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Abstract 

Freight transport plays a critical role in supporting global trade, with multimodal transport systems modelling 

gaining importance due to their potential to optimize efficiency and sustainability. Accurately modeling these 

multimodal freight chains is essential for infrastructure planning and policy-making. Yet, it remains a 

persistent challenge due to fragmented datasets, limited granularity, and the absence of observed multimodal 

chain-level data. Traditional modeling approaches, particularly heuristic-based methods, often struggle to 

incorporate real-world operational constraints such as port selection logic and cargo handling requirements. 

Moreover, these models are typically inflexible and computationally intensive. 

This research seeks to develop an adaptive multimodal freight chain model that addresses these limitations. 

Specifically, it introduces a practical path construction framework that integrates port selection based on 

geographic and functional suitability, aligning cargo handling requirements with port capabilities during the 

construction of mode chains. This research also tries to address a gap in the literature by applying machine 

learning to the estimation of multimodal freight flows, a domain traditionally dominated by heuristic and 

optimization-based methods. To estimate freight demand distribution across the generated chains, this study 

explores the use of machine learning, particularly the Expectation-Maximization (EM) algorithm, to leverage 

the abundant but often unstructured transport data available. The EM model enables demand share 

prediction without relying on labeled training data, reducing the calibration burden and enhancing model 

responsiveness to observed transport flows. 

The proposed modeling framework is applied to a case study based on the NEAC Mode Chain Builder system 

for inter-country freight movements between the Netherlands and Belgium, two countries with high 

multimodal connectivity and the largest ports in Europe. The results demonstrate the model’s ability to 

generate valid mode chain alternatives and to significantly reduce deviations between predicted and 

observed freight flows, particularly for sea and rail segments. While some deviation increases occur in other 

segments, these are outweighed by the overall improvement in prediction accuracy. The EM model also 

shows stable convergence behavior, confirming its potential under data-limited conditions. However, residual 

deviations suggest that external factors, such as data incompleteness or behavioral uncertainties, still limit 

full accuracy. 

This study highlights the potential of combining graph search algorithms with unsupervised learning to 

enhance multimodal freight chain modeling, especially under data-constrained conditions. It contributes both 

a methodological and practical solution for building data-driven multimodal freight transport models that better 

reflect operational realities and observed empirical data that can be used to improve the freight transport 

planning and decision-making process. 
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Chapter 1.  Introduction 

 

This chapter establishes the foundation of the research by outlining the broader context and background 

behind the study. It clarifies the significance of addressing current challenges in multimodal freight transport 

modelling and positions the research between the existing studies of the multimodal freight chain modelling 

domain. By presenting the key rationale, knowledge gaps, and overall direction of the study, this chapter sets 

the stage for the detailed analysis and methodology that follow. 

 

1.1 Background 
Freight transport is the key component of global supply chains, enabling the movement of goods across 

cities, countries, and continents. Over the past decades, freight volumes have grown rapidly and are 

projected to continue rising in the coming years (IEA, 2002). Key drivers of this growth include shifting 

consumer demand and evolving trade patterns (Riet, et al., 2004), supported by global economic growth, 

trade liberalization (Hayakawa, et al., 2018), digitalization (e.g., e-commerce, social media), and 

infrastructure development (US FHWA, 2020). According to the European Environment Agency (2024), the 

total freight transport volume in the 27 European Union (EU) member states reached 3,469 billion tonnes-

kilometres in 2022, representing a 44.6% increase compared to 1995. This growth occurred despite major 

disruptions, including the economic crises of 1998 and 2008 and the COVID-19 pandemic between 2020 and 

2022. 

In Europe, a significant portion of freight shipments are transported through multimodal transport rather than 

direct unimodal schemes. Multimodal transport is an integrated system that combines different modes (such 

as road, rail, air, and sea) to enable seamless, efficient, and sustainable movement of passengers and freight 

(IRU, 2025). A survey conducted by French ECHO indicates that approximately 47% of freight demand is 

transported via multimodal transport chains, while 46% relies on a single mode, and the remaining 7% falls 

into other categories (Guilbault, 2008). The preference for multimodal transport chains is primarily driven by 

the lack of direct connections between certain origin-destination pairs, making unimodal transport not always 

feasible (Huber, 2017). The Eurostat data in 2025 also reports the same insights where the maritime transport 

accounts for 67.4% of the total freight volume in the EU. Since maritime transport only connects ports, 

additional modes are required for first-mile connections from the origin point to the port and for last-mile 

delivery from the port to the final destination. Hence, it creates a complex multimodal freight chain network 

across countries within EU territory.  

In parallel, the EU is also committed to promoting a more sustainable form of mobility. This goal can be 

achieved through multimodal transport, which strategically combines multiple transport modes to maximize 

their individual strengths while minimizing their limitations. To support this vision, the European Commission 

is actively pursuing a multimodality policy by improving the integration of transport modes and ensuring 

interoperability at all levels of the transport system (European Union, 2023). This policy direction is likely to 

increase the demand for multimodal freight chain modeling in the future. As a result, developing an efficient 

and adaptable system for multimodal freight transport modeling is becoming increasingly important, as it 

more accurately reflects the realities of freight movement and supports the optimization of logistics, 

infrastructure planning, and policy decision-making process. 

Existing approaches to multimodal freight transport modeling are mostly based on optimization methods, 

which aim to identify the most efficient transport chains by minimizing factors such as cost, time, or emissions. 
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Techniques such as genetic algorithms (Okyere, et al., 2022), bilevel programming (Yamada & Febri, 2015), 

dynamic programming (Liu, 2023), and heuristics have been widely applied (Yamada & Febri, 2015), often 

combined with simulation to enhance realism. For example, Bok et al. (2017) developed a corridor choice 

model within the Netherlands’ BasGoed system, applying route enumeration and a Multinomial Logit model 

to estimate demand shares. While effective in certain contexts, these methods depend heavily on predefined 

assumptions and generalized costs, making them less adaptable to the complex and dynamic nature of 

multimodal freight flows. 

The recent growing approaches applied for freight modelling are big data analytics and machine learning. So 

far, the applications are mainly for path design (Wang & Fu, 2022), demand generation prediction (Lim, et 

al., 2022), demand forecasting (Salais-Fierro et al., 2022; Lopez et al., 2019; Peng et al., 2024; Liu et al., 

2023; Liachovicius et al., 2023), mode choice prediction (Uddin et al., 2021; Ahmed and Roorda, 2022; Xu 

et al., 2024), and demand assignment optimization (Huang et al., 2014; Polson et al., 2017; Zhao et al., 

2017), with studies consistently showing that machine learning outperforms traditional methods in predictive 

accuracy. However, despite this progress, the use of machine learning to estimate freight flows across entire 

multimodal transport chain networks remains largely unexplored. This is a critical gap, as current optimization 

and statistical approaches often struggle with fragmented data, high dimensionality, and the lack of observed 

chain-level datasets. 

This research addresses this gap by investigating the integration of machine learning into the NEAC Mode 

Chain Builder system, which currently relies on heuristic-based path construction. The proposed approach 

seeks to leverage available but fragmented freight statistics to generate a predicted multimodal freight chain 

database. By learning hidden relationships across incomplete datasets, machine learning can help 

approximate how freight flows are distributed along complex modal sequences. This integration is expected 

to reduce dependence on rigid heuristics, improve demand flow estimation, and support more accurate, data-

driven decision-making for multimodal freight transport planning. 

 

1.2 Problem Definition and Scope 
The multimodal freight chain modelling process in this research will use NEAC Mode Chain Builder (MCB) 

as the case study object. Hence, the model will be designed to comply with the available input data format, 

output requirements, and parameter structure of the NEAC database format. NEAC itself is a multimodal, 

network-based simulation system developed to analyze freight transport flows across Europe. It comprises 

two key components: the Mode Chain Builder and the NEAC model itself. The Mode Chain Builder model is 

used to construct a mode chain database that represents multimodal transport chains by integrating various 

types of transport data, networks, and cost information. This model is developed separately from the main 

NEAC model because no existing data source currently provides transport data in the form of complete 

multimodal chains. MCB generates sets of feasible multimodal transport chains between production and 

consumption point (region) pairs. These chains represent the sequences of transport modes (involving road, 

rail, inland waterway, and maritime transport mode options) and terminal connections that freight can take 

across Europe.  

 

Figure 1. Modelling process in the existing Mode Chain Builder 

Mode chain 
construction using

heuristics (pre-defined
rules) approach

Estimate demand share 
per path using MNL 

function

Calibration process by
comparing the results

against actual historical
data
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The mode chain database construction process within the Mode Chain Builder system comprises three major 

steps, as depicted by Figure 1: mode chain construction, demand share estimation, and calibration process 

to compare the estimation results against the actual historical data. The model development process in this 

research will follow this structure as detailed below: 

1. 1st Phase: Mode Chain Construction  

The objective of this phase is to generate a set of possible mode chains for each production zone, 

consumption zone, and commodity type pair, based on the available facilities (nodes) and the 

connections between them by mode type (edges). The resulting dataset serves as a key input for the 

subsequent demand share estimation phase. 

2. 2nd Phase: Method for Demand Share Estimation  

This phase aims to estimate the demand share distribution across all mode chain alternatives generated 

in Phase 1. It also incorporates the calibration process, making the estimation more data-driven rather 

than treating estimation and calibration as separate steps. By integrating historical transport data from 

the outset, this approach is expected to reduce the calibration challenges and improve the reliability of 

the demand share output. 

The existing Mode Chain Builder system faces a practical gap in its ability to adapt to complex, data-rich 

environments due to its reliance on a rigid heuristic-based approach. The current Mode Chain Builder system 

use pre-defined rules (heuristic) approach to generate freight transport chains by processing trade data at 

the national level, disaggregating it regionally, and assigning routes through a sequence of port and terminal 

selections governed by predefined rules. While this method has enabled large-scale estimations, it presents 

several limitations. For instance, the model limits the number of ports considered by applying a bounding box 

rule and omits factors such as cargo-type compatibility in port selection. This method, while effective for 

large-scale estimations, reduces the model’s realism and limits its capacity to reflect real-world freight 

transport movements. 

The NEAC system models freight movement within and across the 27 EU member states. It also captures 

international freight flows, particularly maritime transport, between EU countries and their global trade 

partners (e.g., Asia, the Americas, and Africa). However, due to limitations in research duration and 

computational capacity, this study focuses on just two neighboring countries (the Netherlands and Belgium) 

to represent inter-country freight movement. These countries were selected because they have the two 

largest ports in Europe: Rotterdam (Netherlands) and Antwerp-Bruges (Belgium), which together handled a 

combined volume of 641 million tonnes in 2024 (Eurostat, 2024). Moreover, both countries demonstrate 

strong multimodal connectivity, as shown by their significant non-road modal shares: 22.4% in Belgium and 

47.2% in the Netherlands (Eurostat, 2023). Given that this study aims to model multimodal freight chain flows, 

the presence of decent non-road transport connections within the country is essential. 

 

1.3 Research Objectives 
This research attempts to find ways to develop a multimodal freight transport chain model that incorporates 

a practical port selection process and accounts for cargo handling requirements within the mode chain 

construction phase. Additionally, it explores the use of machine learning to leverage the abundant, though 

still unstructured, freight transport data for predicting demand flows within the multimodal chain. This machine 

learning integration into the model has the potential to simplify and accelerate the data calibration process 

while improving model’s predictive accuracy. Several sub-objectives are defined to support the main 

objective mentioned above: 

1. To review commonly used methods for constructing and predicting multimodal freight chain data. 
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2. To identify a suitable mode chain construction approach that integrates comprehensive port selection 

and aligns cargo handling requirements with port capabilities. 

3. To implement the proposed mode chain construction model within the existing system architecture. 

4. To evaluate appropriate machine learning techniques for predicting demand flow distribution in the 

multimodal freight chain model. 

5. To develop and integrate a demand flow distribution model with the mode chain construction process. 

6. To assess the overall performance of the proposed model in predicting the multimodal freight chains 

data in comparison to the actual available freight data. 

 

1.4 Research Question 
To achieve all the objectives mentioned in the previous section, a main research question is proposed. The 

main research question will be jointly answered by the following sub-questions: 

How can a multimodal freight chain model that incorporates routing and infrastructure compatibility be 

developed, and how can machine learning be integrated to enhance its predictive performance in demand 

flow distribution? 

 
Table 1. List of Research Sub-questions 

 

The research is structured around six sub-questions, each addressed through a tailored methodological 

approach. The first two questions focus on identifying existing methods for multimodal freight chain modelling 

and evaluating suitable approaches for mode chain construction, both answered through a comprehensive 

literature review and qualitative analysis. Questions three and five are tackled through model development 

in Python, focusing on the construction of a mode chain builder and the integration of demand flow prediction 

using machine learning techniques. Meanwhile, question four explores the most appropriate ML techniques 

for predicting freight flow, relying on a literature review and qualitative assessment, and question six 

evaluates the accuracy of the proposed model by comparing predicted results with actual freight data. 

 

1.5 Research Framework 
The research framework outlines the approach used to develop a predictive model for multimodal freight 

transport activities between and within selected European countries. This study is systematically structured 
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to address the research objectives and questions presented in the previous sections. The research design 

follows a sequential process that includes a literature review to support method selection and identify the 

research gaps, quantitative data collection and preprocessing, model development, and subsequent 

validation and evaluation. This structured approach ensures the validity and reliability of the model outcomes. 

Chapter 2 provides the theoretical foundation for the study by reviewing existing literature on multimodal 

freight transport modelling and the use of machine learning in transport systems. It highlights the lack of 

research applying machine learning to multimodal chain construction and demand flow prediction, which 

leads to a research gap identification that will be addressed in this research. This chapter also provides the 

literature review results in exploring existing possible mode chain construction and demand share estimations 

as the steps to answer the first research question regarding the commonly used method for constructing 

and predicting multimodal freight chain data. 

Chapter 3 outlines the research design and methodological approach used to develop the multimodal freight 

chain model. The model development process in this research is divided into two main phases: mode chain 

data construction and demand flow prediction. This chapter opens by explaining the selected approaches to 

conduct both phases and the reasons behind the selection process. This will be the answer to the second 

and fourth research questions. Then, the explanation continues with the elaboration of data collection and 

preprocessing, model development, and the model validation process. The chapter ensures that each step 

is aligned with the research objectives and designed to produce reliable and interpretable outcomes. 

Firstly, Chapter 4 outlines an introduction to the NEAC Mode Chain Builder system as the case study object 

in this research. Then, the step-by-step development process is presented for both the mode chain 

construction and demand share estimation phases, using the approaches introduced in the previous chapter. 

It outlines the implementation of these phases in detail, including data preparation, model application, and 

validation. This development process addresses the third and fifth research questions. 

Chapter 5 presents the output of the developed model. It evaluates the model’s performance in representing 

actual observed data to answer the sixth research question. This chapter also discusses the key findings, 

challenges encountered, and insights gained. The chapter also examines the limitations faced during the 

modeling process, their potential impact on the model's output, and possible future solutions to address these 

issues. 

Finally, Chapter 6 summarizes the main findings and addresses the six research questions outlined in 

Chapter 1. It highlights the key contributions of the research, as well as the limitations of the developed model 

and its results. The chapter also provides several recommendations for future work, particularly aimed at 

overcoming the identified limitations. 
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Chapter 2.  Literature Review 

 

The previous chapter outlined the objective of this research to develop a new multimodal freight transport 

chain model that addresses parameter limitations in the existing system and explores its integration with 

machine learning methods. This literature review aims to examine existing research on multimodal freight 

transport modelling and the application of machine learning within this domain. The limitations of current 

approaches are discussed to identify the scientific gap and highlight the potential contributions of this study. 

This chapter also provides the elaboration of possible mode chain construction and demand share estimation 

approaches to be implemented in model development. 

 

2.1 Research Gap Identification 
This section presents the literature review results on the existing research regarding multimodal freight chain 

modelling and then proceeds with research gap identification that will be addressed in this research.  

 

2.1.1 Existing Research about Multimodal Freight Chain Modelling 

In Europe, a significant portion of freight shipments are transported through multimodal chains rather than 

direct unimodal schemes. A survey conducted by French ECHO indicates that approximately 47% of freight 

demand is transported via multimodal transport chains, while 46% relies on a single mode, and the remaining 

7% falls into other categories (Guilbault, 2008). The preference for multimodal transport chains is primarily 

driven by the lack of direct connections between certain origin-destination pairs, making unimodal transport 

unfeasible (Huber, 2017). Additionally, multimodal chains are preferred because they allow for greater 

efficiency by leveraging the advantages of different transport modes and vehicles within the chain (Konings, 

et al., 2008). 

The most common approach to multimodal freight chain modeling is the use of optimization models. These 

models aim to identify the optimal freight transport chain by minimizing factors such as cost, time, and 

emissions. They help determine the best combination of transport modes and infrastructure investments to 

support sustainable and efficient freight movement. Common optimization methods include Genetic 

Algorithms (Okyere, et al., 2022), Bilevel Programming (Yamada, et al., 2009), Optimization model (Yamada 

and Febri, 2015; Limbourg and Jourquin, 2009), Dynamic Programming (Liu, 2023), and heuristics (Yamada, 

et al., 2009). In their study, (Zhao, et al., 2018) even combines the optimization approach with a simulation 

approach. 

Bok et al. (2017) developed a corridor choice model for predicting container cargo transportation activities 

using a multimodal transport chain approach, as part of the Netherlands' strategic freight transport model 

(BasGoed). This study shares nearly 90% similarity with the NEAC case study addressed in this research. 

The model development included a route enumeration process to generate choice sets of potential transport 

chains. A Multinomial Logit model was then applied to estimate the probable demand share for each 

generated chain, using generalized transport costs and chain-specific constants as explanatory variables. 

The recent growing approaches applied for freight transport modelling are big data analytics and deep 

learning. So far, the utilization of machine learning in the domain of freight modelling has mainly been applied 

for path design (Wang & Fu, 2022), demand generation prediction (Lim, et al., 2022), demand forecasting 

(Salais-Fierro et al., 2022; Lopez et al., 2019; Peng et al., 2024; Liu et al., 2023; Liachovicius et al., 2023), 
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mode choice prediction (Uddin et al., 2021; Ahmed and Roorda, 2022; Xu et al., 2024), and demand 

assignment optimization (Huang et al., 2014; Polson et al., 2017; Zhao et al., 2017). Across all reviewed 

studies, machine learning models consistently outperform traditional approaches. This highlights a growing 

trend in which ML is primarily applied to enhance the predictive accuracy of freight flow prediction and 

modelling processes.  

 
Figure 2. Position of this Research Relative to the Existing Machine Learning Application in Mode Chain Modelling 

 

2.1.2 Research Gap Conclusion 

While machine learning has been increasingly applied in freight modeling, covering areas such as demand 

forecasting, mode choice prediction, and path optimization, its use for estimating freight flows across 

complete multimodal transport chain networks remains largely unexplored. Modelling chains approach is 

similar conceptually to network assignment, so it’s like the combination of the step 3 (mode split) and step 4 

(route assignment) of the classical transport modelling process. Traditional optimization and statistical 

models dominate this field, but they often struggle with the complexity of multimodal routes and the absence 

of detailed chain-level data. Machine learning, by contrast, offers the potential to infer hidden relationships 

between transport modes and generate a predicted multimodal freight chain database from the aggregated 

yet fragmented statistics currently available. By learning patterns across incomplete and high-dimensional 

datasets, ML can help approximate how freight flows are distributed along complex modal sequences, 

thereby addressing a major gap in existing modeling approaches. 

A central challenge in multimodal freight transport modeling is that available data is rarely chain-specific. 

While numerous datasets exist, they are typically aggregated at national or regional levels, inconsistently 

formatted, and incomplete, reflecting inputs from multiple stakeholders. Statistics are usually reported for 

single modes (e.g., road, rail, inland waterway, or maritime) rather than as connected multimodal sequences. 

As a result, existing data cannot directly capture how modes are linked across origin–destination regions, 

leaving the actual distribution of freight across multimodal chains unknown. Machine learning provides an 

opportunity to bridge this gap by using available partial data to reconstruct likely chain-level flows, effectively 

transforming fragmented inputs into a coherent multimodal chain database suitable for modeling and decision 

support. 

To address these limitations, this research investigates the feasibility of embedding machine learning into 

the NEAC Mode Chain Builder system, which currently relies on heuristic-based approaches. Integrating ML 

is expected to reduce reliance on fixed rules and instead leverage observed transport statistics to generate 

realistic mode chain alternatives and estimate demand flows. This approach allows the system to dynamically 

learn from existing aggregated datasets, producing a predicted multimodal freight chain database that better 



 

16 

reflects empirical transport patterns while supporting more accurate and data-driven decision-making in 

multimodal freight transport. 

 

2.2 Modelling Approaches and Methods 
The model development process in this research is divided into two main phases: mode chain data 

construction and demand flow prediction.  Following this structure, the method selection process is divided 

into two corresponding phases: 

1. Method for Mode Chain Construction  

The objective of this phase is to generate a set of possible mode chains for each production zone, 

consumption zone, and commodity type pair, based on the available facilities (nodes) and the 

connections between them by mode type (edges). The resulting dataset serves as a key input for the 

subsequent demand share estimation phase. 

2. Method for Demand Share Estimation  

This phase aims to estimate the demand share distribution across all mode chain alternatives generated 

in Phase 1. It also incorporates the calibration process, making the estimation more data-driven rather 

than treating estimation and calibration as separate steps. By integrating historical transport data from 

the outset, this approach is expected to reduce the calibration challenges and improve the reliability of 

the demand share output. 

 

2.2.1 Mode Chain Construction 

Another review process was conducted to explore several possible techniques that have been used in 

existing literature to construct and predict multi-modal freight transport chains. These techniques range from 

classical optimization methods to more adaptive, data-driven machine learning (ML) approaches. In this 

section, the mechanisms, strengths, and limitations of these possible methods will be discussed for selecting 

a suitable method in the context of NEAC’s mode chain builder. According to the literature review, there are 

three main approach categories commonly used to address path or route planning and construction 

problems: optimization, heuristics, machine learning, and classical algorithmic graph theory. 

 

3.2.1.1 Optimization Approach 

One of the foundational strategies is the use of optimization-based models, particularly those using Dijkstra’s 

algorithm combined with multi-objective optimization. For instance, Lu and Wang (2022) developed a multi-

layered transportation network and used Dijkstra’s algorithm to identify optimal routes based on cost, time, 

and risk, followed by aggregation via the Analytic Hierarchy Process (AHP). To address varying operational 

environments, Elbert et al. (2020) introduced a classification between dynamic and non-dynamic optimization 

approaches. Dynamic models adapt to changes in real-time (e.g., demand or infrastructure updates), while 

non-dynamic models rely on fixed parameters. This distinction is essential for multi-modal systems where 

real-time adaptability can significantly enhance performance but also increases computational requirements 

and data demands.  

However, the nature of optimization problems is typically to identify a single most optimal solution, such as 

the shortest, cheapest, or least risky route. In contrast, the objective of the MCB is not to optimize a single 

path, but to generate multiple plausible path alternatives that reflect actual freight transport behavior within 

the EU. This enables the system to capture route variability, incorporate uncertainty, and ultimately estimate 

the distribution of demand flows across a set of potential multi-modal chains rather than one deterministic 

route. 
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While optimization models are typically designed to identify the single most efficient route, they can be 

extended to generate multiple alternatives through techniques like k-shortest paths algorithms (Liu, et al., 

2018)  or multi-objective optimization with Pareto front exploration (Zheng, et al., 2024). However, even with 

these adaptations, optimization remains fundamentally goal-driven and deterministic, seeking 

mathematically optimal solutions based on predefined criteria. This orientation differs from the objective of 

the Mode Chain Builder, which aims to generate a set of plausible transport chain alternatives that reflect 

actual freight behavior across Europe. Rather than identifying a single best route, the Mode Chain Builder 

focuses on capturing behavioral variability and path diversity, enabling more accurate demand flow 

estimation across multiple multimodal chains. As such, while optimization approaches can support parts of 

the path generation process, they do not naturally accommodate the probabilistic, adaptive, and data-driven 

characteristics required for modeling real-world transport chain behavior at scale. 

 

3.2.1.2 Heuristics Approach 

In the domain of heuristic-based methods for route or chain construction, two approaches were identified: 

the Iterative Route Construction and Improvement (IRCI) algorithm proposed by Figliozzi (2009) and the Pair 

Insertion Algorithm (PIA) introduced by Mauttone and Urquhart (2008). Both were originally developed to 

solve routing problems by generating a single optimized route based on performance criteria such as travel 

time, user coverage, or structural feasibility. While not explicitly designed to produce multiple alternatives, 

these methods could be adapted to do so by varying parameters, initial conditions, or constraints across 

multiple runs. 

IRCI constructs initial routes using the Generalized Nearest Neighbor rule approach to build routes 

sequentially by inserting node one at a time based on the generalized cost function. Route improvement was 

then conducted once the initial routes were generated by doing route merging, reordering nodes, and time 

adjustments. On paper, this approach is applied to solve the Vehicle Routing Problem with Soft Time 

Windows (VRPSTW) problem. The main objective is to develop a flexible and efficient algorithm to solve the 

VRPSTW problem while minimizing travel distance, vehicles used, and late deliveries, which is similar to the 

optimization problem. 

PIA focuses on quickly generating diverse route sets by systematically inserting pairs of vertices rule (instead 

of single vertices) to build an optimal set of bus routes using network connection & travel cost data as input. 

PIA follows an iterative heuristic approach where the process begins with creating a new route following the 

shortest path between two points, then inserting it into an existing route to minimize cost increase while 

considering the number of transfers & round-trip duration. It continues until all demand is covered. 

In the context of a Mode Chain Builder, where the goal is to capture a set of plausible mode chain alternatives 

rather than a single best solution, such heuristic frameworks offer valuable building blocks. IRCI is particularly 

suited for constructing paths that balance operational criteria, while PIA provides a fast and flexible 

mechanism for building structurally sound chains. However, leveraging these methods to generate diverse 

outputs would require additional procedures beyond their original formulations. 

 

3.2.1.3 Machine-Learning Approach 

The machine learning domain for constructing and predicting freight transport chains has been growing in 

recent years because it offers greater adaptability and behavioral realism compared to traditional optimization 

models. At least three approaches were identified from the literature review process, including DBSCAN 

clustering (Joubert & Meintjes, 2016), reinforcement learning (Yoo, et al., 2023), and deep reinforcement 

learning (Holliday, 2025). 

The study by Joubert and Meintjes (2016) applied DBSCAN, an unsupervised clustering method, to GPS 

trajectory data to identify major stop locations, such as freight hubs or transshipment points. These clusters 
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were then used to infer activity chains and build a connectivity graph that reflects real-world freight movement. 

This approach is highly valuable for empirically reconstructing transport chains, especially when high-

resolution movement data are available. However, as it primarily serves to analyze observed behavior, it is 

better suited for retrospective studies rather than forward-looking predictive modeling unless combined with 

other methods. 

In contrast, reinforcement learning (RL) methods such as those explored by Yoo et al. (2023) focus on 

enabling an agent to learn optimal mode chain decisions through interaction with the transport environment 

to solve the Bus Network Design and Frequency Setting (BNDFS) problem. The variable decision consists 

of determining the optimal number of bus routes and their service frequencies. Their model used Q-learning, 

a value-based RL algorithm, to determine routing strategies that maximize cumulative rewards based on 

travel time minimization and share of demand served criteria. This method is well-suited for modeling 

adaptive decision-making in freight routing, particularly when route availability or preferences evolves for 

real-time or simulation-based planning environments. However, Q-learning is known to face scalability issues 

in large, high-dimensional networks, such as those in European freight systems. 

Holliday (2025) presents a Deep Reinforcement Learning (DRL) approach for urban transit network design, 

modeling the problem as a Markov Decision Process (MDP) and using a Graph Attention Network (GAT) 

combined with Proximal Policy Optimization (PPO). The model’s objective is to automatically generate bus 

routes and frequencies that minimize a composite cost function incorporating passenger travel time, operator 

costs, and penalties for unmet demand. The model learns to sequentially construct routes by deciding 

whether to extend or finalize a route based on a reward function. It incorporates rich node, edge, and global 

network features to guide decision-making.  

While originally applied to public transit, the method is highly relevant to freight mode chain construction, as 

it’s able to handle large input spaces and learn policies that balance multiple routing objectives across highly 

interconnected multi-modal networks. Nevertheless, DRL requires extensive training data and careful reward 

function design. 

In summary, DBSCAN provides a powerful tool for empirically deriving transport chain structures, RL and 

DRL offer more flexible, predictive frameworks capable of generating diverse and adaptive mode chain 

alternatives. While machine learning approaches offer powerful ways to learn adaptive and cost-aware 

routing strategies, they are inherently designed to produce a single optimal or most likely solution, not multiple 

plausible alternatives. To support demand flow distribution across several mode chains, additional 

mechanisms would be needed. 

 

3.2.1.4 Graph Search Algorithm: Path Enumeration 

The NEAC Mode Chain Builder aims to generate multiple plausible multimodal freight transport chains 

between origin-destination (OD) pairs and estimate demand flow distribution across these alternatives. This 

requires a system that is adaptive and capable of producing more than one valid route per OD pair. After 

reviewing the three alternative approaches, there is no a single approach that can meet the requirement and 

comply the characteristics of the existing Mode Chain Builder. Hence, the literature search was expanded 

into the classical graph search algorithm.  

Graph search algorithm is a broad term referring to any computational method designed to explore or traverse 

graphs to discover the relationship and/or connection between a collection of nodes, forming a route, path, 

or network (Pavicic, 2023). Graphs, which consist of nodes (also called vertices) and edges (connections 

between nodes), are widely used to model networks in a variety of contexts, as highlighted below: 

• Exploration: Finds all possible nodes or paths (not necessarily optimal). The commonly used 

algorithm for this case is BFS or DFS. 
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• Optimization: Finds the most optimal paths based on edge weights (distance, cost, etc). This type of 

problem usually uses Dijkstra’s, Bellman-Ford, or Yen’s algorithm. 

• Heuristic search: Prioritize routes using estimated cost. This one usually uses A* algorithm 

The optimization and heuristics domain have been discussed in the previous part. Thus, in this section, the 

exploration domain will become the focus since our goal is to find the algorithm that can enumerate all the 

possible path/mode chains.  

The use of the BFS algorithm for transport path construction has been widely used due to its ability to 

systematically explore all possible paths level by level, even though its applications are mostly for route 

optimization problems in urban transport, logistics scenarios, or network construction cases in general. 

Bernov (2023) developed a system to optimize waste transportation routes in Sidoarjo Regency using BFS 

and DFS algorithms. Their study compares the performance of both algorithms in terms of total distance and 

volume traveled to support more efficient waste collection. Another research conducted by Kartoirono et al. 

(2022) used BFS to enhance the efficiency of finding alternative bus routes.  

Studies have shown that BFS can be enhanced or combined with other algorithms to improve performance, 

such as the BFS Link Elimination (BFS-LE) approach for generating relevant truck routes while minimizing 

extraneous options. The research was conducted by Tahlyan and Pinjari (2020), who proposed a new 

method to evaluate route choice set generation by comparing algorithm-generated routes with observed 

freight truck routes for the same OD pair. They assessed the effectiveness of the Breadth-First Search with 

Link Elimination (BFS-LE) algorithm and found that spatial aggregation of trips can reduce computational 

effort but may require careful filtering of extraneous routes.  

BFS, along with DFS, is a fundamental algorithm in graph search, offering simple and flexible logic for route 

and network construction. Its general-purpose structure makes it widely applicable across various cases, 

with the ability to be adapted and customized based on specific requirements. BFS is particularly very useful 

in transport route construction due to its simplicity, speed, and reliability in finding the shortest paths. Its 

effectiveness can be further enhanced through algorithmic refinement and integration with complementary 

methods. Its flexibility also allows the model to be combined with a heuristic approach to accommodate 

systems that require a high degree of customization in mode chain construction logic. BFS allows for such 

flexibility, enabling the integration of techniques like link elimination (Tahlyan & Pinjari, 2020) to reduce 

computational complexity. Most importantly, BFS supports full enumeration of all possible path alternatives, 

which is the core requirement for constructing a complete mode chain alternatives dataset in the freight mode 

chain modelling process. 
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Table 2. Summary of Mode Chain Construction Possible Methods 

 

 

2.2.2 Demand Share Estimation 

The idea of demand share estimation is to estimate the demand flow distribution across the available mode 

chain alternatives accurately for each PC-commodity pair. The resulting demand flow estimates are then 

calibrated against actual aggregated transport data, such as national transport performance statistics and 

port-level data published by Eurostat. However, the calibration part is highly problematic because the model 

needs to adjust its parameters iteratively to match known transport data, but this process is hindered by the 

large matrix size (which slows processing). Additionally, aligning the flow distribution per chain with national 

single-mode statistics demands disaggregation, increasing the complexity. To reduce the complexity, this 

study tries to integrate the demand share estimation and calibration process to make the estimation more 

data-driven rather than treating the two processes as separate steps. By integrating historical transport data 

from the outset, this approach is expected to reduce the calibration challenges and improve the reliability of 

the demand share output. 

Given the system requirements, the method used for demand share estimation must be capable of handling 

large, multi-dimensional datasets. It should be able to recognize patterns within the available data, particularly 

since the historical data from Eurostat is provided in aggregate form at the country and facility levels, while 

the demand share needs to be estimated at the NUTS-3 regional level. The chosen method must use these 

identified patterns to predict the most likely demand share distributions that closely align with the observed 

historical transport data. These characteristics are very compatible with the benefits that are offered by 

machine learning (ML). ML is particularly beneficial for systems characterized by large, complex, and high-

dimensional datasets, and it excels in environments with big data where pattern recognition and predictive 

analytics are needed. Hence, the method selection process for the demand share estimation phase will be 

specific on finding the most suitable machine learning method to employ. Since the existing Mode Chain 
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Builder uses the Multinomial Logit (MNL) model to determine demand share across mode chains, the method 

selection in this study focuses on exploring machine learning techniques that are commonly used to replace 

or enhance the traditional MNL approach. 

 

2.2.2.1 Supervised Learning Methods 

Several studies were found that employ machine learning to conduct the mode split process. Uddin et al. 

(2021) assessed the effectiveness of various machine learning classifiers for modeling freight mode choice, 

using data from the 2012 Commodity Flow Survey, supplemented with spatial attributes. The study compares 

prediction accuracy between traditional Multinomial Logit model with eight machine learning methods: Naïve 

Bayes (NB), Support Vector Machine (SVM), Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), 

Classification and Regression Tree (CART), Random Forest (RF), Boosting, and Bootstrap Aggregating 

(Bagging). The results reveal that tree-based ensemble classifiers, especially Random Forest, provide the 

most accurate predictions.  

Xu et al. (2024) integrated interpretable machine learning (ML) methods (tree-based methods like CatBoost 

and SHapley Additive exPlanations) with traditional multinomial logit (MNL) models to refine the MNL model 

specification, aiming to improve both predictive accuracy and understanding of key factors influencing freight 

transportation decisions. They considered 3 tree-based methods in their study: Random Forest (RF), 

XGBoost, and CatBoost, and then compare the performance to find the best method to refine the multinomial 

logit (MNL) model specifications. CatBoost was found to be the best-performing method in terms of predictive 

accuracy. In another research, Ahmed and Roorda (2022) applied the Random Forest algorithm and 

compared its performance with traditional multinomial and mixed logit models. The findings show that the 

random forest method provides higher prediction accuracy than the discrete choice models. 

Lee et al. (2018) investigated the use of four artificial neural network (ANN) models (BPNN, RBFN, PNN, 

and CPNN) for mode choice prediction and compared their performance with the conventional multinomial 

logit model (MNL). Using 10-fold cross-validation, they found that ANN models achieved higher prediction 

accuracy (around 80%) compared to MNL (70%). Among the ANNs, the Probabilistic Neural Network (PNN) 

performed best, particularly in predicting underrepresented transport modes. The study highlights the 

potential of ANNs as effective non-parametric alternatives for discrete choice modeling. 

Based on the above literature review results, it’s seen that the most common method to use as the refinement 

of the Multinomial Logit model is Random Forest (Uddin et al., 2021; Xu et al., 2024; Ahmed and Roorda, 

2022) and Neural Network (Uddin et al., 2021; Lee et al., 2018). According to Coursera (2025), Random 

Forests (RF) is good at handling large tabular datasets, generalizing well, and offering guidance for problem-

solving, but it can be slow and less transparent in how it make predictions. On the other hand, Neural Network 

(NN) is highly flexible, can handle various data formats and incomplete datasets, but is more prone to under- 

or overfitting. It is powerful at recognizing patterns and deciding the best course of action to accomplish a 

task by weighing all the available options and learning from past mistakes. 

Since, in the Mode Chain Builder context, the estimated demand flow distribution needs to align with historical 

data, Neural Networks (NN) seem suitable to be implemented due to its ability to incorporate domain-specific 

constraints formulation. This historical data can be embedded as a set of constraints during the model training 

process. However, fundamentally, NN is a supervised learning method that works well at instance-level 

learning, where every instance data (X) should have its corresponding observed value (Y) to let the model 

learn and identify the hidden pattern within the data so it can predict Y-pred given different X. Neural Network 

utilizes the characteristics of provided features data as the input to drive predictions ( 𝑦_𝑝𝑟𝑒𝑑 =

 𝑓(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) ), and then use the constraints to calculate the model error (loss) to inform the network how far 

its predictions deviate from the expected aggregate data. The defined constraints only affect the loss function 
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and don’t directly influence the prediction mechanism. Hence, NN will probably perform poorly when the data 

learning supervision is only at the aggregate level, like the characteristics of the object of this research.  

 

2.2.2.1 Semi-Unsupervised Learning Methods 

Since instance-level learning is not feasible due to the lack of observed instance-level data, the exploration 

of suitable methods for the demand estimation phase has shifted from supervised to semi-supervised 

learning approaches. One of the unsupervised learning methods that allows the formulation of domain-

specific constraints is the Expectation-Maximization (EM) algorithm. It’s a statistical technique often used in 

machine learning for parameter estimation in models with latent variables. In freight transport modelling, 

machine learning methods are increasingly applied to improve forecasting, routing, and operational 

efficiency. However, the specific use of EM algorithms in the multimodal freight chain modelling domain is 

not directly addressed in the available research. 

The application of maximization in freight transport modelling is still limited to the classification problem to 

solve the Vehicle-Commodity Matching Problem (VCMP) to minimize the total transportation cost by 

estimating the parameter of the Gaussian Mixture Model (Sun, et al., 2021) and to identify the unobservable 

latent psychological variables (e.g., attitudes) in transport choice modelling (Sohn, 2017). Wang (2022) also 

utilized the EM algorithm to fill in missing data in the operations’ historical datasets for his study. EM 

transforms incomplete observed data into statistically inferred complete datasets to support more reliable 

decision-making that, in turn, improves the operations’ efficiency, order processing time, cost savings, and 

more optimal path finding. So, in this study, the EM algorithm serves as both a data recovery technique and 

an optimization enabler.  

In another study, Yoon (2025) applied the EM algorithm to optimize the likelihood of observed sensor data 

by treating the robot’s trajectory as a latent (hidden) variable. Firstly, the algorithm estimates the latent 

trajectory distribution given current model parameters and then updates the model parameters to maximize 

the likelihood based on that estimated variable's value. Although the domain of the study is not directly related 

to multimodal freight chains, the underlying principle, that treating unknown or missing data as latent variables 

estimated using available observed data, can also be applied to the demand share estimation in this 

research.  

Based on the literature review, the author concludes that the Expectation-Maximization (EM) algorithm is 

well-suited for developing the demand share estimation model. In this context, the demand share of each 

path is treated as a latent (hidden) variable, estimated iteratively using aggregated historical freight transport 

data as ground truth. These aggregated data serve as constraints that shape the objective function and guide 

the prediction of the latent variables. The algorithm performs multiple iterations to minimize the deviation 

between the estimated parameters and the actual values, ensuring that the final estimates closely reflect the 

true demand shares and align with the observed aggregate statistics. 
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Table 3. Summary of Demand Share Estimation Possible Methods 

 

. 

2.3 Introduction to the Selected Modelling Methods 
In this section, a brief explanation of basic principles and general steps will be presented for both selected 

methods: Breadth-First Search and Expectation-Maximization algorithm. 

 

2.3.1 Breadth-First Search (BFS) Algorithm 

Breadth-First Search (BFS) is a fundamental graph traversal algorithm designed to explore the nodes and 

edges of a graph or tree in a systematic, level-by-level manner, starting from a specified source node. BFS 

explores all immediate neighbors before progressing to deeper layers of the structure McKee (2024). This 

means every node at a certain depth is visited before moving to nodes that are further away from the starting 

point. This strategy makes BFS particularly effective for tasks where examining all possible paths and 

connections at each stage is essential, such as finding the shortest path in an unweighted network or 

mapping routes through a maze. The primary goal of BFS is to provide a structured, exhaustive, and efficient 

exploration of a graph or tree.  
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McKee (2024) explains that the key components of BFS include the use of a queue and a mechanism to 

track visited nodes. The queue is central to the algorithm’s operation, it maintains the list of nodes that need 

to be explored and processes them in a first-in, first-out (FIFO) order. This ensures that nodes are explored 

in the exact sequence in which they are discovered, preserving the level-by-level approach. Simultaneously, 

a list or set of visited nodes helps prevent revisiting nodes, critical when dealing with graphs that may have 

cycles or multiple paths back to the same node. This component avoids infinite loops and redundant checks, 

allowing BFS to function efficiently and terminate properly. 

Breadth-First Search (BFS) explores a graph in a level-wise manner, beginning at a specified starting node 

and expanding outward based on distance. The algorithm follows these steps according to celerdata.com 

(2024):  

1. Initialize by marking the starting node as visited 

and placing it in a queue. 

2. Dequeue a node, visit it, and perform any 

required operations. 

3. Enqueue all unvisited neighboring nodes of the 

current node and mark them as visited. 

4. Repeat steps 2 and 3 until the queue is empty, 

indicating that all reachable nodes have been 

explored. 

This approach systematically visits each node’s neighbors before moving to the next level, continuing until 

either all nodes are explored, or a target node is found. BFS serves as a foundational technique for more 

advanced algorithms such as Dijkstra’s algorithm (for shortest pathfinding) and Prim’s algorithm (for minimum 

spanning trees). 

 

2.3.2 Expectation-Maximization Algorithm  

The Expectation-Maximization (EM) algorithm is commonly used to compute maximum likelihood (MLE) 

estimates in situations where some data is missing. MLE is a statistical method used to determine the 

parameter values of a model that maximizes the likelihood of observing the given data. In other words, it 

finds the settings that make the observed data most probable to happen. The Expectation-Maximization (EM) 

algorithm is an iterative technique used in unsupervised machine learning to estimate unknown parameters 

in statistical models, especially when dealing with incomplete or hidden data.  

Haugh (2015) explains that the EM algorithm 

is also applicable in cases involving latent 

(unobserved) variables or data that were never 

meant to be observed directly. In such 

scenarios, the latent variables are treated as 

missing, allowing the EM procedure to be 

applied. Latent variables are unseen 

components of the data that indirectly 

influence the observed outcomes, and their 

values are estimated using the information 

available from the visible data (geeksforgeeks, 

2025). The algorithm has various applications 

across statistical fields. It is frequently applied 

in machine learning and data mining, as well 

Figure 3. Sequential node visit procedure of BFS 
(source: hackerearth.com, 2025) 

Figure 4. EM Algorithm Flowchart  
(source: geeksforgeeks.com, 2025) 
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as in Bayesian statistics, where it is often used to estimate the parameters of data distributions.  

According to geeksforgeeks.org (2025), below is the step-by-step of how the EM algorithm works: 

1. Initialization:  Define a specific initial value as the starting reference for the model to run the algorithm. 

2. E-step (Expectation):  

In this step, the algorithm estimates the missing or hidden data (latent variable) based on the ground truth 

(observed) data and the current parameter. Then, it will compute the probability of each latent variable based 

on the ground truth (observed) data. Then, the model will calculate the log-likelihood of the observed data 

using the current parameter estimates.  

To give a clearer description of this E-step, the mathematical representation is shown as follows (Haugh, 

2015). Suppose the complete dataset is denoted by 𝑍 = (𝑋, 𝑌), where only 𝑋 is observed. The complete 

data log likelihood is expressed as 𝑙(𝜃;  𝑋;  𝑌) where 𝜃 representing the unknown parameter for which we 

aim to compute the maximum likelihood estimate (MLE). E-step calculates the expected value of 𝑙(𝜃;  𝑋;  𝑌), 

given the observed data 𝑋 and the current parameter estimate 𝜃𝑜𝑙𝑑, where 𝑝(𝑦 | 𝑋, 𝜃𝑜𝑙𝑑) is the conditional 

density of 𝑌 given 𝑋. 

𝑄 (𝜃; 𝜃𝑜𝑙𝑑) ∶=  𝐸[ 𝑙(𝜃;  𝑋;  𝑌) | 𝑋, 𝜃𝑜𝑙𝑑  ]   

          =  ∫ 𝑙(𝜃;  𝑋;  𝑌)  𝑝(𝑦 | 𝑋, 𝜃𝑜𝑙𝑑)𝑑𝑦 

3. M-Step (Maximization): 

The M-step will update the current parameters with new values that could maximize the likelihood we 

calculated in the previous step, as shown by the mathematical formulation below (Haugh, 2015): 

 𝜃𝑛𝑒𝑤 ∶=  max
𝜃

 𝑄 (𝜃; 𝜃𝑜𝑙𝑑) 

         𝑡ℎ𝑒𝑛   𝜃𝑜𝑙𝑑  =  𝜃𝑛𝑒𝑤   

In estimating the parameters, the gradient descent algorithm is employed. According to IBM (2025), Gradient 

Descent is a widely used optimization algorithm for training machine learning models and neural networks 

by iteratively minimizing the error between predicted and actual outcomes. It does so by updating model 

parameters (weights and bias) in the direction of the steepest descent of the cost function, which measures 

the overall error.  

 
Figure 5. Gradient Descent Illustration (Schulte & Atasoy, 2024) 

The weight update rule in gradient descent is expressed as follow: 

𝜃𝑗 =  𝜃𝑗 −  𝛼 
𝜕

𝜕𝜃𝑖

 𝐽(𝜃0, 𝜃1) 

The algorithm requires two key elements: the slope (gradient) to determine the update direction and the 

learning rate to determine the step size. In the above formula, 𝛼 represents the learning rate, which 

determines the step size taken during each iteration, and 
𝜕

𝜕𝜃𝑖
 𝐽(𝜃0, 𝜃1) denotes the gradient (slope) of the 

cost function with respect to the parameter 𝜃𝑗. The gradient indicates the direction of the steepest increase 

in the cost function, and by subtracting it, the algorithm moves in the opposite direction toward minimizing 

the error. This update process is repeated iteratively until convergence, meaning the cost function no longer 
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decreases significantly. Through this mechanism, the parameters are gradually adjusted to achieve the 

lowest possible error in the model. 

A high learning rate accelerates convergence but risks overshooting the minimum, while a low rate ensures 

precision at the cost of efficiency. The process continues until the cost function reaches a local or global 

minimum, known as the point of convergence, where the model achieves its optimal accuracy. In this context, 

the loss function measures the error for a single training example, while the cost function represents the 

average error across the dataset. 

 

Figure 6. Illustration of Step Sizes of Different Learning Rate (IBM, 2025) 

4. Convergence: 

Haugh (2015) stated that the two steps are iteratively repeated until the sequence of updated 𝜃𝑛𝑒𝑤 values 

converge. Under very general conditions, convergence to a local maximum is guaranteed. However, if the 

log-likelihood function is suspected to have multiple local maxima, the EM algorithm should be executed 

multiple times with different initial values for 𝜃𝑜𝑙𝑑. The final maximum likelihood estimate of θ is then chosen 

as the best result among the local maxima obtained from these runs. 

Convergence happens when the model reaches a stable point indicated by the insignificant changes in the 

model’s parameter or log-likelihood value in the iteration, to the point that the value is small enough (below 

the defined threshold) to stop the process because more iterations won’t bring a significant improvement 

anymore (geeksforgeeks.org, 2025). 

 

According to geekforgeeks.org, the Expectation-Maximization (EM) algorithm offers several advantages that 

make it a practical tool for handling incomplete or hidden data in machine learning. It consistently improves 

results with each iteration, increasing the likelihood of finding a good solution. Its structure is also relatively 

simple to implement and, in many cases, leads to efficient mathematical solutions due to the closed-form 

nature of the M-step. However, the EM algorithm also has several drawbacks. It converges slowly, which 

means reaching the optimal solution may require many iterations. Additionally, it is prone to getting trapped 

in local maxima, potentially settling for suboptimal solutions.  
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Chapter 3.  Methodology 

 

This chapter presents the research design and methodological approach used to develop and evaluate the 

proposed multimodal freight transport chain model. It outlines the sequential process by which the research 

is conducted, including method selection, data collection and preprocessing, model development, as well as 

model validation and evaluation as depicted by Figure 7.  

 

Figure 7. Research Framework 
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The reserach flow is divided into two main stages: preliminary research and research execution. The 

preliminary research begins with understanding the current NEAC Mode Chain Builder system, identifying its 

limitations, particularly in parameter constraints and lack of adaptability, and defining the core problem. This 

is followed by a literature review focused on the implementation of machine learning in freight transport 

modelling, which leads to the identification of the research gap that this study aims to address. This part is 

already presented in the previous section, Chapter 2. 

The research execution is structured into three interconnected components. The first is the Mode Chain Data 

Construction phase, which starts with a literature review to explore existing methods and approaches for 

constructing multimodal freight chains. Based on this review, a suitable method is selected, followed by data 

collection and preprocessing. The model is then developed to generate mode chain data that incorporates 

routing flexibility and infrastructure compatibility. 

The second component focuses on demand share prediction using machine learning. It begins with two 

literature reviews: one on the application of machine learning for demand flow prediction, and another on the 

technical aspects of model development. A suitable machine learning technique is selected based on these 

reviews, followed by data collection and processing. The machine learning model is then developed through 

training, evaluation, and deployment to estimate demand distribution across the multimodal transport 

network. 

The final component is model validation and evaluation, where the performance of the integrated model is 

assessed using relevant metrics to determine its accuracy, adaptability, and effectiveness. This stage 

concludes with the formulation of key findings and the overall research conclusion. 

In conclusion, this research is structured around three fundamental phases: method selection, model 

development, and model validation and evaluation. The following sections elaborate on the detailed steps 

undertaken in each phase, following this three-phase structure. 

 

3.1 Method Selection 
As briefly mentioned in the previous section, the multimodal freight chain modelling process in this research 

consists of two phases: mode chain construction and demand share estimation. The demand share 

estimation process is the combination of the share estimation and calibration steps of the current Mode Chain 

Builder system. 

Based on the literature review presented in the previous section, Breadth-First Search (BFS) is identified as 

the most suitable method for the Mode Chain Construction phase. BFS is preferred over other options due 

to its flexibility in accommodating the unique and specific requirements of the existing Mode Chain Builder 

system, which demands a high degree of customization in its construction logic. This flexibility also allows 

BFS to be combined with the Link Elimination technique to reduce computational complexity. Most 

importantly, BFS supports the full enumeration of all possible path alternatives, which is the core requirement 

of the Mode Chain Builder. 

This study adopts the Breadth-First Search with Link Elimination (BFS-LE) approach, as introduced by 

Tahlyan and Pinjari (2020), for constructing mode chains. The link elimination step will be implemented by 

applying a set of pre-defined rules to remove irrelevant links, thereby reducing the algorithm’s search space 

during the construction process. This heuristic enhancement is essential to ensure compliance with several 

mandatory rules associated with the input data structure, which must be respected throughout the chain 

construction process. 
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For the second phase, Demand Share Estimation, the selected method is the Expectation-Maximization 

algorithm. The Expectation-Maximization (EM) algorithm is selected because it is well-suited for situations 

where supervised instance-level data is unavailable, and only aggregate-level historical data is provided. Its 

ability to effectively handle latent variables makes it ideal for demand share estimation, where individual path 

choices are unobserved. By treating demand shares as hidden variables and using aggregated freight 

transport data as constraints, EM allows iterative refinement of estimates. It minimizes the deviation between 

predictions and observed totals, such as known totals of freight flows across regions or modes, which cannot 

be directly attributed to individual OD-path combinations, ensuring that the final demand share estimates are 

both statistically consistent and aligned with real-world aggregate data. This makes EM a robust and data-

efficient approach for unsupervised learning in freight transport modeling. The overall comparison between 

the existing and the newly proposed methods for the end-to-end phase of Mode Chain Builder system is 

shown by Figure 8. 

 
Figure 8. Comparison between the existing and the proposed methods 

 

3.2 Mode Chain Construction Phase 

3.2.1 Model Development 

This phase marks the initial step in developing the multimodal freight chain model. Its main objective is to 

generate a set of path alternatives for each PC-commodity pair, which will serve as input for the next phase: 

Demand Share Estimation. Figure 9 shows the end-to-end process of mode chain database construction 

process, that involves two main approaches: Heuristics and Graph Search Algorithm based on the 

Breadth-First Search (BFS) method. The mode chain data construction phase relies on the existing Mode 

Chain Builder input database provided by Panteia, complemented by Eurostat’s port statistics for the port 

selection procedure. This study does not involve creating new input datasets or modifying the existing data.  

The application of pre-defined rules (heuristics), followed by the implementation of the Breadth-First Search 

(BFS) algorithm is adapted from the Breadth-First Search with Link Elimination (BFS-LE) method introduced 

by Tahlyan and Pinjari (2020). In this study, link elimination is carried out by enforcing several pre-defined 

rules (heuristic method) to determine which region pairs should proceed to the BFS model and which ones 

can have their mode chains directly defined during the heuristic phase.  
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Figure 9. Data processing diagram of Mode Chain Construction Phase 

 

3.2.1.1 Heuristics Approach 

The heuristic step aims to reduce the simplify and reduce the mode chain construction process that will be 

conducted later, by applying several pre-defined reasonable rules to remove irrelevant and less probable 

path alternatives. This step also ensures that several essential rules are incorporated in the mode chain data 

generation process. The heuristics step itself has two sub-steps: P/C Region Pair Classification and Region-

to-Port Selection. 

Step 1: P/C Region Pair Classification 

In the initial step, three predefined rules are applied to classify PC-commodity pairs into either the unimodal 

or multimodal group, based on the proximity between their production (origin) and consumption (destination) 

regions. Region pairs that are located within the same NUTS2 area and/or have a distance of less than 150 

km are categorized as unimodal. For these cases, only direct shipment is considered as the transportation 

option. All remaining PC-commodity pairs are classified as multimodal and proceed to the Port Selection 

stage, as their transport chains require the involvement of ports as transshipment points for sea transport. 

Step 2: Region-to-Port Selection 

For the multimodal pairs group, the next step involves selecting appropriate ports that can serve the region 

pairs. This is achieved by applying a set of heuristic rules, such as identifying the 20 nearest ports for each 

region, scoring them based on Chou’s (2010) port choice qualitative model, and filtering out ports with 

incompatible cargo handling capabilities. 

 

The heuristic step is executed entirely using an SQL platform due to the complexity, volume, and variety of 

datasets involved. SQL was chosen primarily because the author is more familiar with it compared to using 

the Pandas library in Python, allowing for more efficient processing and reduced execution time. 
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3.2.1.2 Breadth-First Search (BFS) Algorithm 

The multimodal pairs group data then proceed to this BFS stage. The BFS algorithm is used to enumerate 

all viable multimodal transport chains between selected region-port pairs. This process is conducted using a 

BFS-like logic approach with custom expansion rules, since the existing Mode Chain Builder requires quite 

a lot of customizations to comply with several data format requirements. Further details regarding the 

requirement can be found in section 4.2.2. 

The BFS model with custom expansion and filtering rules are built using NetworkX module in Python. 

NetworkX is a Python library designed for the creation, manipulation, and study of complex networks 

(graphs). It is used in this study to model the freight transport network as a multi-modal graph that enables 

the representation of transport links as mode-labeled edges and supporting the exploration of 1-leg to 3-leg 

mode chain alternatives through custom graph traversal logic while incorporating infrastructure availability 

constraints. 

Lastly, before finalizing the mode chain dataset, a final validation step is conducted at the end of the BFS 

process to eliminate any irrelevant or infeasible paths. The resulting multimodal chain dataset from the BFS 

step is then combined with the unimodal chain dataset generated during the initial P/C Region Pair 

Classification stage. This combined dataset serves as the input for the final phase: Demand Share 

Estimation.  

 

3.2.2 Model Validation 

The model validation process for the mode chain construction phase will be carried out by comparing the 

generated mode chain data with the initial input datasets to ensure consistency. This step verifies that the 

resulting chains remain aligned with the key information provided at the beginning of the process. In addition, 

the validation will be manually cross-checked using the SQL platform. The input datasets include: 

• Mode connection availability 

• Rail and inland waterway availability 

• Port availability 

 

3.3 Demand Share Estimation Phase 
3.3.1 Model Development 

Once a complete dataset of mode chain alternatives for all PC-commodity pairs has been constructed, the 

next step is to allocate the known goods flow for each pair across the available path alternatives. The main 

challenge lies in the absence of data showing the historical distribution of goods across these paths. Instead, 

only aggregated data, such as port statistics and transport movements by mode between countries, sourced 

from Eurostat, is available. Traditional choice models are insufficient for this task, as they do not ensure 

consistency between the estimated shares and the aggregated observations. This is where a machine 

learning approach, specifically the Expectation-Maximization (EM) algorithm, is suitable to use. The EM 

algorithm is an iterative method used in unsupervised learning to estimate unknown or latent variables by 

uncovering patterns in the data that align with observed constraints. The path-level demand shares will be 

treated as hidden variables that must be inferred from this indirect ground truth data. 

 

Step 1: Initialization 

The Expectation-Maximization (EM) algorithm requires an initial value as a reference point to guide its 

predictions. This initial value is critical to the learning process, as a well-estimated starting point can help the 

model converge more quickly and efficiently. The initial value represents an estimated starting distribution of 
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demand across alternative paths within the same PC-commodity pair group. As there is no standard guideline 

for determining the most suitable estimation method, this study tests three different approaches: 

1. AHP approach: The initial value is estimated by calculating each path’s weighted score based on 

the Analytic Hierarchy Process (AHP) results from Lu and Wang (2022) study. 

2. ESD approach: The initial value is derived from Eurostat’s historical share data for each transport 

mode between origin and destination countries. For each chain or route, the shares of all constituent 

edges are multiplied to calculate the chain’s relative share within the same PC-country pair. 

3. EQW approach: The total demand (in tonnes) is evenly divided among all available alternative 

paths, giving each path an equal weight. 

These three methods are used to generate initial values for the mode chain dataset. To identify the most 

suitable approach, the estimated initial values will be evaluated by comparing their deviation from the ground 

truth data on mode transport flows and port-country flows from Eurostat. The method with the smallest error 

will be selected and used as the input for the EM model. 

 

Step 2: EM algorithm Development 

To estimate the demand share for each mode chain between PC-commodity pairs, the Expectation-

Maximization (EM) algorithm treats the demand shares as latent variables that need to be inferred. The 

algorithm iteratively adjusts these estimates by using known but indirect ground truth data, aiming to find the 

optimal distribution of demand across path alternatives. The objective is to minimize the deviation between 

the aggregated values derived from the estimated shares and the actual observed aggregated data.  

Two ground truth datasets from Eurostat will be used as reference points to estimate the demand share per 

transport path. These datasets include: (1) mode-specific transport flows between and within countries, and 

(2) country-level port statistics detailing incoming and outgoing cargo volumes. A loss calculation function 

will be developed by integrating both datasets, where the loss represents the deviation between the predicted 

values and the observed ground truth data. The EM model will iteratively adjust the predictions in order to 

minimize this loss. 

 

Step 3: Hyperparameter Tuning 

The model development will also involve the hyperparameter tuning. It’s the process of selecting the most 

effective set of initial parameters for a machine learning model. These hyperparameters are preset 

configurations that influence how the model learns during training and affect the model’s performance to 

generalize the sample data to the new or hidden data.  

In machine learning models using Expectation-Maximization algorithm, there are at least five important 

parameters to set prior to model training execution: 

1. Initial learning rate: Parameter that determines how quickly the model learns, that relates also to 

how far the model will take the step at the initial stage of model training. 

2. Learning rate decay factor: This parameter indicates how much learning reduction should be applied 

after a sharp increase in loss. 

3. Loss Tolerance: Loss tolerance defines the minimum change in loss required to justify continuing the 

training process. When the loss change becomes negligible, it indicates that the model may have 

reached convergence.  

4. Patience for Convergence: It refers to the number of consecutive iterations with stable (or minimally 

changing) loss before the training is stopped early. Both, loss tolerance and this parameter help ensure 

the model doesn't overtrain once meaningful improvements have plateaued. 

5. Maximum Iterations: Setting a maximum number of iterations acts as a safeguard to prevent the 

training process from running indefinitely. This is especially important if the model requires many 
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iterations to converge. Defining this upper limit ensures that the training process remains 

computationally manageable and time-efficient. 

The ideal initial learning rate will be determined through a series of experiments involving 10 iterations, while 

other parameters will be pre-defined based on needs and relevant references. To optimize prediction results, 

this study will activate the ADAM (Adaptive Moment Estimation) setting within the developed EM model. It is 

a widely used optimizer module for automatic adaptation in machine learning. ADAM updates the model 

parameter during training by computing gradients from the loss function, so each parameter has its own 

learning rate that is kept adjusted during the training based on its past gradients and magnitudes 

(geeksforgeeks, 2025). 

On top of ADAM, a learning rate scheduler is also applied to monitor the training loss trend. If the loss stops 

decreasing for a few iterations (patience), the scheduler will reduce the global learning rate of the optimizer. 

Unlike ADAM, the scheduler doesn’t compute gradients; rather, it controls when and how fast the model 

learns. One important factor influencing model performance is its ability to shift between exploration in the 

early training stages and exploitation in later stages, once the model approaches an optimal solution. This 

dynamic behavior can be facilitated by setting a learning rate scheduler, which allows the learning rate to 

adjust according to predefined conditions or training states. It will slow down the learning rate if the loss gets 

stuck. 

 

3.3.2 Model Validation and Performance Evaluation 

Several steps will be taken to conduct the model validation process, as detailed below: 

1. Model convergence and behavior 

Model convergence, indicating by a gradual decrease in loss until it reaches the state where no 

significant improvement can be made any more, is a good signal that the model is working the way 

it’s intended.  

2. Loss (against ground truth) evaluation 

The loss calculation produced by the model output will be evaluated. The model’s loss indicates the 

deviation between the estimated value made by the model vs the observed ground truth value. The 

model’s loss then will be compared to the actual initial deviation between input data of total demand 

flow and total transported demand from all transport modes stated in Eurostat.  
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Chapter 4.  Model Development and 
Results 

 

4.1 Introduction to Case Study 
As explained in the previous section, this research uses the NEAC Mode Chain Builder (MCB) as the case 

study for multimodal freight chain modeling. This introductory section provides a general overview of the 

existing MCB system, followed by the technical specifications of NEAC’s mode chain data output. 

Understanding the system’s requirements is essential to ensure that the constructed model aligns with the 

input data format and parameter structure of the NEAC database, thereby supporting its practical applicability 

for end users. 

 

4.1.1 NEAC Mode Chain Builder 

The NEAC (Network for European Freight Transport Analysis and Coordination) is a multimodal, network-

based simulation system developed to analyze freight transport flows across Europe. It integrates trade data, 

economic activity, and multimodal transport networks to support data-driven decision-making. The system 

comprises two key components: the Mode Chain Builder or NEAC Chain Database, which generates a 

database of base-year multimodal transport chains, and the NEAC model itself, which is used to forecast 

future transport demand and explore scenario-based analyses (Panteia, 2015). 

NEAC modal adopts the classical 4-step transport 

modeling approach as the foundation for its modeling 

framework. As explained in NEAC Model Description 

file (Panteia, 2015), the four steps include trip 

generation, which determines the number of trips 

originating from or destined for a region; trip 

distribution, which establishes region-to-region travel 

flows; mode choice (mode split), which allocates trips 

to specific transport modes; and trip assignment, 

where the traffic flows are mapped onto a modal 

network structure. Mode chain builder itself 

conceptually is similar to the combination of mode 

choice (step 3) and trip assignment (step 4) in the 

transport modeling process. 

The Mode Chain Builder serves as the foundational 

component of the NEAC transport simulation system, 

providing the empirical and structural data necessary for robust transport analysis across Europe and 

neighboring regions. The database combines a wealth of multimodal transport data, regionally disaggregated 

down to the NUTS3 level (and equivalent elsewhere), to capture the complexity of contemporary trade and 

transport flows. Crucially, the Mode Chain Builder underpins both the analytical capabilities and scenario 

forecasting of the overall system, acting as the indispensable reference point for traffic, trade, and 

infrastructure assessment. 

Figure 10. NEAC's system structure (Panteia, 2015) 
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A central innovation of the Mode Chain Builder is its use of a mode chain data structure. Traditional models 

often relied on simple origin-destination (O/D) matrices that failed to capture the reality of European and 

global transport, where goods frequently undergo multiple transshipments and modal changes. The mode 

chain structure explicitly represents up to two transshipment points along a trade relation, enabling the 

database to register three separate transport ‘legs’ within a single flow. Each record includes identifiers for 

origin and destination regions, transshipment points, transport modes at each stage, the commodity 

transported (coded by standardized two-digit NST codes), and volumes in tonnes or container units. This 

structure allows for a nuanced accounting of multimodal and transit flows, reduces double-counting (common 

when transshipped goods appear in both international and domestic statistics), and directly links economic 

trade patterns to concrete transport choices 

The Mode Chain Builder (MCB) is the key software component responsible for transforming trade data into 

the detailed regional and modal chains recorded in the database. The process starts with national-level trade 

and transport flows, disaggregates them to the regional NUTS3 level, and then assigns plausible modal and 

routing choices based on infrastructure, port connections, and product types. This top-down estimation 

produces mode chain data that can be directly mapped into network-based O/D matrices across different 

transport modes (road, rail, inland waterway, and sea). The methodology ensures that the database 

accurately reflects the reality of how goods traverse international and domestic networks in multimodal 

sequences, providing a base year snapshot that feeds into subsequent modeling and scenario development. 

 

4.1.2 System Characteristics 

The first step of Mode Chain Builder is to generate a dataset containing all the possible mode chain or path 

that can be used to transport goods from a certain region to other regions. Mode chain is a combination of 

one or more transport modes connecting origin and destination points with at least two transshipment points 

in between if the path is using Sea as its intermediate mode. In NEAC case, the multimodal chain data can 

involve a maximum of 3 legs or edges in network design terms. The edges represent mode connection 

available between two nodes, while nodes represent region area at NUTS 3 level. Thus, the number of nodes 

involved in one chain will be n + 1 where n is number legs involved, where 2 of them being transshipment 

points if the chain involves Sea as the  1st  or 2nd leg mode. 

Given the above condition, each origin-destination pair could have multiple possible chains. The chain could 

be 1-leg, 2-legs, or 3-legs paths as illustrated by Figure 11 that uses different line color to show various of 

possible mode chain. The chains with 2 or 3 legs are called multimodal chains since it involves the 

combination of at least two modes. There are four available modes to choose from, they are Rail, Road, 

Inland Waterway (IWW) and Sea. The use of Rail and IWW mode must consider the availability of respective 

terminal in both regions that are going to be connected. The same case as Sea transport that needs the port 

to be available in both regions being connected.  

On the other hand, 1-leg chain will only involve one mode and usually called as Direct Shipment because 

there will be no intermediate nodes considered in the model output. Even though, for example in the actual 

world, the Road mode (using truck) has to go through region X to transport the goods from origin region A to 

destination region B, but the model output will generate 1-leg Road chain instead of 2-legs chain (with Road 

as 1st leg and also Road as 2nd leg) even though it cross the region X. 
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The decision variable during the mode 

chain construction process not only 

chooses the most convenient mode, but 

also selects the port as the origin and 

destination transshipment. Because 

different combinations of port selection will 

result in distinct mode chains as shown by 

Red and Purple line in Figure 11. The port 

selection process in the existing Mode 

Chain Builder model uses bounding box 

rules, where the port selection process 

only includes the ports that fall within a 

specified rectangular boundary that is 

defined by minimum and maximum 

coordinates. This rule is commonly used 

as a spatial filtering technique to filter out 

irrelevant data and reduce computational 

complexity. However, it drives a risk of omitting optimal or feasible alternatives that fall just outside the box. 

Thus, this research attempts to introduce a new approach that considers other important relevant aspects in 

the port selection process and doesn’t solely rely on spatial variables as the deciding variable.  

The mode chain data will be generated based on the pair Origin-Destination (OD) and commodity type pair. 

Each commodity requires different handling requirements that need to be aligned with the port’s cargo 

handling capability during the port selection process. The existing Mode Chain Builder doesn’t consider this 

variable in its model. This research strives to incorporate this variable into consideration during the mode 

chain data construction process. This initiative and the new port selection approach are one of improvement 

points this study attempts to contribute to the existing model framework. 

After constructing a set of possible mode chains for each OD–commodity pair, this dataset will become the 

input for the next step: demand flow estimation. The goal of this stage is to estimate the distribution of total 

demand flow across the generated chains. This is currently performed using a Multinomial Logit (MNL) 

function, which uses travel cost, time, and distance as predictor variables to calculate the probability of each 

chain being selected. These probabilities are then multiplied by the total demand for each OD–commodity 

pair to determine the distributed demand flow across the chains. The resulting demand flow estimates are 

subsequently calibrated against actual aggregated transport data, such as national transport performance 

statistics and port-level data published by Eurostat. 

The calibration of the NEAC-10 mode chain builder is highly problematic due to data limitations, 

computational challenges, and methodological constraints. The model adjusts its parameters iteratively to 

match known transport data, but this process is hindered by the large matrix size (which slows processing), 

the lack of reliable multimodal data for validation, and the presence of local exceptions that require region-

specific adjustments. Additionally, aligning multimodal chains with national single-mode statistics demands 

disaggregation, increasing complexity and error risk. Although ports offer some calibration reference through 

known cargo volumes, available data is typically aggregated by mode (e.g., RoRo, container) rather than 

commodity type, reducing its usefulness for detailed validation. As a result, achieving accurate, localized 

calibration remains difficult and time intensive. 

 

Figure 11. Illustration of Possible Mode Chain between an Origin-
Destination Region Pair 
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4.2 Mode Chain Construction Phase 
The expected output of mode chain construction phase is a dataset of possible mode chain to transport a 

certain commodity type of goods from production region to consumption region at NUTS3 level. As discussed 

in the previous section, this phase will be performed using the combination of heuristics and customized BFS 

algorithm. Below is the detailed step of the model development: 

 

4.2.1 Data Preparation 

Several datasets will be used as input for the mode chain construction phase. These data are sourced from 

Panteia’s internal database and Eurostat. Panteia’s internal data, originally developed for the existing Mode 

Chain Builder, is based on transport and trade figures from the year 2010. This study will utilize the same 

datasets for the entire model development process without revisions or updates, due to time constraints. 

However, additional data may be incorporated as needed to support specific aspects of model development, 

and it will also use 2010 data as the basis.  

Table 4. List of input data for Mode Chain Construction phase 

 

An overview of the input datasets, including their sources and key variables, is provided in Table 4 below. All 

datasets are initially used as inputs for implementing the heuristic method. The purpose of this step is to 

eliminate irrelevant links, whether between regions and ports or between ports, by evaluating factors such 

as mode connectivity (Datasets 3 and 4), terminal availability for rail and inland waterway transport (Dataset 
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5), compatibility between commodity handling requirements and port handling capabilities (Datasets 5 and 

7), and the presence of historical demand outflows from ports to partner countries (Dataset 9). 

This phase also includes the port selection process, which aims to identify a subset of ports most likely to 

accommodate goods flowing to or from a given region. In this process, a region-to-port connection score is 

calculated based on inland freight cost (Dataset 3), number of intermodal links (Dataset 3), total cargo volume 

handled by the port (Dataset 9), and the connectivity index (Dataset 8). 

 

4.2.2 Model Development 

The model development begins with a heuristic stage, where a set of predefined rules is applied to classify 

PC-commodity pairs into either unimodal or multimodal transport groups. This step aims to reduce the 

computational load of the subsequent breadth-first search (BFS) and to eliminate irrelevant links between 

regions and potential transshipment points for sea transport (i.e., port selection). Next, the BFS algorithm 

model is developed to perform full path enumeration for the multimodal PC-commodity pairs, generating all 

feasible transport chains. Finally, the development process concludes with the integration of unimodal and 

multimodal groups into a single, unified dataset for further modeling and analysis. 

 

4.2.2.1 Heuristics Approach Implementation 

The heuristic step consists of 2 major steps, they are PC-commodity pair classification and port selection. 

Each step is elaborated in details in the following sections: 

Step 1: PC-Commodity Pairs Classification 

The PC-commodity pairs classification is performed by applying the following pre-defined rules to classify the 

PC-commodity pair data: 

1. If the P/C pair is between the same NUTS3 or the distance between the P/C regions is ≤ 150 km, then 

only road transport will be assigned for this data group.  

2. If P/C regions are located at the same NUTS2, only direct (1-leg) shipments will be assigned to this 

data group, either using road, rail, or IWW, depending on the connection availability. Rail and IWW 

can only be assigned if both OD regions have the same terminal type. This assumption is because 

the average distance between two regions within the same NUTS2 is 202 km. 

 
Figure 12. Pseudocode of PC-commodity Pair Classification Logic 

Both assumptions are based on a study conducted by Pienaar (2013) that found trips under 150 km, road 

transport is generally more cost-effective than rail due to lower handling and terminal costs and greater 

flexibility. For distances over 500 km, rail becomes more economical thanks to its economies of scale. In the 
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intermediate range (150–500 km), the cost advantage depends on factors like terminal location, drayage 

costs, and shipment size, with the break-even point typically occurring within this range.  

For the first assumption, road transport is clearly the most likely and preferred option for shippers due to its 

cost-effectiveness over short distances. For the second assumption, given that the average distance is 202 

km, close to the 150 km threshold, direct shipment is generally preferred. Intermodal transport is less 

economically viable in this range, as it requires first-mile transport to reach a rail or waterway terminal, which 

adds cost, distance, and travel time due to modal transfer delays. However, because some P/C regions might 

be equipped with well-developed rail or inland waterway infrastructure, the "direct shipment" is applied with 

the possibility to utilize all mode options available: road, rail, or inland waterway transport, depending on the 

available modes in the region. This first step produces the classification of PC-commodity pairs data as 

follows:  

• Pairs with only unimodal chain alternatives, these pairs stop here. 

• Pairs with multimodal chain possibilities, these pairs will proceed to the next steps. 

 

Step 2: Region-to-Port Pairing Selection 

This process aims to reduce the number of relevant connected ports for each region. Since a single region 

may be linked to multiple ports, each creating a different path alternative, limiting the number of relevant ports 

is essential to keep the total number of generated path alternatives within a manageable and computationally 

feasible range. For the port selection process, four rules are applied: 

1. Take only the top 20 nearest port based on the distance between the origin region and the region where 

the port is located. 

2. Select the most relevant ports (out of the top 20 selected ports) based on the region-port score 

calculated based on the influencing factors of port choice in Chou’s model (2010). In his study, Chou used 

AHP to identify the most important factors of Port Choice for each carrier type: 

• Oceangoing Carriers (inter-continental shipping routes): This carrier types perceive that Depth of 

Containership Berth; Port Charge, Tax, Rent, and Cost; and Port Loading/Discharging Efficiency, 

respectively, are the most important variables they consider in choosing a port to transport their 

goods. Meanwhile, 

• Coasting Carriers (regional or domestic shipping routes): Consider Hinterland Economy as the 

most influential factor for them in choosing the port. Followed by Port Charge, Tax, Rent, Cost; and 

Port Loading/Discharging Efficiency variables. 

Since, in this research, we only include the shipment between EU countries (regional), then Coasting 

Carriers’ important factors are more relevant for the case in this research. We’ll only consider the top-

most important factor, which is Hinterland Economy, in the port selection process because we don’t have 

the data for the other two factors. Below is the importance weight for each Hinterland Economy’s sub-

factors as identified below: 

o Inland freight cost: 0.1551 

o Inter-modal link: 0.1401 

o Volume of import/export containers: 0.4854 

o Frequency of ship calls: 0.2193 

The port selection process will be performed by calculating the region-port score. Chou’s hinterland 

economy’s sub-factors, as well as their respective weight, will be used as the basis to calculate the score. 

Below is the list of data sources used to calculate the region-port score corresponding to the influencing 

variables mentioned in Chou’s research: 

o Inland freight cost: Using Panteia’s internal generalized cost data between regions. 
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o Inter-modal link: Using the number of available mode options (rail, road, inland waterway) in each 

port. The mode availability is based on Panteia’s internal mode connectivity data. 

o Volume of import/export containers: Using Eurostat’s port statistics data in 2010, specifically 

the number of goods handled for incoming (import) and outgoing (export) flows. 

o Frequency of ship calls: Using UN Trade and Development’s Port Liner Shipping Connectivity 

Index (PLSCI), which indicates the port's connectivity with global liner shipping networks. 

According to UNCTAD (2024), the PLSCI index not only includes the port’s ship call frequency but 

also includes the other five variables: deployed annual TEU capacity, number of regular services, 

number of shipping companies, the size of the largest ship, and the number of ports connected via 

direct liner services. To calculate the index, each component’s value for a port is divided by the 

global average for Q1 2023. The average of these six ratios is then multiplied by 100, setting the 

global average PLSCI to 100 in Q1 2023.  

𝒓𝒆𝒈𝒊𝒐𝒏_𝒑𝒐𝒓𝒕_𝒔𝒄𝒐𝒓𝒆 = (−0.1551 ∗ 𝑔𝑒𝑛_𝑐𝑜𝑠𝑡) + (0.1401 ∗  𝑚𝑜𝑑𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) 

+(0.4854 ∗ 𝑝𝑜𝑟𝑡_𝑠𝑡𝑎𝑡𝑠)  +  (0.2193 ∗ 𝑃𝐿𝑆𝐶𝐼) 

Region-port score then calculated using the above formulation. The scores are then transformed into 

proportions that represent the estimated probability of the port being chosen as the transshipment in 

transporting goods from and to a certain region. Only top x number of ports whose cumulative share >= 

60% that will be included, and the rest of the port will be excluded. This framework aims to enhance the 

previous port selection method, which relied solely on the bounding box rule and focused only on 

geographical proximity. By contrast, the new approach incorporates a port competitiveness 

perspective, factoring in transportation costs, connectivity, and capacity which are the key 

elements that influence port choice from a shipper’s standpoint. 

3. Ensure the selected ports are the ones with historical demand flow from and to the observed 

countries. Ports with no historical demand, specifically based on 2010 data, will also get removed and 

won’t be considered as in the next mode chain construction process. 

4. Ensure compatibility between each commodity’s handling requirements and the handling 

capabilities of ports by eliminating paths that involve ports lacking the necessary facilities for the 

transported commodity. Since no specific data source exists for this information, a custom database was 

developed through qualitative analysis. This analysis involved assessing the material type and physical 

form of each commodity to determine the most likely cargo type used for its transports such as container, 

liquid bulk, dry bulk, RoRo, or other cargo types. Then, combining that qualitative analysis with the port’s 

cargo handling capabilities data owned by Panteia. The resulting mapping of commodities to cargo types 

is presented in Appendix 3: Commodity Type Mapping section. 

After implementing the three rules, the list of regions with its relevant and most probable ports is generated. 

This information serves as a reference for identifying which region-port combinations can be considered 

when generating path alternatives for specific PC-commodity pairs in the subsequent BFS stage.  
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Figure 13. Pseudo Code of Port Selection Process in Mode Chain Construction Heuristics Phase 

 

4.2.2.2 Graph Search Algorithm Construction 

The mode chain data construction is conducted using a BFS-like logic approach with custom expansion rules, 

since the existing Mode Chain Builder requires quite a lot of customizations to comply with NEAC’s data 

format requirements. Unlike standard BFS which traverses all reachable nodes layer-by-layer, this method 

constrains the search by the following rules: 

• Paths are built by incrementally exploring 1-leg, 2-leg, and 3-leg route options between origin and 

destination nodes, with a maximum number of legs (depth) = 3. 

• Two edges with the same mode type should be set as 1 leg. 

• Rail, inland waterway, and sea transport modes can be used if only both PC regions have the same 

terminal and port infrastructure availability (see Figure 14). 

The mode chain data construction relies entirely on the existing input datasets from the Mode Chain Builder. 

These include the list of PC-commodity pairs, the terminal and port availability per region, and the mode 

connections between regions. Within the context of the BFS algorithm, the PC-commodity pairs serve as the 

origin-destination references for path construction, the terminal and port data define potential intermediate 

nodes, and the mode connection data represents the feasible edges linking different regions. However, 

before executing the BFS algorithm, certain adjustments must be made to the input data to ensure 

consistency with the output from the heuristic stage: 

• Only include PC-commodity pairs with valid multimodal chain possibilities as input. 

• Update the port connection availability based on the results of the port selection process, ensuring 

that only ports listed in the sorted region-port list from the heuristic stage are used as inputs for BFS. 

After finalizing the input datasets, the mode chain construction process using BFS can start. This mode chain 

construction model is developed to construct a dataset of valid multimodal transport chains (mode chains) 

between production and consumption zones for specific commodities.  
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Figure 14. Snapshot of Customized Rules regarding Terminal Availability for BFS Model in Python 

The algorithm searches for valid transportation paths that consist of one, two, or three sequential legs, 

ensuring that each segment is operationally feasible based on the mode and terminal compatibility at the 

corresponding nodes. The search considers mode changes and transshipment zones only if the 

infrastructure allows it. Each discovered path is recorded as a mode chain and enriched with intermediate 

nodes when the path involves two or three legs. These intermediate nodes correspond to transshipment 

points, particularly when the second leg involves sea transport. 

After constructing the mode chain alternatives for the multimodal PC-commodity pairs, the resulting data is 

reviewed to ensure consistency with the predefined rules established during the heuristic stage. This review 

involves the following validation steps, and any paths that fail to meet these criteria will be removed: 

1. Commodity–port cargo handling compatibility check 

2. Region–port pairing validity check 

Finally, the cleaned multimodal mode chain data is combined with the unimodal mode chain data to form a 

complete dataset, which will serve as input for the next phase of the model development process: demand 

share estimation. 

 

4.2.3 Results and Model Validation 

A total of 1,839,820 mode chain alternatives were generated from all PC-commodity pairs between Belgium 

and the Netherlands, as well as region pairs within each country, as shown in Table 5. International flows 

produced more chain alternatives per pair due to the involvement of maritime transport and the availability of 

multiple port combinations. The detailed output of the BFS algorithm is presented in Table 6, which illustrates 

several possible mode chains for a given PC-commodity pair. The list includes two direct paths, while the 

remaining options are multimodal chains involving various combinations of origin and destination ports, as 

well as different transport modes for the first and third legs. 
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Table 5. Mode Chain Database Construction Result Statistics 

 

 
Table 6. Example of Mode Chain Alternatives for a PC-commodity Pair Generated from BFS 

 

Model validation is carried out to ensure that the constructed mode chains align with key information required 

for generating a reliable mode chain dataset. The validation process uses a sample set consisting of three-

leg chains, which are evaluated based on three critical elements, as detailed in the following section. A total 

of 82,385 PC-commodity pairs were selected as the validation sample. 

1. Mode connection availability 

The first aspect evaluated to ensure the model’s validity is the consistency between the assigned mode 

type (for a given leg) and the availability of that mode between the connected origin and destination 

regions. Out of approximately 1.8 million legs in the sampled mode chains, all show perfect alignment 

between the assigned mode and the mode connection availability data. The validation results are 

presented in.Table 7. 
Table 7. Mode Connection Validity Results 

 

2. Rail and inland waterway terminal availability 

The second aspect assessed in the model validation is the consistency between the selected terminals 

and their actual availability based on the NEAC terminal data. From a total of 1,945,991 terminal-related 

legs in the sampled mode chains, all legs were successfully matched with the terminal availability 

records, indicating full compliance with the underlying data. As shown in Table 8, there were zero 
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unmatched cases, confirming the model was accurately incorporating terminal infrastructure 

constraints. 
Table 8. Terminal Availability Validity Results 

 

3. Port availability 

The third aspect of the model validation focuses on verifying the availability of ports in the regions 

assigned as origin or destination for maritime transport legs. This ensures that the ports used in the 

multimodal chains are actually present and capable of serving the specified commodity in the respective 

regions. Out of 2,254,340 relevant edges examined in the sampled mode chains, all were successfully 

matched with valid port availability records. As illustrated in Table 9, the result confirms a 100% match 

rate, reinforcing the reliability of the model in assigning feasible port locations for maritime transport. 

Table 9. Port Availability Validity Results 

 

The model validity results confirm that the constructed mode chain construction model using combination of 

heuristics and BFS algorithms are fully aligned with the given infrastructure availability data. All assigned 

mode legs, terminal facilities, and port locations were validated with 100% match rates, indicating that the 

model reliably generates realistic transport paths. Thus, the resulted mode chain datasets can safely proceed 

to the next phase, demand share estimation process. 

 

4.3 Demand Share Prediction Phase 
4.3.1 Data Preparation 

Several datasets are used as input for the demand share estimation phase, all of which are externally sourced 

from Eurostat. These datasets were downloaded and compiled into Excel files, with their formats adjusted to 

meet the input requirements for the Expectation-Maximization approach. Table 10 below shows an overview 

of the input datasets for the Demand Share Estimation phase. 

Some datasets require special handling, particularly Dataset 1, which contain historical bilateral demand 

between countries for each transport mode. Since each country reports both its imports from and exports to 

partner countries, the data often includes two versions of the same trade flow. For example, the Netherlands 

may report rail exports to Belgium as X₁ thousand tonnes and imports from Belgium as Y₁, while Belgium 

reports its rail exports to the Netherlands as X₂ and imports from the Netherlands as Y₂. Ideally, X₁ = Y₂ and 

X₂ = Y₁, but discrepancies often occur. To resolve this, the import data from the reporting country is used as 

the reference, based on the assumption that incoming goods are more likely to be inspected and accurately 

recorded. If import data is unavailable, the available export data is used instead. The detailed information 

regarding data type and Eurostat’s datasets used as transport flow ground truth data for the EM phase can 

be seen in  Table 11. 

Another issue arose with the Netherlands’ intercountry demand flow data for rail transport in 2010, which was 

missing from the Eurostat database. Only data from 2013 onward were available. To address this, a back 

casting approach was applied using three forecasting methods: linear regression, Holt’s Winter method, and 

ARIMA. Among these, Holt’s Winter method produced the lowest error. Therefore, the back casted 2010 

values generated using this technique were used to fill in the missing rail transport data for the Netherlands. 
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Table 10. List of input data for demand share estimation phase 

 

Table 11. Mode Transport Flow Data used as the first EM's Ground Truth Data 

 

 

4.3.2 Model Development 

Once a complete dataset of mode chain alternatives for all PC-commodity pairs has been constructed, the 

next step is to allocate the known goods flow for each pair across the available path alternatives. The process 

starts with dataset preparation to format the required data input format, then use the formatted data to the 

next main steps: initialization, model development and hyperparameter tuning,  

Step 1: Dataset Preparation 

The complete mode chain dataset produced by the mode chain construction phase will become the major 

input for this phase. Before using the data to build the EM model, several data prep-processing steps are 

needed, such as: 
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• Adding country name for intermediate node (transshipment zone) for each generated path that 

involves one. This step is very important since the demand flow aggregation process in the EM’s loss 

calculation process will be performed at the country level. 

• Adding impedance data, especially transport time and cost for each leg in the path. This information 

will be used to calculate the path’s score, which will be the basis for determining the top 7 paths (within 

the same PC-commodity pair group) with the highest path score. 

Path score is calculated based on the Analytic Hierarchy Process (AHP) study conducted by Lu and Wang 

(2022) that examines the estimated weight of travel cost, time, and route risk factors in influencing the 

decision of transport mode and path in a multimodal freight transportation network setting, which includes 

seaway, highway, and railway transportation (Lu & Wang, 2022). The coefficients for transportation cost (C), 

transportation risk (R), and transportation time (T) were determined using AHP after considering expert 

scoring to establish preferences for these factors. The coefficients represent the perceived importance or 

weight factor in the decision-making process of the route choice.  

The weights assigned were 0.222 for transportation cost, 0.667 for transportation risk, and 0.111 for 

transportation time. However, since the risk data is not available, only travel time and cost will be considered 

to calculate the path’s score in this study. So, the relative importance of these two factors will also be 

adjusted, forming a new formula as follows: 

𝑝𝑎𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 =  
1

0.67 𝐶 + 0.33 𝑇
 

The path score is calculated as the inverse of a weighted sum of cost and time to ensure that the lower-cost 

and shorter-duration paths receive higher scores. The applied weights reflect that cost is considered twice 

as important as time in the path scoring, consistent with the initial weighting scheme from Lu and Wang’s 

model, which assigned a value of 0.222 to cost and 0.111 to time. It emphasizes cost as the dominant factor 

influencing path preference. 

To reduce computational load, the total path alternatives are reduced by using the calculated path score 

information to filter out paths with a low probability of being chosen (indicated by a low path score). For each 

PC-commodity pair, only the top 7 paths with the highest path score are retained as alternatives for the 

next stage of EM modeling.  

 

Step 2: Initial Value Calculation 

The Expectation-Maximization algorithm requires an initial value as a reference to shape its prediction. The 

initial value is crucial and influential to the learning process. A good initial value could help the model learn 

faster and easier to reach convergence. As explained in the section 3.3.1, to determine the best initial values, 

three approaches are implemented: AHP, ESD, and EQW. Below are the details on how the initial values are 

calculated using each of the three approaches: 

1. AHP Approach: Initial Value based on Weighted Path Score 

In this approach, the initial distributed demand (y_init) for each mode chain is determined based on a path 

score that reflects the relative cost and time of transport. The method prioritizes paths that are more 

efficient in terms of cost and travel time by assigning a higher share of the total demand. The process 

follows these key steps: 

• Path Score Calculation: This step has been implemented in the previous section, Step 1: Dataset 

Preparation, to determine the path score and reduce the possible alternative paths. So, for each 

path, the total cost and total travel time are computed by summing the respective values across all 

legs. Then, the weighted path score is calculated using the formula. 
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• Normalization within PC-Commodity Groups: The sum of path scores is calculated for each 

PC-commodity group (PC Group), and each individual path’s score is then normalized to compute 

a path share, where 𝑛 is the total alternative path available within a PC group. 

𝑝𝑎𝑡ℎ 𝑠ℎ𝑎𝑟𝑒 =  𝑝𝑎𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 𝑖  ∑ 𝑝𝑎𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 𝑖

𝑛

𝑖 ∈ 𝑃𝐶𝐺𝑟𝑜𝑢𝑝

⁄  

• Initial Value Assignment: The initial demand value (y_init) for each path is computed by 

multiplying its normalized path share with the total flow (in tonnes) of the PC-commodity group. 

𝑦𝑖𝑛𝑖𝑡 = 𝑝𝑎𝑡ℎ 𝑠ℎ𝑎𝑟𝑒 ∗  𝑡𝑜𝑡𝑎𝑙 𝑃𝐶 𝑔𝑟𝑜𝑢𝑝′𝑠 𝑓𝑙𝑜𝑤  

 

2. ESD Approach: Initial Value based on Minimum Leg Share 

ESD stands for Eurostat’s Share Data, which refers to historical mode share data provided by Eurostat 

as the basis to determine the path’s share and initial value. This approach tries to ensure a more realistic 

distribution of demand across alternative mode chains by incorporating the observed modal preferences 

based on transport mode share data. The initial value (y_init) for each path is calculated based on the 

minimum observed mode share across its legs. This approach consists of the following steps: 

• Transport Share Lookup: Eurostat’s historical transport flow data is used as the reference. The 

table contains transport mode shares between country pairs for each mode, as shown by Table 

12. 
Table 12. Mode Share Historical Data per Country Pair 

 

• Leg-based Share Identification: For each path, the share of its individual leg is identified by 

referring to the mode share historical data based on the origin country, destination country, and 

the mode type used. For example, if a leg between Netherlands as the production region country 

(ProdZone country) and Belgium as the transshipment zone 1 country (node2 country) is 

connected using Rail, then the probability/share for this leg is 0.03 (fifth row in the table). 

• Path Share Assignment: After identifying the share for all paths, the share of a path is determined 

by using the minimum share among all legs in that path. This represents the bottleneck or weakest 

modal preference in the chain, ensuring that the initial demand value does not overestimate routes 

that contain low-share segments. For example, if a path has 3 legs with individual leg shares are 

0.78, 0.04, and 0.17, then the assigned share of this path is 0.04. 

• Normalization within PC-Commodity Groups: Same as the AHP approach, the normalization 

within each PC group is needed to ensure the resulting path share values sum to 1 within each 

group: 
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𝑝𝑎𝑡ℎ 𝑠ℎ𝑎𝑟𝑒 =  min (𝑙𝑒𝑔 𝑠ℎ𝑎𝑟𝑒 𝑖)  ∑ min (𝑙𝑒𝑔 𝑠ℎ𝑎𝑟𝑒 𝑖)

𝑛

𝑖 ∈ 𝑃𝐶𝐺𝑟𝑜𝑢𝑝

⁄  

• Initial Value Assignment: Same as before, the initial demand value (y_init) for each path is 

computed by multiplying its path share with the total flow of the PC-commodity group. 

 

3. EQW Approach: Initial Value based on Equal Weight Distribution 

This approach assigns the initial distributed demand (y_init) by evenly dividing the total demand (in 

tonnes) across all available paths within the same PC-commodity group. It assumes no prior preference 

among alternative mode chains and serves as a neutral baseline scenario for comparison with other 

weighted or historical data-based allocation models. So, for each group, the number of alternative paths 

(𝑛) is counted, then each path in the group is assigned an equal portion of the total demand using this 

following formula: 

𝑦𝑖𝑛𝑖𝑡 =  
𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑙𝑜𝑤(𝑖𝑛 𝑡𝑜𝑛𝑛𝑒𝑠)

𝑛
 

To evaluate which approaches are the best to be implemented, the initial loss figure from each approach are 

compared to the two sets of ground truth data: transport flow between countries data and port-level flow 

statistics. As seen in Table 13, ESD approach produces the lowest overall deviation between the predicted 

initial values and the ground truth transport flows, with total absolute deviation around 376 million tons, which 

is lower than both AHP (392 million) and EQW approach (394 million). The lower loss figures are seen across 

almost all modes and OD pairs, and the majority of % deviation under ESD are lower than AHP and EQW. 

This suggests that the ESD approach application produces the initial flow distribution closer to the historical 

data reference than the other approaches. 

Table 13. Comparison between Initial Value Prediction vs Mode Transport Flow Ground Truth Data 

 

Similar results were also seen from the initial value comparison against the port-level empirical data. ESD 

shows a clear advantage with total inflow and outflow deviation figures, for both Belgium and Netherlands 

ports, are significantly lower than AHP and EQW approaches. The heatmap showed in Table 14 further 

illustrates that the ESD deviations are more evenly distributed and less intense, particularly for key hubs like 

Rotterdam, Ghent, and Antwerp, indicating a more balanced and realistic assignment of flows to ports. Based 

on both mode transport and port statistics data comparison, the ESD approach yields the most accurate 

initial distribution of flows. It minimizes the deviation from ground truth at both the country and port levels, 

making it the most suitable approach to implement and generate the best initial values for the EM model 

input. 
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Table 14. Comparison between Initial Value Prediction vs Port-level Flow Ground Truth Data 

 

 

Step 3: Expectation-Maximization (EM) Algorithm Development 

To estimate the demand share for each mode chain between PC-commodity pairs, the Expectation-

Maximization (EM) algorithm treats the demand shares as latent variables that need to be inferred. The 

algorithm iteratively adjusts these estimates by using known but indirect ground truth data, aiming to find the 

optimal distribution of demand across path alternatives. The objective is to minimize the deviation between 

the aggregated values derived from the estimated shares and the actual observed aggregated data. 

In this study, several sources of ground truth data from Eurostat will be used as listed below.  

1. [Port Statistics] Gross weight of goods transported to/from main ports 

2. [Road Transport Statistics] International Road freight transport - loaded goods in reporting country 

by partner country (unloading and loading activities) 

3. [Road Transport Statistics] National Road freight transport by NUTS3 region (unloading and loading 

activities) 

4. [Rail Transport Statistics] Rail International transport of goods from the reporting country to the 

partner country (unloading and loading activities) 

5. [Rail Transport Statistics] Rail National goods transported by type of transport 

6. [IWW Transport Statistics] IWW Transport by type of good (country/regional flow) 

7. [Sea Transport Statistics] Gross weight of goods transported to/rom main port 

The six datasets will be merged and cleaned to construct two combined and more concise datasets. They 

are port statistics and transport mode statistics. The transport mode statistics consist of the road, rail, IWW 

and sea transport, for both international flow (export and import) as well as national flow (within the country).  

To better formulate the problem, Figure 15 illustrates how the ground truth data are linked to the demand 

share estimation for each path alternative, which is further detailed in the mathematical model in the following 

section. Three possible chain schemes are considered: 1-leg, 2-leg, and 3-leg paths. The assigned flow for 

each path is proportionally distributed across its corresponding legs. As a result, the loss function consists 

of two main components: 

• Transport Loss (Constraint 1): This represents the discrepancy between the aggregated flow 

assigned across all legs (with a specific mode type) in the alternative paths and the known transport 

statistics between origin-destination country pairs. 

• Port Loss (Constraint 2): This reflects the difference between the cumulative assigned flow 

entering or exiting a specific port and the actual goods volume handled by the port, based on 

observed port statistics. 
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Figure 15. Illustration of Flow Aggregation Mechanism for Loss Function in EM Algorithm 

To ensure model consistency, two additional constraints are applied. Constraint 3 enforces that the total 

assigned flow across all path alternatives for each PC-commodity pair equals the known initial demand. 

Constraint 4 ensures that the flow assigned to each leg of a path matches the total flow assigned to the full 

path it belongs to. 

Since the loss function combines transport flow loss and port flow loss, each with significantly different 

magnitudes, a scaling factor is introduced during the loss calculation process. The scaling factor for both los 

component will be tried iteratively in order to get the best combination. This adjustment is essential to ensure 

the model minimizes deviations from both sets of ground truth data equally. Without scaling, the loss 

component with the larger magnitude would dominate the total loss, causing the model to focus 

disproportionately on optimizing that component, leading to imbalanced results.  

The model's learning process is based on the adjusted total loss, which incorporates the scaling factor. 

However, the loss values presented in this report reflect the actual (unscaled) loss to provide a clearer 

interpretation and a more nuanced understanding of the model’s performance. 

 

Mathematical Model 

Indices 

𝑖, 𝑗 ∈ N = 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑛𝑜𝑑𝑒𝑠  

𝑜, 𝑑 ∈ A = 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 (𝑁𝑈𝑇𝑆3 − 𝑙𝑒𝑣𝑒𝑙 𝑎𝑟𝑒𝑎) 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑖  

𝑚 ∈ M = 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑚𝑜𝑑𝑒𝑠  

𝑡 ∈ T = 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑟𝑡𝑠  

𝑝 ∈ P = 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ𝑠  

𝑐 ∈ C = 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑡𝑦𝑝𝑒𝑠    

Parameter 

𝐺𝑇𝑖𝑗𝑚 = 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑢𝑠𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 𝑚 𝑓𝑟𝑜𝑚 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑖 𝑡𝑜 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑗 

𝐺𝑃𝐼𝑖𝑡 = 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑙𝑜𝑤 𝑡𝑜 𝑝𝑜𝑟𝑡 𝑡 𝑓𝑟𝑜𝑚 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑖 

𝐺𝑃𝑂𝑡𝑖 = 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝑝𝑜𝑟𝑡 𝑡 𝑡𝑜 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑖 

𝐷𝑜𝑑𝑐 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑐 𝑡ℎ𝑎𝑡 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜 𝑡𝑜 𝑟𝑒𝑔𝑖𝑜𝑛 𝑑  

𝑎 = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.0  

𝑏 = 𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 𝑎𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1

(𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 𝑎𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1)/ 2
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Variable 

𝑌𝑜𝑑𝑐𝑝 = 𝑔𝑜𝑜𝑑𝑠 𝑓𝑙𝑜𝑤 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑑𝑡𝑖𝑦 𝑐 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜 𝑎𝑛𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑑 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑎𝑡ℎ 𝑝 

𝑋𝑖𝑗𝑚𝑝𝑐 = 𝑔𝑜𝑜𝑑𝑠 𝑓𝑙𝑜𝑤 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗 𝑢𝑠𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 𝑚 𝑎𝑙𝑜𝑛𝑔 𝑝𝑎𝑡ℎ 𝑝 

𝑇𝐿 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 (𝑒𝑟𝑟𝑜𝑟) 

𝑃𝐿 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 (𝑒𝑟𝑟𝑜𝑟) 

Objective Function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝑎  𝑇𝐿 + 𝑏  𝑃𝐿    

Constraint 

1. Ground Truth 1: Transport between Countries 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 (𝑇𝐿) = 𝑎𝑏𝑠 (∑ 𝑋𝑖𝑗𝑚𝑝𝑐 − 𝐺𝑇𝑖𝑗𝑚

𝑖,𝑗,𝑝

)   𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝑁; 𝑚 ∈ 𝑀   

2. Ground Truth 2: Port Statistics Constraint   

𝑝𝑜𝑟𝑡 𝑖𝑛𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 (𝑃𝐿) =  𝑎𝑏𝑠 ( ∑ 𝑋𝑗𝑖𝑚𝑝𝑐 − 𝐺𝑃𝐼𝑖𝑡

𝑗,𝑚,𝑝,𝑐

)   𝑓𝑜𝑟 𝑖 = 𝑡;  𝑚 = 4;  𝑡 ∈ 𝑇;  𝑗 ∈ 𝑁 

𝑝𝑜𝑟𝑡 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠 = 𝑎𝑏𝑠 ( ∑ 𝑋𝑖𝑗𝑚𝑝𝑐 − 𝐺𝑃𝑂𝑡𝑖

𝑗,𝑚,𝑝,𝑐

)   𝑓𝑜𝑟 𝑖 = 𝑡;   𝑚 = 4;  𝑡 ∈ 𝑇;  𝑗 ∈ 𝑁 

3. Total Assigned Demand Constraint 

∑ 𝑌𝑜𝑑𝑐𝑝 =  𝐷𝑜𝑑𝑐

𝑝

  𝑓𝑜𝑟 𝑜, 𝑑 ∈ 𝐴;  𝑐 ∈ 𝐶 

4. Flow Consistency Constraint 

𝑋𝑖𝑗𝑚𝑝𝑐 =  𝑌𝑜𝑑𝑐𝑝  𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝑁;  𝑚 ∈ 𝑀;  𝑐 ∈ 𝐶;  𝑝 ∈ 𝑃;  𝑜, 𝑑 ∈ 𝐴 

5. Positivity Constraint 

𝑋𝑖𝑗𝑚𝑝𝑐 ≥ 0    𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝑁;  𝑚 ∈ 𝑀;  𝑐 ∈ 𝐶;  𝑝 ∈ 𝑃 

 

4.3.3 Hyperparameter Tuning 

Hyperparameter tuning is the process of selecting the most effective set of preset configuration parameters 

for a machine learning model. This step is important because it influences how the model learns during 

training and affects the model’s performance. As explained in the section 3.3.1, four learning parameters 

need to be determined. In the below section, the selection process of each parameter is explained as well 

as the reason behind the choice. 

1. Initial learning rate 

To determine the most suitable learning rate for this study's model complexity, several trials were conducted. 

Each trial involved running the model for 10 iterations to assess whether the assigned learning rate could 

significantly reduce the loss, thereby enable effective learning and avoiding entrapment in local optima. The 

trials began with the highest learning rate 1, which was then gradually decreased until further reductions no 

longer yielded significant improvement, this threshold was considered the lower bound of the learning rate 

range. Three learning rate values were tested: 1 and 0.5. As shown by Figure 16, initial LR=0.5 results in a 

lower loss reduction compared to LR=1, but both settings show a stable learning process throughout the first 

10 iterations. This is expected since lower learning rate will make the model take shorter steps and lead to 

lesser reduction. So, the trial was stopped at this point because as any value below 0.5 would likely result in 
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even smaller improvements during early training. Therefore, initial learning rate of 1 was selected as the most 

appropriate initial value because it produces more significant loss reduction over iteration. 

 

Figure 16. Delta Trend in the First 10 Iterations for each Initial LR Settings 

2. Learning rate decay factor (gamma) 

The default value for this parameter is 0.5. This decision was motivated by the significant fluctuations 

observed in the EM model’s learning process, particularly during the early training stages. It was therefore 

important to reduce the learning rate more aggressively by halving it once certain conditions were met. These 

fluctuations are likely caused by the large number of mode chain alternatives combined with limited ground 

truth data, which makes the model less stable and more prone to difficulty in identifying optimal solutions 

within a vast solution space.  

3. Loss tolerance and patience for convergence 

The loss tolerance and patience threshold for convergence are both set to the same value. The loss tolerance 

is set at 3000 or equal to 0.012% of the total loss (approximately 25 million before scaling), making any 

reduction below this threshold negligible. Patience is set to 3 iterations, allowing the model a 10% chance to 

discover a better solution in subsequent steps. With this configuration, convergence is declared when the 

model fails to achieve a loss reduction greater than 3000 over the last three iterations. 

4. Maximum iteration 

In case the above convergence criteria are difficult to meet, setting the maximum number of iterations can 

also be set as an alternative convergence criterion (Bayati, et al., 2008). Setting a maximum number of 

iterations is widely used to avoid infinite loops or excessive computation, especially when convergence is 

slow or uncertain. Even though this does not guarantee that the solution has actually converged. For this 

study, the maximum number of iterations is set at 500. This consideration is based on the running time of the 

model that requires 8-10 minutes to finish one iteration. So, by setting the maximum 500 iterations, the model 

needs 83 hours or 3,5 days already to reach this threshold (in case convergence hasn’t reached yet). 

After determining the initial parameters, the ADAM optimizer and a learning rate scheduler were configured 

in the model, as described in Section 3.3.1. For ADAM, the default internal settings were used: an initial 

learning rate (lr) of 1.0, beta_1 set to 0.9, beta_2 to 0.999, and amsgrad enabled (True). As shown by Figure 

17, the learning rate scheduler was set to reduce the learning rate by a factor of 0.5 whenever the change in 

loss between iteration i and iteration i−1 fell below 0.015% of the current total loss. This reduction was applied 

immediately, with no waiting period (patience = 0). 
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Figure 17. Learning Rate Scheduler Setting 

To monitor model convergence, an early stopping mechanism was implemented based on loss stabilization 

(see Figure 18). The model is allowed to iterate for a minimum of 10 iterations (min_iterations = 10) before 

early stopping is considered. During each iteration, the change in loss (delta) is calculated by subtracting the 

current loss from the previous one (not using the absolute value). If this change is smaller than the defined 

tolerance, a counter (loss_stable_counter) is incremented. If the counter reaches 3 consecutive stable 

iterations after the minimum number of iterations has passed, the training loop is stopped, signaling 

convergence.  

 
Figure 18. Pseudocode for Convergence Check Mechanism 

 

4.3.4 Loss Component’s Weight Analysis 

The Figure 19 illustrates the results of testing various scaling ratios between the Transport Loss (TL) and 

Port Loss (PL) components in the Expectation-Maximization model’s loss function. The scaling ratio is 

necessary because of the significant difference in magnitude between the two loss components. Without 

scaling, the model tends to prioritize reducing the larger Transport Loss to achieve a greater overall loss 

reduction, which in turn causes the Port Loss to be neglected and potentially increase rather than being 

minimized. The goal of this test is to identify the most balanced setting that can effectively minimize both 

losses simultaneously. Each chart represents a different scaling ratio, and the first five iterations of the EM 

model were analyzed to observe the loss trends. 

• Top row: Shows fixed scaling ratios (1:1, 1:2, and 1:4), where the weight of Port Loss relative to 

Transport Loss increases progressively. 

• Bottom row: Shows dynamic scaling ratios derived from the magnitude of each loss (1:TL/PL, 

1:TL/PL/2, and 1:TL/PL/4), where Port Loss is normalized relative to Transport Loss. 

From the charts, it is seen that only the 1:1 and 1:2 loss ratio setting shows a downward trend for both loss 

components throughout the iterations, indicating a better balance between the two. Meanwhile, the other 

settings tend to prioritize the reduction of port loss component over the transport loss, since the port loss 

component has higher scaling factor than transport loss’s factor that is maintained at 1. Among the tested 
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settings, 1:1 and 1:2 ratio settings achieves the most consistent and balanced reduction across both loss 

components is considered optimal for the EM model. 

 

 

Figure 19. Loss Reduction Trend for EM's Loss Calculation Settings 

To further investigate the continuity of this simultaneous reduction trend, the iteration results plotting is 

extended for both 1:1 and 1:2 settings until the 20th iterations as depicted by Figure 20. The chart shows that 

the simultaneous reduction trend can only be maintained until 6th iteration, after that the model can keep 

reducing transport loss but sacrificing the port loss (the loss is increasing). However, since transport loss has 

bigger losses, minimizing the transport loss is the priority. So, the 1:1 ratio setting is chosen for the full model 

training. 

 

Figure 20. Loss Reduction Trend for EM's Loss Calculation 1:1 and 1:2 Settings 

 

4.3.5 Results and Model Evaluation 

After identifying the most suitable predefined parameters and adaptive learning strategy, the EM model is 

built using the defined settings. Table 15 shows the example of the EM model’s outputs. The mode chain 

data that generated in the mode chain construction process then are completed with the y_fin value which 

represent the resulting assigned demand flow in tonnes. The total y_fin across chains within the same PC-

commodity pair will equal to the total demand in column tonnes. 

The initial values resulting from the ESD approach are used as the model input, since they produce a set of 

initial values with the least initial loss compared to the other two approaches. However, in this report, the 

results from AHP approach will also be presented as the comparison to assess the model performance.  
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Table 15. Snapshot of Expectation-Maximization Model Outputs 

 

4.3.5.1  Model Results using ESD Initial Values Approach 

The assigned demand flow at chain level then are aggregated according to the origin and destination country 

of each edges consisted in the chain network. The flow are aggregated per mode type and the country as 

depicted in Table 16 in column y_pred. The aggregated prediction value then are compared to actual freight 

transport data (ground truth) to assess the model’s performance in estimating multimodal transport flows. 

The Sea mode starts with initial values that results in the highest level of overestimation, followed by Road, 

while inland waterways (IWW) are significantly underestimated. The results show that the model was able to 

reduce the absolute deviation for the majority of OD-country pairs across various transport modes. It 

generates a consistent loss reduction in most of origin-destination country pairs, especially for Road and Rail 

segment, with 0.2-17% reduction in deviation (see “%Improvement” column). However, the increase of 

deviation happened slightly in IWW section, and in Sea section quite significantly.  

Table 16. EM Prediction Results Comparison against Transport Flow Ground Truth Data using ESD Approach 

 

The increase of deviation in Sea section is due to the trade-off between the sea and other mode types. Road 

and Sea mode have bigger initial values status compared to the ground truth data, while Rail and IWW have 

lower initial values. So, the EM model aims to decrease the share of Road and Sea, then redistribute the flow 

shares to Rail and IWW to increase their shares and get closer to the ground truth. However, as shown in 

Table 17, the generated mode chains data are dominated by 3-legs chains that consist of multiple mode 

types, where the use of Sea mode is always be combined with other modes as the first and third (last) leg. 

The decrease of Sea mode share will also lead to the decrease of other modes’ shares, and vice versa. So, 

in order to achieve the model objective to increase the share of Rail and IWW will bring the side-effects which 
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is the increase of Sea mode shares as well, and make the deviation of Sea mode gets bigger (while the Sea 

mode share is supposed to be decreased). 

Table 17. Number of Legs Distribution according to the Generated Chain Alternatives 

 

Unlike Sea mode, the road section whose shares also need to be decrease because of bigger initial values 

status against the ground truth, could alternatively achieves its goal through minimizing the share of the 1-

leg mode chain alternatives since it only involves road mode only without combination with other modes. The 

efforts to decrease the Road mode share is easier to be done than to decrease the Sea mode share since 

it’s conflicting with the other objectives to increase the share of Rail and IWW modes. Hence, the trade-off 

between Sea, Rail and IWW flow distribution makes it hard for the EM model to achieve its ultimate goal to 

minimize the overall loss across all ground truth data points, even though the model has reached the 

convergence as shown in Figure 21. The model reached the convergence at 107th iterations where the delta 

loss reduction was already below 3000 in the last 3 consecutive iterations. 

 
Figure 21. ESD EM Model Iterations Results until Convergence 

The increase in Sea deviation also worsen the results of port flow prediction in comparison to the ground 

truth data. It causes the increases of deviation in most of port flow ground truth data points as displayed in 

Table 18, and only several data points are optimized as intended. As indicated by the first 20 iterations, where 

the port loss tends to increase while the transport loss is decreasing, the trend continues until the model 

convergence. As shown in Figure 22, despite the increase of deviation of port data (indicated by larger port 

loss compared to the initial status), the model has successfully reduce the overall loss until no significant 

reduction can be made (convergence). Hence, the model has reached the possible optimal states given the 

input data structure including the trade-off within it. This result indicates that finding the better balace between 
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transport and port loss would be the key to improve the performance of the model in the future research or 

model development iterations. 

Table 18. EM Prediction Result Comparison against Port Flow Ground Truth Data using ESD Approach 

 

 
Figure 22. Full Loss Reduction Trend until Convergence 

 

4.3.5.2  Model Performance Analysis 

As explained in section 4.3.2, ESD has smaller initial deviations compared to the ground truth data. However, 

to assess the model performance, the results from both initial values strategies will be presented in this 

section. Apart from that, the results comparison will explain better the trade-off between the model’s ability 

in minimizing the deviation versus the final predicted demand share distribution resulted by the model.  

Table 19 shows the deviation reduction (improvement) achieved by EM model using AHP approach in 

comparison to the improvement made by the ESD approach in transport loss segment. The deviation 

reduction happens in majority of the country pairs, similar to the improvements resulted by the ESD approach. 

The difference is the AHP was prioritizing reducing the road share segment while reducing the Sea mode 

share. It leads to a better deviation reduction figure in port loss segment as displayed in Table 20, where only 

two port loss data points that experienced the increase in deviation while the other data points gained positive 

results (loss reduction). Unlike ESD approach that produces mostly negative results with loss increase in 

almost all port flow data points. 
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Table 19. Transport Loss Deviation Reduction Comparison between AHP and ESD Approach 

 

Table 20. Port Loss Deviation Reduction Comparison between AHP and ESD Approach 

 

However, if the final deviation figures for all transport flow (Table 17) and port flow (Table 22) data points are 

compared between the ESD and AHP approach, the results shows that ESD still produces the better results 

with smaller deviations in 75% of data points from both ground truth datasets. The ESD approach has an 

absolute better result especially happens for port flow ground truth data with significantly smaller deviation 

compared to AHP approach, despite having a worse improvement figure (Table 20) in this segment. This 

result indicates that ESD approach has set a strong set of initial values prior to the run of EM model that is 

already close to the ground truth data’s demand share structure. So, these good initial values left the model 

with a limited room for improvement to be achieved for the model iterations. Hence, initially the model can 

reduce the overall loss figures by simultaneously decreasing both loss components, but beyond the iteration 

13 the model has reached the saturated state. This is the state where the further loss reduction can only be 

achieved by sacrificing or increasing the loss of one of the loss components, in this case the port loss is 

sacrificed. 
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Table 21. Comparison of Final Prediction Results for Transport Flow Data between ESD and AHP Approach 

 

Table 22. Comparison of Final Prediction Results for Port Flow Data between ESD and AHP Approach 

 

The chart in Figure 23 illustrates the EM model’s learning process in minimizing the Transport Loss and Port 

Loss trends over iterations for two different initial value approaches, AHP and ESD. The ESD approach 

converges faster, reaching a stable point around the 107th iteration with a final Transport Loss of 26,151,412 

and a Port Loss of 402,336. This indicates that the model’s learning has stabilized and can no longer 

significantly reduce the losses. In contrast, the AHP approach shows a slower convergence trend up to the 

460th iteration, and the model run was halted due to time constraints before reaching full convergence. Its 

latest recorded losses were 27,182,482 for Transport Loss and 1,296,938 for Port Loss. However, the 

learning trend indicates a gradual stabilization in the loss over time. The loss gradually decreased, suggesting 

that the model progressed toward potential convergence in the next several iterations when the total loss 

figures reach the 26,1 million level for transport loss and 402,3 thousand level for port loss. This comparison 

highlights that the ESD initial value approach leads to better and faster loss minimization compared to the 

AHP approach, and the EM model with ESD as the initial values strategies is the optimal model settings for 

MCB’s demand share estimation system. 



 

60 

 
Figure 23. Loss Reduction Trend Comparison between ESD and AHP Approach 

4.3.5.3  Model Performance Justification 

This substantial reduction indicates that the EM model successfully optimized the estimates by consistently 

minimizing initial deviations across all ground truth data points available. It indicates the model’s ability to 

learn and adjust toward the ground truth, even when starting from suboptimal predictions. The “green” 

improvement values further confirms that the majority of final aggregated predictions are getting closer to 

actual values. This validates that the EM algorithm is functioning as intended, iteratively refining estimates 

and reducing mismatches, highlighting its capacity to improve performance under constraints. 

As discussed earlier, the EM model with ESD approach already reaches the convergence state. When the 

model reaches convergence state, it already reaches the internal consistency, indicating that the model has 

minimized deviations as much as possible given the input constraints, initial Y distribution, and OD pair 

structure. The strong reduction in deviation across country pairs confirms that the model effectively learned 

from iterative updates. The remaining gap between predicted values and ground truth suggests that while 

the model has performed well within its design limits, external factors likely hinder its ability to achieve a 

closer match. 

Several external factors may limit the model’s ability to achieve higher accuracy: 

1. Incomplete or Biased Path Alternatives 

The generated mode chains may not fully reflect realistic alternatives present in the real world. Since 

the mode chain data for the EM model input was constructed based on infrastructure availability data, 

and it has also been validated in Section 4.2.3, any inaccuracies in the infrastructure data could 

introduce bias to the final EM prediction. Given that IWW is the most consistently underestimated 

mode, reviewing the latest data on terminal availability might help mitigate this issue. 

2. Mismatch between Mode Share Assumptions and Real-World Behavior 

The mode chain filtering described in Section 4.3.1 was based on probabilities derived from weighted 

factors estimation in Lu and Wang (2022)’s AHP results. While theoretically sound, this approach may 

not fully capture the real-world dynamics of freight transport. Critical factors (e.g., market conditions, 

actual tariffs, regulatory preferences) strongly influence mode choice but are not incorporated into the 

current model. For example, even if rail infrastructure is available, certain flows may still prefer road 

transport due to greater flexibility, reliability, or existing commercial agreements, leading to potential 

bias in the predicted probability of alternative paths. Hence, the exclusion of certain OD alternatives 

could also contribute to the remaining gap since it may remove relevant yet lower-frequency 
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alternatives, reducing the diversity of mode chains. However, in this study, the elimination step is 

needed due to the limited computation capability. 

3. Limited Travel Impedance Data  

The generalized transport cost and travel time data were used as the basis in calculating the path 

score to perform the early path elimination as well as to estimate the path share in AHP initial value 

estimation strategy. But the impedance cost used in the calculation may not accurately reflect actual 

multimodal costs. Since multimodal paths involve multiple modes and transfer processes, they often 

incur additional time and handling costs that are not fully captured in the current utility model. This 

omission could further distort the initial probability estimates. 
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Chapter 5.  Conclusion and 
Recommendations 

 

5.1 Research Conclusion 
This conclusion section summarizes the key findings of the research by addressing the research questions 

defined at the outset. It brings together the insights and answers to the main research question and its sub-

questions, as detailed below: 

1. What approaches are commonly used for constructing and predicting multimodal freight chain 

data? 

In this study, multimodal freight chain modelling is divided into two major steps: (1) mode chain data 

construction and (2) demand share estimation. 

• For mode chain construction, the existing commonly used approaches are optimization (SND, Short-

path algorithm like Dijkstra, k-shortest path), heuristics (RCI and PIA), machine learning (DBSCAN 

clustering, reinforcement learning), and classical graph search algorithms (BFS and DFS). 

• For demand share estimation, modern mode split modeling methods often rely on supervised machine 

learning techniques such as neural networks, random forests, XGBoost, or CatBoost, in addition to 

traditional statistical approaches like the Multinomial Logit model. However, these supervised methods 

require labeled data, which is typically unavailable in freight mode split problems. The unsupervised 

learning technique, Expectation-Maximization algorithm (EM), can also be considered due to its ability 

to estimate the missing data or latent variable using the available observed data. 

2. Which mode chain construction approach that can effectively integrates a comprehensive port 

selection process and aligns cargo handling requirements with port capabilities? 

The combination of BFS and heuristic methods are found to be the most effective approach for constructing 

mode chain datasets, as the enhanced logic required for comprehensive port selection and cargo handling 

alignment can only be achieved through heuristics. BFS complements this process effectively by enabling 

full enumeration of all possible path alternatives and offering the flexibility to integrate with heuristic 

techniques, allowing for a high degree of customization in the model. 

 

3. How can the proposed mode chain construction model be developed and integrated into the 

existing Mode Chain Builder system? 

A new mode chain construction model has been developed in Python, combining heuristic methods with the 

Breadth-First Search (BFS) algorithm. For the scope of this study, which focuses on Belgium and the 

Netherlands, the model successfully generated approximately 1.8 million valid mode chain alternatives. All 

generated chains were verified against freight transport infrastructure availability data, ensuring 100% 

validity, a key requirement for constructing realistic and reliable mode chain datasets. 

 

4. Which machine learning techniques are most appropriate for predicting demand flow distribution 

in multimodal freight transport? 

The semi-unsupervised learning technique, Expectation-Maximization (EM) algorithm, becomes a suitable 

method to implement, as it can estimate unobserved or latent variables without labelled data. While the 

application of EM for estimating mode chain shares in the freight modelling domain remains relatively 

uncommon, it offers a promising solution under data-limited conditions. 
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5. How can the demand flow distribution model be developed and effectively integrated with the mode 

chain construction process? 

A demand share estimation model using Expectation-Maximization approach has been developed in Python. 

It's proven to be able to reduce the deviation between predicted values and ground truth data significantly 

given the input data constraints. 

 

6. How accurately does the proposed model predict multimodal freight chains compared to the actual 

available freight data? 

The newly developed multimodal freight chain model in this study has proven its ability to construct the mode 

chain alternatives data with 100% validity against the available transport infrastructure information. The 

demand share estimation model can reduce the deviation between the predicted demand share values 

against the transport historical data in majority of the observed data points. Even though several data points 

experienced an increase in deviation instead, the reduction outweighed the increase. The rise in deviations 

for certain flows appears to be a trade-off resulting from the model’s focus on reducing errors in segments 

with the highest initial deviations.   

Despite the model’s proven ability to reduce the deviation, the existing model still left a quite significant 

remaining deviation between predicted values and ground truth. But the learning process of the EM model 

was already near the convergence, meaning the model has reached its maximum ability to minimize the 

deviations given the input constraints, initial Y distribution, and OD pair structure. Hence, the remaining gap 

indicates that while the model has performed well within its design limits, external factors likely hinder its 

ability to achieve a closer match. Several recommendations (elaborated in the next section) can be 

considered to improve the model performance in the future related or similar research. 

The final conclusion is that machine learning (ML) can be effectively implemented in the Mode Chain Builder 

system, but primarily for the demand share estimation phase. ML is not well-suited for mode chain 

construction because most existing path-generation or route-construction approaches aim to identify the 

most optimal or a few best path alternatives. In multimodal freight chain modelling, however, the requirement 

is to generate all possible path alternatives, which aligns better with traditional graph search methods. The 

implementation of ML in the demand share estimation phase is achieved using the Expectation-Maximization 

(EM) algorithm, where the demand share per path is treated as a latent variable. Its values are iteratively 

estimated by referencing observed ground truth data. The EM model demonstrated its capability to refine the 

initial demand share estimates (initial values) by minimizing the deviation between predicted values and 

ground truth data, despite trade-offs between transport flow and port flow accuracy. 

While the model has not fully eliminated the deviation as initially expected, it has achieved the best possible 

results given the current input data structure. Further reductions in deviation can only be achieved by 

improving several external factors: access to more accurate infrastructure connectivity and travel impedance 

data to build more realistic mode chain alternatives, enhanced computational capacity to allow the full model 

to run without multiple simplification steps, and a more comprehensive understanding of freight path choice 

behaviour to support the development of better estimation models. 

 

5.2 Research Limitation and Recommendations 
Based on the model results and evaluations, the future similar research using Expectation-Maximization 

algorithm for the model development can focus the effort to find the better balace between transport and port 

loss. Since in the result of this study shows a huge trade-off between the two loss components, so finding a 

better balance between the two would be the key to improve the performance of the model in the future 
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research or model development iterations. Apart from that, here are the other limitations of this research 

along with some recommendations for future research. 

1. Incomplete or Biased Path Alternatives 

The mode chain dataset used as input for the EM model is constructed based on infrastructure availability 

data. While this data was validated earlier in the study, it may still not fully reflect the complete range of 

realistic path alternatives in real-world freight movement. Particularly, inland waterway transport (IWW) 

appears consistently underestimated, possibly due to outdated or missing information on terminal availability 

or waterway connectivity. Future research should update and expand the infrastructure database, particularly 

for underrepresented modes like IWW. Incorporating recent datasets or open-source logistics platforms (e.g., 

TEN-T, Eurostat intermodal maps) can improve path generation realism. Furthermore, integrating expert 

validation or using the most updated data could enhance the representativeness of the mode chains. 

2. Mode Choice Behavior Not Fully Captured 

The initial filtering of mode chains was based on mode share probabilities derived from Lu and Wang (2022)’s 

AHP results, which rely on predefined weighted factors. However, this method may not capture actual freight 

decision-making dynamics such as pricing strategies, contract arrangements, or preferences for certain 

modes due to reliability or flexibility. As a result, certain feasible but less frequent mode chains may have 

been prematurely excluded. Future research should explore data-driven path choice modeling based on 

actual observed freight transport behavior. In particular, research on discrete choice modeling or stated 

preference surveys specifically targeting multimodal path or route choices would be highly beneficial. This is 

important because most existing transport behavior studies tend to focus on individual mode choice, rather 

than on entire transport chains that involve multiple modes or legs. Developing models that capture the full 

path decision-making process would yield more realistic and reliable estimates of mode chain probabilities. 

3. Limited Travel Impedance Accuracy 

The utility scores used for early filtering and for the AHP-based initial value estimation rely on generalized 

transport costs and travel times. However, multimodal transport includes intermodal transfers, waiting times, 

and handling costs that are not fully reflected in the current impedance values. This simplification could lead 

to inaccurate scoring and biased selection of paths, especially for complex chains like rail-sea-road 

combinations. Future research should incorporate detailed multimodal impedance models that account for 

transfer penalties, handling times, and mode-specific costs. This could be achieved by collecting such data 

by accessing datasets from transport studies that include intermodal transfer data. 

4. Computational Resource Constraints 

Due to limited computational time and resources, the EM model could not be trained using the best initial 

values (from the ESD approach). The training was halted at iteration 460 before full convergence. While the 

delta loss had stabilized, the model could have slightly improved further if allowed to run to convergence. In 

addition, the path elimination step was necessary to reduce the computational load but may have removed 

plausible alternatives. Future research should be equipped with better computer capability. Apart from that, 

implementing parallel computing or using GPU-accelerated training to speed up EM iterations could also be 

considered to allow full convergence with better initial values. Cloud computing environments like AWS or 

Google Collab Pro could be explored to scale experiments. 

5. EM Model Still Rarely Applied in Freight Modeling 

The use of the Expectation-Maximization (EM) algorithm for freight mode split modeling remains relatively 

novel. While the results here show promise, this method still lacks widespread validation in transport 

research. Its sensitivity to initial values and potential for local minima make its robustness less predictable in 

other settings. Further research should benchmark EM against other semi-supervised or probabilistic 

modeling techniques in similar freight estimation contexts.  
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Abstract 

Freight transport is central to global trade, and accurate multimodal chain modeling is essential for efficient 

planning and policy-making, yet remains challenging due to fragmented data, limited granularity, and the absence 

of observed chain-level datasets. Traditional heuristic approaches often fail to capture operational realities such 

as port selection and cargo handling, and are computationally rigid. This research develops an adaptive 

multimodal freight chain model that integrates port selection with cargo handling requirements and applies 

machine learning, in this case the Expectation-Maximization (EM) algorithm, to estimate demand flows from 

unstructured transport data. Applied to the NEAC Mode Chain Builder for freight movements between the 

Netherlands and Belgium, the model generates valid chain alternatives and reduces deviations between predicted 

and observed flows, particularly for sea and rail segments, while demonstrating stable convergence. Although 

residual deviations remain due to data limitations and behavioral uncertainties, the results show that combining 

graph search algorithms with unsupervised learning offers a practical and data-driven approach for building data-

driven multimodal freight transport models that better reflect operational realities and observed empirical data 

that can be used to improve the freight transport planning and decision-making process. 

 

Keywords: mode chain builder, multimodal freight modelling, path generation, demand share distribution, 

machine learning, unsupervised learnings, expectation-maximization algorithm, graph search algorithm

1. Introduction 

1.1  Background 

Over the past decades, freight volumes have grown 

rapidly and are projected to continue rising in the 

coming years (IEA, 2002). Freight transport plays a 

critical role in global trade and economic activity. It 

requires efficient and adaptable modelling systems to 

optimize logistics, infrastructure planning, and policy 

decision-making. In Europe, a significant portion of 

freight shipments are transported through multimodal 

chains rather than direct unimodal schemes. A survey 

conducted by French ECHO indicates that 

approximately 47% of freight demand is transported 

via multimodal transport chains, while 46% relies on 

a single mode, and the remaining 7% falls into other 

categories (Guilbault, 2008). The preference for 

multimodal transport chains is primarily driven by 

the lack of direct connections between certain origin-

destination pairs, making unimodal transport (Huber, 

2017). Additionally, multimodal chains are preferred 

because they allow for greater efficiency by 



 

66 

leveraging the advantages of different transport 

modes and vehicles within the chain (Konings, et al., 

2008). 

Another interesting fact is also found showing that 

according to Eurostat, in 2025 maritime transport 

accounts for 67.4% of the total freight volume in the 

EU. Since maritime transport only connects ports, 

additional modes are required for first-mile 

connections from the origin point to the port and for 

last-mile delivery from the port to the final 

destination. In parallel, the European Union is 

committed to promoting a more sustainable form of 

mobility. This goal can be advanced through 

multimodal transport, which strategically combines 

different transport modes to maximize their 

individual strengths while minimizing their 

limitations. To support this vision, the European 

Commission is actively pursuing a multimodality 

policy by improving the integration of transport 

modes and ensuring interoperability at all levels of 

the transport system (European Union, 2023). This 

policy direction is likely to increase the demand for 

multimodal freight chain modelling in the future. 

Existing approaches to multimodal freight transport 

modeling are mostly based on optimization methods, 

which aim to identify the most efficient transport 

chains by minimizing factors such as cost, time, or 

emissions. Techniques such as genetic algorithms 

[6], bilevel programming [7], dynamic programming 

[8], and heuristics have been widely applied [7], often 

combined with simulation to enhance realism. For 

example, Bok et al. developed a corridor choice 

model within the Netherlands’ BasGoed system, 

applying route enumeration and a Multinomial Logit 

model to estimate demand shares [9]. While effective 

in certain contexts, these methods depend heavily on 

predefined assumptions and generalized costs, 

making them less adaptable to the complex and 

dynamic nature of multimodal freight flows. 

The recent growing approaches applied for freight 

modelling are big data analytics and machine 

learning. So far, the applications are mainly for path 

design [10], demand generation prediction [11], 

demand forecasting [12] [13] [14] [15] [16], mode 

choice prediction [17] [18] [19], and demand 

assignment optimization [20] [21] [22], with studies 

consistently showing that machine learning 

outperforms traditional methods in predictive 

accuracy. However, despite this progress, the use of 

machine learning to estimate freight flows across 

entire multimodal transport chain networks remains 

largely unexplored. This is a critical gap, as current 

optimization and statistical approaches often struggle 

with fragmented data, high dimensionality, and the 

lack of observed chain-level datasets. 

This research addresses this gap by investigating the 

integration of machine learning into the NEAC Mode 

Chain Builder system, which currently relies on 

heuristic-based path construction. The proposed 

approach seeks to leverage available but fragmented 

freight statistics to generate a predicted multimodal 

freight chain database. By learning hidden 

relationships across incomplete datasets, machine 

learning can help approximate how freight flows are 

distributed along complex modal sequences. This 

integration is expected to reduce dependence on rigid 

heuristics, improve demand flow estimation, and 

support more accurate, data-driven decision-making 

for multimodal freight transport planning. 

 

1.2 Problem Description and Scope 

The multimodal freight chain modelling process in 

this research will use NEAC Mode Chain Builder 

(MCB) as the case study object. NEAC itself is a 

multimodal, network-based simulation system 

developed to analyse freight transport flows across 

Europe that comprises two key components: the 

Mode Chain Builder and the NEAC model itself. The 

Mode Chain Builder model is used to construct a 

mode chain database that represents possible 

multimodal transport chains between production and 

consumption point (region) pairs. These chains 

represent the sequences of transport modes 

(involving road, rail, inland waterway, and maritime 

transport mode options) and terminal connections 

that freight can take across Europe.  

 
Figure 1. Modelling process in the existing Mode Chain 

Builder 

The mode chain database construction process within 

the Mode Chain Builder system comprises three 

major steps, as depicted by Figure 1. The model 

Mode chain 
construction

Estimate
demand

share

Result 
calibration



 

67 

development process in this research will follow this 

structure as detailed below: 

1. 1st Phase: Mode Chain Construction  

The objective of this phase is to generate a set of 

possible mode chains for each production zone, 

consumption zone, and commodity type pair, 

based on the available facilities (nodes) and the 

connections between them by mode type (edges). 

The resulting dataset serves as a key input for the 

subsequent demand share estimation phase. 

2. 2nd Phase: Method for Demand Share 

Estimation  

This phase aims to estimate the demand share 

distribution across all mode chain alternatives 

generated in Phase 1. It also incorporates the 

calibration process, making the estimation more 

data-driven rather than treating estimation and 

calibration as separate steps. By integrating 

historical transport data from the outset, this 

approach is expected to reduce the calibration 

challenges and improve the reliability of the 

demand share output. 

The existing Mode Chain Builder system faces a 

practical gap in its ability to adapt to complex, data-

rich environments due to its reliance on a rigid 

heuristic-based approach. The current Mode Chain 

Builder system use pre-defined rules (heuristic) 

approach to generate freight transport chains by 

processing trade data at the national level, 

disaggregating it regionally, and assigning routes 

through a sequence of port and terminal selections 

governed by predefined rules. While this method has 

enabled large-scale estimations, it presents several 

limitations. For instance, the model limits the number 

of ports considered by applying a bounding box rule 

and omits factors such as cargo-type compatibility in 

port selection. This method, while effective for large-

scale estimations, reduces the model’s realism and 

limits its capacity to reflect real-world freight 

transport movements. 

This study focuses on just two neighboring countries 

(the Netherlands and Belgium) to represent inter-

country freight movement. These countries were 

selected because they have the two largest ports in 

Europe: Rotterdam (Netherlands) and Antwerp-

Bruges (Belgium), which together handled a 

combined volume of 641 million tonnes in 2024 

(Eurostat, 2024). Moreover, both countries 

demonstrate strong multimodal connectivity, as 

shown by their significant non-road modal shares: 

22.4% in Belgium and 47.2% in the Netherlands 

(European Union, 2023). Given that this study aims 

to model multimodal freight chain flows, the 

presence of decent non-road transport connections 

within the country is essential. 

 

1.3 Research Objective 

This research aims to develop a multimodal freight 

transport chain model that incorporates a practical 

port selection process and considers cargo handling 

requirements during the mode chain construction 

phase. In addition, it investigates the use of machine 

learning to leverage the abundant, though still 

unstructured, freight transport data for predicting 

demand flows within the multimodal chain. The 

integration of machine learning into the model is 

expected to simplify and accelerate the data 

calibration process while improving predictive 

accuracy.  

To achieve this aim, the study first reviews 

commonly used methods for constructing and 

predicting multimodal freight chain data and then 

identifies a suitable mode chain construction 

approach that integrates port selection with cargo 

handling requirements. The proposed model is 

implemented within the existing system architecture, 

after which appropriate machine learning techniques 

are evaluated for predicting demand flow 

distribution. A demand flow distribution model is 

then developed and integrated with the mode chain 

construction process. Finally, the overall 

performance of the proposed model is assessed by 

comparing its predictions with actual freight data. 

 

2. Methodology 

This research is structured around three fundamental 

phases: method selection, model development, and 

model validation and evaluation, as explain below:  

 

2.1 Method Selection 

To select the method, literature reviews were 

conducted to explore existing commonly used 

approaches for constucting the mode chains database 

(1st phase), and identify several potential machine 
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learning techniques for distributing the demand share 

across generated mode chains based on the available 

freight transport statistics data (2nd phase).  

Based on the literature review results, Breadth-First 

Search (BFS) is identified as the most suitable 

method for the Mode Chain Construction phase. BFS 

is preferred over other options due to its flexibility in 

accommodating the unique and specific requirements 

of the existing Mode Chain Builder system, which 

demands a high degree of customization in its 

construction logic. This flexibility also allows BFS to 

be combined with the Link Elimination technique to 

reduce computational complexity. Most importantly, 

BFS supports the full enumeration of all possible path 

alternatives, which is the core requirement of the 

Mode Chain Builder. 

This study adopts the Breadth-First Search with Link 

Elimination (BFS-LE) approach, as introduced by 

Tahlyan and Pinjari (2020), for constructing mode 

chains. The link elimination step will be implemented 

by applying a set of pre-defined rules to remove 

irrelevant links, thereby reducing the algorithm’s 

search space during the construction process. This 

heuristic enhancement is essential to ensure 

compliance with several mandatory rules associated 

with the input data structure, which must be respected 

throughout the chain construction process. 

For the second phase, Demand Share Estimation, the 

selected method is the Expectation-Maximization 

algorithm. The Expectation-Maximization (EM) 

algorithm is selected because it is well-suited for 

situations where supervised instance-level data is 

unavailable, and only aggregate-level historical data 

is provided. Its ability to effectively handle latent 

variables makes it ideal for demand share estimation, 

where individual path choices are unobserved. By 

treating demand shares as hidden variables and using 

aggregated freight transport data as constraints, EM 

allows iterative refinement of estimates. It minimizes 

the deviation between predictions and observed 

totals, such as known totals of freight flows across 

regions or modes, which cannot be directly attributed 

to individual OD-path combinations, ensuring that 

the final demand share estimates are both statistically 

consistent and aligned with actual aggregate data.  

This makes EM a robust and data-efficient approach 

for unsupervised learning in freight transport 

modeling. The overall comparison between the 

existing and the newly proposed methods for the end-

to-end phase of Mode Chain Builder system is shown 

by Figure 2. 

 

2.2. Model Development 

1. First Phase: Mode Chain Construction 

Figure  shows the end-to-end process of mode chain 

database construction process that involves two main 

approaches: Heuristics and Graph Search 

Algorithm based on the Breadth-First Search (BFS) 

method. It also presents the six datasets used as inputs 

for model development, sourced from both the 

company’s internal records and external sources. The 

mode chain data construction phase mainly relies on 

the existing Mode Chain Builder input database 

provided by Panteia, complemented by Eurostat’s 

port statistics for the port selection procedure. This 

study does not involve creating new input datasets or 

modifying the existing data. 

Figure 2. Comparison between the existing and the proposed methods 
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The heuristic step aims to reduce the simplify and 

reduce the mode chain construction process that will 

be conducted later, by applying several pre-defined 

reasonable rules to remove irrelevant and less 

probable path alternatives. This step also ensures that 

several essential rules are incorporated in the mode 

chain data generation process. The heuristics step 

itself has two sub-steps: 

• P/C Region Pair Classification: Three predefined 

rules are applied to classify PC-commodity pairs 

into either the unimodal or multimodal group, 

based on the proximity between their production 

(origin) and consumption (destination) regions, as 

depicted in Figure 3. 

• Region-to-Port Selection: For the multimodal 

pairs group, the next step involves selecting 

appropriate ports that can serve the region pairs. 

This is achieved by applying a set of heuristic 

rules, such as identifying the 20 nearest ports for 

each region, scoring them based on Chou’s (2010) 

port choice qualitative model, and filtering out 

ports with incompatible cargo handling 

capabilities. 

The multimodal pairs group data then proceed to this 

BFS stage. The BFS algorithm is used to enumerate 

all viable multimodal transport chains between 

selected region-port pairs. This process is conducted 

using a BFS-like logic approach with custom 

expansion rules, since the existing Mode Chain 

Builder requires quite a lot of customizations to 

comply with several data format requirements. The 

model is built using NetworkX module in Python to 

model the freight transport network as a multi-modal 

graph that enables the representation of transport 

links as mode-labeled edges and supporting the 

exploration of 1-leg to 3-leg mode chain alternatives 

through custom graph traversal logic while 

incorporating infrastructure availability constraints. 

2. Second Phase: Demand Share Distribution 

Once a complete dataset of mode chain alternatives 

for all PC-commodity pairs has been constructed, the 

next step is to allocate the known goods flow for each 

pair across the available path alternatives. The main 

challenge lies in the absence of data showing the 

historical distribution of goods across these paths. 

Instead, only aggregated data, such as port statistics 

and transport movements by mode between 

countries, sourced from Eurostat, is available. 

Traditional choice models are insufficient for this 

task, as they do not ensure consistency between the 

estimated shares and the aggregated observations. 

Figure 3.  Data processing diagram of Mode Chain Construction Phase 
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This is where the Expectation-Maximization (EM) 

algorithm is suitable to use. EM is an iterative method 

used in unsupervised learning to estimate unknown 

or latent variables by uncovering patterns in the data 

that align with observed constraints. There are 3 

major steps in this phase as follows: 

Step 1: Initialization 

The Expectation-Maximization (EM) algorithm 

requires an initial value to guide its predictions, it’s 

an estimated starting demand distribution values 

across alternative paths within the same PC-

commodity pair group. This initial value is critical to 

the learning process, as a well-estimated starting 

point can help the model converge more quickly and 

efficiently. As there is no standard guideline for 

determining the most suitable estimation method, this 

study tests three different approaches: 

1. AHP approach: The initial value is estimated by 

calculating each path’s weighted score based on 

the Analytic Hierarchy Process (AHP) results 

from Lu and Wang (2022) study. 

2. ESD approach: The initial value is derived from 

Eurostat’s historical share data for each transport 

mode between origin and destination countries. 

For each chain, the shares of all constituent edges 

are multiplied to calculate the chain’s relative 

share within the same PC-country pair. 

3. EQW approach: The total demand (in tonnes) is 

evenly divided among all available alternative 

paths, giving each path an equal weight. 

To identify the most suitable approach, the estimated 

initial values will be evaluated by comparing their 

deviation from the ground truth data on mode 

transport flows and port-country flows from Eurostat. 

The method with the smallest error will be selected 

and used as the input for the EM model. 

Step 2: EM Algorithm Development 

To estimate the demand share for each mode chain 

between PC-commodity pairs, the Expectation-

Maximization (EM) algorithm treats the demand 

shares as latent variables that need to be inferred. The 

algorithm iteratively adjusts these estimates by using 

known but indirect ground truth data, aiming to find 

the optimal distribution of demand across path 

alternatives. The objective is to minimize the 

deviation between the aggregated values derived 

from the estimated shares and the actual observed 

aggregated data.  

Two ground truth datasets from Eurostat will be used 

as reference points to estimate the demand share per 

transport path. These datasets include: (1) mode-

specific transport flows between and within 

countries, and (2) country-level port statistics 

detailing incoming and outgoing cargo volumes. A 

loss calculation function will be developed by 

integrating both datasets, where the loss represents 

the deviation between the predicted values and the 

observed ground truth data. The EM model will 

iteratively adjust the predictions in order to minimize 

this loss. 

Step 3: Hyperparameter Tuning 

The model development will also involve the 

hyperparameter tuning. It’s the process of selecting 

the most effective set of initial parameters for a 

machine learning model. These hyperparameters are 

preset configurations that influence how the model 

learns during training and affect the model’s 

performance to generalize the sample data to the new 

or hidden data.  

In machine learning models using Expectation-

Maximization algorithm, there are at least five 

important parameters to set prior to model training 

execution: initial learning rate, learning rate decay 

factor, loss tolerance, patience for convergence, and 

maximum iterations. 

The ideal initial learning rate will be determined 

through a series of experiments involving 10 

iterations, while other parameters will be pre-defined 

based on needs and relevant references. To optimize 

prediction results, this study will activate the ADAM 

(Adaptive Moment Estimation) setting within the 

developed EM model. It is a widely used optimizer 

module for automatic adaptation in machine learning. 

ADAM updates the model parameter during training 

by computing gradients from the loss function, so 

each parameter has its own learning rate that is kept 

adjusted during the training based on its past 

gradients and magnitudes (geeksforgeeks, 2025). 

On top of ADAM, a learning rate scheduler is also 

applied to monitor the training loss trend. If the loss 

stops decreasing for a few iterations (patience), the 

scheduler will reduce the global learning rate of the 
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optimizer. Unlike ADAM, the scheduler doesn’t 

compute gradients; rather, it controls when and how 

fast the model learns. One important factor 

influencing model performance is its ability to shift 

between exploration in the early training stages and 

exploitation in later stages, once the model 

approaches an optimal solution. This dynamic 

behavior can be facilitated by setting a learning rate 

scheduler, which allows the learning rate to adjust 

according to predefined conditions or training states. 

It will slow down the learning rate if the loss gets 

stuck. 

 

2.3 Model Validation and Evaluation 

The model validation process for the mode chain 

construction phase will be carried out by comparing 

the generated mode chain data with the initial input 

datasets to ensure consistency. This step verifies that 

the resulting chains remain aligned with the key 

information provided at the beginning of the process. 

In addition, the validation will be manually cross-

checked using the SQL platform. The input datasets 

include: mode connection availability between two 

regions, rail and inland waterway availability and 

Port availability at a specific region. 

On the other hand, the demand share distribution 

model validation and performance evaluation will be 

conducted by performing these steps: 

• Model convergence and behavior 

Model convergence, indicating by a gradual 

decrease in loss until it reaches the state where no 

significant improvement can be made any more, 

is a good signal that the model is working the way 

it’s intended.  

• Loss (against ground truth) evaluation 

The loss calculation produced by the model 

output will be evaluated. The model’s loss 

indicates the deviation between the estimated 

value made by the model vs the observed ground 

truth value. The model’s loss then will be 

compared to the actual initial deviation between 

input data of total demand flow and total 

transported demand from all transport modes 

stated in Eurostat. 

 

3. Model Development 
Two models for each mode chain construction 

process and demand share distribution developed. 

Below is the elaboration of the model development 

outputs as well as the model validation and model 

evaluation results for both models. 

 

3.1 Mode Chain Construction 

A total of 1,839,820 mode chain alternatives were 

generated from all PC-commodity pairs between 

Belgium and the Netherlands, as well as region pairs 

within each country, as shown in Table 1. 

International flows produced more chain alternatives 

per pair due to the involvement of maritime transport 

and the availability of multiple port combinations.  

Table 123. Mode Chain Database Construction Result 

Statistics 

 

Model validation is carried out to ensure that the 

constructed mode chains align with key information 

required for generating a reliable mode chain dataset. 

A total of 82,385 PC-commodity pairs were selected 

as the validation sample. The validation process uses 

a sample set consisting of three-leg chains, which are 

evaluated based on three critical elements as detailed 

below: 

1. Mode connection availability 

This aspect ensures the consistency between the 

assigned mode type (for a given leg) and the 

availability of that mode between the connected 

origin and destination regions. Out of 

approximatey 1.8 million legs in the sampled 

mode chains, all show perfect alignment between 

the assigned mode and the mode connection 

availability data. 

2. Rail and inland waterway availability 

This aspect assesses the consistency between the 

selected terminals and their actual availability 

based on the NEAC terminal data. From a total of 

1,945,991 terminal-related legs in the sampled 

mode chains, all legs were successfully matched 

with the terminal availability records, indicating 

the model was accurately incorporating terminal 

infrastructure constraints 
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3. Port availability 

The third aspect of the model validation focuses 

on verifying the availability of ports in the regions 

assigned as origin or destination for maritime 

transport legs. This ensures that the ports used in 

the multimodal chains are actually present and 

capable of serving the specified commodity in the 

respective regions. Out of 2,254,340 relevant 

edges examined in the sampled mode chains, all 

were successfully matched with valid port 

availability records.  

The model validity results confirm that the 

constructed mode chain construction model using 

combination of heuristics and BFS algorithms are 

fully aligned with the given infrastructure availability 

data. All assigned mode legs, terminal facilities, and 

port locations were validated with 100% match rates, 

indicating that the model reliably generates realistic 

transport paths. Thus, the resulted mode chain 

datasets can safely proceed to the next phase, demand 

share estimation process. 

 

3.2 Demand Share Distribution 

The results of the demand share distribution will be 

presented and classified into three main steps, as 

detailed below: 

Step 1: Initial Value Calculation 

The initial loss figures from each approach were 

compared against two ground truth datasets: inter-

country transport flows and port-level flow statistics. 

As shown in Table 2, the ESD approach produced the 

lowest overall deviation, with a total absolute 

deviation of ~376 million tons, compared to 392 

million for AHP and 394 million for EQW. Across 

most modes and OD pairs, ESD consistently showed 

lower percentage deviations, indicating a closer 

alignment with historical transport flow data. 

A similar pattern emerged in the port-level 

comparison. For both Belgian and Dutch ports, ESD 

yielded significantly lower inflow and outflow 

deviations than AHP and EQW. The heatmap in 

Table 3 further illustrates that ESD’s deviations were 

more evenly distributed and less intense, particularly 

at major hubs such as Rotterdam, Ghent, and 

Antwerp, suggesting a more balanced and realistic 

allocation of flows. Overall, the ESD approach 

provided the most accurate initial flow distribution, 

minimizing deviations from ground truth at both 

country and port levels. This makes it the most 

suitable method for generating initial values for the 

EM model input. 

Table 325. Comparison between Initial Value Prediction 

vs Port level Flow Ground Truth Data 

 

Step 2: Expectation-Maximization (EM) Model 

Development 

To estimate the demand share for each mode chain 

between PC-commodity pairs, the Expectation-

Maximization (EM) algorithm treats the demand 

shares as latent variables that need to be inferred. The 

algorithm iteratively adjusts these estimates by using 

known but indirect ground truth data, aiming to find 

Table 224. Comparison between Initial Value Prediction vs Mode Transport Flow Ground Truth Data 



 

73 

the optimal distribution of demand across path 

alternatives. The objective is to minimize the 

deviation between the aggregated values derived 

from the estimated shares and the actual observed 

aggregated data. 

Figure 4 illustrates how the ground truth data are 

linked to the demand share estimation for each path 

alternative, which is further detailed in the 

mathematical model in the following section. The 

assigned flow for each path is proportionally 

distributed across its corresponding legs. As a result, 

the loss function consists of two main components: 

• Transport Loss (Constraint 1): This represents 

the discrepancy between the aggregated flow 

assigned across all legs (with a specific mode 

type) in the alternative paths and the known 

transport statistics between origin-destination 

country pairs. 

• Port Loss (Constraint 2): This reflects the 

difference between the cumulative assigned flow 

entering or exiting a specific port and the actual 

goods volume handled by the port, based on 

observed port statistics. 

 

Figure 4. Illustration of Flow Aggregation Mechanism for Loss 

Function in EM Algorithm 

Because the two loss components have different 

magnitudes, a scaling factor was introduced to 

balance their influence during training. Several ratios 

were tested, and results showed that only the 1:1 and 

1:2 settings produced consistent downward trends in 

both transport and port losses during the initial 

iterations, indicating better balance. Extending the 

analysis to 20 iterations revealed that simultaneous 

reduction was only maintained until the 6th iteration, 

after which transport loss continued to decrease while 

port loss increased. Given that transport loss 

dominates in magnitude and minimizing it is the 

priority, the 1:1 ratio was selected as the most 

suitable setting for the full EM model training. 

Step 3: Hyperparameter Tuning 

Hyperparameter tuning was performed to optimize 

model performance, focusing on four parameters: 

initial learning rate, decay factor, loss tolerance with 

patience, and maximum iterations. 

Trials were conducted to select the learning rate, with 

each run lasting ten iterations. A rate of 1.0 produced 

the greatest early loss reduction, while lower values 

such as 0.5 showed smaller improvements. Thus, 1.0 

was chosen as the initial setting. The decay factor 

(gamma) was set at 0.5 to mitigate fluctuations 

observed in early training due to the large number of 

mode chain alternatives and limited ground truth 

data. Loss tolerance was fixed at 3000 (0.012% of 

total loss), and patience at three iterations, ensuring 

convergence if no reduction above this threshold 

occurred within that span. To prevent excessive 

computation, the maximum number of iterations was 

capped at 500, corresponding to roughly 83 hours of 

runtime. To further monitor convergence, an early 

stopping mechanism was applied (Figure 15). After a 

minimum of 10 iterations, loss stabilization was 

tracked; if the loss reduction fell below the tolerance 

for three consecutive iterations, training was stopped. 

The ADAM optimizer was used with default settings 

(lr = 1.0, β₁ = 0.9, β₂ = 0.999, AMSGrad = True). A 

learning rate scheduler reduced the rate by half 

whenever the improvement between iterations fell 

below 0.015% of total loss, applied immediately 

without a patience delay. 

 

4. Results and Discussion 

4.1 Model Results 

Table 4 compares the EM model predictions (y_pred) 

using the ESD approach with ground truth transport 

flows. The initial values show overestimation for Sea 

and Road modes, and underestimation for inland 

waterways (IWW). After training, the model reduced 

absolute deviations for most OD-country pairs, 

particularly in Road and Rail (0.2–17% 

improvement), though deviations increased slightly 

for IWW and more substantially for Sea. 
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The increase of deviation in Sea section is due to the 

trade-off between the sea and other mode types. Road 

and Sea mode have bigger initial values status 

compared to the ground truth data, while Rail and 

IWW have lower initial values. So, the EM model 

aims to decrease the share of Road and Sea, then 

redistribute the flow shares to Rail and IWW to 

increase their shares and get closer to the ground 

truth.  

However, as shown in Table 5, the generated mode 

chains data are dominated by 3-legs chains that 

consist of multiple mode types, where the use of Sea 

mode is always be combined with other modes as the 

first and third (last) leg. The decrease of Sea mode 

share will also lead to the decrease of other modes’ 

shares, and vice versa. So, in order to achieve the 

model objective to increase the share of Rail and 

IWW will bring the side-effects which is the increase 

of Sea mode shares as well, and make the deviation 

of Sea mode gets bigger (while the Sea mode share is 

supposed to be decreased). 

Table 527. Number of Legs Distribution according to the 

Generated Chain Alternatives 

 

Unlike Sea mode, the road section whose shares also 

need to be decrease because of bigger initial values 

status against the ground truth, could alternatively  

achieves its goal through minimizing the share of the 

1-leg mode chain alternatives since it only involves 

road mode only without combination with other 

modes. The efforts to decrease the Road mode share 

is easier to be done than to decrease the Sea mode 

share since it’s conflicting with the other objectives 

to increase the share of Rail and IWW modes. Hence, 

the trade-off between Sea, Rail and IWW flow 

distribution makes it hard for the EM model to 

achieve its ultimate goal to minimize the overall loss 

across all ground truth data points, even though the 

model has reached the convergence at 107th 

iterations (see Figure 5). 

The increase in Sea deviation also worsen the results 

of port flow prediction in comparison to the ground 

truth data. It causes the increases of deviation in most 

of port flow ground truth data points as displayed in 

Table 6, and only several data points are optimized as 

intended. As indicated by the first 20 iterations, 

where the port loss tends to increase while the 

transport loss is decreasing, the trend continues until 

the model convergence.   

As shown in Figure 6, despite the increase of 

deviation of port data (indicated by larger port loss 

compared to the initial status), the model has 

successfully reduce the overall loss until no 

significant reduction can be made (convergence). 

Hence, the model has reached the possible optimal 

states given the input data structure including the 

trade-off within it. 

 

Table 426. EM Prediction Comparison against Transport Flow Ground Truth Data using ESD Approach 
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4.2 Model Performance Evaluation 

As discussed earlier, the ESD approach started with 

smaller initial deviations from the ground truth data. 

However, to fully assess model performance, the 

results of both initial value strategies are presented 

here. This comparison not only shows how well each 

model minimizes deviations but also highlights the 

trade-off between loss reduction and the final 

predicted demand share distribution. 

Table 7 shows that both approaches, AHP and ESD, 

reduced deviations in most country pairs, similar to 

the ESD approach. The key difference is that AHP 

placed greater emphasis on reducing Road and Sea 

shares, which resulted in better performance in the 

port loss segment. Only a small number of port data 

points showed higher deviations in AHP results, 

unlike the ESD approach, which led to increases in 

nearly all port data points. However, when comparing 

the final deviations across all transport flows and port 

flows, ESD still outperformed AHP.  

ESD achieved especially better results in port flows, 

even though its improvement during iterations 

appeared smaller. This indicates that ESD provided 

stronger initial values that were already closer to the 

ground truth, leaving less room for further 

improvement. As a result, ESD reduced losses 

effectively in the early iterations, but after around the 

13th iteration the model reached a saturation point, 

where further reductions could only be achieved by 

increasing port loss. 

Table 628. EM Prediction Comparison against Port Flow Ground Truth Data using ESD Approach 

Figure 6. ESD EM Model Iterations Results until Convergence Figure 5. Full Loss Reduction Trend until Convergence 
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Figure 7 shows the learning process of both 

approaches. The ESD approach converged faster, 

stabilizing around the 107th iteration with final 

transport and port losses of 26.15 million and 402 

thousand, respectively. By contrast, the AHP 

approach converged more slowly, and the run was 

stopped at the 460th iteration due to time limits, with 

losses of 27.18 million for transport and 1.29 million 

for ports. The trend suggests that AHP would 

eventually approach the same levels as ESD but with 

a longer training time. Overall, these results show 

that ESD provides faster convergence and better 

accuracy, making it the most suitable initial value 

strategy for the EM model in demand share 

estimation. 

 

4.3 Model Performance Justification 

This substantial reduction indicates that the EM 

model successfully optimized the estimates by 

consistently minimizing initial deviations across all 

ground truth data points available. It indicates the 

model’s ability to learn and adjust toward the ground 

truth, even when starting from suboptimal 

predictions. The “green” improvement values further 

confirms that the majority of final aggregated 

predictions are getting closer to actual values. This 

validates that the EM algorithm is functioning as 

intended, iteratively refining estimates and reducing 

mismatches, highlighting its capacity to improve 

performance under constraints. 

As discussed earlier, the EM model with ESD 

approach already reaches the convergence state. 

When the model reaches convergence state, it already 

reaches the internal consistency, indicating that the 

model has minimized deviations as much as possible 

given the input constraints, initial Y distribution, and 

OD pair structure. The strong reduction in deviation 

across country pairs confirms that the model 

effectively learned from iterative updates. The 

remaining gap between predicted values and ground 

truth suggests that while the model has performed 

Figure 7. Loss Reduction Trend Comparison between ESD and AHP Approach 

Table 729. Transport Loss Deviation Reduction Comparison between 

AHP and ESD Approach 
Table 830.  Port Loss Deviation Reduction Comparison between 

AHP and ESD Approach 
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well within its design limits, external factors likely 

hinder its ability to achieve a closer match. 

Several external factors may limit the model’s ability 

to achieve higher accuracy. These identified factors 

are explained in the following section. 

• Incomplete or Biased Path Alternatives 

The generated mode chains may not fully reflect 

realistic alternatives present in the real world. Since 

the mode chain data for the EM model input was 

constructed based on infrastructure availability data, 

and it has also been validated in Section 4.2.3, any 

inaccuracies in the infrastructure data could introduce 

bias to the final EM prediction. Given that IWW is 

the most consistently underestimated mode, 

reviewing the latest data on terminal availability 

might help mitigate this issue. 

• Mismatch between Mode Share Assumptions 

and Real-World Behavior 

The mode chain filtering described in Section 4.3.1 

was based on probabilities derived from weighted 

factors estimation in Lu and Wang (2022)’s AHP 

results. While theoretically sound, this approach may 

not fully capture the real-world dynamics of freight 

transport. Critical factors (e.g., market conditions, 

actual tariffs, regulatory preferences) strongly 

influence mode choice but are not incorporated into 

the current model. For example, even if rail 

infrastructure is available, certain flows may still 

prefer road transport due to greater flexibility, 

reliability, or existing commercial agreements, 

leading to potential bias in the predicted probability 

of alternative paths. Hence, the exclusion of certain 

OD alternatives could also contribute to the 

remaining gap since it may remove relevant yet 

lower-frequency alternatives, reducing the diversity 

of mode chains. However, in this study, the 

elimination step is needed due to the limited 

computation capability. 

• Limited Travel Impedance Data  

The generalized transport cost and travel time data 

were used as the basis in calculating the path score to 

perform the early path elimination as well as to 

estimate the path share in AHP initial value 

estimation strategy. But the impedance cost used in 

the calculation may not accurately reflect actual 

multimodal costs. Since multimodal paths involve 

multiple modes and transfer processes, they often 

incur additional time and handling costs that are not 

fully captured in the current utility model. This 

omission could further distort the initial probability 

estimates. 

 

5. Conclusion 

The newly developed multimodal freight chain 

model in this study has proven its ability to construct 

the mode chain alternatives data with 100% validity 

against the available transport infrastructure 

information. The demand share estimation model can 

reduce the deviation between the predicted demand 

share values against the transport historical data in 

majority of the observed data points. Even though 

several data points experienced an increase in 

deviation instead, the reduction outweighed the 

increase. The rise in deviations for certain flows 

appears to be a trade-off resulting from the model’s 

focus on reducing errors in segments with the highest 

initial deviations.   

Despite the model’s proven ability to reduce the 

deviation, the existing model still left a quite 

significant remaining deviation between predicted 

values and ground truth. But the learning process of 

the EM model was already near the convergence, 

meaning the model has reached its maximum ability 

to minimize the deviations given the input 

constraints, initial Y distribution, and OD pair 

structure. Hence, the remaining gap indicates that 

while the model has performed well within its design 

limits, external factors likely hinder its ability to 

achieve a closer match. Several recommendations 

(elaborated in the next section) can be considered to 

improve the model performance in the future related 

or similar research. 

Finally, it is concluded that machine learning (ML) 

can be effectively implemented in the Mode Chain 

Builder system, but primarily for the demand share 

estimation phase. ML is not well-suited for mode 

chain construction because most existing path-

generation or route-construction approaches aim to 

identify the most optimal or a few best path 

alternatives. In multimodal freight chain modelling, 

however, the requirement is to generate all possible 

path alternatives, which aligns better with traditional 

graph search methods. The implementation of ML in 

the demand share estimation phase is achieved using 
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the Expectation-Maximization (EM) algorithm, 

where the demand share per path is treated as a latent 

variable. Its values are iteratively estimated by 

referencing observed ground truth data. The EM 

model demonstrated its capability to refine the initial 

demand share estimates (initial values) by 

minimizing the deviation between predicted values 

and ground truth data, despite trade-offs between 

transport flow and port flow accuracy. 

While the model has not fully eliminated the 

deviation as initially expected, it has achieved the 

best possible results given the current input data 

structure. Further reductions in deviation can only be 

achieved by improving several external factors: 

access to more accurate infrastructure connectivity 

and travel impedance data to build more realistic 

mode chain alternatives, enhanced computational 

capacity to allow the full model to run without 

multiple simplification steps, and a more 

comprehensive understanding of freight path choice 

behaviour to support the development of better 

estimation models. 

 

6. Limitations and 
Recommendations 

1. Incomplete or Biased Path Alternatives 

The mode chain dataset, constructed from 

infrastructure availability data, may not fully 

represent real-world alternatives. Inland waterway 

transport (IWW) in particular appears 

underestimated, likely due to outdated or missing 

information on terminals and connectivity. Future 

work should expand and update infrastructure 

databases, especially for underrepresented modes, 

and incorporate expert validation or shipment data to 

improve path realism. 

2. Mode Choice Behavior Not Fully Captured 

Mode choice behavior was not fully captured. The 

filtering of mode chains relied on AHP-based 

probabilities with predefined weights, which may 

overlook real decision factors such as pricing, 

contracts, and reliability. Future research should 

explore data-driven path choice modeling based on 

actual observed freight transport behavior. In 

particular, research on discrete choice modeling or 

stated preference surveys specifically targeting 

multimodal path or route choices would be highly 

beneficial. This is important because most existing 

transport behavior studies tend to focus on individual 

mode choice, rather than on entire transport chains 

that involve multiple modes or legs. Developing 

models that capture the full path decision-making 

process would yield more realistic and reliable 

estimates of mode chain probabilities. 

3. Limited Travel Impedance Accuracy 

Travel impedance values were simplified, relying 

mainly on generalized costs and times without fully 

accounting for transfers, waiting, and handling costs. 

This could bias results for complex chains. More 

detailed impedance models that include intermodal 

penalties and mode-specific costs should be 

developed, supported by richer transport datasets. 

4. EM Algorithm Still Rarely Applied in Freight 

Modeling 

The use of the Expectation-Maximization (EM) 

algorithm for freight mode split modeling remains 

relatively novel. While the results here show promise, 

this method still lacks widespread validation in 

transport research. Its sensitivity to initial values and 

potential for local minima make its robustness less 

predictable in other settings. Further research should 

benchmark EM against other semi-supervised or 

probabilistic modeling techniques in similar freight 

estimation contexts. 
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Table 32. Summary of Lliterature Review on Machine Learning Use in Transport Modelling Domain (2) 
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Appendix 3: Commodity Type Mapping 
 

Table 33. Commodity Handling Requirement to Cargo Type Mapping 

 

 

NSTR_Code NSTR_Category NST07_Code Container DryBulk LiquidBulk RoRo Others

0 Live animals 1 0 0 0 1 1

1 Cereals 1 0 1 0 0 0

11 Sugars 4 1 1 0 0 0

12 Beverages 4 1 0 1 0 0

13 Stimulants and spices 4 1 0 0 0 0

14 Perishable foodstuffs 4 1 0 0 0 0

16 Other non-perishable foodstuffs and hops 4 1 0 0 0 0

17 Animal food and foodstuff waste 4 0 1 0 0 0

18 Oil seeds and oleaginous fruit and fats 1 1 1 1 0 0

2 Potatoes 1 1 0 0 0 0

21 Coal 2 0 1 0 0 0

22 Lignite and peat 2 0 1 0 0 0

23 Coke 7 0 1 0 0 0

3 Other fresh or frozen fruit and vegetables 1 1 0 0 0 0

31 Crude petroleum 2 0 0 1 0 0

32 Fuel derivatives 7 1 0 1 0 0

33 Gaseous hydrocarbons, liquid or compressed 2 0 0 1 0 0

34 Non-fuel derivatives 8 1 1 1 0 0

4 Textiles, textile articles and man-made fibres 5 1 0 0 0 0

41 Iron-ore 3 0 1 0 0 0

45 Non-ferrous ores and waste 3 0 1 0 0 0

46 Iron and steel waste and blast-furnace dust 14 0 1 0 0 0

5 Wood and cork 6 1 1 0 0 0

51 Pig iron and crude steel

52 Semi-finished rolled steel products 10 1 0 0 0 1

53 Bars, sections, wire rod, railway and tramway track construction steel 10 1 0 0 0 1

54 Steel sheets, plates, hoop and strip 10 1 0 0 0 1

55 Tubes, pipes, iron and steel castings and forgings 10 1 0 0 0 1

56 Non-ferrous metals 10 1 1 0 0 1

6 Sugar-beet 1 0 1 0 0 0

61 Sand, gravel, clay and slag 3 0 1 0 0 0

62 Salt, iron pyrites, sulphur 3 0 1 1 0 0

63 Other stone earths and minerals 3 0 1 0 0 0

64 Cement, lime 9 1 1 0 0 0

65 Plasters 9 1 1 0 0 0

69 Other manufactured building materials 9 1 0 0 0 0

71 Natural fertilizers 8 1 1 1 0 0

72 Chemical fertilizers 8 1 1 1 0 0

81 Basic chemicals 8 1 1 1 0 0

82 Aluminium oxide and hydroxide 8 0 1 0 0 0

83 Coal chemicals 8 0 0 1 0 0

84 Paper pulp and waste paper 6 1 0 0 0 0

89 Other chemical products 8 1 1 1 0 0

9 Other raw animal and vegetable materials 1 1 0 0 0 0

91 Transport equipment 12 0 0 0 1 0

92 Tractors 11 0 0 0 1 0

93 Other machinery apparatus and appliances, engines, parts thereof 11 1 0 0 0 1

94 Manufactures of material 13 1 0 0 0 0

95 Glass, glassware, ceramic products 9 1 0 0 0 0

96 Leather, textiles and clothing 5 1 0 0 0 0

97 Other manufactured articles 13 1 0 0 0 0

99 Miscellaneous articles 13 1 0 0 0 0

xx Arms and ammunition, military 13 1 0 0 1 0
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