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Distributionally Robust Optimization via Haar Wavelet Ambiguity Sets

Dimitris Boskos Jorge Cortés Sonia Martı́nez

Abstract— This paper introduces a spectral parameterization
of ambiguity sets to hedge against distributional uncertainty in
stochastic optimization problems. We build an ambiguity set
of probability densities around a histogram estimator, which
is constructed by independent samples from the unknown
distribution. The densities in the ambiguity set are determined
by bounding the distance between the coefficients of their
Haar wavelet expansion and the expansion of the histogram
estimator. This representation facilitates the computation of
expectations, leading to tractable minimax problems that are
linear in the parameters of the ambiguity set, and enables the
inclusion of additional constraints that can capture valuable
prior information about the unknown distribution.

I. INTRODUCTION

Uncertainty is ubiquitous across control engineering. Au-
tonomous systems are deployed in unknown environments,
sensor networks are subject to variable communication and
measurement imperfections, and distributed energy resources
are considerably affected by unpredictable weather fluc-
tuations. Probabilistic models provide an expressive tool
to quantify this uncertainty and make decisions that are
optimal on average. A precise model for the underlying
probability distributions may not always be available, so
they are typically inferred by collected data. However small
data sets and data that are corrupted by noise may lead to
unreliable inferences. A strategy to circumvent this problem
is to leverage distributionally robust optimization (DRO) for-
mulations, which safeguard against the data variability gen-
erated by the stochastic models. DRO robustifies decisions
by optimizing the worst-case cost over an ambiguity set of
probability distributions that contains reasonable candidates
for the true distribution. To this end, ambiguity sets that
contain the true distribution with high confidence are to be
built while excluding irrelevant distributions. Motivated by
this, we develop spectral ambiguity sets, which account for
prior information about the true distribution and facilitate the
formulation of tractable DRO problems.

Literature review: DRO relies on distributional ambiguity
sets to hedge against uncertainty about probabilistic mod-
els [34]. Ambiguity sets are typically based on moment
constraints [32], [14], [10], statistical divergences [7], [1],
[38], and optimal transport metrics like the Wasserstein
distance [30], [3], [28], [18]. For data-driven problems,
Wasserstein ambiguity balls have emerged as a popular
choice. The reasons for this include that their size can be
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tuned by rigorous statistical guarantees [16], [4], they lead
to tractable optimization problems, and they can accurately
capture the effect of distribution variations on the optimiza-
tion problems. Applications of Wasserstein ambiguity sets
span from power systems [31], to distributed algorithms
[8], machine learning [2], [24], traffic control [25], schedul-
ing [23], and motion planning [21]. Dynamic aspects of
uncertain distributions that are grouped through Wasserstein
balls are also explored in [6] and in [5] for data corrupted by
noise. There is an emerging interest to exploit DRO tools in
stochastic control with distributional uncertainty, with con-
tributions in linear quadratic regulator problems [10], model
predictive control (MPC) [29], [35], [27], distributionally
robust dynamic programming [41], [37], and purely data-
driven predictive control [12]. DRO is also expected to play
an important role in spatially distributed control problems
subject to uncertainty, such as optimal sensor placement and
coverage control [11].

Results on concentration inequalities for the convergence
of empirical distributions in the Wasserstein distance en-
able the construction of ambiguity balls that contain the
true distribution with prescribed probability [16], [39], [13].
These guarantees are especially convenient when solving
multiple robust decision problems that are subject to the
same uncertainty, such as in MPC [20]. Recent research also
includes results where the radius of the ambiguity ball is
informed by the optimization problem and exhibits favorable
decay rates with the number of samples for problems with
high-dimensional uncertainty [2], [33], [17].

These works revolve around approximating the probabilis-
tic model through variations of the empirical distribution of
the data, which is atomic and supported on a finite number of
samples. On the other hand, in the majority of problems with
probabilistic uncertainty, the distribution is characterized by
a density. There is a plethora of methods to estimate densities
of unknown distributions in nonparametric statistics [36].
Among them, wavelet density estimators are well known
for their ability to capture local and heterogeneous effects
of densities from general distribution classes [15], [22]. The
recent work [40] establishes also new convergence results for
wavelet density estimators in the Wasserstein distance.

Statement of contributions: In this paper we provide
an alternative construction of ambiguity sets, which retain
the benefit of establishing convergence in the Wasserstein
distance and are accurately informed by natural prior as-
sumptions for the probability distribution. The ambiguity
sets are built around a linear Haar wavelet density estimator
that is constructed from the collected samples. We capture
the distributions in the set by considering densities whose
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wavelet coefficients vary up to some threshold from the
coefficients of the estimator. This threshold can be selected to
guarantee that the true distribution is properly close to some
density from the ambiguity set with high probability. Due
to space constraints the proofs are omitted and will appear
elsewhere.

II. PRELIMINARIES

Here we present general notation and concepts from
probability theory and wavelets that will be used in the paper.

Notation: We denote by ‖·‖p the pth norm in Rn and omit
the index in the Euclidean case p = 2. We use the notation
[n1 : n2] for the set of integers {n1, n1 + 1, . . . , n2} ⊂
N ∪ {0} =: N0. Given d ∈ N and the index vector
` = (`1, . . . , `d) ∈ Nd, we denote Z` :=

∏d
l=1[0 : `l]. For

an integrable function f on Rd, we denote its L1 norm as
‖f‖L1 :=

∫
Rd |f(x)|dx.

Probability theory: We denote by B(Rd) the Borel σ-
algebra on Rd, and by P(Rd) the probability measures on
(Rd,B(Rd)). For any real number p ≥ 1, Pp(Rd) := {µ ∈
P(Rd) |

∫
Rd ‖x‖pdµ <∞} is the set of probability measures

in P(Rd) with finite pth moment. The Wasserstein distance
between µ, ν ∈ Pp(Rd) is

Wp(µ, ν) :=
(

inf
π∈H(µ,ν)

{∫
Rd×Rd

‖x− y‖pπ(dx, dy)
})1/p

,

where H(µ, ν) is the set of all probability measures on Rd×
Rd with marginals µ and ν, respectively. Given B ⊂ Ω, 1B
is the indicator function of B on Ω, with 1B(x) = 1 for
x ∈ B and 1B(x) = 0 for x /∈ B.

Haar wavelets: Wavelets provide a well-established frame-
work to approximate functions at varying resolution levels
and have found tremendous success in signal processing
[26], scientific computing [9], and statistics [22]. They enable
multi-scale decompositions where functions are expanded as
the sum of a coarse approximation and successive refine-
ments of increasing detail. In these expansions, the wavelets
capture the fluctuations of a function across the succes-
sive scales. Here, we focus exclusively on Haar wavelets
to approximate functions on bounded rectangular domains,
following the exposition in [9]. Throughout the paper, we
use boldface to compactly denote vectors of indices and
parameters. Consider the families of dyadic squares

Ij,k :=

d∏
l=1

[kl2
−j , (kl + 1)2−j),

in Rd, where j ∈ N0, k := (k1, . . . , kd) ∈ Zd, and let
ϕ := 1[0,1) and ψ := 1[0,1/2) − 1[1/2,1). Define

ϕj,k(x) := 2dj/2ϕ(2jx1 − k1) · · ·ϕ(2jxd − kd),

where x := (x1, . . . , xd). The function ϕj,0 is called the
scaling function and we can equivalently define ϕj,k =
2dj/21Ij,k . Consider also the wavelets

ψrj,k ≡ ψεj,k(x) := 2dj/2ψε1(2jx1 − k1) · · ·ψεd(2jxd − kd),

𝜓0, 0,0
2

finest 
resolution

𝐽 = 3

𝜓1, 3,1
2 = 𝜓1,𝒌1 𝒌

2

𝒌 = (13,7)
𝒌2 𝒌 = (6,3)
𝒌1 𝒌 = (3,1)
𝒌0 𝒌 = (1,0)

Fig. 1. The plot illustrates the squares that intersect the highest resolution
square in red and their respective indices.

where ε := (ε1, . . . , εd) ∈ {0, 1}d \ 0, r ∈ [1 : 2d − 1] and
ψ0 ≡ ϕ, ψ1 ≡ ψ [9]. Consider the rectangular domain Q` :=∏d
l=1[0, `l] with ` := (`1, . . . , `d) ∈ Nd, a resolution index

J ∈ N0 and let 2J` := (2J`1, . . . , 2
J`d). The functions ϕJ,k,

k ∈ Z2J` restricted to Q` span the space

V `J := {f ∈ L2(Q`) | f is constant on IJ,k,k ∈ Z2J`},

comprising of the functions that are constant at scale 2−J .
Alternatively, for any 0 ≤ j0 < J , VJ is spanned by
{ϕj0,k}k∈Z2j0 `

∪ {ψrj,k}j0≤j<J−1,k∈Z2j`,r∈[1:2d−1], namely
the basis {ϕj0,k}k∈Z2j0 `

at resolution 2j0 and the wavelets
{ψrj,k}j0≤j<J−1,k∈Z2j`,r∈[1:2d−1], that capture the fluctua-
tions of the functions in VJ at the intermediate scales. For
j0 = 0, which is the case we will consider here, the wavelet
basis Φ ∪

(
∪∞j=0 Ψj

)
with

Φ :={ϕj,k}k∈Z`
(1a)

Ψj :={ψrj,k}k∈Z2j`,r∈[1:2d−1], (1b)

is the orthonormal Haar system on Q` and spans L2(Q`).
We denote by Πj the orthogonal projection in L2(Q`) to the
subspace V `j and by D(V `j ) the set of probability densities
on V `j . Each function f ∈ L2(Q`) can be expressed as

f(x) =
∑
ϕ∈Φ

αϕϕ(x) +

∞∑
j=0

∑
ψ∈Ψj

βψψ(x).

When f ∈ V `J , its constant value at each fine-grained interval
IJ,k, k ∈ Z2J` is evaluated through its nonzero wavelet
coefficients as

f |IJ,k = αk0(k) +

J−1∑
j=0

2d−1∑
r=1

2dj/2βrj,kj(k)

× signrj,kj(k)
(kj+1(k)). (2)

In (2), kj(k) are the indices of the unique 2−j-resolution
square that intersects IJ,k, and signrj,kj(k)

(kj+1(k)) is the
sign of the wavelet ψrj,kj(k)

on the square Ij,kj+1(k), which
takes values in {−2dj/2, 2dj/2} (cf. Figure 1).
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III. PROBLEM FORMULATION

Stochastic optimization is focused on taking optimal deci-
sions in problems affected by uncertainty. A typical instance
of a stochastic optimization problem takes the form

min
u∈U

E[g(u,X)] ≡ min
u∈U

∫
Q

g(u, x)ρ(x)dx, (3)

where the objective function g depends on the decision
variable u ∈ U ⊂ Rn and the random variable X . In this
paper we assume that X has a density ρ that is supported
on the compact rectangular set Q ⊂ Rd, and hence, the
expected cost is expressed as in the right-hand side of (3).
Without loss of generality we henceforth assume that Q ≡
Q` :=

∏d
l=1[0, `l] as in the bounded domain of Section II.

We consider the case when the density ρ is not known and
we only have access to N i.i.d. samples X1, . . . , XN from
it. To hedge against the lack of information about the density
due to the finite number of available samples, we follow the
distributionally robust optimization (DRO) paradigm. Instead
of (3), we set out to solve

min
u∈U

max
ρ′∈P

∫
Q`

g(u, x)ρ′(x)dx, (4)

over an ambiguity set P of distributions. This set should be
large enough to contain the unknown distribution ρ with high
probability, yet as small as possible to avoid overconservative
optimizers. We also want to inform the ambiguity set by prior
assumptions about the density, such as the following one.

Assumption 3.1: (Upper and lower density bounds).
There exist functions ρlow and ρup with

0 ≤ ρlow(x) ≤ ρ(x) ≤ ρup(x) ∀x ∈ Q`. (5)

Both functions are measurable and may take the value ∞.
Such upper bounds can for instance be motivated by

assumptions like “A ⊂ Q` ⊂ R2 contains up to 0.4 of
the probability mass and the probability of sampling any
point in A is no more than twice any other point therein”,
which would result in the upper density bound ρup(x) =
0.8/area(A) for all x ∈ A.

Problem formulation: Construct an ambiguity set of prob-
ability densities that explicitly takes into account Assump-
tion 3.1, contains the true density with prescribed probability,
and enables the derivation of tractable DRO problems.

Despite the benefits of Wasserstein ambiguity sets, cf.
Section I, they contain atomic distributions, like the empirical
distribution of the samples, which are clearly not densities.
Most important, it is not straightforward how they can
effectively capture constraints of the form (5). To address
these issues, here we introduce wavelet-based ambiguity
sets and capture the densities that they contain through the
variation of their wavelet coefficients.

IV. WAVELET ESTIMATOR AMBIGUITY SETS

In this section we use a wavelet estimator to build an
ambiguity set of probability densities for the true density ρ.

As ρ is supported on the domain Q`, it can be expressed as

ρ(x) =
∑
ϕ∈Φ

αϕϕ(x) +

∞∑
j=0

∑
ψ∈Ψj

βψψ(x),

with the Haar wavelet basis Φ∪{Ψj}∞j=0 given in Section II.
To infer a data-driven model of this unknown density using
the N independent samples X1, . . . , XN , we select a reso-
lution threshold 2−J and build the wavelet density estimator

ρ̂(x) =
∑
ϕ∈Φ

α̂ϕϕ(x) +

J−1∑
j=0

∑
ψ∈Ψj

β̂ψψ(x),

with

α̂ϕ :=
1

N

N∑
i=1

ϕ(Xi), ϕ ∈ Φ, (6a)

β̂ψ :=
1

N

N∑
i=1

ψ(Xi), ψ ∈ ∪J−1j=0 Ψj . (6b)

Note that the estimator ρ̂ is equal to the histogram

h(x) :=
1

N

N∑
i=1

2dJ/21IJ,k(Xi), x ∈ IJ,k,k ∈ Z2J`.

To define the ambiguity set, we consider all densities in
V `J whose wavelet coefficients are within prescribed bounds
from the coefficients of the estimator. If the true distribution
were also an element of V `J , our goal would be to establish
that it belongs to the ambiguity set with high probability. As
we are choosing a specific resolution and ρ may lie outside
V `J , the best guarantee that we can have is that its projection
will be in the ambiguity set with prescribed probability.
To capture the multi-scale property of wavelet bases, we
provide separate bounds for the coefficient discrepancies
across different scales. We will use the compact notation α
and βj for the coefficients of the scaling functions and the
wavelets at each scale j, and α̂, β̂j for the corresponding
coefficients of the estimator. Given s ∈ [1, 2] and the radii
ε = (ε0, . . . , εJ), the ambiguity set is determined through
the wavelet coefficients (α,β0, . . . ,βJ−1) ∈ RK , K :=
2dJ

∏d
l=1 `l, that satisfy

‖α− α̂‖ss ≤ ε0, ‖βj − β̂j‖ss ≤ εj+1, j ∈ [0 : J − 1] (7)

and the following constraint:
• Unit mass. Each density from the ambiguity set should

integrate to one. Equivalently, the coefficients αk of the
scaling functions need to satisfy∑

k∈Z`

αk = 1. (8)

Additionally, we consider either of the following constraints:
• Nonnegative densities. As they are constant at resolution

2−J , their coefficients need to satisfy the constraint

αk0(k) +

J−1∑
j=0

2d−1∑
r=1

2dj/2βrj,kj(k)
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× signrj,kj(k)
(kj+1(k)) ≥ 0 ∀k ∈ Z2J`, (9a)

with kj(k) and signrj,kj(k)
as in (2).

• Upper and lower density bounds. The true density
should satisfy the bounds of Assumption 3.1. These are
captured by the alternative set of linear constraints

min
x∈IJ,k

ρlow(x)

≤ αk0(k) +

J−1∑
j=0

2d−1∑
r=1

2dj/2βrj,kj(k)
signrj,kj(k)

(kj+1(k))

≤ max
x∈IJ,k

ρup(x) ∀k ∈ Z2J`. (9b)

The constraints (9) are facilitated by the choice of Haar
wavelets, which provide piecewise constant approximations
of the density. In particular, the piecewise constant ap-
proximation of a density that satisfies the constraints of
Assumption 3.1 will also satisfy the constraints (9b), which
can be checked at a finite number of representative points.
We succinctly denote the ambiguity set as

P :=

{
ρ′ ∈ D(V `J ) | ρ′ =

∑
ϕ∈Φ

αϕϕ+

J−1∑
j=0

∑
ψ∈Ψj

βψψ and

(α,β0, . . . ,βJ−1) satisfy (7), (8), and (9a) or (9b)
}
.

We refer to thresholds ε0, . . . , εJ in (7) as the ambiguity
radii.

Remark 4.1: (Constraint feasibility). The constraints
in (9b) may not be feasible for the wavelet coefficients of the
density estimator. As a consequence, they may also not be
feasible for any distribution of the ambiguity set if its radii
are not sufficiently large. We later focus on ambiguity sets
where the radii take the form ε = r?(c0, . . . , cJ) for some
r? > 0 and fixed constants cj . In this case, we can check
constraint feasibility by solving the convex optimization
problem

min r

s.t. ‖α− α̂‖ss ≤ rc0
‖βj − β̂j‖ss ≤ rcj+1 j ∈ [0 : J − 1]

(8), (9b).

If r < r?, then the constraint is feasible. Otherwise, larger
radii must be selected. �

The ambiguity set facilitates the formulation of DRO
problems that are linear in the wavelet coefficients. We use
the compact notation θ ≡ (α,β0, . . . ,βJ−1) to denote the
Haar coefficients of a distribution in V `J and let Θ be the
set of parameters θ which satisfy the constraints (7), (8),
and either (9a) or (9b). Note that θ ∈ Θ parameterizes the
ambiguity set. As a consequence, the DRO problem (4) is
equivalently written

min
u∈U

max
θ∈Θ

∫
Q`

g(u, x)ρθ(x)dx, (10)

with ρθ the parameterized distributions. The following result
establishes a linear in θ reformulation of the DRO problem.

Proposition 4.2: (DRO reformulation). Let g(u) be the
vector comprising of the integrals

∫
Q`
g(u, x)ϕ(x)dx,∫

Q`
g(u, x)ψ(x)dx ordered as the parameters from θ associ-

ated to the ϕ’s and ψ’s. Then the DRO problem (10) admits
the reformulation

min
u∈U

max
θ∈Θ

θ>g(u). (11)
This parameterizaton of the optimization problem is in

practice suitable for problems with low dimensional data
since the number of parameters scales exponentially with
the dimension d and the finest resolution level J .

V. PROBABILISTIC GUARANTEES

Here we study how to tune the radii of the ambiguity set
so that it contains the projection of the true density to V `J
with prescribed probability. Our approach draws from the
recent work [40], which establishes expected value norm-
bounds for the discrepancy vectors between the wavelet
coefficients of the estimator and the density across scales.
Here we sharpen these expected value bounds by leveraging
the specific properties of the Haar system, and exploit them
to further obtain concentration results for the coefficients of
the true density.

Henceforth, we also denote as α and βj the wavelet coef-
ficients of the unknown density ρ. We obtain concentration
bounds for the sums ‖α−α̂‖ss and ‖βj−β̂j‖ss, j ∈ [0 : J−1],
where s ∈ [1, 2]. A reason to consider this spectrum of
exponents is that we get close probabilistic guarantees for
each of them, which provides the design flexibility to pick
a convenient s for the definition of the ambiguity set. To
clarify the benefits of this flexibility, note that since e.g.,
‖α − α̂‖s ≤ ‖α − α̂‖1 for all s ∈ [1, 2], an ambiguity set
for s = 1 is also an ambiguity set for s ∈ (1, 2]. However, the
associated constraint set {α ∈ R

∏d
l=1 `l | ‖α − α̂‖1 ≤ ε0},

is not uniformly convex. We can therefore balance both
requirements by exploiting the option to pick some other s
from (1, 2]. We next provide bounds for the expected values
of the wavelet coefficient discrepancies at each scale.

Proposition 5.1: (Expected discrepancies of wavelet co-
efficients). For each s ∈ [1, 2], the expected discrepancies
from the empirical wavelet coefficients satisfy

E(‖α− α̂‖ss) ≤ C0(s)
1

Ns/2
,

E(‖βj − β̂j‖ss) ≤ Cj+1(s)
1

Ns/2
, j ∈ [0 : J − 1],

with

C0(s) :=

(
K0 − 1

K0

) s
2

, Cj(s) := (2d − 1)s/22sd(j−1)/2,

j ∈ [1 : J ]. (12)
Using this result we derive concentration inequalities for

the discrepancy vectors between the true and the empirical
wavelet coefficients.

Theorem 5.2: (Coefficient concentration). Let

f0(X1, . . . , XN ) := ‖α− α̂‖ss
fj(X1, . . . , XN ) := ‖βj−1 − β̂j−1‖ss,
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for j ∈ [1 : J ]. Then for any confidence 1− δ, δ ∈ (0, 1),

P(fj ≤ εj) ≥ 1− δ, (13a)

εj ≡ εj(δ) := Cj
1

Ns/2
+ C ′j

(
2 ln

1

δ

) 1
2 1

N1/2
, (13b)

for j ∈ [0 : J ], with Cj as given in (12) and

C ′0 := s, C ′j := (2d − 1)s2s−1+sd(j−1)/2. (14)
From Theorem 5.2, we obtain the following result, which

simultaneously bounds the coefficient discrepancies at all
scales for any prescribed confidence.

Corollary 5.3: (Simultaneous guarantees across scales).
Consider a confidence 1 − δ, δ ∈ (0, 1), the maximum
resolution 2−J , and let δ′ ≡ δ′(δ) := δ/(J + 1). Then

P(‖α− α̂‖ss ≤ ε0,
‖βj−1 − β̂j−1‖ss ≤ εj , j ∈ [1 : J ]) ≥ 1− δ,

with εj ≡ εj(δ′), j ∈ [0 : J ] as given by (13b). In addition,
we may choose the uniformly dilated ambiguity radii

ε :=
1

N1/2
(C?0 , . . . , C

?
J), C?j := Cj + C ′j

(
2 ln

1

δ′

) 1
2

,

and obtain the same guarantees.
Remark 5.4: (Tuning of the ambiguity radii). The con-

centration results of Theorem 5.2 and Corollary 5.3 may
overestimate the size of the ambiguity radii, but they still
provide a useful indicator about the relative size of the
ambiguity set across different scales. Further, the uniformly
dilated radii of Corollary 5.3 can be used to check the
feasibility of additional density constraints by solving the
convex optimization problem in Remark 4.1. �

VI. APPROXIMATION ANALYSIS

In this section, we show that the ambiguity sets contain a
distribution which is close to the true one in the Wasserstein
distance with prescribed probability. This closeness level
can be made arbitrarily small by selecting an appropriate
maximum resolution level for the wavelet decomposition. To
show this, we exploit the following result, which quantifies
the worst-case Wasserstein distance between a probability
density on Q` and its projection to V `J in terms of the
resolution 2−J . The result follows closely the proof of [40,
Proposition 5].

Proposition 6.1: (Concentration in the Wasserstein dis-
tance). Let X1, . . . , XN be N samples of the unknown
density ρ. Consider a confidence level 1− δ, the maximum
resolution 2−J , and let δ′ ≡ δ′(δ) := δ/(J + 1). Then the
pth Wasserstein distance between the distributions µρ and µρ̂
of the true density and the estimator ρ̂, resp., satisfies

P(W p
p (µρ, µρ̂) ≤ ε(δ′)) ≥ 1− δ,

where

ε(δ′) := 2−Jp +
[
(‖`‖+ 2)C(δ′) + 2JCd(δ

′)
] 1

N1/2
,

C(δ′) := 1 +

(
2 ln

1

δ′

) 1
2

,Cd(δ
′) := 2d/2 +

(
2 ln

1

δ′

) 1
2

2d.

VII. ROADSIDE ASSISTANCE PLACEMENT

To illustrate our results, we consider the problem of
optimally placing a roadside assistance station across a long
road segment. The probability of a car needing assistance at
each road location is unknown and inferred by a limited
amount of historic data. In addition, the cost of offering
assistance grows quadratically with the distance between
the car and the station. Modeling the road segment by the
interval [0, `], we seek to minimize the expected cost of
assisting a car. Since the probability distribution of this event
is unknown, we are interested in solving the DRO problem

min
u∈[0,`]

max
ρ′∈P

∫
[0,`]

|u− x|2ρ′(x)dx,

where P denotes the wavelet-based ambiguity set described
in Section IV.

We take ` = 4 and the resolution level J = 2. The
unknown density is uniformly distributed across the left
and right half of the lane with probabilities 0.4 and 0.6,
respectively. We also have the prior information that the
density at the left part of the lane [0, 2] does not exceed a
uniform density with total mass 0.45. This prior assumption
determines the upper bound of the constraint (9b) when
building the ambiguity set. For each simulation, we take
N = 100 samples from the true density ρ and repeat the
random experiment 20 times. Each time, we solve the sample
average approximation (SAA) and the linear in the wavelet
coefficients reformulation of the DRO problem in (11). We
tune the ambiguity radius of the DRO problem based on
Corollary 5.3 and check the initial feasibility of all the con-
straints as in Remark 4.1. To solve the resulting saddle point
problem (11), we use the Frank-Wolfe algorithm from [19].

The outcome of the simulations is plotted in Figure 2.
The plot depicts the expected costs of the true density when
using the optimizers obtained from the DRO problem and
the same expected costs when using the optimizer from the
SAA. The expected costs using the DRO optimizers have a
smaller variability and are on average considerably closer to
the value obtained using the true optimizer. This improved
performance is aided by the fact that the ambiguity set is
informed by prior assumptions about the true distribution.
Thus, when samples appear on the left side of the road
more frequently than what the true distribution dictates, the
ambiguity set constraints increase distribution variability on
the right side and improve the DRO optimizer.

VIII. CONCLUSIONS

We have provided a spectral ambiguity set characteri-
zation by exploiting Haar wavelet expansions for use in
distributionally robust optimization (DRO). The ambiguity
sets conveniently capture prior information about the un-
known distribution and enable the formulation of tractable
DRO problems that are linear in the wavelet coefficients
of the ambiguous distributions. Our construction is also
accompanied by probabilistic guarantees of containing the
true distribution. We have shown that each ambiguity set is
contained in a Wasserstein ball, whose radius can be made
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Fig. 2. The plot shows the optimal expected cost and the data sets of
the true cost with the DRO optimizer and the SAA optimizer, respectively,
across the 20 realizations. The average true cost using the DRO optimizer
is clearly closer to the desired optimal expected cost.

arbitrarily small by adjusting the number of samples and
the resolution accuracy of the wavelet expansion. Future
research will include the generalization of the results for
different wavelets and incorporate regularity properties of the
densities. We will also study how to exploit sparser wavelet
representation while retaining probabilistic guarantees.
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