A Service Oriented Architecture
Solution for Gaming Simulation
Suites

Master Thesis Report

Bas van Nuland

A Service Oriented Architecture
Solution for Gaming Simulation
Suites

THESIS REPORT

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

by

Bas van Nuland
born in Zeven, Germany

]
TUDelft

Software Engineering Research Group

Department of Software Technology Faculty of Technology, Policy and
Faculty EEMCS, Delft University of Technol- Management
ogy Jaffalaan 5
Delft, the Netherlands Delft, the Netherlands

http://ww. ewi . tudel ft.nl/ http://ww.tbmtudel ft.nl/

(©2010 Bas van Nuland. All rights reserved.

A Service Oriented Architecture
Solution for Gaming Simulation
Suites

Author: Bas van Nuland
Student id: 1150448
Email; B. vanNul and@t udent . t udel ft. nl

Abstract

Serious Gaming is becoming a popular method for training @rodblem
solving in companies. One of the companies who has takentarest in this
is ProRail. Together with the faculty of Technology, Polazyd Management of
the Delft University of Technology they started a projectd&velop a gaming
simulation suite for training and decision making purposadled the Railway
Gaming Suite. In order to connect the games and simulatdisedduite a solid
architecture is needed. Three architectures were picketd see if they are suit-
able for this, namely: Service Oriented Architectures,Higvel Architecture
and FAMAS Simulation Backbone.

Using the Railway Gaming Suite as a case study, we have &xtireaquire-
ments (like performance and flexibility) for an architeetfor gaming simulation
suites using the Architectural Trade-off Analysis Methddhese requirements
are used to determine the suitability of the three architest In this thesis the
research on the suitability of Service Oriented Architeest(SOA) is presented.
A prototype SOA was created, called Service Oriented GaraimhSimulation
(SOGS). This prototype was used to test the performancerezgent for the
evaluation. The suitability was investigated by evaluatBOA to see if it is
able to support the requirements we found. We subsequdsatiycampared the
suitability of the other architectures. Intermediate hessaf this thesis project
were used to help with the decision for selecting an architedor the Railway
Gaming Suite.

Thesis Committee:

Chair:
University supervisor:
Company supervisors:

Prof. Dr. Arie van Deursen, Faculty EEMCS, TU Delft
Dr. Andy Zaidman, Faculty EEMCS, Délft
Prof. Dr. Ir. Alexander Verbraeclguig TPM, TU Delft

Preface

This thesis represents the end result of the work | have domay master’s project in
the last nine months. The subject of this thesis was proptsed by Rens Kortmann
when | worked for him on one of the games for the Railway Garfinie. My interest
in serious gaming and software engineering made this aqiextibject. Parallel to my
research into Service Oriented Architectures, reseatatiest were performed for two
other architecture (High Level Architecture and FAMAS Slation Backbone) in the
same context. This gave me the opportunity to broaden thgesobmy thesis by
comparing my work with the work on the other architectures.

This thesis report has been made possible with the supparany people. First,
my colleagues at the Game Lab at TPM who kept me sharp durimdotig days
behind my desk. Then the researches of the Systems Engigesrd Policy Orga-
nization Law and Gaming; Sebastiaan Meijer, Mamadou SeelgriCTekinay and
Sibel Ecker. In particular | would like to thank my supervisoRens Kortmann and
Alexander Verbraeck. Next | want to extend my gratitude tosmgervisor of the Soft-
ware Engineering Research Group, Department of Softwarlentdogy at the Faculty
EEMCS, Andy Zaidman, who has helped me a great deal durisgthieisis and es-
pecially with writing this report. Furthermore | would like thank my parents for
supporting me through all my years at the TU Delft. Last, thespn who | am very
grateful to is Suzanne Vaartjes, who supported and pushedunirgg this thesis and
ensured | finished it.

Bas van Nuland
Delft, the Netherlands
27 April, 2011

Preface iii
Contents \
List of Figures vii
List of Tables iX
1 Introduction 1
1.1 ResearchQuestions, 2
1.2 OutlineoftheReport 3
2 Gaming Simulation Suites 5
2.1 Serious Games and Simulation Games
2.2 Railway Gamingsuite e 8
2.3 SUMMAry e e e e e e e 12
3 Trade-off analysis of the Railway Gaming Suite 13
3.1 The Architecture Trade-off Analysis Method 13
3.2 Performingthe ATAM 16
3.3 Resultsofthe ATAM 18
3.4 Summary ... 24
4 Service Oriented Architecture 25
4.1 Distributed Architectures L 25
4.2 Service Oriented Architectures 26
4.3 Railway Gaming Suite 30
4.4 SUMMANY . . . o e e e e 32
5 Service Oriented Gaming and Simulation 33
5.1 Design. e e 33
5.2 Implementation 37
5.3 Summary e 44

Contents

CONTENTS

6 Existing Architectures for Distributed Environments 45
6.1 High Level Architecture 45
6.2 Lightweight architecture FAMAS 94
6.3 Multi-player entertainmentgaming 53
6.4 Summary e e e 55

7 Evaluation 57
7.1 Evaluationmethods 58
7.2 PerformingtheTest 58
7.3 Quality attributes 63
7.4 Performance e 64
7.5 Extendibility 66
7.6 CONSISENCY o 69
7.7 Availability 70
7.8 Flexibility 71
7.9 Usability. 72
7.10 Maintainability 73
711 SUMMANY . . . o e e e e e e e e e 74

8 Discussion 75
8.1 Suitability of a Service Oriented Architecture 76
8.2 Suitability of HLAand PitchRTI 87
8.3 Suitability of FAMAS Simulation backbone 79
8.4 ThreatstoValidity 80
85 Summary e 82

9 Conclusion and Future work 83
9.1 Answering the research questions 83
9.2 Contributions 85
9.3 RelatedWork 86
9.4 Future Work 87

Bibliography 89

A ATAM Phase Two questions and answers 93

B SOGS Data Model Builder tool 99
B.1 Using the SOGS Data Model Buildertool 99

C Experiment Laptop Settings 103
C.1 EthernetCard e 103
C.2 TCPVIEW e e 103
C.3 Network Traffic 104

Vi

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7

B.1
B.2
B.3

List of Figures

Utility Tree Concept o o o 16
Message transmission 6 2
Network deployment 26
Message translation o 9 2
High level architectural overview of part oftheRGS 30
High level architectural overview ofaservice 31
High level architectural overview of PRLGame 31
Announcement protocol 4 3
Time synchronization inSOGS. 36
Overview of the classes in the SOGS package. 37
HLA federation, with some example federates 46
FAMAS Simulation Backbone Architecture overview 50

A different overview of the FAMAS Simulation Backbonechitecture . 51
Start protocol of FAMAS 52
Termination protocol of FAMAS 52
Relationship of simulations, virtual environments §YEnd computer
games.[27] . . . 53
Game of hide-and-seek. oL 55
Schematic set-up of the experiment T & 10
The set up of the experiment with the eleven Iaptops e 61
Close up of one of the laptops used for the experiments. 61
Close up of the switch used for the experiments. 62
The set up of the experiment during another session. 62
Results of the experiments with 1 application pair. 65
Results of the experiments with 5 application pairs. 66
GUI of a new message type creation with SOGS-DMB 99
GUI of a new data type creation with SOGS-DMB 100
GUI of a new data type creation with SOGS-DMB 100

Vii

List of Tables

Utility Tree o o 21
Evaluation methods for the quality attributes 64
Scores for the performance evaluation 67
Scores for the extendibility evaluation 69
Scores for the consistency evaluation 70
Scores for the availability evaluation 71
Scores for the flexibility evaluation _..... 72
Scores for the usability evaluation 73
Scores for the maintainability evaluation 74
Results of the evaluation 75

Chapter 1

Introduction

For years games have been seen as a leisure activity. In thee@ury this trend
continued and found its way in the computer industry. Towdhe end of the nineties,
the digital gaming industry has surpassed the movie ingustHollywood as one of
the leading entertainment industries in the world [11].rf®ond to Unreal Tourna-
ment games became more and more interactive and realistic. Wtlgrowth of the
Internet multi-player gaming transformed from two peoptérg at the same com-
puter to ‘massively multiplayer online games’ in which teands of people play the
same game together [28].

In the mean time ‘serious’ industries are impacted by gantecamputer game
technologies. For example in military, soldiers are treinsing virtual environments.
The Dutch railway company ProRail also has taken an intéresising computer
games to help with training and decision making. This resuih a collaboration
of ProRail with the faculty of Technology, Policy and Managmt of the Technical
University Delft. Part of this collaboration is the devetopnt of a gaming simulation
suite called the Railway Gaming Suite (RGS).

The Railway Gaming Suite requires the connection of newleliped games
with different simulators of the physical infrastructuredathe control systems that
are already developed and in use by ProRail. To facilitaite dbnnection between
different software applications a work package is initidby a team of researchers at
the TU Delft to look at some architectures for distributedigiation and gaming. The
research done for this thesis report is part of this projébe main goal for this work
package in the ProRail RGS project has been defined as: "Terstathd what system
architectures are suitable for distributed, decision sty games and simulations in
the domain of rail traffic control’[22].

At the start of the work package it was decided to take a lodrat architectures;
High Level Architecture (HLA), FAMAS Simulation Backbonand Service Oriented
Architectures (SOA). HLA is an architecture specificallyidmed for simulation gam-
ing by the Department of Defence of the United States. HLAaig pf the research be-
cause of this background and ProRail has some experienieét witprevious projects.
FAMAS Simulation Backbone is an architecture developedaasqf a PhD thesis [9].
The aim of the FAMAS Simulation Backbone is to provide a fléxiarchitecture for

Ihttp: //enwikipediaorg/wiki/Pong/
http: //enwikipediaorg/wiki/Unreal_Tournament

1

1. INTRODUCTION

the interoperability among various distributed simulatinodels. This makes it inter-
esting to research in the RGS work package. SOA is a popuhitectural paradigm
often used by enterprise architects [7]. It has no direcheotion to simulation gam-
ing, but the the SOA paradigm supports interoperability #exbility in a distributed
environment. The service oriented paradigm has been arfmural couple of years
and has become increasingly popular with organization®\ 1843 promised to deliver
unprecedented flexibility and cost savings to IT, by defirdmgethodology for the use
and re-use of software components and business proce$sékifBmakes it an inter-
esting architectural paradigm to research for gaming sitiarl suites. Research into
these architectures has been divided among different nrsrobthe Railway Gaming
Suite team.

In this thesis report research of the service oriented w&rctoire solution will be
the focus. The other two architectures will be researcheathgr members of the RGS
team. We use the Railway Gaming Suite as a case study foresearch. By looking
at the RGS we try to extract general requirements for gaminglation suites and see
how these are supported by the SOA paradigm.

In the next section we will look at the research questiongHisrthesis project.

1.1 Research Questions

The goal of the first work package of the Railway Gaming Suitgqgt is finding
a suitable architecture for the RGS. One of the candidateitactures is SOA. In
this thesis we look at the suitability of SOA for the Railwapr@ing Suite and try to
generalize this to gaming simulation suites. This leadfi¢onbain research question
for this thesis project:

e RQ Is SOA a suitable architecture for gaming simulation s@ites

In order to answer this question we need to know when an aathite is suitable, if
the SOA paradigm supports the suitability requirementshavdit compares to other
architectures. This leads to the following three sub qaasti

¢ RQ1What are the architectural requirements to determine titedwslity of gam-
ing simulation suites?

¢ RQ2 How well does a service oriented architecture support theirements of
gaming simulation suites?

e RQ3 How does a service oriented architecture compare to otbhitactures?

To answer the first research question we need backgrounanafmn on gaming sim-
ulation suites and architectural analysis methods, ttsgli® in the following ques-
tions:

e RQ1.1What are gaming simulation suites?

e RQ1.2What is a good method to determine architectural requirésnefra sys-
tem?

1.2. Outline of the Report

For the second research question we need information oficeesviented oriented
architectures, and possible implementations to test tiin@ments. Thus we come to
the next questions:

e RQ2.1What are the principles of a service oriented architecture?
e RQ2.2Can we construct a prototype SOA to test performance rageines?

For the final research question we need to know more abouigtrébdted simulation
domain and if there are already architectures for gamingilsition suites and how
well they support the requirements:

e RQ3.1Are there architectures currently in use for gaming siniofasuites?
e RQ3.2What are the architectural approaches of these archies@ur

e RQ3.3How well do the other architectures support the requiresiehgjaming
simulation suites?

1.2 Outline of the Report

We start this thesis report by looking at gaming simulatiaites in chapter 2. In
particular we will look at the Railway Gaming Suite projedtlsing the RGS as a
case study we determine the architectural requirementsapter 3. This chapter will
explain the method we used to determine the requirementss rthod is called
Architectural Trade-off Analysis Method (ATAM). After thiwe take a look at the
different architectures that are part of the RGS work paek&iyst we will discuss the
SOA paradigm in chapter 4. To better research the suitalufithe service oriented
architectures a prototype architecture has been desigrneimgplemented. It is called
Service Oriented Gaming and Simulation (SOGS) and is thie tdfhapter 5. Then
we give an overview of HLA and FAMAS in chapter 6. In the samaptlkr we take
a quick look at entertainment gaming. Using the informatidrthese chapters an
evaluation of the three different architectures is perfrim chapter 7. The results of
the evaluation are discussed in chapter 8. Finally chapgere® the conclusion of this
report.

Chapter 2

Gaming Simulation Suites

In order to evaluate whether a service oriented architedtua good distributed archi-
tecture for simulation gaming suites we first need to knowtvehsimulation gaming
suite is, thus answering research question:

e RQ1.1What are gaming simulation suites?

In this chapter we look at the definition of the tegaming simulation suitand we
present the Railway Gaming Suite as an example of such a gasirinulation suite.
The Railway Gaming Suite will be used throughout this repsra case study in order
to find out what is important for gaming simulation suitesirigghe important aspects
of the RGS we set out to define some general requirements fongasimulation
suites.

2.1 Serious Games and Simulation Games

We can divide the term gaming simulation suite in two pagaming simulation’ and
‘suite’. We start with the last part ‘suite’, which is easydrplain. A suite in the
software world is a collection of applications. That leaussvith ‘gaming simulation’
to specify what kind of applications are in the collectiors tAe name suggests here we
are concerned with simulation games, which are serious gartle a focus on training
and prediction. This is further explained below. So in skkogaming simulation suite
is a collection of simulation games. Now that we have defihedype of applications
we can take a deeper look into it.

Simulation games are a subcategory of a specific kind of gaoatied serious
games. In his book ‘Serious Games’, Clark C. Abt[3] explaims idea behind it
nicely:

The oxymoron of Serious Games unites the seriousness ofjlth@und
problems that require it with the experimental and emotireedom of
active play. Serious games combine the analytic and quésgiaconcen-
tration of the scientific viewpoint with the intuitive freech and rewards
of imaginative, artistic acts.

The definition he uses is:

2. GAMING SIMULATION SUITES

Reduced to its formal essence, a game is an activity amon@twuore
independent decision-makers seeking to achieve theictige in some
limiting context. A more conventional definition would sdat a game is
a context with rules among adversaries trying to win obyjesti We are
concerned with serious games in the sense that these ganeearhax-
plicit and carefully thought-out educational purpose aredreot intended
to be played primarily for amusement.

Even though Clark Abt was talking about serious games ag aaithe 70’s, the term
was not actively used until the Serious Games Initidtiwas formed in 2002. Even
though there is no official list of categories of serious gatieere are some terms that
are widely used, such as simulation games. Examples of agext categories are;
military games (used in the military) and persuasive gamgasés used as persuasion
technology). In simulation games the focus lies on traimingrediction. So a gaming
simulation suite can be defined as a collection of games wsdrhfning or prediction.

Throughout this thesis we will use a number of terms relabegbiming and sim-
ulation. In the context of this report, these terms have asifip meaning. To make
sure this meaning is clear a short explanation is given:

e Game - a game is a software application where there is a huorarolling at
least part of what happens in the application.

e System - the collection of all games and simulators that seel fior a scenario
is called the system.

e Suite - the collection of all games and simulators that camd®to set up a
system.

e Simulator - a simulator is a software application that plays a scenario ac-
cording to predefined data. It is not directly influenced byay@r. Data can be
changed through indirect means.

e Scenario - a scenario is the set-up of the system. The soespetifies which
games and simulators are used and the case that will be played

e Session - actually playing a scenario is called a session.

e Facilitator - the facilitator guides a session. This can tweedby verbal instruc-
tions (for example a briefing) of by influencing the systeralfts

Other important concepts in simulation gaming are reaétisynchronization and
causality. These require a little more explanation and arthér described below.
There are other techniques that can be used, like packetressipn and aggregation,
interest management and dead reckoning. These are hovad\sgratific to simulation

gaming, but more to distributed gaming environments in gan&hey will be covered

in section 6.3 on multi-player entertainment gaming.

Ihttp: //wwwseriousgamesrg/

2.1. Serious Games and Simulation Games

2.1.1 Real-time

The term real-time is used in several ways in software erging. Real-time comput-
ing for example is concerned with systems with strict timestints (e.g. air bags in
a car). In gaming real-time is used when the game is contmuoLthis thesis we use
real-time when the time in the game is continuous and symited with wall clock
time.

2.1.2 Synchronization

In a gaming simulation environment it is important to be abolesynchronize events
of different applications. This is important because thgliaptions might need infor-
mation from other applications before continuing themsglvWithout this synchro-
nization an application can do calculations based on inéet@jnformation and thus
makes incorrect calculations. This may result in havingeorthe calculations or
worse, faulty data in the system. There are several waysnahsgnizing all applica-
tions. We describe three methods to do this below.

One way to synchronize is by keeping a centralized list afrétical messages sent
in the system. From this central place the messages can ¢heenil to the receivers.
When all critical messages are received by an applicaticaritreceive a 'go’ from
the central hub to do its next calculations. The central Isuin icontrol of allowing
an application to continue. Because it has a complete agrand complete control
of all messages sent in the system it can guarantee syneationi. All messages that
are sent through the system need to go to the central hub,tfrera they are sent to
the receiver(s). We call this@entral synchronization mechanism

A problem arises when the services connected to the agphsagéach have their
own message list. Somehow these lists should be synchebttzaake sure the appli-
cations are up-to-date. A way to do it is to have a central lsyorization application
which tells all services to perform the calculation they danat the moment, then if
there are messages, send them. The synchronization sbhagde check if all mes-
sages are received and can then tell the application to @io@® to the next step.
Before the application can now start with its calculatiomesytfirst need to process the
messages received in the previous step. From here it sthogea again. This way
all calculations are based on the most up-to-date infoomadind the system is syn-
chronized. In this case the messages containing the actabde sent directly from
application to application. In addition some messages t@mbe sent to the synchro-
nization service. These message can be relatively smalpamd to the actual data
messages. We call this optiordestributed parallel synchronization mechaniseven
though there is still one place responsible for the syndhation.

A third method to synchronize the services is to again haven&al synchroniza-
tion service. In this method the services send a requestrforpethe next event to
the central service. These events are time-stamped by thieese The central syn-
chronization service keeps a list of all request which issced by time-stamp. The
central service grants permission to the service with thallest time stamp event to
perform its event and send its messages. After completiesehvice sends the next
time-stamped event request. The services are thus ableftrmeheir request af-

7

2. GAMING SIMULATION SUITES

ter each other thus keeping the system synchronized. Weéhealinethoddistributed
serial synchronization mechanism

An extension of the synchronization mechanism is to makesittime, in the way
we described it above. This can be done by setting a step énggH (for example
50 milliseconds). The synchronization component needsaib with sending a ‘go’
until the time step length is reached. If the system is doo@eaiothan the time length
of the step (for instance 39 milliseconds) it has to waitluhtieaches the step time
length (in this case 11 milliseconds). Variation can thetomatically be made to for
example one week in-game time is one minute in real time, ri#ipg on the type
of game that is played. The important aspect of the timefsymization is to make
sure each in-game step has equal real-time length. Thidtmondan be stretched a
little by having a catch-up mechanism to make up for lost tidve example catch-up
mechanism is explained in chapter 5.

2.1.3 Causality

The concept of causality is about having an event that is dluses of another event.
In a simulation/gaming environment we want to achieve tstticonological ordering

of these cause events and the effects of them. If there isemt @vone service that
triggers a message to another service, the other servicereugsve and process the
message before it does the calculations that are dependéme data in the message.

2.2 Railway Gaming suite

The concept of gaming simulation suites is very broad andbeaapplied to many
different areas. For this thesis report we had the oppdyttmiuse a gaming simulation
suite as an case study. This gaming simulation suite isccétle Railway Gaming

Suite (RGS). The RGS is built as part of a collaboration betwie Delft University

of Technology and ProRail. At the start of this thesis projfee RGS was at an early
stage in its development. No decision had been made on whdtdfiarchitecture

will be used. Research done for this report is part of theystadind an appropriate

architecture for the RGS. It is used for the first work packaigie collaboration. The
project work packages are discussed in section 2.2.1.

The main purpose of the RGS is to help ProRail with decisiokinggand train-
ing. To do this the Railway Gaming Suite couples simulatord games together to
provide a coherent picture of a research area. The games gireRRail the ability to
interact with the system and play-test new situations. Titeames of the play-tests
can influence the decisions ProRail has to make.

Several games are already under development during thésstpeoject, like a
traffic controller game and a train driver game. These gamesw@rently directly
coupled to a simulator and played as single player gamesséitien 2.2.3 for more
info on the current state of the RGS games and simulatorss Sddtion gives some
background information on the Railway Gaming Suite proj&atst a quick overview
of the organization is given and then the goals and missetersients of the project.

8

2.2. Railway Gaming suite

2.2.1 Project Organisation

The collaboration of ProRail and the TUDelft takes placeMaetn five departments
within these organisations. Within ProRail three deparisieare involved in the
project: (1) Traffic Control, (2) Innovation and (3) Capgclanagement. At the
TUDelft two departments are involved within the faculty aéchnology, Policy and
Management (TPM): (1) Systems Engineering and (2) Policgaization, Law and
Gaming.

A steering committee is formed consisting of represergatiof all five depart-
ments. They monitor the progress and results and look atcibatgic consolidation
and practical validation of the results. If there are défeges in opinion the steering
committee mediates and searches for reasonable and ptailations. Half-yearly
an evaluation of the results is performed. The steering ctteendecides on the con-
tinuation or adjustment of the project based on the evalnail he steering committee
is supported by a number of consultants within ProRail.

The project is divided in ten work packages. In the work pgelsa(see below) con-
crete work is performed. Each work package has a projectteato is responsible
for preparing a concise plan, in which at least the problém dbjective, the deliver-
ables, the staffing, the planning and the budget are spedf@deach work package a
plan is presented to the appropriate members of the steesmgnittee. ProRail must
give a written approval before a work package is started.

The entire project is coordinated by a project leader of ti®e&lft. His responsi-
bilities are to support the sub project leaders and reperctimmittee concerning the
consistency and developments in the project. The projadelehas a sparring partner
from ProRail to coordinate with and build bridges betweemkyzackages. Each work
package gets at least one contact person within ProRailgoaitn smooth and proper
implementation of the work package. A work package leadersggsubstantive guid-
ance, performs his own research activities, consults witliRRil and directs a team of
TUDelft researchers. The ten work packages are:

1. System architecture of the Gaming Suite

2. PRL (PRoces Leiding) Gaming Module

3. Train Driver Gaming Module

4. Implementation connection between gaming modules andlations
5. Scenario editor

6. Decision making with the Gaming Suite

7. ProRail Experience

8. Decision Enhancement Studio

9. Trail project agent-based gaming

10. Trail project Strategic Management Games

2. GAMING SIMULATION SUITES

More information about the work packages can be found in tHeDEIft, faculty of
TPM, Internal project documentation, 2010. For this reseawork package 1 is
important. In this work package different architectures @searched and compared
to each other. The goal is to find an architecture that suppbe connection of the
games and simulators of the Railway Gaming Suite.

2.2.2 Goals and Problem Statements of the Railway Gaming Sei

There are a number of problem statements that have led totipeation between the
TUDelft and ProRail. The problem statements and goals dieadkein the TU Delft,
faculty of TPM, Internal project documentation, 2010.

e ProRail established that it needs to increase the capadiation of the Dutch
railway network in order to meet the increasing demand fadgoand passen-
gers transportation. By planning and distributing diffeéhg the available ca-
pacity can be significantly increased without extendingribvork itself. The
program ‘Ruimte op de Rails’ aims to achieve a 50% capaciemse by 2020.
To make this possible a number of solutions and innovatiegepts are defined.

e The development, realization and implementation of thoagisns and innova-
tive projects can be described as a complex multi-actorlenobThis includes:
1. there are complex and dynamic interdependencies bettheetechnical-
physical parts of the system on the rail network, resultmg ihigh degree of
uncertainty about the (un)wanted (medium term) impact daiage operational
or policy measures, like ‘spoorboekloos rijden’; 2. mangidependent actors
(from directors to driver) are involved, often with differteopinions, interests,
resources and strategies. The outcome of the strategice’ga@tween these
players is uncertain.

e Through computer simulations more insight can be obtaintxdthe (un)desired
effects of alternative measures for increasing the capadiich can take into
account the dynamic interdependencies between physidaéahnical systems.

e Through gaming the different actors can experience thal@aimed effects of the
measures in the technical and physical system themsehtesagtive computer
simulation, computer game) but also try out and discussdhiews management
strategies and decisions (role play, social or politicalidation).

e This can have many positive effects such as awareness, stmading of the
complexity (cause and effect relationships), readinesshémge / acceptance,
cooperation and coordination, improved quality of decigizaking, etc.

e The validation of the possible effects of Gaming and Siniafats subject of
academic and applied research.

The Railway Gaming Suite is being developed to help withéh@eblem statements.

The goals of the RGS project are split into two domains, gargmals and scientific
goals. The general goals are:

10

2.2. Railway Gaming suite

o After the RGS is developed ProRail has a gaming suite thabeamsed along
with existing simulation software.

e The RGS makes it possible for ProRail to set up a simulationigg session
without external help.

e The RGS makes it possible to:

— Play-test new scenarios with existing infrastructure|sg@md procedures.
— Play-test scenarios with new infrastructure, tools andeulares.

— Train personnel.
e The RGS will be especially applied to two domains within PadR

— VL-domain (traffic control): Testing of practicability ofmv schedules and
control concepts.

— CM-domain (capacity management): Pre-testing capadslitor solution
of conflicts in the execution. Use of the RGS as a design stigpie.

e Looking at possibilities of integration with existing swotire, both software
owned by ProRail and external software.

The scientific goals are:

e Finding out in what way gaming and simulation as a method oatribute to the
analysis, innovation and training with respect to probléma socio-technical
multi-actor environment, especially rail-based infrastures.

e This is consistent with the Gaming Hot Spot in the Next Getiandnfra (NGI)
research and project "Serious Gaming for Infrastructurei@de Management
and Training.” It touches on the themes Flexible Infraguiess and Understand-
ing Complex Networks when it comes to the goals of the gamasgisns.

e In turn this contributes to the valuation of research intahuds of gaming and
simulation for large scale infrastructures. Outcomes asddns on capacity
management and flexibility are made available to other rfatgonal) infras-
tructures.

e The TU Delft aims to publish the results at conferences onegarathodology
(International Simulation and Gaming Association), deciganalysis, training /
learning, rail-specific conferences (TBA), conferences lafrastructure (NGI).

e Much of the work within this project will be executed by twolPktudents one
within the Systems Engineering department and one withénddgpartment of
Policy, Organisation, Law and Gaming. The work of PhD stuslevill con-
tribute to the scientific questions of the two chairs and télcomplementary
but not overlapping.

11

2. GAMING SIMULATION SUITES

2.2.3 Games and Simulators of the Railway Gaming Suite

At the start of this chapter we stated the RGS is already irldpment. Sessions have
been even played with a traffic controller game that is cometo a simulator. The
game is called PRL and the simulator is called FRISO. In the B&ne the player
takes on the role of a traffic controller. The game implemt@ntas designed to copy
the role of traffic controller as realistic as possible. TRIFO simulator was already
in development when the RGS project started. It providegémee with infrastructure
information and time-tables. The development and maimenaf FRISO is not done
at the TU Delft. The PRL game development is done by the TUtDelf

In the past session have been played where PRL and FRISO wdrarected with
HLA. In the current version PRL and FRISO are directly conieéco each other.
Another game which is at the start of development is a traivedigame. Here the
player takes the role of a train driver and has to drive a tthiough a visual 3D
environment. Currently there are no multi-player postied for the RGS.

2.3 Summary

This chapter gives an introduction to the concept of a garsimglation suite. It gives
the definition of the term and gives some background infaionadn it. Furthermore
some terms used in the rest of the thesis are explained. Nexigh level overview
is given of the Railway Gaming Suite project. This is an exngaming simulation
suite that is used throughout the rest of the report. In thest@pter we go deeper into
the requirements of an architecture that facilitates th&i+player aspect of a gaming
suite. A method called Architectural Trade-off Analysisthied is used to acquire the
requirements for the Railway Gaming Suite.

12

Chapter 3

Trade-off analysis of the Railway
Gaming Suite

In the previous chapter we talked about the Railway Gaminte&s an example of
a gaming simulation suite. We use the RGS to determine theriaqt aspects of a
gaming simulation suite. In this chapter we will to answer thsearch question:

e RQ1What are the architectural requirements to determine titegdlity of gam-
ing simulation suites?

Before we can do this we need a method to determine the reqeitts as stated in sub
guestion:

e RQ1.2What is a good method to determine architectural requirésnara sys-
tem?

The method we use to do this is developed by the Software Eegirg Institute (SEI)
at Carnegie Mellon University in Pittsburg, USA. The meth®dalled Architectural
Trade-off Analysis Method(ATAM). In this chapter we will\g an introduction into
the ATAM. After which we describe how it was performed on thailRay Gaming
Suite and what the results are. The requirements we gatrerderforming the ATAM
will later be used to evaluate the three architectures, HEAAMMAS en SOA.

3.1 The Architecture Trade-off Analysis Method

This section in based on the report written by Kazman etHlif2which they present
the Architectural Trade-off Analysis Method. Over the pseteral years, the Soft-
ware Engineering Institute (SEY) has developed the Architecture Tradeoff Analysis
Method®™ (ATAM SM) and validated its usefulness in practice [21][13]. Beloa/give

an overview of the ATAM, its purpose and execution steps.

3.1.1 Purpose

The purpose of the ATAM is to assess the consequences ofeutthial decisions in
the light of quality attribute requirements. During the g@es of the ATAM risks,

13

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

sensitivity points and trade-off points are identified aedorded.Risksare architec-
turally important decisions that have not been made or otlwttie consequences are
not fully understoodSensitivity pointsire the architectural parameters that have a high
correlation with a quality attributeTrade-off pointsare sensitivity points that affect
more then one quality attribute in a different way. This neetre outcome does not
give a precise analysis of measurable data, such as caoulemes. Since the ATAM

is mostly done early in the development process there is matigh information to
get this data. At this stage it is more important to undestahat the impact on the
system is for each attribute.

To be able to perform an ATAM evaluation there must be a spatifin of a cur-
rent or possible future architecture for the system. Funtloee the quality attributes
should be stated. As mentioned above often the qualitypatés are not precisely
defined. Using the ATAM should make these clear by:

e eliciting and refining precise statements of the archiredturiving quality at-
tribute requirements;

e eliciting and refining precise statements of the architetidesign decisions;

e using these to evaluate the architectural design decismudgtermine if they
satisfactorily address the quality requirements.

3.1.2 Steps of ATAM

There are nine steps that provide a guideline for the ATAMe $teps are numbered,
but this does not mean they must be taken strictly in thisrofet example sometimes
steps are skipped, or some steps are iterated over a coupieesf

1. Present the ATAM.
The evaluation team gives a presentation of the processeofATAM. Before
the evaluation is started it is important for all stakehaddbat are involved with
the process to know what to expect and what kind of methodgemtuhiques
are used.

2. Present business drivers.
The project manager gives a short presentation with a systarview from
a business perspective. In this presentation the most tangoiunctional re-
quirements are given, as well as the business goals andtahemajor stake-
holders, the architectural drivers and the technical, maral, economic and
political constraints.

3. Present the architecture.
In this step the architectural team explains the existinduture architecture
to the other stakeholders. The information in this presemtalepends on the
available information to the architects and the amountroétthat is available
for the presentation.

4. ldentify architectural approaches.
The architectural team identifies the architectural apgrea that best represent
the highest priority quality attributes.

14

3.1. The Architecture Trade-off Analysis Method

5. Generate quality attribute utility tree.
The evaluation team (the team performing the ATAM), architeal team, man-
ager and customer representatives work together to igieptibritize and refine
the most important quality attribute goals. In this stepphgicipants also come
up with scenarios describing the system and place them intifity tree. The
utility tree is used as a guide during the rest of the ATAM. Titity tree con-
cept is explained in section 3.1.3.

6. Analyse architectural approaches.
Using the architectural approaches found in step 4 and ility tree of step 5 a
new listis made. This list contains for each utility subtfadn the utility tree the
associated risks, sensitivity points, trade-off pointd architectural approaches
that respond to it. This step gives an overview of the mosbit@mt aspects of
the entire architecture, the architectural decisions alist af risks, sensitivity
points and trade-off points.

7. Brainstorm and prioritize scenarios.

With as many of the stakeholders as possible scenarios aezaged. When the
scenarios are created, they must be prioritized. The ligtriofitized scenar-
ios is then compared to the utility tree. If there are diffexes they need to be
clarified and explained. This can mean a scenario might reée better ex-
plained or the priorities can simply be changed. The utilige is made mostly
by the architectural team and the development team. Therdfe criteria for
the prioritization of the utility tree can be different frothe list of scenarios
made by the stakeholders. This comparison makes the nedus sthkeholders
clear to the architectural team. The utility tree is adjdstgth the information
of this step in mind and used in further steps of the ATAM. Acling to the
prioritization only the high priority scenarios are usedhia next steps.

8. Analyse architectural approaches.
Using the new utility tree from step 7 a new mapping is madds Thdone in
the same fashion as in step 6. This step is done to test theimgaippm step 6.
In an ideal situation no new information is uncovered dutimg step. If this is
not the case, steps 4 to 6 should be done again, until no marénf@amation
is gained.

9. Present results.
The output of the ATAM is presented to the stakeholders. Thisually done
with a verbal presentation, supported by a written report.

Two main concept used in the ATAM are scenarios and theytildée. Therefore

an short description of these concepts is given below. Tlehifactural Trade-off

Analysis Method is usually carried out in two phases. The firgse is focused on
the organization and the architecture. Steps 1 through Baaréled in this phase. The
second phase is stakeholder-centric and is meant to vééfyasults from the first
phase. In this phase the rest of the steps are handled.

15

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

3.1.3 Scenarios and Utility Tree

A scenariodescribes the stimulus, response and environment of aradtien [5].
They are used to precisely elicit the quality goals. It iepfthe case that the quality
attribute requirements are ambiguous or vague. In a sceihadn be made clear what
the stakeholder means with them. Each of the stakeholdersiescribe how they
would use the system. For Example:

The system provides a virtual gaming site that includesnenlpffsite,
and multiple games running simultaneously and that alloarsigipants
to play from their own command centers. [20]

Theutility treeis a central structure in the ATAM process. An initial versie created
during step 4 and used throughout the other steps. A utilig ts used to connect
the scenarios to the quality attributes. At the root of tlee tihere is either the label
‘utility’ or the root is left out. The second level consist thie quality attributes, such
as availability and extendibility. The quality attributage further subdivided in more
specific attributes. Finally the leaves of the tree conta@rstcenarios. Figure 3.1 shows
the concept of utility trees. Ultility trees help to priozis the quality goals and make
them more concrete.

Attribute Refinement 1 =——Scenario 1

Quality Attribute 1 v
v '
Utility v Attribute Refinement N

v
Quality Attribute N

Figure 3.1: Utility Tree Concept

3.2 Performing the ATAM

When we performed the ATAM evaluation the development ofRladway Gaming

Suite was in a very early state. No real decision had been madehich type of

architecture was to be used. The ATAM was part of the procééisding the right

architecture. Therefore there was not a real focus on afapecchitecture during
the evaluation itself. Since this thesis has a focus on S@#sdid come up during
the initial meeting. The steps and phases were used as digejdaut not exactly
followed step by step. The next sections give an overviewladtwas during the two
phases. In section 3.3 we will give the outcomes of the phases

3.2.1 Phase One

For the first phase a meeting was arranged with the two TU Peatfect leaders of
the Railway Gaming Suite. In this meeting steps 1, 2, 3 and thefATAM were

16

3.2. Performing the ATAM

performed. In preparation of the meeting some informati@s \went to the project
leaders containing a short overview of the ATAM and somermgtion on business
goals as they are used in the ATAM. This was done to speed ujirshsteps during
the meeting and to make the participants familiar with thaxpss.

At the start of the meeting the method was further explaiodté project leaders.
After this one of them presented an overview of the system.hértspresentation
was given about service oriented architectures as an agipfoathe Railway Gaming
Suite. Some example scenarios were created beforehandseddiuring the meeting
as a stimulus for the process of generating quality atitbdior the utility tree. An
example scenario is:

New service types (new player roles) must be inserted irgosgfstem
without extensive changes/work on the existing architectu

The example scenarios were considered during the meetithgeamones constructed.
They were categorized in eight quality attributes; perfance, flexibility, system con-
straints, reliability, ease of use, maintainability, extibility and functionality. From
the start it was clear that performance and extendibilityevieo of the most important
quality attributes. The next meeting was planned to be withesof the stakeholders
from ProRail as well as the TU Delft project leaders.

3.2.2 Phase Two

After the meeting of the first phase the results were prodesske used in the second
phase. The main event of this phase was a meeting with thegbieaders from the
TU Delft and five stakeholders from ProRail. In preparatiothés meeting the stake-
holders were asked to come up with some use cases. In ordeidmthe construction
of use cases some questions were composed together witb/tbelit project leaders:

e For which (future) ProRail project could the Railway Gamigite be used?

What would be played/simulated in the gaming session?
e Who are involved in the gaming session?

e Which simulators/applications would be used in the gaméessi®n?

What results are expected from the gaming session?
e What is the set up of the gaming session?

A complete overview of the answers to these questions issiowppendix A. Dur-
ing the meeting the collected use cases were discussedaifiedl Some additional
guestions were asked for each of the use cases:

o With how many players would a session be played? (10-10@)100
e Will there be new players joining a running session?
e Will there be new player roles joining a running session?

e How long will a session take? (hours-days)

17

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

e Where will a gaming session be held? (single room-buildiiffgrent locations)
e How much time will there be between playing sessions? (resyhburs-days)

In addition to these questions about each use case, someabgoestions where
asked:

¢ How many different applications should be connected to tB&R (10-100)

e Could you come up with a project with more or less players?Pgkample, zero
or one player)

e What kind of timing should be supported for the scenariosht{nuous(real-
time)-turn based-as fast as possible)

e How often will the RGS be used?(weekly bases-monthly bases)

e How many preparation time is there for each scenario?

e Should it be possible to run multiple scenarios at the same?i

e Who is responsible for connecting new simulators and agiins?

e Who is responsible for preparing a gaming session?

¢ Will there be spreading of sensitive information during angjieg session?

The meeting lasted for two hours. Therefore the questione asked to get as much
information as possible without going into an elaboratérstarm session as is custom
in this phase. The questions were designed to get more trigitfe quality attributes
from phase one. With the results of the meeting we could cactsa new list of qual-
ity attributes; extendibility, performance, consisterayailability, flexibility, usability
and maintainability. This list of quality attributes wasnstructed together with other
RGS project members of the TU Delft research team. In thegention these quality
attributes are further explained. The next section alsuiges the other results of the
two phases, the utility tree, analysis of a couple of usesase description of the
sensitivity points of the system.

3.3 Results of the ATAM

The previous section handled the process of performing T@dvA The meetings that
were held in the two phases were described. In this sectiolo@keat the final re-
sults of the meetings. First the quality attributes areestand explained. Then the
constructed utility tree is shown including the scenarfw tvere constructed. After
which the use cases from the second phase are analysedy Hieadensitivity points
of the system are described.

18

3.3. Results of the ATAM

3.3.1 Quality Attributes

Quality attributes are a core concept of the ATAM. As disedss section 3.1.1 one of
the purposes of the ATAM is ‘eliciting and refining precisatstnents of the architec-
ture’s driving quality attribute requirements’. From theetings in the two phases we
could extract the seven driving quality attributes for trelRay Gaming Suite project.
We use the RGS as a case study to get some insight into theeewuits of gaming
simulation suites in general. During the evaluation thiswaken into account. In
this section we will give a short explanation of these quadittributes the way they
are meant for this project as well as explain their importaior a gaming simulation
suite. We start with the three most important attributesfgomance, extendibility and
consistency.

e Performance: The architecture must be able to meet theinealrequirements
of the RGS. In any gaming simulation suite it is important timimize the lag
caused by communication middleware.

e Extendibility: The ability to extend the system with new ftionality and new
games and simulators. As we stated in chapter 2 a suite idexthoh of ap-
plications. Since simulation gaming is targeted at trgrand decision making
this makes it an application domain that is sensitive to ghranneeds. Thus the
extension of the collection is important for gaming simigiatsuites.

e Consistency: The RGS must be able to run in different timeesodimportant
parts of consistency are causality and synchronizationsta®d in chapter 2
these are important aspect of simulation gaming.

Even though performance, extendibility and consisteneyttag main quality attributes
for the RGS, there are some other attributes that are imgorfdese are availability,
flexibility, usability and maintainability.

e Availability: Errors should be handled by either the systanthe facilitator, so
a session can run for several hours. Error free executiomp®itant for any
software system, gaming simulation suites are no exception

e Flexibility: Ability to connect new players on the fly. Ceirlascenarios can
require players to enter a session at a later time or onlyse o&certain events.

e Usability: The RGS must be easily reconfigured to play newades and ses-
sions. The many possibilities of using a gaming simulatioitesmakes it im-
portant to set up new configuration without to much effort.

e Maintainability: Professional support to maintain the RG8r any software
system it is important to have good documentation on the ndenarkings of
the system.

These quality attributes are primarily based on the RGSnaitheer ATAM evaluation
of a simulation gaming suite, the Wargame 2000 System [#8]las quality attributes
were exposed. They are however named differently.

19

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

The seven quality attributes are further refined into moeciic requirements.
The next section shows the utility tree that is constructétl these quality attributes
with their refinements.

3.3.2 Utility tree

The utility tree for this project was constructed togeth@hwne of the researchers of
the systems engineering department at the faculty of TéabpadPolicy and Manage-
ment working on the RGS project. The refinements of the eightity attributes are
shown and scenarios associated with them are given.

Utility Tree

Quality Attribute | Attribute Refinement |

Scenario

Performance

Real-time play

Run a gaming session with 50 playe
while keeping it in real-time

Redundancy

Message publication is dependant
the scenario, only useful informatio
is published by a component

Extendibility

New applications

New project requires new applicatiq
to be connected to the system withg
to much change to overall system

New simulation com-
ponents

The ability to extend the architectur
with new simulation specific compd
nents

New ontology

The ontology can be extended by

simulation expert to contain more data

types

Consistency

Time paradigms

A gaming session can run in discre
mode

A gaming session can run in contin

a

te

-

week

ous mode (real-time, slower or fastef)
A gaming session can be paused
Causality Events in the system are strictly
chronological
Synchronization Events in the system are synchronized
in all applications
A Session Duration Gaming sessions can take several
Availability)
hours; system needs to stay up the en-
tire time
Failure Detection Logical faults can be detected at the ar-
chitectural level
Flexibility Support new players | During a running gaming session new
players can join the game
. Session-to-session Reset the gaming environment to play
Usability . e :
a new session within 5 minutes
Scenario set-up A new scenario can be set up in ohe

20

3.3. Results of the ATAM

ProRail will maintain the architecture
Extension of the RGS is done by Pro-
Ralil

Table 3.1: Utility Tree

Maintainability | Documentation

3.3.3 Use Case analysis

In the second phase of the ATAM a number of use cases weredregpthe stakehold-
ers. In this section we will analyse some of them by lookinthatquality attributes

that are important. From the questions we asked about theasss we can find the
risks that are involved with the use cases. With the risks ne diuring the analysis
we can identify the sensitivity points of the system. Thewsediscussed in the next
section.

Scenario 1: Emergency situation Every Ten Minutes A Train (ETMET) 2015

The situation is that during rush hour in 2015 with a timetaBTMET
a disaster happens. During the game session we look at hovatioeis
actors involved in the “product” train perform their own Wwand where
conflicts in the execution arise.

The most important aspects of this scenario are; many @ayéh different roles,
real-time applications (train driver, traffic controlleQonsistency between applica-
tions. The three most important quality attributes supgbhby this use case anger-
formance consistencyandflexibility.

Performanceis affected due to the real-time requirements of the syst€ome
player roles in this case are strictly real-time. For exawghen a train driver drives
from one station to another at a certain speed, the time déstak get there should
be the same as in real-time. Another aspect is the redundsribge messages. In a
system with many services, the number of messages shoulsl fesvaas possible in
order to prevent congestion in the network. Risks involvethwhis are that when
there are to many players the system gets clogged and iseuttatrieet the real-time
requirements.

Theconsistencys very important in a session like this because the playesare
closely connected to each other. When a traffic controlles aespecific route for a
train to go, the switches in the train driver games shouldeéb@scordingly before the
train driver arrives at the switch. This means the eventalghe strictly chronological
and synchronized across the system. The consequence tisalggmes need to ‘wait’
for each other. When one game is not done with calculationsraames can not
continue as well.

In this case there are a lot of different players with diffénmles, which translates
to different services/games connected to each other. Thjzosts thdlexibility quality
attribute. The consequence of this is that clear joiningquas must be defined.
The risk that emerges is that messages can get lost if theqotds not implemented
well. Another risk is that the entire session can lag in ofdem new player to join,
depending on the implementation.

21

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

Scenario 2: Bridge opening possibilities ‘Vechtbrug’

A situation at the ‘Vechtbrug’ with fixed and flexible bridgpeming times.
The game sessions examines the differences for the trafiicotier be-
tween the current protocol and the situation with flexiblielgpe-times.

This use case is concerned with multiple sessions runnifigrelit versions of the
same scenario. The main quality attributes areusability and extendibility of the
system.

For ProRail this is a typical case where they want to use th& R&y soon after
they encounter the problem. Ideally all services for suateaario are ready and it can
be played as soon as possible. Otherwise it should not tdkaddone person month)
to create new services to connect the required games oratinsll When all services
are ready, setting up a new scenario with them should notrtedte then one person
week. When the scenarios are set, it should not take moreatiheaple of minutes to
switch between them. Allisability refinements are supported in this use case. Only
part of these requirements can be solved by the architelstwrever, like the ability to
restart the services. The other part is dependent on thecapphs themselves, how
easily they can be reconfigured for a new scenario.

Connecting new services is part of thgtendibility of the system. The creation
of new services should be as generic as possible. New sermizéd also mean new
message types to send across the system (extending thegyntoA risk that emerges
from this could be that a new service provides a lot of new amestypes, used by
existing services. These services should all be updatad ttheupport these new
messages. This could potentially mean a lot of work.

Scenario 3: Traffic control in Japanese style

Two or more traffic controllers are leading the rush hourfittahrough
a congested corridor. Only ‘stop trains’ and ‘intercityitist are driving
here. They have new means of traffic monitoring for this. iSgttoutes
is done completely automatically, based on current plansema distur-
bance occurs, first the plan is updated and then given bablk to&chines
for setting the routes.

We analyse this use case so the other quality attribateslability andmaintainabil-
ity, can be handled as well. They are also supported in the ofigecases, but were
not specifically discussed.

Since most sessions can take several hours it is importargygtem stays up the
entire time. When an error occurs, it should either be hahblethe facilitator or
otherwise taken care off by the system. This supportatadability requirement.

ProRail will eventually maintain the RGS. Therefore docatagon on how to do
this needs to be of good quality. The quality of the docunt@mnaletermines part of
maintainability.

3.3.4 Sensitivity and Trade-off points

During the use case analysis we uncovered five importanits@ggoints. A sensi-
tivity point is an architectural decision that has a stroffgat on a particular quality

22

3.3. Results of the ATAM

attribute. We identified performance and extendibility \ae tnost important quality
attributes at the start of the ATAM. The sensitivity pointe aelated to these quality
attributes. The use case analysis showed the importandkafrequirements, such as
the synchronization and the session duration. Implemientatf these other require-
ments either directly affects the two main quality attrésibr there is a trade-off in
how strict they are implemented.

The first sensitivity point is:
The performance is sensitive to implementation of the sechure.

Implementation decisions on how to handle network deployraed message trans-
mission, for example, have a direct influence on the numbdrsie of messages
on the network. The delivery speed of messages is dependethteatransmission

protocol. All these implementation decision have an eftecthe performance of the
architecture. The types of scenarios that will be playeti thie Railway Gaming Suite

require it to be real-time with player numbers up to fifty.

The second sensitivity point is:

Making the system synchronized and keeping strict caysadimes at a
cost of performance.

Synchronizing the services with each other requires amditimessages to be send
across the network. This has a direct effect on the perfocmafinother effect is that
service need to wait on each other before continuing, soysiem® is as slow as is
slowest participant. The synchronization is however negliin this system and thus
is not a trade-off. The causality requirement is also a §eitgipoint that affects the
system in the same way as the synchronization.

The third sensitivity point is:
Increasing reliability comes at a cost of performance.

Making sure the system stays up during sessions of a coupleus$ requires moni-
toring mechanisms to check on all the applications. Thismaeaore messages being
sent across the network. Depending on the implementatidimeafnonitoring mecha-
nism this has more or less effect on the performance. Hermda-wff arises on how
reliable the systems should be while keeping the perforemanmind.

The fourth sensitivity point we identify here is:

Adding new players during a running session can disrupt ¢fadtime
requirement.

The ability to join a running session has the consequendeathaw service needs to
be brought up-to date with the current state of the systenmdXhis potentially takes
more time then there is available while keeping the systemming in real-time. A
trade-off must be made on how strict the real-time requirdmaust hold in the event

23

3. TRADE-OFF ANALYSIS OF THERAILWAY GAMING SUITE

of a new player joining.

The last sensitivity point we identified is:

Ease of adding new services, components or ontology istsent the
quality of the documentation.

As stated above the Railway Gaming Suite will be maintainedl extended by Pro-
Rail. Even though this will be done by the technical staffdgmogramming skills
should not be a problem) the implementation details andrtheriworkings of the
architecture are not common knowledge and most thus be welirdented by the
system architects.

3.4 Summary

In this chapter we have given an overview of the Architedtdirmde-off Analysis
Methods and shown how it was performed for the Railway Garinige. We started
with giving the goal of the ATAM. Then we explained the stepsl @hases in which
the ATAM is performed in general and discussed the most itapbterms, utility tree
and scenario.

After the introduction of the method we continued to show hiowas performed
for the Railway Gaming Suite. First we described how the thases were performed,
by describing the meetings that have taken place. Then ticermes of the meetings
we supplied, by means of the quality attributes, a utiligetran analysis of some of
the use cases and finally an overview of the most importasitsgty points and what
trade-offs there are concerning them.

24

Chapter 4

Service Oriented Architecture

Service Oriented Architecture (SOA) is a paradigm for mimdeh distributed software
architecture. This gives us two terms that are importamhaiasoftware architecture
anddistributed A definition for software architecture is given by Clemesitsl. [12]:

Software architecturés about structural properties of a system. Structural
properties can be expressed in terms of components, ilatgoreships,
and principles and guidelines about their use.

A distributed systeris described by Andrews[4] as

Several autonomous entities that communicate with eactr dth mes-
sage passing.

In this chapter we will focus on a service oriented architexfis a form of a distributed
architecture. Thereby answering the research question:

e RQ2.1What are the principles of a service oriented architecture?

First we take a look at the principles of distributed arattitees in section 4.1. Then
we focus in service oriented architectures in general ired.@ell as some design ap-
proaches for building a SOA. Finally we give an example of ttha Railway Gaming
Suite could look like using SOA as the underlying architestu

4.1 Distributed Architectures

As described above, a distributed architecture is resplengdr the communication
between entities or otherwise calleddes The nodes are located on two or more
systems (computers) and are connected to each other theongtwork connection.
We take a look at the two important aspects of a distributeditacture that facilitate
the communication between nodes across a network, hamejgage transmission
and network deployment.

Message transmission is the way a message is sent from oremadother. There
are three main techniques for this, unicasting, multiogséind broadcasting (Figure
4.1). In unicasting(a) a message is sent from the sendeughrthe network to one
specific receiver. In multicasting(b) a message is send ttmmsender to multiple

25

4. SERVICE ORIENTED ARCHITECTURE

= “.
E Bl g B

-] - -]

a) unicasting b) multicasting) broadcasting

Figure 4.1: Message transmission

specific receivers. Finally in broadcasting(c) a messageris from the sender to all
applications in the network.

Network deployment is about the connection of the nodes ieta@ark. There are
two techniques for this: peer-to-peer and client-servaguie 4.2). In peer-to-peer(a)
all nodes are connected to each other and all nodes are tlee Basrpossible to send a
message to every other node directly. In client-serveh@etis a special node (server)
to which all other nodes (clients) connect. All messagessare to the server node,
which in turn sends it to the correct receiving client nodéss possible to construct
hybrid solutions for node connection. For example a pegrer server network,
where each server has a number of clients attached to it. lidrescstill connect to
a single server, but the server may need to relay a messagetttea server, which
in turn sends it to one of its clients. Another constructi@uld be using a 'super-
server’, where multiple servers are connected to a singleeisserver’. Exploring
these constructions further is outside the scope of thisrtep

a) peer-to-peer b} server-client

Figure 4.2: Network deployment

4.2 Service Oriented Architectures

Service-oriented architecture (SOA) is a very popularigéecture paradigm
for designing and developing distributed systems. SOAt&wls have
been created to satisfy business goals that include easflenilale in-
tegration with legacy systems, streamlined business psese reduced
costs, innovative service to customers, and agile adaptatid reaction
to opportunities and competitive threats. [7]

26

4.2. Service Oriented Architectures

In this chapter we look at the high level ideas behind seri@nted architectures,
without going into a specific implementation. The introdoictof this chapter stated
that a distributed architecture connects nodes in a netteodach other in order to
make communication possible. In a service oriented arctbite the nodes are called
services Because a SOA is a distributed architecture the node&esrwant to com-
municate with each other. The need to communicate arises wlservice requires
information another service can provide. In a SOA the retiugservice is called a
consumer servicand the service that delivers the informatiopravider service It
is possible for a service to require and provide informatiemto be a consumer as
well as a provider. Before services can communicate thegl teeénd each other. In
service oriented architectures there is an additionaieerele, which can be used for
this, called theservice brokerPublishing services need to announce themselves to the
service broker. The service broker keeps an index of whét &awice provides for the
consumers to request. This way a consumer can find out wheget the information
it needs [24].

What we see in the above description is that the notion ofices\vs central in
SOAs. Bianco et al. [7] describe the following charactéssof an ideal service in a
service oriented architecture:

e A service is self-contained. The service is highly modulzd ean be indepen-
dently deployed.

e A service is a distributed component (or collection of comguts). The service
is available over the network and accessible through a namoeater other then
the absolute network address.

e A service has a published interface. Users of the servicg medd to see the
interface and can be oblivious to implementation details.

e A service stresses interoperability. Service users andges can use different
implementation languages and platforms.

e A service is discoverable. A special directory servicevedldhe service to be
registered, so users can look it up.

e A service is dynamically bound. A service user does not nedthve the ser-
vice implementation available at build time; the serviceted and bound at
runtime.

These are the ideal characteristics, in most cases someissmgnor not fully im-
plemented [7]. The three most important are that servicesaasely coupled, self-
contained and discoverable over the network. In the nextestilons we go deeper
into the design approaches of building a SOA implementadiath how they have an
impact on the overall functionality and application of the/As

SOA is an architectural paradigm and therefore many impteations of it are
possible. In literature service oriented architecturefierodirectly linked to Web
Service$. This is however one possible implementation of a SOA. Thoeeen this
report we do not go into the specifics of Web Services.

Ihttp: //enwikipediaorg/wiki/Wehservice/

27

4. SERVICE ORIENTED ARCHITECTURE

4.2.1 Network Deployment

The SOA paradigm does not specify a strict design approacthéonetwork deploy-
ment. In the first section we showed two approaches for n&tdeployment. Here
we will look at their impact on the system.

In a client-server model all services connect to a singleesdrub. This increases
the flexibility, because new services only need to connettte¢@erver and it takes care
of the rest. All messages need to go through the central hblghvwhas a negative
effect on the performance. The service broker structureritesi above can be imple-
mented as a client-server model. The brokering softwaréés @alled arEnterprise
Service Bus (ESBH SOA solutions [7]. All services interact only with ESB, igh is
responsible for the data routing.

In a peer-to-peer model the services are directly conneotedch other. This has
a negative effect on the flexibility of the system, since feerg new service a new
direct connection must be implemented. On the other handitket communication
has a positive effect on the performance. In a strict pe@egr implementation all
services are equal. When we deviate a little from this we ogplément a service
broker structure in a peer-to-peer environment. We canemae special service (a
service broker) which is responsible for connecting thesioervice to each other.
This way all services need only announce themselves to theEsdroker, making it
more flexible. After announcement there is a direct conoedid the other services
and data is sent directly, keeping the performance high.

4.2.2 Message Transmission

The three message transmission techniques describedimnséd are all possible in
a SOA implementation. It depends on the functionality ofghstem which technique
is most applicable. The unicast technigque can be used wheiceseonsumers know
exactly which of the providers has the information they naed information provided
is always only interesting for one service. The advantaghisftechnique is that the
number of messages is limited to the essential. The muitieabnique can be used
when most messages are interesting for more then one condaroeder to make sure
messages are sent only to the service consumers that wanatimore complex mech-
anism is needed. Depending on the mechanism it is possibEntbto many messages
across the network, with a chance of decreasing the ovezdthppnance. The broad-
cast technique sends all messages to every services. Thalmaessage are received
by the consumer that needs them, but also by consumers thetta®ed them. The
consequence is that too many messages are sent and thengerderdecreases.

In service oriented architectures a popular mechanism &ssage transition is a
publish-subscribe mechanism. Which is a multicastingriegke, where it is possible
that the number of receiving nodes is one, some or all of theratodes. This means
it can unicast and broadcast as well. The publish-subsamdsehanism is based on the
observer pattern defined by Gamma et al. [16]. Each servitpualish and subscribe
to messages. Services are made aware of the published atfomin the system and
can directly subscribe to it. This way messages are only teerdceivers that want
the information. Even though publish-subscribe mechasiare often used in service
oriented architectures it is not obligatory to do so.

28

4.2. Service Oriented Architectures

4.2.3 Service Discovery

One of the SOA characteristics is the ability of the serviodid each other. The need
for this is dependent on the network deployment and messaggtion techniques that
are chosen. In a client-server system using an ESB, semass only know how to
connect to the ESB. Services can be completely unaware bfather.

In a strict peer-to-peer system all services need to be madeseof each other.
This means either the services search a specific address Ispéang for other ser-
vices, or they need to have a list of all addresses of the sieices in advance. In
the first option the address space should be limited (a spdEifaddress range for
example) otherwise it takes to long too find other servicdse §econd option makes
sure the services are able to find each other. It is howevefllgble, since locations
of new services that want to join the network need to be knowadivance.

The less strict peer-to-peer option described above haadventage of a single
connection point, like with the ESB. Services need to anneuthemselves to the
service broker. It will keep a registry of all service congrmand providers and send
their addresses back to the newly connected service. Thiesaan in turn connect
to the other services in the system. This option has the fliyibf having a single
connection point at start-up.

4.2.4 Interoperability

Another important characteristic of a service orientedhigecture is that the services
are self-contained. A consequence is that the servicesraremented in different

languages and have different object models. This chaisiitenf SOAs leads to mis-

matches in technology and messages types. The architesttatdd make sure this
is handled correctly. In a SOA the interpretation from ongcobmodel to another is
often calledadaptingand is done by what is calleatdapters One way to do this is

sending data from one service to the other by adapting ittjreto the object model

of the receiver. Another way is to adapt it into a intermealiabject model and from
the intermediate object model to the receiver object model.

a) language to language b) language to intermediate
translation language translation

Figure 4.3: Message translation

For example four diplomats (a French diplomat(F), a Rusdiplomat(R), a Chi-
nese diplomat(C) and a Dutch diplomat(D)) want to commueieath each other (see
figure 4.3). This can be done by using interpreters for eattopdiplomats. Six inter-
pretors are needed then (F-R, F-D, F-C, R-D, R-C, C-D). Asitiraber of diplomats
increases, the number of interpreters increases with ff&”9™9. Another way

29

4. SERVICE ORIENTED ARCHITECTURE

to do it is to introduce a new intermediate language (for gdar&nglish). Now each
diplomat needs one interpreter, interpreting from its oamgluage to English and the
interpreters can communicate directly to each other iniBngNow as the number of
diplomats increases the number interpreters increashe aame rate. Using an inter-
mediate object model makes the system less complex and regilelél However an
extra adaptation of the data is needed, which has a negéftaet en the performance.

4.3 Railway Gaming Suite

In chapter 2 we gave an overview of the Railway Gaming Suitmaesxample gaming
simulation suite. With the description of service orienédhitectures above we can
construct a high level design of the Railway Gaming Suitagisi SOA architecture.
In figure 4.4 an example is given of some services that willdoe @f the RGS. We use
the traffic controller game (PRL) and one of the simulatoRI§0O) in this example
since they are already in development. The gaming serviees a

e Timing service, responsible for time management, synéhation and causal-
ity.

e Logging service, responsible for keeping track of eventsndusessions, like
human interactions and time-tables.

e Facilitator service, responsible for providing controltbe system to the facili-
tator.

Gaming
Services

Railway
Gaming Suite
Services

- -‘
J
\
J

Figure 4.4: High level architectural overview of part of R&S

The architecture has been depicted in a bus like fashionthiiis not necessarily
the network deployment option for the RGS. Message trarssomiss handled in the
data distribution management module and service discamehe service registration

30

4.3. Railway Gaming Suite

'S N

Service

Figure 4.5: High level architectural overview of a service

management module. In the case of an intermediate modeistlailso part of the
architecture, we call it the data model module in this case.

We can take a closer look at what a service should looks ligerdi4.5). The main
components in a service are:

e The application. For example PRL see figure 4.6.

e An adapter. This could be either adapting to an intermedigject model or
directly to the target object model. In the latter case thepser should contain
adaptation to all other object models.

e Communication interface. This interface takes care of tepting to other
services, the implementation of this depends on the desgisidns taken.

'S N

User

PRL Service

Figure 4.6: High level architectural overview of PRL Game

31

4. SERVICE ORIENTED ARCHITECTURE

4.4 Summary

In this chapter we have taken a look at service oriented tathres as a form of dis-
tributed architectures in order to answer the sub questighat is a service oriented
architecture? First we gave a quick look at distributed igectures in general. We han-
dled the two main concepts of network deployment and medsagsmission. Then
we have taken a closer look at service oriented architextuiée looked at the roles
nodes can have in a SOA and then delved deeper in the concaseofice. Next we
looked at different design approaches for network deplaytnmaessage transmission,
service discovery and interoperability. Finally an exaenpVerview of the Railway
Gaming Suite was given using the service oriented paradigoonnected the games
and simulators.

32

Chapter 5

Service Oriented Gaming and
Simulation

In this thesis we want to test whether an architecture bageithe service oriented
paradigm is an appropriate choice as a simulation gamirng atéhitecture. In chapter
7 we will evaluate this according to the quality attributes found during the ATAM
evaluation to answer the research question:

e RQ2 How well does a service oriented architecture support thairements of
gaming simulation suites?

In order to answer this question we can look at the principfeSOA as discussed
in chapter 4. The performance requirement however can Heated by performing
tests. In order to get these test results for a SOA archiete have implemented a
prototype architecture based on the SOA principles. Implging a prototype archi-
tecture also gives some insight in the ease of making a SOpikgaimulation gam-
ing aspects in mind. Using this prototype to make a test siegaes some hands-on
experience with connecting applications to the architecand the extendibility re-
quirement. This chapter is related to the research question

e RQ2.2Can we construct a prototype SOA to test performance regeints?

The architecture is designed to facilitate the gaming sitimh specific function-
alities, namely real-time play and system wide synchrdiina In this chapter we
will handle the design decisions for the prototype and theaddmplementation. The
name of the architecture is Service Oriented Gaming and I8tion (SOGS).

5.1 Design

The Service Oriented Gaming and Simulation (SOGS) ardhitecaims to provide

the flexibility and high performance that is needed in ganaing simulation suites. In

this section we will describe how the four main design aspésections 4.2.1 through
4.2.4 are handled for the SOGS architecture. Furthermorteakeat the design of

the gaming simulation specific functionalities of secti@nk.1 and 2.1.2 for the SOGS
package.

33

5. SERVICE ORIENTED GAMING AND SIMULATION

5.1.1 Network Deployment

In chapter 4 we have shown there are two main ways to handhetherk deployment
from an architectural perspective, client-server and-pe@eer. For the SOGS archi-
tecture the peer-to-peer approach was chosen. The reagbisfohoice is the that the
peer-to-peer approach has the potential to reduce the drobdata send across the
network. In this approach it is possible to send big messfgasservice provider to
service consumer directly without first sending it to theveeand then sending it from
the server to the consumer, like it would be in a client-sesystem.

5.1.2 Service Discovery

For SOGS a mechanism using a service broker (see sectiowd2thosen. The
role of the service broker is to connect the other servicesatdh other. This way the
services need only know the location (for example the IPeskjrof the service broker
and it takes care of the rest. This increases the flexibilitgesit is not necessary for all
services to be known or know each other at the start-up ofytsteism. Announcement
of a service is done by request. The ServiceBroker decidesahd if a service can
announce itself.

Servicel Service2 SenviceBroker

T
announcePublishingflist of publish events)
|

t
|
|
|
|
succeed

> find subscribers

|
|
! > find publishers
|

T
|
|
|
|
|
|

announceSubscribingtlist of subscribe events) |
|
|
|
|

succeed !

a’nneuncePuhlishing(list of publich event;;

|
|
| > find subscribers
|
|
,
i
|

connectSubscriber(Servicel)

connected{Servicel)

| succeed |

|
announceSubscribing(list of subscribe events)

> find publishers

|

|

|

| |
connectSubscriber{Service2) !
{

|

|

H

t

|

<onnect'e'd'(3erwce2)

b
|| succeed
|
Figure 5.1: Announcement protocol

In figure 5.1 the announce protocol is shown for two servicebsthe server. In
this example Servicel has an event which Service2 subsctiband the other way
around. At start up Servicel announces itself to the SeBvaleer both for publish-
ing events and subscribing events by sending a list with thdighing and subscriber

34

5.1. Design

events. Events are identified by event type. Service2 daesaime. When Service2
announces itself the ServiceBroker finds Servicel in itsdigl returns this to Ser-
vice2. Now Service2 has the location of Servicel to send ¥eate to. The other
way around Servicel is notified of the location of Service2H®yServiceBroker since
Servicel was in its the subscribe list. The announce messagalone by request. In
the example there is no problem with the request at the sehiricker side, thus the
announcements succeed. It could be the service broker estine request, or puts it
on hold.

5.1.3 Message Transmission

Message transmission in SOGS is done using a publish-sbésoechanism. In fig-

ure 5.1 it is shown that upon announcement the services areected by events they
publish and subscribe to. For each publishing event a coioneis created with all

subscribers of the event. This is done when a new serviceuaces itself. After an-

nouncement it is still possible to publish more or less eventsubscribe to more or
less events. This is done by making a request to the Sena&eBrThe ServiceBroker
decides when and if the new connections are made. The ptshitsttribe mecha-
nism reduces the number of messages send across the netveamkinimum, by only

sending to service consumers that requested the data.

5.1.4 Interoperability

In the SOGS architecture an intermediate language will leel.usThis decision is
instigated by the great diversity of possible games and latons that must be able
to communicate with each other. As such, this adds to thebflayiof SOGS as the
intermediate language makes that each new service onlyiedst able to translate
to or from this language. In reality it is more complicatedcause this requires the
intermediate language to contain all possible data thécserwant to publish. In the
case of the Railway Gaming Suite, this means the intermeediaguage should for
example be able to handle location data of the trains in aavisavironment (train
driver application), as well as time-table data (traffic trolher application). In other
words a clear ontology is required to make sure all servicesble to communicate
with each other. Constructing an ontology is specific to tfageagt the architecture
is used for. For SOGS a tool is designed to make the congiruct new objects
easier. This tool is called the SOGS Data Model Builder (sppefdix B. Extending
the ontology in an existing system requires the serviceptiate their adapters. An
example adaptation is given in the implementation sectioimteroperability.

The overhead of translating the message twice does not myhtree gain in flexi-
bility of the system. Part of this is because the differeqtligptions that are connected
to each other already require a message to be translateiglmtilhes.

5.1.5 Timing and Synchronization

As stated in chapter 4 one of the most important charadterief a service oriented
system is to have loosely coupled services. Therefore SCESSlseparate service
for the timing and synchronization. The synchronizatiorch@mism ensures the data
send across the network is synchronized.

35

5. SERVICE ORIENTED GAMING AND SIMULATION

One aspect that should be synchronized is global timing.syhehronization ser-
vice is ideal to handle the timing as well. The synchron@ativorks as explained in
section 2.1.2. In particular we use the second method dhestim that section, the dis-
tributed parallel synchronization mechanism. For timing ave chosen to integrate

SenderService ReturnerService SynchronizationService

T T

| next step

T

|

41

L}

| |

| |

> calculations] | :> caleulations ||
| |

|

service done

wait for services done loop

service done |

= -

:) Optional: wait for time synchronization

—

next step

> calculations

service done

calculation

wait for services done loop

service done

| |
|
|

Figure 5.2: Time synchronization in SOGS.

this in the synchronization mechanism, as described inose2t1.2. Before sending
the next time step a check is made to see if the system isustiflimg in correspon-
dence with the wall-clock. A catch-up mechanism is part ef timing to make up
for lost time. The details of the timing mechnism are expdiim the implementation
section.

5.1.6 Classes of SOGS

With these design decisions a class diagram of the SOG$ylibaalld be constructed,
see figure 5.3. The most important classes are:

e AbstractService
e BasicService
e ServicePublisher

e ServiceSubscriber

36

5.2. Implementation

SynchronizationService Service (Any)
p
1
uinterfaces O Remote
. ServiceBrokerinterface
RealTimer J7 :
1
BasicService ServiceBroker O Serializable
-ServiceBroker -ServiceBroker:this
AbstractService
Remote, EventProducerinterface O— «Interfacex 2 «interfacen —O Remote, Eventlistenerinterface
ServicePublisherinterface ServiceSubscriberinterface
| |
| |
Il |
Serializable, Runnable O——>@rvicePublisher 1 ServiceSubscriber| o serializable, Runnable

1

Figure 5.3: Overview of the classes in the SOGS package.

e ServiceBroker
e SynchronizationService

The first five classes are needed to connect applicationsctoaher. The Synchro-
nizationService is a specific application used in the syomiaation and timing mech-
anism. For the timing mechanism the class RealTimer is Usigdre 5.3 gives a high
level overview of the SOGS package. In the next sub sectiewilexplain the roles
of the classes by functionality as discussed in the desigtiose

5.2 Implementation

The SOGS architecture library is implemented in Java. Jasakosen because of
the familiarity of the developer with the language and us¢hefDSOL (distributed
simulation object library) library which is also written in Java. DSOL is a library that
contains functionalities to build a simulation environmefor this implementation
only the event system of the DSOL library was of interest.

The DSOL event system uses Java Remote Method Invocatior) (RM send
messages between applications. Messages are containgdrits in this system. A
DSOL Event contains an object containing an identifier fersburce, an object con-
taining the data and an EventType. The source identifier eaanly Java object, for
example a String. The data object can be any Java object &s ExantTypes are
identifiers for the Event. All objects send with RMI have todegializable.

Ihttp: //sk—3.tbmtudel ftnl /simulatiorynode/4
nhttp: //wwworaclecomytechnetworkjava/ javase'tech/index— jsp— 136424html

37

5. SERVICE ORIENTED GAMING AND SIMULATION

Next to the normal Event DSOL also contains a TimedEventckvhidds a time-
stamp to a normal Event. For the SOGS architecture we exdeth@deTimedEvent to
contain a unique message identifier. The new Event objedllisdcUniqueTimedE-
vent. The addition of the unique message identifier could téh robustness mech-
anisms in future builds. The unique identifier can be usedaxk the delivery of a
message without having to send the data again.

The DSOL event system is used to implement the publish-sillesmechanism
of the SOGS package. Publishing is done using DSOL's RemvetgProducer and
subscribing using DSOL's RemoteEventListener.

EventTypes act as identifiers. They are used to identify ¥hats a service wants
to publish or subscribe to. In SOGS we make a difference latvwieo different
EventTypes, namely EventTypes concerned with the apjgicatomain and Event-
Types used by the architecture. The difference is made beaae might want to add
extra operations concerned with only the architecturahermon-architectural Event-
Types. For example sending additional messages (corgatineunique identifier and
EventType) to an administrator service, to keep track oitlessages sent in the sys-
tem without having to send the big payload of the original sage.

5.2.1 Network Deployment

The peer-to-peer approach of the SOGS architecture reqthiesservices to commu-
nicate directly with each other. We have implemented thetibtService class to
set up the connections. AbstractService creates the slémséhe publish-subscribe
system, see section 5.2.2. Every service in the system neetiectly or indirectly
extends the AbstractService class. The AbstractServiemes the Java Thread class
and defines the run loop of the service:

public void run()

{
print Message("Service " + getServiceNamg() + " started");
preLoop();
synchroni zed (this)

{
whi [e(this. running)
{
try {
this. wait()
} catch (InterruptedException e) {
this.errorCeccured("’ unauthorized interruption during run'");
}
i nLoop();
this.notifyPublisher();
servi ceDone()
}
}

38

5.2. Implementation

post Loop();
}

Implementation of the preLoop, inLoop and postLoop methardsspecific to the ap-
plication(s) the service connects to the system. The waitd)serviceDone() are used
for the synchronization mechanism, see section 5.2.4 anc:fig 2.

5.2.2 Service Discovery and Message Transmission

As discussed in the design section we use a service brokdramise. A class appro-
priately called ServiceBroker is constructed for this. Tiscovery mechanism itself
uses a Java RMI registry at the ServiceBroker side. For ther gervices to find the
ServiceBroker class we extend the AbstractService classeXtending class is called
BasicService. It extends the AbstractService class wehftimctionality to find the
registry of the ServiceBroker by IP address and port numbdrthis connect to the
ServiceBroker. All services (except the ServiceBrokenhia system need to extend
the BasicService class. The connection of the servicesis by the ServiceBroker is
done as described above in the design section and furthkisg below.

The AbstractService creates two Threads, ServicePubbstteServiceSubscriber,
to handle the publishing an subscribing. The connectiohsd®n services are made
directly between the ServicePublishers and ServiceSiblessr Each ServicePub-
lisher and ServiceSubscriber that announces itself at #meic@Broker is put in a
list sorted by the EventTypes it publishes or subscribesTtoe ServiceBroker then
searches for each EventType that is published, whethes #rersubscribers to it and
connects them. The same way the subscribers are connectkd publishers, by
searching if there are publishers for the subscribe EvemJysee below for imple-
mentation.

private synchronized bool ean set Subscri ber (
Servi ceSubscri berlnterface subscriber,
Event Type event Type) throws RenoteException
{
bool ean success = fal se;
if (this.publishers.containsKey(eventType)) {
Arrayli st <Servi cePubl i sherlnterface> publisherlList
= this.publishers. get(event Type);
for (ServicePublisherinterface publisher : publisherList) {
/] if publisher is not the subscriber..
if (!publisher.getNane().equal s(subscriber.getNane())){
Il ... add the subscriber as a listener
to the publisher for the specific eventType
try
{
success = publisher. addLi stener(subscriber, eventType);
if (!success)
{

br eak;

}

39

5. SERVICE ORIENTED GAMING AND SIMULATION

} catch (RenoteException renoteException)
{
this.errorCeccured("set Subscriber: -
renote exception when adding |istener
+ subscriber.getName() + " to service "
+ publisher.getNanmge() + ".\n"
+ renot eException.toString());

}
}
}
}

return success;

}

After initial announcement a service can request to pulaisth subscribe to an addi-
tional EventType or remove an EventType. The ServiceBrtdlezs care of the con-
nection again. Other services can request the servicetimkeblish and overview of
the current publishing and subscribing services in theesysiThis is used in the syn-
chronization mechanism. The ServiceBroker class itsafrels the AbstractService
class and thus can publish and subscribe to events like apy sgrvice.

5.2.3 Interoperability

Since SOGS is written in Java and uses Java RMI to send maskagk and forth,
the content of the messages are Java Objects. The wrapget obthe RMI mes-
saging system is the UniqueTimedEvent for SOGS. Within thglle TimedEvent the
actual data is stored. UniqueTimeEvent requires this to bava Object again. All
application specific data must be converted to Java Objedsdier to send it to other
applications. The actual implementation of the Java O$jectree and dependent on
the data exchanged between the services. For example imailvealg Gaming Suite
information about trains could be published. We can imagiaeneed an object called
Train, with different attributes like type, maximum speadmber of passengers. Each
service needs to know exactly what the train object sent &inather service looks like
in order to extract the information. For this we use an adagtestruction as described
in section 4.2.4. Within the adapter it can then extract tii@rmation from the Train
object and adapt it to the application specific data. Thernmeeliate language consists
of Java Objects for SOGS. In order to make the process oficgeaeéw Java Objects
for the intermediate language easier and quicker a tool vesgead. More information
on the tool can be found in Appendix B

The adapting of messages works as follows in case of FRIS®@Rhdsee chapter
2). In this example FRISO want to publish a message whichames a train for a
particular PPLG (this is a part of the railway network). Thessage identifier is 1117.
This identifier is used by FRISO to indicate an ‘announcentraiessage. It is also
used in the data model for the EventTypes. In the SOGS acthitethe FRISO XML
message is adapter to the intermediate data model objecipamdarrival by the PRL-
service from the intermediate data model object to PRL dbjdeRL is written in Java
and uses Java classes for its internal objects. In this baginting is in milliseconds

40

5.2. Implementation

and the same in all applications, so no adaptation is nee@d#derwise the adapter
needs to take care of this as well. The Jave code is writtesengo code to keep it
simple. In appendix B an example is given with the completa ¢ade of an example
SOGS intermediate data model MessageType.

The FRISO-service gets the following data from FRISO. Thianeple is taken
from a FRISO-PRL communication log.

<ROOT>
<HEADER>
<MESSAGE | D>1117</ MESSAGE_| D>
<TI ME>10407</ TI ME>
</ HEADER>
<MESSAGE>
<PPLG_CODE>ASDZ</ PPLG_CODE>
<TRAI N_NAME>
<TRAI'N_NAME>1511- H 2</ TRAI N_NAME>
<TI METABLE_REP>1</ TI METABLE_REP>
</ TRAI N_NAME>
</ MESSAGE>
</ ROOT>

The FRISO-adapter takes this and transforms it to the irgdiate data model. The
data is sent as a UniqueTimeEvent. The MESSABGEnNd TIME are used for the
EventType and timestamp. The intermediate data model asesobjects to store the
information of the message. With the SOGS Data Model BuitdbtessageType and
a DataType are constructed to store the data. The Messagé&iohs as follows:

public class AnnounceTrain
String ppl gCode;
Trai nNane trai nNane;

In this case the new data type is TrainName:

public class Trai nNane
String trai nName;
int tineTabl eRep;

The UniqueTimeEvent is constructed as follows:

AnnounceTrai n announceTrain = new AnnounceTrai n("ASDzZ", "1511-H2",1);

Uni queTi meEvent (1117, FRI SO Servi ce, announceTr ai n, 10407, Uni quel dentifier);

After adaptation this UniqgueTimeEvent is published by tReFO-service. The PRL-
service is subscribed to this event and will receive it. TR Rdapter takes the Uni-
gueTimeEvent and adapts it for use by PRL. First it gets tha flam the Announce-
Train object and adapts it to objects as PRL uses them:

String ppl gCode = announceTrai n. ppl gCode;

41

5. SERVICE ORIENTED GAMING AND SIMULATION

and

Trainl D trainl D = new Trainl D(announceTr ai n. trai nNane. t r ai nNane,
announceTrai n. trai nNane. ti neTabl eRep) ;

Then using the EventType the data is given by the PRL-setwitliee correct method
in PRL:

announceTr ai n(Ppl gCode, trainlD);

5.2.4 Timing and Synchronization

Timing and Synchronization is handled by a simple serviee,SynchronizationSer-
vice which extends the BasicService. It is therefore cotateto the other services
by the ServiceBroker and can publish and subscribe to Eypasl The Synchro-
nizationService follows the synchronization mechanisomfifigure 5.2. It publishes
a NEXT_TIME_STEP message to the system. This allows all services tomaft
forming their calculations. It then waits until all servicbave transmitted they are
done with their calculations, They do this by publishing aRYECE_DONE mes-
sage. As soon as all services are done the Synchronizatioe&e&an send a new
NEXT_TIME_STEP message. Since the SynchronizationService regulaesyn-
chronization it has a different run method then the AbsBaotice which is con-
structed to integrate the synchronization, see below.

public void run()

{
preLoop();

whi [e(this. running)
{

}
post Loop() ;

i nLoop();

The inLoop handles the actual synchronization:

public void inLoop()

{
try
{

long now = SystemcurrentTimeMI1is();
set CheckLi st ();

next Ti neStep() ;
checkAl | Servi cesDone();

if (this.tined)
{

42

5.2. Implementation

Real Ti mer. get | nstance() . next Ti meSt ep(now) ;

}

} catch (InterruptedException e)

{
Systemout. println("unexpected close!");
e.printStackTrace();

}
}

To synchronize this mechanism to wall-clock time it can ieeRealTimer class. The
RealTimer check whether it is time to go to the next time stémot it performs a
Thread.sleep() for as long as there is time remaining inithe step. In case the step
took more time then it was allowed to use this delay is staneadbacklog variable and
the RealTimer does not perform a sleep so the NEXWIE_STEP message is sent
immediately. The backlog is used to catch up the lost timbémext time steps. This
is further explained below.

Upon initialization of the RealTimer a begin time is set, gihegame time, the
length of each time step and a time factor. The begin timea<thrent system time
(in milliseconds) at the initialization of the RealTimetid used to correct the error of
the slightly inaccurate Thread.sleep() method. Each tiee the current system time
is checked against the time the RealTimer expects it to be. effor is added to the
timer backlog.

public long nextTimeStep(long beginTime) throws InterruptedException
{
long used = SystemcurrentTimeMIlis() - beginTine;
this.backl og += SystemcurrentTineM I 1is()
- this.startTime
- this.currentTime
- used
- this. backl og;
long delay = Math.round(this.tineStep/this.timFactor - used);

this.currentTime += this.tineStep;

if (delay >= 0)
{
long catchUp = Math. min(this.backlog, delay);
this. backl og = this.backlog - catchUp;
long sl eepTime = delay - catchUp;
Thread. sl eep(sl eepTi ne) ;
return del ay;
} else

this.backl og = this.backlog + (-1 * delay);
return del ay;

43

5. SERVICE ORIENTED GAMING AND SIMULATION

The game time is the in-game time when the RealTimer is liziid. The Real-
Timer updates this each step with the size of the time steg tilite step sets the time
each step should take. When the nextStep method is calleoetiie time is given.
This is subtracted from the current time. The result is thedusme that it took to
finish all steps of the synchronization process as descabede. If this is more then
the time step size of the lost time (used time - time stepy &dded to the backlog.
The timing service can immediately continue to the next tatep. If the used time is
less then the time step, the RealTimer checks its backlogreak@s up as much time
as possible not exceeding the time allowed in the step (the step size). This way
the backlog is decreased each time there is time left in a Htdpe backlog is zero or
less then the time left in the step, the RealTimer calls theddhsleep() method until
the correct time is reached.

The final value given when initializing the RealTimer is adifactor. This can
be used to speed up or slow down the game time. This factogdses or decreases
the time allowed in each time step, without changing the stap itself and thus to
game time update. Using the time factor makes the RealTiasterf or slower then
wall clock time(real time).

5.3 Summary

This chapter describes the design and implementation abtatgpe service oriented
architecture. The architecture is designed specificaltysfimulation gaming suites.
The name of the architecture is Service Oriented Gaming andI&ion(SOGS). The
chapter first handles the design decisions for the architediy looking at the ap-
proaches of chapter 2 and 4. The SOGS architecture is desampe peer-to-peer
system using a service broker for service discovery. Meassamsmission is done
using a publish-subscribe system, where the messagesapteddo an intermediate
model. Timing and Synchronization is handled by a sepaeigce.

Next the implementation of the architecture is describegdGS is an architecture
written in Java. It uses a library called DSOL for the messggiDSOL in turn uses
Java Remote Message Invocation. The implementation sedtiscribes the details of
the Java classes that make up the architecture.

44

Chapter 6

Existing Architectures for
Distributed Environments

In the previous chapter we talked about service orientelitactures as a possible
approach for a distributed environment. In this chapterake t look at systems that
are currently in use in this field. The research questionscésted with this are:

e RQ3.1Are there architectures currently in use for simulation gansuites?
¢ RQ3.2What are the architectural approaches of these archies&ur

The goal is to give some background information on otheritactures in the field of
distributed simulation. In the chapter 7 we will use thesede how well a SOA ap-
proach compares to these architectures. The two archiésatliscussed in this chapter
are also part of the RGS work package 1 research, which wésrped at the same
time as this thesis project [22].

First we look at an architecture that has been developedebytiited States mili-
tary as an architecture for their simulation environmesgxiion 6.1). The architecture
is called High Level Architecture (HLA). It is a system thatsipecifically designed for
distributed simulation environments. Research has bena oo the ideas of HLA
by the department of systems engineering at the faculty ohd@ogy, Policy and
Management. They constructed a light weight version basddlL@\, called FAMAS,
which is described in section 6.2. Finally we give a shortreiesv of multi-player
entertainment gaming approaches in section 6.3. Mosttairtarent games provide a
multi-player aspect nowadays, this makes that there is af lexperience with multi-
player gaming in the entertainment games industry. Thismsers meant to give some
extra information on distributed gaming environments.

6.1 High Level Architecture

The Department of Defence of the United States has beenrchssga and working
on distributed simulation since the eighties. The Defendeaficed Research Projects
Agency (DARPA) started a project called SIMNET (SIMulatoENvorking) in the
early 1980s. The goal was to create a prototype for a rea-tistributed simula-
tor for combat simulation. The project was followed by DISgiibuted Interactive

45

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

Simulation)[14]. DIS was based on the design principlegifipeo simulation; auton-
omy of simulation nodes, simulation time constraints, graission of ‘ground truth’
information, transmission of state change informatioryamnd Dead Reckoning Al-
gorithms. The last three principles are concerned withlssorgzation of location and
positioning of nodes in a game world. More on this in sectid® @ multi-player
gaming.

After DIS came the current standard: High Level Architeet(fiLA). HLA builds
further upon DIS and SIMNET. It aims at building simulatioygsgems from compo-
nents. In HLA the collection of all applications is calledeslération, the applications
themselves are called federates. There is a software canptirat facilitates the con-
nection between the federates, called Run-Time Infrastre(RTI) (figure 6.1). The
HLA is defined by three components [17]:

e Object Model Template (OMT) provides a common method fooreing infor-
mation and establishes the format of key models (Feder@inect Model(FOM),
Simulation Object Model(SOM) and Management Object Mdd&i(M)). Sec-
tion 6.1.1.

e Federation Rules ensures proper interaction of simulgtiiofederation and de-
scribes the simulation and federate responsibilitiesti®e6.1.2.

e HLA Interface Specification defines Run-Time Infrastruet(iRTI) services and
identifies callback functions that each federate must pgevBection 6.1.3.

Federates

Data Collector/
Passive Viewer

=

Live
Participants

Simulation
Surrogate

Interface

Runtime Infrastructure

Figure 6.1: HLA federation, with some example federates

6.1.1 Object Model Template

In chapter 4 we have shown the interoperability approachesdmmunication be-
tween applications. HLA uses the intermediate languageoagh we discussed. ‘The
HLA Object Model Template prescribes the format and syntexedcording the infor-
mation in HLA object models, to include objects, attribyteseractions, and parame-
ters, but it does not define the specific data (e.g., vehial@stypes) that will appear

46

6.1. High Level Architecture

in the object model.’ [2]. HLA object models are used to didmca Simulation Object
Model, for a federate, or a Federation Object Model for alei@tes (federation).

‘The primary purpose of an HLA FOM is to provide a specificatifor data ex-
change among federates in a common, standardized formatcadritent of this data
includes an enumeration of all object and interaction elagsertinent to the federa-
tion, along with a specification of the attributes or pararsethat characterize these
classes.’ [2]. Thus describing the intermediate langualye.example object of the
FOM can be arrain object, with an attributsSpeed

‘An HLA SOM is a specification of the intrinsic capabilitiebat an individual
simulation could provide to HLA federations. The standardrfat in which SOMs
are expressed facilitates determination of the suitghilitsimulation systems for par-
ticipation in a federation.’ [2].

6.1.2 HLA Rules

There are ten rules that HLA federations and federates nolleiM The federation
rules are as follows:

1. Federations shall have an HLA FOM, documented in accoaanth the HLA
OMT.

2. In a federation, all simulation-associated object imstarepresentation shall be
in the federates, not in the RTI.

3. During a federation execution, all exchange of FOM dataramjoined federates
shall occur via the RTI.

4. During a federation execution, joined federates shadract with the RTI in
accordance with the HLA interface specification.

5. During a federation execution, an instance attributdl sleaowned by at most
one joined federate at any given time.

The rules for federates are:

6. Federates shall have an HLA SOM, documented in accordaitbaghe HLA
OMT.

7. Federates shall be able to update and/or reflect any gesttributes and send
and/or receive interactions, as specified in their SOMs.

8. Federates shall be able to transfer and/or accept oviperfsinstance attributes
dynamically during a federation execution, as specifieth@rtSOMs.

9. Federates shall be able to vary the conditions (e.gsltbids) under which they
provide updates of instance attributes, as specified in §@Ms.

10. Federates shall be able to manage local time in a way ftifledlow them to
coordinate data exchange with other members of a federa&@iem section 6.1.3.

a7

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

6.1.3 The Run Time Infrastructure

The Run-Time Infrastructure(RT]) is responsible for cartimgy the federates together,
in fact it is what makes separate federates a federationinifiementation of the RTI

is not set, so various implementations are possible. Theatesn is that a federation

can only have one RTI. All communications between the fadsrgoes through the
RTI. In terms of network deployment this is a client-servathitecture (section 4.1),

where the RTI is the server and the federates the clients. Rlhgrovides several

services for the federates they will be discussed in moraildetlow.

e Federation management

Declaration management

Object management

Ownership management

Time management

Data distribution management

Federation Management

The Federation management part of the RTI is responsibleréation, dynamic con-
trol, modification, and deletion of a federation executibimst the federation execution
must be created, then the federates can join and resign fratrwill. [1][10].

Declaration Management

All federates have to declare their intent foformation generatiomo the declaration
management. Declarations must be conform the FederatiggctModel of the fed-
eration they join. High Level Architecture uses a publisibscribe mechanism as de-
scribed in chapter 4. All information a federate declareshare (publish) is available
to all other federates. Federates can use declaration miaesag services exclusively,
data distribution management services exclusively, oh logiclaration management
and data distribution management services to declaretéation toreceive informa-
tion. [1][10].

Object Management

Object Management is responsible for registration, maatific, and deletion of object
instances and the sending and receipt of interactions. &lsjelst a federate wants to
instantiate must get an ID from the object management paheoRTI services. This

object ID is then used whenever the federate creates oedaetobject, or whenever
attribute updates or interactions are sent. Delivery ofotliglished objects is handled
by the object management service. There are two transpwiteg: best effort and

reliable. [1][10]. The HLA implementation we used for thete(PitchRTI, see below)
uses TCP/IP protocol and shared memaory for the reliablep@n service. For the best
effort transport service it uses UDP/IP unicast, UDP/IPtioast and shared memory.

48

6.2. Lightweight architecture FAMAS

Ownership Management

Ownership Management allows responsibility for an objedid¢ shared or transferred
between federates. The federate that instantiates antdigsmwnership over it. It
is the only federate able to delete the object. Changing Wreeship of an object
is handled by the ownership management of the RTI. When acoly deleted all
federates are informed to not publish anything relatedeatiject any more. [1][10].

Time Management

Time management is concerned with the mechanisms for dlomythe advancement
of each federate along the federation time axis. There ixeng&al time axis, which
is maintained by the RTI Time Management services. Time rzk& shall be coor-
dinated with object management services so that informasiaelivered to federates
in a causally correct and ordered fashion. Time advancedeaonstrained by other
federates or unconstrained. At the highest level, the &ider appears to the RTI as
a collection of federates that communicate by exchangimg-stamped events. Or-
dering can be done using three different techniques; gtesdrime stamp order, best
effort time stamp order and receive order. All messages effiéderates are sent to
the RTI as time-stamped events. The RTI takes care of theedglat the appropri-
ate time. The local time of the federates is synchronizeth wie time axis of the
RTI. This mechanism works as described in tleatral synchronization mechanism
section 2.1.2. [1][10].

Data Distribution Management

Data distribution management (DDM) services may be usedelgrates to reduce
both the transmission and the reception of irrelevant dathereasgdeclaration man-
agementservices provide information on data relevance at the d#isbute level,
data distribution management services add the capahilityrther refine the data re-
guirements at the instance attribute level. It controlsliphbr-subscriber relationship
between federates in terms of object instances and abstratig spaces. [1][10].

6.1.4 HLA implementations

HLA has become a well-known distributed simulation arattitee. Several commer-
cial and non-commercial implementation are in use at the emylike PitchRT?,
CERTP and poRTIcé. It has been defined under IEEE Standard 1516. For the RGS
project it was decided to test a RTI developed by Pitch Teldgies, called PitchRTI,
which is compliant to the IEEE 1516 standard. It uses the

6.2 Lightweight architecture FAMAS

Distributed simulation architectures have been a resesubfect within the depart-
ment of Systems Engineering of the faculty of Technologyicdk@nd Management at

Ihttp: //www pitch.se/
http: //savannatnongnuorg/ pro jects/certi/
Shttp: //www porticoprojectorg/index phptitle = Mainpage

49

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

the TU Delft for some years. In 2005 the FAMAS Simulation Baake Architecture
was introduced in the PhD thesis report of C. Boer [9].

The aim of the FAMAS Simulation Backbone is to provide a fléxi@architecture
for the interoperability among various distributed sintidla models. This is done by
the component based, modular design of FAMAS. The compeneart be charac-
terized as technical or functional. The simulation modeés @nsidered functional
components, while the technical components are well-8pdcand more constant
components that provide common tasks used by the functmraponents. Figure
6.2 shows how the components are connected to each otherABAlMdes a publish-
subscribe message transmission approach. There are tameéachnical components

SlmUI:HIDn \\\ Cnnnol \\ (Real \\\\\ Functional

\ Modei/ ngraw/ quupmw/' adl Components
* * *
| Communication Layer
A A l

L2

i]
S ke, ‘
Gun Control \ / Time \ /;cqomg e — cthhnlcal
Subsystem Manager Subsystem omponents
~— ,/ \&_L 4_,./ \\ //

Figure 6.2: FAMAS Simulation Backbone Architecture ovewi

in the FAMAS architecture:

e Run Control Subsystem: starts, stops and periodically tomthe simulation
process.

e Time Manager: synchronizes the simulation time among miffe simulation
subsystems.

e Logging Subsystem: collects logging information from thetributed func-
tional and technical components into a central database.

The same components are shown in figure 6.3. Here we also steeanomponent,
the Scenario Object. The Scenario Object completely defirssulation run of the
distributed model. The Run Control subsystem is respaméilslthe interpretation and
execution of a scenario object.

In HLA Terminology, the overall system that consists of t@ichl and functional
components is called a federation, where the componentsathaconnected to the
backbone are federates. The separately defined technitdiliiactional components
give a modular structure to the architecture and allows lidaextended easily with
new technical components that allow additional servicée t€chnical and functional
components communicate by means of messages. The comtimmipeotocol of
the simulation backbone that supports this message exehsafigansmission Control
Protocol/Internet Protocol (TCP/IP)[22].

50

6.2. Lightweight architecture FAMAS

FAMAS Simulation Backbone Architecture

Technical
qcenano < qcenam\ Components
t’_lt-ject I Creator _,,

I :‘:-—J__. ___:—
.~ Logging | | Logging
Run Control T Miewer P Data
Component N —— ot
IEEEE 1 I
Backbone Time Logging
Manager Component Component

Functional
Components

Simulation
Models

Other
Applications

Control

Algorithms

Real Equipment
and Controllers = s s

Figure 6.3: A different overview of the FAMAS Simulation Bdmone Architecture

In the next sections two of the main technical componentsheilhandled, Run
Control and Time Manager. The logging subsystem is not éssdar the use of
FAMAS. Therefore it will not be discussed further. The coctien with the charac-
teristics of distributed architectures (chapter 4) andiggreimulation suites (chapter
2) will be discussed in the sections below.

6.2.1 Run Control

The Run Control subsystem is one of the core elements of thdAZ\Backbone
Simulation architecture. It has the control over all thesysitems. The Run Control
Subsystem and its interface is coded in Java. The Run Caulioglystem is responsible
for three main activities[9]:

1. Initialization and start of a distributed simulation engion (see figure 6.4)
2. Special Activities during distributed simulation exgon
3. Termination of distributed simulation execution (seef&6.5)

All technical and functional components are connectedéd®tn Control. After con-
nection a component can be reached by all other participaetsause Run Control
knows, registers and makes available its IP-address atdhparber. All connecting
components are known in advance and stated in the scengeict.olWhen a compo-
nent leaves it must inform the Run Control. The Run Contrdll iwiturn inform the
other components. The Run Control makes regular checketaisether components
are still connected. Communication between component®sng ¢h a peer-to-peer
manner, as described in section 4.1.

51

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

Backbone Time Run Control Functional
Manager (BBTM) Component Component
(FunC)
Start Run Control
Scenario

Read Information —»
Object (start FunccC)

l¢— AskJoinFederation(FunC/IPAddress) —

(StartBBT™M) L— AskJoinFederation(FunC/ServerPortNr) —|
ConfirmJoinF eds 3)}

l—— AskJoinFederation(BETM/IPAddress) ——p| TeltAdd = 8BTM)
Time le— AskJoinFederation(BETMWServerPortNr)—] + Yo J

ConfirmJoinFederation() —————|

All participant are attached.
The simulation can start.

— TellAddressSubsystem(BSTMWIF/PortNr) -pf

le— NextEvent(NextEventFromSoenanoObject) —

l¢———— BBTMCanStartSimulation()
TellAllParticip)

le—— TellAlIParticipants(ListOfParticipants) ——|

4 4
The simulation is running

Figure 6.4: Start protocol of FAMAS

Run Control Backbone Time Functional
Component Manager (BBTM) Component
(FunC)

I The simulation is running |

NextEvent(StopSmulation at time T)
Time le— NextEvent (Execute eventE 3t time T')—

Mechanism for checking
the next time (T<T")

T ifyNextEvent()

Stop
Simuiation

0
| Stop Simutation Run |

Close all
s Stopped() connections

l Close all oy
Sonnectons Glose FuncC)
Close all

connections (Close BBTM)

Figure 6.5: Termination protocol of FAMAS

6.2.2 Time Manager

The Time Manager, also called the Backbone Time Managesonsible for the syn-
chronization of time of the system. ‘It implements two typddime synchronization
mechanisms, namely conservative and real-time. Consex\tahe synchronization is
desired in order to achieve synchronization between dis@&eent simulation models,
while real-time synchronization aims to provide support éaperiments when real
equipment is involved’[9].

‘The basic principle for synchronizing the activities oétparticipants on the same
time axis using a conservative mechanism is as follows. pacticipant is assumed

52

6.3. Multi-player entertainment gaming

to send its first future event time, as a next event time stamghe backbone time
manager as a NextEvent message. Then the time manages sk&participant with
the smallest time stamp event and gives permission to perflois event by sending
a NotifyNextEvent message. After completing the eventpédgicipant sends its next
future event time stamp to BBTM again. Participants senttiegsame event time are
handled in first in first out (FIFO) sequence: the one who gsntvent time first is
allowed to proceed first.'[9] The real-time mechanism usessame mechanism, but
then the next event steps are restricted by time. The simoaléime is subdivided
in a sequence of equal sized time steps, and the simulatiameés from one time
step to the next. This mechanism is similar to thigtributed serial synchronization
mechanisndiscussed in section 2.1.2.

6.3 Multi-player entertainment gaming

Multi-player entertainment gaming is a very wide concephere are many different
ways it is approached in the entertainment gaming industrythis section we will
provide a short overview of the technologies used. Thisi@ederves the purpose
of providing additional information on distributed envirments in gaming. The tech-
nigues described in this section will not be specificallydiad as an approach for a
gaming simulation suite.

According to Smed et al.[27] there are three distinct cesdalistributed interac-
tive real-time applications; military simulations, netkovirtual environments(VES)
and multi-player computer games. While VEs simulate (fmbggieal-world) envi-
ronments, computer games do not necessarily belong toaiiong or VES[27]. The
different classes overlap a little, as can be seen in figure 6.

first person

shooters ~ Manager 5770es
games

Virtual computer
environments games @

flight simulators board
real-time games

sport games strategy

games

Figure 6.6: Relationship of simulations, virtual envircamts (VES) and computer
games.[27]

For multi-player the same distributed architectural apph®s are available as

53

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

shown in section 4.1. One of the main concerns has been tolgghaerformance
on the network. Independent from the architectural apgresithere is much to gain
from reducing the bandwidth requirements. The most comrmomniques are; packet
compression and aggregation, interest management andetgdashing [27].

Message Compression and Aggregation

There are two main techniques to reduce bandwidth requitenvehen we look at the
messages that are sent between applications, namely csBigireand aggregation.
With compression we try to reduce the size of single messag@s can be done by
either lossless techniques or lossy techniques. With delss¢echnique all data is
preserved, but there is a limit to the size reduction, up wr@pmately half the size
of the original message[27]. Lossy technique are able tocedhe size further, but
at the cost of some of the data. Using either of the techniggidependent on the
requirements of the applications.

Message aggregation merges several messages to redubeanldike headers.
Depending on the size of the actual data the reduction of datm send across the
network can be significant. For example two messages with slaé 24 bytes and
a header of 24 bytes (total 96 bytes), compared to a mergedagef 48 bytes
with a header of 24 bytes (total 72 bytes). Two techniqueghigrare timeout-based
and quorum-based [27]. In the timeout-based approach abages before a certain
time limit are merged and sent. In a quorum-based approacbdefiined number of
messages are merged. A combination of these techniquesaset as well.

Interest Management

Interest Management is a technique to filter data. Most oftithe the entities in a

system are not interested in the entire system. By spegifyihat information is of

interest for them the amount of data sent across the netvaorkbe greatly reduced.
This interest in data is often called an aura or area of ist@k Interest management
with auras is always symmetric. So when two auras intersegt are aware of each
other.

To achieve a finer-grade message filtering the aura is suledivin a focus and a
nimbus, being the observer’s perception and observedtshpecceptivity respectively
[6]. Now the focus of one entity needs to intersect with thahis of the other entity
to be aware of it. An example is given in figure 6.7. In the figwmesee a game of
hide and seek. The seeker is not aware of the hider, sincecis fdoes not intersect
the nimbus of the hider. The hider is aware of the seekeredihe hider’s focus
intersects the seeker’s nimbus. The filter based on the adnaigue we have shown
here is called an intrinsic filter. Another possibility isextrinsic filter, where the data
delivery is based on network attributes (e.g. address)ririsit filters are faster to
process than intrinsic filters, and even the network itsaff grovide them [27].

A way to implement these techniques is by using multi-cgstifor example the
publish-subscribe mechanism described in section 4.2fasts this kind of tech-
nique.

54

6.4. Summary

Hider's focus

N

g
L — y

Iiﬂ_culer’s- nimbuug-?y

Figure 6.7: Game of hide-and-seek.

Dead Reckoning

Another approach to decrease the number of packages ontiherkés dead reck-
oning [26]. Dead reckoning is used to synchronize locatimingbjects between dis-
tributed applications, for example player movement in &ithisted multi-player game.
This technique uses approximation to provide the loss afrination. The approxi-
mation predicts movement of objects based on previouslgived information. The
prediction is done based on velocity information. Sincesian approximation the
real location can be different from the calculated locatiBy sending information on
the exact location and a convergence technique the obcasidn is synchronized
with the location in the source application. Without the \@mence technique the
node would jump to correct location every time an exact locatipdate arrives. This
would result in jerky movement of the nodes in the visual envinents.

Without the dead reckoning technique exact location updatest be send regu-
larly. The technique decreases the time and update needsderiol and solves this
with the approximation in the receiving node. There areedéit implementations
where a trade-off is made between the amount of messagesandrttie calculation
made at the receiving node. Different implementations @anded in the same system
for different object types.

6.4 Summary

In this chapter we have discussed three approaches for ciimmgames and simu-
lators in a distributed environment. The goal is to proviéeKkground information
on the architectures used to compare to a service orientgebagh. This supports
the sub question: ‘How well does a SOA approach compare temgscurrently in
use?’ We started with a popular system in distributed sitrariacalled High Level
Architecture. This is an architecture specifically designdistributed simulation en-

55

6. EXISTING ARCHITECTURES FORDISTRIBUTED ENVIRONMENTS

vironments by the United States Department of Defense. Beithitecture based
on HLA is discussed. It is called FAMAS and has been devel@sed PhD project
within the department of Systems Engineering of the facaftyffechnology, Policy
and Management at the TU Delft. The HLA and FAMAS architeesuare part of the
comparison to evaluate SOA as a distributed gaming sinomapproach.

Finally we discussed some techniques commonly used in 4plalier entertain-
ment games. These provide some additional backgroundmation on distributed
gaming systems, but are not part of the evaluation of SOA.

56

Chapter 7

Evaluation

Up to now we have looked at what a gaming simulation suite dsteased on an exam-
ple suite we have determined the important requirementsasf & gaming simulation
suite. We have described several different ways to cortsruarchitecture to facilitate
the connection between the applications in the suite. Bichapter we look at how a
service oriented architecture can support the qualitybates we determined for the
example gaming simulation suite. This chapter is mainlyceoned with the research
guestions:

RQ2 How well does a service oriented architecture support thaire-
ments of gaming simulation suites?

and

RQ3.3 How well do the other architectures support the requirement
gaming simulation suites?

In the previous chapters we have looked at three archies;tt8BOA, HLA and
FAMAS. The evaluation is performed on all three of them. Hwr $ervice oriented
architecture we will look at the principles of SOA and we hawastructed a prototype
SOA (SOGS) to do some tests with. For the evaluation of HLA eaxeHooked at one
specific implementation, namely Pitch RTI. The FAMAS arebitire has only one
implementation and thus will be evaluated as it is. Of akeéharchitectures we have
made a test implementation and ran some experiments witih the

The evaluation of the architectures has been a team efféiiedRailway Gaming
Suite research team. The Pitch RTI and FAMAS implementativare research sub-
jects of other members of the team. The results in this etiatuare mainly based
on their efforts. The SOA research and implementation of S@f the focus of this
thesis. The evaluation of a SOA solution is therefore basethe implementation as
carried out in the context of this research project.

First we will take a look at the methods that are used for tre@uation. Then
we will go into the experiment set-up we used as part of théuatian. After which
we will look at the quality attributes from chapter 3 again.the subsequent sections
the quality attributes are evaluated for the three archites. After the evaluation we
discuss how SOA compares against the others in the nextarha¢re we will also
look at the sensitivity points we found during the ATAM. Thidll give some insight
into how the requirements influence each other.

57

7. EVALUATION

7.1 Evaluation methods

The evaluations of the architectures will be done usingethmethods: implementation
details, hand-on experience and tests.

e Implementation details: In chapters 4, 5 and 6 we discussed the implementa-
tion details of the three different architectures. The dpsons of these chapters
are used to see if the architectures support the requiresment

e Hand-on experience By making an implementation for the three architectures
we got some hand-on experience on the use of them. The SOGifatare
was used for the SOA part. The implementations of the otheraghitectures
(HLA and FAMAS) were made by two other members of the RGS teath a
they shared there experiences for this thesis report. Tdnsgi$ion experience
helped with the getting a feel of how easy it is to construdhape system with
the architectures.

e Tests For the real-time performance requirement a test set-gimplemented
for all the architectures. The specifics of the test set-eplascribed in section
7.2. The results of the tests showed us how well each arthiteperformed
with respect to this requirement.

In this evaluation we use the same value systems as is used RroRail WP1 report
[22]. For each requirement the architectures get assignemiua of -1,0 or +1 to
represent that the implementation of the requirement islq borderline, or a non-
risk, respectively for the given architecture.

7.2 Performing the Test

For the evaluation of some of the requirements we deviseddests. The test are
based primarily on the performance requirements. The testrgplemented by means
of an experiment set-up. The main thought behind the testdassr many messages
can be send between applications in a specific time framem Bre number of mes-
sages we can then derive whether it is enough to support tf@mpance requirement.
By implementing the experiment set-up and performing tisésteve get insight into
using the different architectures which helps with the estibn of the other require-
ments.

In total we performed 10 experiments for each architecturt different applica-
tion set-ups and different payload. These variables athduexplained below.

7.2.1 The Experiment

The goal of the experiment was to test how many messages v end from one
application to another within a specific time frame. We da thy finding out how
much time it takes for the architectures to get a messagedroapplication, transform
it and send it to a receiver, transform it back and give to #oeiving application. The
same message is transformed again at the receiver siderahtbdbe original sender,
where it is transformed again and given back to the first apfiin. In other words

58

7.2. Performing the Test

the round trip time of data published by an application. Ideorto keep this timing
as accurate as possible we wanted control over the numbeesgages at a time on
the network. Therefore we created two applications thatta@tadly dependable on
each other for sending messages. So on one side a messagg istken waits for
the return message before sending a new message. The alhavaits to receive a
message and sends it back. By controlling the number of seadeiver pairs we can
control the number of messages on the network.

Since all three architectures were written in Java we cood two Java appli-
cations for the roles of sender and receiver. Each of thererpats were performed
with the same sender and returner applications. A schematicview of the experi-
ment set-up is shown in figure 7.1. The applications work Hsvis:

e The sender application starts sending a message as sooesafoa starts. Waits
until the sent message is returned and then sends a new me3$agsend and
receive/returned times of each message are logged. At thefethe session
return times of each message are calculated as well as theenohmessages
returned in a specific time frame. The sender can change tfleaohof the
message. See below for more information on the payload.sizes

e The returner application waits to receive a message. As asamessage is
received it immediately sends it back to the sender.

Senders and returners are coupled in a one-to-one relatibese experiments.

One of the variables we want to test is the payload of the ngessaee below in
section 7.2.2. We want to know the exact size of the messadeguh To achieve this
we used the following method. We chose to use a Java Stringjstimy of a 7 digit
identifier followed by 40 ‘1s’. With the length of a Java Striwe could precisely make
messages of a specific payload size. In Java the empty Saleg 40 bytes, for the
first three characters this does not change, then for evarcfaracters it increases by
8 bytes. So a String of length 0-3 has size 40 bytes, 4-7 hai8iz8-11 has size 56
bytes, etc. The sender creates a default payload of 128 bytesking the String of
47 characters. At the start of an experiment it gets a midtipd increase the payload.
This works according to the function: 12@multirlierbytes for example a multiplier of
3: 128« 2% = 1024 bytes = 1 kilobyte (kb).

Each experiment run lasted 11,5 minutes. During a run thdtsesere logged 23
times after 30 seconds each time. Each time frame of 30 seaeadall a replication.
The first two and last replication were neglected. They sktoayive the architecture
time to start up and finish. During the test with multiple semkturner pairs (see
below) these were not started simultaneously. Since thersyis distributed the start
signal does not arrive at each application at the same titne synchronization mech-
anism however made sure this was solved after the first mesJdgs made that the
first round trip times were not average measurements. Inethdts we saw this was
indeed the case. Furthermore the replication times werdléahocally by the sender
applications, this means they we not synchronized exa¢tigrefore during the last
replication not all application finished at the same tim#éuigncing the performance.

The idea to neglect the first two and last came from a Java MesSarvicé per-
formance test done by Krissoft[29]. Their reason to do théswThe first two and

Ihttp: //wwworaclecomytechnetworkjava/index— jsp— 142945html

59

7. EVALUATION

Switch PortiD: 2 Switch PortlD: 3 Switch PortID: 4 Switch PortID: 5 Switch PortID: 6
App: Returner5 App: Returnerd App: Returner3 App: Returner2 App: Returnerl

PortiD: 1
LaptoplD: 37
App: Architectures

N

Setup Q Q Q
Performance experiment
Symbol |Coum | Description

B 1 | Switch 1gb/s
@ 11 Dell Laptop Switch PortlD: 9 Switch PortID: 10 Switch PortID: 11 Switch PortID: 12 Switch PortiD: 13
App: Sender5 App: Senderd App: Sender3 App: Sender2 App: Senderl

Figure 7.1: Schematic set-up of the experiment

last intervals were considered ramp-up and ramp-downvialigrrespectively. Ramp-
up intervals are times during which the systems are inangabieir message handling
capacities, typically via resource allocation, in resgotwsthe newly introduced client
load. Similarly, during ramp-down intervals, the systemss @ecreasing their capac-
ity in response to decreased client loads that result frainciempletion.” For us this

seemed a good precaution to take together with the reaseniiegd above. Therefore
we did the same. From the results it appeared neglectingrdtafid last would have

been sufficient.

We have extracted some graphs from the experiments showingftects of in-
creasing payload and the effect of having more applicat@mmmunicating in the
same architecture environment (two versus ten). Theséngrage shown during the
evaluation in section 7.4.

One of the requirements for the gaming and simulation aspfettte suite is to
have a synchronized system. Therefore the implementétotise experiment need to
conform to this requirement. As shown in the descriptiorhefarchitectures (chapters
4 through 6) each of them supports a synchronization methbd.experiments were
implemented with these methods activated.

7.2.2 Experiment variables

As stated above the experiments were performed ten timesafdr architecture. We
used two variables to get the results we wanted. The firsabigriis the number of
applications in the system, the second is the payload siteeahessages sent across
the network.

We vary the number of applications between two and ten, diathe application
used by the architecture. A minimum of two is required beeaus need a sender and a
receiver for the experiment. Ten is the maximum for this expent because of licence
agreements for the Pitch architecture, allowing for a maximof ten federates.

60

7.2. Performing the Test

For the payload we looked at the current implementation @liegtions of the
Railway Gaming Suite. Currently there is direct commun@abetween the FRISO
simulator and the traffic controller game PRL. We have madmaof the messages
sent between the two applications. Currently they use a Xttt for the data that
is sent between them. From the log we could conclude that ofofte messages
are small, less then 200 characters including XML tags. We ahw that some of
the messages were bigger, 6.919 and even bigger yet, 72@t2t&cters including
XML tags. These numbers correspond with payload sized afrettd®.5 kilobytes,
14 kilobytes and 1500 kilobytes. With these numbers in mirddecided to use the
following multipliers for the sender application; 3, 6, @ 4nd 15 corresponding with
payload sizes; 1kb, 8kb, 64kb, 512kb and 4069kb, respégctive

Figure 7.2: The set up of the experiment with the eleven [apto

Figure 7.3: Close up of one of the laptops used for the exparis

61

7. EVALUATION

Figure 7.5: The set up of the experiment during another sessi

7.2.3 System environment

In order to make the experiment results as valid as possiblbave taken some mea-
sures in order to avoid influences from outside the experievironment:

e All applications in the test set-up ran on a separate laptop.

e Architectural software, Pitch RTI, ServiceBroker and SyonizationService
(SOGS), and RunControl and BackBoneTimeManager (FAMAS®)oa the
same separate laptop.

e The laptops used in the experiments were identical highBeidXPS 17" note-
book computers that TU Delft uses for simulation (SimLaly) gaming (Game-

62

7.3. Quality attributes

Lab) purposes. Only difference was the size of the hard dritvich was 120Gb
on some and 160Gb on others.

An industrial grade, 1 Gbps switch was used to run the netwdiks switch
was the same one for each experiment.

Newly bought Cat6 cables were used for the network. The sables were
used in all experiments.

Network traffic was monitored in order to find and disable wassary use of
the network.

For each experiment, the same image of Windows XP servidedaith several
simulation environments was loaded onto the laptops. Ttereno effects from
prior experiments or prior use remained on the laptops.

Windows update functions and other disturbing factors stisdhdexing services
that could cause a load on the computers during the expetsmere switched
off as much as possible. The computers were given ample timiaifial tasks

to be carried out (some software tests for updates when temtipy system

starts).

Specifics of the laptop settings can be found in Appendix Ce physical set-up is
show in the pictures 7.2 through 7.5.

7.3 Quality attributes

The quality attribute requirements we acquired during thaM (see chapter 3) serve
as evaluation points for the three different architectuslow we show the require-
ments again and specify which evaluation method we will use.

| Quality Attribute |

Specific Requirement

| Evaluation method \

Performance (P1) Real-time play Tests . _
(P2) Redundancy Implementation details
(E1) New applications Implementation details &
Extendibility Hands-on experience
(E2) New simulation componentsimplementation details
(E3) New ontology Implementation details &
Hands-on experience
(C1) Time paradigms Implementation details
Consistency (C2) Causality Implementation details
(C3) Synchronization Implementation details
Availability (A1) Session Duration :;ZIS & Implementation der
(A2) Failure Detection Implementation details
Flexibility (F1) Support new players Implementation details
(U1) From session-to-session | Implementation details
Usability (U2) Scenario set-up Implementation details

63

7. EVALUATION

Maintainability | (M1) Documentation Implementation details &
Hands-on experience
Table 7.1: Evaluation methods for the quality attributes

7.4 Performance

There are two requirements we specified for the performattdbude. The two re-
quirements are; real-time play and redundancy. In tablé i& $hown that we evaluate
the first requirement using tests and second based on imptation details.

7.4.1 P1 Real-time play

We start with real-time play requirement. This requirenrequires the architecture to
handle up to 50 applications in real-time. Real-time in tdase means synchronized
with a wall clock, as discussed in section 2.1.1. Relatedhi®is that it should be
able to meet this requirement while keeping the system sgncted. As discussed in
chapters 5 and 6 all architectures include a synchronizatiechanism. The synchro-
nization mechanism of each architecture was integrateldeirexperiment implemen-
tation for the tests, see section 7.2.

In order to get some idea of what number of messages is relgtor&eep the
system real-time we look at the RGS applications that aesdir implemented, and
multi-player computer games. From the FRISO-PRL log (seti@e7.2.2) we ex-
tracted that the number of messages sent by one of the appigan one second
ranges from less then one up to around 15 at peak times. Om asid, in the cur-
rent implementation of communication between FRISO and BieLgame runs in
real-time. This number of 15 messages per second gives usl@ation for only the
FRISO-PRL case. We can imagine that when we connect moresgainaesimulation
this number increases. Furthermore, some applicationatra@nd more information
across the network, for example two train driver games senltication updates to
each other. In a research study of network game traffic [15]dhown that in the first
person shooter game ‘Counter Strikghe number of update messages per second are
a little less then 30 for each client. We take this as an uppend for the games in a
simulation suite. In the same report by Farber [15] it is shat 99% of the packages
are smaller then 0.25 kilobytes and none larger then 1.%h¥iés. We take the 30
messages per second as a threshold to evaluate this regotrem

The experiment we described above was designed to testdhéime play re-
guirement. The experiment is designed to calculate therr¢itmes of a message. The
total dependency of the sender and receiver resulted irathéHat there was only one
message (in case of one pair) or five messages (in case of fig¢ pa the network
at a time. By having this strict message limit to the numbemeksage we can see
the exact influence of having five times as many messages oetherk. In case we
did not implement this strict message limit, we would not\rimw many messages

http: //enwikipediaorg/wiki/Counter— Strike

64

7.4. Performance

were on the network at the same time. We expected other iigerould play a part
without the limited number of messages, like the hardwareisesl.

The one pair case shows the unhindered return times and éegiiwariant shows
the effect of having more messages on the network at the sarae The figures 7.6
and 7.7 show the results of the experiments. The resultsiaga on return messages
per 30 seconds. The fact that we use return times means wetmerdltiply the
number by 2 to get the results of the messages one applicatiosend. To compare it
with the real-time requirements we translate this to messagr second (m/s). From
the graphs we take the minimum results of the architectwre¢ount for the worst
case scenario.

1 pair: Maximum - Average - Minimum Messages Sent in 30 seconds (20
replications)

:

W Pitch maximum

Pitch average

g

Pitch minimum

B SOGS maximum

:

SOGS average

SOGS minimum

B FAMAS maximum

Numberof Messages
w

:

W FAMAS average

I I FAMAS minimum
——

1kB 8kB 64kB 512kB 4096kB
Message Payload

:

o

Figure 7.6: Results of the experiments with 1 applicatioin pa

Given the results we can see if the implementation of reqérd represents a risk
or not for the three architectures.

The SOGS implementation is able to handle more then 30020 m/s with
a payload of 8 kilobytes or less in an environment with justpplizgation pair. As
the payload increases this number drops to a around 156¢20*#n/s for the 4096
payload messages. For the case with five pairs we see that $&% to han-
dle 2500/30*2=166 m/s for a payload of 8 kilobytes or lesss tirops to around
90/30*2=6 m/s for a payload of 4096 kilobytes. Comparing ttoi the threshold of
30 m/s the SOGS implementation meets the threshold for graglbads, which make
up the majority of the messages. The larger messages mightrtare time, but the
catch-up mechanism of the RealTimer of the Synchroniz&8g&ovice of SOGS can
make up for this. We see from the graphs that the number ofagessper second
drops as the number of applications grows. Given the largeh@ad on the number
of messages we expect that it stays larger than the thresh@@d m/s. Furthermore
the SOGS implementation is only a prototype and with optati@ns the performance
can be better, without deviating from the SOA principleskiiig all this into account
the SOGS implementation of a SOA architecture receives &efks

65

7. EVALUATION

5 pairs: Maximum - Average - Minimum Messages Sent in 30 seconds (20
replications)

B Pitch maximum

Pitch average

Pitch minimum

B SOGS maximum

:

SOGS average

SOGS minimum

B FAMAS maximum

NUmber of Messages
N w
g 8

B FAMAS average

| FAMAS minimum

:

[=]
I

1kB 8kB 64kB 512kB 4096kB
Message Payload

Figure 7.7: Results of the experiments with 5 applicatioinspa

For the Pitch RTI implementation we see it is able to hand@0580*2=333 m/s,
for a payload of 8 kilobytes or less in the 1 pair setting. Tdrsps to 180/30*2=12
m/s for the larger messages. In the 5 pair setting we see filli@lsle to handle
5000/30*2=333 m/s and 150/30*2=10 m/s for the 8 kilobyte¢ess and up to 4096
kilobytes messages respectively. This is more then enaugteet the threshold of 30
m/s and thus PitchHLA receives a score of +1.

The last architecture implementation is that of FAMAS. We #&s implementa-
tion never goes over 150/30*2=6 m/s. For the higher paylb&ddrops to 80/30*2=5
m/s and even 15/30*2=1 m/s in the five pair environment. Wedigattly say this is
not enough to meet the threshold and this this posses a rislEANMAS receives a
score of -1.

7.4.2 P2 Redundancy

The redundancy requirements looks at the number of unresgessessages. To get
a +1 score in this respect the architecture must be able fwostup message filtering

technique. Since all three architecture use a publishesillessystem for the message
transmission they all get a score of +1.

7.4.3 Performance evaluation results

Table 7.2 shows the scores of the evaluation of the perfacemeequirements.

7.5 Extendibility

The extendibility quality attribute is about adding new kgaiions or functionality to
an existing architecture. In chapter 3 we refined this atteilinto three requirements;
new applications, new simulation components and new ogiedo In this section we

66

7.5. Extendibility

\ | P1| P2
SOA/SOGS | +1 | +1
HLA/Pitch RTI | +1 | +1
FAMAS 1+

Table 7.2: Scores for the performance evaluation

will look at the how easy it is to extend the architectures. dethis by looking at
the implementation details and base it on the hands-on iexper we got during the
implementation of the experiment applications. In thistisecwe look at the ease
of implementation based on the principles behind the achites and the hand-on
experience. In the section on the maintenance qualitypatéri(section 7.10) we look
at the support to help with the implementation of new apgilices and functionality.

7.5.1 EI1 New applications

In an evolving gaming suite it is important to be able to ada games and simulators
to an existing system. This requirement looks at the easeaifrng a new game or
simulator part of the system.

One of the characteristics of SOA is that the services argelgocoupled. This
means that adding a new service should have almost no carsssgpifor the other
services. For the implementation of the experiment usied@®@GS architecture it was
easy to make the two new services, sender and returner, th&ir@asicService class.
Only the application’s specific functionality had to be implented. The connection of
the services is done by the ServiceBroker, which means tgrgmmer does not need
to do this manually.Services do not need to know the spedaficsher services, only
what they have to offer and what they want to have. Score +th®SOA principles
supporting this requirement and the SOGS implementatiowirpg it.

The federation/federates structure of HLA is designedltmahew application to
be connected to the architecture. The RTI takes care of théectural connection be-
tween the federates. Connection of new applications shibalgfore not take to much
effort. During the implementation of the experiment usihg Pitch RTI proved to be
easy. The experiment was implemented using an exampleatedand transforming it
to connect to the experiment applications. HLA gets a scére +

The FAMAS Simulation Backbone is designed and developedritodular way
so that that if new federates need to be added or adaptedutdshot influence the
other federates [22]. This means adding new componentddshotrequire too much
effort. During the implementation of the experiment it agigal it was not so easy
to just use an existing FAMAS federate and make a new one witkven though
FAMAS is designed to support the easy integration of newiegfbns, the actual
implementation requires detailed information of the amatture itself. It gets a score
0.

7.5.2 E2 New simulation components

Next to adding new games and simulators to the system it dradsb be possible to
add new functionality to the architecture, like an integdalogging system for exam-

67

7. EVALUATION

ple.

For a service oriented architecture the same goes here addorg new applica-
tions. The loosely coupled nature of the SOA paradigm malessiy to replace or add
a service. Looking at the SOGS implementation we can cleagythis. The architec-
tural components are divided in separate services; S&no&er, SynchronizationSer-
vice. These can be changed or new components added. Forlexamogger service
can be added which subscribes to all messages. Based on gheHa@acteristic of
services being loosely coupled it gets a score: +1.

The core functionalities of HLA are part of the RTI. These diionalities are
highly interdependent. In case of a open source version A& tding the func-
tionality should be possible but requires extended knogdedf the inner workings
of the Run Time Infrastructure. In a commercial version ofA{like Pitch RTI this
part is not accessible. Therefore changing of extendirgftimctionality is not easy or
impossible. We conclude this is a risk of using Pitch RTI athdAHthus it gets a score
of -1.

The FAMAS architecture is built up from different comporentts fundamental
technical components like the Run Controller and Backbanmee ™Manager can be ex-
tended with the addition of new ones such as loggers. MoreBRMAS is extensible
in a way that it allows for replaceable elements (e.qg., dvedl simulation vendors and
practitioners to replace already existing functionalitigrma more efficient one) [22].
Due to the modular design FAMAS gets a score of +1.

7.5.3 E3 New ontology

Extending the ontology of a gaming simulation suite mearereing the type of
messages that can be send between the applications.

In chapter 4 we have seen that one of the possibilities foisaggstransfer is to
use an intermediate language. In the case of a new ontoligynéeans the interme-
diate language model should be extended to support the nesage types and the
applications that use these message types need to exténddhpters. The SOGS
implementation supports the intermediate language mod@ake DataModelBuilder
Tool (see Appendix B) provides the means the create new ges$gpes. This shows
that a service oriented architecture (SOGS) is capablepating this requirement
en it thus gets a +1 score.

In the Pitch RTI and FAMAS architectures, a data dictionarf¥OM is available,
which makes ontology extension easier and less risky [22]e FOM acts like the
intermediate language. Pitch RTI has a specific tool for exsgnsion of the FOM.
Even though FAMAS has no such tool extending the FOM does mwige a risk for
the system. Both architectures get a +1 score.

7.5.4 Extendibility evaluation results
Table 7.3 shows the scores of the evaluation of the extditgit@quirements.

68

7.6. Consistency

\ | E1[E2| E3]|
SOA/SOGS | +1 | +1 | +1
HLA/PitchRTI | +1 | -1 | +1
FAMAS 0 [+1[+1

Table 7.3: Scores for the extendibility evaluation

7.6 Consistency

Three important aspects of simulation gaming are; timiggckronization and causal-
ity (see chapter 2). For each of these requirements we wik kow they are handled
in the architectures. During the evaluation we will consitthe implementation details
of the architectures.

7.6.1 C1 Time paradigms

The ability to handle multiple time paradigms means beinlg &b pause the game,
run it in continuous time mode (real-time as well as faskaw/er then real-time) and
run it in discrete time mode.

Timing of services is specific to gaming and simulation. Ehisrno SOA char-
acteristic that takes care of this. However the SOA paradiges not prohibit this
requirement. The SOGS implementation is able to handleipfeiime modes (real-
time, slower and faster then real-time). Extending thiswaitpause function and the
ability to run in discrete time mode should be possible. 8adr.

Handling multiple simulation federates with different gérparadigms was one of
the initial requirements of the HLA framework. As a resulitpiovides all the neces-
sary services at the architectural level to manage multiple paradigms within the
same model [22]. Score +1.

The FAMAS architecture is a lightweight version similar tbAland contains the
appropriate services to manage multiple timing paradig?@$ [Score +1.

7.6.2 C2 Causality

In a simulation game, it is important that a strict causabtyespected between com-
ponents. This feature is generally fulfilled by a central poment which grants time
advance authorization to the participating componentk [22

The SOA paradigm does not provide specific solutions in gspect. The SOGS
implementation however shows that it is possible to integitain a system based on
the SOA paradigm. In SOGS it is part of the messaging strectdrhe Synchro-
nizationService in SOGS enforces the causality as a sepseatice by delivering the
messages by time stamp. Score +1.

In HLA the Run Time Infrastructure has a time management aorapt (see sec-
tion 6.1). Time management is able to deliver events to tHerfges in order of time
stamp. This ensures the strict causality we need in theraySthus HLA gets a score
of +1.

69

7. EVALUATION

The FAMAS Simulation Backbone has a dedicated componentdsTihe Back-
bone Time Manager takes care of the delivery order of evaiis.way strict causality
is maintained in the system. FAMAS gets a score +1 for thigireqent.

7.6.3 C3 Synchronization

In the previous sections we discussed the time paradigmghanthusality of the sys-
tem. These are closely related to synchronization of thiesysAll three architectures
have a dedicated service/component for this (here we useSs3@ SOA). This re-
sults in a +1 score for all three architectures.

7.6.4 Consistency evaluation results

Table 7.4 shows the scores of the evaluation of the extditdil@quirements.

\ [c1|c2]C3]
SOA/SOGS | +1 | +1 | +1
HLA/Pitch RTI | +1 | +1 | +1
FAMAS +1 | +1 | +1

Table 7.4: Scores for the consistency evaluation

7.7 Availability

The availability quality attribute is concerned with thelgitecture being able to keep
running during a session of several hours. To support teisyktem should be able to
detect some errors and allow the facilitator to solve them.

7.7.1 Al Session Duration

Keeping a session running means the architecture shoulbleeéchandle failures in
the system and monitoring mechanisms to check on all thecapiphs.

The SOA paradigm does not have characteristics specificrtdling of failures
or monitoring of services. The SOGS prototype architecha® no functionality cur-
rently built in, but the UniqueTimedEvent is created witlistin mind. Monitoring
mechanism can also be easily implemented as part of a seBéoh service can have
a monitor for example checking every second whether a seisistill up, if not send
a message to the ServiceBroker. Even though there was nificeture system in
the SOGS architecture the experiments ran without probleirsce implementation
of a service oriented architecture is open and the SOA paradioes not prohibit
implementation of fault handling or monitoring mechanishgets a +1 score.

The Pitch RTI is a commercial product. It has been tested aed for many
projects. Pitch RTI supports fault tolerance of unstabtkefates, heart-beat and bro-
ken link detection and automatic resign of crashed fedgraféhis makes that it is
designed to be robust. The experiment implementation ofPiteh RTI showed it

70

7.8. Flexibility

could run several times for eleven and a half minutes witlpoolblems. It gets a score
of +1.

Since the FAMAS architecture is a research product it allfmvgnough openness
and flexibility to implement new mechanisms and functiagaliThe current imple-
mentation does not prohibit the extension of failure harglinechanisms. Consid-
ering the possibilities to extend the FAMAS Simulation Bagke it gets a score of
+1.

7.7.2 A2 Failure Detection

In a simulation gaming environment errors can occur due todruinteraction. This
can make that the system stops. In this case it should bebpmési the facilitator to
influence the system so it can continue running.

The loosely coupled characteristic of SOA makes it ideabfoextra service, like
a facilitator service, to exist. This service can then stibsdo relevant messages to
monitor the state of the system. A publish-subscribe sydilanthat of SOGS can
help with getting the relevant information to such a faattir service. There should
be no risk in implementing this. Score +1.

In Pitch RTI there is a logger that allows users to detect &riaption in the
execution of one of the participating federates [22]. Udlinig logger a facilitator
services can be constructed. Score +1.

Concerning FAMAS, logical faults at the architectural les@n be easily detected
using the logger functional components. FAMAS componentsther functional or
technical, are designed to produce certain types of faileesages, messages show-
ing the internal communication between components, a psotacking messages
and showing the number of messages between componentsf tAkkse mentioned
properties allow user to track the failures or anomaliedlyef22]. This provides the
functionality to implement a facilitator service. Score +1

7.7.3 Availability evaluation results

Table 7.5 shows the scores of the evaluation of the extditdil@quirements.

\ \ Al \ A2 \
SOA/SOGS | +1 [+1

HLA/Pitch RTI | +1 | +1
FAMAS +1 | +1

Table 7.5: Scores for the availability evaluation

7.8 Flexibility
The flexibility quality attribute is concerned with the atyilto dynamically joining

and leaving of applications during a running session. FerRhilway Gaming Suite
this means the ability to join new players.

71

7. EVALUATION

7.8.1 F1 Support new players

Some scenarios require for dynamic joining of new playenmsndua session. For
example the train drivers only need to be connected to themsywhen their trains
need to drive. Adding new players has two major consequeriéest during play the
other participants need to be informed of the new servicestent sending messages
to and receiving from it. Second the new service must be troup-to-date with the
current state of the system.

Again the loosely coupled nature of SOA supports this regquént together with
the discoverable over the network characteristic. In th&SQ@urchitecture services
are able to join the running simulation at any time. The S®Broker decides when
they are able to join, so their is no problem with the conarsgeof the game. Making
sure the new player is up-to-date with the rest of the systedependent on the im-
plementation of the protocol. State saves can be arrangadsbparate service. Score
+1.

Pitch RTI is able to join new federates to the system at ang.tirit does not
however have built in functionality for continuous stateesa[22]. Adding this func-
tionality poses a risk due to the tightly coupled RTI. It wible possible to make an
extra federate that supports this functionality. Due touheertainty of successfully
making such a federate it gets a score of 0.

The Run Control Subsystem of FAMAS reads the list partidgigagapplications
from the Scenario Object. It waits for each specified pgudiot to make contact. It
assigns port numbers to all federates so they can conneatctoather. The simula-
tion start after all participating applications have janéNo new participant can join
afterwards. Due to the fact that FAMAS is a research prochistdould be changed.
However since it is not possible in the current implemeatait get a score 0.

7.8.2 Flexibility evaluation results

Table 7.6 shows the scores of the evaluation of the extditdil@quirements.

| [F1]
SOA/SOGS | +1
HLA/Pitch RT1 | 0
FAMAS | 0

Table 7.6: Scores for the flexibility evaluation

7.9 Usability

One of the advantages of having a gaming simulation suitensf multiple games
and simulators at your disposal to construct different ades with. The ability to
quickly build and redefine the scenarios results in the fatg requirements; resetting
the system after running a session and setting up a new smenar

72

7.10. Maintainability

7.9.1 U1 From session-to-session

When using a gaming simulation suite it should be possibleitothe same scenario
multiple times, or perhaps with some small alterations. &ase to do this enhances
the usability of the system. For a session the games andationsilare already con-
nected to each other.

In a service oriented architecture like SOGS the games anlaions can join as
they please. By publishing and subscribing to the corredsanges a session can run.
If all services are set to work together SOGS will take carthefrest and thus there
should be no problem running a session again. Score +1.

This requirement is supported by all three architecturdse fEderation-federate
set-up of Pitch RTI as an HLA implementation makes it easytaot she RTI again
and connect the federates. The scenario has already beesedisdi there should be no
problem with running a new session. Federates themselvesas@ different settings,
but this should not effect the RTI. Score +1.

FAMAS has an scenario object that contains the informatiorthe games and
simulators joining the session. Running the session agaes dot effect this. Setting
up the system should thus not be difficult. Score +1.

7.9.2 U2 Scenarios set-up

Setting up a new scenario requires all games and simulateded being available. It
should then be possible to connect them to the architechdetahould take care of
the rest.

All three architecture implementations have been desigoedake it possible to
connect different games and simulators to it. If all appia®s needed are available
it should not pose a problem to connect them and create a rewaiso. For Pitch
RTI and FAMAS this is one of the core values of the design. Trteroperability
anddiscoverable over the netwodharacteristics of SOA support this requirement as
well. The SOGS architecture which is design with these dtaristics in mind shows
an implementation example where this works. Score +1.

7.9.3 Usability evaluation results

Table 7.7 shows the scores of the evaluation of the extditdil@quirements.

\ [u1]u2|
SOA/SOGS | +1 | +1
HLA/Pitch RTI | +1 | +1
FAMAS +1 | +1

Table 7.7: Scores for the usability evaluation

7.10 Maintainability

Coupled to the ability and ease to connect new services ®ydtem is the documenta-
tion to do this. The extendibility has been handled abovee e look at the provided

73

7. EVALUATION

documentation to do so.

7.10.1 M1 Documentation

Documentation is this case is the information that is alségldor using the architec-
ture.

In the case of a SOA architecture only the SOGS implememtatiorently exists
and it is poorly documented due to the fact that it is a praetyNo documentation
exists for using a SOA solution since there is none, thusabeess -1.

Since Pitch RTI is a commercial product it comes with goodudeentation. The
hands-on experience with the PitchRTI has confirmed thieresel.

FAMAS is a research product and the documentation is noteatetfel of com-
mercial software. Although there is some documentatiorhemwtorkings of FAMAS,
during the experiment implementation this was not enoughatily implement the
experiment applications. Score -1.

7.10.2 Maintainability evaluation results

Table 7.8 shows the scores of the evaluation of the extditgit@quirements.

| [M1]
SOA/SOGS | -1

HLA/Pitch RTI | +1
FAMAS -1

Table 7.8: Scores for the maintainability evaluation

7.11 Summary

In this chapter we have evaluated three architectures lmsertjuirements from chap-
ter 3. The evaluation was done using three methods impletientdetails, hands-on
experience with the architectures and test experimentstiofer.2 describes the im-
plementation and execution of the experiments to get thedsslts.

For each of the architectures a score is given per requireameifi the implemen-
tation of the requirement would pose are risk to the systehe score are -1, 0 or +1
of risk, borderline or non-risk, respectively.

The results of the evaluation will be used in the next chaptanswer the research
guestions:

e RQ2 How well does a service oriented architecture support thairements of
gaming simulation suites?

e RQ3 How does a service oriented architecture compare to otbhitectures?

74

Chapter 8

Discussion

The goal of this thesis is to see if an architecture based®B8@A paradigm is appro-
priate for gaming simulation suites. The main researchtigretherefore is:

e RQ Is SOA a suitable architecture for Gaming Simulation S@ites

In the previous chapter we have seen how well the SOA paradigpports the re-

guirements we established for gaming simulation suitesedas the case study the
Railway Gaming Suite. We have also seen how the other twatactlires support the

same requirements. In this chapter we will discuss the tefwim the evaluation and
compare the architectures to each other. In the table 8retdts of all requirements
are shown again.

P1| P2| E1] E2| E3| C1] C2| C3| Al]| A2| F1] U1] U2 M]]
SOA/SOGS | +1[+1[+1| +1[+1| +1] +1[+1] +1| +1] +1| +1] +1] -1
HLA/Pitch RTI | +1| +1| +1| -1 | +1| +1| +1| +1| +1| +1| 0 | +1| +1| +1
FAMAS 1| +1]0 [+1[+1[+1) 1] +1[+1[+1] 0 [+1) +1] -1

Table 8.1: Results of the evaluation
Next to the requirements we also found five main sensitiviaings for gaming
simulation suite architectures in chapter 3. These seitgifioints are:
S1 The performance is sensitive to implementation of theitrcture.

S2 Making the system synchronized and keeping strict ciéyisaimes at a cost of
performance.

S3 Increasing reliability comes at a cost of performance.

S4 Adding new players during a running session can disr@ptehl-time require-
ment.

S5 Ease of adding new services, components or ontology sitiserto the quality
of the documentation.

In this chapter we will discuss the results of the evaluatod look at how the
sensitivity points are handled by the three architectutdr this we will discuss the
threads to the validity of the evaluation we performed.

75

8. DISCUSSION

8.1 Suitability of a Service Oriented Architecture

We start by looking at the second sub research question gugpthe main question,
which is:

¢ RQ2 How well does a service oriented architecture support thairements of
gaming simulation suites?

In the previous chapter we have seen for every requirementedl the SOA paradigm
supports it. As we can see in table 8.1 almost every requimemesupported. Sup-
ported in this case means that the SOA paradigm does notyirtite implementation
of the requirement or even that the characteristics of S@&cty support the require-
ment. Thus it is possible to make a service oriented ardbitechat is suitable for a
gaming simulation suite.

Based on the requirement alone we can conclude a servicgewtiarchitecture
is very well suited for gaming simulation suites. Howeves tequirement evaluation
does not expose the influences they have on each other. Ad atadve we found five
main sensitivity points during the ATAM. The sensitivity ipts expose the risks of
requirements in relation to other requirements.

S1 The performance is sensitive to implementation of the atatecture.

During this thesis project and the literature study prewgdi no service oriented ar-
chitecture was found specific to gaming simulation suitdéss Theans in order to use a
SOA an existing implementation must be converted or a nehitature must be cre-
ated. The implementation of the architecture has a greaaétgn the performance.
The SOGS architecture shows it is possible to make an impltatien that meets the
performance requirements we set for gaming simulatioresuiBince SOGS is but a
prototype that has been implemented in a couple of weeke tiessits are not conclu-
sive. The prototype does for example not provide extengliahility functionalities
(see below for effects of added reliability). On the othendhd has not been optimized
either.

The fact that there is no SOA gaming simulation suite impletaition poses a risk
and an opportunity. The opportunity is that the requirem@fita gaming simulation
suite can all be integrated in an implementation from the.stBherefore the result
should in theory be a very suitable architecture for gamimgikation suites. The risk
on the other hand is the construction of an architecture addsof extra work to a
project. In case of the Railway Gaming Suite it is added todbstruction of the
games and simulators that make up the suite.

S2 Making the system synchronized and keeping strict causgt comes at a cost
of performance.

In chapter 2 we discussed different methods for synchrtinizaf a distributed sys-
tem. These methods have in common that they wait for altatiipplications to finish
before continuing. This means the entire system is as fasieaslowest application.
The consequence is that real-time performance requiremagitt not be met. This
effect can not be completely eliminated since we want theegy$o stay synchronized

76

8.1. Suitability of a Service Oriented Architecture

and strictly causal. There are ways to limit this effect hegveFor example by exclud-
ing some applications from the synchronization if this ismecessary, or just exclude
some message types. This could be the case for the locatitateumessages in a dead
reckoning mechanism as discussed in chapter 6. If one of thessages is late it will
be taken care of by the mechanism itself.

This sensitivity point is a risk for all distributed arctitares for gaming simulation
suites. The SOGS architecture and HLA RTI have shown it isiptss to have a
synchronization mechanism in place and still have a highugh@erformance. The
advantage of making a new service oriented gaming simualatiohitecture is a new
mechanism can be implemented that is based on current erperin this field.

S3 Increasing reliability comes at a cost of performance.

Making the system more reliable like in case of the sessioatitun requirement (A1)
means certain checks must be performed in order to see $hakli. Examples of this
can be: delivery of message checks or checks to see if asés\stll connected. This
added functionality to the architecture results in extrassages which could effect
the performance. The implementation of these checks detfireeactual effect. For
example check if a service is still up can be done client sjdeimonitoring application
and a message will be send only when the client is down opposseinding polling
checks over the network to each client to see if they areutillThis sensitivity poses
a trade-off for all architectures.

S4 Adding new players during a running session can disrupt th real-time
requirement.

As stated in the flexibility evaluation in chapter 7 (F1) adpinew players has two
major consequences. First during play the other partitgoaaed to be informed of
the new service and start sending messages to and receaiwingtf Second the new
service must be brought up-to-date with the current statihefsystem. Informing
the current participants of a new service should not disttuptreal-time requirement
that much. For example it could be done like in the SOGS archite, where the
new service announces itself at the ServiceBroker, whid¢hrimsends updates to the
current participants. The ServiceBroker determines iféggiest to connect is granted.
This requires some additional messages, but tests shovgasdah no problem.

In order to bring the new service up-to-date there shouldbeekind of state save
system. An extra service could be made to take care of thisveler this requires
sending messages with a lot of data, which may take some tirbe teceived by the
new service. Finally all of this should be done while keepimgsystem synchronized,
so the new service needs to get all messages from the stém @dih as well as the
state update message. At the service side it should bringahee up-to-date with
these messages and allow to player to play the game. Exaotpl®to do this have
not been researched in this thesis, so no definite answeeagiadn. Probably a trade-
off must be made as to how important the real-time requirénsamhen a new player
joins. For example the system could be paused for a momeakéodare of the join
and then continue with the added player. Another possibgito do the state update
in small steps meaning the new player has to wait until thiompleted. Taking into

e

8. DISCUSSION

account the state is continuously updated this might také et time. Of course these
steps are extremes and other protocols can be made.

S5 Ease of adding new services, components or ontology is siive to the
quality of the documentation.

Adding new services, components or ontology has been féhtis an important
quality attribute of a gaming simulation suite. The develspof a gaming simulation
suite are often not the developers of the underlying archite as well. In order to use
the architecture they need to have proper documentatiomwridiconnect services to
it and part of how the architecture itself works.

In case of a service oriented architecture for a gaming sitimuls suite no such
documentation exist, since no such architecture existsiete the same risk is ex-
posed as in the first sensitivity point (S1). However thik tias been identified and
can be taken into account for building such an architectacetius be avoided.

The next step is to look at the current architectures and seewell they support
to quality attributes.

8.2 Suitability of HLA and Pitch RTI

The evaluation shows that HLA and in particular Pitch RTI lide risk to use as an
architecture for simulation gaming suites. This does noteas a surprise since it has
been developed for exactly this purpose. HLA scores a -1 dadtBe new simulation
components (E2) and adding new players (F1) requiremessgpectively. This is a
consequence of the rules of HLA, which make the implemesatilike Pitch RTI)
less flexible for change. The inner workings are highly idégendent and thus not
easy to change or extend. For commercial products, likenFRIEl, this is stricter
then for open source implementations of HLA, like CERTI amdRPIco (see chapter
6). The open source implementations still need to followHhe\ rules to be a IEEE
1516 HLA compliant implementation. On the other hand, anaathge of using a
commercial product is that it is supported by the companyhbhblishes it.

S1 The performance is sensitive to implementation of the alatecture.

For HLA there are different implementations. Even though ithplementations are
restricted to the HLA standard there could still be an effecthe performance. Testing
this effect is outside the scope of the thesis. We did howeatrone implementations
of HLA, namely the PitchRTI and from these results we can $eygerformance
requirements are met by this implementation. From this weamanclude that HLA
allows for an implementation that can support the perforrearquirements.

S2 Making the system synchronized and keeping strict causgt comes at a cost
of performance.

As we have seen from the experiments the PitchRTI implentients able to support
performance requirements while using its synchronizati@ehanism. This means the

78

8.3. Suitability of FAMAS Simulation backbone

synchronization mechanism does not effect the performamsech an amount that it
does not support the requirements any more.

S3 Increasing reliability comes at a cost of performance.

The PitchHLA has some reliability check already build irtte &rchitecture. This has
however not been explored during the experiment tests. adadstibove this sensitivity
point is a trade-off for all three architectures.

S4 Adding new players during a running session can disrupt th real-time
requirement.

The evaluation of the flexibility requirement (F1) (see deaf@) showed us the PitchRTI
is able to join new players at any time, but has not state-kawaionality. The actual
effect on the real-time requirement is not known, but as weuwdised in the SOA sec-
tion (8.1) it will probably be a trade-off between keeping tame running and adding
the new player instantly.

S5 Ease of adding new services, components or ontology is siive to the
quality of the documentation.

Depending on the implementation of HLA the quality of the @imentation is differ-
ent. Commercial implementation like PitchRTI provide msgional documentation
that has been very helpful during the implementation of #peaments. For the work
package of the RGS project more implementations have beganeghed. In case of
CERTH for example the documentation was not of the level to makariaasy imple-
mentation of experiment tests. This is further exploredhework package report[22].

8.3 Suitability of FAMAS Simulation backbone

From the evaluation we see there are some risks involved wgithg FAMAS as an
architecture. To start the tests showed that the perforen@ahEAMAS is not enough
to support a gaming simulations suite with services thad selot of messages. Since
FAMAS is a research product this performance issue can phpliee improved, but
there is no guarantee for this and thus it stays a risk. TheétfatFAMAS is a research
product also makes it a risk with implementing new connggcéipplications, since this
is not intuitive and not well documented. This comes backrtyen the extendibility
and maintenance quality attribute requirements. FAMASni®pen source product
makes that it can be used and changed to fit the requiremarttshdo question is
whether this is the best starting point to do so. As it is noiw itnable to support the
requirements of a simulation gaming suite, in particularRailway Gaming Suite.

S1 The performance is sensitive to implementation of the aldtecture.

The experiments have shown us that the current state of FAMABable to support
the real-time performance requirement. Since FAMAS is eassh product there are

Ihttp: //savannamongnuorg, pro jects/certi/

79

8. DISCUSSION

possibilities to improve on this. The main components aredver already built and
changing these means changing the architecture. Thidisgpgioint exposes the risk
of using FAMAS as it is.

S2 Making the system synchronized and keeping strict causgl comes at a cost
of performance.

The experiments did not show us where the performance hetlein the implementa-
tion of FAMAS is located. It could be that the synchronizatimechanism is responsi-
ble for this. As stated above the synchronization will al&/afluence the performance
since it makes the system as slow as the slowest participant.

S3 Increasing reliability comes at a cost of performance.

For the reliability the same goes as for the other architestut is a trade-off between
reliability and high performance.

S4 Adding new players during a running session can disrupt th real-time
requirement.

Adding new players is not supported by FAMAS in the currensia. Components
need to exist from the start and there is not state save amadily. This could be
added like in the other architectures. This sensitivitynpbias the same trade-off as
the other architectures.

S5 Ease of adding new services, components or ontology is siive to the
guality of the documentation.

As stated in the evaluation of the maintainability requiesmtn(M1) the documentation
of FAMAS is limited. The hands-on experience showed the @nm@ntation of a sys-
tem using FAMAS proved to be very difficult. The quality of tRAMAS Simulation
Backbone in its current state is not sufficient to easily aeld services, components
or ontology. Further development of this architecture e tcare of this sensitivity
point.

8.4 Threats to Validity

The evaluation we have performed for the thesis report ishas some assumptions
we have done. These assumption are a risk to the validityeoétaluation. In this
section we explain the risks of taking these assumption$iandwe tried to minimize
these risks. We have identified three assumptions on whielethluation is based
and we think require extra explanation; the appropriateoéthe case study RGS, the
evaluation of SOA and the reliability of the experiments.

8.4.1 Appropriateness of the case study RGS.

Throughout this thesis we use the Railway Gaming Suite te @ suitability of a
SOA for gaming simulation suite on. The RGS is used as an epity case study as

80

8.4. Threats to Validity

described in [25]. Itis used to get the quality attributepamant to gaming simulation
suites. In chapter 3 we provide an explanation for each tyuattiributes as to how they
are important to gaming simulation suites in general. Dutlre ATAM we tried to
generalize as much as possible with the information we got the Railway Gaming
Suite. The connection of this thesis with the Railway Ganfte project at the
Systems Engineering and Policy Organization Law and Gardegartments meant
the focus stayed on the RGS. The risk of this approach is weethisnportant quality
attributes for gaming simulation suites.

8.4.2 Evaluation of SOA.

As we can see from the scores from the evaluation, a servieated architecture
supports all quality attribute requirements except thenta@ability. Looking at the
evaluation it might seem unfair to say something in line b& SOA paradigm does
not prohibit the requirements so it gets a score +1. The refmothese answers is
that the goal of this thesis is to see if it is possible to @eaBO0A that supports the
requirements of a gaming simulation suite. The implementaif the SOA is not set.
We use the prototype implementation (SOGS) to show that sirtte requirements
are indeed possible. Building a complete architectureghpports all requirements is
outside the scope of this project.

As far as the other two architectures are concerned. For Hilefetare specific
requirements that make an architecture HLA compliant. Tibsthe effect that many
design decisions are set and this prohibits or makes it ey to implement some re-
quirements. We use the Pitch RTI as an implementation of HiiAge it is compliant
to the HLA specific IEEE 1516 Standard. For FAMAS the restitigoes even fur-
ther because there is only one implementation of the FAMASuU&ition Backbone.
The modular way in which FAMAS is built allows for some flexity, but the main
architectural structure is set. Like HLA this restricts thgplementation of some of
the requirements.

On a side note if we look at the implementation of HLA and FAMAS see they
have a lot of the same characteristic as SOAs, while theyareéasigned as such. The
biggest difference with HLA is that the functionality of tiRl is highly interdepen-
dent. The federates themselves are loosely coupled, @eifioed and discoverable
over the network through the RTI. FAMAS has strived to segatiae functionality of
the RTI as separate modules.

8.4.3 Reliability of the experiments.

The evaluation is in part based on the results of the expetsnge performed. The
validity of the experiments is thus important to the ovevallidity of the evaluation.
We have devided the risks to the validity in three part; haehyimplementation and
set up of the experiment.

First we start with the hardware. In order to minimize theuefice of the hard-
ware used for the experiments we took some precautions. momniae the risk of
the hardware restricting the throughput of the number ofsagss we used a 1Gb/s
switch, new Cat6 network cables, which are suitable for a@itg=thernet and laptops
with Gigabit Ethernet cards. Next to this we ensured theojaptvere the same for all

81

8. DISCUSSION

services we used. The laptops all had the same software imstgéed on them. The
standard network traffic was limited for this image (see appeC).

Second is the implementation of the experiments. We usedaime Sender and
Returner applications in all three experiment impleméonst Implementing the ex-
periments was however mainly done by three different prognars the three archi-
tectures. There was cooperation between the people th#rmepted the code. We
have worked together on the code and discussed the expesigtsr For the syn-
chronization requirement the importance was made cleareatahsively discussed.
Different coding methods of the programmers could have émited the performance
of the architectures however.

Finally the set up of the experiment has an influence on thdtsesf the exper-
iments. As we have seen in chapter 7 the variables of the iexpetis were strictly
controlled. This way we could precisely show the conditiangler which the results
were acquired. By having these restrictions we minimizeddfance of other influ-
ences on the experiments.

8.5 Summary

In this chapter we discussed the results of the previousteteapWe looked at the
evaluation results of chapter 7 for the three architectulde suitability of the three
architectures is separately discussed by looking at thieiaian results of chapter 7
and the sensitivity points from chapter 3. Finally we hawekkd at the threads to the
validity of the evaluation we performed.

82

Chapter 9

Conclusion and Future work

This thesis report is part of an investigation of architesityparadigms for gaming

simulation suites. The focus of this report is to investigahether service oriented
architectures are suitable for gaming simulation suitebe fiesearch project at the
Systems Engineering and Policy Organization Law and Gauhépgrtments provided
a case study to use for this thesis. The thesis project wédsrperd simultaneously

with other projects into architectural paradigms whichvidled more background into
gaming simulation suite architectures. Some of this rebemrused in this thesis. In
order to steer our research, we set out to answer the foltpmiain research question:

e RQ Is SOA a suitable architecture for gaming simulation s@ites

In this chapter we will go over the researched questionschasthe start of the thesis
and see if they are all answered. We will look at the contrilmst we made during this
thesis, work related to that of this thesis and possibleréuvork based on this thesis.

9.1 Answering the research questions

In this section we take a look at the research questions frapter 1 again and discuss
shortly how they are answered in the chapters.

e RQ1What are the architectural requirements to determine titegdlity of gam-
ing simulation suites?

To answer this we first need to take a look at the sub questions:

RQ1.1 What are Gaming Simulation SuitesPchapter 2 we have given an overview
of the definition of gaming simulation suites and have shommesimportant aspects.
In short a gaming simulation suite is a collection simulatgames, which is used for
training or prediction. We gave and overview of the Railwagn@ng Suite which is
used as a case study.

RQ1.2Whatis a good method to determine architectural requiresiefna system?
Chapter 3 gave an overview of a popular analysis method fitware architectures,
called Architectural Trade-off Analysis Method. Usinggshmethod an analysis was
made of the Railway gaming suite in order to find the requiresi¢o determine the
suitability of gaming simulation suites.

83

9. CONCLUSION AND FUTURE WORK

With this we providing an answer the sub questR@1. In short the ATAM
provided us with the following requirements:

e Performance, consisting of real-time play and redundancy.

e Extendibility, consisting of new applications, new sintida components and
new ontology.

e Consistency, consisting of time paradigms, causality ndlwonization.
e Availability, consisting of session duration and failuretekction.
o Flexibility, consisting of support new players.
e Usability, consisting of session-to-session set up andas@eset up.
e Maintainability, consisting of documentation.
These requirements are used to answer the other researstiogae

¢ RQ2 How well does a service oriented architecture support thaeirements of
gaming simulation suites?

For this question we needed the resulR§)1 together with additional information for
which we constructed the following questions:

RQ2.1 What are the principles of a service oriented architectuiid® principles
of SOA are explained in chapter 4. It is a distributed netwamthitecture where the
nodes are called services. The core values of a servicetediemchitecture are that
services are; loosely coupled, self-contained and disable over the network. In the
chapter different design approaches for network deploynmeessage transmission,
service discovery and interoperability are described.

RQ2.2 Can we construct a prototype SOA to test performance reagires ?Chap-
ter 5 gives the design and implementation of a prototype SKbA&.prototype is called
Service Oriented Gaming and Simulation (SOGS). It is desigkeeping the SOA
principles and aspects of gaming simulation suites in mirtds prototype is used in
tests described in chapter 7. These tests are part of theafieal. Thus we can say it
is possible to construct a prototype SOA to test some reapeints.

Using the design principles and approaches from chapted4henSOGS archi-
tecture prototype we evaluated whether a SOA is able to sugporequirements of
gaming simulation suites in chapter 7. The evaluation sklavgethat a SOA should be
able to support the requirements we set, thus a servicetediemchitecture supports
the requirements of gaming simulation suites very well.

e RQ3 How does a service oriented architecture compare to otbhitactures?

The third sub question is meant to further investigate tliglsility of SOA. In order
to answer it we need to answer the following questions:

RQ3.1 Are there architectures currently in use for gaming simiolatsuites? At
the start of the work package of the RGS project which thisaesh is part of mul-
tiple architectures were identified already. These were HEAMAS and the SOA

84

9.2. Contributions

paradigm. The HLA and FAMAS architectures are existing éectures for gaming
simulation suites.

RQ3.2 What are the architectural approaches of these architead@rin chapter
6 the design approaches of the HLA and FAMAS architectureseaplained. HLA
is designed specifically for gaming simulation suites ansl len in use for several
years. It has a main component called the RTI that providekeafunctionality of the
architecture. FAMAS is based on HLA but has been set up in @madular way by
separating the functionality of the RTI in different compaots.

RQ3.3 How well do the other architectures support the requireraaftgaming
simulation suitesThe evaluation of chapter 7 has shown us that HLA and in paatic
the PitchRTI implementation are able to support most of gdgeiirements. The main
downside of HLA is that the RTI is tightly coupled and addinganfunctionality to
it is complicated. The FAMAS implementation solves thiskgemn with its modular
design, but is unable to meet the performance requiremehtliae to the fact that it is
an existing research project risks are involved with devielp it further.

Next to the requirements we also looked at the sensitiviilptpdrom chapter 3.
These are discussed in chapter 8 and we see the same riskeseatdor the three
architectures. Taking all this into account we can conclindé the SOA paradigm is
at least as suitable as the other two architectures and oa goimts even better.

e RQ Is SOA a suitable architecture for gaming simulation s@ites

Now we have answered all the sub questions we can return tmaire question and
provide an answer for it. In short we can say; yes, SOA is ablgtarchitecture for
gaming simulation suites. It supports the requirementsetarsd compares very well
to the other architectures.

There is however no existing SOA implementation. This atiésrisk of devel-
opment of the architecture to development of the games amdlations themselves.
Now we have to take into account that no such architectuistseaind needs to be de-
signed, developed, tested and maintained. Another faztbiat there is an alternative
solution, HLA, that supports most of the requirements ad.widie work package 1
report [22] came to the conclusion to use the Pitch RTI fas thason.

Using the SOA paradigm to build a new implementation for theugd up pro-
vides the opportunity to implement all the requirementsgaming simulation suites
in a loosely coupled way and thus decreasing the risks ofghéyt coupled Runtime
Infrastructure of High Level Architecture. Using expegengained with SOA as an
enterprise architecture and HLA as simulation gaming &chire should be a good
start to implement a new architecture.

9.2 Contributions
In the context of this thesis we made the following contriitoos:
e We acquired quality attribute requirements to evaluatesthigability of dis-
tributed architectures for gaming simulation suites. Ehesquirements are

based on a single case study, namely the Railway Gaming. Suite

85

9. CONCLUSION AND FUTURE WORK

e We constructed a prototype SOA called Service Oriented Gguaind Simula-
tion. The prototype includes; dynamic joining of servickst messaging sys-
tem based on the publish-subscribe principle, synchréaizanechanism, tool
to help with building a data model.

e We evaluated three different architectures (SOA, HLA antMRS) using these
requirements.

e We made a comparison based on the evaluations of the atcinéec

e We showed the service oriented architecture paradigm tatdeifor gaming
simulation suites.

9.3 Related Work

Even though there is no SOA implementation specificallygtesil for gaming simu-
lation suites, there are implementations that might be @sethis. One such imple-
mentation is Real Time Infrastructure Data Distributiom&= (RTIDDS). This is a
commercial product and the company behind it claims it caddseribed as a real-
time SOA. RTIDDS is an implementation of the Object Managein@roups Data
Distribution Servicé. DDS is a specification of a middleware for distributed syste
that uses a publish/subscribe system. The Getting StantédeG19] of RTI DDS
describes it as follows:

RTI Data Distribution Service is network middleware for Ireéeme dis-

tributed applications. It provides the communicationsviser that pro-
grammers need to distribute time critical data between el and/or
enterprise devices or nodes. RTI Data Distribution Servgas a publish-
subscribe communications model to make data-distribugifinient and
robust.

RTI Data Distribution Service implements the Data-Cerfiblish-Subscribe
(DCPS) API of the OMGs specification, Data Distribution SeeMDDS)

for Real-Time Systems. DDS is the first standard developethéoneeds

of real-time systems, providing an efficient way to transfata in a dis-
tributed system. With RTI Data Distribution Service, yowimeyour de-
velopment with a fault-tolerant and flexible communicasianfrastruc-
ture that will work over a wide variety of computer hardwanegrating
systems, languages, and networking transport protocols.Data Dis-
tribution Service is highly configurable, so programmens adapt it to
meet an applications specific communication requirements.

This description makes it an interesting architecture seaech in the context of
gaming simulation suites. During this thesis project some was spent on RTIDDS.
A similar test implementation as for the other architectun&s made. The problem
was that no synchronization mechanism was already in pladeiraplementing it

Ihttp: //wwwomgorg/technologydocumentgdds; pegataloghtml

86

9.4. Future Work

proved to be challenging. With more research however RTIRBD@Ed be a starting
point for a Service Oriented Gaming Simulation Architeetur

The comparison of HLA and SOA is not something new and has tesarched
before [23][18][30]. These research studies however mdadus on Web Services as
an SOA implementation. By combining these terms like Ser@ciented High Level
Architecture come into play. The latest HLA implementafibtL A evolved, also has
a Web Service API to connect Web Services to the RTI. The prolilowever that the
core of HLA, the Run Time Infrastructure, is not designedwtite SOA principles in
mind. This is not surprising since HLA was already developetbre SOA became
popular. For this study these HLA-SOA hybrid architectuaes not seen as a SOA
solution.

9.4 Future Work

The result of this thesis is that the SOA paradigm is suitédegaming simulation

suites. This is a starting point for actually build such arhéecture. Implementations
of the SOA design approaches can be made and compared to teachinoorder to

find out which is the best suited. Exact performance effetfercexample synchro-

nization and reliability checks can be researched. Morstiegj and future gaming
simulation suites can be examined in order to further refiedist of quality attribute

requirements.

87

[1]

[2]

3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

High-level architecture interface specification. vers 1.3. Technical
report, U.S. Department of Defense, 1998. http://ww. msco.ml/
HLAConpl i anceTesting. htni .

High-level architecture object model template speatiian. version 1.3. Tech-
nical report, U.S. Department of Defense, 199&ttp://ww. msco. m |/
HLAConpl i anceTesting. htni .

C.C. Abt. Serious GamedJniversity Press of America, 1970.

G. Andrews. Foundations of Multithreaded, Parallel, and Distributedogram-
ming Addison-Wesley, 2000.

M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C. Wstiock, and W. Wood.
Quality attribute workshops (QAWS), third edition. Tectalireport, Software
Engineering Institute, Carnegie Mellon University, Ritiegh, 2003.http://
wWww. sei . cmu. edu/ i brary/ abstracts/reports/03tr016.cfm

S. Benford, J. Bowers, L. E. Fahlén, J. Mariani, and Td&en. Supporting
cooperative work in virtual environmentsComputer Journal 37(8):653—-668,
1994.

Ph. Bianco, R. Kotermanski, and P. Merson. Evaluatingraise-oriented archi-
tecture. Technical report, Software Engineering Ingit@arnegie Mellon Uni-
versity, Pittsburgh, 2007.http://wm. sei.cnu. edu/ i brary/abstracts/
reports/07tr015.cfm

SOA Blueprint. Soa practitioners guide part 1 why seggioriented architec-
ture?, 2006. htt p: // ww. soabl ueprint. conl yahoo_site_adnin/ assets/
docs/ SOAPGPart 1. 290211145. pdf .

C. Boer. Distributed Simulation in Industry PhD thesis, Erasmus University
Rotterdam, The Netherlands, 2005.

J.O. Calvin and R. Weatherly. An introduction to the hilgvel architecture
(HLA) runtime infrastructure (RTI). Technical report, %http://dss.|1.
mt.edu/ dss. web/ 96. 14. 103. RTI. I ntroduct i on. ps.

89

BIBLIOGRAPHY

[11] T Chatfield. Videogames now outperform hollywood mavi€he Observer09
2009. http://wmv guardian. co. uk/technol ogy/ ganesbl og/ 2009/ sep/
27/ vi deoganes- hol | ywood.

[12] P. Clements and L. Northrop. Software architecture: executive overview.
Technical report, Software Engineering Institute, Caimégdellon University,
Pittsburgh, 1996ht t p: / / www. sei . cnu. edu/ | i brary/ abstracts/reports/
96t r003. cf m

[13] P. Clements and L. NorthropSoftware Product Lines: Practices and Patterns
Boston, MA: Addison-Wesley, 2002.

[14] DIS Steering Committee. The dis vision, a map to therfutf distributed simu-
lation. Technical report, Orlando, Florida, Institute &mulation and Training,
1994.

[15] J. Farber. Network game traffic modelling. NetGam&2Z@®ages 53-57. ACM,
2002.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns Addison-
Wesley, 1995.

[17] HLA Working Group. leee standard for modeling and siatign (M&S) high
level architecture (HLA) framework and rules. Technicgbad, IEEE Com-
puter Society, 2000. http://standards.ieee.org/findstds/standard/
1516- 2000. htm .

[18] P. Gustavson, T. Chase, L. Root, and K. Crosson. Mowvimgatds a service-
oriented architecture (soa) for distributed componentukation environments.
In Proceedings of the 2005 Spring Simulation interoperabiiforkshop2005.

[19] Real-Time Innovations. Getting started guide, 20dtCt.p: // communi ty. rti .
com docs/ pdf / RTI _DDS GettingStarted. pdf.

[20] L.G. Jones and A.J. Lattanze. Using the architectwrdenff analysis method to
evaluate a wargame simulation system: A case study. Teameigort, Software
Engineering Institute, Carnegie Mellon University, Rittegh, 2001.http://
www. sei . cmu. edu/ | i brary/ abstracts/reports/01tn022. cfm

[21] R. Kazman, M. Klein, and P. Clement. ATAM: Method for hitecture evalu-
ation. Technical report, Software Engineering Institi@arnegie Mellon Uni-
versity, Pittsburgh, 2000.http://wmw. sei . cnu. edu/ | i brary/abstracts/
reports/00tr004.cfm

[22] R. Kortmann, S. Meijer, M. Seck, A. Verbraeck, S. Eker, T&kinay, and
B. Van Nuland. Work package 1: Systems architecture, 2011.

[23] B. Moller and C. Dahlin. A first look at the HLA evolved Wweservice API.
In Proceedings of 2006 Euro Simulation Interoperability Wrdp Simulation
Interoperability Standards Organization., 2006.

90

Bibliography

[24] M. Papazoglou and W.J. van den Heuvel. Service orieatetlitectures: ap-
proaches, technologies and research issties.VLDB Journgl16(3):389-415,
2007.

[25] P. Runeson and M. Host. Guidelines for conducting aeqbrting case study
research in software engineeringmpirical Software Engineerind.4:131-164,
20009.

[26] S. Singhal. Effective Remote Modeling in Large-Scale Distributed $atian
and Visualization EnvironmentsPhD thesis, Standford University, Standford,
CA, 1996.

[27] J. Smed, T. Kaukoranta, and H. Hakonen. A review on ngking and mul-
tiplayer computer games. Imultiplayer computer games, proc. int. conf. on
application and development of computer games in the 2is$tige pages 1-5,
2002.

[28] R. Smith. Game impact theory: The five forces that areimlyi the adoption of
game technologies within multiple established industriechnical report, Soft-
ware Engineering Institute, Carnegie Mellon Universitytdburgh, 2007ht t p:

I I ww. model bender s. coni papers/ Snith_CGane_| npact _Theory. pdf .

[29] Krissoft Solutions. JMS performance comparison, 20Q4 p: / / host eddocs.
i ttool box. cont kri ssoft102904. pdf .

[30] W.G. Wang, W.G. Yu, Q. Li, W.P. Wang, and X.C. Liu. Semdoriented high
level architecture. hfituro Simulation Interoperability WorkshoSimulation In-
teroperability Standards Organization., 2008.

91

Appendix A

ATAM Phase Two questions and
answers

All communication with the user group was done in Dutch. Elfigre the questions
and answers will also be handled in Dutch here as well. Theoretor this is to keep
the original answers of the user committee. The questioksdalsefore the meeting
where:

e Voor welk (toekomstig) ProRail project kan de Railway GagBuite gebruikt
worden?

Wat wordt er gespeeld/gesimuleerd?

Wie zijn erbij betrokken?

o Welke simulatoren worden er gebruikt?

Wat zijn de resultaten die u verwacht van de gaming sessie?
e Wat is de opzet van de gaming sessie?

The members of the user committee came up with the followseyaasesyvoor welk
(toekomstig) ProRail project kan de Railway Gaming Suitergit worden?
Toepassing van snelheidssturing, ETMET 2013

Wat wordt er gespeeld/gesimuleerd?

Op basis van gewenst doelcriterium (minimaliseren veitigagn/of max. doorstro-
ming en/of min. energievoorziening) vaststellen of hieraégeleide adviessnelheden
een betere performance geven bij capaciteitsgebrek doer treénen of minder infra
beschikbaar

Wie zijn erbij betrokken?
Verkeersleiding, planners.

Welke simulatoren worden er gebruikt?
FRISO, TMS

93

A. ATAM PHASE TWO QUESTIONS AND ANSWERS

Wat zijn de resultaten die u verwacht van de gaming sessie?
Na de gaming sessies moet duidelijk worden of snelheidegtuwen betere perfor-
mance oplevert.

Wat is de opzet van de gaming sessie?
Informatie over verwachte conflicten en nieuwe planoptagsn wordt aan VL, Trdl
(ook mcn?) getoond, prestatie op doelcriterium wordt gedoo

Voor welk (toekomstig) ProRail project kan de Railway GayBuite gebruikt wor-
den?
Sturen op inhoud van de trein

Wat wordt er gespeeld/gesimuleerd?

De besturing van het treinverkeer wordt gebaseerd op degdckizigers of goederen)
die in een trein aanwezig is. Van deze ’lading’ is bekend vgaraar toe moet en wat
de vertragingsstatus is.

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding, planners.

Welke simulatoren worden er gebruikt?
FRISO, SIMONE (of IRIS, een door te ontwikkelen prototypeawa reizigersaan-
tallen en ladinggewicht bekend zijn)

Wat zijn de resultaten die u verwacht van de gaming sessie?
Na de gaming sessies moet duidelijk worden of nieuwe stfarrmatie een betere be-
nutting oplevert en of de taak van VL, DVL, TRDL verandert.

Wat is de opzet van de gaming sessie?

Informatie uit de realisatie/simulatie wordt getoond opsdbermen die op de post
staan, inclusief nieuwe stuurinformatie waarmee effect weatregel snel duidelijk
wordt.

Voor welk (toekomstig) ProRail project kan de Railway GayBuite gebruikt wor-
den?
Is er een alternatief voor de afhandelingsregels (TAD) ?

Wat wordt er gespeeld/gesimuleerd?
De handmatig opgestelde TAD’s worden vervangen door autschagegenereerde
regels

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding.

Welke simulatoren worden er gebruikt?

94

FRISO, SIMONE, Regelgenerator (bijv. SMD-model)

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in performance van verschillende regelstrategi@modzaak vooraf opstellen
TAD’s wordt wel/niet aangetoond.

Wat is de opzet van de gaming sessie?
Prestatie netwerk met verschillende sets voor regels wdrdproefd.

Voor welk (toekomstig) ProRail project kan de Railway GagrBuite gebruikt wor-
den?
Gedistribueerd simuleren van meerdere probleemgebiedeet ispoorwegnet

Wat wordt er gespeeld/gesimuleerd?

Elke post (een of meer PPLG’s) krijgt informatie uit een reivgimulatie en stuurt
het verkeer binnen het eigen regelgebied. Hoe wordt dedsllait een gebied overge-
dragen (of niet) aan een ander gebied?

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding.

Welke simulatoren worden er gebruikt?
FRISO, SIMONE

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in verantwoordelijkheden en regeldoelen op lokaalbovenlokaal niveau.
Welke regelruimte kan je aanbrengen op de verschillend=ans?

Wat is de opzet van de gaming sessie?
Informatie uit de realisatie/simulatie wordt getoond opsdbermen die op de post
staan.

Voor welk (toekomstig) ProRail project kan de Railway GagrBuite gebruikt wor-
den?
Relatie tussen rail/ en transferknelpunten

Wat wordt er gespeeld/gesimuleerd?
Een transferknelpunt kan voorkomen worden door aankomaterireinen te sturen.
De invloed van spreiding in het treinverkeer op transfelfungten is nu niet bekend

Wie zijn erbij betrokken?
Verkeersleiding, treindienstleiding, planners, adviseu

Welke simulatoren worden er gebruikt?
FRISO, SIMONE, SITA

95

A. ATAM PHASE TWO QUESTIONS AND ANSWERS

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in relatie tussen rail/ en transferknelpunten

Wat is de opzet van de gaming sessie?
Uitwerken voorbeeldcases

Voor welk (toekomstig) ProRail project kan de Railway GayBuite gebruikt wor-
den?
Ander regime openingen van de Vechtbrug bij Weesp.

Wat wordt er gespeeld/gesimuleerd?

De situatie bij de vechtbrug waarbij gewerkt wordt met vastegtijden. In de spelsessie
wordt gekeken naar de verschillen in bijsturingsruimte &1 Tbelasting tussen de
huidige situatie en een situatie met flexibele brugtijden.

Wie zijn erbij betrokken?
Het spel wordt gespeeld door treindienstleiders die bekgndnet het gebied en een
spelleider die het spel start/stopt en de rol van brugwadputeich neemt.

Welke simulatoren worden er gebruikt?
De treindienstleiders spelen de situatie met behulp vanRletBol. Als simulator
wordt FRISO gebruikt.

Wat zijn de resultaten die u verwacht van de gaming sessie?

Na de gaming sessies moet er data zijn over het gedrag vaginidiénstleiders tijdens
de sessie, in het bijzonder de omgang met de verschillengdgdoenario’s. Daarnaast
moet uit de sessie blijken of het mogelijk is om flexibele lijdgn te gebruiken.

Wat is de opzet van de gaming sessie?

De sessie wordt gespeeld door n treindienstleider achteemale computer met vier
schermen. De spelleider zit achter een laptop in de buurteareindienstleider. De
computer is verbonden met de laptop via een LAN.

Voor welk (toekomstig) ProRail project kan de Railway GagnBuite gebruikt wor-
den?
Verkeersleiding Japanse stijl op een zeer hoogfrequenbbean net.

Wat wordt er gespeeld/gesimuleerd?

Twee of meer verkeersleiders leiden het zeer drukke spiisee door een corridor.
Alleen IC en ST rijdt hier. Zij hebben hiervoor nieuwe midelelom het verkeer te be-
waken. De instelling van rijwegen gebeurd volledig autaseéit op basis van actueel
plan. Bij een verstoring wordt eerst het plan bijgewerkt an @eer aan de automaten
gegeven voor het instellen van rijwegen.

96

Wie zijn erbij betrokken?
ProRail: VL verkeersleiders (een nieuwe rol)

Welke simulatoren worden er gebruikt?
PRL Game met nieuwe MMI’s sterk vereenvoudigde mogelijidmedoor rijwegen in-
stellen (meeste mogelijkheden zijn uitgezet)

Wat zijn de resultaten die u verwacht van de gaming sessie?
Inzicht in werkbelasting van treindienstleiders, macdtenm, etc Inzicht in issues bij
operationele invoering van tools: bij Verkeersleiding emé trein

Wat is de opzet van de gaming sessie?
PRL Game met nieuwe MMI schermen (aparte schermen of alsippplieuwe infra
en dienstregeling inladen

Voor welk (toekomstig) ProRail project kan de Railway GayBuite gebruikt wor-
den?

Een calamiteiten situatie tijdens ETMET 2015 (Elke Tien Man Een Trein- een
hoogfrequent dienstregeling)

Wat wordt er gespeeld/gesimuleerd?

De situatie is dat er tijdens spits in 2015 met een ETMET diegsling een calamiteit
gebeurd. Tijdens de spelsessie wordt er gekeken hoe déhiliersde actoren die bij
het "product” trein betrokken zijn hun eigen werk uitvoemmwaar de conflicten in
de uitvoering zitten.

Wie zijn erbij betrokken?
Het spel wordt gespeeld door de volgende spelers: treistiigéers, verkeersleiders,
machinisten, OCCR, reisinfo, materieelplanners van deoeeders, algemeen leider

Welke simulatoren worden er gebruikt?

De treindienstleiders spelen de situatie na met behulp gaPRL tool. De machin-
isten gebruiken de machinsten simulator. Niet alle treidienin de dienstregeling
opgenomen zijn worden met mcn simulator nagespeeld. Als bant de FRISO (of
een andere simulator) die in verbinding staat met PRL en imiatén simulator. Alle

overige spelers gebruiken eigen tools die basis funciigitaih bevatten die nodig zijn
voor hun werk. De vertragingsgegevens en positie van meoenen uit FRISO (of

een andere simulator).

Wat zijn de resultaten die u verwacht van de gaming sessie?
Tijdens de gaming moet er data, beeld en geluid opgenomedeworUit de sessie
moet blijken of alle processen en werkwijzen goed op elkaaslaiten.

Wat is de opzet van de gaming sessie?

De sessie wordt gespeeld door meer treindienstleidersra@ear trdl) een enkele com-
puter met vier schermen. De machinsten zitten achter eartatel met enkel scherm
in een andere ruimte dan trdl's. De spelleider en reisinfierziieder achter een eigen

97

A. ATAM PHASE TWO QUESTIONS AND ANSWERS

laptop in de buurt van de treindienstleiders. Reisinfo theefgelijkheid om om te
roepen. Overige spelers zitten ook in "eigen” ruimte met eemputer/laptop voor
zich. Alle computers/laptops zijn met elkaar verbondeneda LAN.

98

Appendix B

SOGS Data Model Builder tool

The SOGS architecture supports the use of an intermediageidge. This language
is described as Java Objects. To ease the process of makin@hjects for the inter-
mediate language a tool is build. The Objects build with thid should be send as
the data object of the UniqueTimedEvent described in ch&pt€he tool is called the
SOGS Data Model Builder (SOGS-DMB). The SOGS-DMB tool is atgiype tool.
Here we describe the use and functionality of the tool.

|5)
File
| Message Type " DataType

Type Name |Testllessag \[Set Name ‘

attribute:

name: [testAttribute2 |

datatype: [Arrayist || [aoubte I~

Indd Attribute Remove Attribute |

public class TestMessage testAttribute

[testAttribute2
public String testAttribute
public ArrayList<Double> testAttribute2

| Add Message Type ‘

unable to open Dropbox.Ink |

Figure B.1: GUI of a new message type creation with SOGS-DMB

B.1 Using the SOGS Data Model Builder tool

SOGS-DMB is a graphical tool that generates Java classesuddr needs to fill in the
name of a new message type and the attributes that are pag ofdssage. For each
attribute the object type should be given. This requiresesbasic knowledge of Java
object of the user. Figure B.1 shows the graphical userfaterof SOGS-DMB for
making a new message type. It is possible the standard data provided by Java,

99

B. SOGS ATA MODEL BUILDER TOOL

such as String and Double, are not sufficient to make a newagedsgpe. For this
the SOGS-DMB tool provides the functionality to make newadgpes. This works
similar to the creation of new message types (see figure B#.new data types are

File
" Message Type | DataType
DataType Name hesiDataType \
attribute:
name: [testAltribute2]
datatype: |EventType [v} | [‘
‘Add Attribute Remove Attribute
public class testDataType testAttribute
testAttribute2
public boolean testAltribute
public EventType testAttribute2
Add DataType
[unable to open DropboxInk |

Figure B.2: GUI of a new data type creation with SOGS-DMB

directly added to the data type lists of the message and alageas is shown in figure
B.3. The ‘Add MessageType’ and ‘Add DataType’ buttons caetglthe construction

wl

— .

File
(Message Type | DataType
Message Type Name [Testh || setname
attribute:
name: [testAttribute2 I i
datatype: |String lv |Slring Iv ’
Strin
Add At m" 4 Remove Attribute
public clas|double testAttribute
long testAttribute2
boolean
|ArrayList ltribute2
EventType
|
Add Message Type
unable to open Dropbox.Ink |

Figure B.3: GUI of a new data type creation with SOGS-DMB

of the new Java classes. It generates a new file with the nathe abw message type
and the ‘.java’ file extension. For the TestMessage from édail the corresponding
file looks as follows:

import java.util.ArraylList;

100

B.1. Using the SOGS Data Model Builder tool

inport java.io.Serializable;
public class Test Message inplenments Serializable {

private static final long serial VersionU D = 1L;
private String nane = "Test Message";

public String testAttribute;

public Arraylist<Double> testAttribute2;

public TestMessage(String testAttribute,

ArrayLi st <Doubl e> testAttribute2) {
this.testAttribute = testAttribute;

this.testAttribute2 = testAttribute2;

}

public String getName() {
return this.nane;

}

public String toString() {
String result = "TestMessage: ";

result += this.testAttribute + " ";
for (Double item: this.testAttribute2) {
result += itemtoString() + " ";

}

return result;

}
}

The SOGS-DMB only functions as a generator for Java code. programmer is

responsible for the translation of the application spediita into the message objects
created with SOGS-DMB. The tool allows for the creation ofvrfdes, opening and
adaptation of files and refactoring. The refactoring of adda be done when the tool
itself has been changed, for example when the generatidgreabString() method has
changed. By using the refactor option the file is opened asyladjied in the GUI, but
it is also automatically rewritten to a ‘.java’ file using thpdated conversion of the

tool itself.

101

Appendix C

Experiment Laptop Settings

We tried to limit the network traffic to the bare minimum. Théxjuired to change the
standard setting of the Ethernet card and limiting the ses/iunning on the laptop.

C.1 Ethernet Card

Settings of the on-board Ethernet card:

Broadcom Net Xtreme 57xx G gabit Controller Properties
Driver Date 5-6-2007
Driver Version 10.39.0.0

802.1p Qs Disable

Flow Control Auto

Speed % Dupl ex Auto

\Wake Up Capabilities Both

C.2 TCPview

Overview of the TCP endpoints on the laptop:

al g. exe 552 TCP cps-dell 1026 cps-dell 0 LI STENI NG
| sass. exe 772 UDP cps-dell isakmp * *

| sass. exe 772 UDP cps-dell 4500 * *

svchost.exe 1012 TCP cps-dell epmap cps-dell 0 LI STENING
svchost.exe 1132 UDP cps-dell 1025 * *

svchost.exe 1132 UDP cps-dell ntp * *

svchost.exe 1288 UDP cps-dell 1900 * * 3 399

svchost.exe 1288 UDP 169.254.24.80 1900 * *

svchost.exe 1132 UDP 169.254.24.80 ntp * *

System 4 TCP cps-dell mcrosoft-ds cps-dell 0 LI STENI NG
System 4 UDP cps-dell microsoft-ds * *

103

C. EXPERIMENT LAPTOP SETTINGS

C.3 Network Traffic

A capture has been made of the traffic on the network afteblitigpof unnecessary
services. Capture was made using WireSHarkhe capture lasted ten minutes. The
last four seconds are shown below to illustrate the traffilbese messages were re-
peated over and over.

No. Ti me Sour ce Destination Prot ocol
453 599. 850802 Hew ettP_32:28:fe Spanni ng-tree- (for-bridges)_00 STP
Info

RST. Root = 32768/ 0/00: 15: 60: 32:28:00 Cost = 0 Port = 0x8002

Frane 453: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
| EEE 802. 3 Et hernet

Logi cal - Li nk Control

Spanni ng Tree Protocol

No. Ti me Sour ce Destination Prot ocol
454 600. 926022 Hew ettP_32:28:fe LLDP_Mul ti cast LLDP
Info

Chassis 1d = 00:15: 60:32:28: 00 Port Id =2 TTL = 120 System Nane = Uitleen Switch

Frane 454: 176 bytes on wire (1408 bits), 176 bytes captured (1408 bits)
Ethernet 11, Src: Hew ettP_32:28:fe (00:15:60:32:28:fe), Dst: LLDP_Milticast (01:80:c2:00:00: Oe)
Link Layer Discovery Protocol

No. Ti me Sour ce Destination Prot ocol
455 601.850623 Hew ettP_32:28:fe Spanni ng-tree-(for-bridges)_00 STP
Info

RST. Root = 32768/ 0/00: 15: 60: 32:28:00 Cost = 0 Port = 0x8002

Franme 455: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
| EEE 802. 3 Et hernet

Logi cal - Li nk Control

Spanni ng Tree Protocol

No. Ti me Sour ce Destination Prot ocol
456 602.851084 Hew ettP_32:28:fe HP_09: 13: a6 EEE802a
Info

QU 0x080009 (Hew ett-Packard), PID 0x0003

Frane 456: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)

Ethernet I, Src: Hew ettP_32:28:fe (00:15:60:32:28:fe), Dst: HP_09:13:a6 (09:00:09: 09: 13: a6)
| EEE802a QUI Extended Ethertype

Data (41 bytes)

0000 02 00 02 00 00 10 dO 00 15 60 32 28 00 7a 21 4f ‘2(.z!'0
0010 03 93 98 b5 0d 17 88 76 04 71 f2 ae d5 a7 45 62 v.q....Eb
0020 ae 00 00 00 00O 00 OO OO OO ...

Ihttp: //wwwwiresharkorg/

104

