
A Service Oriented Architecture
Solution for Gaming Simulation

Suites

Master Thesis Report

Bas van Nuland

A Service Oriented Architecture
Solution for Gaming Simulation

Suites

THESIS REPORT

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Bas van Nuland
born in Zeven, Germany

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technol-
ogy
Delft, the Netherlands
http://www.ewi.tudelft.nl/

Faculty of Technology, Policy and
Management

Jaffalaan 5
Delft, the Netherlands

http://www.tbm.tudelft.nl/

c©2010 Bas van Nuland. All rights reserved.

A Service Oriented Architecture
Solution for Gaming Simulation

Suites

Author: Bas van Nuland
Student id: 1150448
Email: B.vanNuland@student.tudelft.nl

Abstract

Serious Gaming is becoming a popular method for training andproblem
solving in companies. One of the companies who has taken an interest in this
is ProRail. Together with the faculty of Technology, Policyand Management of
the Delft University of Technology they started a project todevelop a gaming
simulation suite for training and decision making purposes, called the Railway
Gaming Suite. In order to connect the games and simulators ofthe suite a solid
architecture is needed. Three architectures were picked out to see if they are suit-
able for this, namely: Service Oriented Architectures, High Level Architecture
and FAMAS Simulation Backbone.

Using the Railway Gaming Suite as a case study, we have extracted require-
ments (like performance and flexibility) for an architecture for gaming simulation
suites using the Architectural Trade-off Analysis Method.These requirements
are used to determine the suitability of the three architectures. In this thesis the
research on the suitability of Service Oriented Architectures (SOA) is presented.
A prototype SOA was created, called Service Oriented Gamingand Simulation
(SOGS). This prototype was used to test the performance requirement for the
evaluation. The suitability was investigated by evaluating SOA to see if it is
able to support the requirements we found. We subsequently also compared the
suitability of the other architectures. Intermediate results of this thesis project
were used to help with the decision for selecting an architecture for the Railway
Gaming Suite.

Thesis Committee:

Chair: Prof. Dr. Arie van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. Andy Zaidman, Faculty EEMCS, TUDelft
Company supervisors: Prof. Dr. Ir. Alexander Verbraeck, Faculty TPM, TU Delft

ii

Preface

This thesis represents the end result of the work I have done for my master’s project in
the last nine months. The subject of this thesis was proposedto me by Rens Kortmann
when I worked for him on one of the games for the Railway GamingSuite. My interest
in serious gaming and software engineering made this a perfect subject. Parallel to my
research into Service Oriented Architectures, research studies were performed for two
other architecture (High Level Architecture and FAMAS Simulation Backbone) in the
same context. This gave me the opportunity to broaden the scope of my thesis by
comparing my work with the work on the other architectures.

This thesis report has been made possible with the support ofmany people. First,
my colleagues at the Game Lab at TPM who kept me sharp during the long days
behind my desk. Then the researches of the Systems Engineering and Policy Orga-
nization Law and Gaming; Sebastiaan Meijer, Mamadou Seck, Cagri Tekinay and
Sibel Ecker. In particular I would like to thank my supervisors; Rens Kortmann and
Alexander Verbraeck. Next I want to extend my gratitude to mysupervisor of the Soft-
ware Engineering Research Group, Department of Software Technology at the Faculty
EEMCS, Andy Zaidman, who has helped me a great deal during this thesis and es-
pecially with writing this report. Furthermore I would liketo thank my parents for
supporting me through all my years at the TU Delft. Last, the person who I am very
grateful to is Suzanne Vaartjes, who supported and pushed meduring this thesis and
ensured I finished it.

Bas van Nuland
Delft, the Netherlands

27 April, 2011

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Research Questions . 2
1.2 Outline of the Report . 3

2 Gaming Simulation Suites 5
2.1 Serious Games and Simulation Games 5
2.2 Railway Gaming suite . 8
2.3 Summary . 12

3 Trade-off analysis of the Railway Gaming Suite 13
3.1 The Architecture Trade-off Analysis Method 13
3.2 Performing the ATAM . 16
3.3 Results of the ATAM . 18
3.4 Summary . 24

4 Service Oriented Architecture 25
4.1 Distributed Architectures .25
4.2 Service Oriented Architectures .. 26
4.3 Railway Gaming Suite . 30
4.4 Summary . 32

5 Service Oriented Gaming and Simulation 33
5.1 Design . 33
5.2 Implementation . 37
5.3 Summary . 44

v

CONTENTS

6 Existing Architectures for Distributed Environments 45
6.1 High Level Architecture . 45
6.2 Lightweight architecture FAMAS 49
6.3 Multi-player entertainment gaming 53
6.4 Summary . 55

7 Evaluation 57
7.1 Evaluation methods . 58
7.2 Performing the Test . 58
7.3 Quality attributes . 63
7.4 Performance . 64
7.5 Extendibility . 66
7.6 Consistency . 69
7.7 Availability . 70
7.8 Flexibility . 71
7.9 Usability . 72
7.10 Maintainability . 73
7.11 Summary . 74

8 Discussion 75
8.1 Suitability of a Service Oriented Architecture 76
8.2 Suitability of HLA and Pitch RTI . 78
8.3 Suitability of FAMAS Simulation backbone 79
8.4 Threats to Validity . 80
8.5 Summary . 82

9 Conclusion and Future work 83
9.1 Answering the research questions83
9.2 Contributions . 85
9.3 Related Work . 86
9.4 Future Work . 87

Bibliography 89

A ATAM Phase Two questions and answers 93

B SOGS Data Model Builder tool 99
B.1 Using the SOGS Data Model Builder tool 99

C Experiment Laptop Settings 103
C.1 Ethernet Card . 103
C.2 TCP view . 103
C.3 Network Traffic . 104

vi

List of Figures

3.1 Utility Tree Concept . 16

4.1 Message transmission . 26
4.2 Network deployment . 26
4.3 Message translation . 29
4.4 High level architectural overview of part of the RGS 30
4.5 High level architectural overview of a service 31
4.6 High level architectural overview of PRL Game 31

5.1 Announcement protocol . 34
5.2 Time synchronization in SOGS. .36
5.3 Overview of the classes in the SOGS package. 37

6.1 HLA federation, with some example federates 46
6.2 FAMAS Simulation Backbone Architecture overview 50
6.3 A different overview of the FAMAS Simulation Backbone Architecture . 51
6.4 Start protocol of FAMAS . 52
6.5 Termination protocol of FAMAS .52
6.6 Relationship of simulations, virtual environments (VEs) and computer

games.[27] . 53
6.7 Game of hide-and-seek. 55

7.1 Schematic set-up of the experiment 60
7.2 The set up of the experiment with the eleven laptops. 61
7.3 Close up of one of the laptops used for the experiments. 61
7.4 Close up of the switch used for the experiments. 62
7.5 The set up of the experiment during another session. 62
7.6 Results of the experiments with 1 application pair. 65
7.7 Results of the experiments with 5 application pairs. 66

B.1 GUI of a new message type creation with SOGS-DMB 99
B.2 GUI of a new data type creation with SOGS-DMB 100
B.3 GUI of a new data type creation with SOGS-DMB 100

vii

List of Tables

3.1 Utility Tree . 21

7.1 Evaluation methods for the quality attributes 64
7.2 Scores for the performance evaluation 67
7.3 Scores for the extendibility evaluation 69
7.4 Scores for the consistency evaluation 70
7.5 Scores for the availability evaluation 71
7.6 Scores for the flexibility evaluation 72
7.7 Scores for the usability evaluation 73
7.8 Scores for the maintainability evaluation 74

8.1 Results of the evaluation .75

ix

Chapter 1

Introduction

For years games have been seen as a leisure activity. In the 20th century this trend
continued and found its way in the computer industry. Towards the end of the nineties,
the digital gaming industry has surpassed the movie industry in Hollywood as one of
the leading entertainment industries in the world [11]. From Pong1 to Unreal Tourna-
ment2 games became more and more interactive and realistic. With the growth of the
Internet multi-player gaming transformed from two people sitting at the same com-
puter to ‘massively multiplayer online games’ in which thousands of people play the
same game together [28].

In the mean time ‘serious’ industries are impacted by game and computer game
technologies. For example in military, soldiers are trained using virtual environments.
The Dutch railway company ProRail also has taken an interestin using computer
games to help with training and decision making. This resulted in a collaboration
of ProRail with the faculty of Technology, Policy and Management of the Technical
University Delft. Part of this collaboration is the development of a gaming simulation
suite called the Railway Gaming Suite (RGS).

The Railway Gaming Suite requires the connection of newly developed games
with different simulators of the physical infrastructure and the control systems that
are already developed and in use by ProRail. To facilitate this connection between
different software applications a work package is initiated by a team of researchers at
the TU Delft to look at some architectures for distributed simulation and gaming. The
research done for this thesis report is part of this project.The main goal for this work
package in the ProRail RGS project has been defined as: ”To understand what system
architectures are suitable for distributed, decision supporting games and simulations in
the domain of rail traffic control”[22].

At the start of the work package it was decided to take a look atthree architectures;
High Level Architecture (HLA), FAMAS Simulation Backbone,and Service Oriented
Architectures (SOA). HLA is an architecture specifically designed for simulation gam-
ing by the Department of Defence of the United States. HLA is part of the research be-
cause of this background and ProRail has some experience with it in previous projects.
FAMAS Simulation Backbone is an architecture developed as part of a PhD thesis [9].
The aim of the FAMAS Simulation Backbone is to provide a flexible architecture for

1htt p : //en.wikipedia.org/wiki/Pong/
2htt p : //en.wikipedia.org/wiki/Unreal Tournament/

1

1. INTRODUCTION

the interoperability among various distributed simulation models. This makes it inter-
esting to research in the RGS work package. SOA is a popular architectural paradigm
often used by enterprise architects [7]. It has no direct connection to simulation gam-
ing, but the the SOA paradigm supports interoperability andflexibility in a distributed
environment. The service oriented paradigm has been aroundfor a couple of years
and has become increasingly popular with organizations. SOA has promised to deliver
unprecedented flexibility and cost savings to IT, by defininga methodology for the use
and re-use of software components and business processes [8]. This makes it an inter-
esting architectural paradigm to research for gaming simulation suites. Research into
these architectures has been divided among different members of the Railway Gaming
Suite team.

In this thesis report research of the service oriented architecture solution will be
the focus. The other two architectures will be researched byother members of the RGS
team. We use the Railway Gaming Suite as a case study for this research. By looking
at the RGS we try to extract general requirements for gaming simulation suites and see
how these are supported by the SOA paradigm.

In the next section we will look at the research questions forthis thesis project.

1.1 Research Questions

The goal of the first work package of the Railway Gaming Suite project is finding
a suitable architecture for the RGS. One of the candidate architectures is SOA. In
this thesis we look at the suitability of SOA for the Railway Gaming Suite and try to
generalize this to gaming simulation suites. This leads to the main research question
for this thesis project:

• RQ Is SOA a suitable architecture for gaming simulation suites?

In order to answer this question we need to know when an architecture is suitable, if
the SOA paradigm supports the suitability requirements andhow it compares to other
architectures. This leads to the following three sub questions:

• RQ1What are the architectural requirements to determine the suitability of gam-
ing simulation suites?

• RQ2 How well does a service oriented architecture support the requirements of
gaming simulation suites?

• RQ3 How does a service oriented architecture compare to other architectures?

To answer the first research question we need background information on gaming sim-
ulation suites and architectural analysis methods, this results in the following ques-
tions:

• RQ1.1What are gaming simulation suites?

• RQ1.2What is a good method to determine architectural requirements of a sys-
tem?

2

1.2. Outline of the Report

For the second research question we need information on service oriented oriented
architectures, and possible implementations to test the requirements. Thus we come to
the next questions:

• RQ2.1What are the principles of a service oriented architecture?

• RQ2.2Can we construct a prototype SOA to test performance requirements?

For the final research question we need to know more about the distributed simulation
domain and if there are already architectures for gaming simulation suites and how
well they support the requirements:

• RQ3.1Are there architectures currently in use for gaming simulation suites?

• RQ3.2What are the architectural approaches of these architectures?

• RQ3.3How well do the other architectures support the requirements of gaming
simulation suites?

1.2 Outline of the Report

We start this thesis report by looking at gaming simulation suites in chapter 2. In
particular we will look at the Railway Gaming Suite project.Using the RGS as a
case study we determine the architectural requirements in chapter 3. This chapter will
explain the method we used to determine the requirements. This method is called
Architectural Trade-off Analysis Method (ATAM). After this we take a look at the
different architectures that are part of the RGS work package. First we will discuss the
SOA paradigm in chapter 4. To better research the suitability of the service oriented
architectures a prototype architecture has been designed and implemented. It is called
Service Oriented Gaming and Simulation (SOGS) and is the topic of chapter 5. Then
we give an overview of HLA and FAMAS in chapter 6. In the same chapter we take
a quick look at entertainment gaming. Using the informationof these chapters an
evaluation of the three different architectures is performed in chapter 7. The results of
the evaluation are discussed in chapter 8. Finally chapter 9gives the conclusion of this
report.

3

Chapter 2

Gaming Simulation Suites

In order to evaluate whether a service oriented architecture is a good distributed archi-
tecture for simulation gaming suites we first need to know what a simulation gaming
suite is, thus answering research question:

• RQ1.1What are gaming simulation suites?

In this chapter we look at the definition of the termgaming simulation suiteand we
present the Railway Gaming Suite as an example of such a gaming simulation suite.
The Railway Gaming Suite will be used throughout this reportas a case study in order
to find out what is important for gaming simulation suites. Using the important aspects
of the RGS we set out to define some general requirements for gaming simulation
suites.

2.1 Serious Games and Simulation Games

We can divide the term gaming simulation suite in two parts, ‘gaming simulation’ and
‘suite’. We start with the last part ‘suite’, which is easy toexplain. A suite in the
software world is a collection of applications. That leavesus with ‘gaming simulation’
to specify what kind of applications are in the collection. As the name suggests here we
are concerned with simulation games, which are serious games with a focus on training
and prediction. This is further explained below. So in shorta gaming simulation suite
is a collection of simulation games. Now that we have defined the type of applications
we can take a deeper look into it.

Simulation games are a subcategory of a specific kind of games, called serious
games. In his book ‘Serious Games’, Clark C. Abt[3] explainsthe idea behind it
nicely:

The oxymoron of Serious Games unites the seriousness of thought and
problems that require it with the experimental and emotional freedom of
active play. Serious games combine the analytic and questioning concen-
tration of the scientific viewpoint with the intuitive freedom and rewards
of imaginative, artistic acts.

The definition he uses is:

5

2. GAMING SIMULATION SUITES

Reduced to its formal essence, a game is an activity among twoor more
independent decision-makers seeking to achieve their objectives in some
limiting context. A more conventional definition would say that a game is
a context with rules among adversaries trying to win objectives. We are
concerned with serious games in the sense that these games have an ex-
plicit and carefully thought-out educational purpose and are not intended
to be played primarily for amusement.

Even though Clark Abt was talking about serious games as early as the 70’s, the term
was not actively used until the Serious Games Initiative1 was formed in 2002. Even
though there is no official list of categories of serious games, there are some terms that
are widely used, such as simulation games. Examples of otherused categories are;
military games (used in the military) and persuasive games (games used as persuasion
technology). In simulation games the focus lies on trainingor prediction. So a gaming
simulation suite can be defined as a collection of games used for training or prediction.

Throughout this thesis we will use a number of terms related to gaming and sim-
ulation. In the context of this report, these terms have as specific meaning. To make
sure this meaning is clear a short explanation is given:

• Game - a game is a software application where there is a human controlling at
least part of what happens in the application.

• System - the collection of all games and simulators that are used for a scenario
is called the system.

• Suite - the collection of all games and simulators that can beuse to set up a
system.

• Simulator - a simulator is a software application that playsout a scenario ac-
cording to predefined data. It is not directly influenced by a player. Data can be
changed through indirect means.

• Scenario - a scenario is the set-up of the system. The scenario specifies which
games and simulators are used and the case that will be played.

• Session - actually playing a scenario is called a session.

• Facilitator - the facilitator guides a session. This can be done by verbal instruc-
tions (for example a briefing) of by influencing the system itself.

Other important concepts in simulation gaming are real-time, synchronization and
causality. These require a little more explanation and are further described below.
There are other techniques that can be used, like packet compression and aggregation,
interest management and dead reckoning. These are however not specific to simulation
gaming, but more to distributed gaming environments in general. They will be covered
in section 6.3 on multi-player entertainment gaming.

1htt p : //www.seriousgames.org/

6

2.1. Serious Games and Simulation Games

2.1.1 Real-time

The term real-time is used in several ways in software engineering. Real-time comput-
ing for example is concerned with systems with strict time constraints (e.g. air bags in
a car). In gaming real-time is used when the game is continuous. In this thesis we use
real-time when the time in the game is continuous and synchronized with wall clock
time.

2.1.2 Synchronization

In a gaming simulation environment it is important to be ableto synchronize events
of different applications. This is important because the applications might need infor-
mation from other applications before continuing themselves. Without this synchro-
nization an application can do calculations based on incomplete information and thus
makes incorrect calculations. This may result in having to redo the calculations or
worse, faulty data in the system. There are several ways of synchronizing all applica-
tions. We describe three methods to do this below.

One way to synchronize is by keeping a centralized list of allcritical messages sent
in the system. From this central place the messages can then be send to the receivers.
When all critical messages are received by an application itcan receive a ’go’ from
the central hub to do its next calculations. The central hub is in control of allowing
an application to continue. Because it has a complete overview and complete control
of all messages sent in the system it can guarantee synchronization. All messages that
are sent through the system need to go to the central hub, fromthere they are sent to
the receiver(s). We call this acentral synchronization mechanism.

A problem arises when the services connected to the applications each have their
own message list. Somehow these lists should be synchronized to make sure the appli-
cations are up-to-date. A way to do it is to have a central synchronization application
which tells all services to perform the calculation they cando at the moment, then if
there are messages, send them. The synchronization servicehas to check if all mes-
sages are received and can then tell the application to proceed, go to the next step.
Before the application can now start with its calculations they first need to process the
messages received in the previous step. From here it starts all over again. This way
all calculations are based on the most up-to-date information and the system is syn-
chronized. In this case the messages containing the actual data are sent directly from
application to application. In addition some messages haveto be sent to the synchro-
nization service. These message can be relatively small compared to the actual data
messages. We call this option adistributed parallel synchronization mechanism, even
though there is still one place responsible for the synchronization.

A third method to synchronize the services is to again have a central synchroniza-
tion service. In this method the services send a request to perform the next event to
the central service. These events are time-stamped by the service. The central syn-
chronization service keeps a list of all request which is ordered by time-stamp. The
central service grants permission to the service with the smallest time stamp event to
perform its event and send its messages. After completion the service sends the next
time-stamped event request. The services are thus able to perform their request af-

7

2. GAMING SIMULATION SUITES

ter each other thus keeping the system synchronized. We callthis methoddistributed
serial synchronization mechanism.

An extension of the synchronization mechanism is to make it real-time, in the way
we described it above. This can be done by setting a step time length (for example
50 milliseconds). The synchronization component needs to wait with sending a ‘go’
until the time step length is reached. If the system is done sooner than the time length
of the step (for instance 39 milliseconds) it has to wait until it reaches the step time
length (in this case 11 milliseconds). Variation can then automatically be made to for
example one week in-game time is one minute in real time, depending on the type
of game that is played. The important aspect of the time-synchronization is to make
sure each in-game step has equal real-time length. This condition can be stretched a
little by having a catch-up mechanism to make up for lost time. An example catch-up
mechanism is explained in chapter 5.

2.1.3 Causality

The concept of causality is about having an event that is the cause of another event.
In a simulation/gaming environment we want to achieve strict chronological ordering
of these cause events and the effects of them. If there is an event in one service that
triggers a message to another service, the other service must receive and process the
message before it does the calculations that are dependent on the data in the message.

2.2 Railway Gaming suite

The concept of gaming simulation suites is very broad and canbe applied to many
different areas. For this thesis report we had the opportunity to use a gaming simulation
suite as an case study. This gaming simulation suite is called the Railway Gaming
Suite (RGS). The RGS is built as part of a collaboration between the Delft University
of Technology and ProRail. At the start of this thesis project the RGS was at an early
stage in its development. No decision had been made on what kind of architecture
will be used. Research done for this report is part of the study to find an appropriate
architecture for the RGS. It is used for the first work packageof the collaboration. The
project work packages are discussed in section 2.2.1.

The main purpose of the RGS is to help ProRail with decision making and train-
ing. To do this the Railway Gaming Suite couples simulators and games together to
provide a coherent picture of a research area. The games gives ProRail the ability to
interact with the system and play-test new situations. The outcomes of the play-tests
can influence the decisions ProRail has to make.

Several games are already under development during this thesis project, like a
traffic controller game and a train driver game. These games are currently directly
coupled to a simulator and played as single player games. Seesection 2.2.3 for more
info on the current state of the RGS games and simulators. This section gives some
background information on the Railway Gaming Suite project. First a quick overview
of the organization is given and then the goals and mission statements of the project.

8

2.2. Railway Gaming suite

2.2.1 Project Organisation

The collaboration of ProRail and the TUDelft takes place between five departments
within these organisations. Within ProRail three departments are involved in the
project: (1) Traffic Control, (2) Innovation and (3) Capacity Management. At the
TUDelft two departments are involved within the faculty of Technology, Policy and
Management (TPM): (1) Systems Engineering and (2) Policy, Organization, Law and
Gaming.

A steering committee is formed consisting of representatives of all five depart-
ments. They monitor the progress and results and look at the scientific consolidation
and practical validation of the results. If there are differences in opinion the steering
committee mediates and searches for reasonable and practical solutions. Half-yearly
an evaluation of the results is performed. The steering committee decides on the con-
tinuation or adjustment of the project based on the evaluation. The steering committee
is supported by a number of consultants within ProRail.

The project is divided in ten work packages. In the work packages (see below) con-
crete work is performed. Each work package has a project leader who is responsible
for preparing a concise plan, in which at least the problem, the objective, the deliver-
ables, the staffing, the planning and the budget are specified. For each work package a
plan is presented to the appropriate members of the steeringcommittee. ProRail must
give a written approval before a work package is started.

The entire project is coordinated by a project leader of the TUDelft. His responsi-
bilities are to support the sub project leaders and report the committee concerning the
consistency and developments in the project. The project leader has a sparring partner
from ProRail to coordinate with and build bridges between work packages. Each work
package gets at least one contact person within ProRail to help with smooth and proper
implementation of the work package. A work package leader gives substantive guid-
ance, performs his own research activities, consults with ProRail and directs a team of
TUDelft researchers. The ten work packages are:

1. System architecture of the Gaming Suite

2. PRL (PRoces Leiding) Gaming Module

3. Train Driver Gaming Module

4. Implementation connection between gaming modules and simulations

5. Scenario editor

6. Decision making with the Gaming Suite

7. ProRail Experience

8. Decision Enhancement Studio

9. Trail project agent-based gaming

10. Trail project Strategic Management Games

9

2. GAMING SIMULATION SUITES

More information about the work packages can be found in the TU Delft, faculty of
TPM, Internal project documentation, 2010. For this research, work package 1 is
important. In this work package different architectures are researched and compared
to each other. The goal is to find an architecture that supports the connection of the
games and simulators of the Railway Gaming Suite.

2.2.2 Goals and Problem Statements of the Railway Gaming Suite

There are a number of problem statements that have led to the cooperation between the
TUDelft and ProRail. The problem statements and goals are defined in the TU Delft,
faculty of TPM, Internal project documentation, 2010.

• ProRail established that it needs to increase the capacity utilization of the Dutch
railway network in order to meet the increasing demand for goods and passen-
gers transportation. By planning and distributing differently, the available ca-
pacity can be significantly increased without extending thenetwork itself. The
program ‘Ruimte op de Rails’ aims to achieve a 50% capacity increase by 2020.
To make this possible a number of solutions and innovative projects are defined.

• The development, realization and implementation of those solutions and innova-
tive projects can be described as a complex multi-actor problem. This includes:
1. there are complex and dynamic interdependencies betweenthe technical-
physical parts of the system on the rail network, resulting in a high degree of
uncertainty about the (un)wanted (medium term) impact of certain operational
or policy measures, like ‘spoorboekloos rijden’; 2. many interdependent actors
(from directors to driver) are involved, often with different opinions, interests,
resources and strategies. The outcome of the strategic ‘game’ between these
players is uncertain.

• Through computer simulations more insight can be obtained into the (un)desired
effects of alternative measures for increasing the capacity which can take into
account the dynamic interdependencies between physical and technical systems.

• Through gaming the different actors can experience the (un)desired effects of the
measures in the technical and physical system themselves (interactive computer
simulation, computer game) but also try out and discuss the various management
strategies and decisions (role play, social or political simulation).

• This can have many positive effects such as awareness, understanding of the
complexity (cause and effect relationships), readiness tochange / acceptance,
cooperation and coordination, improved quality of decision making, etc.

• The validation of the possible effects of Gaming and Simulation is subject of
academic and applied research.

The Railway Gaming Suite is being developed to help with these problem statements.
The goals of the RGS project are split into two domains, general goals and scientific
goals. The general goals are:

10

2.2. Railway Gaming suite

• After the RGS is developed ProRail has a gaming suite that canbe used along
with existing simulation software.

• The RGS makes it possible for ProRail to set up a simulation gaming session
without external help.

• The RGS makes it possible to:

– Play-test new scenarios with existing infrastructure, tools and procedures.

– Play-test scenarios with new infrastructure, tools and procedures.

– Train personnel.

• The RGS will be especially applied to two domains within ProRail:

– VL-domain (traffic control): Testing of practicability of new schedules and
control concepts.

– CM-domain (capacity management): Pre-testing capabilities for solution
of conflicts in the execution. Use of the RGS as a design support suite.

• Looking at possibilities of integration with existing software, both software
owned by ProRail and external software.

The scientific goals are:

• Finding out in what way gaming and simulation as a method can contribute to the
analysis, innovation and training with respect to problemsin a socio-technical
multi-actor environment, especially rail-based infrastructures.

• This is consistent with the Gaming Hot Spot in the Next Generation Infra (NGI)
research and project ”Serious Gaming for Infrastructure Design, Management
and Training.” It touches on the themes Flexible Infrastructures and Understand-
ing Complex Networks when it comes to the goals of the gaming sessions.

• In turn this contributes to the valuation of research into methods of gaming and
simulation for large scale infrastructures. Outcomes and lessons on capacity
management and flexibility are made available to other (international) infras-
tructures.

• The TU Delft aims to publish the results at conferences on game methodology
(International Simulation and Gaming Association), decision analysis, training /
learning, rail-specific conferences (TBA), conferences and Infrastructure (NGI).

• Much of the work within this project will be executed by two PhD students one
within the Systems Engineering department and one within the department of
Policy, Organisation, Law and Gaming. The work of PhD students will con-
tribute to the scientific questions of the two chairs and willbe complementary
but not overlapping.

11

2. GAMING SIMULATION SUITES

2.2.3 Games and Simulators of the Railway Gaming Suite

At the start of this chapter we stated the RGS is already in development. Sessions have
been even played with a traffic controller game that is connected to a simulator. The
game is called PRL and the simulator is called FRISO. In the PRL game the player
takes on the role of a traffic controller. The game implementation is designed to copy
the role of traffic controller as realistic as possible. The FRISO simulator was already
in development when the RGS project started. It provides thegame with infrastructure
information and time-tables. The development and maintenance of FRISO is not done
at the TU Delft. The PRL game development is done by the TU Delft.

In the past session have been played where PRL and FRISO whereconnected with
HLA. In the current version PRL and FRISO are directly connected to each other.
Another game which is at the start of development is a train driver game. Here the
player takes the role of a train driver and has to drive a trainthrough a visual 3D
environment. Currently there are no multi-player possibilities for the RGS.

2.3 Summary

This chapter gives an introduction to the concept of a gamingsimulation suite. It gives
the definition of the term and gives some background information on it. Furthermore
some terms used in the rest of the thesis are explained. Next an high level overview
is given of the Railway Gaming Suite project. This is an example gaming simulation
suite that is used throughout the rest of the report. In the next chapter we go deeper into
the requirements of an architecture that facilitates the multi-player aspect of a gaming
suite. A method called Architectural Trade-off Analysis Method is used to acquire the
requirements for the Railway Gaming Suite.

12

Chapter 3

Trade-off analysis of the Railway
Gaming Suite

In the previous chapter we talked about the Railway Gaming Suite as an example of
a gaming simulation suite. We use the RGS to determine the important aspects of a
gaming simulation suite. In this chapter we will to answer the research question:

• RQ1What are the architectural requirements to determine the suitability of gam-
ing simulation suites?

Before we can do this we need a method to determine the requirements as stated in sub
question:

• RQ1.2What is a good method to determine architectural requirements of a sys-
tem?

The method we use to do this is developed by the Software Engineering Institute (SEI)
at Carnegie Mellon University in Pittsburg, USA. The methodis called Architectural
Trade-off Analysis Method(ATAM). In this chapter we will give an introduction into
the ATAM. After which we describe how it was performed on the Railway Gaming
Suite and what the results are. The requirements we gather from performing the ATAM
will later be used to evaluate the three architectures, HLA,FAMAS en SOA.

3.1 The Architecture Trade-off Analysis Method

This section in based on the report written by Kazman et al.[21] in which they present
the Architectural Trade-off Analysis Method. Over the pastseveral years, the Soft-
ware Engineering Institute (SEISM) has developed the Architecture Tradeoff Analysis
MethodSM (ATAM SM) and validated its usefulness in practice [21][13]. Below we give
an overview of the ATAM, its purpose and execution steps.

3.1.1 Purpose

The purpose of the ATAM is to assess the consequences of architectural decisions in
the light of quality attribute requirements. During the process of the ATAM risks,

13

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

sensitivity points and trade-off points are identified and recorded.Risksare architec-
turally important decisions that have not been made or of which the consequences are
not fully understood.Sensitivity pointsare the architectural parameters that have a high
correlation with a quality attribute.Trade-off pointsare sensitivity points that affect
more then one quality attribute in a different way. This means the outcome does not
give a precise analysis of measurable data, such as calculation times. Since the ATAM
is mostly done early in the development process there is not enough information to
get this data. At this stage it is more important to understand what the impact on the
system is for each attribute.

To be able to perform an ATAM evaluation there must be a specification of a cur-
rent or possible future architecture for the system. Furthermore the quality attributes
should be stated. As mentioned above often the quality attributes are not precisely
defined. Using the ATAM should make these clear by:

• eliciting and refining precise statements of the architecture’s driving quality at-
tribute requirements;

• eliciting and refining precise statements of the architecture’s design decisions;

• using these to evaluate the architectural design decisionsto determine if they
satisfactorily address the quality requirements.

3.1.2 Steps of ATAM

There are nine steps that provide a guideline for the ATAM. The steps are numbered,
but this does not mean they must be taken strictly in this order. For example sometimes
steps are skipped, or some steps are iterated over a couple oftimes.

1. Present the ATAM.
The evaluation team gives a presentation of the process of the ATAM. Before
the evaluation is started it is important for all stakeholders that are involved with
the process to know what to expect and what kind of methods andtechniques
are used.

2. Present business drivers.
The project manager gives a short presentation with a systemoverview from
a business perspective. In this presentation the most important functional re-
quirements are given, as well as the business goals and context, the major stake-
holders, the architectural drivers and the technical, managerial, economic and
political constraints.

3. Present the architecture.
In this step the architectural team explains the existing orfuture architecture
to the other stakeholders. The information in this presentation depends on the
available information to the architects and the amount of time that is available
for the presentation.

4. Identify architectural approaches.
The architectural team identifies the architectural approaches that best represent
the highest priority quality attributes.

14

3.1. The Architecture Trade-off Analysis Method

5. Generate quality attribute utility tree.
The evaluation team (the team performing the ATAM), architectural team, man-
ager and customer representatives work together to identify, prioritize and refine
the most important quality attribute goals. In this step theparticipants also come
up with scenarios describing the system and place them in theutility tree. The
utility tree is used as a guide during the rest of the ATAM. Theutility tree con-
cept is explained in section 3.1.3.

6. Analyse architectural approaches.
Using the architectural approaches found in step 4 and the utility tree of step 5 a
new list is made. This list contains for each utility sub-factor in the utility tree the
associated risks, sensitivity points, trade-off points and architectural approaches
that respond to it. This step gives an overview of the most important aspects of
the entire architecture, the architectural decisions and alist of risks, sensitivity
points and trade-off points.

7. Brainstorm and prioritize scenarios.
With as many of the stakeholders as possible scenarios are generated. When the
scenarios are created, they must be prioritized. The list ofprioritized scenar-
ios is then compared to the utility tree. If there are differences they need to be
clarified and explained. This can mean a scenario might need to be better ex-
plained or the priorities can simply be changed. The utilitytree is made mostly
by the architectural team and the development team. Therefore the criteria for
the prioritization of the utility tree can be different fromthe list of scenarios
made by the stakeholders. This comparison makes the needs ofthe stakeholders
clear to the architectural team. The utility tree is adjusted with the information
of this step in mind and used in further steps of the ATAM. According to the
prioritization only the high priority scenarios are used inthe next steps.

8. Analyse architectural approaches.
Using the new utility tree from step 7 a new mapping is made. This is done in
the same fashion as in step 6. This step is done to test the mapping from step 6.
In an ideal situation no new information is uncovered duringthis step. If this is
not the case, steps 4 to 6 should be done again, until no more new information
is gained.

9. Present results.
The output of the ATAM is presented to the stakeholders. Thisis usually done
with a verbal presentation, supported by a written report.

Two main concept used in the ATAM are scenarios and the utility tree. Therefore
an short description of these concepts is given below. The Architectural Trade-off
Analysis Method is usually carried out in two phases. The first phase is focused on
the organization and the architecture. Steps 1 through 6 arehandled in this phase. The
second phase is stakeholder-centric and is meant to verify the results from the first
phase. In this phase the rest of the steps are handled.

15

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

3.1.3 Scenarios and Utility Tree

A scenariodescribes the stimulus, response and environment of an interaction [5].
They are used to precisely elicit the quality goals. It is often the case that the quality
attribute requirements are ambiguous or vague. In a scenario it can be made clear what
the stakeholder means with them. Each of the stakeholders can describe how they
would use the system. For Example:

The system provides a virtual gaming site that includes online, offsite,
and multiple games running simultaneously and that allows participants
to play from their own command centers. [20]

Theutility tree is a central structure in the ATAM process. An initial version is created
during step 4 and used throughout the other steps. A utility tree is used to connect
the scenarios to the quality attributes. At the root of the tree there is either the label
‘utility’ or the root is left out. The second level consist ofthe quality attributes, such
as availability and extendibility. The quality attributesare further subdivided in more
specific attributes. Finally the leaves of the tree contain the scenarios. Figure 3.1 shows
the concept of utility trees. Utility trees help to prioritize the quality goals and make
them more concrete.

Figure 3.1: Utility Tree Concept

3.2 Performing the ATAM

When we performed the ATAM evaluation the development of theRailway Gaming
Suite was in a very early state. No real decision had been madeon which type of
architecture was to be used. The ATAM was part of the process of finding the right
architecture. Therefore there was not a real focus on a specific architecture during
the evaluation itself. Since this thesis has a focus on SOAs,this did come up during
the initial meeting. The steps and phases were used as a guideline, but not exactly
followed step by step. The next sections give an overview of what was during the two
phases. In section 3.3 we will give the outcomes of the phases.

3.2.1 Phase One

For the first phase a meeting was arranged with the two TU Delftproject leaders of
the Railway Gaming Suite. In this meeting steps 1, 2, 3 and 5 ofthe ATAM were

16

3.2. Performing the ATAM

performed. In preparation of the meeting some information was sent to the project
leaders containing a short overview of the ATAM and some information on business
goals as they are used in the ATAM. This was done to speed up thefirst steps during
the meeting and to make the participants familiar with the process.

At the start of the meeting the method was further explained to the project leaders.
After this one of them presented an overview of the system. A short presentation
was given about service oriented architectures as an approach for the Railway Gaming
Suite. Some example scenarios were created beforehand and used during the meeting
as a stimulus for the process of generating quality attributes for the utility tree. An
example scenario is:

New service types (new player roles) must be inserted into the system
without extensive changes/work on the existing architecture.

The example scenarios were considered during the meeting and new ones constructed.
They were categorized in eight quality attributes; performance, flexibility, system con-
straints, reliability, ease of use, maintainability, extendibility and functionality. From
the start it was clear that performance and extendibility were two of the most important
quality attributes. The next meeting was planned to be with some of the stakeholders
from ProRail as well as the TU Delft project leaders.

3.2.2 Phase Two

After the meeting of the first phase the results were processed to be used in the second
phase. The main event of this phase was a meeting with the project leaders from the
TU Delft and five stakeholders from ProRail. In preparation of this meeting the stake-
holders were asked to come up with some use cases. In order to guide the construction
of use cases some questions were composed together with the TU Delft project leaders:

• For which (future) ProRail project could the Railway GamingSuite be used?

• What would be played/simulated in the gaming session?

• Who are involved in the gaming session?

• Which simulators/applications would be used in the gaming session?

• What results are expected from the gaming session?

• What is the set up of the gaming session?

A complete overview of the answers to these questions is shown in Appendix A. Dur-
ing the meeting the collected use cases were discussed and clarified. Some additional
questions were asked for each of the use cases:

• With how many players would a session be played? (10-100-1000)

• Will there be new players joining a running session?

• Will there be new player roles joining a running session?

• How long will a session take? (hours-days)

17

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

• Where will a gaming session be held? (single room-building-different locations)

• How much time will there be between playing sessions? (minutes-hours-days)

In addition to these questions about each use case, some general questions where
asked:

• How many different applications should be connected to the RGS? (10-100)

• Could you come up with a project with more or less players? (for example, zero
or one player)

• What kind of timing should be supported for the scenarios? (continuous(real-
time)-turn based-as fast as possible)

• How often will the RGS be used?(weekly bases-monthly bases)

• How many preparation time is there for each scenario?

• Should it be possible to run multiple scenarios at the same time?

• Who is responsible for connecting new simulators and applications?

• Who is responsible for preparing a gaming session?

• Will there be spreading of sensitive information during a gaming session?

The meeting lasted for two hours. Therefore the questions were asked to get as much
information as possible without going into an elaborate brainstorm session as is custom
in this phase. The questions were designed to get more insight in the quality attributes
from phase one. With the results of the meeting we could construct a new list of qual-
ity attributes; extendibility, performance, consistency, availability, flexibility, usability
and maintainability. This list of quality attributes was constructed together with other
RGS project members of the TU Delft research team. In the nextsection these quality
attributes are further explained. The next section also provides the other results of the
two phases, the utility tree, analysis of a couple of use cases and description of the
sensitivity points of the system.

3.3 Results of the ATAM

The previous section handled the process of performing the ATAM. The meetings that
were held in the two phases were described. In this section welook at the final re-
sults of the meetings. First the quality attributes are stated and explained. Then the
constructed utility tree is shown including the scenarios that were constructed. After
which the use cases from the second phase are analysed. Finally the sensitivity points
of the system are described.

18

3.3. Results of the ATAM

3.3.1 Quality Attributes

Quality attributes are a core concept of the ATAM. As discussed in section 3.1.1 one of
the purposes of the ATAM is ‘eliciting and refining precise statements of the architec-
ture’s driving quality attribute requirements’. From the meetings in the two phases we
could extract the seven driving quality attributes for the Railway Gaming Suite project.
We use the RGS as a case study to get some insight into the requirements of gaming
simulation suites in general. During the evaluation this was taken into account. In
this section we will give a short explanation of these quality attributes the way they
are meant for this project as well as explain their importance for a gaming simulation
suite. We start with the three most important attributes; performance, extendibility and
consistency.

• Performance: The architecture must be able to meet the real-time requirements
of the RGS. In any gaming simulation suite it is important to minimize the lag
caused by communication middleware.

• Extendibility: The ability to extend the system with new functionality and new
games and simulators. As we stated in chapter 2 a suite is a collection of ap-
plications. Since simulation gaming is targeted at training and decision making
this makes it an application domain that is sensitive to changing needs. Thus the
extension of the collection is important for gaming simulation suites.

• Consistency: The RGS must be able to run in different time modes. Important
parts of consistency are causality and synchronization. Asstated in chapter 2
these are important aspect of simulation gaming.

Even though performance, extendibility and consistency are the main quality attributes
for the RGS, there are some other attributes that are important. These are availability,
flexibility, usability and maintainability.

• Availability: Errors should be handled by either the systemor the facilitator, so
a session can run for several hours. Error free execution is important for any
software system, gaming simulation suites are no exception.

• Flexibility: Ability to connect new players on the fly. Certain scenarios can
require players to enter a session at a later time or only in case of certain events.

• Usability: The RGS must be easily reconfigured to play new scenarios and ses-
sions. The many possibilities of using a gaming simulation suite makes it im-
portant to set up new configuration without to much effort.

• Maintainability: Professional support to maintain the RGS. For any software
system it is important to have good documentation on the use and workings of
the system.

These quality attributes are primarily based on the RGS. In another ATAM evaluation
of a simulation gaming suite, the Wargame 2000 System [20], similar quality attributes
were exposed. They are however named differently.

19

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

The seven quality attributes are further refined into more specific requirements.
The next section shows the utility tree that is constructed with these quality attributes
with their refinements.

3.3.2 Utility tree

The utility tree for this project was constructed together with one of the researchers of
the systems engineering department at the faculty of Technology, Policy and Manage-
ment working on the RGS project. The refinements of the eight quality attributes are
shown and scenarios associated with them are given.

Utility Tree
Quality Attribute Attribute Refinement Scenario

Performance
Real-time play Run a gaming session with 50 players

while keeping it in real-time
Redundancy Message publication is dependant on

the scenario, only useful information
is published by a component

Extendibility
New applications New project requires new application

to be connected to the system without
to much change to overall system

New simulation com-
ponents

The ability to extend the architecture
with new simulation specific compo-
nents

New ontology The ontology can be extended by a
simulation expert to contain more data
types

Consistency
Time paradigms

A gaming session can run in discrete
mode
A gaming session can run in continu-
ous mode (real-time, slower or faster)
A gaming session can be paused

Causality Events in the system are strictly
chronological

Synchronization Events in the system are synchronized
in all applications

Availability
Session Duration Gaming sessions can take several

hours; system needs to stay up the en-
tire time

Failure Detection Logical faults can be detected at the ar-
chitectural level

Flexibility Support new players During a running gaming session new
players can join the game

Usability
Session-to-session Reset the gaming environment to play

a new session within 5 minutes
Scenario set-up A new scenario can be set up in one

week

20

3.3. Results of the ATAM

Maintainability Documentation
ProRail will maintain the architecture
Extension of the RGS is done by Pro-
Rail

Table 3.1: Utility Tree

3.3.3 Use Case analysis

In the second phase of the ATAM a number of use cases were created by the stakehold-
ers. In this section we will analyse some of them by looking atthe quality attributes
that are important. From the questions we asked about the usecases we can find the
risks that are involved with the use cases. With the risks we find during the analysis
we can identify the sensitivity points of the system. These are discussed in the next
section.

Scenario 1: Emergency situation Every Ten Minutes A Train (ETMET) 2015

The situation is that during rush hour in 2015 with a timetable ETMET
a disaster happens. During the game session we look at how thevarious
actors involved in the “product” train perform their own work and where
conflicts in the execution arise.

The most important aspects of this scenario are; many players with different roles,
real-time applications (train driver, traffic controller), consistency between applica-
tions. The three most important quality attributes supported by this use case are;per-
formance, consistencyandflexibility.

Performanceis affected due to the real-time requirements of the system.Some
player roles in this case are strictly real-time. For example when a train driver drives
from one station to another at a certain speed, the time it takes to get there should
be the same as in real-time. Another aspect is the redundancyof the messages. In a
system with many services, the number of messages should be as few as possible in
order to prevent congestion in the network. Risks involved with this are that when
there are to many players the system gets clogged and is unable to meet the real-time
requirements.

Theconsistencyis very important in a session like this because the player roles are
closely connected to each other. When a traffic controller sets a specific route for a
train to go, the switches in the train driver games should be set accordingly before the
train driver arrives at the switch. This means the events should be strictly chronological
and synchronized across the system. The consequence is thatthe games need to ‘wait’
for each other. When one game is not done with calculations other games can not
continue as well.

In this case there are a lot of different players with different roles, which translates
to different services/games connected to each other. This supports theflexibility quality
attribute. The consequence of this is that clear joining protocols must be defined.
The risk that emerges is that messages can get lost if the protocol is not implemented
well. Another risk is that the entire session can lag in orderfor a new player to join,
depending on the implementation.

21

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

Scenario 2: Bridge opening possibilities ‘Vechtbrug’

A situation at the ‘Vechtbrug’ with fixed and flexible bridge opening times.
The game sessions examines the differences for the traffic controller be-
tween the current protocol and the situation with flexible bridge-times.

This use case is concerned with multiple sessions running different versions of the
same scenario. The main quality attributes are theusability andextendibilityof the
system.

For ProRail this is a typical case where they want to use the RGS very soon after
they encounter the problem. Ideally all services for such a scenario are ready and it can
be played as soon as possible. Otherwise it should not take tolong (one person month)
to create new services to connect the required games or simulators. When all services
are ready, setting up a new scenario with them should not takemore then one person
week. When the scenarios are set, it should not take more thena couple of minutes to
switch between them. Allusability refinements are supported in this use case. Only
part of these requirements can be solved by the architecturehowever, like the ability to
restart the services. The other part is dependent on the applications themselves, how
easily they can be reconfigured for a new scenario.

Connecting new services is part of theextendibilityof the system. The creation
of new services should be as generic as possible. New services could also mean new
message types to send across the system (extending the ontology). A risk that emerges
from this could be that a new service provides a lot of new message types, used by
existing services. These services should all be updated then to support these new
messages. This could potentially mean a lot of work.

Scenario 3: Traffic control in Japanese style

Two or more traffic controllers are leading the rush hour traffic through
a congested corridor. Only ‘stop trains’ and ‘intercity trains’ are driving
here. They have new means of traffic monitoring for this. Setting routes
is done completely automatically, based on current plans. When a distur-
bance occurs, first the plan is updated and then given back to the machines
for setting the routes.

We analyse this use case so the other quality attributes,availability andmaintainabil-
ity, can be handled as well. They are also supported in the other use cases, but were
not specifically discussed.

Since most sessions can take several hours it is important the system stays up the
entire time. When an error occurs, it should either be handled by the facilitator or
otherwise taken care off by the system. This supports theavailability requirement.

ProRail will eventually maintain the RGS. Therefore documentation on how to do
this needs to be of good quality. The quality of the documentation determines part of
maintainability.

3.3.4 Sensitivity and Trade-off points

During the use case analysis we uncovered five important sensitivity points. A sensi-
tivity point is an architectural decision that has a strong effect on a particular quality

22

3.3. Results of the ATAM

attribute. We identified performance and extendibility as two most important quality
attributes at the start of the ATAM. The sensitivity points are related to these quality
attributes. The use case analysis showed the importance of other requirements, such as
the synchronization and the session duration. Implementation of these other require-
ments either directly affects the two main quality attributes or there is a trade-off in
how strict they are implemented.

The first sensitivity point is:

The performance is sensitive to implementation of the architecture.

Implementation decisions on how to handle network deployment and message trans-
mission, for example, have a direct influence on the number and size of messages
on the network. The delivery speed of messages is dependent on the transmission
protocol. All these implementation decision have an effecton the performance of the
architecture. The types of scenarios that will be played with the Railway Gaming Suite
require it to be real-time with player numbers up to fifty.

The second sensitivity point is:

Making the system synchronized and keeping strict causality comes at a
cost of performance.

Synchronizing the services with each other requires additional messages to be send
across the network. This has a direct effect on the performance. Another effect is that
service need to wait on each other before continuing, so the system is as slow as is
slowest participant. The synchronization is however required in this system and thus
is not a trade-off. The causality requirement is also a sensitivity point that affects the
system in the same way as the synchronization.

The third sensitivity point is:

Increasing reliability comes at a cost of performance.

Making sure the system stays up during sessions of a couple ofhours requires moni-
toring mechanisms to check on all the applications. This means more messages being
sent across the network. Depending on the implementation ofthe monitoring mecha-
nism this has more or less effect on the performance. Here a trade-off arises on how
reliable the systems should be while keeping the performance in mind.

The fourth sensitivity point we identify here is:

Adding new players during a running session can disrupt the real-time
requirement.

The ability to join a running session has the consequence that a new service needs to
be brought up-to date with the current state of the system. Doing this potentially takes
more time then there is available while keeping the system running in real-time. A
trade-off must be made on how strict the real-time requirement must hold in the event

23

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

of a new player joining.

The last sensitivity point we identified is:

Ease of adding new services, components or ontology is sensitive to the
quality of the documentation.

As stated above the Railway Gaming Suite will be maintained and extended by Pro-
Rail. Even though this will be done by the technical staff (and programming skills
should not be a problem) the implementation details and the inner workings of the
architecture are not common knowledge and most thus be well documented by the
system architects.

3.4 Summary

In this chapter we have given an overview of the Architectural Trade-off Analysis
Methods and shown how it was performed for the Railway GamingSuite. We started
with giving the goal of the ATAM. Then we explained the steps and phases in which
the ATAM is performed in general and discussed the most important terms, utility tree
and scenario.

After the introduction of the method we continued to show howit was performed
for the Railway Gaming Suite. First we described how the two phases were performed,
by describing the meetings that have taken place. Then the outcomes of the meetings
we supplied, by means of the quality attributes, a utility tree, an analysis of some of
the use cases and finally an overview of the most important sensitivity points and what
trade-offs there are concerning them.

24

Chapter 4

Service Oriented Architecture

Service Oriented Architecture (SOA) is a paradigm for modeling a distributed software
architecture. This gives us two terms that are important, namely software architecture
anddistributed. A definition for software architecture is given by Clementset al. [12]:

Software architectureis about structural properties of a system. Structural
properties can be expressed in terms of components, interrelationships,
and principles and guidelines about their use.

A distributed systemis described by Andrews[4] as

Several autonomous entities that communicate with each other by mes-
sage passing.

In this chapter we will focus on a service oriented architecture as a form of a distributed
architecture. Thereby answering the research question:

• RQ2.1What are the principles of a service oriented architecture?

First we take a look at the principles of distributed architectures in section 4.1. Then
we focus in service oriented architectures in general in 4.2as well as some design ap-
proaches for building a SOA. Finally we give an example of what the Railway Gaming
Suite could look like using SOA as the underlying architecture.

4.1 Distributed Architectures

As described above, a distributed architecture is responsible for the communication
between entities or otherwise callednodes. The nodes are located on two or more
systems (computers) and are connected to each other througha network connection.
We take a look at the two important aspects of a distributed architecture that facilitate
the communication between nodes across a network, namely message transmission
and network deployment.
Message transmission is the way a message is sent from one node to another. There

are three main techniques for this, unicasting, multicasting and broadcasting (Figure
4.1). In unicasting(a) a message is sent from the sender through the network to one
specific receiver. In multicasting(b) a message is send fromthe sender to multiple

25

4. SERVICE ORIENTED ARCHITECTURE

Figure 4.1: Message transmission

specific receivers. Finally in broadcasting(c) a message issent from the sender to all
applications in the network.

Network deployment is about the connection of the nodes in a network. There are
two techniques for this: peer-to-peer and client-server (Figure 4.2). In peer-to-peer(a)
all nodes are connected to each other and all nodes are the same. It is possible to send a
message to every other node directly. In client-server(b) there is a special node (server)
to which all other nodes (clients) connect. All messages aresent to the server node,
which in turn sends it to the correct receiving client nodes.It is possible to construct
hybrid solutions for node connection. For example a peer-to-peer server network,
where each server has a number of clients attached to it. The clients still connect to
a single server, but the server may need to relay a message to another server, which
in turn sends it to one of its clients. Another construction could be using a ’super-
server’, where multiple servers are connected to a single ’super-server’. Exploring
these constructions further is outside the scope of this report.

Figure 4.2: Network deployment

4.2 Service Oriented Architectures

Service-oriented architecture (SOA) is a very popular architecture paradigm
for designing and developing distributed systems. SOA solutions have
been created to satisfy business goals that include easy andflexible in-
tegration with legacy systems, streamlined business processes, reduced
costs, innovative service to customers, and agile adaptation and reaction
to opportunities and competitive threats. [7]

26

4.2. Service Oriented Architectures

In this chapter we look at the high level ideas behind serviceoriented architectures,
without going into a specific implementation. The introduction of this chapter stated
that a distributed architecture connects nodes in a networkto each other in order to
make communication possible. In a service oriented architecture the nodes are called
services. Because a SOA is a distributed architecture the nodes/services want to com-
municate with each other. The need to communicate arises when a service requires
information another service can provide. In a SOA the requesting service is called a
consumer serviceand the service that delivers the information aprovider service. It
is possible for a service to require and provide information, so to be a consumer as
well as a provider. Before services can communicate they need to find each other. In
service oriented architectures there is an additional service role, which can be used for
this, called theservice broker. Publishing services need to announce themselves to the
service broker. The service broker keeps an index of what each service provides for the
consumers to request. This way a consumer can find out where toget the information
it needs [24].

What we see in the above description is that the notion of services is central in
SOAs. Bianco et al. [7] describe the following characteristics of an ideal service in a
service oriented architecture:

• A service is self-contained. The service is highly modular and can be indepen-
dently deployed.

• A service is a distributed component (or collection of components). The service
is available over the network and accessible through a name or locater other then
the absolute network address.

• A service has a published interface. Users of the service only need to see the
interface and can be oblivious to implementation details.

• A service stresses interoperability. Service users and providers can use different
implementation languages and platforms.

• A service is discoverable. A special directory service allows the service to be
registered, so users can look it up.

• A service is dynamically bound. A service user does not need to have the ser-
vice implementation available at build time; the service islocated and bound at
runtime.

These are the ideal characteristics, in most cases some are missing or not fully im-
plemented [7]. The three most important are that services are loosely coupled, self-
contained and discoverable over the network. In the next subsections we go deeper
into the design approaches of building a SOA implementationand how they have an
impact on the overall functionality and application of the SOA.

SOA is an architectural paradigm and therefore many implementations of it are
possible. In literature service oriented architecture is often directly linked to Web
Services1. This is however one possible implementation of a SOA. Therefore in this
report we do not go into the specifics of Web Services.

1htt p : //en.wikipedia.org/wiki/Webservice/

27

4. SERVICE ORIENTED ARCHITECTURE

4.2.1 Network Deployment

The SOA paradigm does not specify a strict design approach for the network deploy-
ment. In the first section we showed two approaches for network deployment. Here
we will look at their impact on the system.

In a client-server model all services connect to a single server hub. This increases
the flexibility, because new services only need to connect tothe server and it takes care
of the rest. All messages need to go through the central hub, which has a negative
effect on the performance. The service broker structure described above can be imple-
mented as a client-server model. The brokering software is often called anEnterprise
Service Bus (ESB)in SOA solutions [7]. All services interact only with ESB, which is
responsible for the data routing.

In a peer-to-peer model the services are directly connectedto each other. This has
a negative effect on the flexibility of the system, since for every new service a new
direct connection must be implemented. On the other hand thedirect communication
has a positive effect on the performance. In a strict peer-to-peer implementation all
services are equal. When we deviate a little from this we can implement a service
broker structure in a peer-to-peer environment. We can create one special service (a
service broker) which is responsible for connecting the other service to each other.
This way all services need only announce themselves to the service broker, making it
more flexible. After announcement there is a direct connection to the other services
and data is sent directly, keeping the performance high.

4.2.2 Message Transmission

The three message transmission techniques described in section 4.1 are all possible in
a SOA implementation. It depends on the functionality of thesystem which technique
is most applicable. The unicast technique can be used when service consumers know
exactly which of the providers has the information they needand information provided
is always only interesting for one service. The advantage ofthis technique is that the
number of messages is limited to the essential. The multicast technique can be used
when most messages are interesting for more then one consumer. In order to make sure
messages are sent only to the service consumers that want them a more complex mech-
anism is needed. Depending on the mechanism it is possible tosend to many messages
across the network, with a chance of decreasing the overall performance. The broad-
cast technique sends all messages to every services. This way all message are received
by the consumer that needs them, but also by consumers that donot need them. The
consequence is that too many messages are sent and the performance decreases.

In service oriented architectures a popular mechanism for message transition is a
publish-subscribe mechanism. Which is a multicasting technique, where it is possible
that the number of receiving nodes is one, some or all of the other nodes. This means
it can unicast and broadcast as well. The publish-subscribemechanism is based on the
observer pattern defined by Gamma et al. [16]. Each service can publish and subscribe
to messages. Services are made aware of the published information in the system and
can directly subscribe to it. This way messages are only sentto receivers that want
the information. Even though publish-subscribe mechanisms are often used in service
oriented architectures it is not obligatory to do so.

28

4.2. Service Oriented Architectures

4.2.3 Service Discovery

One of the SOA characteristics is the ability of the servicesto find each other. The need
for this is dependent on the network deployment and message transition techniques that
are chosen. In a client-server system using an ESB, servicesneed only know how to
connect to the ESB. Services can be completely unaware of each other.

In a strict peer-to-peer system all services need to be made aware of each other.
This means either the services search a specific address space looking for other ser-
vices, or they need to have a list of all addresses of the otherservices in advance. In
the first option the address space should be limited (a specific IP-address range for
example) otherwise it takes to long too find other services. The second option makes
sure the services are able to find each other. It is however less flexible, since locations
of new services that want to join the network need to be known in advance.

The less strict peer-to-peer option described above has theadvantage of a single
connection point, like with the ESB. Services need to announce themselves to the
service broker. It will keep a registry of all service consumers and providers and send
their addresses back to the newly connected service. The service can in turn connect
to the other services in the system. This option has the flexibility of having a single
connection point at start-up.

4.2.4 Interoperability

Another important characteristic of a service oriented architecture is that the services
are self-contained. A consequence is that the services are implemented in different
languages and have different object models. This characteristic of SOAs leads to mis-
matches in technology and messages types. The architectureshould make sure this
is handled correctly. In a SOA the interpretation from one object model to another is
often calledadaptingand is done by what is calledadapters. One way to do this is
sending data from one service to the other by adapting it directly into the object model
of the receiver. Another way is to adapt it into a intermediate object model and from
the intermediate object model to the receiver object model.

Figure 4.3: Message translation

For example four diplomats (a French diplomat(F), a Russiandiplomat(R), a Chi-
nese diplomat(C) and a Dutch diplomat(D)) want to communicate with each other (see
figure 4.3). This can be done by using interpreters for each pair of diplomats. Six inter-
pretors are needed then (F-R, F-D, F-C, R-D, R-C, C-D). As thenumber of diplomats
increases, the number of interpreters increases with a rateof

(diplomats
2

)

. Another way

29

4. SERVICE ORIENTED ARCHITECTURE

to do it is to introduce a new intermediate language (for example English). Now each
diplomat needs one interpreter, interpreting from its own language to English and the
interpreters can communicate directly to each other in English. Now as the number of
diplomats increases the number interpreters increases at the same rate. Using an inter-
mediate object model makes the system less complex and more flexible. However an
extra adaptation of the data is needed, which has a negative effect on the performance.

4.3 Railway Gaming Suite

In chapter 2 we gave an overview of the Railway Gaming Suite asan example gaming
simulation suite. With the description of service orientedarchitectures above we can
construct a high level design of the Railway Gaming Suite using a SOA architecture.
In figure 4.4 an example is given of some services that will be part of the RGS. We use
the traffic controller game (PRL) and one of the simulators (FRISO) in this example
since they are already in development. The gaming services are:

• Timing service, responsible for time management, synchronization and causal-
ity.

• Logging service, responsible for keeping track of events during sessions, like
human interactions and time-tables.

• Facilitator service, responsible for providing control onthe system to the facili-
tator.

Figure 4.4: High level architectural overview of part of theRGS

The architecture has been depicted in a bus like fashion, butthis is not necessarily
the network deployment option for the RGS. Message transmission is handled in the
data distribution management module and service discoveryin the service registration

30

4.3. Railway Gaming Suite

Figure 4.5: High level architectural overview of a service

management module. In the case of an intermediate model thisis also part of the
architecture, we call it the data model module in this case.

We can take a closer look at what a service should looks like (figure 4.5). The main
components in a service are:

• The application. For example PRL see figure 4.6.

• An adapter. This could be either adapting to an intermediateobject model or
directly to the target object model. In the latter case the adapter should contain
adaptation to all other object models.

• Communication interface. This interface takes care of the coupling to other
services, the implementation of this depends on the design decisions taken.

Figure 4.6: High level architectural overview of PRL Game

31

4. SERVICE ORIENTED ARCHITECTURE

4.4 Summary

In this chapter we have taken a look at service oriented architectures as a form of dis-
tributed architectures in order to answer the sub question:What is a service oriented
architecture? First we gave a quick look at distributed architectures in general. We han-
dled the two main concepts of network deployment and messagetransmission. Then
we have taken a closer look at service oriented architectures. We looked at the roles
nodes can have in a SOA and then delved deeper in the concept ofa service. Next we
looked at different design approaches for network deployment, message transmission,
service discovery and interoperability. Finally an example overview of the Railway
Gaming Suite was given using the service oriented paradigm to connected the games
and simulators.

32

Chapter 5

Service Oriented Gaming and
Simulation

In this thesis we want to test whether an architecture based on the service oriented
paradigm is an appropriate choice as a simulation gaming suite architecture. In chapter
7 we will evaluate this according to the quality attributes we found during the ATAM
evaluation to answer the research question:

• RQ2 How well does a service oriented architecture support the requirements of
gaming simulation suites?

In order to answer this question we can look at the principlesof SOA as discussed
in chapter 4. The performance requirement however can be evaluated by performing
tests. In order to get these test results for a SOA architecture we have implemented a
prototype architecture based on the SOA principles. Implementing a prototype archi-
tecture also gives some insight in the ease of making a SOA keeping simulation gam-
ing aspects in mind. Using this prototype to make a test scenario gives some hands-on
experience with connecting applications to the architecture and the extendibility re-
quirement. This chapter is related to the research question:

• RQ2.2Can we construct a prototype SOA to test performance requirements?

The architecture is designed to facilitate the gaming simulation specific function-
alities, namely real-time play and system wide synchronization. In this chapter we
will handle the design decisions for the prototype and the actual implementation. The
name of the architecture is Service Oriented Gaming and Simulation (SOGS).

5.1 Design

The Service Oriented Gaming and Simulation (SOGS) architecture aims to provide
the flexibility and high performance that is needed in gamingand simulation suites. In
this section we will describe how the four main design aspectof sections 4.2.1 through
4.2.4 are handled for the SOGS architecture. Furthermore welook at the design of
the gaming simulation specific functionalities of sections2.1.1 and 2.1.2 for the SOGS
package.

33

5. SERVICE ORIENTED GAMING AND SIMULATION

5.1.1 Network Deployment

In chapter 4 we have shown there are two main ways to handle thenetwork deployment
from an architectural perspective, client-server and peer-to-peer. For the SOGS archi-
tecture the peer-to-peer approach was chosen. The reason for this choice is the that the
peer-to-peer approach has the potential to reduce the amount of data send across the
network. In this approach it is possible to send big messagesfrom service provider to
service consumer directly without first sending it to the server and then sending it from
the server to the consumer, like it would be in a client-server system.

5.1.2 Service Discovery

For SOGS a mechanism using a service broker (see section 4.2)was chosen. The
role of the service broker is to connect the other services toeach other. This way the
services need only know the location (for example the IP address) of the service broker
and it takes care of the rest. This increases the flexibility since it is not necessary for all
services to be known or know each other at the start-up of the system. Announcement
of a service is done by request. The ServiceBroker decides when and if a service can
announce itself.

Figure 5.1: Announcement protocol

In figure 5.1 the announce protocol is shown for two services and the server. In
this example Service1 has an event which Service2 subscribes to and the other way
around. At start up Service1 announces itself to the ServiceBroker both for publish-
ing events and subscribing events by sending a list with the publishing and subscriber

34

5.1. Design

events. Events are identified by event type. Service2 does the same. When Service2
announces itself the ServiceBroker finds Service1 in its list and returns this to Ser-
vice2. Now Service2 has the location of Service1 to send the events to. The other
way around Service1 is notified of the location of Service2 bythe ServiceBroker since
Service1 was in its the subscribe list. The announce messages are done by request. In
the example there is no problem with the request at the service broker side, thus the
announcements succeed. It could be the service broker bounces the request, or puts it
on hold.

5.1.3 Message Transmission

Message transmission in SOGS is done using a publish-subscribe mechanism. In fig-
ure 5.1 it is shown that upon announcement the services are connected by events they
publish and subscribe to. For each publishing event a connection is created with all
subscribers of the event. This is done when a new service announces itself. After an-
nouncement it is still possible to publish more or less events or subscribe to more or
less events. This is done by making a request to the ServiceBroker. The ServiceBroker
decides when and if the new connections are made. The publish-subscribe mecha-
nism reduces the number of messages send across the network to a minimum, by only
sending to service consumers that requested the data.

5.1.4 Interoperability

In the SOGS architecture an intermediate language will be used. This decision is
instigated by the great diversity of possible games and simulators that must be able
to communicate with each other. As such, this adds to the flexibility of SOGS as the
intermediate language makes that each new service only needs to be able to translate
to or from this language. In reality it is more complicated, because this requires the
intermediate language to contain all possible data the services want to publish. In the
case of the Railway Gaming Suite, this means the intermediate language should for
example be able to handle location data of the trains in a visual environment (train
driver application), as well as time-table data (traffic controller application). In other
words a clear ontology is required to make sure all services are able to communicate
with each other. Constructing an ontology is specific to the project the architecture
is used for. For SOGS a tool is designed to make the construction of new objects
easier. This tool is called the SOGS Data Model Builder (see Appendix B. Extending
the ontology in an existing system requires the services to update their adapters. An
example adaptation is given in the implementation section on interoperability.

The overhead of translating the message twice does not outweigh the gain in flexi-
bility of the system. Part of this is because the different applications that are connected
to each other already require a message to be translated multiple times.

5.1.5 Timing and Synchronization

As stated in chapter 4 one of the most important characteristics of a service oriented
system is to have loosely coupled services. Therefore SOGS has a separate service
for the timing and synchronization. The synchronization mechanism ensures the data
send across the network is synchronized.

35

5. SERVICE ORIENTED GAMING AND SIMULATION

One aspect that should be synchronized is global timing. Thesynchronization ser-
vice is ideal to handle the timing as well. The synchronization works as explained in
section 2.1.2. In particular we use the second method described in that section, the dis-
tributed parallel synchronization mechanism. For timing we have chosen to integrate

Figure 5.2: Time synchronization in SOGS.

this in the synchronization mechanism, as described in section 2.1.2. Before sending
the next time step a check is made to see if the system is still running in correspon-
dence with the wall-clock. A catch-up mechanism is part of the timing to make up
for lost time. The details of the timing mechnism are explained in the implementation
section.

5.1.6 Classes of SOGS

With these design decisions a class diagram of the SOGS library could be constructed,
see figure 5.3. The most important classes are:

• AbstractService

• BasicService

• ServicePublisher

• ServiceSubscriber

36

5.2. Implementation

Figure 5.3: Overview of the classes in the SOGS package.

• ServiceBroker

• SynchronizationService

The first five classes are needed to connect applications to each other. The Synchro-
nizationService is a specific application used in the synchronization and timing mech-
anism. For the timing mechanism the class RealTimer is used.Figure 5.3 gives a high
level overview of the SOGS package. In the next sub sections we will explain the roles
of the classes by functionality as discussed in the design section.

5.2 Implementation

The SOGS architecture library is implemented in Java. Java was chosen because of
the familiarity of the developer with the language and use ofthe DSOL (distributed
simulation object library) library1 which is also written in Java. DSOL is a library that
contains functionalities to build a simulation environment. For this implementation
only the event system of the DSOL library was of interest.

The DSOL event system uses Java Remote Method Invocation (RMI) 2 to send
messages between applications. Messages are contained in Events in this system. A
DSOL Event contains an object containing an identifier for the source, an object con-
taining the data and an EventType. The source identifier can be any Java object, for
example a String. The data object can be any Java object as well. EventTypes are
identifiers for the Event. All objects send with RMI have to beserializable.

1htt p : //sk−3.tbm.tudel f t.nl/simulation/node/4
2htt p : //www.oracle.com/technetwork/ java/ javase/tech/index− jsp−136424.html

37

5. SERVICE ORIENTED GAMING AND SIMULATION

Next to the normal Event DSOL also contains a TimedEvent, which adds a time-
stamp to a normal Event. For the SOGS architecture we extended the TimedEvent to
contain a unique message identifier. The new Event object is called UniqueTimedE-
vent. The addition of the unique message identifier could help with robustness mech-
anisms in future builds. The unique identifier can be used to check the delivery of a
message without having to send the data again.

The DSOL event system is used to implement the publish-subscribe mechanism
of the SOGS package. Publishing is done using DSOL’s RemoteEventProducer and
subscribing using DSOL’s RemoteEventListener.

EventTypes act as identifiers. They are used to identify the events a service wants
to publish or subscribe to. In SOGS we make a difference between two different
EventTypes, namely EventTypes concerned with the application domain and Event-
Types used by the architecture. The difference is made because we might want to add
extra operations concerned with only the architectural or the non-architectural Event-
Types. For example sending additional messages (containing the unique identifier and
EventType) to an administrator service, to keep track of themessages sent in the sys-
tem without having to send the big payload of the original message.

5.2.1 Network Deployment

The peer-to-peer approach of the SOGS architecture requires the services to commu-
nicate directly with each other. We have implemented the AbstractService class to
set up the connections. AbstractService creates the classes for the publish-subscribe
system, see section 5.2.2. Every service in the system needsto directly or indirectly
extends the AbstractService class. The AbstractService extends the Java Thread class
and defines the run loop of the service:

public void run()
{

printMessage("Service " + getServiceName() + " started");
preLoop();
synchronized (this)
{
while(this.running)
{

try {
this.wait();

} catch (InterruptedException e) {
this.errorOccured("’unauthorized interruption during run’");

}
inLoop();

this.notifyPublisher();

serviceDone();
}

}

38

5.2. Implementation

postLoop();
}

Implementation of the preLoop, inLoop and postLoop methodsare specific to the ap-
plication(s) the service connects to the system. The wait()and serviceDone() are used
for the synchronization mechanism, see section 5.2.4 and figure 5.2.

5.2.2 Service Discovery and Message Transmission

As discussed in the design section we use a service broker mechanism. A class appro-
priately called ServiceBroker is constructed for this. Thediscovery mechanism itself
uses a Java RMI registry at the ServiceBroker side. For the other services to find the
ServiceBroker class we extend the AbstractService class. The extending class is called
BasicService. It extends the AbstractService class with the functionality to find the
registry of the ServiceBroker by IP address and port number and this connect to the
ServiceBroker. All services (except the ServiceBroker) inthe system need to extend
the BasicService class. The connection of the services is done by the ServiceBroker is
done as described above in the design section and further explained below.

The AbstractService creates two Threads, ServicePublisher and ServiceSubscriber,
to handle the publishing an subscribing. The connections between services are made
directly between the ServicePublishers and ServiceSubscribers. Each ServicePub-
lisher and ServiceSubscriber that announces itself at the ServiceBroker is put in a
list sorted by the EventTypes it publishes or subscribes to.The ServiceBroker then
searches for each EventType that is published, whether there are subscribers to it and
connects them. The same way the subscribers are connected tothe publishers, by
searching if there are publishers for the subscribe EventTypes, see below for imple-
mentation.

private synchronized boolean setSubscriber(
ServiceSubscriberInterface subscriber,
EventType eventType) throws RemoteException

{
boolean success = false;
if (this.publishers.containsKey(eventType)) {
ArrayList<ServicePublisherInterface> publisherList

= this.publishers.get(eventType);
for (ServicePublisherInterface publisher : publisherList) {

// if publisher is not the subscriber...
if (!publisher.getName().equals(subscriber.getName())){

// ... add the subscriber as a listener
to the publisher for the specific eventType

try
{

success = publisher.addListener(subscriber, eventType);
if (!success)
{
break;

}

39

5. SERVICE ORIENTED GAMING AND SIMULATION

} catch (RemoteException remoteException)
{

this.errorOccured("setSubscriber:-
remote exception when adding listener "
+ subscriber.getName() + " to service "
+ publisher.getName() + ".\n"
+ remoteException.toString());

}
}

}
}
return success;

}

After initial announcement a service can request to publishand subscribe to an addi-
tional EventType or remove an EventType. The ServiceBrokertakes care of the con-
nection again. Other services can request the service broker to publish and overview of
the current publishing and subscribing services in the system. This is used in the syn-
chronization mechanism. The ServiceBroker class itself extends the AbstractService
class and thus can publish and subscribe to events like any other service.

5.2.3 Interoperability

Since SOGS is written in Java and uses Java RMI to send messages back and forth,
the content of the messages are Java Objects. The wrapper object in the RMI mes-
saging system is the UniqueTimedEvent for SOGS. Within the UniqueTimedEvent the
actual data is stored. UniqueTimeEvent requires this to be aJava Object again. All
application specific data must be converted to Java Objects in order to send it to other
applications. The actual implementation of the Java Objects is free and dependent on
the data exchanged between the services. For example in the Railway Gaming Suite
information about trains could be published. We can imaginewe need an object called
Train, with different attributes like type, maximum speed,number of passengers. Each
service needs to know exactly what the train object sent fromanother service looks like
in order to extract the information. For this we use an adapter construction as described
in section 4.2.4. Within the adapter it can then extract the information from the Train
object and adapt it to the application specific data. The intermediate language consists
of Java Objects for SOGS. In order to make the process of creating new Java Objects
for the intermediate language easier and quicker a tool was created. More information
on the tool can be found in Appendix B

The adapting of messages works as follows in case of FRISO andPRL (see chapter
2). In this example FRISO want to publish a message which announces a train for a
particular PPLG (this is a part of the railway network). The message identifier is 1117.
This identifier is used by FRISO to indicate an ‘announce train’ message. It is also
used in the data model for the EventTypes. In the SOGS architecture the FRISO XML
message is adapter to the intermediate data model object andupon arrival by the PRL-
service from the intermediate data model object to PRL objects. PRL is written in Java
and uses Java classes for its internal objects. In this case the timing is in milliseconds

40

5.2. Implementation

and the same in all applications, so no adaptation is needed.Otherwise the adapter
needs to take care of this as well. The Jave code is written in pseudo code to keep it
simple. In appendix B an example is given with the complete Java code of an example
SOGS intermediate data model MessageType.

The FRISO-service gets the following data from FRISO. This example is taken
from a FRISO-PRL communication log.

<ROOT>
<HEADER>
<MESSAGE_ID>1117</MESSAGE_ID>
<TIME>10407</TIME>

</HEADER>
<MESSAGE>
<PPLG_CODE>ASDZ</PPLG_CODE>
<TRAIN_NAME>

<TRAIN_NAME>1511-H-2</TRAIN_NAME>
<TIMETABLE_REP>1</TIMETABLE_REP>
</TRAIN_NAME>

</MESSAGE>
</ROOT>

The FRISO-adapter takes this and transforms it to the intermediate data model. The
data is sent as a UniqueTimeEvent. The MESSAGEID and TIME are used for the
EventType and timestamp. The intermediate data model uses Java objects to store the
information of the message. With the SOGS Data Model Buildera MessageType and
a DataType are constructed to store the data. The MessageType looks as follows:

public class AnnounceTrain
String pplgCode;
TrainName trainName;

In this case the new data type is TrainName:

public class TrainName
String trainName;
int timeTableRep;

The UniqueTimeEvent is constructed as follows:

AnnounceTrain announceTrain = new AnnounceTrain("ASDZ", "1511-H-2",1);

UniqueTimeEvent(1117,FRISO-Service,announceTrain,10407,UniqueIdentifier);

After adaptation this UniqueTimeEvent is published by the FRISO-service. The PRL-
service is subscribed to this event and will receive it. The PRL-adapter takes the Uni-
queTimeEvent and adapts it for use by PRL. First it gets the data from the Announce-
Train object and adapts it to objects as PRL uses them:

String pplgCode = announceTrain.pplgCode;

41

5. SERVICE ORIENTED GAMING AND SIMULATION

and

TrainID trainID = new TrainID(announceTrain.trainName.trainName,
announceTrain.trainName.timeTableRep);

Then using the EventType the data is given by the PRL-serviceto the correct method
in PRL:

announceTrain(PplgCode, trainID);

5.2.4 Timing and Synchronization

Timing and Synchronization is handled by a simple service, the SynchronizationSer-
vice which extends the BasicService. It is therefore connected to the other services
by the ServiceBroker and can publish and subscribe to EventTypes. The Synchro-
nizationService follows the synchronization mechanism from figure 5.2. It publishes
a NEXT TIME STEP message to the system. This allows all services to startper-
forming their calculations. It then waits until all services have transmitted they are
done with their calculations, They do this by publishing a SERVICE DONE mes-
sage. As soon as all services are done the SynchronizationService can send a new
NEXT TIME STEP message. Since the SynchronizationService regulatesthe syn-
chronization it has a different run method then the AbstractService which is con-
structed to integrate the synchronization, see below.

public void run()
{

preLoop();
while(this.running)
{
inLoop();

}
postLoop();

}

The inLoop handles the actual synchronization:

public void inLoop()
{

try
{
long now = System.currentTimeMillis();
setCheckList();

nextTimeStep();

checkAllServicesDone();

if (this.timed)
{

42

5.2. Implementation

RealTimer.getInstance().nextTimeStep(now);
}

} catch (InterruptedException e)
{
System.out.println("unexpected close!");
e.printStackTrace();

}
}

To synchronize this mechanism to wall-clock time it can use the RealTimer class. The
RealTimer check whether it is time to go to the next time step.If not it performs a
Thread.sleep() for as long as there is time remaining in the time step. In case the step
took more time then it was allowed to use this delay is stored in a backlog variable and
the RealTimer does not perform a sleep so the NEXTTIME STEP message is sent
immediately. The backlog is used to catch up the lost time in the next time steps. This
is further explained below.

Upon initialization of the RealTimer a begin time is set, a begin game time, the
length of each time step and a time factor. The begin time is the current system time
(in milliseconds) at the initialization of the RealTimer. It is used to correct the error of
the slightly inaccurate Thread.sleep() method. Each time step the current system time
is checked against the time the RealTimer expects it to be. The error is added to the
timer backlog.

public long nextTimeStep(long beginTime) throws InterruptedException
{

long used = System.currentTimeMillis() - beginTime;
this.backlog += System.currentTimeMillis()

- this.startTime
- this.currentTime
- used
- this.backlog;

long delay = Math.round(this.timeStep/this.timeFactor - used);

this.currentTime += this.timeStep;

if (delay >= 0)
{
long catchUp = Math.min(this.backlog, delay);
this.backlog = this.backlog - catchUp;
long sleepTime = delay - catchUp;
Thread.sleep(sleepTime);
return delay;

} else
{
this.backlog = this.backlog + (-1 * delay);
return delay;

43

5. SERVICE ORIENTED GAMING AND SIMULATION

}
}

The game time is the in-game time when the RealTimer is initialized. The Real-
Timer updates this each step with the size of the time step. The time step sets the time
each step should take. When the nextStep method is called thebegin time is given.
This is subtracted from the current time. The result is the used time that it took to
finish all steps of the synchronization process as describedabove. If this is more then
the time step size of the lost time (used time - time step), it is added to the backlog.
The timing service can immediately continue to the next timestep. If the used time is
less then the time step, the RealTimer checks its backlog andmakes up as much time
as possible not exceeding the time allowed in the step (the time step size). This way
the backlog is decreased each time there is time left in a step. If the backlog is zero or
less then the time left in the step, the RealTimer calls the Thread.sleep() method until
the correct time is reached.

The final value given when initializing the RealTimer is a time factor. This can
be used to speed up or slow down the game time. This factor increases or decreases
the time allowed in each time step, without changing the steptime itself and thus to
game time update. Using the time factor makes the RealTimer faster or slower then
wall clock time(real time).

5.3 Summary

This chapter describes the design and implementation of a prototype service oriented
architecture. The architecture is designed specifically for simulation gaming suites.
The name of the architecture is Service Oriented Gaming and Simulation(SOGS). The
chapter first handles the design decisions for the architecture by looking at the ap-
proaches of chapter 2 and 4. The SOGS architecture is designed as a peer-to-peer
system using a service broker for service discovery. Message transmission is done
using a publish-subscribe system, where the messages are adapted to an intermediate
model. Timing and Synchronization is handled by a separate service.

Next the implementation of the architecture is described. SOGS is an architecture
written in Java. It uses a library called DSOL for the messaging. DSOL in turn uses
Java Remote Message Invocation. The implementation section describes the details of
the Java classes that make up the architecture.

44

Chapter 6

Existing Architectures for
Distributed Environments

In the previous chapter we talked about service oriented architectures as a possible
approach for a distributed environment. In this chapter we take a look at systems that
are currently in use in this field. The research questions associated with this are:

• RQ3.1Are there architectures currently in use for simulation gaming suites?

• RQ3.2What are the architectural approaches of these architectures?

The goal is to give some background information on other architectures in the field of
distributed simulation. In the chapter 7 we will use these tosee how well a SOA ap-
proach compares to these architectures. The two architectures discussed in this chapter
are also part of the RGS work package 1 research, which was performed at the same
time as this thesis project [22].

First we look at an architecture that has been developed by the United States mili-
tary as an architecture for their simulation environments (section 6.1). The architecture
is called High Level Architecture (HLA). It is a system that is specifically designed for
distributed simulation environments. Research has been done into the ideas of HLA
by the department of systems engineering at the faculty of Technology, Policy and
Management. They constructed a light weight version based on HLA, called FAMAS,
which is described in section 6.2. Finally we give a short overview of multi-player
entertainment gaming approaches in section 6.3. Most entertainment games provide a
multi-player aspect nowadays, this makes that there is a lotof experience with multi-
player gaming in the entertainment games industry. This section is meant to give some
extra information on distributed gaming environments.

6.1 High Level Architecture

The Department of Defence of the United States has been researching and working
on distributed simulation since the eighties. The Defense Advanced Research Projects
Agency (DARPA) started a project called SIMNET (SIMulator NETworking) in the
early 1980s. The goal was to create a prototype for a real-time distributed simula-
tor for combat simulation. The project was followed by DIS (Distributed Interactive

45

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

Simulation)[14]. DIS was based on the design principles specific to simulation; auton-
omy of simulation nodes, simulation time constraints, transmission of ‘ground truth’
information, transmission of state change information only and Dead Reckoning Al-
gorithms. The last three principles are concerned with synchronization of location and
positioning of nodes in a game world. More on this in section 6.3 on multi-player
gaming.

After DIS came the current standard: High Level Architecture (HLA). HLA builds
further upon DIS and SIMNET. It aims at building simulation systems from compo-
nents. In HLA the collection of all applications is called a federation, the applications
themselves are called federates. There is a software component that facilitates the con-
nection between the federates, called Run-Time Infrastructure(RTI) (figure 6.1). The
HLA is defined by three components [17]:

• Object Model Template (OMT) provides a common method for recording infor-
mation and establishes the format of key models (FederationObject Model(FOM),
Simulation Object Model(SOM) and Management Object Model(MOM)). Sec-
tion 6.1.1.

• Federation Rules ensures proper interaction of simulations in federation and de-
scribes the simulation and federate responsibilities. Section 6.1.2.

• HLA Interface Specification defines Run-Time Infrastructure (RTI) services and
identifies callback functions that each federate must provide. Section 6.1.3.

Figure 6.1: HLA federation, with some example federates

6.1.1 Object Model Template

In chapter 4 we have shown the interoperability approaches for communication be-
tween applications. HLA uses the intermediate language approach we discussed. ‘The
HLA Object Model Template prescribes the format and syntax for recording the infor-
mation in HLA object models, to include objects, attributes, interactions, and parame-
ters, but it does not define the specific data (e.g., vehicles,unit types) that will appear

46

6.1. High Level Architecture

in the object model.’ [2]. HLA object models are used to describe a Simulation Object
Model, for a federate, or a Federation Object Model for all federates (federation).

‘The primary purpose of an HLA FOM is to provide a specification for data ex-
change among federates in a common, standardized format. The content of this data
includes an enumeration of all object and interaction classes pertinent to the federa-
tion, along with a specification of the attributes or parameters that characterize these
classes.’ [2]. Thus describing the intermediate language.An example object of the
FOM can be aTrain object, with an attributeSpeed.

‘An HLA SOM is a specification of the intrinsic capabilities that an individual
simulation could provide to HLA federations. The standard format in which SOMs
are expressed facilitates determination of the suitability of simulation systems for par-
ticipation in a federation.’ [2].

6.1.2 HLA Rules

There are ten rules that HLA federations and federates must follow. The federation
rules are as follows:

1. Federations shall have an HLA FOM, documented in accordance with the HLA
OMT.

2. In a federation, all simulation-associated object instance representation shall be
in the federates, not in the RTI.

3. During a federation execution, all exchange of FOM data among joined federates
shall occur via the RTI.

4. During a federation execution, joined federates shall interact with the RTI in
accordance with the HLA interface specification.

5. During a federation execution, an instance attribute shall be owned by at most
one joined federate at any given time.

The rules for federates are:

6. Federates shall have an HLA SOM, documented in accordancewith the HLA
OMT.

7. Federates shall be able to update and/or reflect any instance attributes and send
and/or receive interactions, as specified in their SOMs.

8. Federates shall be able to transfer and/or accept ownership of instance attributes
dynamically during a federation execution, as specified in their SOMs.

9. Federates shall be able to vary the conditions (e.g., thresholds) under which they
provide updates of instance attributes, as specified in their SOMs.

10. Federates shall be able to manage local time in a way that will allow them to
coordinate data exchange with other members of a federation. See section 6.1.3.

47

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

6.1.3 The Run Time Infrastructure

The Run-Time Infrastructure(RTI) is responsible for connecting the federates together,
in fact it is what makes separate federates a federation. Theimplementation of the RTI
is not set, so various implementations are possible. The restriction is that a federation
can only have one RTI. All communications between the federates goes through the
RTI. In terms of network deployment this is a client-server architecture (section 4.1),
where the RTI is the server and the federates the clients. TheRTI provides several
services for the federates they will be discussed in more detail below.

• Federation management

• Declaration management

• Object management

• Ownership management

• Time management

• Data distribution management

Federation Management

The Federation management part of the RTI is responsible forcreation, dynamic con-
trol, modification, and deletion of a federation execution.First the federation execution
must be created, then the federates can join and resign from it at will. [1][10].

Declaration Management

All federates have to declare their intent forinformation generationto the declaration
management. Declarations must be conform the Federation Object Model of the fed-
eration they join. High Level Architecture uses a publish-subscribe mechanism as de-
scribed in chapter 4. All information a federate declares toshare (publish) is available
to all other federates. Federates can use declaration management services exclusively,
data distribution management services exclusively, or both declaration management
and data distribution management services to declare its intention toreceive informa-
tion. [1][10].

Object Management

Object Management is responsible for registration, modification, and deletion of object
instances and the sending and receipt of interactions. Eachobject a federate wants to
instantiate must get an ID from the object management part ofthe RTI services. This
object ID is then used whenever the federate creates or deletes an object, or whenever
attribute updates or interactions are sent. Delivery of thepublished objects is handled
by the object management service. There are two transport services: best effort and
reliable. [1][10]. The HLA implementation we used for the tests (PitchRTI, see below)
uses TCP/IP protocol and shared memory for the reliable transport service. For the best
effort transport service it uses UDP/IP unicast, UDP/IP multicast and shared memory.

48

6.2. Lightweight architecture FAMAS

Ownership Management

Ownership Management allows responsibility for an object to be shared or transferred
between federates. The federate that instantiates an object has ownership over it. It
is the only federate able to delete the object. Changing the ownership of an object
is handled by the ownership management of the RTI. When an object is deleted all
federates are informed to not publish anything related to the object any more. [1][10].

Time Management

Time management is concerned with the mechanisms for controlling the advancement
of each federate along the federation time axis. There is onecentral time axis, which
is maintained by the RTI Time Management services. Time advances shall be coor-
dinated with object management services so that information is delivered to federates
in a causally correct and ordered fashion. Time advances canbe constrained by other
federates or unconstrained. At the highest level, the federation appears to the RTI as
a collection of federates that communicate by exchanging time-stamped events. Or-
dering can be done using three different techniques; guaranteed time stamp order, best
effort time stamp order and receive order. All messages of the federates are sent to
the RTI as time-stamped events. The RTI takes care of the delivery at the appropri-
ate time. The local time of the federates is synchronized with the time axis of the
RTI. This mechanism works as described in thecentral synchronization mechanismin
section 2.1.2. [1][10].

Data Distribution Management

Data distribution management (DDM) services may be used by federates to reduce
both the transmission and the reception of irrelevant data.Whereasdeclaration man-
agementservices provide information on data relevance at the classattribute level,
data distribution management services add the capability to further refine the data re-
quirements at the instance attribute level. It controls publisher-subscriber relationship
between federates in terms of object instances and abstractrouting spaces. [1][10].

6.1.4 HLA implementations

HLA has become a well-known distributed simulation architecture. Several commer-
cial and non-commercial implementation are in use at the moment, like PitchRTI1,
CERTI2 and poRTIco3. It has been defined under IEEE Standard 1516. For the RGS
project it was decided to test a RTI developed by Pitch Technologies, called PitchRTI,
which is compliant to the IEEE 1516 standard. It uses the

6.2 Lightweight architecture FAMAS

Distributed simulation architectures have been a researchsubject within the depart-
ment of Systems Engineering of the faculty of Technology, Policy and Management at

1htt p : //www.pitch.se/
2htt p : //savannah.nongnu.org/pro jects/certi/
3htt p : //www.porticopro ject.org/index.php?title = MainPage

49

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

the TU Delft for some years. In 2005 the FAMAS Simulation Backbone Architecture
was introduced in the PhD thesis report of C. Boer [9].

The aim of the FAMAS Simulation Backbone is to provide a flexible architecture
for the interoperability among various distributed simulation models. This is done by
the component based, modular design of FAMAS. The components can be charac-
terized as technical or functional. The simulation models are considered functional
components, while the technical components are well-specified and more constant
components that provide common tasks used by the functionalcomponents. Figure
6.2 shows how the components are connected to each other. FAMAS uses a publish-
subscribe message transmission approach. There are three main technical components

Figure 6.2: FAMAS Simulation Backbone Architecture overview

in the FAMAS architecture:

• Run Control Subsystem: starts, stops and periodically monitors the simulation
process.

• Time Manager: synchronizes the simulation time among different simulation
subsystems.

• Logging Subsystem: collects logging information from the distributed func-
tional and technical components into a central database.

The same components are shown in figure 6.3. Here we also see another component,
the Scenario Object. The Scenario Object completely definesa simulation run of the
distributed model. The Run Control subsystem is responsible for the interpretation and
execution of a scenario object.

In HLA Terminology, the overall system that consists of technical and functional
components is called a federation, where the components that are connected to the
backbone are federates. The separately defined technical and functional components
give a modular structure to the architecture and allows it tobe extended easily with
new technical components that allow additional services. The technical and functional
components communicate by means of messages. The communication protocol of
the simulation backbone that supports this message exchange is Transmission Control
Protocol/Internet Protocol (TCP/IP)[22].

50

6.2. Lightweight architecture FAMAS

Figure 6.3: A different overview of the FAMAS Simulation Backbone Architecture

In the next sections two of the main technical components will be handled, Run
Control and Time Manager. The logging subsystem is not essential for the use of
FAMAS. Therefore it will not be discussed further. The connection with the charac-
teristics of distributed architectures (chapter 4) and gaming simulation suites (chapter
2) will be discussed in the sections below.

6.2.1 Run Control

The Run Control subsystem is one of the core elements of the FAMAS Backbone
Simulation architecture. It has the control over all the subsystems. The Run Control
Subsystem and its interface is coded in Java. The Run Controlsubsystem is responsible
for three main activities[9]:

1. Initialization and start of a distributed simulation execution (see figure 6.4)

2. Special Activities during distributed simulation execution

3. Termination of distributed simulation execution (see figure 6.5)

All technical and functional components are connected to the Run Control. After con-
nection a component can be reached by all other participants, because Run Control
knows, registers and makes available its IP-address and port number. All connecting
components are known in advance and stated in the scenario object. When a compo-
nent leaves it must inform the Run Control. The Run Control will in turn inform the
other components. The Run Control makes regular checks to see whether components
are still connected. Communication between components is done in a peer-to-peer
manner, as described in section 4.1.

51

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

Figure 6.4: Start protocol of FAMAS

Figure 6.5: Termination protocol of FAMAS

6.2.2 Time Manager

The Time Manager, also called the Backbone Time Manager, is responsible for the syn-
chronization of time of the system. ‘It implements two typesof time synchronization
mechanisms, namely conservative and real-time. Conservative time synchronization is
desired in order to achieve synchronization between discrete-event simulation models,
while real-time synchronization aims to provide support for experiments when real
equipment is involved’[9].

‘The basic principle for synchronizing the activities of the participants on the same
time axis using a conservative mechanism is as follows. Eachparticipant is assumed

52

6.3. Multi-player entertainment gaming

to send its first future event time, as a next event time stamp,to the backbone time
manager as a NextEvent message. Then the time manager selects the participant with
the smallest time stamp event and gives permission to perform this event by sending
a NotifyNextEvent message. After completing the event, theparticipant sends its next
future event time stamp to BBTM again. Participants sendingthe same event time are
handled in first in first out (FIFO) sequence: the one who sent its event time first is
allowed to proceed first.’[9] The real-time mechanism uses the same mechanism, but
then the next event steps are restricted by time. The simulation time is subdivided
in a sequence of equal sized time steps, and the simulation advances from one time
step to the next. This mechanism is similar to thedistributed serial synchronization
mechanismdiscussed in section 2.1.2.

6.3 Multi-player entertainment gaming

Multi-player entertainment gaming is a very wide concept. There are many different
ways it is approached in the entertainment gaming industry.In this section we will
provide a short overview of the technologies used. This section serves the purpose
of providing additional information on distributed environments in gaming. The tech-
niques described in this section will not be specifically handled as an approach for a
gaming simulation suite.

According to Smed et al.[27] there are three distinct classes of distributed interac-
tive real-time applications; military simulations, network virtual environments(VEs)
and multi-player computer games. While VEs simulate (possibly real-world) envi-
ronments, computer games do not necessarily belong to simulations or VEs[27]. The
different classes overlap a little, as can be seen in figure 6.6.

Figure 6.6: Relationship of simulations, virtual environments (VEs) and computer
games.[27]

For multi-player the same distributed architectural approaches are available as

53

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

shown in section 4.1. One of the main concerns has been to get ahigh performance
on the network. Independent from the architectural approaches there is much to gain
from reducing the bandwidth requirements. The most common techniques are; packet
compression and aggregation, interest management and deadreckoning [27].

Message Compression and Aggregation

There are two main techniques to reduce bandwidth requirements when we look at the
messages that are sent between applications, namely compression and aggregation.
With compression we try to reduce the size of single messages. This can be done by
either lossless techniques or lossy techniques. With a lossless technique all data is
preserved, but there is a limit to the size reduction, up to approximately half the size
of the original message[27]. Lossy technique are able to reduce the size further, but
at the cost of some of the data. Using either of the techniquesis dependent on the
requirements of the applications.

Message aggregation merges several messages to reduce overhead, like headers.
Depending on the size of the actual data the reduction of total data send across the
network can be significant. For example two messages with data size 24 bytes and
a header of 24 bytes (total 96 bytes), compared to a merged message of 48 bytes
with a header of 24 bytes (total 72 bytes). Two techniques forthis are timeout-based
and quorum-based [27]. In the timeout-based approach all messages before a certain
time limit are merged and sent. In a quorum-based approach a predefined number of
messages are merged. A combination of these techniques can be used as well.

Interest Management

Interest Management is a technique to filter data. Most of thetime the entities in a
system are not interested in the entire system. By specifying what information is of
interest for them the amount of data sent across the network can be greatly reduced.
This interest in data is often called an aura or area of interest[6]. Interest management
with auras is always symmetric. So when two auras intersect they are aware of each
other.

To achieve a finer-grade message filtering the aura is subdivided in a focus and a
nimbus, being the observer’s perception and observed objects perceptivity respectively
[6]. Now the focus of one entity needs to intersect with the nimbus of the other entity
to be aware of it. An example is given in figure 6.7. In the figurewe see a game of
hide and seek. The seeker is not aware of the hider, since its focus does not intersect
the nimbus of the hider. The hider is aware of the seeker, since the hider’s focus
intersects the seeker’s nimbus. The filter based on the aura technique we have shown
here is called an intrinsic filter. Another possibility is anextrinsic filter, where the data
delivery is based on network attributes (e.g. address). Extrinsic filters are faster to
process than intrinsic filters, and even the network itself can provide them [27].

A way to implement these techniques is by using multi-casting. For example the
publish-subscribe mechanism described in section 4.2.2 supports this kind of tech-
nique.

54

6.4. Summary

Figure 6.7: Game of hide-and-seek.

Dead Reckoning

Another approach to decrease the number of packages on the network is dead reck-
oning [26]. Dead reckoning is used to synchronize locationsof objects between dis-
tributed applications, for example player movement in a distributed multi-player game.
This technique uses approximation to provide the loss of information. The approxi-
mation predicts movement of objects based on previously received information. The
prediction is done based on velocity information. Since it is an approximation the
real location can be different from the calculated location. By sending information on
the exact location and a convergence technique the objects location is synchronized
with the location in the source application. Without the convergence technique the
node would jump to correct location every time an exact location update arrives. This
would result in jerky movement of the nodes in the visual environments.

Without the dead reckoning technique exact location updates must be send regu-
larly. The technique decreases the time and update needs to be send and solves this
with the approximation in the receiving node. There are different implementations
where a trade-off is made between the amount of messages sendand the calculation
made at the receiving node. Different implementations can be used in the same system
for different object types.

6.4 Summary

In this chapter we have discussed three approaches for connecting games and simu-
lators in a distributed environment. The goal is to provide background information
on the architectures used to compare to a service oriented approach. This supports
the sub question: ‘How well does a SOA approach compare to systems currently in
use?’ We started with a popular system in distributed simulation, called High Level
Architecture. This is an architecture specifically design for distributed simulation en-

55

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

vironments by the United States Department of Defense. Nexta architecture based
on HLA is discussed. It is called FAMAS and has been developedas a PhD project
within the department of Systems Engineering of the facultyof Technology, Policy
and Management at the TU Delft. The HLA and FAMAS architectures are part of the
comparison to evaluate SOA as a distributed gaming simulation approach.

Finally we discussed some techniques commonly used in multi-player entertain-
ment games. These provide some additional background information on distributed
gaming systems, but are not part of the evaluation of SOA.

56

Chapter 7

Evaluation

Up to now we have looked at what a gaming simulation suite is and based on an exam-
ple suite we have determined the important requirements of such a gaming simulation
suite. We have described several different ways to construct an architecture to facilitate
the connection between the applications in the suite. In this chapter we look at how a
service oriented architecture can support the quality attributes we determined for the
example gaming simulation suite. This chapter is mainly concerned with the research
questions:

RQ2 How well does a service oriented architecture support the require-
ments of gaming simulation suites?

and

RQ3.3 How well do the other architectures support the requirements of
gaming simulation suites?

In the previous chapters we have looked at three architectures, SOA, HLA and
FAMAS. The evaluation is performed on all three of them. For the service oriented
architecture we will look at the principles of SOA and we haveconstructed a prototype
SOA (SOGS) to do some tests with. For the evaluation of HLA we have looked at one
specific implementation, namely Pitch RTI. The FAMAS architecture has only one
implementation and thus will be evaluated as it is. Of all three architectures we have
made a test implementation and ran some experiments with them.

The evaluation of the architectures has been a team effort ofthe Railway Gaming
Suite research team. The Pitch RTI and FAMAS implementations were research sub-
jects of other members of the team. The results in this evaluation are mainly based
on their efforts. The SOA research and implementation of SOGS are the focus of this
thesis. The evaluation of a SOA solution is therefore based on the implementation as
carried out in the context of this research project.

First we will take a look at the methods that are used for the evaluation. Then
we will go into the experiment set-up we used as part of the evaluation. After which
we will look at the quality attributes from chapter 3 again. In the subsequent sections
the quality attributes are evaluated for the three architectures. After the evaluation we
discuss how SOA compares against the others in the next chapter. Here we will also
look at the sensitivity points we found during the ATAM. Thiswill give some insight
into how the requirements influence each other.

57

7. EVALUATION

7.1 Evaluation methods

The evaluations of the architectures will be done using three methods: implementation
details, hand-on experience and tests.

• Implementation details: In chapters 4, 5 and 6 we discussed the implementa-
tion details of the three different architectures. The descriptions of these chapters
are used to see if the architectures support the requirements.

• Hand-on experience: By making an implementation for the three architectures
we got some hand-on experience on the use of them. The SOGS architecture
was used for the SOA part. The implementations of the other two architectures
(HLA and FAMAS) were made by two other members of the RGS team and
they shared there experiences for this thesis report. This hands-on experience
helped with the getting a feel of how easy it is to construct a simple system with
the architectures.

• Tests: For the real-time performance requirement a test set-up was implemented
for all the architectures. The specifics of the test set-up are described in section
7.2. The results of the tests showed us how well each architecture performed
with respect to this requirement.

In this evaluation we use the same value systems as is used in the ProRail WP1 report
[22]. For each requirement the architectures get assigned avalue of -1,0 or +1 to
represent that the implementation of the requirement is a risk, borderline, or a non-
risk, respectively for the given architecture.

7.2 Performing the Test

For the evaluation of some of the requirements we devised some tests. The test are
based primarily on the performance requirements. The test are implemented by means
of an experiment set-up. The main thought behind the tests is: How many messages
can be send between applications in a specific time frame? From the number of mes-
sages we can then derive whether it is enough to support the performance requirement.
By implementing the experiment set-up and performing the tests we get insight into
using the different architectures which helps with the evaluation of the other require-
ments.

In total we performed 10 experiments for each architecture,with different applica-
tion set-ups and different payload. These variables are further explained below.

7.2.1 The Experiment

The goal of the experiment was to test how many messages we could send from one
application to another within a specific time frame. We do this by finding out how
much time it takes for the architectures to get a message froman application, transform
it and send it to a receiver, transform it back and give to the receiving application. The
same message is transformed again at the receiver side and send to the original sender,
where it is transformed again and given back to the first application. In other words

58

7.2. Performing the Test

the round trip time of data published by an application. In order to keep this timing
as accurate as possible we wanted control over the number of messages at a time on
the network. Therefore we created two applications that aretotally dependable on
each other for sending messages. So on one side a message is sent, it then waits for
the return message before sending a new message. The other side waits to receive a
message and sends it back. By controlling the number of sender-receiver pairs we can
control the number of messages on the network.

Since all three architectures were written in Java we constructed two Java appli-
cations for the roles of sender and receiver. Each of the experiments were performed
with the same sender and returner applications. A schematicoverview of the experi-
ment set-up is shown in figure 7.1. The applications work as follows:

• The sender application starts sending a message as soon as a session starts. Waits
until the sent message is returned and then sends a new message. The send and
receive/returned times of each message are logged. At the end of the session
return times of each message are calculated as well as the number of messages
returned in a specific time frame. The sender can change the payload of the
message. See below for more information on the payload sizes.

• The returner application waits to receive a message. As soonas a message is
received it immediately sends it back to the sender.

Senders and returners are coupled in a one-to-one relation in these experiments.
One of the variables we want to test is the payload of the messages, see below in

section 7.2.2. We want to know the exact size of the message payload. To achieve this
we used the following method. We chose to use a Java String consisting of a 7 digit
identifier followed by 40 ‘1s’. With the length of a Java String we could precisely make
messages of a specific payload size. In Java the empty String takes 40 bytes, for the
first three characters this does not change, then for every four characters it increases by
8 bytes. So a String of length 0-3 has size 40 bytes, 4-7 has size 48, 8-11 has size 56
bytes, etc. The sender creates a default payload of 128 bytesby making the String of
47 characters. At the start of an experiment it gets a multiplier to increase the payload.
This works according to the function: 128∗2multiplierbytes, for example a multiplier of
3: 128∗23 = 1024 bytes = 1 kilobyte (kb).

Each experiment run lasted 11,5 minutes. During a run the results were logged 23
times after 30 seconds each time. Each time frame of 30 seconds we call a replication.
The first two and last replication were neglected. They served to give the architecture
time to start up and finish. During the test with multiple sender-returner pairs (see
below) these were not started simultaneously. Since the system is distributed the start
signal does not arrive at each application at the same time. The synchronization mech-
anism however made sure this was solved after the first message. This made that the
first round trip times were not average measurements. In the results we saw this was
indeed the case. Furthermore the replication times were handled locally by the sender
applications, this means they we not synchronized exactly.Therefore during the last
replication not all application finished at the same time, influencing the performance.

The idea to neglect the first two and last came from a Java Message Service1 per-
formance test done by Krissoft[29]. Their reason to do this was: ‘The first two and

1htt p : //www.oracle.com/technetwork/ java/index− jsp−142945.html

59

7. EVALUATION

Figure 7.1: Schematic set-up of the experiment

last intervals were considered ramp-up and ramp-down intervals, respectively. Ramp-
up intervals are times during which the systems are increasing their message handling
capacities, typically via resource allocation, in response to the newly introduced client
load. Similarly, during ramp-down intervals, the systems are decreasing their capac-
ity in response to decreased client loads that result from test completion.’ For us this
seemed a good precaution to take together with the reasons specified above. Therefore
we did the same. From the results it appeared neglecting the first and last would have
been sufficient.

We have extracted some graphs from the experiments showing the effects of in-
creasing payload and the effect of having more applicationscommunicating in the
same architecture environment (two versus ten). These graphs are shown during the
evaluation in section 7.4.

One of the requirements for the gaming and simulation aspectof the suite is to
have a synchronized system. Therefore the implementationsfor the experiment need to
conform to this requirement. As shown in the description of the architectures (chapters
4 through 6) each of them supports a synchronization method.The experiments were
implemented with these methods activated.

7.2.2 Experiment variables

As stated above the experiments were performed ten times foreach architecture. We
used two variables to get the results we wanted. The first variable is the number of
applications in the system, the second is the payload size ofthe messages sent across
the network.

We vary the number of applications between two and ten, excluding the application
used by the architecture. A minimum of two is required because we need a sender and a
receiver for the experiment. Ten is the maximum for this experiment because of licence
agreements for the Pitch architecture, allowing for a maximum of ten federates.

60

7.2. Performing the Test

For the payload we looked at the current implementation of applications of the
Railway Gaming Suite. Currently there is direct communication between the FRISO
simulator and the traffic controller game PRL. We have made a log of the messages
sent between the two applications. Currently they use a XML format for the data that
is sent between them. From the log we could conclude that mostof the messages
are small, less then 200 characters including XML tags. We also saw that some of
the messages were bigger, 6.919 and even bigger yet, 727.216characters including
XML tags. These numbers correspond with payload sized of around 0.5 kilobytes,
14 kilobytes and 1500 kilobytes. With these numbers in mind we decided to use the
following multipliers for the sender application; 3, 6, 9, 12 and 15 corresponding with
payload sizes; 1kb, 8kb, 64kb, 512kb and 4069kb, respectively.

Figure 7.2: The set up of the experiment with the eleven laptops.

Figure 7.3: Close up of one of the laptops used for the experiments.

61

7. EVALUATION

Figure 7.4: Close up of the switch used for the experiments.

Figure 7.5: The set up of the experiment during another session.

7.2.3 System environment

In order to make the experiment results as valid as possible we have taken some mea-
sures in order to avoid influences from outside the experiment environment:

• All applications in the test set-up ran on a separate laptop.

• Architectural software, Pitch RTI, ServiceBroker and SynchronizationService
(SOGS), and RunControl and BackBoneTimeManager (FAMAS) ran on the
same separate laptop.

• The laptops used in the experiments were identical high-endDell XPS 17” note-
book computers that TU Delft uses for simulation (SimLab) and gaming (Game-

62

7.3. Quality attributes

Lab) purposes. Only difference was the size of the hard drive, which was 120Gb
on some and 160Gb on others.

• An industrial grade, 1 Gbps switch was used to run the network. This switch
was the same one for each experiment.

• Newly bought Cat6 cables were used for the network. The same cables were
used in all experiments.

• Network traffic was monitored in order to find and disable unnecessary use of
the network.

• For each experiment, the same image of Windows XP service pack 3 with several
simulation environments was loaded onto the laptops. Therefore, no effects from
prior experiments or prior use remained on the laptops.

• Windows update functions and other disturbing factors suchas indexing services
that could cause a load on the computers during the experiments were switched
off as much as possible. The computers were given ample time for initial tasks
to be carried out (some software tests for updates when the operating system
starts).

Specifics of the laptop settings can be found in Appendix C. The physical set-up is
show in the pictures 7.2 through 7.5.

7.3 Quality attributes

The quality attribute requirements we acquired during the ATAM (see chapter 3) serve
as evaluation points for the three different architectures. Below we show the require-
ments again and specify which evaluation method we will use.

Quality Attribute Specific Requirement Evaluation method

Performance
(P1) Real-time play Tests
(P2) Redundancy Implementation details

Extendibility
(E1) New applications Implementation details &

Hands-on experience
(E2) New simulation componentsImplementation details
(E3) New ontology Implementation details &

Hands-on experience

Consistency
(C1) Time paradigms Implementation details
(C2) Causality Implementation details
(C3) Synchronization Implementation details

Availability
(A1) Session Duration Tests & Implementation de-

tails
(A2) Failure Detection Implementation details

Flexibility (F1) Support new players Implementation details

Usability
(U1) From session-to-session Implementation details
(U2) Scenario set-up Implementation details

63

7. EVALUATION

Maintainability (M1) Documentation Implementation details &
Hands-on experience

Table 7.1: Evaluation methods for the quality attributes

7.4 Performance

There are two requirements we specified for the performance attribute. The two re-
quirements are; real-time play and redundancy. In table 7.1it is shown that we evaluate
the first requirement using tests and second based on implementation details.

7.4.1 P1 Real-time play

We start with real-time play requirement. This requirementrequires the architecture to
handle up to 50 applications in real-time. Real-time in thiscase means synchronized
with a wall clock, as discussed in section 2.1.1. Related to this is that it should be
able to meet this requirement while keeping the system synchronized. As discussed in
chapters 5 and 6 all architectures include a synchronization mechanism. The synchro-
nization mechanism of each architecture was integrated in the experiment implemen-
tation for the tests, see section 7.2.

In order to get some idea of what number of messages is required to keep the
system real-time we look at the RGS applications that are already implemented, and
multi-player computer games. From the FRISO-PRL log (see section 7.2.2) we ex-
tracted that the number of messages sent by one of the applications in one second
ranges from less then one up to around 15 at peak times. On a side note, in the cur-
rent implementation of communication between FRISO and PRLthe game runs in
real-time. This number of 15 messages per second gives us an indication for only the
FRISO-PRL case. We can imagine that when we connect more games and simulation
this number increases. Furthermore, some applications might send more information
across the network, for example two train driver games sending location updates to
each other. In a research study of network game traffic [15] itis shown that in the first
person shooter game ‘Counter Strike’2 the number of update messages per second are
a little less then 30 for each client. We take this as an upper bound for the games in a
simulation suite. In the same report by Farber [15] it is saidthat 99% of the packages
are smaller then 0.25 kilobytes and none larger then 1.5 kilobytes. We take the 30
messages per second as a threshold to evaluate this requirement.

The experiment we described above was designed to test the real-time play re-
quirement. The experiment is designed to calculate the return times of a message. The
total dependency of the sender and receiver resulted in the fact that there was only one
message (in case of one pair) or five messages (in case of five pairs) on the network
at a time. By having this strict message limit to the number ofmessage we can see
the exact influence of having five times as many messages on thenetwork. In case we
did not implement this strict message limit, we would not know how many messages

2htt p : //en.wikipedia.org/wiki/Counter−Strike

64

7.4. Performance

were on the network at the same time. We expected other influences could play a part
without the limited number of messages, like the hardware weused.

The one pair case shows the unhindered return times and the five pair variant shows
the effect of having more messages on the network at the same time. The figures 7.6
and 7.7 show the results of the experiments. The results are given in return messages
per 30 seconds. The fact that we use return times means we needto multiply the
number by 2 to get the results of the messages one applicationcan send. To compare it
with the real-time requirements we translate this to messages per second (m/s). From
the graphs we take the minimum results of the architectures to account for the worst
case scenario.

Figure 7.6: Results of the experiments with 1 application pair.

Given the results we can see if the implementation of requirement represents a risk
or not for the three architectures.

The SOGS implementation is able to handle more then 3000/30*2=200 m/s with
a payload of 8 kilobytes or less in an environment with just 1 application pair. As
the payload increases this number drops to a around 150/30*2=10 m/s for the 4096
payload messages. For the case with five pairs we see that SOGSis able to han-
dle 2500/30*2=166 m/s for a payload of 8 kilobytes or less, this drops to around
90/30*2=6 m/s for a payload of 4096 kilobytes. Comparing this to the threshold of
30 m/s the SOGS implementation meets the threshold for smallpayloads, which make
up the majority of the messages. The larger messages might take more time, but the
catch-up mechanism of the RealTimer of the SynchronizationService of SOGS can
make up for this. We see from the graphs that the number of messages per second
drops as the number of applications grows. Given the large overhead on the number
of messages we expect that it stays larger than the thresholdof 30 m/s. Furthermore
the SOGS implementation is only a prototype and with optimizations the performance
can be better, without deviating from the SOA principles. Taking all this into account
the SOGS implementation of a SOA architecture receives a +1 score.

65

7. EVALUATION

Figure 7.7: Results of the experiments with 5 application pairs.

For the Pitch RTI implementation we see it is able to handle 5000/30*2=333 m/s,
for a payload of 8 kilobytes or less in the 1 pair setting. Thisdrops to 180/30*2=12
m/s for the larger messages. In the 5 pair setting we see it is still able to handle
5000/30*2=333 m/s and 150/30*2=10 m/s for the 8 kilobytes orless and up to 4096
kilobytes messages respectively. This is more then enough to meet the threshold of 30
m/s and thus PitchHLA receives a score of +1.

The last architecture implementation is that of FAMAS. We see this implementa-
tion never goes over 150/30*2=6 m/s. For the higher payload this drops to 80/30*2=5
m/s and even 15/30*2=1 m/s in the five pair environment. We candirectly say this is
not enough to meet the threshold and this this posses a risk and FAMAS receives a
score of -1.

7.4.2 P2 Redundancy

The redundancy requirements looks at the number of unnecessary messages. To get
a +1 score in this respect the architecture must be able to support a message filtering
technique. Since all three architecture use a publish-subscribe system for the message
transmission they all get a score of +1.

7.4.3 Performance evaluation results

Table 7.2 shows the scores of the evaluation of the performance requirements.

7.5 Extendibility

The extendibility quality attribute is about adding new applications or functionality to
an existing architecture. In chapter 3 we refined this attribute into three requirements;
new applications, new simulation components and new ontologies. In this section we

66

7.5. Extendibility

P1 P2

SOA/SOGS +1 +1
HLA/Pitch RTI +1 +1

FAMAS -1 +1

Table 7.2: Scores for the performance evaluation

will look at the how easy it is to extend the architectures. Wedo this by looking at
the implementation details and base it on the hands-on experience we got during the
implementation of the experiment applications. In this section we look at the ease
of implementation based on the principles behind the architectures and the hand-on
experience. In the section on the maintenance quality attribute (section 7.10) we look
at the support to help with the implementation of new applications and functionality.

7.5.1 E1 New applications

In an evolving gaming suite it is important to be able to add new games and simulators
to an existing system. This requirement looks at the ease of making a new game or
simulator part of the system.

One of the characteristics of SOA is that the services are loosely coupled. This
means that adding a new service should have almost no consequences for the other
services. For the implementation of the experiment using the SOGS architecture it was
easy to make the two new services, sender and returner, usingthe BasicService class.
Only the application’s specific functionality had to be implemented. The connection of
the services is done by the ServiceBroker, which means the programmer does not need
to do this manually.Services do not need to know the specificsof other services, only
what they have to offer and what they want to have. Score +1 forthe SOA principles
supporting this requirement and the SOGS implementation proving it.

The federation/federates structure of HLA is designed to allow new application to
be connected to the architecture. The RTI takes care of the architectural connection be-
tween the federates. Connection of new applications shouldtherefore not take to much
effort. During the implementation of the experiment using the Pitch RTI proved to be
easy. The experiment was implemented using an example federate and transforming it
to connect to the experiment applications. HLA gets a score +1.

The FAMAS Simulation Backbone is designed and developed in amodular way
so that that if new federates need to be added or adapted it should not influence the
other federates [22]. This means adding new components should not require too much
effort. During the implementation of the experiment it appeared it was not so easy
to just use an existing FAMAS federate and make a new one with it. Even though
FAMAS is designed to support the easy integration of new applications, the actual
implementation requires detailed information of the architecture itself. It gets a score
0.

7.5.2 E2 New simulation components

Next to adding new games and simulators to the system it should also be possible to
add new functionality to the architecture, like an integrated logging system for exam-

67

7. EVALUATION

ple.

For a service oriented architecture the same goes here as foradding new applica-
tions. The loosely coupled nature of the SOA paradigm makes it easy to replace or add
a service. Looking at the SOGS implementation we can clearlysee this. The architec-
tural components are divided in separate services; ServiceBroker, SynchronizationSer-
vice. These can be changed or new components added. For example a logger service
can be added which subscribes to all messages. Based on the SOA characteristic of
services being loosely coupled it gets a score: +1.

The core functionalities of HLA are part of the RTI. These functionalities are
highly interdependent. In case of a open source version of HLA adding the func-
tionality should be possible but requires extended knowledge of the inner workings
of the Run Time Infrastructure. In a commercial version of HLA, like Pitch RTI this
part is not accessible. Therefore changing of extending this functionality is not easy or
impossible. We conclude this is a risk of using Pitch RTI and HLA, thus it gets a score
of -1.

The FAMAS architecture is built up from different components. Its fundamental
technical components like the Run Controller and Backbone Time Manager can be ex-
tended with the addition of new ones such as loggers. Moreover, FAMAS is extensible
in a way that it allows for replaceable elements (e.g., it allows simulation vendors and
practitioners to replace already existing functionality with a more efficient one) [22].
Due to the modular design FAMAS gets a score of +1.

7.5.3 E3 New ontology

Extending the ontology of a gaming simulation suite means extending the type of
messages that can be send between the applications.

In chapter 4 we have seen that one of the possibilities for message transfer is to
use an intermediate language. In the case of a new ontology this means the interme-
diate language model should be extended to support the new message types and the
applications that use these message types need to extend their adapters. The SOGS
implementation supports the intermediate language model.The DataModelBuilder
Tool (see Appendix B) provides the means the create new message types. This shows
that a service oriented architecture (SOGS) is capable of supporting this requirement
en it thus gets a +1 score.

In the Pitch RTI and FAMAS architectures, a data dictionary or FOM is available,
which makes ontology extension easier and less risky [22]. The FOM acts like the
intermediate language. Pitch RTI has a specific tool for easyextension of the FOM.
Even though FAMAS has no such tool extending the FOM does not provide a risk for
the system. Both architectures get a +1 score.

7.5.4 Extendibility evaluation results

Table 7.3 shows the scores of the evaluation of the extendibility requirements.

68

7.6. Consistency

E1 E2 E3

SOA/SOGS +1 +1 +1
HLA/Pitch RTI +1 -1 +1

FAMAS 0 +1 +1

Table 7.3: Scores for the extendibility evaluation

7.6 Consistency

Three important aspects of simulation gaming are; timing, synchronization and causal-
ity (see chapter 2). For each of these requirements we will look how they are handled
in the architectures. During the evaluation we will consider the implementation details
of the architectures.

7.6.1 C1 Time paradigms

The ability to handle multiple time paradigms means being able to pause the game,
run it in continuous time mode (real-time as well as faster/slower then real-time) and
run it in discrete time mode.

Timing of services is specific to gaming and simulation. There is no SOA char-
acteristic that takes care of this. However the SOA paradigmdoes not prohibit this
requirement. The SOGS implementation is able to handle multiple time modes (real-
time, slower and faster then real-time). Extending this with a pause function and the
ability to run in discrete time mode should be possible. Score +1.

Handling multiple simulation federates with different time paradigms was one of
the initial requirements of the HLA framework. As a result, it provides all the neces-
sary services at the architectural level to manage multipletime paradigms within the
same model [22]. Score +1.

The FAMAS architecture is a lightweight version similar to HLA and contains the
appropriate services to manage multiple timing paradigms [22]. Score +1.

7.6.2 C2 Causality

In a simulation game, it is important that a strict causalityis respected between com-
ponents. This feature is generally fulfilled by a central component which grants time
advance authorization to the participating components [22].

The SOA paradigm does not provide specific solutions in this respect. The SOGS
implementation however shows that it is possible to integrate it in a system based on
the SOA paradigm. In SOGS it is part of the messaging structure. The Synchro-
nizationService in SOGS enforces the causality as a separate service by delivering the
messages by time stamp. Score +1.

In HLA the Run Time Infrastructure has a time management component (see sec-
tion 6.1). Time management is able to deliver events to the federates in order of time
stamp. This ensures the strict causality we need in the system. Thus HLA gets a score
of +1.

69

7. EVALUATION

The FAMAS Simulation Backbone has a dedicated component as well. The Back-
bone Time Manager takes care of the delivery order of events.This way strict causality
is maintained in the system. FAMAS gets a score +1 for this requirement.

7.6.3 C3 Synchronization

In the previous sections we discussed the time paradigms andthe causality of the sys-
tem. These are closely related to synchronization of the system. All three architectures
have a dedicated service/component for this (here we use SOGS as a SOA). This re-
sults in a +1 score for all three architectures.

7.6.4 Consistency evaluation results

Table 7.4 shows the scores of the evaluation of the extendibility requirements.

C1 C2 C3

SOA/SOGS +1 +1 +1
HLA/Pitch RTI +1 +1 +1

FAMAS +1 +1 +1

Table 7.4: Scores for the consistency evaluation

7.7 Availability

The availability quality attribute is concerned with the architecture being able to keep
running during a session of several hours. To support this the system should be able to
detect some errors and allow the facilitator to solve them.

7.7.1 A1 Session Duration

Keeping a session running means the architecture should be able to handle failures in
the system and monitoring mechanisms to check on all the applications.

The SOA paradigm does not have characteristics specific to handling of failures
or monitoring of services. The SOGS prototype architecturehas no functionality cur-
rently built in, but the UniqueTimedEvent is created with this in mind. Monitoring
mechanism can also be easily implemented as part of a service. Each service can have
a monitor for example checking every second whether a service is still up, if not send
a message to the ServiceBroker. Even though there was no specific failure system in
the SOGS architecture the experiments ran without problems. Since implementation
of a service oriented architecture is open and the SOA paradigm does not prohibit
implementation of fault handling or monitoring mechanismsit gets a +1 score.

The Pitch RTI is a commercial product. It has been tested and used for many
projects. Pitch RTI supports fault tolerance of unstable federates, heart-beat and bro-
ken link detection and automatic resign of crashed federates. This makes that it is
designed to be robust. The experiment implementation of thePitch RTI showed it

70

7.8. Flexibility

could run several times for eleven and a half minutes withoutproblems. It gets a score
of +1.

Since the FAMAS architecture is a research product it allowsfor enough openness
and flexibility to implement new mechanisms and functionality. The current imple-
mentation does not prohibit the extension of failure handling mechanisms. Consid-
ering the possibilities to extend the FAMAS Simulation Backbone it gets a score of
+1.

7.7.2 A2 Failure Detection

In a simulation gaming environment errors can occur due to human interaction. This
can make that the system stops. In this case it should be possible for the facilitator to
influence the system so it can continue running.

The loosely coupled characteristic of SOA makes it ideal foran extra service, like
a facilitator service, to exist. This service can then subscribe to relevant messages to
monitor the state of the system. A publish-subscribe systemlike that of SOGS can
help with getting the relevant information to such a facilitator service. There should
be no risk in implementing this. Score +1.

In Pitch RTI there is a logger that allows users to detect an interruption in the
execution of one of the participating federates [22]. Usingthis logger a facilitator
services can be constructed. Score +1.

Concerning FAMAS, logical faults at the architectural level can be easily detected
using the logger functional components. FAMAS components,whether functional or
technical, are designed to produce certain types of failuremessages, messages show-
ing the internal communication between components, a process tracking messages
and showing the number of messages between components. All of these mentioned
properties allow user to track the failures or anomalies easily [22]. This provides the
functionality to implement a facilitator service. Score +1.

7.7.3 Availability evaluation results

Table 7.5 shows the scores of the evaluation of the extendibility requirements.

A1 A2

SOA/SOGS +1 +1
HLA/Pitch RTI +1 +1

FAMAS +1 +1

Table 7.5: Scores for the availability evaluation

7.8 Flexibility

The flexibility quality attribute is concerned with the ability to dynamically joining
and leaving of applications during a running session. For the Railway Gaming Suite
this means the ability to join new players.

71

7. EVALUATION

7.8.1 F1 Support new players

Some scenarios require for dynamic joining of new players during a session. For
example the train drivers only need to be connected to the system when their trains
need to drive. Adding new players has two major consequences. First during play the
other participants need to be informed of the new service andstart sending messages
to and receiving from it. Second the new service must be brought up-to-date with the
current state of the system.

Again the loosely coupled nature of SOA supports this requirement together with
the discoverable over the network characteristic. In the SOGS architecture services
are able to join the running simulation at any time. The ServiceBroker decides when
they are able to join, so their is no problem with the consistency of the game. Making
sure the new player is up-to-date with the rest of the system is dependent on the im-
plementation of the protocol. State saves can be arranged bya separate service. Score
+1.

Pitch RTI is able to join new federates to the system at any time. It does not
however have built in functionality for continuous state saves [22]. Adding this func-
tionality poses a risk due to the tightly coupled RTI. It would be possible to make an
extra federate that supports this functionality. Due to theuncertainty of successfully
making such a federate it gets a score of 0.

The Run Control Subsystem of FAMAS reads the list participating applications
from the Scenario Object. It waits for each specified participant to make contact. It
assigns port numbers to all federates so they can connect to each other. The simula-
tion start after all participating applications have joined. No new participant can join
afterwards. Due to the fact that FAMAS is a research product this could be changed.
However since it is not possible in the current implementation it get a score 0.

7.8.2 Flexibility evaluation results

Table 7.6 shows the scores of the evaluation of the extendibility requirements.

F1

SOA/SOGS +1
HLA/Pitch RTI 0

FAMAS 0

Table 7.6: Scores for the flexibility evaluation

7.9 Usability

One of the advantages of having a gaming simulation suite is having multiple games
and simulators at your disposal to construct different scenarios with. The ability to
quickly build and redefine the scenarios results in the following requirements; resetting
the system after running a session and setting up a new scenario.

72

7.10. Maintainability

7.9.1 U1 From session-to-session

When using a gaming simulation suite it should be possible torun the same scenario
multiple times, or perhaps with some small alterations. Theease to do this enhances
the usability of the system. For a session the games and simulators are already con-
nected to each other.

In a service oriented architecture like SOGS the games an simulators can join as
they please. By publishing and subscribing to the correct messages a session can run.
If all services are set to work together SOGS will take care ofthe rest and thus there
should be no problem running a session again. Score +1.

This requirement is supported by all three architectures. The federation-federate
set-up of Pitch RTI as an HLA implementation makes it easy to start the RTI again
and connect the federates. The scenario has already been defined so there should be no
problem with running a new session. Federates themselves can have different settings,
but this should not effect the RTI. Score +1.

FAMAS has an scenario object that contains the information on the games and
simulators joining the session. Running the session again does not effect this. Setting
up the system should thus not be difficult. Score +1.

7.9.2 U2 Scenarios set-up

Setting up a new scenario requires all games and simulators needed being available. It
should then be possible to connect them to the architecture and it should take care of
the rest.

All three architecture implementations have been designedto make it possible to
connect different games and simulators to it. If all applications needed are available
it should not pose a problem to connect them and create a new scenario. For Pitch
RTI and FAMAS this is one of the core values of the design. Theinteroperability
anddiscoverable over the networkcharacteristics of SOA support this requirement as
well. The SOGS architecture which is design with these characteristics in mind shows
an implementation example where this works. Score +1.

7.9.3 Usability evaluation results

Table 7.7 shows the scores of the evaluation of the extendibility requirements.

U1 U2

SOA/SOGS +1 +1
HLA/Pitch RTI +1 +1

FAMAS +1 +1

Table 7.7: Scores for the usability evaluation

7.10 Maintainability

Coupled to the ability and ease to connect new services to thesystem is the documenta-
tion to do this. The extendibility has been handled above, here we look at the provided

73

7. EVALUATION

documentation to do so.

7.10.1 M1 Documentation

Documentation is this case is the information that is available for using the architec-
ture.

In the case of a SOA architecture only the SOGS implementation currently exists
and it is poorly documented due to the fact that it is a prototype. No documentation
exists for using a SOA solution since there is none, thus the score is -1.

Since Pitch RTI is a commercial product it comes with good documentation. The
hands-on experience with the PitchRTI has confirmed this. Score +1.

FAMAS is a research product and the documentation is not at the level of com-
mercial software. Although there is some documentation on the workings of FAMAS,
during the experiment implementation this was not enough toeasily implement the
experiment applications. Score -1.

7.10.2 Maintainability evaluation results

Table 7.8 shows the scores of the evaluation of the extendibility requirements.

M1

SOA/SOGS -1
HLA/Pitch RTI +1

FAMAS -1

Table 7.8: Scores for the maintainability evaluation

7.11 Summary

In this chapter we have evaluated three architectures basedon requirements from chap-
ter 3. The evaluation was done using three methods implementation details, hands-on
experience with the architectures and test experiments. Section 7.2 describes the im-
plementation and execution of the experiments to get the test results.

For each of the architectures a score is given per requirement on if the implemen-
tation of the requirement would pose are risk to the system. The score are -1, 0 or +1
of risk, borderline or non-risk, respectively.

The results of the evaluation will be used in the next chapterto answer the research
questions:

• RQ2 How well does a service oriented architecture support the requirements of
gaming simulation suites?

• RQ3 How does a service oriented architecture compare to other architectures?

74

Chapter 8

Discussion

The goal of this thesis is to see if an architecture based on the SOA paradigm is appro-
priate for gaming simulation suites. The main research question therefore is:

• RQ Is SOA a suitable architecture for Gaming Simulation Suites?

In the previous chapter we have seen how well the SOA paradigmsupports the re-
quirements we established for gaming simulation suites based on the case study the
Railway Gaming Suite. We have also seen how the other two architectures support the
same requirements. In this chapter we will discuss the results from the evaluation and
compare the architectures to each other. In the table 8.1 theresults of all requirements
are shown again.

P1 P2 E1 E2 E3 C1 C2 C3 A1 A2 F1 U1 U2 M1

SOA/SOGS +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1
HLA/Pitch RTI +1 +1 +1 -1 +1 +1 +1 +1 +1 +1 0 +1 +1 +1
FAMAS -1 +1 0 +1 +1 +1 +1 +1 +1 +1 0 +1 +1 -1

Table 8.1: Results of the evaluation

Next to the requirements we also found five main sensitivity points for gaming
simulation suite architectures in chapter 3. These sensitivity points are:

S1 The performance is sensitive to implementation of the architecture.

S2 Making the system synchronized and keeping strict causality comes at a cost of
performance.

S3 Increasing reliability comes at a cost of performance.

S4 Adding new players during a running session can disrupt the real-time require-
ment.

S5 Ease of adding new services, components or ontology is sensitive to the quality
of the documentation.

In this chapter we will discuss the results of the evaluationand look at how the
sensitivity points are handled by the three architectures.After this we will discuss the
threads to the validity of the evaluation we performed.

75

8. DISCUSSION

8.1 Suitability of a Service Oriented Architecture

We start by looking at the second sub research question supporting the main question,
which is:

• RQ2 How well does a service oriented architecture support the requirements of
gaming simulation suites?

In the previous chapter we have seen for every requirement how well the SOA paradigm
supports it. As we can see in table 8.1 almost every requirement is supported. Sup-
ported in this case means that the SOA paradigm does not prohibit the implementation
of the requirement or even that the characteristics of SOA directly support the require-
ment. Thus it is possible to make a service oriented architecture that is suitable for a
gaming simulation suite.

Based on the requirement alone we can conclude a service oriented architecture
is very well suited for gaming simulation suites. However the requirement evaluation
does not expose the influences they have on each other. As stated above we found five
main sensitivity points during the ATAM. The sensitivity points expose the risks of
requirements in relation to other requirements.

S1 The performance is sensitive to implementation of the architecture.

During this thesis project and the literature study preceding it no service oriented ar-
chitecture was found specific to gaming simulation suites. This means in order to use a
SOA an existing implementation must be converted or a new architecture must be cre-
ated. The implementation of the architecture has a great impact on the performance.
The SOGS architecture shows it is possible to make an implementation that meets the
performance requirements we set for gaming simulation suites. Since SOGS is but a
prototype that has been implemented in a couple of weeks these results are not conclu-
sive. The prototype does for example not provide extensive reliability functionalities
(see below for effects of added reliability). On the other hand it has not been optimized
either.

The fact that there is no SOA gaming simulation suite implementation poses a risk
and an opportunity. The opportunity is that the requirements of a gaming simulation
suite can all be integrated in an implementation from the start. Therefore the result
should in theory be a very suitable architecture for gaming simulation suites. The risk
on the other hand is the construction of an architecture addsa lot of extra work to a
project. In case of the Railway Gaming Suite it is added to theconstruction of the
games and simulators that make up the suite.

S2 Making the system synchronized and keeping strict causality comes at a cost
of performance.

In chapter 2 we discussed different methods for synchronization of a distributed sys-
tem. These methods have in common that they wait for all critical applications to finish
before continuing. This means the entire system is as fast asthe slowest application.
The consequence is that real-time performance requirementmight not be met. This
effect can not be completely eliminated since we want the system to stay synchronized

76

8.1. Suitability of a Service Oriented Architecture

and strictly causal. There are ways to limit this effect however. For example by exclud-
ing some applications from the synchronization if this is not necessary, or just exclude
some message types. This could be the case for the location update messages in a dead
reckoning mechanism as discussed in chapter 6. If one of these messages is late it will
be taken care of by the mechanism itself.

This sensitivity point is a risk for all distributed architectures for gaming simulation
suites. The SOGS architecture and HLA RTI have shown it is possible to have a
synchronization mechanism in place and still have a high enough performance. The
advantage of making a new service oriented gaming simulation architecture is a new
mechanism can be implemented that is based on current experience in this field.

S3 Increasing reliability comes at a cost of performance.

Making the system more reliable like in case of the session duration requirement (A1)
means certain checks must be performed in order to see if all is well. Examples of this
can be: delivery of message checks or checks to see if a service is still connected. This
added functionality to the architecture results in extra messages which could effect
the performance. The implementation of these checks definesthe actual effect. For
example check if a service is still up can be done client side by a monitoring application
and a message will be send only when the client is down opposedto sending polling
checks over the network to each client to see if they are stillup. This sensitivity poses
a trade-off for all architectures.

S4 Adding new players during a running session can disrupt the real-time
requirement.

As stated in the flexibility evaluation in chapter 7 (F1) adding new players has two
major consequences. First during play the other participants need to be informed of
the new service and start sending messages to and receiving from it. Second the new
service must be brought up-to-date with the current state ofthe system. Informing
the current participants of a new service should not disruptthe real-time requirement
that much. For example it could be done like in the SOGS architecture, where the
new service announces itself at the ServiceBroker, which inturn sends updates to the
current participants. The ServiceBroker determines if therequest to connect is granted.
This requires some additional messages, but tests showed this was no problem.

In order to bring the new service up-to-date there should be some kind of state save
system. An extra service could be made to take care of this. However this requires
sending messages with a lot of data, which may take some time to be received by the
new service. Finally all of this should be done while keepingthe system synchronized,
so the new service needs to get all messages from the start of the join as well as the
state update message. At the service side it should bring thegame up-to-date with
these messages and allow to player to play the game. Exact protocols to do this have
not been researched in this thesis, so no definite answer can be given. Probably a trade-
off must be made as to how important the real-time requirement is when a new player
joins. For example the system could be paused for a moment to take care of the join
and then continue with the added player. Another possibility is to do the state update
in small steps meaning the new player has to wait until this iscompleted. Taking into

77

8. DISCUSSION

account the state is continuously updated this might take a lot of time. Of course these
steps are extremes and other protocols can be made.

S5 Ease of adding new services, components or ontology is sensitive to the
quality of the documentation.

Adding new services, components or ontology has been identified as an important
quality attribute of a gaming simulation suite. The developers of a gaming simulation
suite are often not the developers of the underlying architecture as well. In order to use
the architecture they need to have proper documentation on how to connect services to
it and part of how the architecture itself works.

In case of a service oriented architecture for a gaming simulations suite no such
documentation exist, since no such architecture exists yet. Here the same risk is ex-
posed as in the first sensitivity point (S1). However this risk has been identified and
can be taken into account for building such an architecture and thus be avoided.

The next step is to look at the current architectures and see how well they support
to quality attributes.

8.2 Suitability of HLA and Pitch RTI

The evaluation shows that HLA and in particular Pitch RTI haslittle risk to use as an
architecture for simulation gaming suites. This does not come as a surprise since it has
been developed for exactly this purpose. HLA scores a -1 and 0for the new simulation
components (E2) and adding new players (F1) requirements, respectively. This is a
consequence of the rules of HLA, which make the implementations (like Pitch RTI)
less flexible for change. The inner workings are highly interdependent and thus not
easy to change or extend. For commercial products, like Pitch RTI, this is stricter
then for open source implementations of HLA, like CERTI and PoRTIco (see chapter
6). The open source implementations still need to follow theHLA rules to be a IEEE
1516 HLA compliant implementation. On the other hand, an advantage of using a
commercial product is that it is supported by the company that publishes it.

S1 The performance is sensitive to implementation of the architecture.

For HLA there are different implementations. Even though the implementations are
restricted to the HLA standard there could still be an effecton the performance. Testing
this effect is outside the scope of the thesis. We did howevertest one implementations
of HLA, namely the PitchRTI and from these results we can say the performance
requirements are met by this implementation. From this we can conclude that HLA
allows for an implementation that can support the performance requirements.

S2 Making the system synchronized and keeping strict causality comes at a cost
of performance.

As we have seen from the experiments the PitchRTI implementation is able to support
performance requirements while using its synchronizationmechanism. This means the

78

8.3. Suitability of FAMAS Simulation backbone

synchronization mechanism does not effect the performancein such an amount that it
does not support the requirements any more.

S3 Increasing reliability comes at a cost of performance.

The PitchHLA has some reliability check already build into the architecture. This has
however not been explored during the experiment tests. As stated above this sensitivity
point is a trade-off for all three architectures.

S4 Adding new players during a running session can disrupt the real-time
requirement.

The evaluation of the flexibility requirement (F1) (see chapter 7) showed us the PitchRTI
is able to join new players at any time, but has not state-savefunctionality. The actual
effect on the real-time requirement is not known, but as we discussed in the SOA sec-
tion (8.1) it will probably be a trade-off between keeping the game running and adding
the new player instantly.

S5 Ease of adding new services, components or ontology is sensitive to the
quality of the documentation.

Depending on the implementation of HLA the quality of the documentation is differ-
ent. Commercial implementation like PitchRTI provide professional documentation
that has been very helpful during the implementation of the experiments. For the work
package of the RGS project more implementations have been researched. In case of
CERTI1 for example the documentation was not of the level to make foran easy imple-
mentation of experiment tests. This is further explored in the work package report[22].

8.3 Suitability of FAMAS Simulation backbone

From the evaluation we see there are some risks involved withusing FAMAS as an
architecture. To start the tests showed that the performance of FAMAS is not enough
to support a gaming simulations suite with services that send a lot of messages. Since
FAMAS is a research product this performance issue can probably be improved, but
there is no guarantee for this and thus it stays a risk. The fact that FAMAS is a research
product also makes it a risk with implementing new connecting applications, since this
is not intuitive and not well documented. This comes back clearly in the extendibility
and maintenance quality attribute requirements. FAMAS is an open source product
makes that it can be used and changed to fit the requirements, but the question is
whether this is the best starting point to do so. As it is now itis unable to support the
requirements of a simulation gaming suite, in particular the Railway Gaming Suite.

S1 The performance is sensitive to implementation of the architecture.

The experiments have shown us that the current state of FAMASis unable to support
the real-time performance requirement. Since FAMAS is a research product there are

1htt p : //savannah.nongnu.org/pro jects/certi/

79

8. DISCUSSION

possibilities to improve on this. The main components are however already built and
changing these means changing the architecture. This sensitivity point exposes the risk
of using FAMAS as it is.

S2 Making the system synchronized and keeping strict causality comes at a cost
of performance.

The experiments did not show us where the performance bottleneck in the implementa-
tion of FAMAS is located. It could be that the synchronization mechanism is responsi-
ble for this. As stated above the synchronization will always influence the performance
since it makes the system as slow as the slowest participant.

S3 Increasing reliability comes at a cost of performance.

For the reliability the same goes as for the other architectures. It is a trade-off between
reliability and high performance.

S4 Adding new players during a running session can disrupt the real-time
requirement.

Adding new players is not supported by FAMAS in the current version. Components
need to exist from the start and there is not state save functionality. This could be
added like in the other architectures. This sensitivity point has the same trade-off as
the other architectures.

S5 Ease of adding new services, components or ontology is sensitive to the
quality of the documentation.

As stated in the evaluation of the maintainability requirement (M1) the documentation
of FAMAS is limited. The hands-on experience showed the implementation of a sys-
tem using FAMAS proved to be very difficult. The quality of theFAMAS Simulation
Backbone in its current state is not sufficient to easily add new services, components
or ontology. Further development of this architecture can take care of this sensitivity
point.

8.4 Threats to Validity

The evaluation we have performed for the thesis report is based on some assumptions
we have done. These assumption are a risk to the validity of the evaluation. In this
section we explain the risks of taking these assumptions andhow we tried to minimize
these risks. We have identified three assumptions on which the evaluation is based
and we think require extra explanation; the appropriateness of the case study RGS, the
evaluation of SOA and the reliability of the experiments.

8.4.1 Appropriateness of the case study RGS.

Throughout this thesis we use the Railway Gaming Suite to base the suitability of a
SOA for gaming simulation suite on. The RGS is used as an exploratory case study as

80

8.4. Threats to Validity

described in [25]. It is used to get the quality attributes important to gaming simulation
suites. In chapter 3 we provide an explanation for each quality attributes as to how they
are important to gaming simulation suites in general. During the ATAM we tried to
generalize as much as possible with the information we got from the Railway Gaming
Suite. The connection of this thesis with the Railway GamingSuite project at the
Systems Engineering and Policy Organization Law and Gamingdepartments meant
the focus stayed on the RGS. The risk of this approach is we missed important quality
attributes for gaming simulation suites.

8.4.2 Evaluation of SOA.

As we can see from the scores from the evaluation, a service oriented architecture
supports all quality attribute requirements except the maintainability. Looking at the
evaluation it might seem unfair to say something in line of; the SOA paradigm does
not prohibit the requirements so it gets a score +1. The reason for these answers is
that the goal of this thesis is to see if it is possible to create a SOA that supports the
requirements of a gaming simulation suite. The implementation of the SOA is not set.
We use the prototype implementation (SOGS) to show that someof the requirements
are indeed possible. Building a complete architecture thatsupports all requirements is
outside the scope of this project.

As far as the other two architectures are concerned. For HLA there are specific
requirements that make an architecture HLA compliant. Thishas the effect that many
design decisions are set and this prohibits or makes it very hard to implement some re-
quirements. We use the Pitch RTI as an implementation of HLA,since it is compliant
to the HLA specific IEEE 1516 Standard. For FAMAS the restriction goes even fur-
ther because there is only one implementation of the FAMAS Simulation Backbone.
The modular way in which FAMAS is built allows for some flexibility, but the main
architectural structure is set. Like HLA this restricts theimplementation of some of
the requirements.

On a side note if we look at the implementation of HLA and FAMASwe see they
have a lot of the same characteristic as SOAs, while they are not designed as such. The
biggest difference with HLA is that the functionality of theRTI is highly interdepen-
dent. The federates themselves are loosely coupled, self-contained and discoverable
over the network through the RTI. FAMAS has strived to separate the functionality of
the RTI as separate modules.

8.4.3 Reliability of the experiments.

The evaluation is in part based on the results of the experiments we performed. The
validity of the experiments is thus important to the overallvalidity of the evaluation.
We have devided the risks to the validity in three part; hardware, implementation and
set up of the experiment.

First we start with the hardware. In order to minimize the influence of the hard-
ware used for the experiments we took some precautions. To minimize the risk of
the hardware restricting the throughput of the number of messages we used a 1Gb/s
switch, new Cat6 network cables, which are suitable for a Gigabit Ethernet and laptops
with Gigabit Ethernet cards. Next to this we ensured the laptops were the same for all

81

8. DISCUSSION

services we used. The laptops all had the same software imageinstalled on them. The
standard network traffic was limited for this image (see appendix C).

Second is the implementation of the experiments. We used thesame Sender and
Returner applications in all three experiment implementations. Implementing the ex-
periments was however mainly done by three different programmers the three archi-
tectures. There was cooperation between the people that implemented the code. We
have worked together on the code and discussed the expected results. For the syn-
chronization requirement the importance was made clear andextensively discussed.
Different coding methods of the programmers could have influenced the performance
of the architectures however.

Finally the set up of the experiment has an influence on the results of the exper-
iments. As we have seen in chapter 7 the variables of the experiments were strictly
controlled. This way we could precisely show the conditionsunder which the results
were acquired. By having these restrictions we minimized the chance of other influ-
ences on the experiments.

8.5 Summary

In this chapter we discussed the results of the previous chapters. We looked at the
evaluation results of chapter 7 for the three architectures. The suitability of the three
architectures is separately discussed by looking at the evaluation results of chapter 7
and the sensitivity points from chapter 3. Finally we have looked at the threads to the
validity of the evaluation we performed.

82

Chapter 9

Conclusion and Future work

This thesis report is part of an investigation of architectural paradigms for gaming
simulation suites. The focus of this report is to investigate whether service oriented
architectures are suitable for gaming simulation suites. The research project at the
Systems Engineering and Policy Organization Law and Gamingdepartments provided
a case study to use for this thesis. The thesis project was performed simultaneously
with other projects into architectural paradigms which provided more background into
gaming simulation suite architectures. Some of this research is used in this thesis. In
order to steer our research, we set out to answer the following main research question:

• RQ Is SOA a suitable architecture for gaming simulation suites?

In this chapter we will go over the researched questions posed at the start of the thesis
and see if they are all answered. We will look at the contributions we made during this
thesis, work related to that of this thesis and possible future work based on this thesis.

9.1 Answering the research questions

In this section we take a look at the research questions from chapter 1 again and discuss
shortly how they are answered in the chapters.

• RQ1What are the architectural requirements to determine the suitability of gam-
ing simulation suites?

To answer this we first need to take a look at the sub questions:
RQ1.1 What are Gaming Simulation Suites?In chapter 2 we have given an overview

of the definition of gaming simulation suites and have shown some important aspects.
In short a gaming simulation suite is a collection simulation games, which is used for
training or prediction. We gave and overview of the Railway Gaming Suite which is
used as a case study.

RQ1.2 What is a good method to determine architectural requirements of a system?
Chapter 3 gave an overview of a popular analysis method for software architectures,
called Architectural Trade-off Analysis Method. Using this method an analysis was
made of the Railway gaming suite in order to find the requirements to determine the
suitability of gaming simulation suites.

83

9. CONCLUSION AND FUTURE WORK

With this we providing an answer the sub questionRQ1. In short the ATAM
provided us with the following requirements:

• Performance, consisting of real-time play and redundancy.

• Extendibility, consisting of new applications, new simulation components and
new ontology.

• Consistency, consisting of time paradigms, causality and synchronization.

• Availability, consisting of session duration and failure detection.

• Flexibility, consisting of support new players.

• Usability, consisting of session-to-session set up and scenario set up.

• Maintainability, consisting of documentation.

These requirements are used to answer the other research questions.

• RQ2 How well does a service oriented architecture support the requirements of
gaming simulation suites?

For this question we needed the result ofRQ1 together with additional information for
which we constructed the following questions:

RQ2.1 What are the principles of a service oriented architecture?The principles
of SOA are explained in chapter 4. It is a distributed networkarchitecture where the
nodes are called services. The core values of a service oriented architecture are that
services are; loosely coupled, self-contained and discoverable over the network. In the
chapter different design approaches for network deployment, message transmission,
service discovery and interoperability are described.

RQ2.2 Can we construct a prototype SOA to test performance requirements?Chap-
ter 5 gives the design and implementation of a prototype SOA.The prototype is called
Service Oriented Gaming and Simulation (SOGS). It is designed keeping the SOA
principles and aspects of gaming simulation suites in mind.This prototype is used in
tests described in chapter 7. These tests are part of the evaluation. Thus we can say it
is possible to construct a prototype SOA to test some requirements.

Using the design principles and approaches from chapter 4 and the SOGS archi-
tecture prototype we evaluated whether a SOA is able to support the requirements of
gaming simulation suites in chapter 7. The evaluation showed us that a SOA should be
able to support the requirements we set, thus a service oriented architecture supports
the requirements of gaming simulation suites very well.

• RQ3 How does a service oriented architecture compare to other architectures?

The third sub question is meant to further investigate the suitability of SOA. In order
to answer it we need to answer the following questions:

RQ3.1 Are there architectures currently in use for gaming simulation suites?At
the start of the work package of the RGS project which this research is part of mul-
tiple architectures were identified already. These were HLA, FAMAS and the SOA

84

9.2. Contributions

paradigm. The HLA and FAMAS architectures are existing architectures for gaming
simulation suites.

RQ3.2 What are the architectural approaches of these architectures? In chapter
6 the design approaches of the HLA and FAMAS architectures are explained. HLA
is designed specifically for gaming simulation suites and has been in use for several
years. It has a main component called the RTI that provides all the functionality of the
architecture. FAMAS is based on HLA but has been set up in a more modular way by
separating the functionality of the RTI in different components.

RQ3.3 How well do the other architectures support the requirements of gaming
simulation suites?The evaluation of chapter 7 has shown us that HLA and in particular
the PitchRTI implementation are able to support most of the requirements. The main
downside of HLA is that the RTI is tightly coupled and adding new functionality to
it is complicated. The FAMAS implementation solves this problem with its modular
design, but is unable to meet the performance requirement and due to the fact that it is
an existing research project risks are involved with developing it further.

Next to the requirements we also looked at the sensitivity points from chapter 3.
These are discussed in chapter 8 and we see the same risks are present for the three
architectures. Taking all this into account we can concludethat the SOA paradigm is
at least as suitable as the other two architectures and on some points even better.

• RQ Is SOA a suitable architecture for gaming simulation suites?

Now we have answered all the sub questions we can return to themain question and
provide an answer for it. In short we can say; yes, SOA is a suitable architecture for
gaming simulation suites. It supports the requirements we set and compares very well
to the other architectures.

There is however no existing SOA implementation. This adds the risk of devel-
opment of the architecture to development of the games and simulations themselves.
Now we have to take into account that no such architecture exists and needs to be de-
signed, developed, tested and maintained. Another factor is that there is an alternative
solution, HLA, that supports most of the requirements as well. The work package 1
report [22] came to the conclusion to use the Pitch RTI for this reason.

Using the SOA paradigm to build a new implementation for the ground up pro-
vides the opportunity to implement all the requirements forgaming simulation suites
in a loosely coupled way and thus decreasing the risks of the tightly coupled Runtime
Infrastructure of High Level Architecture. Using experience gained with SOA as an
enterprise architecture and HLA as simulation gaming architecture should be a good
start to implement a new architecture.

9.2 Contributions

In the context of this thesis we made the following contributions:

• We acquired quality attribute requirements to evaluate thesuitability of dis-
tributed architectures for gaming simulation suites. These requirements are
based on a single case study, namely the Railway Gaming Suite.

85

9. CONCLUSION AND FUTURE WORK

• We constructed a prototype SOA called Service Oriented Gaming and Simula-
tion. The prototype includes; dynamic joining of services,fast messaging sys-
tem based on the publish-subscribe principle, synchronization mechanism, tool
to help with building a data model.

• We evaluated three different architectures (SOA, HLA and FAMAS) using these
requirements.

• We made a comparison based on the evaluations of the architectures.

• We showed the service oriented architecture paradigm is suitable for gaming
simulation suites.

9.3 Related Work

Even though there is no SOA implementation specifically designed for gaming simu-
lation suites, there are implementations that might be usedfor this. One such imple-
mentation is Real Time Infrastructure Data Distribution Service (RTIDDS). This is a
commercial product and the company behind it claims it can bedescribed as a real-
time SOA. RTIDDS is an implementation of the Object Management Groups Data
Distribution Service1. DDS is a specification of a middleware for distributed systems
that uses a publish/subscribe system. The Getting Started Guide [19] of RTI DDS
describes it as follows:

RTI Data Distribution Service is network middleware for real-time dis-
tributed applications. It provides the communications service that pro-
grammers need to distribute time critical data between embedded and/or
enterprise devices or nodes. RTI Data Distribution Serviceuses a publish-
subscribe communications model to make data-distributionefficient and
robust.

RTI Data Distribution Service implements the Data-CentricPublish-Subscribe
(DCPS) API of the OMGs specification, Data Distribution Service (DDS)
for Real-Time Systems. DDS is the first standard developed for the needs
of real-time systems, providing an efficient way to transferdata in a dis-
tributed system. With RTI Data Distribution Service, you begin your de-
velopment with a fault-tolerant and flexible communications infrastruc-
ture that will work over a wide variety of computer hardware,operating
systems, languages, and networking transport protocols. RTI Data Dis-
tribution Service is highly configurable, so programmers can adapt it to
meet an applications specific communication requirements.

This description makes it an interesting architecture to research in the context of
gaming simulation suites. During this thesis project some time was spent on RTIDDS.
A similar test implementation as for the other architectures was made. The problem
was that no synchronization mechanism was already in place and implementing it

1htt p : //www.omg.org/technology/documents/ddsspeccatalog.html

86

9.4. Future Work

proved to be challenging. With more research however RTIDDScould be a starting
point for a Service Oriented Gaming Simulation Architecture.

The comparison of HLA and SOA is not something new and has beenresearched
before [23][18][30]. These research studies however mainly focus on Web Services as
an SOA implementation. By combining these terms like Service Oriented High Level
Architecture come into play. The latest HLA implementation, HLA evolved, also has
a Web Service API to connect Web Services to the RTI. The problem however that the
core of HLA, the Run Time Infrastructure, is not designed with the SOA principles in
mind. This is not surprising since HLA was already developedbefore SOA became
popular. For this study these HLA-SOA hybrid architecturesare not seen as a SOA
solution.

9.4 Future Work

The result of this thesis is that the SOA paradigm is suitablefor gaming simulation
suites. This is a starting point for actually build such an architecture. Implementations
of the SOA design approaches can be made and compared to each other in order to
find out which is the best suited. Exact performance effects of for example synchro-
nization and reliability checks can be researched. More existing and future gaming
simulation suites can be examined in order to further refine the list of quality attribute
requirements.

87

Bibliography

[1] High-level architecture interface specification. version 1.3. Technical
report, U.S. Department of Defense, 1998. http://www.msco.mil/
HLAComplianceTesting.html.

[2] High-level architecture object model template specification. version 1.3. Tech-
nical report, U.S. Department of Defense, 1998.http://www.msco.mil/
HLAComplianceTesting.html.

[3] C.C. Abt. Serious Games. University Press of America, 1970.

[4] G. Andrews.Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 2000.

[5] M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C. Weinstock, and W. Wood.
Quality attribute workshops (QAWs), third edition. Technical report, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 2003. http://
www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm.

[6] S. Benford, J. Bowers, L. E. Fahlén, J. Mariani, and T. Rodden. Supporting
cooperative work in virtual environments.Computer Journal, 37(8):653–668,
1994.

[7] Ph. Bianco, R. Kotermanski, and P. Merson. Evaluating a service-oriented archi-
tecture. Technical report, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, 2007.http://www.sei.cmu.edu/library/abstracts/
reports/07tr015.cfm.

[8] SOA Blueprint. Soa practitioners guide part 1 why services-oriented architec-
ture?, 2006. http://www.soablueprint.com/yahoo_site_admin/assets/
docs/SOAPGPart1.290211145.pdf.

[9] C. Boer. Distributed Simulation in Industry. PhD thesis, Erasmus University
Rotterdam, The Netherlands, 2005.

[10] J.O. Calvin and R. Weatherly. An introduction to the high level architecture
(HLA) runtime infrastructure (RTI). Technical report, 1996. http://dss.ll.
mit.edu/dss.web/96.14.103.RTI.Introduction.ps.

89

BIBLIOGRAPHY

[11] T Chatfield. Videogames now outperform hollywood movies. The Observer, 09
2009. http://www.guardian.co.uk/technology/gamesblog/2009/sep/
27/videogames-hollywood.

[12] P. Clements and L. Northrop. Software architecture: Anexecutive overview.
Technical report, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, 1996.http://www.sei.cmu.edu/library/abstracts/reports/
96tr003.cfm.

[13] P. Clements and L. Northrop.Software Product Lines: Practices and Patterns.
Boston, MA: Addison-Wesley, 2002.

[14] DIS Steering Committee. The dis vision, a map to the future of distributed simu-
lation. Technical report, Orlando, Florida, Institute forSimulation and Training,
1994.

[15] J. Färber. Network game traffic modelling. NetGames2002, pages 53–57. ACM,
2002.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison-
Wesley, 1995.

[17] HLA Working Group. Ieee standard for modeling and simulation (M&S) high
level architecture (HLA) framework and rules. Technical report, IEEE Com-
puter Society, 2000. http://standards.ieee.org/findstds/standard/
1516-2000.html.

[18] P. Gustavson, T. Chase, L. Root, and K. Crosson. Moving towards a service-
oriented architecture (soa) for distributed component simulation environments.
In Proceedings of the 2005 Spring Simulation interoperability Workshop, 2005.

[19] Real-Time Innovations. Getting started guide, 2010.http://community.rti.
com/docs/pdf/RTI_DDS_GettingStarted.pdf.

[20] L.G. Jones and A.J. Lattanze. Using the architecture tradeoff analysis method to
evaluate a wargame simulation system: A case study. Technical report, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 2001. http://
www.sei.cmu.edu/library/abstracts/reports/01tn022.cfm.

[21] R. Kazman, M. Klein, and P. Clement. ATAM: Method for architecture evalu-
ation. Technical report, Software Engineering Institute,Carnegie Mellon Uni-
versity, Pittsburgh, 2000.http://www.sei.cmu.edu/library/abstracts/
reports/00tr004.cfm.

[22] R. Kortmann, S. Meijer, M. Seck, A. Verbraeck, S. Eker, C. Tekinay, and
B. Van Nuland. Work package 1: Systems architecture, 2011.

[23] B. Möller and C. Dahlin. A first look at the HLA evolved web service API.
In Proceedings of 2006 Euro Simulation Interoperability Workshop. Simulation
Interoperability Standards Organization., 2006.

90

Bibliography

[24] M. Papazoglou and W.J. van den Heuvel. Service orientedarchitectures: ap-
proaches, technologies and research issues.The VLDB Journal, 16(3):389–415,
2007.

[25] P. Runeson and M. Höst. Guidelines for conducting and reporting case study
research in software engineering.Empirical Software Engineering, 14:131–164,
2009.

[26] S. Singhal. Effective Remote Modeling in Large-Scale Distributed Simulation
and Visualization Environments. PhD thesis, Standford University, Standford,
CA, 1996.

[27] J. Smed, T. Kaukoranta, and H. Hakonen. A review on networking and mul-
tiplayer computer games. Inmultiplayer computer games, proc. int. conf. on
application and development of computer games in the 21st century, pages 1–5,
2002.

[28] R. Smith. Game impact theory: The five forces that are driving the adoption of
game technologies within multiple established industries. Technical report, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, 2007.http:
//www.modelbenders.com/papers/Smith_Game_Impact_Theory.pdf.

[29] Krissoft Solutions. JMS performance comparison, 2004. http://hosteddocs.
ittoolbox.com/krissoft102904.pdf.

[30] W.G. Wang, W.G. Yu, Q. Li, W.P. Wang, and X.C. Liu. Service-oriented high
level architecture. InEuro Simulation Interoperability Workshop. Simulation In-
teroperability Standards Organization., 2008.

91

Appendix A

ATAM Phase Two questions and
answers

All communication with the user group was done in Dutch. Therefore the questions
and answers will also be handled in Dutch here as well. The reason for this is to keep
the original answers of the user committee. The questions asked before the meeting
where:

• Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt
worden?

• Wat wordt er gespeeld/gesimuleerd?

• Wie zijn erbij betrokken?

• Welke simulatoren worden er gebruikt?

• Wat zijn de resultaten die u verwacht van de gaming sessie?

• Wat is de opzet van de gaming sessie?

The members of the user committee came up with the following use cases:Voor welk
(toekomstig) ProRail project kan de Railway Gaming Suite gebruikt worden?
Toepassing van snelheidssturing, ETMET 2013

Wat wordt er gespeeld/gesimuleerd?
Op basis van gewenst doelcriterium (minimaliseren vertraging en/of max. doorstro-
ming en/of min. energievoorziening) vaststellen of hiervan afgeleide adviessnelheden
een betere performance geven bij capaciteitsgebrek door meer treinen of minder infra
beschikbaar

Wie zijn erbij betrokken?
Verkeersleiding, planners.

Welke simulatoren worden er gebruikt?
FRISO, TMS

93

A. ATAM P HASE TWO QUESTIONS AND ANSWERS

Wat zijn de resultaten die u verwacht van de gaming sessie?
Na de gaming sessies moet duidelijk worden of snelheidssturing een betere perfor-
mance oplevert.

Wat is de opzet van de gaming sessie?
Informatie over verwachte conflicten en nieuwe planoplossingen wordt aan VL, Trdl
(ook mcn?) getoond, prestatie op doelcriterium wordt getoond

Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt wor-
den?
Sturen op inhoud van de trein

Wat wordt er gespeeld/gesimuleerd?
De besturing van het treinverkeer wordt gebaseerd op de lading (reizigers of goederen)
die in een trein aanwezig is. Van deze ’lading’ is bekend waarhij naar toe moet en wat
de vertragingsstatus is.

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding, planners.

Welke simulatoren worden er gebruikt?
FRISO, SIMONE (of IRIS, een door te ontwikkelen prototype waarin reizigersaan-
tallen en ladinggewicht bekend zijn)

Wat zijn de resultaten die u verwacht van de gaming sessie?
Na de gaming sessies moet duidelijk worden of nieuwe stuurinformatie een betere be-
nutting oplevert en of de taak van VL, DVL, TRDL verandert.

Wat is de opzet van de gaming sessie?
Informatie uit de realisatie/simulatie wordt getoond op deschermen die op de post
staan, inclusief nieuwe stuurinformatie waarmee effect van maatregel snel duidelijk
wordt.

Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt wor-
den?
Is er een alternatief voor de afhandelingsregels (TAD) ?

Wat wordt er gespeeld/gesimuleerd?
De handmatig opgestelde TAD’s worden vervangen door automatisch gegenereerde
regels

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding.

Welke simulatoren worden er gebruikt?

94

FRISO, SIMONE, Regelgenerator (bijv. SMD-model)

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in performance van verschillende regelstrategien, noodzaak vooraf opstellen
TAD’s wordt wel/niet aangetoond.

Wat is de opzet van de gaming sessie?
Prestatie netwerk met verschillende sets voor regels worden beproefd.

Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt wor-
den?
Gedistribueerd simuleren van meerdere probleemgebieden in het spoorwegnet

Wat wordt er gespeeld/gesimuleerd?
Elke post (een of meer PPLG’s) krijgt informatie uit een netwerksimulatie en stuurt
het verkeer binnen het eigen regelgebied. Hoe wordt de ellende uit een gebied overge-
dragen (of niet) aan een ander gebied?

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding.

Welke simulatoren worden er gebruikt?
FRISO, SIMONE

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in verantwoordelijkheden en regeldoelen op lokaalen bovenlokaal niveau.
Welke regelruimte kan je aanbrengen op de verschillende niveaus?

Wat is de opzet van de gaming sessie?
Informatie uit de realisatie/simulatie wordt getoond op deschermen die op de post
staan.

Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt wor-
den?
Relatie tussen rail/ en transferknelpunten

Wat wordt er gespeeld/gesimuleerd?
Een transferknelpunt kan voorkomen worden door aankomstenvan treinen te sturen.
De invloed van spreiding in het treinverkeer op transferknelpunten is nu niet bekend

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding, planners, adviseurs.

Welke simulatoren worden er gebruikt?
FRISO, SIMONE, SITA

95

A. ATAM P HASE TWO QUESTIONS AND ANSWERS

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in relatie tussen rail/ en transferknelpunten

Wat is de opzet van de gaming sessie?
Uitwerken voorbeeldcases

Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt wor-
den?
Ander regime openingen van de Vechtbrug bij Weesp.

Wat wordt er gespeeld/gesimuleerd?
De situatie bij de vechtbrug waarbij gewerkt wordt met vastebrugtijden. In de spelsessie
wordt gekeken naar de verschillen in bijsturingsruimte en TDL belasting tussen de
huidige situatie en een situatie met flexibele brugtijden.

Wie zijn erbij betrokken?
Het spel wordt gespeeld door treindienstleiders die bekendzijn met het gebied en een
spelleider die het spel start/stopt en de rol van brugwachter op zich neemt.

Welke simulatoren worden er gebruikt?
De treindienstleiders spelen de situatie met behulp van de PRL tool. Als simulator
wordt FRISO gebruikt.

Wat zijn de resultaten die u verwacht van de gaming sessie?
Na de gaming sessies moet er data zijn over het gedrag van de treindienstleiders tijdens
de sessie, in het bijzonder de omgang met de verschillende brug scenario’s. Daarnaast
moet uit de sessie blijken of het mogelijk is om flexibele brugtijden te gebruiken.

Wat is de opzet van de gaming sessie?
De sessie wordt gespeeld door n treindienstleider achter een enkele computer met vier
schermen. De spelleider zit achter een laptop in de buurt vande treindienstleider. De
computer is verbonden met de laptop via een LAN.

Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt wor-
den?
Verkeersleiding Japanse stijl op een zeer hoogfrequent homogeen net.

Wat wordt er gespeeld/gesimuleerd?
Twee of meer verkeersleiders leiden het zeer drukke spitsverkeer door een corridor.
Alleen IC en ST rijdt hier. Zij hebben hiervoor nieuwe middelen om het verkeer te be-
waken. De instelling van rijwegen gebeurd volledig automatisch op basis van actueel
plan. Bij een verstoring wordt eerst het plan bijgewerkt en dan weer aan de automaten
gegeven voor het instellen van rijwegen.

96

Wie zijn erbij betrokken?
ProRail: VL verkeersleiders (een nieuwe rol)

Welke simulatoren worden er gebruikt?
PRL Game met nieuwe MMI’s sterk vereenvoudigde mogelijkheden voor rijwegen in-
stellen (meeste mogelijkheden zijn uitgezet)

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in werkbelasting van treindienstleiders, machinisten, etc Inzicht in issues bij
operationele invoering van tools: bij Verkeersleiding en in de trein

Wat is de opzet van de gaming sessie?
PRL Game met nieuwe MMI schermen (aparte schermen of als pop-up) Nieuwe infra
en dienstregeling inladen

Voor welk (toekomstig) ProRail project kan de Railway Gaming Suite gebruikt wor-
den?
Een calamiteiten situatie tijdens ETMET 2015 (Elke Tien Minuten Een Trein- een
hoogfrequent dienstregeling)

Wat wordt er gespeeld/gesimuleerd?
De situatie is dat er tijdens spits in 2015 met een ETMET dienstregeling een calamiteit
gebeurd. Tijdens de spelsessie wordt er gekeken hoe de verschillende actoren die bij
het ”product” trein betrokken zijn hun eigen werk uitvoerenen waar de conflicten in
de uitvoering zitten.

Wie zijn erbij betrokken?
Het spel wordt gespeeld door de volgende spelers: treindienstleiders, verkeersleiders,
machinisten, OCCR, reisinfo, materieelplanners van de vervoerders, algemeen leider

Welke simulatoren worden er gebruikt?
De treindienstleiders spelen de situatie na met behulp van de PRL tool. De machin-
isten gebruiken de machinsten simulator. Niet alle treinendie in de dienstregeling
opgenomen zijn worden met mcn simulator nagespeeld. Als basis dient de FRISO (of
een andere simulator) die in verbinding staat met PRL en machinisten simulator. Alle
overige spelers gebruiken eigen tools die basis functionaliteiten bevatten die nodig zijn
voor hun werk. De vertragingsgegevens en positie van treinen komen uit FRISO (of
een andere simulator).

Wat zijn de resultaten die u verwacht van de gaming sessie?
Tijdens de gaming moet er data, beeld en geluid opgenomen worden. Uit de sessie
moet blijken of alle processen en werkwijzen goed op elkaar aansluiten.

Wat is de opzet van de gaming sessie?
De sessie wordt gespeeld door meer treindienstleiders achter (per trdl) een enkele com-
puter met vier schermen. De machinsten zitten achter een stuurtafel met enkel scherm
in een andere ruimte dan trdl’s. De spelleider en reisinfo zitten ieder achter een eigen

97

A. ATAM P HASE TWO QUESTIONS AND ANSWERS

laptop in de buurt van de treindienstleiders. Reisinfo heeft mogelijkheid om om te
roepen. Overige spelers zitten ook in ”eigen” ruimte met eencomputer/laptop voor
zich. Alle computers/laptops zijn met elkaar verbonden viaeen LAN.

98

Appendix B

SOGS Data Model Builder tool

The SOGS architecture supports the use of an intermediate language. This language
is described as Java Objects. To ease the process of making new Objects for the inter-
mediate language a tool is build. The Objects build with thistool should be send as
the data object of the UniqueTimedEvent described in chapter 5. The tool is called the
SOGS Data Model Builder (SOGS-DMB). The SOGS-DMB tool is a prototype tool.
Here we describe the use and functionality of the tool.

Figure B.1: GUI of a new message type creation with SOGS-DMB

B.1 Using the SOGS Data Model Builder tool

SOGS-DMB is a graphical tool that generates Java classes. The user needs to fill in the
name of a new message type and the attributes that are part of the message. For each
attribute the object type should be given. This requires some basic knowledge of Java
object of the user. Figure B.1 shows the graphical user interface of SOGS-DMB for
making a new message type. It is possible the standard data types provided by Java,

99

B. SOGS DATA MODEL BUILDER TOOL

such as String and Double, are not sufficient to make a new message type. For this
the SOGS-DMB tool provides the functionality to make new data types. This works
similar to the creation of new message types (see figure B.2).The new data types are

Figure B.2: GUI of a new data type creation with SOGS-DMB

directly added to the data type lists of the message and data tabs as is shown in figure
B.3. The ‘Add MessageType’ and ‘Add DataType’ buttons complete the construction

Figure B.3: GUI of a new data type creation with SOGS-DMB

of the new Java classes. It generates a new file with the name ofthe new message type
and the ‘.java’ file extension. For the TestMessage from figure B.1 the corresponding
file looks as follows:

import java.util.ArrayList;

100

B.1. Using the SOGS Data Model Builder tool

import java.io.Serializable;

public class TestMessage implements Serializable {

private static final long serialVersionUID = 1L;
private String name = "TestMessage";
public String testAttribute;
public ArrayList<Double> testAttribute2;

public TestMessage(String testAttribute,
ArrayList<Double> testAttribute2) {

this.testAttribute = testAttribute;
this.testAttribute2 = testAttribute2;

}

public String getName() {
return this.name;

}

public String toString() {
String result = "TestMessage: ";

result += this.testAttribute + " ";
for (Double item : this.testAttribute2) {

result += item.toString() + " ";
}

return result;
}

}

The SOGS-DMB only functions as a generator for Java code. Theprogrammer is
responsible for the translation of the application specificdata into the message objects
created with SOGS-DMB. The tool allows for the creation of new files, opening and
adaptation of files and refactoring. The refactoring of a filecan be done when the tool
itself has been changed, for example when the generation of the toString() method has
changed. By using the refactor option the file is opened and displayed in the GUI, but
it is also automatically rewritten to a ‘.java’ file using theupdated conversion of the
tool itself.

101

Appendix C

Experiment Laptop Settings

We tried to limit the network traffic to the bare minimum. Thisrequired to change the
standard setting of the Ethernet card and limiting the services running on the laptop.

C.1 Ethernet Card

Settings of the on-board Ethernet card:

Broadcom NetXtreme 57xx Gigabit Controller Properties
Driver Date 5-6-2007
Driver Version 10.39.0.0

802.1p QOS Disable
Flow Control Auto
Speed % Duplex Auto
Wake Up Capabilities Both

C.2 TCP view

Overview of the TCP endpoints on the laptop:

alg.exe 552 TCP cps-dell 1026 cps-dell 0 LISTENING
lsass.exe 772 UDP cps-dell isakmp * *
lsass.exe 772 UDP cps-dell 4500 * *
svchost.exe 1012 TCP cps-dell epmap cps-dell 0 LISTENING
svchost.exe 1132 UDP cps-dell 1025 * *
svchost.exe 1132 UDP cps-dell ntp * *
svchost.exe 1288 UDP cps-dell 1900 * * 3 399
svchost.exe 1288 UDP 169.254.24.80 1900 * *
svchost.exe 1132 UDP 169.254.24.80 ntp * *
System 4 TCP cps-dell microsoft-ds cps-dell 0 LISTENING
System 4 UDP cps-dell microsoft-ds * *

103

C. EXPERIMENT LAPTOP SETTINGS

C.3 Network Traffic

A capture has been made of the traffic on the network after disabling of unnecessary
services. Capture was made using WireShark1. The capture lasted ten minutes. The
last four seconds are shown below to illustrate the traffic. These messages were re-
peated over and over.

No. Time Source Destination Protocol
453 599.850802 HewlettP_32:28:fe Spanning-tree-(for-bridges)_00 STP
Info
RST. Root = 32768/0/00:15:60:32:28:00 Cost = 0 Port = 0x8002

Frame 453: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
IEEE 802.3 Ethernet
Logical-Link Control
Spanning Tree Protocol

No. Time Source Destination Protocol
454 600.926022 HewlettP_32:28:fe LLDP_Multicast LLDP
Info
Chassis Id = 00:15:60:32:28:00 Port Id = 2 TTL = 120 System Name = Uitleen Switch

Frame 454: 176 bytes on wire (1408 bits), 176 bytes captured (1408 bits)
Ethernet II, Src: HewlettP_32:28:fe (00:15:60:32:28:fe), Dst: LLDP_Multicast (01:80:c2:00:00:0e)
Link Layer Discovery Protocol

No. Time Source Destination Protocol
455 601.850623 HewlettP_32:28:fe Spanning-tree-(for-bridges)_00 STP
Info
RST. Root = 32768/0/00:15:60:32:28:00 Cost = 0 Port = 0x8002

Frame 455: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
IEEE 802.3 Ethernet
Logical-Link Control
Spanning Tree Protocol

No. Time Source Destination Protocol
456 602.851084 HewlettP_32:28:fe HP_09:13:a6 EEE802a
Info
OUI 0x080009 (Hewlett-Packard), PID 0x0003

Frame 456: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: HewlettP_32:28:fe (00:15:60:32:28:fe), Dst: HP_09:13:a6 (09:00:09:09:13:a6)
IEEE802a OUI Extended Ethertype
Data (41 bytes)

0000 02 00 02 00 00 10 d0 00 15 60 32 28 00 7a 21 4f‘2(.z!O
0010 03 93 98 b5 0d 17 88 76 04 71 f2 ae d5 a7 45 62v.q....Eb
0020 ae 00 00 00 00 00 00 00 00

1htt p : //www.wireshark.org/

104

