Forêts in France
[164], but only in terms of the mentioned properties. Other properties such as forma-
tion type, geological history, etc. have not been taken into account. Therefore, to avoid
misunderstanding, from now on, the model with the Soultz-sous-Forêts properties will
be referred to as “field A”, and the model with the Middenmeer properties will be de-
noted as “field B”. Please note that the geothermal fluid is assumed to be pure water for
both geothermal fields. Table 7.2 shows the rock matrix properties of both geothermal
fields. The rest of the input parameters used mutually in all the following test cases are
presented in table 7.3.

𝑝𝑖𝑛𝑗 = 1.4 × 107 [𝑃𝑎]

𝑇𝑖𝑛𝑗 = 300 [𝐾]

𝑝𝑝𝑟𝑜𝑑 = 0.8 × 107 [𝑃𝑎]

1
0
0
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]

100 [𝑚]

100 [𝑚]

1
0
0
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]

Geothermal field A:

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1.0 × 107 [𝑃𝑎]

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 400 [𝐾]

Geothermal field B:

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1.0 × 107 [𝑃𝑎]

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 370 [𝐾]

𝑝𝑝𝑟𝑜𝑑 = 0.8 × 107 [𝑃𝑎]

𝑝𝑖𝑛𝑗 = 1.4 × 107 [𝑃𝑎]

𝑇𝑖𝑛𝑗 = 300 [𝐾]

Figure 7.10: Schematic overview of the reservoir geometry and production strategy applied in test cases 4 and
5. Two injection wells are located on the left corners of the domain with injection pressure of pinj = 1.4×107 [Pa]
and injection temperature of T = 300[K]. Two production wells are located on the right corners of the domain
with production pressure of pprod = 0.8×107 [Pa]. The initial pressure and temperature of the reservoirs are
indicated for both geothermal fields under consideration.

In order to compare the results between the molar and natural formulations, a so-
called formulation error e f is defined that represents the relative difference between the
numerical solutions obtained from both formulations. The formulation error is calcu-
lated as

e f =
|| x(p−H) −x(p−T ) ||2

|| x(p−T ) ||2
, (7.7)



7

164
7. ALGEBRAIC DYNAMIC MULTILEVEL (ADM) METHOD FOR FRACTURED GEOTHERMAL

RESERVOIRS

Table 7.2: Input parameters of the rock properties for the geothermal fields A and B.

Property value for field A value for field B
Porosity (φ) 0.2 0.2
Rock density (ρr ) 2600 [Kg/m3] 2600 [Kg/m3]
Specific heat capacity (Cp ) 850 [J/Kg/K] 830 [J/Kg/K]
Thermal conductivity (Λ) 2.9 [W/m/K] 2.9 [W/m/K]

Table 7.3: The rest of the input parameters mutually used in the test cases 4,5 and 6.

Property value
Injection temperature (Ti n j ) 300 [K]
Injection pressure (pi n j ) 1.4×107 [Pa]
Production pressure (ppr od ) 0.8×107 [Pa]
Simulation time [days] 2000[days]
Maximum size of the time-step 30[days]
Maximum number of iterations 10 [-]
Tolerances for convergence 10−4 [-]
ADM coarsening levels (l ) 2
ADM coarsening ratios (γ) 3×3 [-]
ADM grid resolution selection tolerance ∆T = 20[K]

where || x(p−H) || and || x(p−T ) || are the second error norms of a given variable x using
the molar and natural formulation, respectively.

The first test case (test case 4) is the geothermal field A with assumption of homo-
geneous permeability. The second test case (test case 5) is the geothermal field B with
heterogeneous permeability field. For both of the first two cases, two realizations are
taken into account, one with a network of 15 fractures and one with 30 fractures. Both
fracture networks have mix-conductive fractures, some highly conductive with perme-
ability of K f ,max = 10−8 [m2] and flow barriers with permeability of K f ,mi n = 10−20 [m2].
The geometry of the fracture networks are available in figure 7.12. Figure 7.11 shows the
permeability of both geothermal fields.

TEST CASE 4: GEOTHERMAL FIELD A
In this test case, the geothermal field A with assumption of homogeneous permeability
is considered. Figure 7.11a shows the permeability map. The properties of this field
can be found in table 7.2. As mentioned, two realizations are taken into account, one
with 15 fractures and one with a fracture network consisting of 30 fractures. Figure 7.12
illustrates the geometry of the fracture networks.

REALIZATION 1
The first realization of the geothermal field A, is fractured with a network of 15 fractures
with both highly conductive and impermeable ones (see figure 7.12a). Figure 7.13 shows
the results of multiple runs with both formulations (natural and molar) on fine-scale
and ADM. The relative error indicating the difference between the two formulations is
available in figure 7.14.
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(a) Permeability of the geothermal field A (b) Permeability of the geothermal field B

Figure 7.11: Test cases 4 and 5: Permeability maps. For geothermal field A, a homogeneous permeability with
Km = 10−14 [m2] is considered (figure 7.11a), and for field B, a heterogeneous permeability map extracted from
the SPE10 bottom layer model is assumed (7.11b).

(a) The fracture network with 15 fractures (b) The fracture network with 30 fractures

Figure 7.12: Test cases 4 and 5: The fracture networks used for test cases 4, 5 and 6.
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(a) ADM, natural
formulation

(b) Fine-scale, natural
formulation

(c) Fine-scale, molar
formulation

(d) ADM, molar
formulation

(e) ADM, natural
formulation

(f) Fine-scale, natural
formulation

(g) Fine-scale, molar
formulation

(h) ADM, molar
formulation

(i) ADM, natural
formulation

(j) Fine-scale, natural
formulation

(k) Fine-scale, molar
formulation

(l) ADM, molar
formulation

Figure 7.13: Test case 4: Realization 1. The pressure (top row), temperature (middle row) and the total enthalpy
(bottom row) results of the fine-scale and ADM simulations, both for the natural and the molar formulation.

(a) The formulation error for fine-scale (b) The formulation error for ADM

Figure 7.14: Test case 4: Realization 1. The formulation error is calculated as a relative error (in second norm)
between the natural formulation and the molar formulation. This error is calculated separately for the fine-
scale and the ADM results and based on the equation (7.7).
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REALIZATION 2
In the second realization of geothermal field A, the domain consists of 30 fractures (in-
cluding highly conductive fractures and flow barriers; see figure 7.12b). Figure 7.15 con-
tains the results of the multiple runs with both formulations (natural and molar) on fine-
scale and ADM. The relative error indicating the difference between the two formula-
tions can be found in figure 7.16.

(a) ADM, natural
formulation

(b) Fine-scale, natural
formulation

(c) Fine-scale, molar
formulation

(d) ADM, molar
formulation

(e) ADM, natural
formulation

(f) Fine-scale, natural
formulation

(g) Fine-scale, molar
formulation

(h) ADM, molar
formulation

(i) ADM, natural
formulation

(j) Fine-scale, natural
formulation

(k) Fine-scale, molar
formulation

(l) ADM, molar
formulation

Figure 7.15: Test case 4: Realization 2. The pressure (top row), temperature (middle row) and the total enthalpy
(bottom row) results of the fine-scale and ADM simulations, both for the natural and the molar formulation.

Figure 7.16: Test case 4: Realization 2. The formulation error is calculated as a relative error (in second norm)
between the natural formulation and the molar formulation. This error is calculated based on equation (7.7).
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TEST CASE 5: GEOTHERMAL FIELD B
In this test case, the geothermal field B with assumption of heterogeneous permeability
is considered which is extracted from the SPE10 bottom layer model. Figure 7.11b shows
the heterogeneous permeability map. Similar to the previous test case, two realizations
are taken into account, one with 15 fractures and one with 30 fractures. Figure 7.12 shows
the geometry of the fracture networks.

REALIZATION 1
In the first realization of the geothermal field B, the domain has a network of 15 fractures
with mixed conductivities. The results of the multiple runs with both formulations (nat-
ural and molar) on fine-scale and ADM are presented in figure 7.17. The relative error
indicating the difference between the two formulations is available in figure 7.18.

(a) ADM, natural
formulation

(b) Fine-scale, natural
formulation

(c) Fine-scale, molar
formulation

(d) ADM, molar
formulation

(e) ADM, natural
formulation

(f) Fine-scale, natural
formulation

(g) Fine-scale, molar
formulation

(h) ADM, molar
formulation

(i) ADM, natural
formulation

(j) Fine-scale, natural
formulation

(k) Fine-scale, molar
formulation

(l) ADM, molar
formulation

Figure 7.17: Test case 5: Realization 1. The pressure (top row), temperature (middle row) and the total enthalpy
(bottom row) results of the fine-scale and ADM simulations, both for the natural and the molar formulation.

REALIZATION 2
In the second realization of the geothermal field B, the domain consists of 30 fractures
(including highly conductive fractures and flow barriers; see figure 7.12b). Figure 7.19
contains the results of the multiple runs with both formulations (natural and molar) on
fine-scale and ADM. The relative error indicating the difference between the two formu-
lations can be found in figure 7.20.
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(a) The formulation error for fine-scale (b) The formulation error for ADM

Figure 7.18: Test case 5: Realization 1. The formulation error is calculated as a relative error (in second norm)
between the natural formulation and the molar formulation. This error is calculated separately for the fine-
scale and the ADM results and based on the equation (7.7).

(a) ADM, natural
formulation

(b) Fine-scale, natural
formulation

(c) Fine-scale, molar
formulation

(d) ADM, molar
formulation

(e) ADM, natural
formulation

(f) Fine-scale, natural
formulation

(g) Fine-scale, molar
formulation

(h) ADM, molar
formulation

(i) ADM, natural
formulation

(j) Fine-scale, natural
formulation

(k) Fine-scale, molar
formulation

(l) ADM, molar
formulation

Figure 7.19: Test case 5: Realization 2. The pressure (top row), temperature (middle row) and the total enthalpy
(bottom row) results of the fine-scale and ADM simulations, both for the natural and the molar formulation.
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(a) The formulation error for fine-scale (b) The formulation error for ADM

Figure 7.20: Test case 5: Realization 2. The formulation error is calculated as a relative error (in second norm)
between the natural formulation and the molar formulation. This error is calculated separately for the fine-
scale and the ADM results and based on the equation (7.7).

7.2.3. MULTIPHASE FLOW IN HIGH-ENTHALPY GEOTHERMAL SYSTEMS US-
ING MOLAR FORMULATION (P-H)

In this subsection with test cases 6-8, the ADM method is assessed for multiphase flow in
high-enthalpy fractured geothermal reservoirs using the molar formulation. In test case
6, a 1D domain with input parameters of the geothermal field A is considered. In test case
7 and 8, a 2D and 3D fractured domain is used to assess the ADM results on different tol-
erances of the ADM grid resolution selection criteria of ∆H = {0.25,0.5,1.0,2.0,4.0,8.0}×
105 [J/kg]. Table 7.4 lists the input parameters that are mutually used in these two test
cases.

TEST CASE 6: 1D HIGH-ENTHALPY SYSTEM (FINE-SCALE)
In this test case, a 1D domain (thus non-fractured) is considered. The rock and fluid
properties are taken from the test case 4. The purpose of this test case is the analysis
of the multiphase flow in high-enthalpy geothermal systems. However, due to thermo-
dynamical restriction, some input parameters and the initial reservoir conditions are
modified for this test case (and the next test case) and are presented in table 7.5.

The simulation results are shown for four different simulation times, i.e.,
t = {15,44,114,192}[days] in figure 7.21.

The results here are indicative of a correct implementation of the molar formula-
tion for multiphase flow and heat transfer. In order to discuss the physical phenomena
observed in multiphase simulations, from the results shown in figure 7.21, those from
simulation time t = 44[days] is the focused and now highlighted in figure 7.22. Three
different regions can be defined in the pressure and enthalpy solutions presented in this
figure. Region “A” shows the part of the system in the compressed water region and re-
gion “C ” shows the system under two-phase conditions. Region “B” marks the transition
of the system from two-phase to single-phase conditions. The system, with initial con-
ditions defined in the two-phase region, is still existing under these conditions in region
“C ” as illustrated by the enthalpy and saturation values. The transition of the system into
the single-phase compressed water region is marked by the boundary between regions
“C ” and “B”. First of all, the transition is indicated by a change in pressure gradient due
to the different compressibilities between both phases. Secondly, as steam condenses
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Table 7.4: The input parameters mutually used in the test cases 7 and 8.

Property value
Porosity (φ) 0.2
Fracture apertures (a f ) 5.0×10−3 [m−3]
Fracture permeability (K f ) {10−20,10−8} [m2]
Rock density (ρr ) 2600 [kg/m3]
Water liquid compressibility (cw,l ) 10−9 [1/Pa]
Water vapor compressibility (cs,v ) 10−6 [1/Pa]
Rock compressibility (cr ) 10−8 [1/Pa]
Water liquid specific heat capacity (Cp,w,l ) 4200 [J/kg/K]
Water vapor specific heat capacity (Cp,w,v ) 8000 [J/kg/K]
Rock specific heat capacity (Cp,r ) 850 [J/kg/K]
Water liquid thermal conductivity (Λw,l ) 0.6 [W/m/K]
Water vapor thermal conductivity (Λw,v ) 0.1 [W/m/K]
Rock thermal conductivity (Λr ) 3.0 [W/m/K]
Initial pressure of the reservoir (pi ni t ) 5.0×106 [Pa]
Initial enthalpy of the reservoir (Hi ni t ) 1.6×106 [J/kg]
Injection pressure (pinj) 6.0×106 [Pa]
Injection enthalpy (Hinj) 3.0×105 [J/kg]
Production pressure (pprod) 4.0×106 [Pa]
Simulation time [days] 200 [days]

Figure 7.21: Test case 6: The fine-scale results of the multiphase flow in high-enthalpy geothermal system for
the 1D domain used in this test case. Pressure, temperature, enthalpy and the saturation of water are plotted
for four simulation times of t = {15,44,114,192}[days].
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Table 7.5: The modified input parameters for the test cases 6 and 7.

Property value
Injection temperature (Ti n j ) 345 [K]
Injection pressure (pi n j ) 0.6×107 [Pa]
Production pressure (ppr od ) 0.4×107 [Pa]
Initial pressure (pi ni t ) 0.5×107 [Pa]
Initial temperature (Ti ni t ) 537 [K]
Initial enthalpy (Hi ni t ) 1.6×106 [J/kg]
Initial water saturation (Sw,i ni t ) 0.28 [-]

into the liquid water phase, the enthalpy of the system decreases. This condensation
also lowers the reservoir pressure. The latent heat of condensation yields an increase in
both enthalpy and temperature when moving from region “B” to region “A”. Note that
the water saturation in region “B” shows a minor amount of steam being present, and
it is only in region “A” that the steam phase becomes fully absent. Region “A” therefore
represents the part of the reservoir in which the system has fully transitioned into the
compressed water region, and therefore the cold-water front (shown with dashed red
line if figure 7.22) is observed in this region. As the system under two-phase conditions
is represented by a single temperature, a temperature gradient is only observed at the
location of the cold-water front. Naturally, a second enthalpy gradient is also observed
at this location. Note that a slight change in pressure gradient can be observed at the
position of the cold-water front due to the differences in the properties of liquid water at
different temperatures.

Figure 7.22: Test case 6: The results of simulation at time t = 44[days].
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7.2.4. TEST CASE 7: 2D HIGH-ENTHALPY FRACTURED TEST CASE (ADM)
In this test case, a 2D domain of 75[m]×75[m] with 30 fractures is considered. A 176×
176 fine-scale computational grid is imposed on the rock matrix and the fractures are
discretized into 815 grids (total of 31791 grids). The permeability of the rock matrix has a
range of Kmmi n = 1.4×10−15 [m2] to Kmmax = 1.4×10−12 [m2]. Fractures are either highly
conductive with K fmax = 10−8 [m2] or impermeable with K fmi n = 10−20 [m2]. The fracture
network can be seen in figure 7.23a. Two injection wells are located at the bottom and
top left corners with injection pressure of pinj = 6×106 [Pa] and two production wells are
at the bottom and top right corners with pressure of pprod = 4×106 Pa. Table 7.4 shows
the input parameters of this test case. The simulation time is set for t = 200[days] with
reports being printed at 100 isochronal intervals.

The ADM simulations make use of two coarsening levels with coarsening ratio of
γ = 5 at each dimension for all the media. The ADM results are obtained for ∆H =
{0.25,0.5,1.0,2.0,4.0,8.0}×105 [J/kg] tolerances and are compared to fine-scale results.

Figure 7.23 shows the permeability map and the simulation results for fine-scale and
the ADM with grid resolution selection tolerance of∆H = {1.0,2.0,4.0}×105 [J/kg]. These
results are at simulation time t = 40[days]. In the permeability map, the fractures with
high conductivity are shown in black color and the flow barriers are shown in white color.
The first row below the permeability map contains the pressure results. The saturation
of liquid water, the temperature and the total fluid enthalpy distribution in the reservoir
at the mentioned simulation time are presented in the rows below the pressure results
respectively. For the selected ADM tolerances, the errors are given below each 2D plot.

Figures 7.24 illustrates more details regarding the errors and the percentage of the
active grid cells used during the simulation for this test case. Note that the percentage
of active grid cells represents the reduction in the number of grid cells that are used to
solve the system of equations. For instance, a percentage of 25% means that the size
of the linear system is by average 4 times smaller in the ADM run compared with the
fine-scale simulation, over the entire simulation time.

7.2.5. TEST CASE 8: 3D HIGH-ENTHALPY FRACTURED TEST CASE (ADM)
For the purpose of this test case, a 3D domain with the extent of 100[m]×100[m]×40[m]
consisting of 15 fractures with mixed conductivities is designed. The rock matrix is dis-
cretized into 54×54×18 grid cells and 1017 grid cells are imposed on the fracture network
(in total 53505 grid cells). The matrix has homogeneous permeability of Km = 10−14 [m2],
but fractures have mix conductivity with K fmax = 10−8 [m2] for highly conductive frac-
tures and K fmi n = 10−20 [m2] for the impermeable ones. Figure 7.25b illustrates the ge-
ometry of the fracture network and highlights the fractures with different colors based on
their conductivities. Two injection wells exist on the bottom left and the top left bound-
aries with pressure of pinj = 6× 106 [Pa]. Similarly, two production wells are located at
the bottom right and the top right boundaries with pressure of pprod = 4×106 [Pa]. All
the wells are vertical and perforate the entire thickness of the reservoir. All the simula-
tions are run for t = 200[days]. Similar to the previous test case, the ADM simulations are
run for grid resolution selection tolerance of ∆H = {0.25,0.5,1.0,2.0,4.0}×105 [J/kg]. In
the ADM runs, two coarsening levels are used with the coarsening ratio of γ= 3 at each
dimension for all the media. For the sake of visualization aid, figure 7.25a shows how
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(a) Permeability (b)

(c) Fine-scale (d) ADM with

∆H = 1.0×105 [J/kg],

ep = 1.1×10−2 , AGC = 53%

(e) ADM with

∆H = 2.0×105 [J/kg],

ep = 1.2×10−2 , AGC = 41%

(f) ADM with

∆H = 4.0×105 [J/kg],

ep = 1.8×10−2 , AGC = 16%

(g)

(h) Fine-scale (i) ADM with

∆H = 1.0×105 [J/kg],

eS = 1.2×10−1 , AGC = 53%

(j) ADM with

∆H = 2.0×105 [J/kg],

eS = 1.4×10−1 , AGC = 41%

(k) ADM with

∆H = 4.0×105 [J/kg],

eS = 1.6×10−1 , AGC = 16%

(l)

(m) Fine-scale (n) ADM with

∆H = 1.0×105 [J/kg],

eT = 2.7×10−2 , AGC = 53%

(o) ADM with

∆H = 2.0×105 [J/kg],

eT = 3.5×10−2 , AGC = 41%

(p) ADM with

∆H = 4.0×105 [J/kg],

eT = 3.2×10−2 , AGC = 16%

(q)

(r) Fine-scale (s) ADM with

∆H = 1.0×105 [J/kg],

eH = 8.6×10−2 , AGC = 53%

(t) ADM with

∆H = 2.0×105 [J/kg],

eH = 1.0×10−1 , AGC = 53%

(u) ADM with

∆H = 4.0×105 [J/kg],

eH = 1.1×10−1 , AGC = 53%

(v)

Figure 7.23: Test case 7: Fine-scale and ADM results from the tolerances of ∆H = {1.0,2.0,4.0}×105 [J/kg]. The
top figure shows the permeability map of the reservoir and the fracture networks consisting of highly conduc-
tive fractures (in black color) and impermeable ones (in white color). Underneath the permeability map, in
descending order, the solutions of pressure, water saturation, temperature and total enthalpy distribution are
illustrated.
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Figure 7.24: Test case 7: ADM errors and the percentage of the active grid cells used for each ADM run. The
error for each parameter as well as the percentage of the active grid cells for each ADM run are averaged over
the entire simulation.

the ADM grid combines the grids from different resolution in this test case at simulation
time t = 28[days].

(a) The ADM grid (b) The fracture network

Figure 7.25: Test case 8: Figure 7.25a provides illustration of the ADM grid at simulation time t = 28[dyas]) for
∆H = 0.5×105 [J/kg]. Note that the grid cells near the wells are always kept at the fine-scale resolution. The
figure 7.25b visualizes the geometry of the fracture network. The highly conductive fractures (K f = 10−8 [m2])

are shown in red color and the impermeable ones (K f = 10−20 [m2]) are colored in blue.

The errors of the ADM runs as well as the percentage of the active grid cells for the
test case 8 are presented in figure 7.27. Please note that these values are averaged over
the entire simulation time.
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(a) Fine-scale (b) ADM with∆H = 1.0×105 [J/kg],

eH = 2.5×10−3 , AGC = 53%

(c) ADM with∆H = 4.0×105 [J/kg],

eH = 3.4×10−3 , AGC = 41%

(d)

(e) Fine-scale (f) ADM with∆H = 1.0×105 [J/kg],

eH = 1.8×10−4 , AGC = 53%

(g) ADM with∆H = 4.0×105 [J/kg],

eH = 2.5×10−4 , AGC = 41%

(h)

(i) Fine-scale (j) ADM with∆H = 1.0×105 [J/kg],

eS = 1.0×10−2 , AGC = 53%

(k) ADM with∆H = 4.0×105 [J/kg],

eS = 1.3×10−2 , AGC = 41%

(l)

Figure 7.26: Test case 8: Fine-scale and ADM results from the tolerances of ∆H = {1.0,4.0}×105 [J/kg]. Starting
from the top row to the bottom row, the results of total enthalpy, temperature and the saturation of liquid water
are presented. Fhe fine-scale results are on the left column and the ADM results are on the middle and the right
columns, with their corresponding ADM errors mentioned at the bottom of each plot. Note that for a better
visualization, only grids that have a certain range in the solutions are visible.
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Figure 7.27: Test case 8: ADM errors and the percentage of the active grid cells. The errors provided here and
the percentage of the active grid cells are averaged over the entire simulation for each ADM run.

7.3. DISCUSSIONS AND CONCLUSION

7.3.1. SINGLE-PHASE LOW-ENTHALPY SYSTEMS
In this chapter, the ADM method for coupled mass-heat single-phase flow (low-enthalpy)
and multiphase flow (high-enthalpy) in fractured geothermal reservoirs was described.
The discretized and linearized system of equations was mapped to a dynamically de-
fined multilevel resolution grid (also called as ADM grid) using the ADM prolongation
and restriction operators. This multilevel grid resolution provides significant reduction
in the size of the fine-scale linear system of equations while keeping the accuracy at a
user-defined threshold. This is achieved by employing fine-scale high resolution grid
cells only where and when needed (e.g., at the heat front with sharp solution gradient,
and near the wells with high velocity fluxes). For fractured models, the pEDFM model
(see section 3.3.3) was used to capture the explicit fractures with mixed conductivities.
Once the system is solved at the ADM resolution, to obtain an approximated fine-scale
solution, the ADM solution is mapped back to fine-scale resolution using the ADM pro-
longation operator. The resolution of each grid cell in the ADM method is selected via
a front tracking technique set by a user-defined threshold. Through the first three test
cases (2D and 3D, all fractured), the accuracy and performance of the ADM method es-
pecially for low-enthalpy systems using natural formulation (having pressure p and tem-
perature T as the primary unknowns) was assessed by comparing the ADM results with
their fine-scale counterparts. The sensitivity of ADM to different grid coarsening criteria
was also studied. It is observed that ADM is capable of providing accurate simulations
by employing only a fraction of the fine-scale grid cells in the sub-domains where it is
needed. Due to the rarefaction of the temperature distribution (highly diffused temper-
ature at the front), more fine-scale grid cells are used at the temperature front depend-
ing on the threshold. Additionally, ADM provides an algebraic framework which brings
a scalable simulation method for thermal fluid flows. One can expect that by increas-
ing the size of the domain, the percentage of active grid cells used during simulation
reduces. Therefore, ADM introduces a promising simulation strategy for real field-scale



7

178
7. ALGEBRAIC DYNAMIC MULTILEVEL (ADM) METHOD FOR FRACTURED GEOTHERMAL

RESERVOIRS

geothermal reservoir simulations.

7.3.2. NATURAL FORMULATION VS. MOLAR FORMULATION

In addition, for low-enthalpy geothermal systems, comparisons were made between the
natural formulation (p-T system) and the molar formulation (having pressure p and the
total fluid enthalpy H as the primary unknowns), both for fine-scale and ADM simu-
lations. Various test cases and scenarios were used to compare the results of both for-
mulations. The simulation performance of both primary variable formulations shows
the same behavior, independent of the simulation strategy. When cold-water is injected
into the reservoir, the temperature at the location of the injection well decreases only
due to conduction. It is when the reservoir temperature has decreased to the injection
temperature that transport of the cold water through the reservoir starts taking place.
When the cold-water front propagates further from the injection well, the effect of the
convective flux stabilizes and the number of iterations decreases again. Furthermore,
the number of iterations also stabilizes at this point. A heterogeneous permeability dis-
tribution greatly affects the transport of cold-water through the reservoir. Similar to the
heterogeneous absolute permeability, the different positions of the fractures relative to
the position of the cold-water front further increase the erratic behavior of the actual
number of iterations required. The fine-scale simulation performance of both primary
variable formulations is very similar for the model realizations.

The ADM simulation performance of both primary variable formulations shows sim-
ilar behavior to the fine-scale simulation performance described above. Furthermore,
the performance between the fine-scale and ADM simulation approaches is near iden-
tical, with the exception of the third realization of the geothermal field A. Here, the ADM
simulation strategy failed to find a solution based on the natural variable formulation. As
the ADM strategy was able to effectively find a solution based on the molar formulation,
the apparent issue regarding the natural formulation may be related to the increasing
mismatch in reservoir enthalpy when using this formulation. The ADM results from the
first realization of field A show no issues between the formulations in terms of capa-
bility of the ADM method to find a solution. The fine-scale simulation performance of
both primary variable formulations is again very similar for the model realizations of the
geothermal field B. Due to the heterogeneous permeability field, the required number of
iterations to achieve convergence as well as the sensitivity to the size of the time-step is
generally higher compared to the geothermal field A. The ADM simulation performance
is also similar between both primary variable formulations.

The difference in performance between both formulations using a fine-scale simula-
tion strategy is negligible. The performance itself is largely dependent on the complexity
of the problem. These results are similar to those presented in literature [93], despite the
added model complexities of a fracture network. Considering the ADM simulation strat-
egy for the geothermal field B, the natural formulation tends to perform slightly better
when the model complexity is increased.

7.3.3. MULTIPHASE-PHASE HIGH-ENTHALPY SYSTEMS

At next, the multiphase flow in high-enthalpy geothermal systems using molar formula-
tion was developed for fine-scale and ADM simulations. Through two test cases 6 and 7
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(1D non-fractured and 2D fractured), it was shown that the developed method can cap-
ture the heat and saturation fronts as well as the transition zone from liquid water to
steam. The results presented in the 1D high-enthalpy test case 6 are indicative of a suc-
cessful implementation of the molar formulation for multiphase flow and heat transfer
simulations. In order to discuss the physical phenomena observed in the multiphase
simulation, the results from figure 7.21 were presented again in figure 7.22 highlighting
the solution at simulation time t = 44[days]. In test cases 7 (2D) and 8 (3D), the ADM
method and its demonstration of front tracking technique for high-enthalpy fractured
media (homogeneous and heterogeneous) using the molar formulation was presented.
The ADM performance was assessed by comparing the ADM runs against the fine-scale
simulations (as reference solution). The ADM method provides significant computa-
tional efficiency by reducing the size of the linear system, while keeping the accuracy at a
used-defined level. The ADM error is expectedly higher in presence of increased hetero-
geneity contrast. ADM performance is significantly dependent on the model complexity.
One can conclude that, as the size of the domain increases, the ADM computational gain
will be significantly higher.

All the software developments of this dissertation have been carried out in our in-
house simulation package DARSim (Delft Advanced Reservoir Simulator) and have been
made available open-source at DARSim GitLab repository. As an attempt to deliver the
science to the public, various tutorial videos on DARSim have been created by the author
and have been published on the ADMIRE YouTube channel.

https://gitlab.com/DARSim
https://www.youtube.com/channel/UCY09dM-upqjiL313KpzRkEw
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8
CONCLUSIONS AND FUTURE WORK

In the previous chapters various scientific developments during this PhD project were
covered. In this chapter, some conclusions are pointed out regarding the various devel-
opments and studies done in this dissertation. Moreover, recommendations for possible
future work will be presented afterwards.

8.1. CONCLUSIONS
The conducted studies and developments in this work aimed to address the next gen-
eration of modeling challenges, solving problems with societal, economic, and environ-
mental impacts in the field of flow in porous media. The demand for technological in-
novation is one of the main drivers for such work. Accurate modeling of the subsurface
flow is crucial for successful field development plans. However, the simulation of frac-
tured porous media especially for real field-scale subsurface domains has proven to be
challenging in many aspects. Therefore advanced and scalable numerical schemes are
needed that can provide computational efficiency while honoring the accuracy at an
acceptable level. Different developments have been made during this PhD project to
answer such needs.

8.1.1. PART I
In the introduction chapter 1, the importance of numerical simulations in field of porous
media was expressed. The key challenges were highlighted thus emphasizing the neces-
sity of developing advanced scalable numerical methods. Moreover, the efforts done
by the scientific community to address the various aspects of those challenges were ac-
knowledged. In addition, new and improved methods were proposed by the author in
the mentioned chapter.

In chapter 2, the governing equations and the constitutive correlations for flow in
fractured porous media for various flow models were covered in great detail. The ther-
modynamical relations in geothermal flow models where also discussed.

183
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8.1.2. PART II
In chapter 3, the first section (3.1) included the discretization of the equations. The
fine-scale simulation approaches, the coupling strategies for the mass conservation and
energy conservation equations, as well as the linearization of the non-linear equations
were discussed in the second section of this chapter (3.2). In the last section of this chap-
ter (3.3), different fracture models were covered. First, the embedded discrete fracture
model (EDFM) was explained (3.3.1). The EDFM model was evaluated through a sim-
ple numerical test by validating its result against the direct numerical simulation (DNS)
solution. The EDFM could provide accurate capture of the explicit fractures with high
conductivity compared to the rest of the domain. However, it fails to capture the imper-
meable fractures (or flow barriers). Next, the projection-based EDFM (pEDFM) [46] was
described in detail. This method was also validated using a numerical test case and was
compared to the DNS (direct numerical simulation) and the EDFM results. The pEDFM
can capture the fractures with generic range of conductivities and at the same time pro-
vide grid discretization flexibility for the fractures and the rock matrix.

In chapter 4, the development of the pEDFM model for the corner-point grid (CPG)
geometry was presented. This development was crucial as real field-scale geological for-
mations cannot be represented by the Cartesian grid geometry, but they are conveniently
represented by flexible grids such as the corner-point grid (CPG) geometry. Therefore,
the pEDFM model was developed for the CPG geometry to answer the needs for an ad-
vanced embedded fracture model to capture the fractures and faults in such subsurface
formations. Using various synthetic and geologically-relevant test cases the accuracy
and performance of the developed pEDFM model was presented. In these fine-scale
simulations with mix-conductivity fractures, it was shown that the pEDFM can accu-
rately capture the physical influence of both highly conductive fractures and flow barri-
ers on the flow patterns. The development of this model can offer great flexibility in the
gridding strategies for the real field-scale models, as for many of these models currently,
millions of computational grid cells with complex geometrical alignments is imposed to
match the positioning of the fractures and faults. The embedded capture of these dis-
continuities can provide simpler gridding and significant computational gains.

8.1.3. PART III
Up until the end of the previous chapter, the methodologies and the numerical schemes
consisted of the simulation strategies in fine-scale resolutions. However, due to the large
size of the real field-scale domains, remarkably high-resolution computational grids are
usually imposed, resulting in billions of grid cells. Despite the technological advance-
ments in computer hardware and high performance computation, such simulations can-
not be run effectively for thousands of realizations using fine-scale simulation strategies.
Chapter 5 described the static multilevel multiscale methods for simulation of fluid flow
in fractured domains. Using a linear interpolation of the locally computed multiscale
basis functions at multiple coarsening levels, an approximated fine-scale solution is ob-
tained. While the multilevel multiscale method reduces the size of the linear system
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significantly (compared to the fine-scale system), it honors the accuracy and the fine-
scale heterogeneity by using the fully coupled basis functions both for the rock matrix
and all the explicit fractures. The model described in this chapter employs the multi-
scale operators that are constructed fully algebraically. The test cases and their results in
this chapter demonstrated the model order reduction capabilities of the multilevel mul-
tiscale method while showing its accuracy levels.

In chapter 6, the algebraic dynamic multilevel (ADM) method for isothermal fluid
flow in fractured porous media was explained. The ADM method [84] combines the dy-
namic local grid refinement (DLGR) with multilevel multiscale techniques. Using the
ADM map, the fine-scale system is mapped to a dynamic multilevel grid resolution. The
mapping is occurred by employing the ADM operators that are assembled from the static
multilevel multiscale restriction and prolongation operators. These operators are only
computed in the beginning of the simulation to increase the computational efficiency.
Once the system is solved at this ADM grid resolution, it is mapped back to the fine-
scale resolution using the ADM prolongation operator to obtain an approximated solu-
tion. The selection of the ADM grid resolution uses a user-defined ADM tolerance for
the gradient of the solution at the previous time-step, which serves as a front tracking
technique. Therefore, the ADM method uses fine-scale resolution grid cells only when
and where needed (e.g., on the transport front), providing a robust and efficient perfor-
mance while honoring the accuracy at a desired level. Using various 2D and 3D fractured
test cases, the performance of the ADM method was assessed by comparing its results to
the fine-scale simulations. It was shown that ADM could provide accurate results while
using a fraction of the fine-scale grid cells. For large-scale domains, the ADM results in a
significant reduction in the size of the linear system, providing an optimal scalability.

Chapter 7 extended the ADM methodology to thermal flow in low-enthalpy and high
enthalpy geothermal systems. Regarding the thermodynamical relations, two different
formulations exist, the so-called natural formulation with pressure and temperature as
the main unknowns, and the so-called molar formulation with pressure and the total
fluid enthalpy as the primary unknown.

In the case of the low enthalpy geothermal systems in which the water is assumed to
stay in liquid phase (thus a single-phase flow condition), at first, the ADM method was
assessed through the first three test cases, where it could be seen that ADM could solve
the system with lower number of degrees of freedom (DoF) while keeping the accuracy
in a desired level. Moreover, using the next two test cases, a comparison study was made
between the two formulation approaches for the fine-scale and the ADM methods. It was
shown that the difference between the results of the two formulations was negligible for
the low-enthalpy systems.

However, for the high-enthalpy systems where water exists in two phases (liquid and
vapor), and mass exchange occurs between the two phases, usage of the molar formu-
lation is preferred as the thermodynamical state of the system is uniquely defined and
singularities in the constitutive equations at the critical point are avoided [94]. Through
two 2D and 3D fractured test cases, the ADM performance was compared with that of the
fine-scale results. The ADM method could decrease the size of the linear system at the



8

186 8. CONCLUSIONS AND FUTURE WORK

cost of accuracy reduction, yet, keeping at a desired level via a user-defined threshold in
grid resolution selection. The ADM error was higher in presence of high heterogeneity
contrast. Expectedly, the computational efficiency gains of the ADM method increases
as the size of the domain becomes larger. The ADM method introduces a promising
scalable simulation strategy for the simulation of flow in real field-scale geo-models.

8.2. RECOMMENDATION FOR FUTURE WORK

The methods devised and developed in this work were merely an effort to provide ef-
ficient yet accurate scalable simulation strategy for modeling of mass-heat flow in frac-
tured porous media with complex fracture networks and reservoir geometry. While many
of the objectives have been fulfilled, the author thinks that various topics and scopes can
be considered as future research and development plans. These future developments
can potentially enhance the devised methods and shed light on their performance and
practicality.

8.2.1. MULTILEVEL MULTISCALE AND ADM METHOD FOR CORNER-POINT

GRID GEOMETRY USING THE PEDFM MODEL

The pEDFM model on corner-point grid geometry shows a promising approach to sim-
plification of gridding strategies in geologically relevant models. In parallel, the multi-
level multiscale and the ADM methods presented great opportunities for the scalability
of the simulation models. Developing the multilevel multiscale and the ADM methods
for the corner-point grid geometry using the pEDFM can combine the significant com-
putational gains of these scalable models with the realistic field applicability of the frac-
ture models for real field-scale and geologically relevant fractured domains. Such a de-
velopment will surely introduce a new horizon for the numerical methods in the field of
porous media flow.

8.2.2. CPU BENCHMARKING AND PARALLELIZATION USING GPU

The software developments in this work have been done in an object oriented scien-
tific programming (OOSP) style. The result of these developments is the Delft Advanced
Reservoir Simulator (DARSim). The DARSim code is structured with insights to provide
better readability and simpler future implementations. However, coding DARSim was
carried out in the MATLAB computing environment. There has been no accurate per-
formance comparison study (e.g., CPU time study) on the performance of the devised
method compared to the traditional and already-developed techniques. Implementing
the DARSim simulator or the devised methods in a compiled programming language
(such as C++) would allow a better performance comparison study for the developed
methods. Moreover, many computational processes can be done in a parallel manner,
such as the computation of multiscale basis functions. Implementation of algorithms
for parallelization (e.g., using GPU programming with CUDA) in DARSim could be of
significant help towards higher computational efficiency.
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8.2.3. DEVISING APPROPRIATE LINEAR SOLVERS FOR ADM
In all the simulation runs of the projects in this work, the linearized set of equations were
solved using the MATLAB backslash operator. Studying the employment of other linear
solvers such as generalized minimal residual method (GMRES) or biconjugate gradient
method (BiCG) could shed light on the reflectivity and performance of various linear
solvers in the simulation runs with the ADM method.

https://nl.mathworks.com/help/matlab/ref/mldivide.html
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