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Comparison of monotonicity challenges encountered by the inverse scattering series
and the Marchenko de-multiple method for elastic waves

C. Reinicke∗, M. Dukalski† and K. Wapenaar∗

ABSTRACT

The reflection response of strongly scattering media often
contains complicated interferences between primaries and
(internal) multiples, which can lead to imaging artefacts
unless handled correctly. Internal multiples can be kine-
matically predicted, e.g. by the Jakubowicz method or by
the inverse scattering series (ISS), as long as monotonic-
ity, i.e. ”correct” temporal event ordering, is obeyed. Al-
ternatively, the (conventional) Marchenko method removes
all overburden-related wavefield interactions by formulat-
ing an inverse problem that can be solved if Green’s and so-
called focusing functions are separable in the time domain,
except for an overlap that must be predicted. For acoustic
waves, the assumptions of the aforementioned methods are
often satisfied within the recording regimes used for seis-
mic imaging. Elastic media, however, support wave propa-
gation via coupled modes that travel with distinct velocities.
Compared to the acoustic case, not only does the multiple
issue become significantly more severe, but also violation
of monotonicity becomes much more likely. By quantify-
ing the assumptions of the conventional Marchenko method
and the ISS, unexpected similarities as well as differences
between the requirements of the two methods come to light.
Our analysis demonstrates that the conventional Marchenko
method relies on a weaker form of monotonicity. However,
this advantage must be compensated by providing more
prior information, which in the elastic case is an outstand-
ing challenge. Rewriting, or re-mixing, the conventional
Marchenko scheme removes the need for prior information
but leads to a stricter monotonicity condition, which is now
almost as strict as for the ISS. Finally, we present two strate-
gies how the re-mixed Marchenko solutions can be used for
imperfect, but achievable, de-multiple purposes.

∗Delft University of Technology, Department of Geoscience and Engi-
neering, Stevinweg 1, 2628 CN Delft, The Netherlands. †Aramco Overseas
Company B.V., Informaticalaan 6-12, 2628 ZD Delft, The Netherlands.

INTRODUCTION

In seismic exploration, structural images are often derived from
a single-sided reflection response. However, traditional imag-
ing methods assume single-scattering reflections (primaries only),
such that other events, in particular multiples, create artefacts,
which can be significant when the imaging target is buried un-
der a strongly scattering overburden. In elastic media, this
problem is worse: each interface couples compressional (P)
and shear (S) waves, increasing the number of (unwanted) events
drastically. Additionally, due to different propagation speeds
of elastic modes, the (converted) primaries associated with an
individual reflector arrive at different times, distributing in-
formation about this reflector in time. Hence, imaging arte-
facts can arise not only from (converted) multiples but also
from converted primaries, i.e. forward-scattered waves. Re-
flection data driven methods are not (yet) capable of predicting
forward-scattering but they are theorized to be able to handle
(converted) multiples.

Wave-equation-based de-multiple methods, such as Jakubow-
icz (1998), or the inverse scattering series (ISS, Weglein et al.,
1997), predict and adaptively subtract internal multiples under
two assumptions,

(i) that the temporal ordering of primaries corresponds to the
reflector ordering in depth, and

(ii) that internal multiples are recorded after their generating
primaries (= primaries associated with the internal multi-
ple generators),

where temporal order refers to vertical travel time. These re-
quirements, known as monotonicity conditions, are satisfied for
acoustic waves, except for special cases shown by Nita and
Weglein (2009). In elastic media, however, violation of mono-
tonicity becomes much easier because of mode conversions
(Sun and Innanen, 2019).

A Marchenko-equation-based alternative for acoustic waves
allows to remove all internal multiples associated with an en-
tire group of layers at once, without adaptive subtraction (e.g.
Broggini et al., 2012; Wapenaar et al., 2013; Slob et al., 2014).
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This method formulates an inverse problem with two equa-
tions (derived from reciprocity theorems) and four unknowns:
up- and downgoing Green’s functions as well as so-called up-
and downgoing focusing functions. Numerous studies on the
topic feature Green’s and focusing functions which are sepa-
rable in the time domain, except for an unavoidable overlap
(χ+). Given this overlap, two unknowns can be eliminated
by muting. Subsequently, two coupled Marchenko equations
are obtained and solved for the focusing functions, which once
found yield the Green’s functions. Eventually, upon multi-
dimensional deconvolution of the retrieved Green’s functions,
overburden-related scattering interactions, including internal mul-
tiples, can be removed. We refer to this approach as the con-
ventional Marchenko method.

The elastodynamic extension of the Marchenko method bears
several challenges. Firstly, speed differences between modes
can lead to a second overlap (χ−), which so far cannot be pre-
dicted without knowing the medium and only vanishes condi-
tionally. Secondly, the previously-mentioned unavoidable over-
lap (χ+) between Green’s and focusing functions is no longer
easily predictable without additional constraints, or significantly
more prior information (Wapenaar and Slob, 2015). Similar re-
strictions were encountered by prior work on inverse scattering
of coupled modes. Nevertheless, these cases ignored the over-
laps, either by assuming sufficiently small velocity differences
between modes (Zakharov and Shabat, 1973; Bava and Ghione,
1984), or by excluding coupling (Ware and Aki, 1969).

To overcome the challenge related to the overlap χ+, we
derive a re-mixed, as opposed to the above-mentioned conven-
tional, Marchenko method: the Green’s and focusing functions
are transformed such that the unavoidable, highly complex,
overlap (χ+) re-mixes into a trivial one. This strategy can
be seen as a combination and generalization of the Marchenko
schemes by van der Neut and Wapenaar (2016) and Dukalski
et al. (2019).

The Marchenko method uses the aforementioned assump-
tions about the overlaps to separate the Green’s functions from
the focusing functions. So far, these requirements have not
been sufficiently investigated and have not been compared to
the monotonicity conditions of the ISS. Moreover, the require-
ments of both the Marchenko method and the ISS are only for-
mulated verbally, which makes a direct comparison of the re-
quirements difficult. Therefore, we quantify these assumptions
in a form of medium-, angle of incidence and redatuming depth
dependent separability conditions. This analysis demonstrates
that the monotonicity assumptions of the ISS are very simi-
lar to, but stricter than, the separability condition of the con-
ventional Marchenko method. After re-mixing, the Marchenko
method can be applied without prior medium information (no
need for the overlap χ+). Although, compared to the conven-
tional Marchenko scheme, the separability condition becomes
stricter, it still remains slightly more relaxed than the mono-
tonicity assumption (i) of the ISS. This advantage of the (re-
mixed) Marchenko method comes from handling the overbur-
den as one complex multiple generator, rather than a stack of
independent multiple generators.

Finally, we demonstrate how the solutions of the re-mixed

Marchenko method can be used to remove internal multiples,
except for internal multiples that predate their generating pri-
maries. In contrast to the ISS, which encounters the same lim-
itation, see assumption (ii), the re-mixed Marchenko method
tracks the error caused by the remaining internal multiples.
This tracked error is expected to persist in field data studies
(e.g. Ravasi et al., 2016; Staring et al., 2018) but could be elim-
inated by transforming the re-mixed solutions back to the con-
ventional ones, using energy conservation and the minimum-
phase property of the focusing function, similar to Dukalski
et al. (2019). The latter strategy relies on the reconstruction
of a minimum-phase matrix from its normal product, which is
subject to ongoing research and will be published elsewhere.

This paper is structured as follows: first, we briefly outline
the conventional Marchenko scheme, quantify its assumptions
as a separability condition and interpret the required initial es-
timate. Second, we derive the re-mixed Marchenko scheme,
which leads to a stricter separability condition. Third, we quan-
tify monotonicity conditions of the ISS, which we compare
to the requirements of the aforementioned (re-mixed) March-
enko method. Finally, we illustrate our findings with numerical
examples. In this analysis, we assume surface-related multi-
ples are removed during preprocessing, and thus, use the terms
multiples and internal multiples interchangeably. Although we
consider the simplest yet non-trivial case, horizontally-layered
elastic media, our analysis is already highly relevant for the
Middle East (e.g. see El-Emam et al., 2001; Reinicke et al.,
2019), and extends qualitatively to more general cases.

Notation

We consider 2D lossless horizontally-layered elastic media in
x-z coordinates. According to Snell’s law horizontal-slownesses
sx (= horizontal ray-parameter) are conserved,

sx =
sin
(
αp/s(z)

)

cp/s(z)
= constant, (1)

where the subscripts refer to P- and S-waves. Further, αp/s
and cp/s are the propagation angle with respect to the vertical
axis (z) and the propagation velocity, respectively. A represen-
tation in the horizontal-slowness intercept-time (sx, τ) domain
allows to separate 2D wavefields U(x, z, t) into a set of decou-
pled 1D wavefields,

U(sx, z, τ) =

∫ ∞

−∞
U(x, z, τ + sxx)dx. (2)

In this paper, we use the terms time and intercept-time inter-
changeably, i.e. the entire analysis considers vertical travel
time, as opposed to total travel time.

We restrict our analysis to propagating waves, i.e. |sx| ≤ 1
cp

(assuming cp > cs), and neglect measurement-induced limi-
tations, such as a finite bandwidth, because here we wish to
focus on a fundamentally physical (not measurement-borne)
limitation. Further, we work with P- and S- one-way wave-
fields (Frasier, 1970; Ursin, 1983), organized in 2× 2 matrices
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per discrete horizontal-slowness and time,

U(sx, z, τ) =

(
Upp Ups
Usp Uss

)
(sx, z, τ). (3)

The elements of the arbitrary wavefield U(sx, z, τ) are asso-
ciated with source- (second subscript) and receiver-side (first
subscript) wavefield potentials (P and S).

Finally, we introduce a detail-hiding notation that omits co-
ordinates and implies temporal convolutions when two matri-
ces U1 and U2 are multiplied, for example U1U2 stands for,

∫ ∞

−∞
U1(sx, z, τ − τ ′)U2(sx, z, τ

′)dτ ′. (4)

MARCHENKO GREEN’S FUNCTION RETRIEVAL

Suppose all the multiples due to the overburden above the reda-
tuming depth zi shall be removed. For this purpose, we might
use the Green’s functions, G−,+(sx, z0, zi, τ) and
G−,−(−sx, z0, zi, τ), associated with down- ”+” and upward
”−” radiating sources (second superscript) at the redatuming
depth zi, respectively, and recordings of upgoing waves ”−”
(first superscript) at the acquisition level z0 (see Fig. 1). From
these Green’s functions, a redatumed reflection response Rrd(sx, zi, τ),
free of overburden-related scattering, can be obtained by solv-
ing,

G−,+ = −σzG−,−RT
rdσz, (5)

via an Amundsen (2001) deconvolution. Here, we exploit wave-
field symmetries in horizontally-layered media via a transpose
in P-S space (superscript ”T”) and via the diagonal matrix,
σz = diag [δ(τ),−δ(τ)], where δ(τ) is a temporal delta spike.
These symmetries allow us to proceed with the retrieved Green’s
functions G−,±, although they are associated with horizontal-
slownesses sx of opposite sign (a derivation can be found in
Appendix A). The challenge is to retrieve these Green’s func-
tions from a reflection response R(sx, z0, τ) recorded at a scattering-
free surface z0 at the top, which can be accomplished by a Mar-
chenko method.

First, we highlight the underlying assumptions and the prior
information required by the conventional Marchenko method.
Second, we provide a physical interpretation of the prior infor-
mation, and third, we propose an alternative Marchenko formu-
lation, which trades prior information for stricter assumptions.
It will be shown that, both the conventional Marchenko method
as well as its alternative formulation rely on separability condi-
tions, which we express quantitatively. In the next section, this
quantification will allow us to compare the requirements of the
Marchenko method to those of the ISS.

Quantitative separability condition
We briefly outline the elastodynamic Marchenko method, de-
rived by one of the authors (Wapenaar, 2014), and quantify the
assumptions as a separability condition.

Instead of predicting multiples by combining all possible
triplets of primaries associated with the overburden (Coates

and Weglein, 1996), the Marchenko method solves an inverse
problem formed by two equations, the convolution- and correlation-
type representation theorems,

G−,+ + F−1 = RF+
1 , (6)

(
G−,−

)∗
+ F+

1 = R†F−1 , (7)

with four unknowns: the Green’s functions G−,± and the fo-
cusing functions F±1 (sx, z0, zi, τ). The latter ones are defined
in a truncated medium that is identical to the overburden, but
scattering-free above z0 and below zi. The superscripts denote
a time-reversal (∗) and a time-reversal combined with a trans-
pose in P-S space (†). Further, an illustration of Eqs. 6-7 can
be found in Fig. 1 for an acoustic medium and in Figs. 2a and
3a for an elastic medium.

In an attempt to constrain Eqs. 6-7, two temporal projectors,
P±, are applied as a Hadamard matrix product in P-S space
(details about the projectors can be found in Appendix B). In
other publications, the projectors are also referred to as window
functions, both terms describe exactly the same thing. Without
loss of generality, the projectors preserve the focusing func-
tions, but mute the Green’s functions, except for the temporal
overlaps, P− [G−,+] = χ− and P+

[
(G−,−)

∗]
= χ+, such

that Eqs. 6-7 simplify to,

χ− + F−1 = P−
[
RF+

1

]
, (8)

χ+ + F+
1 = P+

[
R†F−1

]
. (9)

Note that, keeping the overlap χ− explicit will lead to key in-
sights of this paper. The solution strategy hopes that the over-
laps χ± can be estimated, such that the inverse problem resem-
bles a set of coupled Marchenko equations that can be solved
recursively,

F+
1 =

∞∑

k=0

Ξk, with, Ξk = P+
[
R†P− [RΞk−1]

]
, (10)

using Ξ0 = −χ+−P+
[
R†χ−

]
as initial estimate, and assum-

ing convergence of the series (which has been shown for the
acoustic case, Dukalski and de Vos, 2017). From the retrieved
solution F+

1 , the remaining unknowns can be constructed.
Estimating the overlaps remains very challenging. In order

to proceed, the Marchenko method firstly assumes χ− is a null
matrix O, and secondly, requires χ+ as prior information (a
physical interpretation of χ+ follows in the next subsection).

The assumption, χ− = O, demands that the focusing func-
tion F−1 and the Green’s function G−,+ remain separable in
the time domain (see F−1 /G−,+ separability in Figs. 1a and
2a). Although true for 1.5D acoustic media, this assumption
can be violated in 1.5D elastic media (see Fig. 2b), and only
holds under the χ−-separability-condition,

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< 2 ∆z(i)s(i)

z,p, (11)

which we derive in Appendix B. Variables ∆z(k) and s(k)
z,p/s

denote the thickness and the vertical-slownesses of P- and S-
waves in the kth layer, respectively (the layer labelling is de-
picted in Fig. 5a). The right-hand side of Eq. 11 describes the



4 Reinicke, Dukalski & Wapenaar

F+
1,pp

F̄+
1,pp

III

−2 0 2×10−4

−1

0

1

sx (sm−1)

τ
(s
)

(a) Convolution-type (see Eqs. 6 and 8)

G−,+
ppF−

1,ppF+
1,pp

(χ−)pp = 0

z0

zi

I II
III

Legend P-wave P-wave focus
Other multiples

−1 0 1

0

1

2

τ (s)z
(k
m
)

II

I

−2 0 2×10−4

−1

0

1

sx (sm−1)

τ
(s
)

These traces
are depicted
in the cartoon.

in
ou
t

Illustration of the representation theorems (cs = 0)

F+
1,pp

F̄+
1,pp

III

IV

V

−2 0 2×10−4

−1

0

1

sx (sm−1)

τ
(s
)

(b) Correlation-type (see Eqs. 7 and 9)

(G−,−
pp )∗ (χ+)pp F+

1,pp F−
1,pp

z0

zi

III
IV

V
I

−1 0 1

0

1

2

τ (s)z
(k
m
)

I

−2 0 2×10−4

−1

0

1

sx (sm−1)
τ
(s
)

out in

Figure 1: Illustration of the (a) convolution- and (b) correlation-type representation theorems. This figure depicts an acoustic
experiment to help the interpretation of the elastic experiments shown in Figs. 2 and 3. The representation theorems describe a
scattering experiment: special fields (the focusing functions F±1 ) are injected into a medium (see arrows saying ”in”), the arrow
diagram in the centre depicts the scattering paths for a single horizontal-slowness sx (marked with black arrows in sx-τ gathers) and
another special field scatters back to the recording surface z0 (see arrows saying ”out”). Note that, all wavefields are consistently
color-coded in Figs. 1-3. The scattering of F+

1 (violet in panel a) and F−1 (red in panel b) by a (a) time-forwarding and (b) time-
reversing medium results in superpositions of focusing and Green’s functions, F−1 +G−,+ and F+

1 +(G−,−)∗, respectively. The top
trace shows true (violet) and retrieved (orange) focusing functions F+

1,pp and F̄+
1,pp, respectively. The last event of F−1 (event I) and

the first event of G−,+ (event II) are represented by red and green paths, respectively (also see sx-τ gathers). Similarly, the first event
of F+

1 (event III) and the last event of (G−,−)∗ (event V) are highlighted by violet and green travel paths, respectively. The fastest
multiple coda of (G−,−)∗ (event IV) propagates along the blue path. At the recording surface z0, the overlap between focusing and
Green’s functions only contains a direct wave (events III and V). The overlap(s) between focusing and Green’s functions appear
to have a trivial sx-dependency (illustrated by the sx-τ gathers), however, this will change in the elastic case (see Fig. 2). For
illustration purposes, all responses are convolved with a 30 Hz Ricker wavelet. Medium parameters can be found in appendix C.
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(see Eqs. 6 and 8)
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Figure 2: (a) Idem as Fig. 1a for the same medium supporting elastic wave propagation (arbitrarily chosen sp component shown).
Compared to the acoustic experiment shown in Fig. 1a, the number of scattering paths increased drastically because at each interface
the injected wavefield is reflected and transmitted as P- and S-waves. Moreover, creation of a P-wave focus requires injection of P-
(grey color for F+

1,pp) and S-waves (violet color for F+
1,sp). Due to the mode coupling, the F−1 /G−,+ separability is only violated for

sufficiently large horizontal-slownesses, |sx| > 2.54× 10−4 s m−1 (indicated by black arrows inside the top-right sx-τ gather). For
smaller horizontal-slownesses, the separability conditions (see Eqs. 11 and 12) are satisfied and the Marchenko method retrieves
the correct focusing function (see top trace). (b) Idem as panel (a), except that the thickness of the focusing layer is reduced such
that the first event of G−,+sp (event II) predates the last event of F−1,sp (event I), leading to a temporal overlap (see black ellipse in the
cartoon and and red-green area overlap in sx-τ gathers). If we erroneously assume zero overlap χ− = O, the Marchenko method
forces the overlapping part of the Green’s function to become part of the upgoing focusing function F̄−1 . As a result, the retrieved
downgoing focusing function F̄+

1 contains an artefact (see orange arrow) that cancels a multiple generated by event II. The other
artefacts of the retrieved focusing function F̄+

1 (e.g. around τ = −1.25 s) are caused by similar mechanisms but are not immediately
easy to interpret here.
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two-way travel time of a P-wave through the ith layer (embed-
ding the redatuming level), and the left-hand side is the one-
way travel time difference between a P- and an S-wave propa-
gating from the shallowest to the deepest interface of the over-
burden. Note that the separability condition becomes stricter if
identical projectors, P+ = P−, are used.

Physical interpretation of the overlap χ+

In 1.5D acoustic media, the overlap χ+ is a direct wave prop-
agating from the redatuming level zi to the acquisition surface
z0.

Wapenaar and Slob (2015) demonstrate that, in elastic me-
dia, the unavoidable overlap, χ+, does not simply consist of di-
rect P- and S-waves, but of all waves that forward-scatter from
the redatuming level zi to the acquisition surface z0 (such as
events III and V in Figs. 1b and 3a). This interpretation is a
special case. In general, a multiple coda propagating mainly
as P-wave may outpace forward-scattered waves propagating
mainly as S-waves, e.g. see events IV and III in Fig. 3b, respec-
tively. These multiple coda events become part of the overlap
χ+, and we refer to them as fast multiples. The occurrence of
fast multiples is prevented if the χ+-separability-condition,

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< 2 min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}
,

(12)

holds (derived in Appendix B). The minimum function, min{·},
selects the smallest element of the given set, which in this case
is the delay between the fastest multiple coda and the corre-
sponding forward-scattered wave propagating from zi to z0.

If the separability condition in Eq. 12 is violated, the con-
ventional Marchenko method requires the fast multiples as prior
information. Even in the special case where Eq. 12 holds such
that the overlap χ+ simplifies to only forward-scattered waves,
it still consists of 2n−1 events per elastic component, where n
is the number of reflectors inside the overburden. Thus, finding
the initial estimate χ+ without further constraints appears very
unrealistic for an unknown model.

Marchenko method with trivial initial estimate
In this section, we modify the conventional Marchenko scheme
to remove the need for prior information contained by χ+, in
exchange for a stricter separability condition.

We exploit the freedom to convolve the representation the-
orems in Eqs. 6-7 with an arbitrary time-dependent matrix
B(sx, zi, z0, τ) from the right,

U−,+ + V−1 = RV+
1 , (13)

(
U−,−

)∗
+ V+

1 = R†V−1 , (14)

where we introduced V±1 = F±1 B, U−,+ = G−,+B and
U−,− = G−,−B∗. This approach allows us to arrive at a
different set of equations and can be interpreted as a form of
preconditioning (Dukalski and de Vos, 2017). Alike Dukalski
et al. (2019), Elison et al. (2020) and Mildner et al. (2019), we

assume an unknown, though later recoverable, B, contrary to
other authors who use a known B (van der Neut and Wapenaar,
2016; Meles et al., 2018; Reinicke et al., 2018).

Next, we define the unknown B such that the overlap χ+

unfolds onto an identity. This strategy can be seen as applying
an unknown transformation (convolution with B) that maps the
typically unknown initial guess χ+ onto a trivial one. As a
result, the solutions are also transformed from F±1 to V±1 =
F±1 B. We emphasise that the operator B is not a mere time-
shift as in the acoustic scheme by van der Neut and Wapenaar
(2016), or a form of a wavelet as in the scheme by Dukalski
et al. (2019) and Elison et al. (2020), but a much more general
matrix filter. Now Eq. 14 can be easily separated,

P+
B

[(
U−,−

)∗]
= χB+ = I, (15)

P+
B

[
V+

1

]
= V+

1 , (16)

where I is an identity matrix multiplied by a temporal delta
function. Note that the projector P+

B can be very different from
the projector P+ in Eq. 9 (details about the projectors can be
found in Appendix B). After applying a projector to Eq. 13,

P−B
[
U−,+

]
= χB−, (17)

P−B
[
V−1
]

= V−1 , (18)

we can simplify Eqs. 13 and 14 to,

χB− + V−1 = P−B
[
RV+

1

]
, (19)

I + V+
1 = P+

B

[
R†V−1

]
. (20)

Compared to Eqs. 8-9, the overlaps χ± are re-mixed into χB−
and χB+ = I, and thus, we refer to B as the re-mixing operator.
For the special case that the re-mixed overlap χB− remains zero
we can retrieve re-mixed solutions,

V+
1 =

∞∑

k=0

Ξk, with, Ξk = P+
B

[
R†P−B [RΞk−1]

]
, (21)

using a trivial initial estimate Ξ0 = −χB+. Further onwards,
we will introduce a de-multiple strategy that only requires the
resulting re-mixed Green’s functions U−,± as input.

The advantage of a trivial initial estimate, χB+ = I, comes
at a cost: although unknown, the re-mixing operator is asso-
ciated with a source at the surface at z0 and a receiver at the
redatuming depth zi. Thus, B moves the focal point to the ac-
quisition surface. This process reduces the temporal separation
between the focusing function F−1 and the Green’s function
G−,+ by the temporal extent of the re-mixing operator (see
Fig. 4). As a result, an originally zero overlap, χ− = O,
can become non-zero, χB− 6= O. This is because the re-mixed
Marchenko method relies on the χB−-separability-condition (a
derivation can be found in Appendix B),

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< ∆z(i)s(i)

z,p, (22)

which is stricter than the χ−-separability-condition of the con-
ventional Marchenko method (see Eq. 11). The effect of satis-
fying, or violating, the aforementioned separability conditions
is summarized in Tab. 1.
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Figure 3: (a) Idem as Fig. 1b but now the medium is elastic and contains an additional interface (arbitrarily chosen sp component
shown). Since the additional layer generates so many extra events we do not draw all paths in the cartoon. In contrast to the acoustic
case in Fig. 1b, creation of a P-wave focus requires injection of P- (grey color for F−1,pp) and S-waves (red color for F−1,sp). Due to
P-S coupling at each interface, the overlap χ+, which is bounded by the first event of F+

1 (event III) and the last event of (G−,−)∗

(event V), contains not only of a direct wave, but all forward-scattered waves. The sx-τ gather shows that the temporal separation
between forward-scattered waves (e.g. events III, V and VI) and multiples (e.g. event IV) decreases with increasing horizontal-
slowness. (b) Idem as panel Fig. 3a, except that the second interface from above has been moved downwards creating a thinner layer
(layer thickness reduced from 250 m to 50 m). As a result, the overlap χ+ contains not only the forward-scattered waves but also
fast multiples (see event IV in ellipse). Approximating the overlap χ+ only by forward-scattered waves, i.e. ignoring fast multiples
such as event IV, leads to an erroneous focusing function F̄+

1 (see orange and violet traces for comparison). Errors occur not only
within the temporal extent of the overlap χ+ but also at other times.
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Separability condition Satisfied Violated

C
on

ve
nt

io
na

l χ− l.h.s. < 2 ∆z(i)s
(i)
z,p (Eq. 11) χ− = O χ− 6= O with finite duration

χ+ l.h.s. < 2 min
{

∆z(k)s
(k)
z,p

∣∣∣ k ∈ [1, i]
}

(Eq. 12) χ+ only contains χ+ contains forward-scattered
forward-scattered waves waves and fast multiples

R
e-

m
ix

ed

χB− l.h.s. < ∆z(i)s
(i)
z,p (Eq. 22) χB− = O χB− 6= O with finite duration

χB+ Unconditionally (by definition χB+ = I) χB+ = I not applicable

Table 1: This table summarizes the effect of satisfying, and violating, the separability conditions of the conventional and the re-
mixed Marchenko method. The left hand side (l.h.s.) of all inequalities in this table is

∑i−1
k=1 ∆z(k)

(
s

(k)
z,s − s(k)

z,p

)
.

0 1
0

1

2

(
F

−
1,sp

)Ω

(
G

−,+
sp

)α

τ(s)

z
(k
m
)

0 1

Bαpp

BΩ
pp

τ(s)

0 1 2
0

1

2

(
G

−,+
sp Bpp

)α

(
F

−
1,sp

Bpp

)Ω

τ(s)

z
(k
m
)

∗

=

Figure 4: Effect of re-mixing on temporal separation, illus-
trated analogously to Figs. 2-3. Re-mixing reduces temporal
distance between F−1 and G−,+ (see grey and black bar) by the
duration of the re-mixing operator (see black bar). We depict
the first (superscript α) and last (superscript Ω) events of F−1
(red), G−,+ (green) and B (blue). The travel times of the first
and the last event of B are derived in Appendix B.

MONOTONICITY CONDITIONS OF THE ISS

The ISS relies on monotonicity assumptions (i) and (ii) (see
Introduction), which, to the best of our knowledge, have always
been formulated verbally. We quantify these assumptions in
a form of two inequalities. Subsequently, we compare them
against the conventional and re-mixed Marchenko methods.

Quantifying monotonicity in terms of separabil-
ity conditions
Consistent with the previous section, we aim to remove multi-
ples related to the overburden above zi. Monotonicity assump-
tion (i) in the introduction requires that the P-wave travel time
through each layer inside the overburden is sufficiently long to
separate the (converted) primaries of adjacent reflectors in time
(compare Figs. 5a and b), and has to hold for each elastic com-
ponent. This requirement can be formulated as a separability
condition (derived in Appendix B),

j−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< ∆z(j)s(j)

z,p, ∀ j ∈ [2, i]. (23)

Monotonicity assumption (ii) states that multiples are recorded
after their generating primaries and can be formulated as (de-
rived in Appendix B),

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}
.

(24)

Violating monotonicity causes erroneous multiple predictions
at the arrival times of primaries (e.g. see Fig. 16 in Sun
and Innanen, 2019). Subsequent match-subtraction of the mis-
predicted multiples may affect the primaries.

Analysis of Marchenko and ISS separability con-
ditions
Now we compare the assumptions of the conventional and re-
mixed Marchenko methods (see Eqs. 11, 12 and 22) with the
monotonicity assumptions of the ISS (see Eqs. 23 and 24).
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Figure 5: Two primary reflections (arbitrarily chosen ss component) that, (a) obey and (b) violate monotonicity assumption (i). (c)
A multiple that predates a primary of one of its generators, violating monotonicity assumption (ii). Dashed and sinusoidal lines
represent P- and S-waves, respectively. Layers are labelled with respect to the redatuming depth zi.

All of the aforementioned methods rely on separability con-
ditions that have the same term on the left-hand side. This term
describes the travel time difference between P- and S-waves
propagating from the shallowest to the deepest reflector of the
overburden. Hence, the likelihood of violating these separabil-
ity conditions increases with depth and vertical-slowness dif-
ferences between P- and S-waves (sz,s − sz,p).

The re-mixed Marchenko scheme and the ISS can both be
evaluated without prior medium information, which makes for
a fair comparison: the χB−-separability-condition of the re-mixed
Marchenko scheme is nearly identical to the monotonicity as-
sumption (i) of the ISS (compare Eqs. 22 and 23). However,
the condition for the re-mixed Marchenko scheme (see Eq. 22)
only needs to be obeyed by the redatuming layer i, rather than
by each layer inside the overburden (see Eq. 23). For ex-
ample, a sufficiently slim layer inside the overburden can be
prohibitive for the ISS while the re-mixed Marchenko method
can handle it, as long as the redatuming layer i provides suffi-
cient temporal support, ∆z(i)s

(i)
s,p. Hence, the requirement of

the re-mixed Marchenko scheme, i.e. the separability of V−1
from U−,+, can be seen as a relaxed version of monotonic-
ity condition (i). This advantage of the (re-mixed) Marchenko
method can be understood via the fundamentally different na-
ture of the two algorithms: The ISS is applied in a fashion
that scans through the data along the time, or (pseudo-)depth,
direction, i.e. it treats the medium as a stack of individual mul-
tiple generators (although there is no need for identifying the
generators). In contrast, the (re-mixed) Marchenko method ex-
ploits scattering relations between wavefields associated with
a shallow and a deep part of the medium, where the separation
between shallow and deep is arbitrary (Dukalski and De Vos,
2020). Once retrieved, these wavefields can be used to remove
multiples generated by the shallow medium (=the overburden).
Thus, the overburden is handled as one complex multiple gen-
erator.

The χ−-separability-condition of the conventional March-
enko method is more relaxed (compare Eqs. 11, 22 and 23).
This relaxation emerges due to a missing factor of two on the
left-hand side of Eq. 11, i.e. the conventional Marchenko
scheme demands temporal separability in terms of one- instead
of two-way travel time (F−1 ↔ V−1 and G−,+ ↔ U−,+).
However, the more relaxed separability condition must be com-
pensated by estimating the remaining overlap χ+, i.e. by pro-

viding prior information. Hence, the re-mixed Marchenko method
trades prior information for a stricter assumption. This trade-
off was not discussed by van der Neut and Wapenaar (2016)
because they did not consider forward-scattered waves.

Further, elastic overburden removal via the ISS entails a high
risk of violating the monotonicity assumption (ii), which is
quantified by Eq. 24: with increasing depth the right-hand side
of the condition decreases or remains constant, while the left-
hand side increases. In other words, increasing depth leads to
a higher probability of fast multiples occurring, i.e. multiples
outpacing their generating primaries. Fast multiples can also
be encountered by the conventional Marchenko method, which
requires them to be included in the initial estimate. Again, due
to one- and two-way travel times, the occurrence of fast multi-
ples in the conventional Marchenko method and the ISS differs
by a factor of two (compare Eqs. 12 and 24). The re-mixed
Marchenko scheme encodes the effect of fast multiples in the
re-mixing operator B, which allows us to solve the scheme
with a trivial initial estimate. However, the re-mixing opera-
tor remains in the retrieved solutions (V±1 and U−,±). Hence,
the re-mixed Marchenko scheme tracks, but does not remove,
the impact of fast multiples (which will become obvious in Eq.
26 in the next section).

Note that the discussed separability conditions only consider
the temporal event ordering, but neglect the amplitudes of the
events. Errors due to violating the separability conditions may
be negligible close to zero-incidence where mode conversions
are weak, but become increasingly significant with increasing
angle of incidence.

Moreover, the separability conditions are domain-dependent.
Among others, Sun and Innanen (2016) have addressed this is-
sue in the context of the ISS. For Marchenko methods, the sep-
aration of focusing functions from the Green’s functions is typ-
ically performed in the space-time (e.g. Wapenaar et al., 2014)
or in the linear Radon domain (e.g. Slob et al., 2014). The sepa-
ration in the latter domain is favorable, particularly in 1.5D me-
dia, because horizontal-slownesses can be treated separately,
reducing the risk of unwanted overlaps. It may be possible to
relax the separability conditions further by considering another
domain, which will be subject to future investigation.
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DE-MULTIPLE STRATEGIES FOR RE-MIXED
MARCHENKO SCHEME

Now we propose two de-multiple strategies derived from the
re-mixed Marchenko solutions. The first one only requires the
re-mixed solutions but does not remove all overburden inter-
actions. The second one aims to remove all overburden inter-
actions by exploiting energy conservation and the minimum-
phase property of the focusing function. The latter approach
is discussed only conceptually and may enable the recovery of
the focusing function F+

1 , which will be discussed further in
the future.

Re-mixed Marchenko de-multiple method
The two Green’s functions G−,± are related by the redatumed
reflection response Rrd (see Eq. 5), that is free of overburden
interactions, and thus, is a form of overburden-borne multiple
and forward-scattering elimination. In contrast, the re-mixed
Green’s functions U−,± are mutually related by a target reflec-
tion responseR,

U−,+ = −σzU−,−R, (25)

which can be retrieved via deconvolution (still per horizontal-
slowness sx). By inserting an identity, B∗ (B∗)−1, in Eq. 5,
multiplying the result by B from the right, and using the defi-
nitions of the re-mixed Green’s functions (see below Eq. 14),
we see that the target response R is related to the redatumed
reflection response Rrd,

R = (B∗)−1
RT
rdσzB. (26)

In this process, we introduced a convolutional and matricial,
more general, Moore-Penrose pseudo-inverse of B, denoted by
the superscript ”−1”. Even though in our numerical experi-
ments B was always invertible, we currently cannot offer any
proof to assume invertibility in general. Moreover, for band-
limited signals the matrix inverse does not exist outside the
spectral band of the signal, analogously to wavelet deconvolu-
tion. Unlike the Green’s function G−,±, the re-mixed ones are
easily calculable provided that the separability condition Eq.
22 holds. The target reflection response R (see Eq. 26) is the
desired redatumed reflection response, dressed with all over-
burden interactions described by B on the source- and receiver-
sides. In a 1.5D acoustic case, B commutes with the redatumed
reflection response Rrd and the product (B∗)−1

B cancels ex-
cept for a time-shift defined by the overburden. However, in
2D, this is no longer the case. In the elastic situation, in the
absence of fast multiples (see Eq. 12) B is an inverse time-
reversed forward-scattered transmission through the overbur-
den. This insight ties back to the statement in the introduction
that forward-scattering cannot be predicted by existing meth-
ods. If Eq. 12 is violated, B also carries the imprint of fast
multiples (e.g. see Fig. 6 and Fig. 7 in Appendix D).

Moreover, the impact of forward-scattering and fast multi-
ples can be understood and tracked via the re-mixing operator
(see Eq. 26). If the re-mixing operator can be retrieved, the
aforementioned errors could even be corrected. This conve-
nience is possible because the (re-mixed) Marchenko method

only relies on linear scattering relations between fields defined
in the overburden-only and fields defined in the entire medium.
In contrast, de-multiple schemes that predict multiples only
kinematically do not yet offer the opportunity to track the above-
mentioned errors.

Alternative de-multiple strategy
We conjecture it could be possible to remove all overburden
interactions, including forward-scattering and (fast) multiples,
by exploiting further physical constraints: energy conservation
and the minimum-phase property of the focusing function. In
the following, we make the first steps in this direction.

The up- and downgoing focusing functions conserve energy,

(
F+

1

)†
F+

1 −
(
F−1
)†

F−1 = I, (27)

i.e. the net energy injected at z0 equals the transmitted energy
at zi - a delta source at time zero. Firstly, by evaluating energy
conservation of the re-mixed focusing function, V±1 = F±1 B,
and using Eq. 27, we obtain the normal product of the re-
mixing operator,

(
F+

1 B
)†

F+
1 B−

(
F−1 B

)†
F−1 B = B†B. (28)

Secondly, we find a convolutional and matricial Moore-Penrose
pseudo-inverse of B†B, and convolve the result by the re-mixed
focusing function V+

1 from the left and right,

F+
1 B

(
B†B

)−1 (
F+

1 B
)†

= F+
1

(
F+

1

)†
. (29)

The result is the normal product of the desired focusing func-
tion F+

1 and can be seen as a generalized power spectrum. Note
that, Eqs. 27-29 also hold for band-limited wavefields. If the
focusing function F+

1 can be retrieved from its normal product
F+

1

(
F+

1

)†
, the desired Green’s functions and hence the reda-

tumed reflection response Rrd, free of all overburden interac-
tions, can be obtained (from Eq. 5).

We aim to retrieve the focusing function F+
1 from its normal

product using a physical constraint. The focusing function F+
1

is an inverse of a transmission response. In 1D acoustics, this
relation implies that the focusing function is a minimum-phase
scalar function, except for a linear phase-shift, and hence, pos-
sesses a unique amplitude-phase relationship via the Kolmogorov
relation (Claerbout, 1985). This property allows Dukalski et al.
(2019) and Elison et al. (2020) to factorize the (scalar) normal
product F+

1

(
F+

1

)†
, and thereby, predict short-period multiples

that are generated in a horizontally-layered acoustic overbur-
den. In our case, the focusing function as a matrix is still an
inverse transmission, and therefore, remains a minimum-phase
object in a matrix sense. Tunnicliffe-Wilson (1972) proposes
a method that factorizes the normal products of a sub-class of
minimum-phase matrices. The generalization of this method
is subject of ongoing research and will be published in the fu-
ture. If this strategy can be successfully implemented, there is
no need to retrieve the unknown operator B. For an interested
reader, however, we still present a numerical example of B in
Appendix D.
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NUMERICAL EXAMPLES

For horizontally-layered media, all required wavefields can be
modelled efficiently by wavefield extrapolation without band-
limitation (Kennett and Kerry, 1979; Hubral et al., 1980). Fur-
ther, we choose the P- and S-wave velocities as well as the
horizontal-slownesses such that all events are on-sample, i.e.
the arrival times of all events are integer multiples of the tem-
poral sampling interval (medium parameters are specified in
Appendix C). This allows us to better inspect the separability
conditions of the conventional and re-mixed Marchenko meth-
ods because measurement-induced limitations are absent.

First, we consider the experiment in Fig. 2a that satisfies
the χ−-separability-condition of the conventional Marchenko
method stated by Eq. 11. Using the correct initial estimate χ+,
which is obtained by applying the projector P+ (defined in Ap-
pendix B) to a modelled Green’s function (i.e. the medium is
known a-priori), the elastodynamic Marchenko method finds
the correct focusing function (see trace in Fig. 2a). However,
when repeating this experiment for the model in Fig. 2b, which
violates the χ−-separability-condition in Eq. 11, the projector
P− erroneously preserves the first event of G−,+ (event II).
Assuming, χ− = O, forces this event to become part of the fo-
cusing function F̄−1 (the bar distinguishes retrieved from true
solutions). To cancel multiples caused by this event, the re-
trieved F̄+

1 contains an artefact (see orange arrow in Fig. 2b).
Via the same mechanism, further artefacts are introduced.

Second, for the experiment shown in Fig. 3a, which still
satisfies the χ−-separability-condition in Eq. 11 as well as the
χ+-separability-condition in Eq. 12, the Marchenko series (see
Eq. 10) finds the correct solution (see trace in Fig. 3a), using
the forward-scattered part of the Green’s function (G−,−)

∗ as
initial estimate. By downward-shifting the second interface, as
depicted in Fig. 3b, Eq. 12 is violated and the overlap χ+

is populated with fast multiples. If the initial estimate ignores
these fast multiples, the Marchenko series does not converge to
the true solution. For example, event IV, which is a (fast) mul-
tiple belonging to the Green’s function, is now (erroneously)
part of the focusing function (indicated by the orange-dotted
line in Fig. 3b). To compensate for these errors the Marchenko
series introduces further artefacts (particularly see errors after
t = −0.6 s in Fig. 3b).

Third, we repeat the previous experiment with the re-mixed
Marchenko scheme, which simplifies the highly sophisticated
initial estimate χ+ to a trivial one χB+ = I. We use the re-
mixed solutions to remove multiples according Eq. 26. Since
there is only one reflector below the redatuming level one would
hope to eliminate all scattering effects except for a single pri-
mary (event A in Fig. 6). Indeed, a significant amount of over-
burden interactions has been removed, revealing the primary A,
which was masked by a strong multiple (see traces and cartoon
in Fig. 6). Nevertheless, the redatumed response still contains
forward-scattered waves (e.g. events B and D) as well as fast
multiples (e.g. event C). These remaining scattering effects
are caused by re-mixing. The corresponding operator (B) is
angle-dependent because it is implicitly defined by the overlap
χ+ (see sx-τ gathers in Fig. 3, for an explicit example see Ap-
pendix D). Following the alternative de-multiple strategy, that

aims to remove all overburden interactions, we can already re-
cover the normal product of the desired focusing function F+

1

near-to-perfectly (no figure), with a relative error below 1 ppm
(for the model in Figs. 3b and 6). Experiments on retrieving
the focusing function from its normal product are beyond the
scope of this paper.

CONCLUSION

Our analysis revealed that the conventional Marchenko method,
similarly to the ISS, relies on a form of monotonicity, but in
terms of one- instead of two-way travel time. The former one
is a less restrictive condition. However, this advantage of the
conventional Marchenko method must be compensated by pro-
viding an initial estimate, i.e. prior information, which be-
comes challenging in practice. To remove the need for prior
information, we introduced the re-mixed Marchenko scheme,
which allows for a fair comparison with the requirements of
the ISS. The re-mixed Marchenko scheme still relies on a less
restrictive form of monotonicity than the ISS because it only
requires the redatuming layer, instead of each layer in the over-
burden, to be sufficiently thick (in terms of P-wave travel time).
Through this comparison, we gained significant insights about
challenges of the elastic de-multiple problem. We believe that
these advances, and addressing the problems raised in this pa-
per, are essential for further development of a full elastic Mar-
chenko method.

Moreover, we presented two strategies how the re-mixed
Marchenko equations can be used for multiple elimination. The
first one can be easily implemented and removes all multi-
ples that arrive after their generating primaries. The second
strategy aims to remove all overburden-related effects, includ-
ing forward-scattering and (fast) multiples, by removing the
re-mixing operator from the Marchenko solutions. For this
purpose, additional physical constraints are taken into account,
namely energy conservation and the minimum-phase property
of the (delayed) focusing function. The latter constraint is often
associated with wavelets but it is in fact a property of an entire
wavefield, which we propose to exploit. Using a minimum-
phase constraint for the prediction of forward-scattered waves
and fast multiples requires minimum-phase matrix factoriza-
tion, which is subject to ongoing research.
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APPENDIX A: DERIVATION OF THE REDATUMING
RELATION

In this appendix, we derive the expression in Eq. 5 that re-
lates the redatumed reflection response Rrd(sx, zi, τ) to the re-
trieved Green’s functions G−,±(±sx, z0, zi, τ). For this deriva-
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Figure 6: Reflection response (black traces) and de-multiple result (red traces) according to Eq. 26 (arbitrarily chosen pp component,
sx = 2× 10−4 s m−1). Panel (a) shows a close-up of the box in panel (b). Again, dashed and sinusoidal lines represent P- and
S-waves, respectively. The cartoon highlights (1) some of the overburden interactions removed by the de-multiple scheme (black
lines), and (2) the four strongest events remaining in the redatumed result (red and blue lines): event A is the desired target-related
primary reflection, events B and D are forward-scattered waves, and event C (highlighted in blue) is a fast multiple. Dotted lines
point to the arrivals associated with the cartoon arrows. For illustration purposes, all responses are convolved with a 30 Hz Ricker
wavelet and a global scaling factor is used to adjust the de-multiple result to the reflection response.
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tion, we write all coordinates explicitly, but matrix products
still imply temporal convolutions according to Eq. 4.

The starting point is the more familiar redatuming relation,

G−,+(sx, zi, z0, τ) = Rrd(sx, zi, τ)G+,+(sx, zi, z0, τ).
(A-1)

Next, we use source-receiver reciprocity (e.g. see Wapenaar,
2014),

G∓,+(sx, zi, z0, τ) = ±
[
G−,±(−sx, z0, zi, τ)

]T
, (A-2)

and to interchange source and receiver in Eq. A-1,

G−,+(sx, z0, zi, τ) =
[
G−,+(−sx, zi, z0, τ)

]T

=
[
G+,+(−sx, zi, z0, τ)

]T
[Rrd(−sx, zi, τ)]

T

= −G−,−(sx, z0, zi, τ) [Rrd(−sx, zi, τ)]
T
. (A-3)

In horizontally-layered media, wavefields associated with posi-
tive and negative horizontal-slownesses sx are mutually related
via multiplication by a Pauli matrix σz (multiplied by a tem-
poral delta spike) from the left and right, which yields,

G−,+(sx, z0, zi, τ) =

= −σzG−,−(−sx, z0, zi, τ)σzσz [Rrd(sx, zi, τ)]
T
σz

= −σzG−,−(−sx, z0, zi, τ) [Rrd(sx, zi, τ)]
T
σz.

(A-4)

APPENDIX B: DERIVATION OF SEPARABILITY
CONDITIONS

In this appendix, we formulate the separability conditions of
the ISS, and of the original as well as the re-mixed represen-
tation theorems. Furthermore, we derive explicit expression of
the projectors P± and P±B .

Consider a homogeneous layer (labelled by k) of thickness
∆z(k) as well as P- and S-wave velocities c(k)

p and c(k)
s . For a

plane wave with horizontal slowness sx, P- and S-waves prop-
agate with the vertical slowness,

s
(k)
z,p/s =

√(
c
(k)
p/s

)−2

− s2
x. (B-1)

The resulting one-way travel time of such plane waves through
layer k is,

τ
(k)
p/s = ∆z(k)s

(k)
z,p/s. (B-2)

In the following, we assume that the P-wave velocity,

cp =

√
λ+ 2µ

ρ
, (B-3)

is greater than the S-wave velocity,

cs =

√
µ

ρ
, (B-4)

de Hoop (1995), which is the case for most materials: The
shear modulus µ and the density ρ are always positive. The
first Lamé parameter λ can be negative but for all natural ma-
terials known to the authors the relation λ > −µ holds.

Appendix B1: Separability of conventional repre-
sentation theorems
In the following, we derive the separability conditions implied
by the conventional Marchenko scheme.

First, we analyze the separability of the focusing function
F−1 from the Green’s function G−,+ on the left-hand side of
Eq. 6. To guarantee separability, the last and first events of the
focusing and Green’s functions must satisfy the condition,

τΩ(F−1,ab) < τα(G−,+ab ), (B-5)

for each elastic component combination ab. Here, the functions
τα and τΩ denote the first and last arrival times at the recording
level z0, respectively. We sum the one-way travel times along
the travel path of the last event of F−1,ab (e.g. for F−1,sp see event
I in Fig. 2a, see Fig. 5 for layer labelling i0/1),

τΩ(F−1,ab) = τ (0)
a +

i−1∑

k=1

τ (k)
s − τ (i0)

b , (B-6)

and along the travel path of the first event of G−,+ab (e.g. for
G−,+sp see event II in Fig. 2a),

τα(G−,+ab ) = τ (0)
a +

i∑

k=1

τ (k)
p + τ

(i1)
b . (B-7)

We substitute Eqs. B-6 and B-7 in Eq. B-5, replace the one-
way travel times by Eq. B-2 and obtain the χ−-separability-
condition of Eq. 11,

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< 2 ∆z(i)s(i)

z,p. (B-8)

Second, we derive a condition under which the overlap χ+

simplifies to the forward-scattered part of the Green’s function
(G−,−)

∗. This scenario requires that the fastest multiple coda
of the (time-reversed) Green’s function (G−,−)

∗ reaches the
recording level before the first event of the focusing function
F+

1 (which defines the first event of the overlap χ+),

τΩ

(
(G−,−m,ab)

∗
)
< τα(F+

1,ab). (B-9)

Here, we use the subscriptm to refer to the multiples of a wave-
field. We sum the one-way travel times along the path of the
fastest multiple coda of the Green’s function

(
G−,−m,ab

)∗
(e.g.

for (G−,−m,sp)
∗ see event IV in Fig. 3a),

τΩ((G−,−m,ab)
∗) =

− τ (0)
a −

i−1∑

k=1

τ (k)
p − 2 min

{
τ (k)
p

∣∣∣ k ∈ [1, i]
}
− τ (i0)

b ,

(B-10)

and along the travel path of the first event of the focusing func-
tion F+

1,ab (e.g. for F+
1,sp see event III in Fig. 3a),

τα(F+
1,ab) = −τ (0)

a −
i−1∑

k=1

τ (k)
s − τ (i0)

b . (B-11)
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We substitute Eqs. B-10 and B-11 in Eq. B-9, express the
one-way travel times according to Eq. B-2 and arrive at the
χ+-separability-condition,

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< 2 min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}
.

(B-12)

This condition can only be satisfied if the separability condition
in Eq. B-8 holds.

If the separability condition in Eq. B-8 holds the projector
P−, acting as a Hadamard matrix product in P-S space, sep-
arates the convolution-type representation theorem in Eq. 6
according to,

P−
[
G−,+

]
= χ− = O, (B-13)

P−
[
F−1
]

= F−1 . (B-14)

We define the projector P− such that all events after the last
arrival of the focusing function F−1 are muted,

P−ab = H
(
−τ + τΩ(F−1,ab)

)

= H

(
−τ + τ (0)

a +

i−1∑

k=1

τ (k)
s − τ (i0)

b

)
, (B-15)

where we use Eq. B-6. The function H(τ) denotes the Heavi-
side function, H(τ < 0) = 0 and H(τ ≥ 0) = 1. In analogy,
the correlation-type representation theorem in Eq. 7 can be
separated with a projector P+,

P+
[
(G−,−)∗

]
= χ+, (B-16)

P+
[
F+

1

]
= F+

1 , (B-17)

that mutes all events before the first arrival of the focusing func-
tion F+

1 ,

P+
ab = H

(
τ − τα(F+

1,ab)
)

= H

(
τ + τ (0)

a +

i−1∑

k=1

τ (k)
s + τ

(i0)
b

)
. (B-18)

In the latter expression we use Eq. B-11.

Appendix B2: Separability of re-mixed represen-
tation theorems
In the Sec. Marchenko with trivial initial estimate, we intro-
duced an unknown operator B to transform the overlap χ+

between the focusing function F+
1 and the Green’s function

(G−,−)
∗ to a trivial one. Thus, the re-mixed correlation-type

representation theorem in Eq. 14 is separable by definition, ex-
cept for an identity matrix. However, the separability of the
re-mixed convolution-type representation theorem in Eq. 13 is
not guaranteed and is assessed below.

The re-mixed representation theorem in Eq. 13 is separable
if the last event of the re-mixed focusing function V−1 arrives

at the recording surface before the first event of the re-mixed
Green’s function U−,+,

τΩ(V −1,ab) < τα(U−,+ab ), (B-19)

which can be re-written as,

τΩ(F−1,as) + τΩ(Bsb) < τα(G−,+ap ) + τα(Bpb). (B-20)

Now, we define the first and last arrival times of the re-
mixing operator B. The re-mixing operator projects the Green’s
function (G−,−)

∗ onto an identity matrix plus an acausal coda.
Hence, the first event of the re-mixing operator coincides with
the first event of the inverse ((G−,−)∗)

−1. For example, the
first, but time-reversed, event of Bps is depicted by path V in
Fig. 3b. We sum the one-way travel times along this path for
an arbitrary component ab,

τα(Bab) = τ (i0)
a +

i−1∑

k=1

τ (k)
p + τ

(0)
b . (B-21)

Further, we heuristically assume that the re-mixing operator
has the same temporal extent as the overlap χ+ between the fo-
cusing function F+

1 and the Green’s function (G−,−)
∗, which

is
∑i−1
k=1

(
τ

(k)
s − τ (k)

p

)
. As a result, the one-way travel time of

the last event of the re-mixing operator is,

τΩ(Bab) = τ (i0)
a +

i−1∑

k=1

τ (k)
s + τ

(0)
b . (B-22)

Thorough empirical investigations confirm this result. Upon
substituting Eqs. B-6-B-7 and Eqs. B-21-B-22 in Eq. B-20
and using Eq. B-2, we find the χB−-separability-condition for
the re-mixed Marchenko scheme,

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< ∆z(i)s(i)

z,p. (B-23)

Note that the choice of the level zi within the ith layer (la-
belling i0/1) was used for the derivation but dropped in the
separability conditions in Eqs. B-8, B-12 and B-23.

Now we derive expressions for the re-mixed projectors P±B .
Analogous to the derivation of the separability conditions, we
use arrival times of first and last events of specific wavefields
to find the re-mixed projectors. From Eqs. 15-16 follows that
the re-mixing operator B unfolds the overlap χ+ between the
focusing function F+

1 and the Green’s function (G−,−)
∗, ex-

cept for an identity matrix. In consequence, the diagonal ele-
ments of the projector P+

B should only preserve positive times,
including time zero to account for Eq. 15,

P+
B,pp = P+

B,ss = H (τ) . (B-24)

The first arrival times of the individual matrix elements, V +
ab =

F+
1,acBcb, only differ by an a-wave propagation of F+

1,ac and a
b-wave propagation of Bcb, both through the top layer. Hence,
the diagonal elements of the projector P+

B in Eq. B-24 can be
generalized to an arbitrary projector element,

P+
B,ab = H

(
τ + (1− δab)∆z(0)

(
s(0)
z,a − s(0)

z,b

))
, (B-25)
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where δab denotes the Kronecker delta.
Next, we derive an expression for the projector P−B . The re-

mixing operator is not designed to modify the focusing func-
tion F−1 or the Green’s function G−,+ in a special way. There-
fore, in a general case the arrival time of the last event of the re-
mixed focusing function V −ab = F−1,acBcb is obtained by adding
the last arrival times of the focusing function F−1,as and the re-
mixing operator Bsb,

P−B,ab = H
(
τ −

[
τΩ
(
F−1,as

)
+ τΩ (Bsy)

])
(B-26)

= H

(
τ −∆z(0)

(
s(0)
z,a + s

(0)
z,b

)
− 2

i−1∑

k=1

∆z(k)s(k)
z,s

)
,

where we used Eqs. B-2, B-6 and B-22.
Although the expressions for the re-mixed projectors might

appear complicated, they can be constructed easily from: (1)
a smooth P- and S-wave velocity model combined with (2) an
estimate of the position of the shallowest reflector and (3) an
estimate of the position of the reflector above the redatuming
depth. The latter estimate could be obtained e.g. by selecting
a redatuming depth below a strong reflector that can be easily
localized. Compared to the conventional elastodynamic Mar-
chenko method the required a-priori knowledge is significantly
reduced.

Appendix B3: From monotonicity to separability
conditions
In this appendix, we quantify the monotonicity assumptions of
the ISS as separability conditions.

The monotonicity assumption (i) requires temporal order-
ing of primaries according to the reflector ordering in depth.
Hence, for an arbitrary elastic component of the reflection re-
sponse, Rab, the slowest primary associated with an interface
j−1 (at the bottom of layer j−1) must reach the recording sur-
face before the fastest primary associated with the next, deeper,
interface j (see Fig. 5),

τΩ(R
(j−1)
ab ) < τα(R

(j)
ab ). (B-27)

The superscripts refer to (converted) primary reflections asso-
ciated with the interfaces j − 1 and j. Now, we sum the travel
times along the travel path of these two primaries, leading to,

τΩ(R
(j−1)
ab ) = τ (0)

a + 2

j−1∑

k=1

τ (k)
s + τ

(0)
b , (B-28)

and,

τα(R
(j)
ab ) = τ (0)

a + 2

j∑

k=1

τ (k)
p + τ

(0)
b . (B-29)

Next, we substitute Eqs. B-28 and B-29 in Eq. B-27, replace
the travel times by Eq. B-2, and obtain a separability condition,

j−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< ∆z(j)s(j)

z,p. (B-30)

Redatuming from the recording level z0 to zi requires that all
interfaces between these two depth levels satisfy monotonicity,
i.e. Eq. B-30 becomes the separability condition in Eq. 23.

The monotonicity assumption (ii) requires that multiples are
recorded after their generating primaries. Hence, for redatum-
ing to the depth level zi the slowest primary reflection associ-
ated with the interface i − 1 must predate the fastest multiple
generated by the same interface,

τΩ

(
R

(i−1)
ab

)
< τα

(
R

(i−1)
m,ab

)
, (B-31)

where R(i−1)
m,ab represents the multiples generated by the inter-

face i − 1. Again, we sum the travel times along the paths of
these two events,

τΩ

(
R

(i−1)
ab

)
= τ (0)

a + 2

i−1∑

k=1

τ (k)
s + τ

(0)
b , (B-32)

and,

τα

(
R

(i−1)
m,ab

)
=

τ (0)
a + 2

i−1∑

k=1

τ (k)
p + 2 min

{
τ (k)
p

∣∣∣ k ∈ [1, i]
}

+ τ
(0)
b . (B-33)

Upon substituting Eqs. B-32 and B-33 in Eq. B-31 and replac-
ing the travel times by Eq. B-2, the monotonicity assumption
(ii) can be written as,

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
< min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}
,

(B-34)

which is the separability condition in Eq. 24. Note that, for
multiple generators above the interface i − 1, the condition in
Eq. B-34 is relaxed because the left-hand side will remain con-
stant or decrease, while the right-hand side will remain con-
stant or increase.

APPENDIX C: MEDIUM PARAMETERS

This appendix contains the medium parameters used for the
experiments shown in Figs. 1-3 (see Tab. C-1 and C-2). Note
that the values of the medium parameters are adjusted to en-
sure all events associated with the horizontal-slowness, sx =
2× 10−4 m, are recorded on-sample, i.e. the travel time of
each event is an integer-multiple of the temporal sampling in-
terval. The values are within a reasonable range but are not
associated with any specific material. We used exaggerated
density contrasts to generate strong, well-visible, events. In
realistic media the contrasts may be weaker but much more nu-
merous. Hence, there will be many weak, as opposed to a few
strong, converted waves. The Marchenko method and the sepa-
rability conditions are independent of the number and strength
of these events, and thus, our analysis can be generalized for
more realistic media.
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z(m) cp(m s−1) cs(m s−1) ρ(kg m−3)
-∞ - 500 1993.63 898.38 4200
500 - 1700 1897.78 1099.20 1100

1700 - 2501.07 2500.00 1386.75 6000
2501.07 -∞ 2695.26 1611.32 3500

Table C-1: This table contains the medium parameters used
for the experiment shown in Figs. 1 and 2a (for the acoustic
experiment the shear wave velocity is set to zero). The focusing
depth is at zf = 1902.07 m. The experiment shown in Fig.
2b uses the same medium parameters, except that the bottom
interface is moved from z = 2501.07 m to z = 2299.00 m.

z(m) cp(m s−1) cs(m s−1) ρ(kg m−3)
-∞ - 500 1993.63 898.38 1100
500 - 1250.56 2500 1796.05 4200

1250.56 - 1503.15 1505.43 1050.85 1700
1503.15 - 2304.24 1900.00 1006.04 6000
2304.24 -∞ 2695.26 1396.65 3500

Table C-2: This table contains the medium parameters used
for the experiment shown in Fig. 3a. The focusing depth is
at zf = 1703.42 m. The experiment shown in Fig. 3b uses
the same medium parameters, except that the second interface
from above is moved from z = 1250.56 m to z = 1452.63 m.

APPENDIX D: NUMERICAL EXAMPLE OF THE
RE-MIXING OPERATOR

In this appendix, we determine and show the re-mixing oper-
ator associated with the experiment in Fig. 6. Since, to our
knowledge, the operator B cannot be computed directly, we
obtain it indirectly: Firstly, we retrieve V±1 by solving the re-
mixed representation theorems (provided that the χB− separa-
bility condition in Eq. 22 holds) and model F±1 via wavefield
extrapolation. Secondly, we obtain the re-mixing operator B
by solving,

V±1 = F±1 B, (D-1)

by deconvolution. We evaluate this deconvolution for up- and
downgoing fields independently to confirm that both cases lead
to the same solution. The resulting re-mixing operator (see Fig.
7) has a finite duration,

τΩ(Bpp)− τα(Bpp) = 0.18 s, (D-2)

which is equal to the expected one (using Eqs. B-2, B-21 and
B-22),

τΩ(Bpp)− τα(Bpp) =

i−1∑

k=1

∆z(k)
(
s(k)
z,s − s(k)

z,p

)
. (D-3)

Moreover, the re-mixing operator contains a fast multiple at
τ = τc, which constructs event C in Fig. 6 via Eq. 26. At zero-
incidence, the re-mixing operator simplifies to a single event
(see sx-τ gather in Fig. 7c).
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Figure 7: Re-mixing operator B associated with the numerical example in Fig. 6 (arbitrarily chosen pp component). Panel (a) shows
the re-mixing operator before (red) and after (black) convolution with a 30 Hz Ricker wavelet. In panel (b) the clipping values of the
time and amplitude axes are adjusted to highlight the travel paths associated with three selected events of the re-mixing operator: (1)
the first event of Bpp, (2) a fast multiple that persists in the de-multiple result (see event C in Fig. 6), and (3) the last event of Bpp.
Due to its small amplitude, the last event is only visible in panel (b). Dotted lines point to the arrivals associated with the cartoon
arrows and label the travel times of these events as τα(Bpp), τc and τΩ(Bpp). Again, dashed and sinusoidal lines represent P- and
S-waves, respectively. Panel (c) shows an sx-τ gather of the re-mixing operator (after convolution with a 30 Hz Ricker wavelet). By
analyzing all elastic components (not shown here), it can be seen that the operator B is a scaled and delayed identity plus a small
coda. Hence, its determinant is approximately a phase-shift with a non-zero amplitude, meaning that B is invertible.
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