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Abstract

The absence of medicines to cure COVID­19 calls for preventive strategies, including mask­wearing.
Despite its protection against exposure to coronavirus, not everyone chooses to wear a mask. Some
studies addressed mask­wearing behaviour from the standpoint of behavioural economics, one being
the effect of herding behaviour. This occurs when people base their decision on the decisions of others.
After a literature review, it is known that herding can indeed play a role, yet it has only been empirically
studied up to a correlational relationship and not a causal relationship. Therefore, this study focuses on
quantifying the effect of factors that influence mask­wearing, emphasising herding. Aside from being
scientifically relevant by filling the knowledge gaps, this study is also societally relevant. This study can
be used in a more realistic epidemic transmission study that involves preventive health behaviours and
can also help policymakers simulate the impacts of their policy designs more accurately.

The study comprises two overarching phases: choice and agent­based modelling. Within the choice
modelling, identification of possible factors using a systematic literature review is performed. This
resulted in four types of factors: Health Belief Model (HBM) related factors, herding­related factors,
situational cues, and demographics. Next, after developing a questionnaire and collecting 151 respon­
dents within the population of the Netherlands, a Latent Class Cluster Analysis (LCCA) is performed to
identify two underlying clusters that represent the health beliefs of the respondents. The first cluster,
HBM Class 1, consists of people who are more risk­averse towards COVID­19 and believe more in
the efficacy of mask­wearing. The other cluster, HBM Class 2, is simply the opposite of HBM Class
1. Finally, the choice modelling has confirmed a statistically significant effect of herding, only within
friends and/or family and the random people.

To explore the macro­level population dynamics resulting from micro­level individual behaviours, the
collective result is obtained by taking an interdependent behaviour between people into account. An
agent­based model (ABM) has been formalised, implemented, verified, and validated. The main insight
obtained from this ABM is that the herding effect is stronger when themajority is not wearingmasks than
when the majority is wearing masks. In other words, there is a tendency towards no­mask­wearing,
instead of the opposite. These discoveries have brought into the state­of­the­art knowledge base not
only a new insight on how herding affects mask­wearing, but also an under­explored way of combining
static (choice modelling) and dynamic (ABM) research methods.

This study has several limitations. First, there is an unknown risk of low­quality responses due to the
online distribution of the survey. Second, the sample cannot be considered as a representative sample
of the Dutch population. Care should be taken in generalising the result to the general Netherlands
population. Third, the literature review may be missing important factors that were undiscovered in the
previous literature up to April 2021. Fourth, this study generalises the factors in a broad categorisation.
Finally, the ABM employs simplified input values. Reflecting on the aforementioned limitations, future
studies may also incorporate interviews, a more representative sampling method, and a more fine­
grained specification of factors.

Finally, five recommendations are derived for the policy­making process. First, this study recommends
policy­makers maintain clarity in communicating mask­wearing policy. Second, enforcement of manda­
tory policy is recommended, especially in outdoor spaces. Third, mask­wearing can be encouraged
through social campaigns, if necessary. Such campaigns may contain figures that people can closely
relate to. Another alternative is to increase the importance of policy by putting signs in more prominent
places and informing people about how active the policy has been enforced. Fourth, the modellers
in the policy­making domain could look at incorporating herding to such research and enrich its real­
ism. Lastly, this study can also be utilised for other policy­making processes outside the mask­wearing
context and/or outside the COVID­19 context.
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1
Introduction

1.1. Background

1.1.1. Mask­wearing in the midst of COVID­19 pandemic

It begins in one city in December 2019 and has spread across the world – the coronavirus disease
(COVID­19) outbreak is unquestionably one of the most severe global phenomena in modern history.
Up to the time of this research, it has caused more than 160 million cases and more than 3.3 million
deaths (WHO, 2021). It adversely affects not only global health but also the world economy. The
absence of medicines to prevent or cure COVID­19 calls for preventive health behaviour strategies to
suppress the transmission, such as social distancing, self­isolation, hand washing, and mask­wearing.

According to Soofi et al. (2020), encouraging these strategies has been the focus of all public health
policies to mitigate COVID­19. Among other preventive strategies, theWHO1 stated that mask­wearing
is a key measure to reduce the risk of exposure (WHO, 2020). Worby and Chang (2020) found that
although mask­wearing has a limited protective effect, it has the ability to reduce COVID­19 infections
and deaths. According to Li et al. (2020), in combination with social distancing, mask­wearing “flattens
the epidemic curve”. These studies show the high relevance of mask­wearing for the public health
policy­making context.

In the Netherlands, however, there have been several incidents where people refused to wear a mask
in shops and restaurants (Soetenhorst, 2020). Moreover, CBL2 reported that at least 40% of shoppers
are not wearing amask (van Gennip, 2020). Despite the Dutch government’s advice on wearing amask
in indoor public places, a question arises: why do some people still choose not to wear one? Soofi
et al. (2020) tried to address this seemingly less optimal choice from the standpoint of behavioural
economics, one of them being the influence of herding behaviour. Similarly, van den Broek­Altenburg
and Atherly (2020) also touched upon the influence of motivation to conform on the choice of mask­
wearing.

1.1.2. Herding behaviour in mask­wearing

Herding behaviour refers to basing a decision on what others are doing instead of one’s own information
(Banerjee, 1992). The tendency to herd is higher, especially under uncertain situations (Eun Huh et
al., 2014). In the context of mask­wearing, the uncertainty surrounding mask efficacy makes herding
behaviour more likely to influence mask­wearing. Numerous official institutes have provided varying
information on mask efficacy. While WHO stated that mask­wearing is a key measure, ECDC3 stated
that mask “may help reduce the spread of infection” (ECDC, 2020, p. 2). To an even lesser confidence
level on mask, RIVM4 reported that mask protects the wearer only to a very limited extent (RIVM, 2020).

1World Health Organization
2Centraal Bureau Levensmiddelenhande
3European Center for Disease Prevention and Control
4Rijksinstituut voor Volksgezondheid en Milieu
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2 1. Introduction

Several sources have supported the possible herding behaviour in mask­wearing. Firstly, Parham
and Hardy (2020) from CEBM5 postulates that based on their non­participant observation, the rapid
adoption of mask­wearing in France may be driven by the surveillance of others in the social area.
Moreover, Jan Gelech from the University of Saskatchewan, Canada, stated that conformity to social
pressure might explain mask­wearing behaviour (Mattern, 2020). Lastly, in his commentary article,
Bellato (2020) argued that social influence through seeing others’ behaviour, in adhering to COVID­19
regulations, facilitates the emergence of the behaviour itself.

Sim et al. (2014) pointed out that social acceptance plays a key role in mask­wearing behaviour during
the SARS epidemic in 2003. The influence of peer pressure was observed when flight passengers
in Bangkok airport bought and wore masks after noticing that the staff was wearing masks (Sim et
al., 2014). Barile et al. (2021, p. 87) quantified the effect of descriptive norm (i.e., the frequency of
seeing others wearing masks in public) and found it to be a ”key element” to translate the mask­wearing
intention to action. Furthermore, the concept of collectivism (i.e., a view of an individual being a part of
a larger social structure (Triandis, 2018)) was argued by Scerri and Grech (2020) as one of the bases of
adherence to public health policies. Similarly, Huang et al. (2020) analysed Chinese micro­blog posts
and found that collectivism is correlated with higher intention towards preventive health behaviour.

1.1.3. The scientific and societal need for a study onmask­wearing, while taking
herding into account

Despite the aforementioned studies, these analyses justify the idea of herding in mask­wearing only up
to a correlational relationship and not a causal relationship. Although the correlation may be interpreted
as causation through the use of a behaviour change model as its theoretical foundation, such a study
has only been done by Barile et al. (2021). Furthermore, most research on COVID­19 has focused
only on its epidemiological and psychological impact and very few on behavioural analysis in COVID­
19 prevention (Huang et al., 2020). Lastly, studies on herding in public health are also limited (Lee et al.,
2021). Therefore, this study focuses on quantifying the effect of factors that influence mask­wearing,
emphasising herding.

Aside from being scientifically relevant by filling the knowledge gaps, this study is also societally rele­
vant. It is important to understand the factors influencingmask­wearing, especially considering herding,
to understand better the mechanism of people’s decisions to wear masks. As the world is facing an
unprecedented pandemic, the modelling and prediction thereof will help in developing more effective
public health policies. Such a model can be used in a more realistic epidemic transmission study that
involves preventive health behaviours and can also help policymakers simulate the impacts of their
policy designs more accurately.

This study is socio­technical and complex in nature. Mathematical models are essentially technical
solutions that aid policymakers in crafting effective strategies. These models consider individual be­
haviour in mask­wearing and how these individuals interact and influence each other at the population
level, highlighting how the social element is substantial in this study. Capturing the uncontrollable and
unpredictable interactions, and subsequently, the population’s emergent mask­wearing behaviour, is
how this study attempts to better comprehend the complex problem at hand.
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1.2. Main research question
The main research question of this study is:

How does herding behaviour influence mask­wearing
during the COVID­19 pandemic in the population of the Netherlands?

1.3. Sub­questions and research approach
The main research question can be decomposed into several sub­questions (SQ’s) as follows:

1. What are the possible factors that may influence mask­wearing behaviour?
A literature review is conducted to synthesise a collection of factors that may influence mask­
wearing systematically. To broaden the search space, articles in health protective behaviour are
also included. Furthermore, studies in the context of other respiratory disease outbreaks (e.g.,
Spanish flu, H1N1, and SARS) are considered relevant in respect of the COVID­19 pandemic.

2. To what extent does herding affect an individual’s mask­wearing behaviour, with respect to other
factors?
To measure the effect of herding on mask­wearing, a choice modelling is performed. The choice
modelling method is elaborated in Section 2. The data used in the modelling is empirically col­
lected through a survey­based choice experiment on people living in the Netherlands.

3. How does herding influence mask­wearing behaviour at the population level?
The choice model reflects how an individual makes a mask­wearing decision, considering the
effect of herding. To explore the macro­level population dynamics resulting from micro­level
individual behaviours, simply averaging over individuals is not enough. Because herding is a
phenomenon that essentially occurs through social interaction, the collective result should be ob­
tained while taking this interdependence behaviour into account. Agent­based models (ABMs)
allow for an explicit link between the micro and macro level of analysis (Bruch & Atwell, 2015).

1.4. Scope
To delineate this study, several scoping decisions are made:

• The analysis of mask­wearing behaviour is focused only in public places.

• Only non­medical masks are considered.

• The study is conducted assuming the current mask­wearing policy (at the time of writing, it is
mandatory at indoor public places, except in fixed seating (RIVM, 2021b)).

1.5. Thesis outline
This report elaborates the methodology used in this study in Chapter 2. Next, Chapter 3 identifies
possible factors influencing mask­wearing. These factors were then used in the design of questionnaire
in Chapter 4. The questionnaire serves as a tool to collect the data necessary for Chapter 5 that
models the influence of herding in mask­wearing. Using the choice model resulted in the previous
chapter, Chapter 6 models the aggregate mask­wearing behaviour in an agent­based model. Finally,
the conclusion, comprising a reflection on the research questions, limitations, and recommendations,
is presented in Chapter 7.





2
Methodology

This chapter describes the methodology of this study.

2.1. Phase I: Research Definition
The first phase aims to systematically comprehend the problem situation and discover the knowledge
gap contributing to the scientific and societal domains. This phase resulted in the first chapter.

2.2. Phase II: Choice Modelling
The factors influencing mask­wearing behaviour is analysed through a choice modelling. Understand­
ing factors that influence mask­wearing behaviour, especially in investigating the effect of herding, is an
attempt to measure how the individuals make trade­offs between multiple factors. For example, some­
one might trade comfort for being policy­compliant; or trade the protection for conforming with most
non­mask wearers. Discrete Choice Experiment (DCE) is a suitable preference elicitation method for
this study because it allows for an analysis of a causation relationship between the factors and mask­
wearing, as discussed in Section 1.1.3. It stems from the assumption that certain choices – in this
case, mask­wearing – can be described by their attributes/properties. The utility, or one’s valuation
of this choice, is a function of the utilities of each attribute (Kohler et al., 2017). Furthermore, DCE is
commonly used in health economics over the past decade (Ryan, 2004).

2.2.1. Identification of possible factors

Previously, it was mentioned that choice modelling measures the trade­offs between multiple factors.
This study therefore identifies possible factors that influence mask­wearing through a systematic liter­
ature review. The review focuses on scientific articles that perform factor analysis on mask­wearing
behaviour. A limitation with this method is that there are few to no recent articles in this regard since
the COVID­19 situation is rather recent. To account for this limitation, preventive health behaviours,
including past epidemics, are also considered. The articles are gathered using an academic search
engine. Although this excludes grey articles, scientific articles ensure a solid base for the rest of this
study.

Certainly, since herding is the main focus of this study, factors that characterise herding behaviour are
given a particular attention in this step. Aside from herding, a social cognition model called Health Belief
Model (HBM) also takes a prominent part. The HBM focuses on individuals’ “subjective perceptions of
illness and treatment” (Abraham & Sheeran, 2001, p. 29). This model is chosen due to its wide use
in studies on health preventive behaviours (Sim et al., 2014; Wong & Tang, 2005; Zhang et al., 2019),
and even in the context of COVID­19 (see Shahnazi et al. (2020) and Tong et al. (2020). It comprises
six mediating constructs and two explanatory factors as shown in Figure 2.1.

The eight components that influence Action were treated as explanatory factors in many studies. In
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Figure 2.1: The Health Belief Model (Abraham & Sheeran, 2001, p. 31)

different studies, all constructs were operationalised using varying sets of indicators, as they were
theoretically left open to debate. In particular, cues to action encompass internal and external triggers,
such as (perception, presence, or intensity of) symptoms, social influence, and mass media campaigns
(Abraham & Sheeran, 2001).

2.2.2. Design of choice scenarios

After gathering the possible factors, this study designs a choice experiment using a fractional factorial
design. In comparison with the full factorial design, the fractional factorial design only allows for main
effects estimation and not interaction effects (Bos et al., 2004). However, this method reduces the
number of choice tasks substantially, which is highly beneficial considering time and resource limitation
for data collection. Furthermore, an efficient design can actually further reduce the number of choice
tasks, but it requires prior parameters. Due to the absence of knowledge in the priors, fractional factorial
design is a better method. After all, blocking can still overcome the disadvantage of this method if the
(already reduced) number of choice tasks is yet deemed too high.

2.2.3. Choice experiment

Modelling the factors that influence mask­wearing behaviour requires empirical data. Train (2009)
categorised data into two types: stated­preference (SP) and revealed preference (RP) data. On the
one hand, the RP data provides actual choices but with possible insufficient variation in the relevant
factors required for choice model estimation. On the other hand, the SP data allows for experimentally
varied factors but with possible hypothetical bias (i.e., the incoherence between what respondents say
and do). Nonetheless, considering the lack of RP data in mask­wearing and the need for sufficient
variation, the SP data is used.

The SP data is collected through a survey that targets the population of the Netherlands. The survey is
conducted through convenience sampling, which means each group in the population has a nonzero
probability of being the respondent of this study (Lavrakas, 2013). Moreover, it is administered on­
line, which has the advantage to reach a larger mass in a limited time despite a lack of control over
the respondent’s attention when filling in the survey. To compensate for this limitation, only surveys
completed within a reasonable duration are included in the analysis. What is considered reasonable is
determined after the survey is developed.

2.2.4. Latent class cluster analysis

After the data collection, the analysis starts with identifying clusters in the population. This study as­
sumes that people have varying health beliefs, i.e., perceptions of the pandemic and on mask­wearing
as specified by the HBM. These beliefs are subjective to each individual and hence cannot be con­
trolled by the experiment. To account for this heterogeneity, while keeping the model parsimonious,
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the population is clustered based on their health beliefs. In other words, this study identifies internally
homogeneous classes indicated by the health beliefs of the individuals.

In general, there are two approaches in clustering: deterministic and probabilistic (Molin et al., 2016).
The different approaches relate to how it assigns an individual to a cluster. Deterministic clustering
is considered as the traditional approach (de Haas et al., 2018). However this study employs the
probabilistic approach by means of Latent Class Cluster Analysis (LCCA), due to its advantages in
reducing misclassification biases and the use of statistical measure to determine the number of classes
and the inclusion of parameters (Molin et al., 2016).

The LCCA assumes that a discrete latent variable can explain the correlation between its indicators. As
a result, the indicators become statistically independent conditional on the latent variable (Magidson &
Vermunt, 2004). In this study, the latent variable is represented by a variable called HBM class with the
health beliefs (from HBM) as its indicators. By finding the least number of HBM classes that underlies
the varying health beliefs, the complexity of this study can be reduced from four types of health beliefs
to only one latent HBM class variable.

2.2.5. Choice modelling
After identifying the latent variable HBM class, this study then uses a binary logit model with main and
interaction effects to model the mask­wearing choice under the possible factors. The model estimation
is done in Apollo (a statistical tool in R). The model assumes that a decision is made by choosing an
alternative with the highest utility, or referred to as a utility­maximising behaviour (Train, 2009). The
term utility is the weighted sum of observed factors (𝑋), referred to as the systematic utility (𝑉𝑖), and an
error term (𝜀𝑖) that comprises the unobserved factors (Hensher et al., 2005). The weight of each factor
𝑚 is denoted as 𝛽𝑚. In mathematical terms, if there are 𝑀 factors, the utility of alternative 𝑖 (𝑈𝑖) can be
defined as:

𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖
where

𝑉𝑖 = ∑
𝑀
𝑚=1 𝛽𝑚 ⋅ 𝑋𝑖𝑚

2.3. Phase III: Agent­based Modelling
To enable a prediction of the emergent mask­wearing behaviour at the population level (using the
individual choice model) that considers the influence of herding, this study will perform agent­based
modelling. The overall population’s mask­wearing behaviour suits the definition of a complex adaptive
system by Waldorp (1992). It is a dynamic network of the society, acting and reacting to each other’s
action in parallel, resulting in the overall behaviour. According to van Daam et al. (2012), agent­based
modelling is most suitable for such complex adaptive systems. The choice model from the previous
phase serves as the crucial input in model formalisation as the agent’s decision rule. This model shall
be a tool for deriving public health policy recommendations.

This phase formalises how the Dutch society’s behaviour can be translated into an ABM (SQ3). The
agents, their states, and properties will be formalised in software data structures. Moreover, the be­
haviour of agents will also be formalised. The behaviour stands for “which agent does what with whom
and when” (van Daam et al., 2012, p. 88). Each agent’s behaviour is governed by the decision rule in
the form of a utility function obtained from the choice modelling in the previous phase. A simple ABM
prototype is developed in NetLogo. Furthermore, after the ABM is verified and validated, experiments
are conducted and analysed. Lastly, the contributions of the ABM are discussed.

2.4. Phase IV: Conclusions
This phase reflects this study on its research questions, limitations, and potential future studies.





3
Literature review: possible factors influencing

mask­wearing

This chapter explores possible explanatory factors that may influence mask­wearing. To do so, a liter­
ature review is performed and presented in this chapter.

3.1. Characterising herding behaviour
Herding behaviour refers to ”doing what everyone else is doing”, regardless of the decision maker’s
private information (Banerjee, 1992, p. 798). Lee et al. (2021, p. 3) viewed herding as an irrational
and emotional behaviour in ”following the behaviour of the crowd”. An important notion about herding
is that the alignment/convergence of behaviours emerges through local interactions and without coer­
cive authority (Raafat et al., 2009). Studies on herding behaviour have been mostly in the domain of
economics and finance, for example, herding in stock markets and consumer preferences (Lee et al.,
2021). In financial markets, for example, someone is said to herd when their decision to ”not invest”
changes to ”invest” after knowing that others are investing, and vice versa (Bikhchandani & Sharma,
2001).

Different fields have captured herding in other similar concepts. In psychology, conformity is observed
when individuals deflect from their own judgement to yield to the majority (Asch, 1956). As cited by
Raafat et al. (2009), a principle of group mind was used by Tarde et al. (1903) to explain herd behaviour.
In organisational studies,mimetic isomorphism is an organisational behaviour to imitate or model them­
selves on other organisations when their goal, technology, or environment is uncertain (DiMaggio &
Powell, 1983). Altogether, these different concepts consider herding under various mechanisms, such
as social pressure and uncertainty.

Such mechanisms can be conceptualised as social influence. There are two types of social influence:
normative and informational (Deutsch & Gerard, 1955). Normative social influence is “an influence to
conform with the positive expectations of another”, and informational social influence is “an influence
to accept information obtained from another as evidence about reality” (Deutsch & Gerard, 1955, p.
629). In the context of mask­wearing, a majority of (non) mask­wearers around a decision­maker could
be perceived in two ways. In a normative manner, (no) mask­wearing is perceived as the norm. In an
informational manner, the majority is perceived to have more information about the pandemic. Because
the normative and informational influences are commonly found together (Deutsch & Gerard, 1955),
the disentanglement of the two is excluded from this study.

A study by Van den Berg et al. (2018) analysed the effect of herding on the decision to evacuate from
a natural disaster. In their study, herding occurs when someone is more inclined to depart after seeing
more people depart. The effect of herding is quantified using NDEP (number of people departing)
variable, which is used as one of the criteria/attributes that contribute to the choice to depart. Likewise,
for this study, herding is quantified using the proportion of mask­wearers in a similar manner. The
mask­wearers in question are based on three reference groups. The distinction between these groups
is based on their social proximity with the decision­maker. These groups are the decision­maker’s (1)
friends and/or family, (2) random people encountered in public areas (at the neighbourhood level), and
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(3) the national population (of the Netherlands).

3.2. Factors influencing preventive health behaviours
A systematic literature review was performed by searching the Scopus database for the title, abstract,
and keywords of articles1 in the English language. The search was aimed at studies in factors influ­
encing preventive health behaviours (including mask­wearing). The search queries and the distinction
between them are presented in Table 3.1.

Table 3.1: Queries used to identify possible factors of mask­wearing

Query Distinction Articles
returned

Articles
selected

(mask OR ”mouth cap” OR ”mouth­cap”)
AND (behavio*r OR ”mask use” OR wearing)
AND covid
AND (factor OR driver)
AND NOT (”mental health” OR
”psychological distress”)

• In the context of COVID­19
• For any factors
• Excluding studies on the
impact of COVID­19 on
mental health (due to its
frequent occurrence)

207 17

(mask OR ”mouth cap” OR ”mouth­cap”)
AND (behavio*r OR ”mask use” OR wearing)
AND disease
AND (factor OR driver)
AND (psychosocial OR social OR herding
OR conform OR ”social influence”)

• In the context of any diseases
• For factors that considers
psychosocial aspects

152 7

Due to overlapping search results between the two search queries, in total, there were 278 articles
collected. The articles were then selected by excluding unsuitable articles, for example, articles that
focus on epidemic transmission and (psychological) impact of COVID­19, evaluate the effectiveness of
different public health strategies, or merely describe exhibited preventive health behaviours. Relevant
studies on a particular subject group such as health professionals, factory workers, and military forces
were also excluded.

Ultimately, the selection resulted in 24 articles. An overview of all reviewed articles is shown in Ta­
ble 3.2. It presents the authors, year of publication, number of citations, country studied, whether they
specifically focus on mask­wearing only (or on preventive health behaviours in general), and the type
of factors they found to be influential. The countries are represented using ISO 3166­1 Alpha­2 code
(International Organization for Standardization, 2013). By inference, the factors can be grouped into
three categories: (1) HBM related factors, (2) psychosocial, and (3) demographics. These types of
factors will be discussed in the following subsections.

1Only articles with TU Delft university access are considered.
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Table 3.2: Overview of reviewed articles to identify possible factors of mask­wearing

Authors (Year) Cited
by Country* Only

mask
Type of factors discussed

HBM Psychosocial Demographics

In the COVID­19 context

Pfattheicher et al. (2020) 18 GB, US, DE �
Galasso et al. (2020) 8 AU, AT, FR,

DE, IT, NZ,
GB, US

�

Hutchins et al. (2020) 7 US �
Haischer et al. (2020) 7 US • �
Guzek et al. (2020) 7 PL �
Tong et al. (2020) 5 CN � � �
Gray et al. (2020) 3 NZ • � �
Cotrin et al. (2020) 2 BR • � �
Stosic et al. (2021) 0 US • � �
Hao et al. (2021) 0 US • �
Campos­Mercade et al.
(2021)

0 SE �

Taylor and Asmundson
(2021)

0 US, CA • � �

Al Naam et al. (2021) 0 SA • � �
Callaghan et al. (2021) 0 US �
Rui et al. (2021) 0 CN �
Zhou et al. (2020) 0 CN • � � �
Barile et al. (2021) 0 US • � �
Outside the COVID­19 context

Chuang et al. (2015) 39 TW �
Tang and Wong (2005) 39 HK � � �
Kuo et al. (2011) 29 TW � �
Siu (2016) 13 CN • �
Taglioni et al. (2013) 8 FR � �
Zhang et al. (2019) 6 HK • � �
Gong et al. (2020) 1 TW � �
Total 13 14 13
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3.2.1. Psychosocial factors

Fourteen articles (see Table 3.2) found psychosocial factors associated with preventive health be­
haviour, with half of them specifically focusing on mask­wearing behaviour. The psychosocial factors
can be summarised into six main factors:

1. Social capital
Social capital can be defined as “social cohesiveness and trusting relationships within a com­
munity” (Chuang et al., 2015; Jung et al., 2013). Chuang et al. (2015) used three dimensions
to categorize this concept: (1) bonding as the frequency of neighbourly contact, (2) bridging as
membership in associations, and (3) linking as trust in government. Similarly, Hao et al. (2021)
conceptualised social capital as communication and trust with friends, family, and neighbours.
The dimension of trust in government was used in Gong et al. (2020) and Tang and Wong (2005).
These articles found that a higher social capital is linked to a higher intention to wear a mask.

2. Sociocultural meaning of mask­wearing
Siu (2016, p. 12) investigated socio­cultural meaning of mask­wearing in terms of “societal ide­
ologies and traditional Chinese cultural beliefs” and how it affects mask­wearing behaviour. The
study examined the shift in the sociocultural meaning of mask­wearing shifted from the SARS
outbreak (2003) until after the outbreak (2005). There was a shift from positive to negative mean­
ings, e.g. from being a social responsibility to a sign of sickness (Siu, 2016). In turn, this shift
has diminished the perceived importance of mask­wearing and demotivated people to adopt such
behaviour.

3. Prosociality
Campos­Mercade et al. (2021) defined prosociality as the degree of individuals’ concern with
being socially responsible. They found that higher prosociality predicts higher compliance to pre­
ventive health behaviours (Campos­Mercade et al., 2021). This term of prosociality also encom­
passes the concept of empathy for the vulnerable, as considered by Pfattheicher et al. (2020).
Moreover, Gray et al. (2020) highlighted individuals’ tendency to prioritise the needs of others
under (the belief of) a mask shortage. Lastly, Zhang et al. (2019) found that social responsibility
(i.e., to wear masks for the benefit of others) influence mask­wearing behaviour.

4. Norms
Studies by Barile et al. (2021) included subjective and descriptive norms as factors that influence
mask­wearing. The subjective norm refers to having people who are important to the decision­
maker, wanting her to wear a mask. This factor was found to influence both the mask­wearing
intention and the actual behaviour. The descriptive norm refers to the frequency of seeing others
wearing masks in public. This factor was found to mediate the effect of mask­wearing intention
on the behaviour. Similarly, Zhou et al. (2020) also included subjective norm (under a construct
of social influence) and found it to influence the mask­wearing intention.

5. Autonomy
In contrast to prosociality, Zhang et al. (2019) considered the principle of personal choice to influ­
ence mask­wearing behaviour. This principle entails how an individual perceives mask­wearing
as an individual choice rather than a collective choice. In other words, they prefer to decide by
themselves, considering whether they are sick or they want to protect themselves. Furthermore,
Taylor and Asmundson (2021) included the concept of psychological reactance (aversion to being
forced). Theoretically, a higher psychological reactance will, in turn, strengthen other anti­mask
beliefs (Taylor & Asmundson, 2021).

6. Social cynicism
Social cynicism is a social axiom considered by Tong et al. (2020, p. 6), which refers to “the belief
that human nature and the social world will produce negative consequences”. This study found
that higher social cynicism is linked to lower adherence to mask­wearing and other preventive
health behaviours.
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Out of these six psychosocial factors, only the norms factor is included in the possible factors. As
stated in Section 3.1, this study interprets (descriptive) norm ­ following Barile et al. (2021) ­ as the
proportion of mask­wearers. This factor reflects herding behaviour. The difference between this study
and Barile et al. (2021) is that based on how Barile et al. (2021) relied on the self­reflection of study
participants regarding how often they see others wearing masks in public (never, rarely, sometimes,
often, and always). On the contrary, this study experimentally varies the proportion of mask­wearers
and assess how this factor affect mask­wearing behaviour.

This study argues that social capital and prosociality are highly associated with the perceived benefits
of mask­wearing (which will be discussed in Section 3.2.2). In this case, individuals – that bond with
their community and feel responsible for them – will see a higher benefit of mask­wearing in lower­
ing the risk of COVID­19 not only for themselves but also for their community. Moreover, autonomy
is associated with perceived barriers. The aversion to being forced can be perceived as discomfort
associated with mask­wearing. By excluding these factors, this study prevents over­specification bias
from redundant/overlapping factors. Furthermore, this study excludes sociocultural meaning and social
cynicism due to their inherent complexity. Including these factors may blur the subtle effect of herding
behaviour.

3.2.2. Health­Belief­Model­related factors

As discussed in Section 2.2.1, the Health Belief Model (HBM) consists of subjective perceptions of
illness and treatments, in this case of COVID­19 and preventive health behaviours. Not all articles
explicitly use HBM as their theoretical framework. However, thirteen of the reviewed articles found
(combinations of) these HBM­related factors to affect preventive health behaviours. Perceived self­
efficacy is also considered as one of the HBM­related factors because it belongs to the extended­HBM
(Abraham & Sheeran, 2001). The prevalence of each variable in the literature is presented in Table 3.3.

The selection of factors to be included in this study is based on Table 3.3. Perceived self­efficacy is
excluded because this factor is not prevalent in the context of mask­wearing. Cue to action is included
with adaption, using situational cues such as the type of location (outdoor or indoor), the crowd density,
and the mask­wearing policy on the specific location (mandatory or voluntary) (following Zhang et al.
(2019)). Due to this adaption, these situational cues are set apart from the HBM­factors.

It is noteworthy that the cue to action factor is treated differently from the first four HBM factors (per­
ceived benefits, susceptibility, severity, and barriers). The cue to action factor, in this study, is treated as
an objective description of the situation, while the rest is a subjective perception of the decision­maker.
An element of cue to action, which is social influence (Abraham & Sheeran, 2001), is separated from
this factor because it is already captured by the proportion of mask­wearers factor (see Section 3.1).
Subsequently, this study only considers the first four variables as HBM­factors.

3.2.3. Demographic factors

Thirteen articles found demographic factors to be associated with preventive health behaviour. An
overview of each factor’s prevalence is shown in Table 3.4.

Galasso et al. (2020) investigated gender differences in the perception of COVID­19, attitude towards
the public health policies, and compliance thereof. Conducted in eight countries (as specified in Ta­
ble 3.2), the study found that women are more likely to find COVID­19 critical and to agree and comply
with the policies. The prevalence of preventive health behaviours also varies across age groups, as
Hutchins et al. (2020) showed that it is the lowest within the 18­29 years group and highest within the
>60 years group.

Education level, along with gender, income level, and marital status, were found to be moderating
the relationship from mask­wearing intention to behaviour (Zhou et al., 2020). Furthermore, a study
by Al Naam et al. (2021) discovered a significant difference in attitude towards mask­wearing between
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Table 3.3: Prevalence of Health­Belief­Model­related factors that influence preventive health behaviours

Authors (Year) Perceived
benefits

Perceived
susceptibility

Perceived
severity

Perceived
barriers

Perceived
self­efficacy

Cue to
action

On mask­wearing

Gray et al. (2020) �
Cotrin et al. (2020) �
Stosic et al. (2021) �
Taylor and
Asmundson (2021)

�

Al Naam et al. (2021) �
Zhou et al. (2020) � �
Zhang et al. (2019) � � � � �
On any preventive health behaviours

Tong et al. (2020) �
Rui et al. (2021) � � � �
Tang and Wong
(2005)

� �

Kuo et al. (2011) �
Taglioni et al. (2013) � �
Gong et al. (2020) � � �
Total 9 5 4 3 2 1

different education levels and nationalities (Saudi and non­Saudi). Lastly, Stosic et al. (2021) found that
certain gender, age, race, residence type, and political ideology (female, older adults, black, urban, and
liberal) reported more mask­wearing.

Based on Table 3.4, the most prevalent demographic factors are gender, age, education level, and
residence type. Therefore, these factors are chosen for this study. Within the less prevalent ones, only
nationality is included due to ethical concerns.

3.3. Summary of possible factors
To summarise, the systematic literature review resulted in three major types of factors that may influ­
ence mask­wearing (see Table 3.2). The first type is related to HBM, a model that has been widely used
for various kinds of health behaviours (Tong et al., 2020). Out of six constructs in HBM, only four are
included as HBM­related factors due to their prevalence in the reviewed literature. The cue to action
is treated as an objective description of the situation (hence referred to as situational cues) instead of
the subjective perception of the decision­maker. Therefore, this type resulted in two groups of factors:
HBM­related factors and situational cues.

The second type of factor encompasses six psychosocial phenomena surrounding preventive health
behaviour. As elaborated in Section 3.2.1, only norms are used in this study to avoid redundancy
between the HBM­related factors and the psychosocial factors and to maintain a manageable level of
complexity. The norms factor is represented by herding­related factors as defined in Section 3.1. Lastly,
five demographic factors are selected based on their prevalence in the reviewed literature and ethical
consideration. Finally, four groups of possible factors are considered in this study (see Table 3.5).
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Table 3.4: Prevalence of demographic factors that influence preventive health behaviours

Authors (Year) Gender Age Education
level

Residence
type

Nationa
­lity

Income
Level

Race Political
Ideology

Galasso et al. (2020) �
Hutchins et al. (2020) �
Haischer et al.
(2020)

� � �

Guzek et al. (2020) �
Tong et al. (2020) � � �
Stosic et al. (2021) � � � � �
Al Naam et al. (2021) � � �
Callaghan et al.
(2021)

�

Zhou et al. (2020) � � � �
Barile et al. (2021) �
Tang and Wong
(2005)

�

Kuo et al. (2011) � �
Taglioni et al. (2013) � �
Total 9 7 5 3 1 1 1 1

Table 3.5: Summary of possible factors influencing mask­wearing

Group Factor Abbreviation

Herding behaviour Proportion of mask­wearers within random people 𝑝𝑟𝑑
Proportion of mask­wearers within friends and/or family 𝑝𝑓𝑓
Proportion of mask­wearers within the national population 𝑝𝑛𝑙

Health Belief Model Perceived susceptibility 𝑠𝑢𝑠
Perceived severity 𝑠𝑒𝑣
Perceived barrier 𝑏𝑎𝑟
Perceived benefit 𝑏𝑒𝑛

Situational cues Location type (indoor/outdoor) 𝑙𝑜𝑐
Crowd density 𝑐𝑤𝑑
Local policy (voluntary/mandatory) 𝑝𝑜𝑙

Demographics Gender 𝑔𝑛𝑑
Age 𝑎𝑔𝑒
Level of education 𝑒𝑑𝑢
Residence type 𝑑𝑒𝑛
Nationality 𝑛𝑎𝑡





4
Design of questionnaire

Tomeasure the effect of possible factors (see Table 3.5), a questionnaire is developed. This chapter first
presents an operationalisation of a choice model that incorporates the identified possible factors. Then,
based on the operationalisation, a choice experiment design is generated using a fractional factorial
design in Ngene software. The choice experiment design will be used later to assess the public’s mask­
wearing behaviour under different scenarios, among other data collected using the questionnaire.

4.1. Choice model operationalisation
Based on the possible factors, the choice model is operationalised. The model consists of two com­
ponents: a structural model and a measurement model. A graphical representation of the relation
between the structural and measurement model is graphically presented in Figure 4.1. To capture the
effects of four HBM factors (i.e., perceived susceptibility, severity, benefits, and barriers) in a parsimo­
nious way, these perceptions are assumed to be correlated due to an underlying latent variable. The
latent variable will be referred to as HBM class. Furthermore, this study assumes that the demographic
variable(s) can predict the HBM class membership as its covariate(s). The relationship between the
HBM factors, HBM class, and demographic covariates compose a measurement model.

Figure 4.1: Operationalisation of the choice model

17
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The structural model comprises factors assumed to directly influence mask­wearing: herding­related
factors, situational cues, and the (latent) HBM class. Herding is said to occur when a higher proportion
of mask­wearers within the reference groups leads to a higher probability of mask­wearing. These
herding­related factors are weighed against situational cues and internal health belief represented by
the HBM class. Furthermore, the effects of herding are assumed to interact with different HBM classes.
This assumption is based on an idea that for example, people with a higher (perceived) susceptibility to
COVID­19 may be more inclined to wear masks when seeing many others are doing so; or those with a
higher (perceived) barrier to wearing masks may be less influenced by the proportion of mask­wearers
around them.

4.2. Factors operationalisation

4.2.1. Herding behaviour factors

Herding behaviour, as measured by the effect of the proportion of mask­wearers within the three ref­
erence groups (𝑝𝑟𝑑, 𝑝𝑓𝑓, 𝑝𝑛𝑙; see Section 3.1), are specified into four levels:

• Extreme majority: 90% of the people in the reference group wear masks.

• Moderate majority: 60% of the people in the reference group wear masks.

• Moderate minority: 40% of the people in the reference group wear masks.

• Extreme minority: 10% of the people in the reference group wear masks.

4.2.2. Situational cues factors

For model simplicity, the location type (𝑙𝑜𝑐) is simplified into two general areas: indoor and outdoor.
The place­specific mask­wearing policy (𝑝𝑜𝑙) can be either mandatory or voluntary, without specifying
the fine for violation under the mandatory policy. Lastly, the crowd density (𝑐𝑤𝑑) can be low, medium,
or high with the following specification:

• High: less than 1­meter distance between people

• Medium: 1 to 2­meter distance between people

• Low: more than 2­meter distance between people

4.2.3. Health Belief Model factors

The HBM factors are measured using questions adapted from Shahnazi et al. (2020). In their study,
two questions were used for each factor. However, to keep the questionnaire short, only one question
instead of two is used. Moreover, some questions are changed to focus on mask­wearing particularly.
The questions are as follows:

• Perceived susceptibility (𝑠𝑢𝑠): ”I consider myself to be at risk of COVID­19.”

• Perceived severity (𝑠𝑒𝑣): ”COVID­19 has a high mortality rate.”

• Perceived barrier (𝑏𝑎𝑟): ”Wearing a mask is uncomfortable.”

• Perceived benefit (𝑏𝑒𝑛): ”COVID­19 is easily prevented by wearing a mask.”
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4.2.4. Demographic factors

Age is measured in four levels following Hutchins et al. (2020): 18 to 29, 30 to 44, 45 to 59, and more
than 59). For gender (𝑔𝑛𝑑), respondents can identify themselves as male, female, other, or decide
not to say. The levels of education (𝑒𝑑𝑢) are based on the classification by Centraal Bureau voor de
Statistiek (2021), with equivalent education levels for non­Dutch respondents. The level of urbanisation
(of each province of residence; 𝑑𝑒𝑛) is measured in three levels: rural (less than 500 inhabitants/km2),
sub­urban (500 to 1,000 inhabitants/km2), and urban (more than 1000 inhabitants/km2). Therefore,
the respondents are asked to state their province of residence. Later in the analysis, the level of
urbanisation is inferred through the population density data from CBS (2021c). Lastly, the nationality
(𝑛𝑎𝑡) is differentiated into two groups: Dutch and non­Dutch nationals.

In summary, the operationalisation of factors in the structural model is presented in Table 4.1 and the
measurement model in Table 4.2.

4.3. Experimental design generation
A fractional factorial design is used to establish choice sets for the experiment to limit the number of
profiles. Ngene software automatically generated the design based on the factors and their levels as
specified in the structural model (Table 4.1). Ngene found 24 choice sets to be the smallest possible
number of choice sets that allows for an orthogonal design. Because this number of choice sets is
considered too exhausting for a single respondent, blocking was used to divide the choice sets into
three smaller blocks of eight choice sets.

The Ngene syntax and the resulting design are provided in Appendix A and B. To show that the design
is orthogonal, the bivariate correlation between the factors are calculated using SPSS. As shown in
Appendix C, all factors are significantly uncorrelated (under a significance level of 5%).
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Table 4.1: Operationalisation of factors in the structural model

Group Factor Levels Level
coding

Herding behaviour 𝑝𝑟𝑑, 𝑝𝑓𝑓, 𝑝𝑛𝑙 Extreme majority 90
Moderate majority 60
Moderate minority 40
Extreme minority 10

Situational cues 𝑙𝑜𝑐 Outdoor ­1
Indoor 1

𝑐𝑤𝑑 Low 0
Medium 1
High 2

𝑝𝑜𝑙 Voluntary ­1
Mandatory 1

Table 4.2: Operationalisation of factors in the measurement model

Group Factor Levels Level
coding

Health Belief Model 𝑠𝑢𝑠, 𝑠𝑒𝑣, 𝑏𝑎𝑟, 𝑏𝑒𝑛 Strongly disagree 1
Partially disagree 2
No idea 3
Partially agree 4
Strongly agree 5

Demographics 𝑔𝑛𝑑 Male 0
Female 1
Other 2

𝑎𝑔𝑒 18­29 0
30­44 1
45­59 2
≥60 3

𝑒𝑑𝑢 Basisonderwijs
(Elementary school)

0

Vmbo, havo­, vwo­onderbouw, mbo1
(Junior high school, Junior college)

1

Havo, vwo, mbo2­4
(Senior high school, College)

2

Hbo­, wo­bachelor
(Bachelor)

3

Hbo­, wo­master, doctor
(Master, Doctor)

4

𝑑𝑒𝑛 Rural 0
Sub­urban 1
Urban 2

𝑛𝑎𝑡 Dutch 0
Other 1
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4.4. Questionnaire design
The questionnaire was constructed on Qualtrics1. No personal data (information about an identified or
identifiable person (ICO, 2021)) is requested. It starts with a consent form that informs respondents
about the aim of this study and how their data is handled. Then, a respondent validation page checks
whether the respondents are living in the Netherlands. Respondents that do not give their consent
and/or do not live in the Netherlands will be immediately directed to the end of the questionnaire.

It consists of three main parts:

• Mask­wearing decision under eight hypothetical scenarios (choice experiment from Section 4.3).
This part starts with an introduction on what the factor levels mean and asks the respondents to
situate themselves under the current national policy of mask­wearing in the Netherlands. They will
receive randomly one of the three blocks, which are evenly distributed. Then, for each choice set,
they are asked to choose between ”Yes” (they would wear a mask under the situation presented)
or ”No” (i.e. they would not).

• Demographics
The questions are close­ended, except for nationality (𝑛𝑎𝑡), for which respondents can state their
nationality if they are not Dutch.

• Perception on the COVID­19 pandemic and mask­wearing (HBM factors). All questions (see
Section 4.2.3) are answered using a 5­point Likert scale, where 1 represents “strongly disagree”,
2 represents ”partially disagree”, 3 represents “no idea”, 4 represents “partially agree”, and 5
represents “strongly agree”.

A preview of the survey is accessible via this link. To ensure the ethical protection of respondents, this
questionnaire (along with the subsequent data handling process) has been approved by the Human
Research Ethics Committee of TU Delft.

1an online survey development tool for which TU Delft has provided the license

https://tudelft.fra1.qualtrics.com/jfe/preview/SV_8r0cIPjzZXGfDZs?Q_CHL=preview&Q_SurveyVersionID=current




5
Influence of herding in mask­wearing

This chapter first presents the descriptive statistics of respondents that participate in the survey. Next,
a Latent Class Analysis will cluster the respondents into HBM classes reflected through their perception
of COVID­19 and mask­wearing. Lastly, the Binary Logit Model analysis will show the relative effect of
possible factors in the structural model, particularly the herding behaviour.

5.1. Description of collected data
The survey was conducted within two weeks through convenience sampling, with 151 respondents
completed the questionnaire. For the choice experiment, 52 respondents answered block 1, 50 an­
swered block 2, and 49 answered block 3. Before data analysis, the raw data containing text­based
answers was level­coded following Table 4.1 and 4.2. Furthermore, for each respondent, each answer
for the choice experiment is treated as a single data record (instead of one record per eight answers),
and each record was coupled with the respective choice task and the respondent’s demographics and
answers to the HBM factors. Therefore, in total there are 1208 data records.

Table 5.1 shows the descriptive statistics of the sample and the Netherlands population for each de­
mographic variable. In comparison with the actual age distribution of the Dutch population from CBS
(2021b), the younger age group between 18 to 29 years old is overrepresented. Furthermore, most re­
spondents have a bachelor’s or a master’s degree, meaning they belong to the highly educated group.
Lastly, the majority lives in urban areas. Therefore, this sample cannot be considered as a repre­
sentative sample of the Dutch population. Nonetheless, this sample is still valuable for a preliminary
exploration of the effect of herding on mask­wearing behaviour. Care should be taken in generalising
the result to the general Netherlands population.

5.2. Measurement model: Identification of HBM classes
As stated in Section 4.1, different perceptions specified in HBM factors (𝑠𝑢𝑠, 𝑠𝑒𝑣, 𝑏𝑎𝑟, 𝑏𝑒𝑛) are as­
sumed to be correlated due to an underlying latent variable referred to as HBM class. In other words,
people with similar perceptions can be clustered into different HBM classes. LatentGOLD 5.1 software
is used for this analysis.

23
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Table 5.1: Descriptive statistics of the respondents

Factor Level Frequency Percentage
in the

sample

Percentage
in the

population
Agea 18­29 109 72% 22%

30­54 20 13% 27%
45­59 9 6% 31%
>=60 13 9% 20%

Education levelb Basisonderwijs
(Elementary school)

0 0% 9%

Vmbo, havo­, vwo­onderbouw, mbo1
(Junior high school, Junior college)

1 1% 20%

Havo, vwo, mbo2­5
(Senior high school, College)

9 6% 40%

Hbo­, wo­bachelor
(Bachelor)

88 58% 19%

Hbo­, wo­master, doctor
(Master, Doctor)

53 35% 11%

Residence typec Rural 14 9% 33%
Sub­urban 6 4% 29%
Urban 131 87% 38%

Genderd Male 86 57% 49%
Female 64 42% 51%
Other 1 1% ­

Nationalitye Dutch 74 47% ­
Other 77 51% ­

Distribution in the population for each demographic variable is obtained from: aCBS (2021b), bCBS (2018), cCBS (2021c),
dCBS (2021a), eno relevant source was found for this variable.

5.2.1. Determining the number of HBM classes

Two measures of latent class model fit determine the number of HBM classes: Bayesian Information
Criterion (BIC) as global model fit and Bivariate Residuals (BVR) as local model fit. A lower BIC value
is preferred because it represents higher model fit and parsimony (Magidson & Vermunt, 2004). BVR
value of more than 3.84 is not preferred because it represents a significant residual correlation between
the indicators (i.e., the HBM factors) (Magidson & Vermunt, 2004).

Three initial models were estimated: 1­class, 2­class, and 3­class models. These models’ indicators
(HBM factors) are treated as ordinal variables and no covariates are included. All software settings
were set to default except for random sets and iterations, which were changed to 100. The performance
statistics of the models (as produced by LatentGOLD) and a count of BVR values of less than or equal
to 3.84 are presented in Appendix D.

The graphical comparison in Figure 5.1 shows that the 1­class model performs the worst. The low count
of BVR ≤ 3.84 means that one latent HBM class is insufficient to explain the correlations between the
HBM factors. In contrast, the 2­class and 3­class models are both able to disentangle the correlations.
These models only differ in their BIC. Since the 2­class model has the lowest BIC, the respondents are
clustered into two HBM classes.
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Figure 5.1: Graphical comparison of the three initial latent class models

5.2.2. The 2­class model

The parameters of the 2­class model are shown in Appendix E. Table E.1 and E.2 show the relation­
ship parameters between the HBM class and the indicators. Table E.3 shows the class membership
parameter, in which the Wald test shows that the HBM class sizes are not significantly1 different in
the population (with a p­value of 0.57). Furthermore, from Table E.1, the Wald test shows that the
relationship between perceived barrier (𝑏𝑎𝑟) is statistically insignificant (with a p­value of 0.09). This
insignificance means that the relationship between the HBM class and the perceived barriers cannot
be generalised into the population, and vice versa for other HBM factors.

Due to its insignificance, 𝑏𝑎𝑟 is removed from the model. Therefore, the 2­class model is re­estimated
with only 𝑠𝑢𝑠, 𝑠𝑒𝑣, and 𝑏𝑒𝑛 as the indicators. The parameters of this model are shown in Appendix F.
As shown in Table F.1 and Table F.2, all relationship parameters between the HBM class and the up­
dated indicators are simultaneously non­zero in the population. The class sizes remain not significantly
different in the population (see Table F.3).

This model is further extended by adding demographic factors as covariates. Because the covariates
can be defined only as nominal or continuous variables, following the factors operationalisation in Ta­
ble 4.2, the demographics are treated as nominal. Appendix G shows the relationship parameters
between the covariates and the HBM classes. The underlined p­values indicate insignificant covari­
ates. Only nationality (𝑛𝑎𝑡) has a relationship with HBM class in the population and thus can predict
the class membership. Thus, the other four demographic factors are removed from the covariates.

Finally, the model is re­estimated with only nationality as the covariate. This specification concludes the
final measurement model (Figure 5.2 as a further specification of Figure 4.1). This model’s parameters
are presented in Appendix H. The profile of each HBM class (as clustered by this final model) is provided
in Appendix I. The numbers represent the probability of an individual having an indicator/covariate
value, given the HBM class. For example, given that an individual is in HBM Class 1, the probability of
scoring 4 on COVID­19 perceived susceptibility is 42%.

Figure 5.2: The final measurement model

1This study employs a confidence level of 95%.
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The covariate interpretation in Appendix I (lower part) seems to contradict the measurement model
conceptualisation (Figure 5.2), because the covariate is assumed to influence HBM class and not vice
versa. Therefore, refer to Appendix J for a more conceptually correct interpretation of the covariate
influence: given 𝑛𝑎𝑡 equals 0 (being Dutch), the probability of being in HBM Class 1 is 46% (and 54%
in HBM Class 2); and given 𝑛𝑎𝑡 equals 1 (being non­Dutch), the probability of being in HBM Class 1 is
85% (and 15% in HBM Class 2).

A graphical representation of these profiles (Prf­Plot) is shown in Figure 5.3 for an easier interpretation.
The Prf­Plot, as generated by the LatentGOLD software, re­scales the class­specific means so that all
variable (indicators and covariates) values always lie within the 0­1 range.

Figure 5.3: Profile for each HBM class

From the Prf­Plot (Figure 5.3), Class 1 is shown to have lower perceived susceptibility and severity
towards COVID­19 and lower perceived benefit of mask­wearing (and vice versa for Class 2). Thus,
two distinct characteristics can be inferred. Class 1 represents the risk­averse that believe in masks,
while Class 2 represents the non­risk­averse and sceptical about masks. Moreover, non­Dutch people
are the majority in Class 1, while Dutch people are the majority in Class 2.

It is noteworthy that although the HBM classes differ significantly, their characteristics are not two ex­
treme opposite ends. Instead, both are still at an intermediate level of their respective characteristics.
For example, it is incorrect to interpret that people in Class 2 deny the existence of COVID­19 or the
efficacy of masks. Table 5.2 shows the mean of the indicators for each profile.

Table 5.2: Summary of HBM class profiles

Indicators Class 1 Class 2

𝑠𝑢𝑠 3.65 2.11

𝑠𝑒𝑣 3.45 2.56

𝑏𝑒𝑛 3.49 2.00
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5.3. Structural model: Factors influencing mask­wearing
As shown in Figure 4.1, the HBM class will be an explanatory and moderating variable assumed to
interact with the herding­related factors (𝑝𝑟𝑑, 𝑝𝑓𝑓, 𝑝𝑛𝑙). At this point, the HBM class was not part of
the raw data because this latent variable is modelled (based on the previous Latent Class Analysis)
instead of observed or experimentally varied. Therefore, each respondent is assigned an HBM class
by matching up their 𝑠𝑢𝑠, 𝑠𝑒𝑣, 𝑏𝑒𝑛, and 𝑛𝑎𝑡 values with the Classification output of the LatentGOLD
software (see Appendix K). Since the classification error of the latent class model is relatively low
(13%), rather than using the probabilistic classification (the last two columns of Appendix K), the hard
classification (column “Modal”) is used. For this assignment purpose, the HBM class is effect coded:
Class 1 as ‘1’ and Class 2 as ‘­1’.

After specifying the HBM class for each respondent, choice modelling was performed. A binary logit
model was estimated using a choice modelling package called Apollo in RStudio, with no (mask­
wearing) being the reference alternative (its systematic utility is equal to zero). Similar to the previous
section, the modelling will be performed step by step from the simplest to the more complex models.
The complexity is increased by introducing interactions between the HBM class and the herding­related
factors (see Table 4.1). Interactions within the explanatory factors (herding and situational cues) are not
considered because the fractional factorial experiment design only allows for the estimation of main ef­
fects (Bos et al., 2004). Afterwards, non­linearity effects are introduced. Along the process, the models
are refined by removing insignificant factors and/or levels.

In total, at least 12 model variations were estimated. However, for conciseness, only seven variations
are elaborated in the following subsections. Appendix L presents how these models are specified and
their model fit measures (Log­Likelihood (𝐿𝐿), BIC, and Rho­square). The bold­faced texts indicate the
model change relative to the previous one.

5.3.1. Model 1: simple binary logit model

Model 1 considers only the main effects of herding­related factors, situational cues, and HBM class on
mask­wearing. The effect of HBM class, represented by 𝛽𝐻𝐵𝑀, can be interpreted as the base utility
(or constant) of mask­wearing for each HBM class. The systematic utility functions are defined as

𝑉𝑦𝑒𝑠 = 𝛽𝑦𝑒𝑠 + 𝛽𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠+
𝛽𝑝𝑟𝑑 × 𝑝𝑟𝑑 + 𝛽𝑝𝑓𝑓 × 𝑝𝑓𝑓 + 𝛽𝑝𝑛𝑙 × 𝑝𝑛𝑙+
𝛽𝑙𝑜𝑐 × 𝑙𝑜𝑐 + 𝛽𝑝𝑜𝑙 × 𝑝𝑜𝑙 + 𝛽𝑐𝑤𝑑 × 𝑐𝑤𝑑

𝑉𝑛𝑜 = 0

where

𝑉𝑦𝑒𝑠 = systematic utility of mask­wearing
𝑉𝑛𝑜 = systematic utility of no mask­wearing
𝛽𝑦𝑒𝑠 = base utility of mask­wearing caused by unobserved factors
𝛽𝐻𝐵𝑀 = base utility of mask­wearing for different HBM class
𝛽𝑝𝑟𝑑 = marginal utility of 1% increase in 𝑝𝑟𝑑
𝛽𝑝𝑓𝑓 = marginal utility of 1% increase in 𝑝𝑓𝑓
𝛽𝑝𝑛𝑙 = marginal utility of 1% increase in 𝑝𝑛𝑙
𝛽𝑙𝑜𝑐 = marginal utility of the corresponding level of 𝑙𝑜𝑐
𝛽𝑝𝑜𝑙 = marginal utility of the corresponding level of 𝑝𝑜𝑙
𝛽𝑐𝑤𝑑 = marginal utility of the corresponding level of 𝑐𝑤𝑑

Referring to Appendix L, Model 1 is statistically superior to the Null model (i.e., Model 1 fits the data
better than a model of ’dice throwing’), as the Likelihood Ratio Statistic (Train, 2009) of Model 1 com­
pared to the Null model is 616.49, which is higher than the critical Chi­square value of 15.51 (under 8
degrees of freedom). This provides a good basis for further model variations built on top of this model.
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The parameter estimates of Model 1 are presented in Table 5.3 below. The estimates (in the second
column) are the estimated weights of each factor. The standard error gives a measure of variation of the
estimates across the samples. The p­values represent the probability that the estimates are actually
zero (no effect) in the population, as obtained from the t­test. Indicated by p­values of higher than 0.05,
𝛽𝑦𝑒𝑠 and 𝛽𝑝𝑛𝑙 are statistically insignificant. The former means that whatever intrinsic motivation people
have to wear a mask is explained fully by the HBM class to which they belong, and there is no residual
inclination to wear a mask or not. The latter means that the proportion of mask­wearers within the
Netherlands population do not affect mask­wearing choice.

Table 5.3: Model 1 estimates

Factor Estimate Std.err. Rob.t­ratio(0) Rob.p­val(0)
𝛽𝑦𝑒𝑠 ­0.3017 0.2371 ­1.4313 0.1523
𝛽𝐻𝐵𝑀 0.4228 0.0774 3.0150 0.0026
𝛽𝑝𝑟𝑑 0.0091 0.0027 3.3858 0.0007
𝛽𝑝𝑓𝑓 0.0123 0.0031 3.7097 0.0002
𝛽𝑝𝑛𝑙 0.0003 0.0027 0.1133 0.9098
𝛽𝑙𝑜𝑐 0.5325 0.0864 6.6078 0.0000
𝛽𝑝𝑜𝑙 0.8770 0.0925 7.2959 0.0000
𝛽𝑐𝑤𝑑 0.7950 0.1061 7.5159 0.0000

5.3.2. Model 2: simple binary logit model without insignificant factors

The insignificant factors in Model 1 were removed, and the model was re­estimated as Model 2. The
systematic utility functions for Model 2 are:

𝑉𝑦𝑒𝑠 = 𝛽𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠+
𝛽𝑝𝑟𝑑 × 𝑝𝑟𝑑 + 𝛽𝑝𝑓𝑓 × 𝑝𝑓𝑓+
𝛽𝑙𝑜𝑐 × 𝑙𝑜𝑐 + 𝛽𝑝𝑜𝑙 × 𝑝𝑜𝑙 + 𝛽𝑐𝑤𝑑 × 𝑐𝑤𝑑

𝑉𝑛𝑜 = 0

Model 2 parameter estimates are presented in Table 5.4 below. Because all p­values are less than
0.05, all factors in Model 2 have statistically significant effects on mask­wearing.

Table 5.4: Model 2 estimates

Factor Estimate Std.err. Rob.t­ratio(0) Rob.p­val(0)
𝛽𝐻𝐵𝑀 0.4118 0.0769 2.9521 0.0032
𝛽𝑝𝑟𝑑 0.0072 0.0023 2.8607 0.0042
𝛽𝑝𝑓𝑓 0.0098 0.0024 4.2302 0.0000
𝛽𝑙𝑜𝑐 0.5123 0.0845 6.3214 0.0000
𝛽𝑝𝑜𝑙 0.8574 0.0901 7.5527 0.0000
𝛽𝑐𝑤𝑑 0.7265 0.0922 8.2652 0.0000

A more detailed interpretation of the factors’ effects will be further discussed after the final model is
selected. For a quick interpretation, Figure 5.4 shows the relative importance of the factors in Model
2. The relative importance is obtained by calculating each factor’s maximum utility contribution. Each
maximum utility contribution is calculated by multiplying the factor level range (difference between the
highest and lowest level) with the absolute value of the factor’s estimate. For example, the maximum
utility contribution of 𝑝𝑜𝑙 is obtained by multiplying 2 (the 𝑝𝑜𝑙 level range, because 𝑝𝑜𝑙 can take a coded
value of ­1 or 1), with 0.84 (the 𝑝𝑜𝑙 estimate, 𝛽𝑝𝑜𝑙), which results in 1.68.

Figure 5.4 shows that herding behaviour is shown to play a role in mask­wearing behaviour. When
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combined across reference groups, the proportion of mask­wearers around a decision­maker accounts
for 26% influence on the overall preference for mask­wearing—as big as the policy factor. Out of the
three types of reference groups, the national population is not considered a reference group. Themask­
wearing behaviour of family and/or friends influences one’s mask­wearing behaviour at a slightly higher
level than that of the random people within the neighbourhood does. Furthermore, the mask­wearing
policy (i.e., mandatory or voluntary) is found to be the most influential factor.

Figure 5.4: Relative importance of factors in Model 2

5.3.3. Model 3: interaction with HBM class

As shown by the structural model (Figure 4.1), the HBM class is assumed to interact with herding­
related factors. Therefore, Model 3 includes these interactions simultaneously by making the effect of
𝑝𝑟𝑑, 𝑝𝑓𝑓 and 𝑝𝑛𝑙 moderated by the HBM class. In other words, their effects are dependent on the HBM
class value. A new parameter for HBM class is assigned for each interaction, coded as factor_HBM
(e.g., 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 is an HBM class parameter for its interaction with 𝑝𝑟𝑑).

The systematic utility functions for Model 3 are:

𝑉𝑦𝑒𝑠 = 𝛽𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠+
(𝛽𝑝𝑟𝑑 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × 𝑝𝑟𝑑+
(𝛽𝑝𝑓𝑓 + 𝛽𝑝𝑓𝑓_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × 𝑝𝑓𝑓+
𝛽𝑙𝑜𝑐 × 𝑙𝑜𝑐 + 𝛽𝑝𝑜𝑙 × 𝑝𝑜𝑙 + 𝛽𝑐𝑤𝑑 × 𝑐𝑤𝑑

𝑉𝑛𝑜 = 0

Table 5.5 presents the parameter estimates of Model 3. The parameter size remains relatively the
same for factors that are also included in Model 2, except for 𝛽𝐻𝐵𝑀. Table 5.5 also shows that HBM
class significantly interacts with 𝑝𝑟𝑑, but not with 𝑝𝑓𝑓. Moreover, as the effect of HBM class is cap­
tured through the interaction relationships, its direct effect (𝛽𝐻𝐵𝑀) becomes insignificant. This is due
to significant correlations between the main effect of HBM class and the interaction effects as big as
86% (calculated using SPSS). Therefore, the next model removes the insignificant effects, including
the main effect of HBM class.
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Table 5.5: Model 3 estimates

Factor Estimate Std.err. Rob.t­ratio(0) Rob.p­val(0)
𝛽𝐻𝐵𝑀 0.2843 0.1859 1.4561 0.1454
𝛽𝑝𝑟𝑑 0.0069 0.0024 2.7474 0.0060
𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 0.0059 0.0027 2.3106 0.0209
𝛽𝑝𝑓𝑓 0.0100 0.0024 4.2588 0.0000
𝛽𝑝𝑓𝑓_𝐻𝐵𝑀 ­0.0032 0.0029 ­1.1210 0.2623
𝛽𝑙𝑜𝑐 0.5106 0.0843 6.3186 0.0000
𝛽𝑝𝑜𝑙 0.8599 0.0901 7.5524 0.0000
𝛽𝑐𝑤𝑑 0.7406 0.0928 8.3690 0.0000

5.3.4. Model 4: interaction with HBM class without insignificant factors

In a similar manner as in Model 2, Model 4 is the re­estimation of Model 3 without the insignificant
factors. The systematic utility functions of Model 4 are:

𝑉𝑦𝑒𝑠 = (𝛽𝑝𝑟𝑑 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × 𝑝𝑟𝑑+
𝛽𝑝𝑓𝑓 × 𝑝𝑓𝑓
+𝛽𝑙𝑜𝑐 × 𝑙𝑜𝑐 + 𝛽𝑝𝑜𝑙 × 𝑝𝑜𝑙 + 𝛽𝑐𝑤𝑑 × 𝑐𝑤𝑑

𝑉𝑛𝑜 = 0

Model 4 parameter estimates are presented in Table 5.6 below. All factors are significant, including one
interaction between 𝑝𝑟𝑑 and the HBM class (as shown in the first two rows). In comparison with Model
3, the most notable change is the standard error of 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 that decreases by almost half. This can
be explained by the removal of 𝛽𝐻𝐵𝑀 that reduces correlation, and hence minimises the standard error.

Table 5.6: Model 4 estimates

Factor Estimate Std.err. Rob.t­ratio(0) Rob.p­val(0)
𝛽𝑝𝑟𝑑 0.0069 0.0024 2.7137 0.0067
𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 0.0079 0.0014 3.2683 0.0011
𝛽𝑝𝑓𝑓 0.0100 0.0024 4.3259 0.0000
𝛽𝑙𝑜𝑐 0.5143 0.0843 6.3196 0.0000
𝛽𝑝𝑜𝑙 0.8590 0.0899 7.5756 0.0000
𝛽𝑐𝑤𝑑 0.7493 0.0925 8.5138 0.0000

HBM class moderates the effect of 𝑝𝑟𝑑 as follows. Table 5.6 shows that 𝛽𝑝𝑟𝑑 is 0.0069 and 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀
is 0.0079. 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 indicates a decrease in the utility by ­0.0079 for HBM Class 1 and an increase by
0.0079 for HBM Class 2. Therefore, the parameter estimate of 𝑝𝑟𝑑 for people in Class 1 is

𝛽𝑝𝑟𝑑 − 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 = 0.0069 − 0.0079 = −0.0010

and for those in Class 2 is

𝛽𝑝𝑟𝑑 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 = 0.0069 + 0.0079 = 0.0148.

HBMclassmoderates the effect of 𝑝𝑟𝑑 for HBMClass 1 to be negative, i.e., an increase in the proportion
of mask­wearers within the random people in the neighbourhood leads to a decrease in the utility of
mask­wearing by ­0.0010. This contradicts the main effect of prd in Model 2, which indicates a positive
effect of 𝑝𝑟𝑑. Nonetheless, it is noteworthy that the utility decrease is extremely small compared to
other factors (with a relative importance of 1%; see Figure 5.5). Moreover, with a 95% confidence
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level, the true coefficients of 𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 lie within intervals as follows:

𝛽𝑝𝑟𝑑 = 0.0069 ± 1.96 × 0.0024
= 0.0069 ± 0.0047

and

𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 = 0.0079 ± 1.96 × 0.0014
= 0.0079 ± 0.0027

Consequently, 𝛽𝑝𝑟𝑑−𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 lies within the range of ­0.0084 and 0.0064. The lower bound is obtained
by subtracting the upper bound of 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 from the lower bound of 𝛽𝑝𝑟𝑑 and vice versa. Because the
zero value lies within this range, the effect of 𝑝𝑟𝑑 for HBM Class 1 can be disregarded.

Similar to Model 2, the relative importance of Model 4 is shown in Figure 5.5. The maximum utility con­
tribution of situational cues factors seems to remain virtually the same as Model 2. The only substantial
change is how 𝑝𝑟𝑑 (the proportion of mask­wearers within the random people in the neighbourhood)
influences mask­wearing.

Figure 5.5: Relative importance of factors in Model 4

5.3.5. Model 5: non­linear effect of crowd density levels

Non­linearity refers to unequal utility contribution from each level within a factor. To model such an
effect, the factor is decomposed into multiple parameters using dummy coding: the first level is set
as the reference level with a utility contribution of zero. In Model 5, the crowd density factor (𝑐𝑤𝑑) is
treated as a non­linear factor with the following idea: does the effect of 𝑐𝑤𝑑 increase (or decrease)
as the value of 𝑐𝑤𝑑 increases? In other words, do people become more (or less) sensitive to crowd
density as the crowd gets denser?

The systematic utility functions of Model 5 are defined as:

𝑉𝑦𝑒𝑠 = (𝛽𝑝𝑟𝑑 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × 𝑝𝑟𝑑+
𝛽𝑝𝑓𝑓 × 𝑝𝑓𝑓+
𝛽𝑙𝑜𝑐 × 𝑙𝑜𝑐 + 𝛽𝑝𝑜𝑙 × 𝑝𝑜𝑙+
𝛽𝑐𝑤𝑑_𝑚𝑒𝑑 × (𝑐𝑤𝑑 == 1) + 𝛽𝑐𝑤𝑑_ℎ𝑖𝑔 × (𝑐𝑤𝑑 == 2)

𝑉𝑛𝑜 = 0
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Table 5.7 shows Model 5 parameter estimates. In comparison to Model 4, the parameter size remains
the same. 𝛽𝑐𝑤𝑑 is decomposed into 𝛽𝑐𝑤𝑑_𝑚𝑒𝑑 and 𝛽𝑐𝑤𝑑_ℎ𝑖𝑔 (𝑐𝑤𝑑 of low is set as the reference level)
to account for the non­linear effects. These parameter estimates are statistically significant, meaning
that each crowd level does affect mask­wearing in the population. However, looking at the visual repre­
sentation of each level utility contribution in Figure 5.6, the utility increase is virtually linear. Therefore,
𝑐𝑤𝑑 remains treated as a linear factor.

Table 5.7: Model 5 estimates

Factor Estimate Std.err. Rob.t­ratio(0) Rob.p­val(0)
𝛽𝑝𝑟𝑑 0.0071 0.0024 2.7361 0.0062
𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 0.0079 0.0014 3.2569 0.0011
𝛽𝑝𝑓𝑓 0.0094 0.0025 3.7052 0.0002
𝛽𝑙𝑜𝑐 0.5141 0.0843 6.3046 0.0000
𝛽𝑝𝑜𝑙 0.8557 0.0899 7.6122 0.0000
𝛽𝑐𝑤𝑑_𝑚𝑒𝑑 0.8656 0.1658 4.3251 0.0000
𝛽𝑐𝑤𝑑_ℎ𝑖𝑔 1.4509 0.1909 8.6710 0.0000

Figure 5.6: Utility contribution of 𝑐𝑤𝑑 levels

5.3.6. Model 6: non­linear effect of herding­related factors

In Model 6, the proportion of mask­wearers (𝑝𝑟𝑑 and 𝑝𝑓𝑓) are treated as non­linear factors: 𝛽𝑝𝑟𝑑 is
decomposed as 𝛽𝑝𝑟𝑑_40 and 𝛽𝑝𝑟𝑑_60, and 𝛽𝑝𝑓𝑓 as 𝛽𝑝𝑓𝑓_40 and 𝛽𝑝𝑓𝑓_60. As a result, the systematic utility
functions for Model 6 are:

𝑉𝑦𝑒𝑠 = (𝛽𝑝𝑟𝑑_40 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × (𝑝𝑟𝑑 == 40)+
(𝛽𝑝𝑟𝑑_60 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × (𝑝𝑟𝑑 == 60)+
(𝛽𝑝𝑟𝑑_90 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × (𝑝𝑟𝑑 == 90)+
𝛽𝑝𝑓𝑓_40 × (𝑝𝑓𝑓 == 40) + 𝛽𝑝𝑓𝑓_60 × (𝑝𝑓𝑓 == 60) + 𝛽𝑝𝑓𝑓_90 × (𝑝𝑓𝑓 == 90)+
𝛽𝑙𝑜𝑐 × 𝑙𝑜𝑐 + 𝛽𝑝𝑜𝑙 × 𝑝𝑜𝑙 + 𝛽𝑐𝑤𝑑 × 𝑐𝑤𝑑

𝑉𝑛𝑜 = 0

Table 5.8 shows that the parameter estimates for 𝑝𝑟𝑑 of 40% and 60% are statistically insignificant.
This means that there is not enough proof in the sample to say that these level­specific effects are
non­zero in the population. Another way to interpret this is that individuals are influenced to wear a
mask by 𝑝𝑟𝑑 (the proportion of mask­wearers within the random people) only when 𝑝𝑟𝑑 reaches 90%.
Meanwhile, all levels of 𝑝𝑓𝑓 are statistically significant.



5.3. Structural model: Factors influencing mask­wearing 33

Table 5.8: Model 6 estimates

Factor Estimate Std.err. Rob.t­ratio(0) Rob.p­val(0)
𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 0.4893 0.0917 3.1904 0.0014
𝛽𝑝𝑟𝑑_40 0.3080 0.2025 1.6945 0.0902
𝛽𝑝𝑟𝑑_60 0.4806 0.2057 1.7730 0.0762
𝛽𝑝𝑟𝑑_90 0.5605 0.2314 2.7724 0.0056
𝛽𝑝𝑓𝑓_40 0.4246 0.2109 2.0426 0.0411
𝛽𝑝𝑓𝑓_60 0.6023 0.2063 3.4586 0.0005
𝛽𝑝𝑓𝑓_90 0.9024 0.2408 3.8482 0.0001
𝛽𝑙𝑜𝑐 0.5558 0.0965 5.3920 0.0000
𝛽𝑝𝑜𝑙 0.8882 0.0956 7.6823 0.0000
𝛽𝑐𝑤𝑑 0.7816 0.0953 8.6732 0.0000

5.3.7. Model 7: non­linear effect of herding­related factors without insignificant
levels

Model 7 then re­estimates Model 6 without the insignificant levels, with the following systematic utility
functions:

𝑉𝑦𝑒𝑠 = (𝛽𝑝𝑟𝑑_90 + 𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 × 𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠) × (𝑝𝑟𝑑 == 90)+
𝛽𝑝𝑓𝑓_40 × (𝑝𝑓𝑓 == 40) + 𝛽𝑝𝑓𝑓_60 × (𝑝𝑓𝑓 == 60) + 𝛽𝑝𝑓𝑓_90 × (𝑝𝑓𝑓 == 90)+
𝛽𝑙𝑜𝑐 × 𝑙𝑜𝑐 + 𝛽𝑝𝑜𝑙 × 𝑝𝑜𝑙 + 𝛽𝑐𝑤𝑑 × 𝑐𝑤𝑑

𝑉𝑛𝑜 = 0

This resulted in estimates shown in Table 5.9. After removing 𝑝𝑟𝑑 of 40% and 60%, the 𝑝𝑟𝑑 of 90% also
became statistically insignificant, hence eliminating the effect of 𝑝𝑟𝑑 as a whole. This result contradicts
the preceding models that found a significant effect of 𝑝𝑟𝑑. Furthermore, a visual representation of
the level­specific effect of 𝑝𝑓𝑓 in Figure 5.7 shows that overall, the effect of 𝑝𝑓𝑓 is also virtually linear.
Finally, the 𝐿𝐿 of Model 7 is lower than all previous models despite having more parameters (see
Appendix L). Being worse in both 𝐿𝐿 and model parsimony, this model is disregarded.

Table 5.9: Model 7 estimates

Factor Estimate Std.err. Rob.t­ratio(0) Rob.p­val(0)
𝛽𝑝𝑟𝑑_𝐻𝐵𝑀 0.5429 0.1690 2.8276 0.0047
𝛽𝑝𝑟𝑑_90 0.3716 0.2258 1.8791 0.0602
𝛽𝑝𝑓𝑓_40 0.4851 0.2038 2.2657 0.0235
𝛽𝑝𝑓𝑓_60 0.8356 0.1962 4.6430 0.0000
𝛽𝑝𝑓𝑓_90 1.2621 0.1886 6.1614 0.0000
𝛽𝑙𝑜𝑐 0.5075 0.0945 5.3459 0.0000
𝛽𝑝𝑜𝑙 0.8579 0.0933 7.6757 0.0000
𝛽𝑐𝑤𝑑 0.8582 0.0889 9.3238 0.0000
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Figure 5.7: Utility contribution of 𝑝𝑓𝑓 levels

At this point, seven choice models have been elaborated. Although each model offers different insights
on mask­wearing behaviour, one will be chosen as the model that fits the data best and provides a
sound explanation on factors that influence mask­wearing. Aside from these models, other model
specifications were also estimated incorporating different combinations of (insignificant) factors and
non­linearity effects. For example, the insignificant 𝛽𝑦𝑒𝑠 and 𝛽𝑝𝑛𝑙 were not removed simultaneously,
but sequentially; or 𝛽𝐻𝐵𝑀 was not included in the simple binary logit model. Nevertheless, due to their
inferior model fit and partly redundant specifications, it is not deemed necessary to elaborate on these
models in detail.

5.3.8. Selection of the final choice model

From the seven models, Model 1, 3, and 6 are not considered because they are the ‘old’ versions of
Model 2, 4, and 7, respectively. Moreover, Model 5 is unnecessary because the effect of 𝑐𝑤𝑑 factor is
virtually linear. Lastly, Model 7 has been disregarded due to its contradictory and deficient performance
relative to the previous models. Thus, Model 2 and 4 are the only remaining options. In Appendix L,
although Model 2 has a lower 𝐿𝐿 and a higher BIC than Model 4, these measures cannot be used for
direct comparison because Model 2 and 4 are non­nested models.

Therefore, the Ben­Akiva & Swait test (Ben­Akiva & Swait, 1986) is used. Using the Apollo package,
there is a 5% probability that Model 2 is actually the better model in the population. Because this
study adopts a 95% significance level, the conclusion to choose Model 4 is borderline. As a last resort,
the choice is made following the law of parsimony, or the Occam’s razor principle, that says the best
explanation is the simplest one (van Daam et al., 2012). Since Model 2 has a simpler explanation, i.e.,
direct/main­ instead of interaction effects, Model 2 is chosen as the final model. Nonetheless, Model 4
is still valuable for further research on interactions within the factors.

In Section 4.1, a proposed operationalisation of the choice model is shown in Figure 4.1. As Model
2 has been chosen, Figure 5.8 below shows the (updated) graph representing the final choice model.
The greyed out figures indicate the variables removed from the proposed model.
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Figure 5.8: Final choice model

5.4. Discussion
Having chosen Model 2, the mask­wearing choice model is simply specified by the parameter esti­
mates in Table 5.4. However, it is noteworthy that these parameter estimates are not point estimates.
Rather, they are estimated under a confidence level of 95% and hence lie within confidence intervals
of �̂� ± 𝑧0.025 × 𝑆𝐸 where �̂� is the parameter estimate, 𝑧0.025 is the z­score for a cumulative probability
level of 2.5% (1.96), and 𝑆𝐸 is the standard error of each parameter estimate. As a result, Table 5.10
shows the confidence interval of each factor.

Table 5.10: Confidence intervals of parameter estimates

Factor Lower bound Mean Upper bound
𝛽𝐻𝐵𝑀 0.2610 0.4118 0.5626
𝛽𝑝𝑟𝑑 0.0026 0.0072 0.0118
𝛽𝑝𝑓𝑓 0.0051 0.0098 0.0145
𝛽𝑙𝑜𝑐 0.3468 0.5123 0.6779
𝛽𝑝𝑜𝑙 0.6808 0.8574 1.0341
𝛽𝑐𝑤𝑑 0.5459 0.7265 0.9072

In the following discussion subsections, for each factor, the expectation­based validity (Mariel et al.,
2021) of the model is evaluated in terms of the factors’ sign (direction of effect). Then, their rela­
tive importance is discussed. Lastly, their effects on mask­wearing probability are assessed. For this
assessment, the parameter estimates are varied within their respective confidence intervals under a
ceteris paribus context to show how sensitive the choice model is to changes in parameters.

As a default, unless the respective factor is the matter of interest, the context is arbitrarily set as follows:
everyone belongs in HBM Class 1, at an outdoor place with a low crowd density level and voluntary
mask­wearing policy. The initial 𝑝𝑟𝑑 and 𝑝𝑓𝑓 is set at 76% which is based on the overall percentage of



36 5. Influence of herding in mask­wearing

mask­wearers in the Netherlands obtained from Center for Geospatial Information Science University
of Maryland (2021, June 20).

5.4.1. HBM class latent variable

The𝐻𝐵𝑀𝑐𝑙𝑎𝑠𝑠 serves as a class­specific constant on the utility of mask­wearing. This is the only factor
that originates from the decision­makers’ internal characteristic, that is their subjective health belief in
terms of their susceptibility towards and severity of COVID­19, along with the benefits of mask­wearing.
To review, this latent variable classifies people into two classes with profiles as specified in Table 5.2.
The HBM class is effect coded as specified in Section 5.3, where HBM Class 1 is coded as ‘1’ and
Class 2 as ‘­1’.

As people in HBM Class 1 are generally more afraid of COVID­19 and believe more in mask efficacy, it
is plausible that they are predisposed to a higher utility towards mask­wearing, and vice versa for those
in HBM Class 2. The positive sign of 𝛽𝐻𝐵𝑀 confirms this line of reasoning: a utility increase of 0.4118
applies for those in HBM Class 1 because the estimate is multiplied by 1, and a decrease of 0.4118 for
HBM Class 2 because it is multiplied by ­1. Considering the sign being as expected, this parameter
estimate is considered valid.

The effect of HBM class on mask­wearing probability across its confidence interval is shown in Fig­
ure 5.9. Under the mean estimate, people HBM Class 2 is 13% less likely to wear a mask than those in
Class 1. Moreover, the variation of 𝛽𝐻𝐵𝑀 from its lower to upper bound causes a change in probability
by 6% for those in Class 2 (and less for Class 1). In other words, under the confidence level of 95%,
the probability is subject to change by ± 3% if 𝛽𝐻𝐵𝑀 shifts within its confidence interval.

Figure 5.9: Effect of HBM class on mask­wearing probability across confidence interval

Since HBM class comprises three HBM perceptions, one might wonder whether a certain perception
affects the basic predisposition to mask­wearing more than the others. Although this is an interesting
question, the current model is conceptually and practically incapable of providing the answer. Concep­
tually, the perceptions are caused by HBM class (which is the basis of the predisposition), and not vice
versa. Practically, because the perceptions are intercorrelated without the HBM class (shown by the
BVR in Appendix D), an attempt to measure their direct effects will only result in biased estimates.

Lastly, the rapid speed of vaccination against COVID­19 in the Netherlands (Government.nl, 2021b)
also sparks another question of whether this influencesmask­wearing behaviour. At the individual level,
this study argues that the choice model stays the same. With the two HBM classes, vaccination shall
not change the parameter estimates. Instead, it shifts more people that were in HBM Class 1 (the more
risk­averse class) to Class 2 (the less risk­averse class). Hence, this will certainly affect the overall
predicted proportion of mask­wearers, but not the mask­wearing probability at the individual level.
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5.4.2. Herding: proportion of mask­wearers

The 𝑝𝑟𝑑 and 𝑝𝑓𝑓 are two factors that confirm the causal effect of herding in mask­wearing. Since the
effect of 𝑝𝑛𝑙 was found to be insignificant in Model 1, the herding behaviour is only limited to a local
environment. Since herding is simply defined as ”doing what everyone else is doing” (Banerjee, 1992, p.
798), this study assumes that a higher proportion of mask­wearers shall increase one’s mask­wearing
utility (and consequently its probability). The positive effects of 𝑝𝑟𝑑 and 𝑝𝑓𝑓 support this assumption,
and therefore both estimations are considered valid.

Looking at their relative importance in Figure 5.4, it is interesting to observe that the importance of
friends’ and/or family’s mask­wearing behaviour comes first, followed by one’s personal predisposition,
and lastly by the random people’s behaviour. This order is aligned with the high score of the Nether­
lands on the individualism dimension under the Hofstede cultural framework (scoring 80 according to
Hofstede Insights (2021)). In an individualist society, everyone is expected to take care of oneself
and their immediate family (Hofstede, 2011). Consequently, the importance of random people is the
lowest of all. Ultimately, the alignment between the estimation results and the cultural context of the
Netherlands even further validates these findings.

The size of 𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑓𝑓 in Table 5.10 are not to be confused with their relative importance, especially
because of their contrasting level range from other factors. For every 10% increase in the proportion of
mask­wearers within the random people in the neighbourhood (𝑝𝑟𝑑), the mask­wearing utility linearly
increases by 0.0720, while within the family and/or friends (𝑝𝑓𝑓) it increases by 0.0980. To see how
the change in 𝑝𝑟𝑑 and 𝑝𝑟𝑓 affects the mask­wearing probability, refer to Figure 5.10 and 5.11. These
figures also show the effects under varying estimates within the confidence intervals.

Figure 5.10: Effect of 𝑝𝑟𝑑 on mask­wearing probability across confidence interval

Figure 5.11: Effect of 𝑝𝑓𝑓 on mask­wearing probability across confidence interval
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Although the effect of 𝑝𝑟𝑑 and 𝑝𝑓𝑓 on mask­wearing probability is not perfectly linear, as an approxi­
mation, an increase of 10% in 𝑝𝑟𝑑 leads to about 1 to 2% increase in the probability, while for 𝑝𝑓𝑓 leads
to about 2 to 3% increase under the mean estimates. When compared between the two extremes (0%
and 100% of mask­wearers), 𝑝𝑟𝑑 causes an increase by 15%, while 𝑝𝑓𝑓 does by 21%. Looking at the
varying size of 𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑓𝑓 within their confidence interval, both impose an about ±10% variation on
the probability under an extremely high proportion of mask­wearers. The lower the 𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑓𝑓, the
bigger the variation is, and vice versa.

When the choice model is used to explain the herding mechanism behind mask­wearing, this relatively
high sensitivity should be taken into consideration. Mask­wearing probability within 40 to 60% (exclu­
sive) calculated under the mean estimate may be higher or lower than 50% under a lower estimate. In
other words, a predicted moderate minority and moderate majority of mask­wearers are subject to pos­
sibly an opposite conclusion. Therefore, the choice model is more reliable when dealing with situations
that result in more extreme probabilities.

5.4.3. Location type

The location type mainly relates to mask­wearing through how COVID­19 transmission risk differs in
indoor and outdoor spaces. According to Rowe et al. (2021), this risk is lower in outdoor than in indoor
space by orders of magnitude. Therefore, this study assumes that the utility of mask­wearing will be
higher when decision­makers are situated in an indoor space in comparison with when being in an
outdoor space. Since the 𝑙𝑜𝑐 factor is effects coded: ­1 for outdoor and 1 for indoor, this assumption is
supported by the positive sign of 𝛽𝑙𝑜𝑐. This means that the mask­wearing utility decreases by 0.5123
in an outdoor space, and increases by 0.5123 in an indoor space.

Furthermore, reflecting on the relative importance in Figure 5.4, the effect of location type (𝑙𝑜𝑐) is
the same as the herding effect within family and/or friends (𝑝𝑓𝑓), both being 15%. It may seem ab­
stract to comprehend an equal effect of two different concepts. Thus, for an illustration, this equality
means that a decrease of 100% mask­wearers within family and/or friends has the same effect of the
change of location type from indoor to outdoor, and vice versa. This insight may be useful in promoting
mask­wearing (or other preventive health behaviours): when a mandatory policy cannot be imposed,
convincing people that many others wear masks can remediate the negative effect of outdoor space.

The effect of 𝑙𝑜𝑐 on mask­wearing probability across its confidence interval is shown in Figure 5.12.
Under the mean estimate, people in an indoor location is 16% more likely to wear a mask than those
in an outdoor location. Moreover, the mask­wearing probability in an outdoor location is more sensitive
to variation of 𝛽𝑙𝑜𝑐 than in an indoor location. The variation causes a change in probability by ±4% and
±2%, respectively.

Figure 5.12: Effect of 𝑙𝑜𝑐 on mask­wearing probability across confidence interval
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5.4.4. Mask­wearing policy

To interpret the mean estimate of 𝛽𝑝𝑜𝑙, consider that the voluntary and mandatory policy are coded as
­1 and 1, respectively. Therefore, their utility contributions are ­0.8574 and 0.8574. In comparison to
other factors, the mask­wearing policy (i.e., mandatory or voluntary) is the most important factor. This
high, positive effect of policy is reasonable due to the fairly high level of compliance to the mask­wearing
policy in the Netherlands (82%) (RIVM, 2021a). Thus, 𝛽𝑝𝑜𝑙 is considered valid.

Figure 5.13 shows how the mask­wearing probability differs across varying 𝛽𝑝𝑜𝑙 within its confidence
interval. The graph shows that under the mean estimate of 𝛽𝑝𝑜𝑙, a change of policy from voluntary to
mandatory increases the probability by 21%, and vice versa. For each policy, the varying estimates
cause minimal change on the probability of around 4%. Therefore, the model is considered insensitive
to changes in 𝛽𝑝𝑜𝑙.

Figure 5.13: Effect of 𝑝𝑜𝑙 on mask­wearing probability across confidence interval

Furthermore, the relative importance graph in Figure 5.4 shows that the combined effect of 𝑝𝑟𝑑 and 𝑝𝑓𝑓
(11% and 15%) are the same as the single effect of 𝑝𝑜𝑙 (26%). This means that the effect of an increase
in mask­wearers in both reference groups from 0 to 100% is as big as the effect of mask­wearing
policy change from voluntary to mandatory. This insight is useful in explaining a drastic change in
mask­wearing behaviour when the policy changes from mostly mandatory to voluntary. After the Dutch
government dropped the mandatory policy almost in all places (Government.nl, 2021a), the average
proportion of mask­wearers has dropped since to as low as 24% (Center for Geospatial Information
Science University of Maryland, 2021).

In reality, there might be situations where the policy seems ambiguous: it may be mandatory in an
outdoor schoolyard or voluntary in an indoor sports facility. Under this ambiguity, the effect of herding
may become larger, but this study cannot model such interactions due to the use of fractional factorial
design. Nonetheless, the model can show that under these ambiguous situations, the combined effect
of 𝑝𝑜𝑙 and 𝑙𝑜𝑐 is reduced by 75% compared to those under non­ambiguous situations.

5.4.5. Crowd density level

The crowd density level relates to mask­wearing through the fact that COVID­19 spread via the respira­
tory droplets (Senatore et al., 2021). A social distance of 1.5 meters is considered as the safe distance
to avoid the virus transmission (Government.nl, 2021a). Nevertheless, some situations may not offer
this safe distance, or instead, the opposite where people are sparsely distributed in an area. This study
assumes that as the crowd gets denser, the mask­wearing utility should increase. The positive param­
eter estimate 𝛽𝑐𝑤𝑑 confirms this expectation: every increase in the crowd density level contributes to a
utility increase by 0.7265. Therefore, 𝛽𝑐𝑤𝑑 is considered valid.
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Figure 5.4 shows that the crowd density level (𝑐𝑤𝑑) is the second most important factor after the mask­
wearing policy (𝑝𝑜𝑙). This observation is plausible because this factor is related to another health
preventive behaviour, social distancing, which is also one of the measures imposed by the Dutch gov­
ernment (Government.nl, 2021a). Thus, the importance of maintaining at least a medium density is
simply another aspect of policy compliance in general. Therefore, when this cannot be maintained, it
affects the utility of another measure, mask­wearing, almost as big as the mask­wearing policy.

Under the mean estimate of 𝛽𝑐𝑤𝑑, a change from low to high crowd density level causes a substantial
increase in the mask­wearing probability by 34%. The model sensitivity to variations of 𝛽𝑐𝑤𝑑 within
its confidence interval is shown by Figure 5.14. There is a bigger margin of probability change as the
crowd density level gets higher, with the margin of ± 7% for the highest crowd density level. Similar to
𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑓𝑓, care should be taken under borderline majority and minority.

Figure 5.14: Effect of 𝑐𝑤𝑑 on mask­wearing probability across confidence interval

5.5. Chapter summary
To summarise, the expectation on the directional effect of all factors has been based on logical and
theoretical arguments. Using their parameter estimates, especially looking at the signs (positive or
negative), and the variable coding as specified in Table 4.1 and 4.2, all factor estimates are able to
confirm their respective expectations and hence have a construct validity. Their relative importance
(Figure 5.4) is also proven reasonable, by looking at the cultural context and policy compliance level in
the Netherlands population.

While the model is sensitive to changes in all parameter estimates, it is more sensitive to 𝛽𝑝𝑟𝑑, 𝛽𝑝𝑓𝑓, and
𝛽𝑐𝑤𝑑. To account for this higher sensitivity under the current estimates, this study admits that the model
is more reliable for explainingmask­wearing behaviour under an extrememajority andminority of mask­
wearers. For further research, the sensitivity could be suppressed by collecting a larger sample size,
which reduces the standard errors and therefore, the confidence intervals of the parameter estimates.



6
Modelling the aggregate mask­wearing

behaviour

The previous chapter has presented a choice model that reflects how an individual makes a mask­
wearing decision, considering the herding effect. This study argues that simply averaging over individ­
uals is not enough to explore the macro­level population dynamics resulting from micro­level individual
behaviours. Because herding is a phenomenon that essentially occurs through social interaction, the
collective result should be obtained while taking this interdependent behaviour into account. Because
agent­based models (ABMs) allow for an explicit link between the micro and macro level of analy­
sis, in this chapter, the ABM aims to provide a better understanding of how herding behaviour affects
mask­wearing dynamically at the population level.

6.1. System identification
In this first step, the physical and social entities are defined and structured. The agents in this ABM is
simply random people with intrinsic and extrinsic properties. The agents’ properties are specified as
follows. The agents represent people living in the Netherlands, comprising both Dutch and non­Dutch
nationals. Intrinsic properties refer to those that are not directly related to other agents. This study
defined three intrinsic properties that characterise each agent:

1. HBM Class (HBM­class1)
The HBM Class of each agent will be assigned randomly, with a probability of being in Class 1 is
denoted by HBM­class­1­proportion. The HBM­class will determine how the agents react
to the proportion of mask­wearers within the random people in the neighbourhood (𝑝𝑟𝑑). This
property can take an integer value of 1 or 2 for HBM Class 1 and 2, respectively.

2. Mask­wearing decision rule
The decision rule is based on the previously estimated choice model parameters, as specified in
Table 5.4. They are specified as floating­point values and labelled in a straightforward manner:
beta­HBM, beta­prd, beta­pff, beta­loc, beta­pol, and beta­cwd. These parameters
are used to calculate the utility and probability of mask­wearing, as prescribed by the utility func­
tion in Section 5.3.2. An example of the calculation is provided later in Section 6.4.2.

3. Mask­wearing decision (decision)
Each agent will evaluate their environment and make a mask­wearing decision. This property
can take an integer value of 1 for mask­wearing and 0 for no mask­wearing. The decision rule
governs this decision.

1In this section, NetLogo objects such as variables, agents, and procedures are denoted by this font type: example.
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The extrinsic properties specify each agent’s reference group (for 𝑝𝑓𝑓 and 𝑝𝑟𝑑). The reference groups
are simply agent sets. This study defined two extrinsic properties:

1. Friends and/or family of agent (friends­family)
This agent set is defined as a group of agents that are friends and/or family with each other. This
group size of five agents was chosen arbitrarily as the minimum size that allows for a sufficient
granularity in the proportion of mask­wearers within the friends and family group (𝑝𝑓𝑓). No dis­
tinction is made on whether these agents are friends or family. Because they are assumed to
be in an area as a group, they are always close with each other (see Section 6.3 for how this is
modelled). This agent set is static throughout one model run.

2. Random people encountered in the neighbourhood (random­people­observed)
At every time step, this agent set will be updated by choosing the physically nearest number of
people specified in number­of­people­observed. This agent set is updated continuously
because of the constant movement of all agents. People who are not part of the friends­
family agent set are assigned to the random­people­observed agent set.

For agents to update their mask­wearing decision, they must evaluate their environment. In this ABM,
the environment is defined as the context in which agents are situated. The context is specified by
the situational cues used in the choice model: location (outdoor or indoor), mask­wearing policy
(voluntary or mandatory), and crowd­level (low, medium, or high). Lastly, the environment keeps
track of the current and all­time average proportion.

To summarise, Figure 6.1 shows the schematic overview of the ABM layout.

Figure 6.1: Schematic overview of the ABM layout
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6.2. Model formalisation
According to van Daam et al. (2012, p. 88), this step specifies the agents’ behaviour under a narrative
of ”which agent does what with whom and when”. At each time step, one agent performs these actions:

1. Move forward in their heading by one unit (forward 1).

2. Select people­observed and separate those who belong in the friends­family­observed
and random­people­observed. In this step, the friends­family­observed may be only
a part of the friends­family because there may be random people who are physically closer
than some of an agent’s friends/family.

3. Observe the mask­wearing decision of agents in both agent sets (these are their reference
groups) by evaluating the proportion of mask­wearers in each group.

4. Update his/her mask­wearing decision in the following manner. First, the mask­wearing prob­
ability is calculated by incorporating the environment’s state and the parameters. Next, a random
float number between 0 and 1 is generated. If the random number falls below the calculated prob­
ability, decision equals 1, and vice versa. This mechanism ensures that the non­deterministic
characteristic of the choice model is maintained.

Unlike the previous choice model, this mechanism has two advantages. First, it allows for a dynamic
feedback loop for the (predicted) proportion of mask­wearers as an input. This feature is important
because, as social behaviour, the mask­wearing decision could change over time. Second, the ABM
acknowledges local interactions. People are subject to bounded information, i.e., they cannot obtain
complete information on the ’global’ mask­wearing behaviour of everyone, even within a local public
space.

With 1000 people as the agents, everyone performs the actions as mentioned earlier exactly once
every 1000 time steps. Each agent within one friends­family­group acts in a sequential order
without being interrupted by agents from other groups to maintain their physical proximity. Furthermore,
it seems unrealistic if people put on and take off their masks every time they move. Therefore to clarify,
one time step does not represent one second in time. Instead, after every 1000 time steps, the agents
can be considered as being in a new situation, regardless of the time (it can be in the next hour or the
next day). A model architecture of this ABM is presented in Figure 6.2.

Figure 6.2: ABM architecture
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6.3. Model implementation
The model architecture was implemented in the NetLogo software. There are two main features that
the ABM exhibits. First, just as in a real public space, the agents encounter random people. Because
everyone is moving in a random direction, each agent is surrounded by new people at each time step2.
Thus, the ABM employs moving turtles (NetLogo term) instead of static, patch­based turtles. Second,
there are always friends and/or family whom an agent observes at each time step. Therefore, the ABM
should maintain physical proximity between people in the friends­family agent­set. To do so, the
initial position of these agents is distributed within a 2.5 × 2.5 patch area. Moreover, they maintain a
uniform heading (the agent’s direction for their movement).

The ABM consists of a code and an interface. The code can be found in Appendix M. The interface,
which is used to set input values and watch the model run (Wilensky, 2021), is divided into three parts:
(1) the input panel, (2) the ‘world’ space, and (3) the plot and monitors.

6.3.1. The ABM input panel

The input panel (Figure 6.3) comprises all location specifications and the decision rule parameters.
Furthermore, the other initial conditions such as the proportion of people in HBM Class 1 and 2 (HBM­
class­1­proportion), the number­of­friends­family in a group (this is one number higher
than the friends­family agent­set, because it includes ), the size of people­observed agent set,
and the number­of­people can be modified. However, for the simplicity of the subsequent analysis,
the initial values are fixed as follows:

• HBM­class­1­proportion = 50%

• number­of­people­observed = 15

• number­of­friends­family = 5

• number­of­people = 1000 (except for minimal testing in the verification step)

Figure 6.3: The ABM input panel

2Each time step is implemented as one tick in NetLogo
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6.3.2. The ABM ‘world’

The ‘world’ refers to the space in which agents move and interact, as depicted in Figure 6.4. This
space wraps horizontally and vertically, i.e., the space is not bounded by ‘walls’. The agents are repre­
sented by the default NetLogo agent shape, which resembles an arrowhead. The pointy tip indicates
their headings, and the colour indicates their current decision: green for mask­wearing and red for
no mask­wearing. It is noteworthy that the crowd density level (crowd­level) is merely a concep­
tual closeness. Therefore, the physical closeness between agents in this ‘world’ space (by means of
patches) does not affect the crowd density level experienced by the agents.

Figure 6.4: The ABM ‘world’ space

6.3.3. The ABM plot and monitors

Lastly, the plot shows the current and all­time average proportion of mask­wearers, while the monitors
print the current values plotted. Figure 6.5 illustrates these metrics after the model was run for 100,000
ticks under initial conditions shown in Figure 6.3. The initial­proportion­of­mask­wearers
was set as 48%. The plot shows that agents reach a steady state at a much lower overall proportion of
mask­wearers after around 10,000 ticks, from 48% to 30%. As this is merely an illustration of the plot
and monitors, the specification of the following experiments is to be provided in Section 6.6.

Figure 6.5: The ABM plot and monitors
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6.4. Model verification
In this step, two methods are used to check whether the ABM corresponds to its conceptualisation:
tracking and interaction testing following van Daam et al. (2012).

6.4.1. Tracking­based verification

For tracking, a ‘minimal’ model of only 20 agents is used to check whether the family­friends grouping
and the agents’ movement are expected. This minimal model is for a clearer visualisation than in
a model of 1000 agents. Figure 6.6 shows the position of the agents after 20 ticks (left), 100 ticks
(centre), and 200 ticks (right). A friends­family group as indicated by a white circle is shown to
move forward in its heading, remaining in physical proximity within the group. This verifies the desired
grouping and movement of the agents.

Figure 6.6: Tracking the position of 20 agents after 20 ticks (left), 100 ticks (centre), and 200 ticks (right). The white circle
shows one friends­family group.

6.4.2. Interaction testing

The model employs 1000 agents for the following verification steps. The interaction testing aims to
check whether the interaction occurs correctly (van Daam et al., 2012). This verification is done by
observing how an agent (in this case turtle 999) interacts with his 15 nearest agents, some of which
are his friends and/or family. Figure 6.7 illustrates the friends­family­observed and random­
people­observed by turtle 999, each containing 4 and 11 agents, respectively. He appears to
wear a mask indicated by the green colour and belongs to HBM Class 2 (checked through inspecting
the turtle). This figure is captured after 100,000 ticks.

Figure 6.7: Turtle 999 is marked with ‘X’. His friends­family­observed agent set is marked with ‘o’ and the
random­people­observed agent set is marked with ‘∼’.

Afterwards, a manual check of turtle 999’s decision is performed. Figure 6.7 shows that two of
the friends­family­observed and three of the random­people­observed are wearing masks.
Therefore, 𝑝𝑓𝑓 and 𝑝𝑓𝑓 should be 50.00% and 27.27%. The mask­wearing utility of this agent should
then be:
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𝑉𝑦𝑒𝑠 = 0.4118 × 𝐻𝐵𝑀 𝑐𝑙𝑎𝑠𝑠 + 0.0072 × 𝑝𝑟𝑑 + 0.0098 × 𝑝𝑓𝑓 +
0.5123 × 𝑙𝑜𝑐 + 0.8574 × 𝑝𝑜𝑙 + 0.7265 × 𝑐𝑤𝑑

= 0.4118 × 1 + 0.0072 × 27 + 0.0098 × 50 + 0.5123 × −1 + 0.8574 × −1 + 0.7265 × 0
= −0.2715

𝑉𝑛𝑜 = 0

This utility value translates to a mask­wearing probability of

𝑃𝑦𝑒𝑠 = 𝑒𝑉𝑦𝑒𝑠
𝑒𝑉𝑦𝑒𝑠+𝑒𝑉𝑛𝑜

= 43.25%

The utility and the probability were confirmed by asking NetLogo to print the values at the end of the
model run. Lastly, a random number of 0.1106 was generated. Because the random number is less
than the mask­wearing probability, the decision of this agent should be to wear a mask—which the
model correctly depicts.

6.5. Model validation
Because an empirically tested choice model governs this ABM, this model already contains a realistic
decision­making process. Therefore, this ABM is considered valid to a large extent.

Furthermore, a sensitivity analysis was performed to test the input uncertainty caused by the associ­
ated standard errors of the choice model parameters (Bruch & Atwell, 2015). The one­factor­at­a­time
(OFAT) method is used since it is recommended by ten Broeke et al. (2016) as the suitable starting
point for sensitivity analysis. For this purpose, only 𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑓𝑓 are varied within their confidence
intervals by taking five equidistant points between their intervals. These parameters are chosen be­
cause this study is mostly interested in how herding affects mask­wearing behaviour—𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑓𝑓
are the herding­related parameters. As the method name prescribes, one parameter was varied at a
time while all other parameters were fixed. Each variation was repeated 20 times under the voluntary
policy, outdoor location, and low crowd density.

The results are shown in Figure 6.8. Because the variations of 𝛽𝑝𝑟𝑑 and 𝛽𝑝𝑓𝑓 show an almost identical
response, they are discussed simultaneously. Two main observations are apparent: the variations are
linear and hence do not contain any tipping points. Furthermore, despite a significant (about 20%)
increase of 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 for increasing parameter values, the 𝑚𝑓𝑖𝑛𝑎𝑙 remains relatively stable within a 5%
increase. Due to its robustness to changes in herding­related parameters, this model is considered
valid.

(a) (b)

Figure 6.8: OFAT analysis for 𝛽𝑝𝑟𝑑 (a) and 𝛽𝑝𝑓𝑓 (b)
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6.6. Experimentation
An experiment was done to see how agents’ interactions result in overall mask­wearing behaviour. As
explained before, although the choice model can already give an estimation on this matter, it does not
consider the feedback effect over time and the locality of interactions. As briefly shown in Figure 6.5, a
new steady state of the overall proportion of mask­wearers emerges after at least 10,000 ticks. There­
fore, the experiment aims to explore the proportion of mask­wearers, from here onwards abbreviated
as 𝑚, that further highlights the effect of herding.

There are 12 experiments, and each is performed under one of the fully exhaustive combinations of
mask­wearing policy, location type, and crowd density level. Each combination is referred to as a
context. Because there are two types of policy, two location types, and three crowd density levels,
the experiment runs under 12 contexts (2 × 2 × 3). It is noteworthy that the model is stochastic due
to the randomness in agents’ movement and decision rule. To account for this characteristic, each
experiment is repeated 20 times. Therefore, there were 240 model runs in total. In each repetition, the
model runs for 100,000 ticks, which is considered sufficient for the model to reach a steady state.

At the start of each experiment, the initial proportion of mask­wearers (𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is determined consid­
ering its context. This is necessary because the 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 should be realistic, i.e., the 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 under a
voluntary policy is plausibly lower than it is under a mandatory policy; and the same applies for location
type and crowd density level. Therefore, the 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is first evaluated by utilising the existing choice
model as provided in Section 5.3.2. Because the choice model requires the values for 𝑝𝑟𝑑 and 𝑝𝑓𝑓,
the proportion of mask wearers in the Netherlands of 76% (as obtained from Center for Geospatial
Information Science University of Maryland (2021) in June 2021) is used. This choice is considered
reasonable due to the time scope of this research (as stated in Section 1.4) and the use of the choice
model to normalise the value into context­specific 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙. The 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 values are shown in the fol­
lowing section. After each replication, the resulting steady­state proportion of mask­wearers (𝑚𝑓𝑖𝑛𝑎𝑙)
is collected.

6.7. Analysis and discussion
For each experiment, the average 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑚𝑓𝑖𝑛𝑎𝑙 across 20 replications are shown by Figure 6.9.
On the one hand, the𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 essentially depicts how the choice model estimates𝑚 in a static manner.
On the other hand, the 𝑚𝑓𝑖𝑛𝑎𝑙 shows 𝑚 after the agents dynamically interacted and produced a new
equilibrium. This shows that the non­linear link between micro­level interaction and macro­level 𝑚
results in a different output than what a choice model would. Nonetheless, it is noteworthy that the
ABM preserves the probabilistic nature of the choice model: the 𝑚𝑓𝑖𝑛𝑎𝑙 does not exhibit a tendency
towards a consensus on mask­wearing, i.e., extreme values of 𝑚.

By comparing the average 𝑚𝑖𝑛𝑖𝑡𝑎𝑙 and 𝑚𝑓𝑖𝑛𝑎𝑙 for each experiment, it is apparent that the 𝑚𝑓𝑖𝑛𝑎𝑙 val­
ues are mostly lower than their corresponding 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 values, in particular under the voluntary mask­
wearing policy. The difference between 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑚𝑓𝑖𝑛𝑎𝑙 is referred to as Δ𝑚. It seems that the
lower the 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is, the more negative the Δ𝑚 is—with an exception for 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 values above 90%.
Figure 6.10 plots these differences more clearly for each experiment.

From Figure 6.10, the Δ𝑚 can be interpreted as the magnitude of the herding effect. Several insights
are present. First, it can be inferred that herding behaviour affects the proportion of mask­wearers,
especially under the voluntary mask­wearing policy, especially in outdoor places. Furthermore, the
lower the crowd density, the herding effect is also stronger. This means that when being in a situation
that results in a minority of mask­wearers affects others to also not wear masks; more than being in
the opposite situation affects people to also wear masks. Lastly, the negative values of Δ𝑚 show a
tendency towards a no­mask­wearing, even under a majority of mask­wearers situation below 90%.

This study suggests two possible explanations for this observation. First, because of the locality of
interactions, agents are not fully aware of the global majority. Meanwhile, there may be local clusters
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Figure 6.9: Average𝑚𝑖𝑛𝑖𝑡𝑎𝑙 and𝑚𝑓𝑖𝑛𝑎𝑙 across 20 replications for each experiment

Figure 6.10: Average Δ𝑚 for each experiment

of non­mask­wearers caused by people moving in friends and/or family groups. The second possible
explanation is due to the individual benefit of mask­wearing that decreases with decreasing community
mask use (CDC, 2021). Consequently, observing non­mask­wearers decreases the utility of mask­
wearing and hence further reduces the proportion of mask­wearers.

6.8. Chapter summary
This study has devised an ABM that allows for local interactions between agents in mask­wearing and
shows a more insightful, macro­level understanding of the mechanism behind the effect of herding on
mask­wearing behaviour. The ABM is grounded on an empirically validated micro­level decision rule
as presented in the previous chapter. The model has been formalised, implemented, verified, and
validated. After performing experiments for 12 different contexts, the analysis has allowed this study
to understand mask­wearing behaviour even further than the occurrence of herding on mask­wearing:
this study unveils an asymmetry in the effect of herding. There is a stronger herding effect towards
no­mask­wearing, except under a very high proportion of mask­wearers.





7
Conclusion

This study has analysed the effect of herding on mask­wearing behaviour at the individual (micro) and
the population (macro) levels. At the individual level, after conducting a choice experiment, the study
has successfully identified clusters in the population­based on their health beliefs and measured the
importance of herding along with the health beliefs and situational factors. Then, the choice model
was used as an input for the macro­level analysis using an ABM. This analysis has resulted in an
enriched understanding of the effect of herding. The following chapter reflects this study on its research
questions, limitations, and recommendations for future studies and the policy­making process.

7.1. Reflecting on the research questions
What are the possible factors that may influence mask­wearing behaviour?

A literature review has been conducted to synthesise a collection of factors that may influence mask­
wearing systematically. The review resulted in four major types of possible factors. The first and second
type is related to HBM, a model that has been widely used for various kinds of health behaviours. This
type resulted in two groups of factors: HBM­related factors and situational cues. The situational cues
are decomposed into mask­wearing policy, the location type, and the crowd­density level. The second
type of factor encompasses psychosocial phenomena, which are represented by herding­related fac­
tors characterised by the proportion of mask­wearers within the random people in the neighbourhood,
family and/or friends, and the Netherlands national population. Lastly, five demographic factors are
selected based on their prevalence in the reviewed literature and ethical consideration.

To what extent does herding affect an individual’s mask­wearing behaviour, with respect to other fac­
tors?

After collecting a sample of 151 respondents1 for eight choice tasks (resulting in 1208 observations) on
the population of the Netherlands, the effect of herding on mask­wearing is analysed through choice
modelling. However, before that, a Latent Class Cluster Analysis (LCCA) was performed to identify
two underlying clusters representing the respondents’ health beliefs. The first cluster, HBM Class 1,
consists of people who are more risk­averse towards COVID­19 and believe more in the efficacy of
mask­wearing. The other cluster, HBM Class 2, is simply the opposite of HBM Class 1.

Then, the choice modelling has confirmed a statistically significant effect of herding, only within friends
and/or family and the random people. When combined, their effects are as big as the most important
factor: the mask­wearing policy. Furthermore, one’s personal health belief comes after his/her family
and/or friends, but before the random people that he/she encounters. The location type is as important
as the proportion of mask­wearers within family and/or friends, and the crowd density level comes in be­
tween the location type and the mask­wearing policy. A visualisation of the factors’ relative importance
is illustrated by Figure 5.4 in Section 5.

1The data collection process and the subsequent analysis have been approved by the Delft Human Research Ethics Committee
of TU Delft.
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How does herding influence mask­wearing behaviour at the population level?

To explore the macro­level population dynamics resulting from micro­level individual behaviours, the
collective result is obtained by taking an interdependent behaviour between people into account. An
agent­based model (ABM) has been formalised, implemented, verified, and validated. A sensitivity
analysis has shown that the model is robust to changes in the herding parameters. Interestingly, the
probabilistic nature of the choice model is preserved in this ABM. The main insight obtained from this
ABM is that the herding effect is stronger when the majority is not wearing masks than when the majority
is wearing masks. In other words, there is a tendency towards a no­mask­wearing, instead of the
opposite.

To conclude, the answers to the three sub­questions have built on top of each other the answer to
the main research question: How does herding behaviour influence mask­wearing during the COVID­
19 pandemic in the population of the Netherlands? These discoveries have brought into the state­
of­the­art knowledge base not only a new insight on how herding affects mask­wearing, but also an
under­explored way of combining static (choice modelling) and dynamic (ABM) research methods.

7.2. Limitations and recommendations for future studies
Asmentioned in Section 5.1, the data collection is subject to two limitations. First, due to time limitations,
the survey is conducted using an online platform to reach a larger mass of people within a short amount
of time. As a result, it was impossible to ensure that all respondents filled in the survey with their utmost
attention and honesty. However, the survey is relatively short (can be finished in under five minutes)
and provided with simple yet elaborate introductions. Moreover, unfinished surveys were excluded
from the analysis. Therefore, the response quality can be considered adequate. Second, the sample
cannot be considered as a representative sample of the Dutch population. Nonetheless, this sample
is still valuable for a preliminary exploration of the effect of herding on mask­wearing behaviour. Care
should be taken in generalising the result to the general Netherlands population.

The identification of possible factors was done using literature published up to April 2021. Since COVID­
19 is a major pandemic across the globe, the worldwide research output on this subject keeps increas­
ing. Thus, the literature reviewmay bemissing important factors that were undiscovered in the previous
literature. Nevertheless, the review is still considered comprehensive and insightful by including litera­
ture from previous epidemics such as the SARS, Spanish influenza, and H1N1.

Furthermore, this study generalises the factors based on the situational cues in a broad categorisation—
policy only as voluntary and mandatory, and location type as outdoor and indoor. In reality, the amount
of fine within a mandatory policy may affect people differently, and there may be a difference between
how people behave in two different indoor spaces, such as public transport and the supermarket. More­
over, the duration of visit and other physical conditions (e.g., humidity, temperature) might actually also
influence mask­wearing behaviour. However, the current simplification is deemed necessary and rea­
sonable to maintain manageable research within a limited resource and time.

Lastly, the ABM roughly assumes that everyone has an equal capacity and, more importantly, the
interest in observing the same amount of people surrounding each agent. In reality, there may be other
factors that determine these aspects, such as age and concern for appropriateness (Lennox & Wolfe,
1984). Moreover, other assumptions regarding the model’s initial conditions may also influence the final
result. Nonetheless, these aspects are considered much less important because of the highly realistic
agents whose behaviours are governed using an empirically validated choice model.

Reflecting on the aforementioned limitations, future studies are recommended to also incorporate in­
terviews to confirm the possible factors before conducting a survey. When conducting a choice exper­
iment, the sampling could be done on a municipality that has a set of representative characteristics of
the Netherlands population or on a larger sample across the country. Furthermore, a more fine­grained
specification of factors may increase the validity of the research.



7.3. Recommendations for policy­making 53

7.3. Recommendations for policy­making
Direct and indirect recommendations for the policy­making process can be derived from this study.

In a direct manner, this study recommends policy­makers maintain clarity in communicating mask­
wearing policy. As discussed earlier, the effect of herding occurs more predominantly under uncer­
tainty (Eun Huh et al., 2014). Due to the observed tendency towards no­mask­wearing, ambiguity in
mask­wearing policy shall lead to a low level of mask­wearing. Ultimately, this will reduce the collective
protection of mask­wearing when it is necessary. Next, enforcement of mandatory policy is recom­
mended, especially in outdoor spaces. Examples of these spaces are schoolyards and bus and tram
stops. When a mandatory policy remains unenforced, the policy may instead be perceived as volun­
tary. Consequently, the utility of mask­wearing will drop substantially due to the high relative importance
of policy. Ultimately, because of the stronger herding effect towards non­mask­wearing, there will be
even fewer mask­wearers. Therefore, enforcement through continuous observation and correction is
necessary to maintain stability in the proportion of mask­wearers.

Furthermore, this study can also be considered when devising mask­wearing campaigns. The ob­
served effect of herding in mask­wearing presents a way to encourage mask­wearing through social
campaigns, if necessary. Due to the importance of family and/or friends compared to the random peo­
ple and the national population, such campaigns may contain figures that people can closely relate
to. Another alternative is to increase the relative importance of the mask­wearing policy. Leveraging
the already high importance of this factor may also be an efficient way to promote mask­wearing. The
importance of policy can be increased by putting signs in more prominent places, and related to the
previous recommendation, by informing people about how active the policy has been enforced.

This study is also useful indirectly when policy­makers are conducting epidemiological research for
COVID­19 and other respiratory diseases. Bruch and Atwell (2015) claimed that ABM has been mostly
successful for policy­making in the field of epidemiology and urban planning. Such epidemiological
research is useful to assess the contagion rate of the disease while taking into account the health
behaviour that people may do to protect themselves. In this case, this ABM serves as a part of a bigger
whole. This study shows that it is important to consider not only how people exhibit preventive health
behaviour but also how this behaviour changes over time under continuous interactions. Therefore,
the modellers in the policy­making domain could look at incorporating herding to such research and
enrich its realism.

Finally, this study can also be utilised for other policy­making processes outside the mask­wearing
context and/or outside the COVID­19 context. Its findings related to herding can be generalised, with
caution, into other preventive health behaviours such as social distancing and staying at home. This
study can even apply to health behaviours outside the COVID­19 context, for example, smoking and
alcohol use. These behaviours are similar to a certain extent—more similar for those within the COVID­
19 context—since they all involve social interaction. Moreover, the methods used in this study can be
used for policy­makers who would like to consider the effect of herding in other social behaviour such
as opinion dynamics in social movements, or even littering and illegal parking.



A
Ngene syntax to generate the experimental

design

design
;alts = yes, no
;rows = 24
;orth = seq
;block = 3
;model:
U(yes) = b1 * pff [10,40,60,90] +

b2 * prd [10,40,60,90] +
b3 * pnl [10,40,60,90] +
b4 * loc[1,­1] +
b5 * pol[1,­1] +
b6 * cwd[0,1,2]

$
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B
Experimental design

SET yes.prd yes.pff yes.pnl yes.loc yes.pol yes.cwd Block

11 40 90 60 1 1 2 1

12 60 90 10 1 1 1 1

13 40 10 90 ­1 1 1 1

14 60 10 40 ­1 1 1 1

15 90 60 60 ­1 1 0 1

16 90 60 40 1 ­1 1 1

17 10 40 60 ­1 ­1 1 1

18 40 60 40 ­1 ­1 2 1

21 10 10 10 1 1 0 2

22 10 90 40 1 1 2 2

23 10 10 60 1 ­1 2 2

24 40 10 10 1 ­1 0 2

25 90 40 40 1 ­1 0 2

26 60 90 90 1 ­1 0 2

27 60 40 90 ­1 ­1 2 2

28 60 60 60 ­1 ­1 0 2

31 90 10 90 1 1 2 3

32 90 40 60 1 1 1 3

33 10 40 40 ­1 1 0 3

34 40 90 90 ­1 1 0 3

35 60 60 10 ­1 1 2 3

36 10 60 90 1 ­1 1 3

37 40 90 10 ­1 ­1 1 3

38 90 40 10 ­1 ­1 2 3

See Table 3.5 for the list of factors’ abbreviations.
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C
Correlation of factors in the experimental design

yes.prd yes.pff yes.pnl yes.loc yes.pol yes.cwd

yes.prd Pearson Correlation 1 0.000 0.000 0.000 0.000 0.000

Sig. (2­tailed) 1.000 1.000 1.000 1.000 1.000

N 24 24 24 24 24 24

yes.pff Pearson Correlation 0.000 1 0.000 0.000 0.000 0.000

Sig. (2­tailed) 1.000 1.000 1.000 1.000 1.000

N 24 24 24 24 24 24

yes.pnl Pearson Correlation 0.000 0.000 1 0.000 0.000 0.000

Sig. (2­tailed) 1.000 1.000 1.000 1.000 1.000

N 24 24 24 24 24 24

yes.loc Pearson Correlation 0.000 0.000 0.000 1 0.000 0.000

Sig. (2­tailed) 1.000 1.000 1.000 1.000 1.000

N 24 24 24 24 24 24

yes.pol Pearson Correlation 0.000 0.000 0.000 0.000 1 0.000

Sig. (2­tailed) 1.000 1.000 1.000 1.000 1.000

N 24 24 24 24 24 24

yes.cwd Pearson Correlation 0.000 0.000 0.000 0.000 0.000 1

Sig. (2­tailed) 1.000 1.000 1.000 1.000 1.000

N 24 24 24 24 24 24
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D
Comparison of performance between the three

initial latent class models

Model LL BIC Number of
parameters

L2 Degrees of
freedom

p­value Class
error

#BVR ≤
3.84

1­class ­855.63 1791.54 16 341.06 135 8.30E­20 0% 2

2­class ­840.42 1786.20 21 310.63 130 8.10E­17 17% 6

3­class ­831.84 1794.14 26 293.48 125 1.40E­15 15% 6
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E
Parameters of the 2­class model

Table E.1: Model for indicators: class­dependent parameter

Indicator Class 1 Class 2 Wald p­value R2

𝑠𝑢𝑠 0.41 ­0.41 10.40 0.00 0.23
𝑠𝑒𝑣 0.43 ­0.43 9.92 0.00 0.24
𝑏𝑎𝑟 ­0.24 0.24 2.82 0.09 0.07
𝑏𝑒𝑛 0.42 ­0.42 10.20 0.00 0.22

Table E.2: Model for indicators: class­independent parameter

Indicator Level Overall Wald p­value
𝑠𝑢𝑠 1 ­0.10 16.04 0.00

2 0.14
3 ­0.22
4 0.54
5 ­0.36

𝑠𝑒𝑣 1 ­0.31 44.51 0.00
2 0.72
3 ­0.96
4 0.84
5 ­0.29

𝑏𝑎𝑟 1 ­0.72 72.86 0.00
2 0.49
3 ­1.18
4 1.43
5 ­0.01

𝑏𝑒𝑛 1 ­0.05 56.28 0.00
2 0.74
3 ­0.63
4 0.93
5 ­1.00

Table E.3: Model for clusters (intercept)

Class 1 Class 2 Wald p­value
0.17 ­0.17 0.32 0.57
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F
Parameters of the 2­class model

without bar as an indicator

Table F.1: Model for indicators: class­dependent parameter

Indicator Class 1 Class 2 Wald p­value R2

𝑠𝑢𝑠 ­0.46 0.46 7.39 0.01 0.27
𝑠𝑒𝑣 ­0.41 0.41 7.81 0.01 0.22
𝑏𝑒𝑛 ­0.42 0.42 9.16 0.00 0.22

Table F.2: Model for indicators: class­independent parameter

Indicator Level Overall Wald p­value
𝑠𝑢𝑠 1 ­0.35 15.74 0.00

2 0.03
3 ­0.18
4 0.68
5 ­0.18

𝑠𝑒𝑣 1 ­0.49 43.56 0.00
2 0.60
3 ­0.97
4 0.94
5 ­0.08

𝑏𝑒𝑛 1 ­0.25 56.29 0.00
2 0.63
3 ­0.62
4 1.05
5 ­0.81

Table F.3: Model for clusters (intercept)

Class 1 Class 2 Wald p­value
0.05 ­0.05 0.01 0.90
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G
Covariate parameters of the 2­class model

without bar as an indicator and with covariates

Covariates Level Class 1 Class 2 Wald p­value
𝑎𝑔𝑒 0 ­0.38 0.38 4.79 0.19

1 ­0.89 0.89
2 0.04 ­0.04
3 1.22 ­1.22

𝑔𝑛𝑑 0 ­1.03 1.03 1.12 0.57
1 ­0.68 0.68
2 1.71 ­1.71

𝑒𝑑𝑢 1 ­0.01 0.01 3.09 0.38
2 ­0.38 0.38
3 0.76 ­0.76
4 ­0.36 0.36

𝑑𝑒𝑛 0 0.85 ­0.85 3.18 0.20
1 ­0.33 0.33
2 ­0.52 0.52

𝑛𝑎𝑡 0 ­0.95 0.95 6.87 0.01
1 0.95 ­0.95
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H
Parameters of the 2­class model without bar as

an indicator and with only nat as covariate

Table H.1: Model for indicators: class­dependent parameter

Indicator Class 1 Class 2 Wald p­value R2

𝑠𝑢𝑠 0.48 ­0.48 7.61 0.01 0.28
𝑠𝑒𝑣 0.26 ­0.26 6.30 0.01 0.10
𝑏𝑒𝑛 0.57 ­0.57 11.52 0.00 0.31

Table H.2: Model for indicators: class­independent parameter

Indicator Level Overall Wald p­value
𝑠𝑢𝑠 1 0.03 16.85 0.00

2 0.26
3 ­0.18
4 0.46
5 ­0.56

𝑠𝑒𝑣 1 ­0.17 42.80 0.00
2 0.69
3 ­1.06
4 0.77
5 ­0.24

𝑏𝑒𝑛 1 0.10 57.52 0.00
2 0.92
3 ­0.55
4 0.83
5 ­1.30

Table H.3: Model for clusters (intercept)

Class 1 Class 2 Wald p­value
0.38 ­0.38 1.50 0.22

Table H.4: Model for covariates

Covariate Level Class 1 Class 2 Wald p­value
𝑛𝑎𝑡 0 ­0.46 0.46 7.53 0.01

1 0.46 ­0.46
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I
Profile of each HBM class

for the final latent class model

Class 1 Class 2

Class size 0.66 0.34

Indicators

𝑠𝑢𝑠 1 0.07 0.40

2 0.13 0.31

3 0.14 0.12

4 0.42 0.14

5 0.25 0.03

Mean 3.65 2.11

𝑠𝑒𝑣 1 0.08 0.22

2 0.23 0.40

3 0.05 0.05

4 0.43 0.26

5 0.20 0.07

Mean 3.45 2.56

𝑏𝑒𝑛 1 0.05 0.35

2 0.20 0.45

3 0.08 0.06

4 0.56 0.13

5 0.12 0.01

Mean 3.49 2.00

Covariates

𝑛𝑎𝑡 0 0.34 0.77

1 0.66 0.23
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J
ProbMeans output of each HBM class

for the final latent class model

Class 1 Class 2

Class size 0.66 0.34

Indicators

𝑠𝑢𝑠 1 0.21 0.79

2 0.48 0.52

3 0.73 0.27

4 0.82 0.18

5 0.95 0.05

𝑠𝑒𝑣 1 0.38 0.62

2 0.55 0.45

3 0.53 0.47

4 0.76 0.24

5 0.86 0.14

𝑏𝑒𝑛 1 0.22 0.78

2 0.45 0.55

3 0.63 0.37

4 0.90 0.10

5 0.98 0.02

Covariates

𝑛𝑎𝑡 0 0.46 0.54

1 0.85 0.15
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K
Classification output of LatentGOLD

𝑛𝑎𝑡 𝑠𝑢𝑠 𝑠𝑒𝑣 𝑏𝑒𝑛 ObsFreq Modal Class 2 Class 2
0 1 1 1 2 2 0.01 0.99
1 1 1 1 1 2 0.04 0.96
0 1 1 2 1 2 0.02 0.98
0 1 1 4 1 2 0.17 0.83
1 1 1 4 1 1 0.57 0.43
0 1 2 1 3 2 0.01 0.99
0 1 2 2 3 2 0.03 0.97
1 1 2 2 2 2 0.19 0.81
0 1 2 4 1 2 0.26 0.74
1 1 2 5 1 1 0.87 0.13
0 1 3 1 1 2 0.02 0.98
0 1 3 3 1 2 0.16 0.84
0 1 4 1 1 2 0.03 0.97
0 1 4 2 3 2 0.09 0.91
1 1 4 4 2 1 0.86 0.14
0 1 5 2 2 2 0.15 0.85
0 1 5 4 1 1 0.63 0.37
0 2 1 1 1 2 0.02 0.98
0 2 1 2 1 2 0.05 0.95
1 2 1 2 1 2 0.26 0.74
0 2 2 2 3 2 0.09 0.91
1 2 2 2 3 2 0.37 0.63
1 2 2 3 1 1 0.65 0.35
0 2 2 4 1 2 0.47 0.53
1 2 2 4 1 1 0.85 0.15
1 2 2 5 1 1 0.95 0.05
0 2 4 1 3 2 0.08 0.92
0 2 4 2 2 2 0.21 0.79
0 2 4 3 2 2 0.46 0.54
1 2 4 3 1 1 0.84 0.16
0 2 4 4 3 1 0.72 0.28
1 2 4 4 3 1 0.94 0.06
1 2 5 3 1 1 0.90 0.10
1 2 5 5 1 1 0.99 0.01
1 3 1 1 1 2 0.23 0.77
1 3 1 4 1 1 0.90 0.10
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𝑛𝑎𝑡 𝑠𝑢𝑠 𝑠𝑒𝑣 𝑏𝑒𝑛 ObsFreq Modal Class 2 Class 2
0 3 2 1 2 2 0.07 0.93
0 3 2 2 1 2 0.20 0.80
0 3 2 3 1 2 0.43 0.57
1 3 2 4 4 1 0.94 0.06
0 3 3 3 1 1 0.56 0.44
1 3 4 2 2 1 0.82 0.18
1 3 4 3 1 1 0.93 0.07
0 3 4 4 1 1 0.87 0.13
1 3 4 4 2 1 0.98 0.02
1 3 5 4 1 1 0.99 0.01
1 3 5 5 2 1 1.00 0.00
1 4 1 1 1 2 0.44 0.56
0 4 1 2 1 2 0.27 0.73
1 4 1 2 3 1 0.71 0.29
0 4 1 3 1 1 0.54 0.46
0 4 1 4 2 1 0.78 0.22
0 4 2 1 1 2 0.17 0.83
1 4 2 1 1 1 0.57 0.43
1 4 2 2 1 1 0.80 0.20
0 4 2 4 2 1 0.86 0.14
1 4 2 4 7 1 0.98 0.02
0 4 3 1 1 2 0.26 0.74
0 4 3 2 1 1 0.52 0.48
1 4 3 2 2 1 0.87 0.13
1 4 4 1 1 1 0.79 0.21
0 4 4 2 4 1 0.65 0.35
1 4 4 2 2 1 0.92 0.08
1 4 4 3 1 1 0.97 0.03
0 4 4 4 6 1 0.95 0.05
1 4 4 4 4 1 0.99 0.01
1 4 4 5 2 1 1.00 0.00
1 4 5 2 1 1 0.95 0.05
0 4 5 4 1 1 0.97 0.03
1 4 5 4 1 1 0.99 0.01
0 4 5 5 2 1 0.99 0.01
1 5 2 2 1 1 0.91 0.09
0 5 2 4 1 1 0.94 0.06
1 5 2 4 1 1 0.99 0.01
1 5 2 5 1 1 1.00 0.00
1 5 3 4 1 1 0.99 0.01
1 5 4 2 2 1 0.97 0.03
1 5 4 4 7 1 1.00 0.00
1 5 4 5 1 1 1.00 0.00
0 5 5 1 3 1 0.72 0.28
0 5 5 2 1 1 0.89 0.11
0 5 5 4 5 1 0.99 0.01
1 5 5 4 1 1 1.00 0.00
1 5 5 5 1 1 1.00 0.00
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M
NetLogo syntax

1 extensions [ nw ]
2

3 globals [
4 loc
5 cwd
6 pol
7 proportion­history
8 ]
9

10 turtles­own [
11 ;; demographic characteristic: nationality
12 nationality
13

14 ;; specification of agent's perception on COVID­19 and mask­wearing based
on Heatlh Belief Model↪

15 HBM­class
16

17 ;; decision based on the decision rule, considering multiple factors
18 decision
19

20 ;; which friends­family group an agent is in
21 friends­family­group
22

23 ;; an agent­set of friends and family of an agent
24 friends­family
25

26 ;; an agent­set of x nearest agents that is observed by an agent
27 people­observed
28

29 ;; specificaiton of which agents are the family­friend
30 friends­family­observed
31

32 ;; specification of which agents are random people observed by an agent
33 random­people­observed
34

35 ]
36

37

38 to setup
39

40 clear­all
41

42 let number­of­groups number­of­people / number­of­friends­family

67



68 M. NetLogo syntax

43 let group­number 0
44

45 while [ group­number < number­of­groups ] [
46 set group­number group­number + 1
47 let member 0
48

49 let direction random 360
50 let x random­xcor
51 let y random­ycor
52

53 while [ member < number­of­friends­family ] [
54 create­turtles 1 [
55 ;; if n = number­of­friends­family
56 ;; all members are randomly positioned on a n*n area
57 setxy x + random­float number­of­friends­family / 2 y +

random­float number­of­friends­family / 2↪

58

59 ;; all members in one group move in the same direction
60 set heading direction
61

62 ;; assign group­number to each member
63 set friends­family­group group­number
64

65 ]
66 set member member + 1
67 ]
68

69 ]
70

71 ask turtles [ set friends­family turtles with [ friends­family­group = [
friends­family­group ] of myself ] ]↪

72

73 ;; set initial mask­wearing decision and HBM Class
74 ask turtles [
75 set decision 0
76 set HBM­class 2
77 ]
78 ask n­of ( initial­proportion­of­mask­wearers * number­of­people )

turtles [↪

79 set decision 1
80 ]
81 ask n­of ( HBM­class­1­proportion * number­of­people ) turtles [
82 set HBM­class 1
83 ]
84

85 ask turtles [ set color ifelse­value ( decision = 0 ) [ red ] [ green ] ]
86

87 set loc ifelse­value ( location = ”outdoor” ) [ ­1 ] [ 1 ]
88 set cwd ( ifelse­value
89 crowd­level = ”low” [ 0 ]
90 crowd­level = ”medium” [ 1 ]
91 [ 2 ])
92 set pol ifelse­value ( policy = ”voluntary” ) [ ­1 ] [ 1 ]
93

94 set proportion­history []



69

95 set proportion­history lput initial­proportion­of­mask­wearers
proportion­history↪

96

97 reset­ticks
98

99 end
100

101 to go
102

103 ;ask one­of turtles [
104

105 foreach sort­on [ who ] turtles [
106 the­turtle ­> ask the­turtle [
107

108 forward 1
109

110 ;; set reference groups
111 set people­observed min­n­of number­of­people­observed other turtles

[ distance myself ]↪

112 set random­people­observed people­observed with [
friends­family­group != [ friends­family­group ] of myself ]↪

113 set friends­family­observed people­observed with [
friends­family­group = [ friends­family­group ] of myself ]↪

114

115 ;; reference groups' mask­wearing proportion
116 let prd ( count random­people­observed with [ decision = 1 ] ) /

count random­people­observed * 100↪

117 let pff ifelse­value ( count friends­family­observed = 0 ) [ 0.5 ] [
( count friends­family­observed with [ decision = 1 ] ) / count
friends­family­observed * 100 ]

↪

↪

118

119

120 ;; evaluate reference groups
121 ;; utility
122 let v­ext ( beta­prd * prd + beta­pff * pff + beta­loc * loc +

beta­cwd * cwd + beta­pol * pol )↪

123 let v ifelse­value ( HBM­class = 1 ) [ v­ext ­ beta­HBM ] [ v­ext +
beta­HBM ]↪

124 ;; probability
125 let p ( exp v / ( 1 + exp v ) )
126

127 ;; update decision
128 let r random­float 1
129 set decision ifelse­value ( r < p ) [ 1 ] [ 0 ]
130

131 ;; DEBUG
132 if ticks = 99999 [
133 print prd
134 print pff
135 print v
136 print p
137 print r
138 ]
139 set color ifelse­value ( decision = 0 ) [ red ] [ green ]
140

141
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142 ]
143 tick
144

145 set proportion­history lput ( count turtles with [ decision = 1 ] /
count turtles ) proportion­history↪

146

147 if ticks >= 100000 [stop]
148

149 ]
150

151

152

153 ;tick
154

155 end
156

157

158 to calculate­initial­proportion
159

160 ; clear­all
161

162 ;; transform literal to coded values
163 set loc ifelse­value ( location = ”outdoor” ) [ ­1 ] [ 1 ]
164 set cwd ( ifelse­value
165 crowd­level = ”low” [ 0 ]
166 crowd­level = ”medium” [ 1 ]
167 [ 2 ])
168 set pol ifelse­value ( policy = ”voluntary” ) [ ­1 ] [ 1 ]
169

170 let prd 76
171 let pff 76
172 ;https://covidmap.umd.edu/map/results.html
173

174 ;; utility
175 let v­ext ( beta­prd * prd + beta­pff * pff + beta­loc * loc + beta­cwd *

cwd + beta­pol * pol )↪

176 let v­HBM­1 v­ext ­ beta­HBM
177 let v­HBM­2 v­ext + beta­HBM
178

179 ;; probability
180 let p­HBM­1 ( exp v­HBM­1 / ( 1 + exp v­HBM­1 ) )
181 let p­HBM­2 ( exp v­HBM­2 / ( 1 + exp v­HBM­2 ) )
182

183 set initial­proportion­of­mask­wearers precision ( HBM­class­1­proportion
* p­HBM­1 + ( 1 ­ HBM­class­1­proportion ) * p­HBM­2 ) 2↪

184

185 end
186

187 to reset­initial­proportion
188

189 set initial­proportion­of­mask­wearers 0.5
190

191 end
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